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CHAPTER 1

INTRODUCTION

A web is a continuous, flexible strip of material such as paper, plastic film, metal

foil, textiles and nonwoven materials, which are stored at least on an intennediate basis in

wound rolls. The quality of the roll depends on the winding process and the types of

winding differ in the method of application of torque. Much of the winding is currently

accomplished via the center winding technique with an undriven nip roll. This technique

requires that the winding torque be supplied to the center (core) of the winding shaft. In

the surface winding process, the torque is applied to an impinging nip to turn the core.

Many researchers have proved that the interlayer pressure in a center wound roll is higher

than that of the surface wound rolls.

There are many methods to measure the internal pressures developed in a wound

roll, few of them are destructive and interfering tests. Examples of such a test would be

the Cameron gap test and the J-line test. These methods are used for research purposes

only. The Wound on tension measurement is one of the methods of roll structure

measurement that was developed by Pfeiffer. This method, though nondestructive is

interfering as proved by Good et al.
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The wound-on tension (WaT) measurement requires the outer most layer of the

web to be pulled away from the winding Toll and a measure of the web tension is made

prior to returning the web to the surface of the winding roll. As the web is pulled away,

there can be a frictional loss due to slippage, which results in lower WOT. Hartwig

proved that the WaT measurement could be corrected to yield the true value of WaT

had the web not been pulled away, for newsprint. The results show that the WOT appears

to be directly a function of web tension and less a function of nip load in case of center

winding. Newsprint is a high modulus web material (E := 600,000 psi).

The purpose of this research was to validate this method for other materials. The

low modulus polymer material, High Density PolyEthylene was tested. The nip was

covered with friction tapes and tested were conducted to study the effect of friction

between the nip roller and the web on the WOT values.

There were some imperfections with old winder setup in the Web Handling

Research Center that was primarily due to the dynamics of nip load. These dynamics

instabilities were overcome by the new winder setup, results for which are provided.

Finally, some conclusions have been made as to whether WOT behaves in accordance to

the relations mentioned above for the HOPE material.
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CHAPTER 2

LITERATU RE REVIEW

The winding system can be divided into input parameters, process laws and

output results or the roll quality. Several investigators have attempted to link input

parameters to output results with various sorts of roll structure measurements.

Roll structure measurements using WOT is an active research area. Pfeiffer [1]

was one of the forerunners in this field and has studied quantitatively the mechanics of

the rolling nip on paper webs. He correlated the amount of nip-induced tension with nip

force, drum d.iameter and paper properties. He concluded that the WOT Increases

irrespective of the web wound in center winding or surface winding process.

Pfeiffer [2, 3] investigated the effect of nip forces on wound-on-tension using an

experimental winder as shown in figure 2. I. The web was threaded through the nip, taken

around the load cell and taped to the core with some initial tension with nip force on.

Pfeiffer noted an initial slope in the WOT Vs. nip force graph that represented an

effective paper-to-paper friction coefficient region. He implied that the WOT cannot

exceed the normal force exerted by the nip given by the equation,

WOT 5 }!stN, {2.1 }

.L

where ~Sl is the friction coefficient between the surface winding drum and the nip roll.

3



Surface
Winding
Drum

Figure 2.1. Pfeiffer's experimental setup

Pfeiffer conducted the experiments on surface winders and hence the limit given

equation 2.1 is applicable to surface winding processes only. Another limit, which is

smaller and applicable to both center winding and surface winding appeared in a paper

authored by Good, WU and Fikes [4] and in a TAPPI paper by Good and Fikes [5]. The

limit is given by the equation

NIT ~)..I~ .. N.

where )..Ik is the web/web kinetic friction factor.

{2.2)

Figure 2.2 shows that the WOT increases with mp force for different web

tensions. The curve for Tw=O implies that the WOT is in its minimum for any nip force

and that the web cannot be wound with a negative tension.
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Figure 2.2. Pfeiffer's WOT curves

Rand and Eriksson [6J experimentally confinned some of the theories using small

strain gage transducers attached to the paper web. They showed that the web tension

drops to a minimum before entering the nip and that the rolling nip elevates the wound-

on-tension on the outgoing side of the nip to a level higher than either the minimum

tension or the original web tension.

The study of roll quality measurements, nip induced tension mechanisms. finite

element analysis, and air entrainment problems during winding, web wrinkling had been

the subject of research at the WHRC In 1992, Markum [7] published a study on nip

mechanics of nip,induced tension. The tests were on paper and he established that the

nip-induced tension (NIT) is a function of nip load and the cOMefficient of friction .He

found that the kinetic coefficient of friction has to be used instead of static coefficient in

5



calculating the NIT. Using limited range of diameters for the nip rollers, he proved that

the NIT was independent of the diameter of the nip in the case of center winding.

Ning Cai [8] studied the effects of the nip roll compliancy upon center winding

and surface winding. His work proved that the NIT mechanics is the intrinsic properly of

winding with the nip roller and the compliance of the nip roller had no effects on the NIT

and the wound roll stresses. He concluded that friction coefficient played an important

role in detennining wound-on-tension. His experimental setup is shown below in figure

2.3. His work on compliancy was later found to be limited by Kaya [9], who found that

compliancy did affect wor when the nip loads are high and the angle of wrap of the web

about the nip roll was sufficient.

NIp Roller

Idl... R.o~ Idler Roller

Unwiod Roll

Figure 2.3. Ning CaPs experimental arraogement used at WHRe.
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In the same year, Good. Pfeiffer, and Giachetto [10] were able to reason the

difference in the experimen~1 and theoretical tension values predicted by the wound roll

models for center winding conditions with no nip roll. They found that the web tension

was much less than that which was known to exist in the web prior \0 entering the

winder. Their work corrected the total stress in the outside layer to be:

T = T w + E, til U / S p.3}

Where U is the rad ial deformation of the outer layer is always negative, as the outer layer

will always attempt to compress the roll body inward and S is the nominal diameter.

Although this was important when center winding with a nip roll, tension loss has never

been witnessed on center winders with nip rolls or surface winders.

In the recent years, Hartwig [11, 12] conducted a serious of experiments to study

the wound on tension measurement method for the qualitative determination of the roll

structure. There were several interesting conclusions from his experimental work.

1) He concluded that the WOT measurement is an interfering technique.

2) In some cases, he was able to correct the pull-tab data to yield the true value of WOT.

He has thoroughly dealt with the description and usage of the pull-tab and vnrious

other pressure measurement techniques. His experimental conditions arc summarized

as (0110 .... 5:

7



Table 2.1 Hartwig's operating parameters for Newsprint.

"'inding machine Ollenltin~ par:lnlclcrs in lIartwig~s experiments

Speed (feeUmin) 300

Web Tension (lbs) b

Nip Diameter (in) 4,10

Wrap Angle 180u

3) The WIT in center winding appeared to be a function of web tension and is less

dependent on the nip load, in total contrast to surface winding for the case of 1800

wrap angle. But Pfeiffer '5 experiment [3] showed that at low wrap angles, the WOT

is more dependent on the web tension.

4) The Nip induced tension was independent of the winding process. Hartwig found that

center winders can exist better control over WOT when there is a high angle of wrap

about the nip roll since the web tension can be varied to direclly affect the WOT at

any nip load. Thus rolls can be center wound (.It low nip load and high Wound-on

tension resulting mainly from the web tension.

Balaji [13] performed similar experiments on a low modu Ius materi ai, Tyvek® I at

WHRC. Tyvek® is spun bond nonwoven material, made of PolyEthylene fibers. His

work on surface winding process concluded that the WOT was a function of nip load and

web tension, Both interlayer slippage and slippage between the web and the nip roller

I Tyvek([' is a trademark or registered Lrademark of E.I. du pont de ~cmours and Company or its affiliates.

8



caused a decreased WOT. At lower nip loads, the decrease in WOT was not due to the

web/web kinetic coefficient of friction.

OBJECTIVE OF THE RESEARCH WORK

The objective ofthis research work is to study the WOT due to center winding for

a web material whose properties are substantially different from newsprint. The quest is

to detennine if conclusions on WOT drawn from newsprint, a high modulus web that is

reasonably homogenous, also apply to lower modulus material, which may be less

homogenous. Tyvek® will be used in this study.

9



CHAPTER 3

EXPERIMENTAL SETUP

3.1 WINDING MACHINE DESCRIPTION

The winding experiments at the Web Handling Research Center were initiaJly

perfonned using the winder setup given in figure 2.3 as used by Ning Cai [8]. The nip

load was applied through an ann, with nip roller at one end, an idler at the center and an

air cylinder at the other end. The dynamics of the system were unstable due to the fact

that the nip load increased throughout the experiment and this fact had to be considered

while calculating the roll structure and was tedious.

Hartwig [12] used a better nip application design for his experiments as shown in

the figure 3.1. The nip roller carriage had facilities to vary the wrap angle of the web

around the nip and also the diameter of the nip roller. The application or load and lateral

motion of the nip were achieved through pneumatic cylinders. The nip load was

measured with S-beam load cells that were in force feedback system with an e-p

transducer. The WOT roller was mounted on a BLH load cell and the rollers preceding

the WOT roller were placed such as to give the web an 1800 wrap angle around the WOT

roller. The data acquisition and control was taken care with the help of a National

Instrument Data Acquisition card. A LabView program was used to control the nip load

and record the values of WOT, speed, web tension and nip load throughout the

experiment.

10
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C)

Figure 3.1 Ex.perimental set up used by Harlwjg

Legends:

1. Unwind station

2. Web lateral motion guide

3. Infrared guide

4. Load cell to measure web tension

5. Speed comparator

6. Nip roller

7. Load cell to measure nip load

8. Load cell to measure WOT

9. Pneumatic cylinder arrangement

10. Winding station

11. Idler to set the wrap angle.
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In this setup, the web is unwound from the unwinding station, which is mounted

on a magnetic hysteresis brake and is in a feedback loop with the web line tension load

cell. The web is then passed through a FIFE model web guide and an infrared gate sensor

contro.l1ed by a FIFE A-9 signal processor. The web is then passed through a series of

rollers, including web line tension toad cell and a web line speed servo tachometer. The

tachometer is in feedback loop with a 5 HP Vector AC drive through a controller. The

drive is connected to a Turner Uni-Drive 5 speed gearbox that allows [or variable web

speed. The web is rewound on an aluminum core mounted on the rewind shaft. Timing

pulleys drive the rewind shaft. The winder has the facility to wind in both surface

winding and center winding process and also with or without the web is being passed

over the WOT rollers, The web, before fed to the core is passed over the nip roller at 1800

wrap angle. The location of the idle roller just before the nip roller can be adjusted to set

different wrap angles.

The difficulties posed by nip mechanics in Hartwig's setup forced a rethinking of

mp load mechanism. He used a system by which nip load was applied using a single

cylinder thJough a nip support, which hosted the entire nip mechanism along with the

roller preceding the nip. When a nip load was applied during winding, the over hanging

mass, measuring about 70 lbs, was subject to severe vibrations due to factors like

unevenness of the wound roll and the fluctuating pressure inside the air cylinder applying

the nip load. The fluctuation in nip load was very high and produced a significant error

band at almost all the nip loads. This forced a new design of the nip mechanism; if the

experiments were to be conducted a very low or high nip loads.

12
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II
15

Figure 3.2 New winder setup at WHRC

Legends:

I. Unwind station

2. Web lateral motion guide

3. Infrared sensor for the lateral guide

4. Load cell to measure web tension

5. Speed comparator

6. Load cell.to measure nip load

7. Air cylinder to apply nip load

8. Nip roller

13

9. Rewind station

10. Load cell to measure wor

I I, Linear guides

12. AC motor

13. Speed reducer

14. LVDT

15. Ball screw



In the new design, the over hanging mass of the nip mechanism was replaced by a

carriage moving on linear rails guided by a ball screw. A Reliance Electric AC motor

with Dayton speed reducer powered the ball screw. The carriage comprised of the nip

ro.l.ler, nip arm, an idle roller, air cylinders to apply nip load, a LVDT and load cells. The

air cylinders were connected to the nip ann at one end and to the load cells at the other

end. A LVDT was attached to the piston of one of the air cylinders. The LVDT is in a

feed back loop with the AC motor. Depending on the direction of motion of the piston,

the carriage moves forward or backward.

The advantages of the new system over the older setup are:

I) There was a minimal loss in the system. Hence, most of the cylinder force was

transmitted to the nip.

2) The overhang mass was eliminated. This resulted in a lesser fluctuation of the nip

load than the previous setup. This was evident even when the roll was uneven.

3) By changing the capacities of the cylinders, we can achieve the necessary change

in the range of nip loads.

A comparison of the nip loading of both the setup is given in figures 3.3 & 3.4.

14
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Variation of nip load In Hartwig's experimental Setup
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Figure 3.3 Nip load variation in Hartwig's experimental setup
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Figure 3.4 Nip load variation in the new winder experimental setup
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The web line tension was controlled using a DIGITRAC tension controller made by

Magpower Power Systems, Inc. By adjusting the stability factors, just after the start

of the winding experiment, the fluctuation in web line tension can be limited to within

5% of the desired value.

The operating conditions were obtained after winding few rolls at different

nip loads, web tensions and speeds. The final operating parameter range is given in

table 3.1 and table 3.4.

Table 3.1 Experimental operating conditions

'Vinder operating parameters

Winding speed 100 ftlmin

Nip Diameter 6in

Web width 6in

Table 3.2 Operability range for different winding tensions and nip loads

Web tension (pli) Nip load (pH)

0.5 4 8 16 24 32 40

1.0 4 8 16 24 32 40

1.5 4 8 16 24 32 40

16



While considering the experimental tests. the surface winding constraints were

also considered. In surface winding, experiments at a web tension of 1 pH and a nip load

of 4 pli were not possible because of slippage of web roller over nip roller and interlayer

slippage as explained by Balaji [13]. But this condition was not seen in center winding,

hence was also included in the experiments.

3.2 MATERIAL TESTING

The knowledge about the material properties is essential for the study of winding

processes. The properties that were measured are, the radial modulus, in-plane modulus

and friction coefficients.

3.2.1 Radial modulus (E():

The radial modulus (E r ) is an input parameter for mathematical models like

Hakiel's [15J to predict the pressure distribution in a wound roll. A 6 x 6 x 2 in) stack of

HDPE web was used for testing the radial modulus on an lnstron Pressure testing

machine. The machine had platens of square cross sections. A LabView program was

used for data acquisition and control. The machine was programmed to apply the load

from 0 to 200 psi pressure and record the pressure verses strain data. The pressure-strain

characteristic is non-linear in nature for the HOPE web.

There are different methods of obtaining the radial modulus from the above data.

One of the methods is to differentiate the best curve fit for pressure versus strain data and

then curve fitting the line obtained using the equation values against pressure data.

Another method is the di fference method of di fferentiation. Advanced mathematical

softwares could be employed to directly differentiate the pressure-strain data to obtain the

17



radial modulus curve. For this study. a radial modulus function in terms of pressure was

obtained using Microsoft Excel program. The LINEST macro was used to estimate the

di fferentiated values and these values are plotted against the pressure data. A polynomial

curve fit of third degree was obtained.

--------l
I

I

o Radial M:xIuus

Pfeiffer's M:xIulus

-Fbly. (Rad~1 Mxkllus)

y >: O.003x' • 0.595)(1 + 43.198x + 49.938
- ---R/=-0.9953- -

1200

1600

1400

200

400

I!100)

i il BOO --
o

:::E

~ 600
IIIa::

The Pfeiffer's [I OJ expressions are given below.

P=Kl (eK2C
• J) {3.II

{3.2}

Er =K2 (KJ + P) {3.3 }

The coefficients in the above equations KI, K2 were determined by the solver

package in the Microsoft Excel Program. The error between the experimental data and

the data computed using the Pfeiffer's equation was minimized to obtain the following

values for KI and Kl.

18



Table 3.3 Coefficieots K1 and K2 in Pfeiffer's equat.ion

Coefficients of Pfeiffer's equation

KI

K2

19.7

11.6

3.2.2 In-plane modulus (Et):

The in-plane modulus (E I) of the material is about 75000 psi as quoted by Tyvek.

But the experiments at the WHRC established the value to be about 59000 psi. To

establish the value, a 50 fl of HOPE web was used. One end of the web was tapped and

other end was cOlU1ected to a force gauge. An index was marked at the end that is

connected to the force gauge. The web was pulled slowly. The displacement was

recorded for predetermined values of the force. Three such tests were performed and the

average values were used to obtain the value of in-plane modulus. The in-plane modulus

test curve was shown in figure 3.6 below.
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In-plane modulus test
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Figure 3.6 In-plane modulus calculation curve

3.2.3 Pressure measurement:

In this study, pull-tabs were employed to measure the pressure in the radial

direction. These were calibrated before each set of experiments. The pull-tabs are made

of 0.001 in thick stainless steel feeler gauges made by Precision Brand Products Inc. To

increase the unifonnity of friction, the pull-tab was encased in a brass sheet made by the

above company. The brass casing along with the pull-tab was kept in the middle of a 2 in

thick HDPE web stack for calibration on an Instron pressure testing machine. A Force

gauge was used to pull the pull-tab after applying a known value of load.

A curve is plotted for the known pressure vs. pull force value. This curve is used

to interpret the radial pressure value in the wound roll during the experiment. The pull-

tabs are pulLed thrice and their average values are used in calibration. Typically, the curve
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IS linear as shown. The pull-tabs are inserted into the wound roll in a direction

perpendicular to the motion of the web. Once the roll is wound completely, the pull-tabs

are pulled thrice as during calibration. Their average value is used in computing the radial

pressure.

Pull-tab Calibration
60 ,----------------------,

50 +--------.------------;S>-----j

:=- 40
III

E::
e 30
:::l
III
III
CIl...
a.. 20

10

y = O.B166x

R2 = 0.9974

--+- Pull-tab data

-Linear (Pull-tab data)

70605040302010

O+---.,----.----------r-----r-----r--~--_I

o
Pull force (Ibs)

-------------- -"-

Figure 3.7 A typical calibration curve for a pull-tab.

Hartwig, in his thesis had dealt in detail with vanous other methods of roll

structure measurement like Cameron gap test [16], rhometer [17], Smith Roll Tightness

Tester [18], Force Sensing Resistors [5], etc.
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{3.4}

32.4 Friction tests:

In this study, friction tests were perfonned to determine the coefficient of friction

between web to web and web to aluminum. A known weight of 11.65 Ibs was used to

measure the friction factors. The weight was fixed to one end of a piece of HDPE web.

The web was passed over a 6 in aluminum core clamped at both the ends. A force gauge

was used to pull the web and determine the frictional force. Three tests were perfomled

and their average was used in determin.ing coefficient of friction between web and

aluminum. The kinetic coefficient of friction was then obtained using

TI / T2 = e~Lko.

Where Jlk is the kinetic coefficient of friction and e= 11: fads.

Knowr. Q.·~If!ht ...

- ~ A lUnl,"um Rolkr

~ Forc~ !>allgt

Figure 3.8 Friction mcasu rement test
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Similar tests were perfonned to detennine the coefficient of friction between web

layers. For this study, the aluminum core was first wrapped with a piece of HDPE

material and the coefficient of friction was measured. The results are summarized in the

table given below.

Table 3.4. Coefficient of friction factors

Coefficient of friction (J.1)

~Aluminum-HDPE

~HDPE - HDPE
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CHAPTER 4

EXPERIMENTAL RESULTS AND DISCUSSION

Hartwig had established Wound-an-Tension measurement as a method to

quantify roll structure. He investigated the WOT measurements on newsprint by two

different methods; directly observing the WOT values from the WOT load cell and

inferring the WOT from the pull-tab measurements. He established that the wor

measurement is an interfering method. The behavior of low modulus material like

Tyvek® on war measurement is the topic of interest in this study.

4.1 BEHAVIOR OF WOT

for any material, the knowledge about the behavior of WOT by direct observation

is useful before starting to experiment with WOT measurements using pull-tab. This

knowledge will help us in determining the operating range for the experiments. The range

was determined by winding the Tyvek® material for a set of web tensions and nip loads.

When determining the set of experiments, the wor behavior for surface winding was

considered, so that the results could be compared. For surface winding the stick zone was

at around a nip value greater than 40 pli.
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To perform the initial test, the web was pulled away from the winding roll and

passed over a WOT roller and fed back to the winding roll. The load cell attached to the

WOT roller measure the WOT directly_ A LabView program acquired WOT. nip load,

web tension and speed dataset over the entire duratjon of the experiment. From the figure

below, it can be seen that the WOT decreases with both web tension and nip load. After

these irulia1 tests, the set of experiments to make pull-lab measurements were determined

to be 4, 8, 16,24,32,40 pli nip loads at 0.5, 1.0, 1.5 pli of web tension, totaling 18 sets of

experiments.

Variation ofWOT with Web tension and Nip load

3.5 ,-----------------------------,

3·

2,5

I
o
:: 1.5

0.5

1 0 Web tension = O.sl)lil
'0 Web tension = 1.0 pli f

I. Web tensio~~~~

4540353D20 25

Nip load (pli)

15105

O-l--------,--------r-----.------.-----------------<
o

Figure 4.1 Behavior of WOT with web teosion and nip load
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4.2 EXPERIMENTAL PROCEDURE TO MEASURE RADIAL PRESSURE

WOT is measured indirectly from the measurement of radial pressure inside the

wound roll. To measure the radial pressure, pull-tabs were inserted at certain radial

locations and pulled with help of force gauges; the force being an indicative of the radial

pressure at that location. The WOT rollers were not used in the study because Hartwig

had established it to be an interfering method and the WOT observed would be less than

the values inferred from the pull-tabs.

Before the start of the experiment, new pull-tabs were calibrated. The pull-tabs

are inserted at 5 radial locations starting at around 0.6 in from the core. Typically, the

wound roll is of 6.3 inches in diameter. Each experiment is repeated 3 times resulting in 3

radial pressure measurements at each location. The values are averaged and 95%

confidence levels are established and plotted as error bars in the radial pressure verses

radius plots. Table 4.1 shows a typical pull-tab reading.
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Table 4.1 A pull-tab reading obtained on Instron pressure testing machine.

Pull Tab A

Pressure (psI) load (Ibs) Trial 1 (lbs) Trial 2 (Ibs) Trial 3 (Ibs) Average (lbs)

5 180 7.4 7.3 7.5 7.4

10 360 14 13.9 13.7 13.9

15 540 20.6 20.1 20.3 20.3

20 720 26.8 27.2 27 27.0

30 1080 40.4 40.3 40.9 40.5

40 1440 53.9 54.1 53.8 53.9

50 1800 67 66.8 66.5 66.8

Figure 4.2, 4.3, and 4.4 show the radial pressure curves for web tensions 0.5, 1.0

and 1.5 ph at different nip loads.

Nip load (pll)
70

_4pli

___._8 pll
60 -M-16pli

---6-24 pli

50 -+-32pli
.- -+-40pll0.

~ 40
::s
II>

Xl..
~ 30
III
'6
/}.

20

10·

o -
0 0.5 1.5 2 2.5 3 3.5

Pile Hoight (111)

Figure 4.2 Radial pressure plot at constant web tension of 0.5 pli
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Figure 4.3 Radial pressure plot at a constant web tension of 1.0 pU
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Figure 4.4 IUdial pressure plot at constant web tension of 1.5 pH
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4.3 AN ITERATIVE PROCEDURE FOR CALCULATING WOT

Hartwig used an iterative procedure to determine the WOT from pull-tab

measurements using Hakiel's wound roll model. In this study, Winder 6.0 program was

used to determine WOT from a known radial pressure profile calculated from the pull-tab

measurements. The model requires few winding parameters as input, which are summed

up below:

Table 4.2 Initial parameters to the Winder 6.0 software

Input to the winder 6.0 software

Core outer radius 6.615 in

Wound roll outer diameter 12.415 -12.815 in

Pfeiffer's constant K1 19.7 psi

K2 11.6

In-plane modulus (El ) 59000 psi

Core Modulus 10E6 psi

The winder software does not have options to calculate WOT tension directly for

a particular radial pressure profile obtained from the pull-tab measurement. BUl an

iterative procedure has been adopted to determine the WOT. The radial pressure from the

pull-tab measurement is plotted on the same graph as that of the model predicts. An error

term is computed by summing the absolute errors between the winder computed radial

pressure and pull-tab measured value at the recorded radial location.

Now, the program is run with a trial input to the winding tension value. The error

is noted. Then the program is rerun with a new winding tension till the error term is a
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minimum. The winiling tension corresponding to the minimum error term is the WOT.

To use such an iterative procedure, the WOT should be a constant for any radius of the

wound material for a particular winding conditions. Below is a figure of a direct WOT

experiment run at web tension of 1 pli and a nip load of6 ph ofHDPE web material after

achieving steady state winding conditions. The WOT is constant through the experiment.

Hence, the iterative procedure is valid.

12

10

8
Ci)
..c

t- 6
0
;:

4

2

0

Variation of Wound-On Tension

........ - - ~
~--

0 200 400 600 800 1000
Timo (soc)

- -

Figure 4.5 Behavior of WOT at web tension =1 pH and nip load = 6 pli

It has been proved by Hartwig that the direct measurement of WOT is an

interfering method and that there is a difference in the experimental and calculated

values. A flow chart describing the iterative procedure is given in figure 4.6.
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Change the web
tension

Initialization
Enter the value of input parameters as in table 4.2
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web tension is given input.

.....
Winder software
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radius 15 obtamed. The difference between the
experimental value (calculated from the pull-tab value)
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,
Calculation of the error term

Find the sum of the absolute errors between the
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corresponding radlal locations.
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Is the error

term
mmimum'?

Yes

The web tension value IS the
wor value

Figure 4.6 Flow chart for iterative procedure to calculate WOT
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In this study, WOT values for all the experiment sets are computed using the

above iterative procedure. A radial pressure plot of the experimental and theoretical value

with a minimum error is given in figure 4.7.

Radial Pressure Vs. RadiusI
I 70.0 r--i----;---i---;:::==:::::::r======r:::::::::::::;----,

60.0 -1~----j'-----

-Wound roll model -.elue

• Pull-tab measured -.elue

fj

--- -

1--
4.31 4.81 5.31 5.81 6.31

Radius (In.)

10.0

20.0

0.0 +----.....-----+--------,------r------,.-------,-II
3.31 3.81

1__ 50.0

'iii
e:.. 40.0
~
:::J
lJl

:ll 30.0
et

Figure 4.7 Radial pressure profile for web tension = 1 pH and nip load = 24 pli

In the above figure, a WOT tension value of2.33 was calculated for a web tension

of I pli and a nip load of 24 pli using the Winder software with minimum error between

the theoretical and experimental values, A list of figures showing the radial pressure

profiles obtained using winder code (Hakiel's model) is given in Appendix A. The

calculated values of the WOT for all values of web tension and nip load is given in figure

4.9.
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4.4 NIP INDUCED TENSION

It is known that the nip roller induces a component of the WOT above and beyond

the web tension, the nip-induced tension. The source of this nip-induced tension is the

elongation machine direction strain in the outer layer due to contact mechanics. As the

incoming web, leaves the contact zone between the nip and the winding roll, the web

tension undergoes an increase in tension, the nip-induced tension.

A sizeable loss of WOT is experienced as explained by Hartwig when direct

WOT measurements are made. The decreased WOT which is measured is associated with

friction loss and can be predicted using the capstan expression given below.

WOT measured = WOT / e!lw/w .8, {4.1 }

where Ilw/w is the kinetic coefficient of friction between webs and e is the angle of wrap

between the nip and the point at which the web is extracted to make the WOT

measurements.

A companson of WOT values measured directly against In the WOT values

inferred from the pull-tab measurements is given in figure 4.8. Note that at lower nip

loads, the ratio of the WOT (inferred) and WOT (direct) is about one. Hence there is no

slip at lower nip loads for center winding cases using Tyvek®. It appears that the direct

WOT measurements may not be interfering at lower nip loads.
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Figure 4.8 Comparison of directly measured and pull-tab inferred WOT values

The loss in WOT due to the slippage between the outer layer and the layer

beneath, can be corrected to the original values as explained by Hartwig [12]. The web

tension associated with each center winding case was subtracted from the measured WOT

values and the results are plotted in figure 4.9 along with the measured WOT values. The

NIT falls into a reasonable single curve for all the cases.
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Variation of WOT with web tension and nip load
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Figure 4.10 WOT values computed using the relation in equation 4.2
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The slope of the WOT values in figure 4.10 is calculated using the equation

WOT = T" + (Ilw/"" - ~AIW). N, 14.2}

where N is the nip load, T w is the web tension, /lw/w is the coefficient of friction between

web layers and IlA!\\' is the coefficient of friction between web and aluminum.

The results established by Good for newsprint material were based on the

assumption of uniform friction between the web layers. But the slope of the WOT in

figure 4.10 suggests the value that is a difference between the friction between web layers

and the friction between web layer and aluminum.

To corroborate that the equation 4.2 is an appropriate expression for WOT for

center winding, a set of experiments were canied out with the nip roller covered with

friction tapes. Friction tapes are capable of increasing the coefficient oj friction between

aluminum and the web layer to a very high value. Friction lests were conducted in the

manner explained in section 3.2.4. The kinetic coefficient of friction was measured to be

1.5 with a wrap angle of 180°. Figure 4.11 shows the newer WOT values against the

earlier measured values as in figure 4.1.

There was not much difference between the WOT values measured with the nip

roller covered with friction tape and without the friction tape. But they were lesser than

the WOT values inferred from the pull tab data using the iterative procedure.
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Variation of WOT with Nip load
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Figure 4.11 Comparison ofWOT values for different nip roller surfaces

The equation 4.2 though valid for Tyvek web material may not be valid for all the

cases. Though this may be offered as a solution to the winding conditions discussed

above, it is unwarranted that the same relation holds good for all the winding conditions.

AI I the above results are drawn, asswning the Radial modulus of elasticity to take the

Pfeiffer's form. In the Appendix C, the above results are drawn with the polynomial form

for Radial modulus (as given in figure 3.5) and compared.
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CHAPTERS

CONCLUSIONS

The following conclusions are drawn from the experiments carried out to evaluate the roll

structure using WOT measurement for Tyvek® webs.

1) At lower nip loads, the Wound-On Tension measurement method appears to be a non

interfering method. (Refer Figure 4.8)

2) At higher nip loads, this technique yields a lesser value than the WOT values inferred

from the pull-tabs as observed with newsprint. (Refer Figure 4.8)

3) The Nip-Induced tension appears to be a function of nip load only, as was observed

with newsprint, a high modulus material. (Refer Figure 4.9)

4) The Nip-Induced tension depends, more on the difference between the coefficient of

friction factors between web/web and aluminumJweb. The equation 4.2 may be

offered as a one-time solution for Tyvek® webs.
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FUTURE WORK

The Wound-On tension measurement method is a proven method to study the roll

structure of a wound roll. Its been studied for materials whose properties do not vary. But

Tyvek® is a non-homogenous material. Its material properties can be better classified.

There are variations tn material density across the width. Hence it is necessary to study

the micro properties of Tyvek~ instead of macro properties. For example, the In-plane

modulus test can be conducted at various sample lengths.
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APPENDIX A

PLOTS OF RADIAL PRESSURES FOR DIFFERENT WEB LINE TENSIONS

AND NIP LOADS USING PFIEFFER'S FORM OF RADIAL MODULUS OF

ELASTICITY
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Figure A.10 Radial pressure profile at web tension = 1.0 pU and nip load = 24 pli
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Figure A.ll Radial pressure profile at web tension = 1.0 pli and nip load = 32 pH
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Figure A.12 Radial pressure profile at web tension = 1.0 pli and nip load = 40 pH
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Figure A.14 Radial pressure profile at web tension = 1.5 pli and nip load = 8 pH
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50



20.0 -10--- ~kiel's twbd~-r-
o Experirrenlal Data

L--__

400

80.0 -

600

100.0

1-120.0 ,--------------------------,

! Web Tenslon = 1.5 pit
____~ load =32 pll

6315.815.314,81

Radius (In.)

4.313.81

0.0 ~--___r---~--___,,...._--___,_---...,...._---.::I'------,-J

3,31

Figure A.I? Radial pressure profile at web tension = 1.5 pH and Dip load =32 pH

140.0

120,0

Web Tension =1.5 pll
Nip load '" 40 pll

100.0

'iii
Il. 80,0

40.0

2D.0 t
-- -

--Halciers MJdel

o Experllrental Data

5,815.314.81

Radius (In.)

431381

0.0 ~--~------.-------,.____--~---_.__--'''-------r'

3.31

L __ ----------------------------'
Figure A.IS Radial pressure profile at web tension == 1.5 pH and nip load == 40 pH
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Table B.1 Radial pressure values for different web tension Bod nip load values

Column 1. Confidence values Column 2: AV8Tii1(J8 PUe Height (In) Column 3: AveTiilge pressure (psI)

Web tension =0.5 pli Web tension = 1.0 pli Web tension = 1.5 pli

NIl) load" 4 011

0.2999 0.7553 9.1316

0.1748 1.5017 8.2303
0.2903 2.0833 7.1434

0.2111 2.4250 8.4349

0.2763 2.9000 2.8764

0.4121 0.7527 16.1535

0.3229 1.5183 14.9126

0.6105 1.9923 14.1206

0.4381 2.4733 10.4732

0.4505 2.8840 4.4411

0.5216 0.7123 27.4805
0.4183 1.4 773 23,8252

0.3474 1.9667 19.9187

0.4821 2.5033 13.3583

0.5476 2.8923 5.0261

1.0932 0.5803 19.1940

1.5896 1.2400 12.1876

0.8489 1.7497 12.7349
0.2349 2.1733 13.9355

0.7723 2.6967 4.7651

Nlffloact- 8j)Jl
0.8706 0.5467 25.1582
1.2612 1.2573 20.9837

0.3106 1.7667 19.9423

0.3020 2.2590 14.5508

0.3429 2.7287 7.2248

Nl ~I!il= Ofj ell
1.6840 0.5867 45.1463
1.4782 1.2300 32.5337

0.8165 1.7733 25.2903

1.6278 2.1700 20.5972

0.4574 2,6900 11.5144

1.2379 0.6033 31.2536

0.5852 1.2900 26.1416

0.2361 1.8167 21.7695

0.4105 2.3167 15.5169
0.3305 2.6767 7.0928

NIDJoaCi - 8 lID
1.0067 0.6500 43.7756

0.5230 1.2933 32.7373

0.3890 1.8233 28.5989
0.5526 2.3300 17.8438

0.3459 2.7167 8.0287

Nlji]oaCi -= ~f6pll

3.5434 0.6633 58.0227
10135 1.3067 42.9040

1.6205 1.8033 33.7812

0.5495 2.3067 21.3515

0.4660 2.7133 8.2985

~JpJQad -:~4.:-~1I tlli!Iolil~~'-~:~(I IIUP'I~~"- ~ ~Ql'1

1.1787 0.5623 42.7490

0.7411 1.2413 33.1823 1.4993 1.2033 41.2297 2.5312 1.2533 49.9337

1.4455 1.7680 29.0133 0.7263 1.7343 33.6002 1.0443 1.7733 39.1228

0.5972 2.2523 21.8053 0.8044 2.2383 21.6846 0.4086 2.2700 25.7284

0.5435 2.7450 9.4356 0.1100 2.6557 11.7427 0.5735 2.6767 8.3870

rIll I:> I~-ll.RJ" tffR road -32""Q!.I Nl'ploiJ'd. -•.n. p1l
3.2593 0.6233 47.1951

0.4278 1.2400 35.5921 1.4104 1.2067 48.4918 1.6075 1.2233 64.7436

0.2900 1.7933 22.9922 0.6424 1.7633 36.8943 0.9018 1.7233 47.7636

04274 2.2500 16.8246 0.6525 2.2733 26.2279 0.6332 2.2600 29.6825

0.3125 2.5567 6.5201 0.2756 2.6233 12.6878 0.4460 2.6433 8.6715

~1P_,fQii~f~~jjJJ ID""I! 1~:~:4bjill HlliJoa~ ~ RJl
1.9212 0.5867 64.2449 I
0.9061 1.2467 43.4042 1.5237 1.2400 57.2624 1.3057 1.2400 70.8806

0.8125 1.7400 34.0628 1.6118 1.7733 45.7010 2.4102 1.7633 51.5195

0.2388 2.2700 22.2070 0.7075 2.2333 28.0157 0.4515 2.2667 28.9642

0,3715 2.6633 8.1237 0.3143 2.6667 8.2468 0.4670 2.6333 9.5834
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Table 8.2 In-plane modulus test Data

Average Strain (in/in)
Average Tangential

Stress(psi)

0.00 0.00
1.25 55.56
2.00 111.11
2.74 166.67
3.44 222.22
4.30 277.78
5.18 333.33
6.00 388.89
6.94 444.44
7.97 500.00
9.27 555.56
11.81 694.44
14.34 833.33
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Table B.3 Radial Modulus Test Data

Strain Pressure (psi) Radial fWlodulus Str.:lln Pressure (psi) Radial Modulus

0.01884 0.76605 49.18919488 0.05224 6.5109 353.3564786
0.0195 0.86887 54.24700139 0.05281 6.60619 357.0652561
0.0203 0.87922 57.59763327 0.0536 6.9457 370.1710492
0,02086 0.89993 59.60828743 0.05422 7.24592 379.2729335
0.02166 0.94134 59.65760252 0.05479 7.42191 390.43195

0.02222 1.00345 62.28535Ba2 0.05549 7.74283 400.2498602
0,02282 1.06557 64.74962517 0.0562 7.97058 412.9503774
0.02364 1.08627 69.52513508 0.05681 8.26045 419.6952561
0,02421 1,11733 69.49500228 0.05744 8.51926 425.944508

002494 1 15874 70.24643747 0.05826 8.82983 431.3811889

002552 1.23121 73.63241733 0.05877 9.13005 444.8109673
002617 1.29332 77.78948303 0.05946 9.43027 457.9664434
0,02697 1.3.3473 90.00029208 0,0602 9.73048 468.2800S87
0,02748 1.34508 97.69790786 0.06082 10.04105 480.1383973

002829 1.4279 99.30525944 0.06159 10.32057 489.3810793
002895 1,53142 100.1644398 0.06218 10.75537 498.1303371

0,02953 1,57283 106.1369934 00628 11.02453 507.6960567

003028 172612 111.2085965 0,06355 11.42827 517.8238937

0.03086 1,77988 118.4784269 0.06412 11.71814 526.1976568

0,03162 1,79023 122.6470816 006477 12.02871 533.9706385
0,03221 1.8627 126.5805267 0.06548 124635 532.351587
0,03282 1.97657 131.4212635 0.06614 12.75337 545.1364823

0,03363 2.04904 137.0413129 0,06887 13.16746 557.9921694

0.03424 2.19397 142.2308268 0.06748 13.54015 567,9078944

0.03482 2.27679 147.9070578 006812 13.68178 584.0090727

0.03558 2.39067 152.4661351 0.06894 14.32693 598.1236947

0.03616 2.46313 159.4476067 0.06943 14.67891 6066767509

0.03698 2.61842 168.39277 21 0.07009 15.11371 618.2973903
0,03764 2,64948 178,0536733 007089 15.53815 624.8808536

0.03818 2.74265 186.2125659 007146 15.9833 636.6964118

003895 2,93934 193.6013895 0.07209 16.3974 645.8105654

003947 3.08427 202.5752962 0,07291 16.79079 640.970443

004028 3,22921 208.9749992 0,07353 17.3084 6450134333

0,04092 3.4259 219.0270587 0,07408 17.61897 657.7911167

0.04148 3.47766 217.0902528 0.D7484 18.16765 667.2905114

0.04229 3.63295 220.0975659 0,07548 18.60245 660.87489

0.04293 3.79859 224.9754223 0.07629 19.01654 701,6693053

0.04349 3.91246 232.0360061 0.07686 19.46169 701,7569455

0.0443 4.14021 238,3875427 0.07745 19.95861 713.8451442

0,04493 4.22303 2531106034 0.07806 20.-43481 725.4087563

0,04546 4.44043 2598113821 007867 20,97314 732.3169431

0,04626 4.62678 27D.693284 0,07947 21.49076 746.452623

0.04683 4.76135 280.753$454 0.08026 21.94626 750.3346912

0.04748 4.9477 292.4417998 0.08084 22,43262 744.3729516

0.04828 5.20651 301 V72271 0.08144 22,92973 752.2109969

0.04883 5,32038 307,9434461 0.08221 23,41629 765.2696493

0.04946 5.5999 3172441419 0.08283 23,98567 769.0711443

0.05026 5.81729 324.325577 0.08343 24.49294 788.1002625

0.05079 6,0347 334.8654134 0.08424 24.95879 793.7015261

0.05164 6.25209 341,7959697 0.08461 25.51782 796.10597-44
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Table 8.3 Radial Modulus Test Data (Contd.)

Strain Ptcssurc (psi) Radial Modulus Strain Pressure (psi) Radial Modulus
0,08541 26,02508 811.122273 0.11881 59.03873 1135.106276
0.0862 26,58411 815.6330026 0.11932 59.73233 1149.355258

0,08663 27,2155 823.1359773 0.1201 60.42595 1159.13522
0.08747 27,71252 838.4700463 0.120n 61.3266 1161.748474

0.08817 2819908 841.4602402 012136 62.07197 1180.12663

0,08878 28.83057 8-43,7003608 0.12214 62.79663 1176.838071

0.08939 29.32748 8562499864 0.12274 63.68693 1180.047605

0.09018 29,S4862 8632476409 012337 64,44266 1197.3219!}1

0.09079 30.52836 870.5857746 0,1241 65.17767 1192.438113

0.09137 31.06668 884.040547 0.12471 66.03692 1189.817345
0,09216 31.64641 689.7595054 0.12537 65.75123 1205.224191

0,09274 32.26755 892.6869018 0.12609 67.02083 , 205.\75546

0.09339 32.87834 904.0930194 0.12669 68.41796 1210,567532

0.09418 33.47878 909.4207555 0.12732 69.11156 1224,64888

0.09475 34.11027 916.9020722 0.12811 69,98116 1230.065717

0.09535 34.67965 925.5271478 0.128S8 70.85076 1236,832847

0.09017 35.28008 929.0312076 0.12933 71.65824 1242.580269

0.09678 35.97369 933,0827727 0.13005 72.44502 1235.178024

0.09739 36,54307 942.5891459 0.13069 73.33533 1243.337797

0.0982 37.28844 944.6712645 0.13129 74.1221 1255.16-3059

0.09874 37.78535 950.5070965 0.13213 75.06417 1236.454794

0.09935 38.43755 961 368296 0,13272 75.87165 1246.205656

0.10015 39.1 HJ45 966.3333216 0.13346 76.62737 1260.208564

0.10073 39.71089 983,5861591 0.1341 77.55908 1269.566854

0.10136 40.35274 997.9721887 0.13462 78.35622 1277.094847

0.10219 41.09811 996,8250058 0.13545 79.10159 1294.938959

0.10272 41.65713 1005.383038 0,1361 80.13682 1292.974765

0.10336 42,39215 1020,381005 0,13673 &HI9508 1302.055021

0,10414 43.23069 1029,S46188 0.13729 81.78284 1292.813461
, 0,10475 43.83113 1038.481993 0,13815 82.77666 1287.53577

0,10551 44.43155 1045.181117 0.13866 83.53239 1302.772539

0.10618 45.25975 1034.918342 0.13943 84.39163 1291.015678

0.10671 45.83948 1038.747276 0,14011 85.35441 1284 .058333

0,10733 46.54344 1045.902073 0.14072 86.09978 1296.445068

0.10814 47.36128 1054.746267 0,14143 86.96937 1313.744959

0.10872 47.94101 1066.434177 0.14207 87.93214 1306.883575

0.10947 48.80356 1061.308476 0.14264 88.65881 1324.950242

0,11014 49.48351 1063.853558 0,14343 89.56781 13-35.924587

0,11068 50.03218 1063.728471 0.1441 90.65481 1331.480452

0,11135 50.72579 1076.B3B968 0,14467 91.41053 1339.64399

0,11212 51.60574 1090.070215 0.14547 92.25942 1342.170091

1 0,11273 52.24759 1097.654447 0.14605 93.25325 1346.974168

0,11:>36 52.92049 1097.210178 0.1406 94.06073 1352.235738

011415 53.70727 1111.563611 0.14744 94.90952 1356.444n

0.11474 54.45299 1110.427156 01481 96.00697 1355.766616

011532 55.14625 1115.000463 0.14864 96.75234 1376005231

01161 55,96408 1129.500637 0.14941 97.71511 1374.51616.3

011682 56.81297 1127.902498 0.15006 98.62611 1374.238507

011735 57.47552 1135.001152 0,15062 99.54748 1393,753744

0,11815 58.'\8984 1138.257398 0,15146 100.44814 1401,547179
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Figure B.2 WOTM Winding machine at WHRC

Figure B.3 Direct WOT Measurement
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Figure B.4 Nip loading Setup

Figure B.5 Another view of the new setup
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Figure B.6 Friction test

Figure B.7 Wound roll with pull-tabs
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APPENDIX C

1. PLOTS OF RADIAL PRESSURES FOR DIFFERENT WEB LINE TENSIONS

AND NIP LOADS USING POLYNOMIAL EQUATION FOR RADIAL

MODULUS OF ELASTICITY

2. COMPARISON OF THE WOUND-ON TENSION VALUES OBTAINED

USING PFEIFFER'S FORM AND POLYNOMIAL FORM FOR RADIAL

MODULUS OF ELASTICITY

3. COMPARISON OF THE NIP-INDUCED TENSION VALUES

4. COMPARISON OF THE WOT-INFERRED AND CALCULATED USING

EQUATION
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Figure C.3 Radial Pressure proftle at Web tension =0.5 pH and nip load = 16 pli
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Figure C.4 Radial Pressure profIle at Web tension = 0.5 pli and nip load = 24 pH
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Figure C.S Radial Pressure profile at Web tension =0.5 pH and nip load = 32 pli
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Figure e.7 Radial Pressure profIJe at Web tension = 1.0 pH and nip load = 4 pH
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Figure C.9 Radial Pressure profile at Web tension = 1.0 pH and nip load = 16 pH
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Figure Cll Radial Pressure profile at Web tension =1.0 pli and nip load =32 pli
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Figure C.17 Radial Pressure profile at Web tension = 1.5 pH and nip load = 32 pli
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Table C.l WOT values using Pfeiffer's and Polynomial form for Radial modulus

WOT( Pfeiffer's form) WOT(Polynomial form)
pli pli

Nip load Tw=O.5 Tw=1.0 Tw=1.5 Tw=O.5 Tw=1.0 Tw=1.5
(pli) p .

pli pli pli pit pH

4 0.69 1.206 1.776 0.762 1.02 1.59

8 1.158 1.5 2.124 1.104 1.41 1.926

16 1.656 2.088 2.622 1.5 1.83 2.28

24 1.956 2.334 2.73 1.83 2.088 2.52

32 2.34 2.79 3.216 2.004 2.37 2.868

40 2.67 3.168 3.456 2.28 2.766 3.126

3 . ---

2.5
:':'
a.
;: 2 .
a
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I

1

0.5 - ---

r-+-- Pfelffer(O.5 pli)

, Pfeiffer(1.0 pli)
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-------
Figure C.l9 Variation ofWOT with nip load and web tension
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Table C.2 NIT values using Pfeiffer's and polynomial form for IUdlaJ Modulus

NIT(Pfeiffer's form) NIT(polynomial form)
pli pli

Nip load Tw=O.5 Tw=1.0 Tw=1.5 Tw=O.5 Tw=1.0 Tw=1.5
(pli) pli pll pit pll pll pli

4 0.19 0.206 0.276 0.262 0.02 0.09

8 0.658 0.5 0.624 0.604 0.41 0.426

16 1.156 1.088 1.122 1 0.83 0.78

24 1.456 1.334 1.23 1.33 1.088 1.02

32 1.84 1.79 1.716 1.504 1.37 1.368

40 2.17 2.168 1.956 1.78 1.766 1.626

2.5 -,----------------~

50

)0( Polynomial(Tw-
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Figure C.20 Variation of NIT with nip load and web tension
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Table C.) Comparison of WOT values Inferred and calculated from equatloD 4.2

WOT - inferred Analytical WOT - equation
pli pli

Nip load Tw=O.5 Tw=1.0 Tw=1.5 Tw=O.5 Tw=1.0 Tw=1.5
(pli) pli pli pli pI" pli pli

4 0.762 1.02 1.59 0.754 1.254 1.754

8 1.104 1.41 1.926 1.008 1.508 2.008

16 1.5 1.83 2.28 1.516 2.016 2.516

24 1.83 2.088 2.52 2.024 2.524 3.024

32 2.004 2.37 2.868 2.532 3.032 3.532

40 2.28 2.766 3.126 3.04 3.54 4.04

50

I

I I
I I

r

---=-....- T~O.5 pli' - - .

8 Tw=1.0 pli
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Figure C21 Variation of WOT inferred and calculated using equation 4.2
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