MODIFIED SET ASSOCIATIVE TLB

By
ABDURASHID ABDURAHMAN

Bachelor of Science
Xinjiang University
Urumgqi, Xinjiang
People’s Republic of China
1991

Master of Science
Oklahoma State University
Stillwater, Oklahoma
2001

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
December, 2001

MODIFIED SET ASSOCIATIVE TLB

Thesis Approved:

fecclekp
E Thems AdVlser

i

ACKNOWLEDGEMENTS

I sincerely thank my adviser Dr. Nohpill Park, for his guidance, help,
encouragement and continuous support in finishing this thesis. Special thanks are
extended to my committee members Dr. G. E. Hedrick, Dr. Blayne Mayfield for their
advice, cooperation and suggestions for the completion of this thesis. I would like to
express my sincere gratitude to Dr. G. E. Hedrick for his precious help in organizing and
proofreading this thesis.

So many people have helped me during the completion of this thesis. It is
impossible to acknowledge them all personally. I extend my special thanks to Dr. Mansur
Samadzadeh for his help for finding the needed input trace files.

I thank God for giving me intelligence and courage. My special gratitude is
extended to my parents and brother, sisters for their continuous support for my education.

Finally, I would like to dedicate this thesis to my lovely wife Aisha for her

priceless sacrifices during the last four years of my higher education at OSU.

il

TABLE OF CONENTS

Chapter Page
L. INTRODUCTION mesnns commimss s s e s s oms s smm s s 1w 1
1.3 BRERYOUNA cniniscvanimmrsiis s e i s PR A R N e 1
1.2 MOBVALION. s5sssiiicsiomm s s i mes s s s v A S raea s p e e 5 053 1
1.3 TeImMUINOIOZY .. uvvttitie ittt et et ettt et e a e e anean 3
2. LITERATURE REVIBINS: .. .o ssssssss s dessensmuos s s ss s 4
3. PRELIMINARIES cosconur iomunuonugeiin: v esssmms s s s s e s i sona s ves 7
8] VBiAl MIETIOEY 500 srre innrmins s irriaimnreia by aaa s s e vk F b AR s s A s 2 7
3.2 Paging and Page Tableccoveiiiiiiiiiiniiniiiiiiiiiiincie e inniiaan 7
3.3 Locality of Mernory RETEIEHOES .aus e mumiesion st saimeiss s sbms s s s 9
3.4 Translation Lookaside Bufter (TLB) v wsinsviisssnmisersssiiissssig 9
3.5 Pape Placement PORHCIES ,.visunesssinsammnstsnsnivmnna shumsisas sinsissanssbiiasiyian 11
3.5.1 Direct Mappedoovviiriiiii it e 11
352 'PullyABBOCIAIIVG. .« vuouuiniunsmwumaumanainssiy s ws sh asmmdie st e 11
353 SeUASSOCIBHVE wovisiimsnnin sosnssisenisasm s v e s o sass 12
3.6 Page Replacement POMCIEScvccoremmmnonarsonmresssnnsonssnsseossrsssosborsos 12
3.6.1 Random Replacement Policyccovviiiiiiiiiiiiiiiiiiiiiinnnnnn, 12
3:6.2 LRU Replacement POHEY s wmmnmsmmis sisansmss s s sy 13
3563 LFUReplacement POUCY wovoivismsimissopimsiiviiisiaaismisnieagesis 13

Chapter Page

3.6.4 MFU Replacement POLICYcovviiriniiieieaieieeeenenannanens 13
365 Optimal Replacement Policyicinisssnmminssnnmmsnsiivaissvins 14
4. MODIFIED SET ASSSOCIATIVE TLB' ..iicisiiiisovsssissnorsssssnsisassves 15
= L i R e 15
4.2 Mapping Functions Choosing Criteriao.oviieieiiiiiiiieaiaanennnns 15
4.3 Overhead due to Multiple Mapping Functionccccoooviviiiiiineninn. 16
4.4 Mapping Functions for the Modified Set Associative TLB 17
4.5 Which Replacement Policy for the Modified TLB ?ccccivvneviinnn.. 26
5. SIMULATION RESULTS AND DISCUSSIONS ...cccccoeviviiiiiniiiniiinnenn. 28
O COMNICTIIEIOMN 000 s sima s oo 975 6850556 SRS AR R AR 44
REFPERBEINEES «ionumsissiosioniss s s s S v e enias s v sasnisss de s i 46
APPENDIX
Source Code for the Simulator of Modified 2-way Set Associative TLB 48

Table

10.

LIST OF TABLES

Page
Valid Page Numbers in a Traditional 2-way TLB After One Read 28
Valid Page Numbers in a Modified 2-way TLB After One Read 28
Miss Rates for a Modified, a Conventional 2-way Set Associative TLB and a
Fully Associative TLB When the Page Size is 512cooovviiiiiiiirineinnn, 30
Miss Rates for a Modified, a Conventional 2-way Set Associative TLB and a
Fully Associative TLB When the Page Sizeis 1024cccccevvviviniiininininns, 30
. Miss Rates for a Modified, a Conventional 4-way Set Associative TLB When
the Page S1Z€ 18 512 .. oiiiiiiiiiii et e et e rans 33
Miss Rates for a Modified, a Conventional 4-way Set Associative TLB When
the PapgeNIze 18 1O wvaiimnsrimisiinn s s e s e s i an i o 34
Miss Rates for a Modified, a Conventional 8-way Set Associative TLB When
T P age ST I TR o o nerisnanmnsans s o sn s s 58 SR A A 5 PR SRR R8RS 36
Miss Rates for a Modified, a Conventional 8-way Set Associative TLB When
the Page Size 18258 . i sisisnamiiraisne s St vassns i s wes i iprasie edds 36
Miss Rates for a Modified, a Conventional 8-way Set Associative TLB When
HHE PADE BITEAR SR . situciscarss ioosaiciniii s oo 581 58 M S w8 37
Miss Rates for a Modified 2-way Set Associative TLB When the Page Size
B I28 uiiaii i s R R A A R s 41

vi

Table Page

11. Miss Rates for a Conventional 8-way Set Associative TLB When the Page Size

vii

Figure

10.
11.
12.
13,
14.
155,
16.

17.

LIST OF FIGURES

Pasng DEXAWEIS o asmm s S e s s e a i
TLB acts @S @ CaChecviiiiiieiie i et e e
An implementation of a modified 2-way TLBcccocvviiiiiiiiiinienennnns
Miss rate comparison for the program, li, when the page sizeis 512
Miss rates for the program, spice2g6, when the page sizeis 512
Miss rates for the program, nasa, when the page sizeis 1024
Miss rate comparison for the program, fpppp, when the page size is 1024
Miss rates for the program, espresso, when the page size is 512
Miss rates for the program, li, when the page size is 1024ccocovvivinnn
Miss rate comparison for the program, li, when the page size is 128
Miss rates for the program, spice2g6, when the page size is 128
Miss rate comparison for the program, doduc, when the page size is 256
Miss rate comparison for the program, gce, when the page size is 512
Miss rate comparison for the program, fpppp, when the page size is 512
Miss rate comparison for the program, li, when the page size1s 1024
Miss rate comparison for the program, nasa, when the page sizeis 128

Miss rate comparison for the program, spice2g6, when the page size is 128

viil

33

s S

35

oo 38

38

CPI

CPU

LFU

LRU

MFU

MMU

NNR

OR

TLB

XOR

NOMENCLATURE

clock cycles per instruction
central processing unit

least frequently used

least recently used

most frequently used
memory management unit
not-used, not-written random
bit wise inclusive or operation
translation lookaside buffer
bit wise exclusive operation
OR

XOR

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Virtual memory is supported in almost all modern computer systems [10]. In 1959,
Kilburn et al. [8] introduced the concept of a one-level store”, known now as virtual
memory, to allow larger programs than available physical memory. Since then, a number
of new mechanisms have been created to utilize the advantages of virtual memory to
benefit the computer systems. One of these techniques is paging. In a paging scheme,
physical memory is broken into fixed sized blocks called frames, logical memory is also
broken into blocks of the same size called pages. Every address generated by the CPU is
divided into two parts: page number and page offset. We locate pages by using a full
table called a page table that contains the base address of each page in physical memory.
Since the page tables are stored in main memory, every memory access by a program can
take at least twice as long: one memory access to obtain the physical address and another
access to get the data. Since most of the references exhibit both temporal and spatial
locality, modern machines include a special cache that keeps track of recently used
translations. This special address translation cache is called Translation-Lookaside Buffer

(TLB) [6].

1.2 MOTIVATION

" Today this is frequently called multi-lever store.

As the microprocessor improves its performance at a speed of 1.35 times per vear, the
memory performance must improve at a speed of several percent per year. The gap
between CPU performance and main memory has been widening with higher

performance CPUs creating performance bottlenecks for memory access instructions [7].

A recent study shows that the memory system may stall the CPU for over 50% of the
execution time [12]. The many recent studies on memory system behavior and
performance have concentrated almost exclusively on cache design [11,15]. Little
attention has been given to TLB performance. Early studies have shown that TLB miss
penalties consume 6% of all machine cycles [3] and 4% of execution time [4]. This effect
is even larger in today’s modern computers that have a larger memory size. Because in
modern computers TLB can be in the critical path of memory access, good TLB

performance is essential to good overall performance of a machine [12].

A TLB keeps the average translation cost low since instruction accesses generally exhibit
repetitive memory reference behavior in keeping with the principle of spatial and
temporal locality. The efficiency of the virtual memory mechanism is measured by miss
rate and miss penalty [1]. Reducing TLB misses and miss penalties becomes increasingly
important to overall performance of machines. As with cache misses, TLB misses can be
classified into three categories, capacity miss, compulsory miss and conflict miss.

Chen et al. [2] have shown that TLB misses are dominated primarily by capacity misses,
because the mapping size of the TLB is not big enough to map the entire working set of

the program.

Technological and architectural trends have led to increased memory sizes, decreased
Clock Cycles Per Instruction (CPI), and larger working set programs. Both factors cause
more significant performance impact due to TLB misses. It is therefore highly desirable

to improve TLB hit ratios in future systems.

1.3 TERMINOLOGY
For the sake of clarity, a few terms that are used in this paper are defined as follows.

e associativity is the number of blocks in each set.

hit is the existence of the data requested by the processor in the upper level [6].

e it ratio is the fraction of memory accesses found in the upper level [6].

e LRU Stack is a stack that maintains a list of address references ordered according
to how recently they were accessed with the most recent at the top [13].

e miss is the nonexistence of the data request by the processor in the upper level [6].

e miss penalty is the time to replace a block in the upper level with the
corresponding block from lower level, plus the time to deliver this block to the
processor [6].

e miss rate is 1- hit ratio.

e recency is the depth of a reference in the LRU Stack [13].

e TLB reach is the amount of memory that can be accessed without causing a TLB

fault [16].

CHAPTER 2

LITERATURE REVIEWS

Traditional approaches for increasing the TLB hit ratio; that is, decreasing the TLB miss
rate, include using more TLB entries and/or bigger page sizes. Increasing the number of
TLB entries is expensive and inefficient. Allowing bigger page sizes can result in poor
memory utilization, due to fragmentation problems. Therefore, these techniques often are

subject to significant costs in implementation [10].

Designers have used a wide variety of associativity in TLBs. Some systems use fully
associative TLBs because a fully associative mapping has a lower miss rate. However
with a fully associative mapping, choosing the entry to replace becomes tricky since

implementing a hardware LRU scheme is expensive [6].

Using variable page sizes involves complexities in both hardware and software
implementations, and may not be incorporated easily into many existing architectures

[10].

Recently a number of manufacturers introduced split TLB designs in which the TLB is
split into data and instruction translation. The unpredictable nature of process reference
patterns makes the predicting the optimal split of the TLB into portions impossible
without prior knowledge of the application. An incorrectly selected partition size can lead

to thrashing within a partition with associated loss in performance.

To solve the above problem, Channon and Koch [1] introduced a re-configurable
partitioned TLB. Because this approach involves the dynamic partitioning the hardware
and an adaptive algorithm for managing the TLB, it is expensive both in hardware and

software implementation.

Liu [10] introduced a Multiple-Page Translation Lookaside Table MPTLB in addition to
the conventional TLB. When a requested virtual address misses both TLB and MPTLB
the slower translation process is invoked, which translates & pages together into a new
entry at the MPTLB. One potential usage of the MPTLB is to serve only for selected
types of memory references (e.g., vector operands, or accesses to special data areas

marked by software). Therefore its usage is limited to some specific applications.

Other methods to improve TLB performance are to use software pre-fetching and
caching. Saulsbury et al. [13] introduced a pre-fetching technique based on the recency
of references. This technique uses an LRU stack to measure the recency of memory
references. Upon a TLB miss, it predicts the translation for the next miss based on the
recency of the miss currently being handled. If the prediction is incorrect, then a full TLB
reload occurs with associated loss in performance. However, these type of methods are
useful for dynamically allocated data structures such as kemnel data structures, and they
also add extra work for the operating system. Also, software managed TLBs can exhibit a

high miss penalty [5].

Swanson et al. [16] proposed a mechanism of increasing the TLB reach by introducing a
notion of shadow pages. A secondary MMU and a secondary TLB are placed in the main
memory, makes the mechanism expensive and complex. Also, shadow regions are not

supported on extremely high end machines [16].

Lee et al. [9] proposed a dual TLB structure which consists of two conventional TLBs; a
conventional small page (4KB size) TLB and a conventional large page (16KB size)
TLB. Both TLBs are designed as fully associative. This structure is simpler than the one
proposed by Swanson et al. [16]. However, when there is a miss in both TLBs, we must

flush both TLBs which invokes a slower translation process.

Another well-known alternative is the set associative organization. Increasing the
associativity usually decreases the miss rate [6]. Previous studies have showed that, for a
cache size larger than 64KB, direct mapped caches exhibit hit ratios nearly as well as set-
associative caches [6]. But TLB is relatively small cache in size. A typical TLB has
entries between 32 and 4096 [6]. This paper introduces a modified set associative TLB

design that gives lower miss rate than a conventional set associative TLB.

CHAPTER 3

PRELIMINARIES

3.1 VIRTUAL MEMORY

Many years ago, when people first encountered programs that had larger size than
available memory size, they usually split the program into pieces called overlays [17].
The overlays were kept on disk and swapped in and out of memory by the operating
system. Since the generation of overlays was very time consuming, and complex, to

overcome this drawback a way known as virtual memory was soon developed [14].

The basic idea behind the virtual memory is only a portion of the program is kept in main
memory, the rest is stored in secondary storage. When the system needs other portions of
the program, any of the well-known general schemes can be used to swap the portions
between main memory and second storage. Therefore, program size is no longer a

constraint for programmers and multiprogramming becomes feasible.

In virtual memory systems, there are two types of addresses for programs: virtual
addresses and physical addresses. Virtual addresses are produced by programs and from

the virtual address space. Physical addresses are the actual physical address in memory.

3.2 PAGING AND PAGE TABLE
There are two common techniques used in virtual memory system: paging and

segmentation. We do not discuss segmentation here because our study is related to

3.3 LOCALITY OF MEMORY REFERENCES
Locality is the property that references in a program tend to cluster into groups in time

and/or space [18]. There are two types of locality: spatial and temporal.

Temporal locality is with respect to time clustering for a set of pages. That is, if a set of
pages are referenced during a given time interval, it is likely that they will be referenced

again soon [7].

Spatial locality occurs when two successive references have adjacent virtual spaces. In
other words, if a word w is referenced at time ¢, then words in the range of w-i to w+i for
some small 7 are likely to be referenced at time t+1 [7].

Most of the programs exhibit good spatial and/or temporal locality.

3.4 TRANSLATION LOOKASIDE BUFFER (TLB)

Since the page tables are stored in main memory, every memory access by a program can
take at least twice as long: one memory access to obtain the physical address and another
access to get the data. Also, because most of the references exhibit both temporal and
spatial locality, the key to improving access performance is to rely on the locality of the
references in the page table. When a translation for a virtual page number is used, it will
probably be needed again in the near future. Accordingly, modern machines include a
special cache that keeps track of recently used translations. This special address

translation cache is called translation-lookaside buffer (TLB).

A TLB is a cache that holds only page table mappings. Thus, each tag entry in the TLB
holds a portion of the virtual page number, and each data entry of the TLB holds a
physical page number. On each reference, we look up the virtual page number in the
TLB. If there is a hit, the physical page number is used to form the address. If there is a
miss, then we look up the page table. Because the TLB has many fewer entries than the
number of pages in main memory, TLB misses are much more frequent than true page
faults. This is another reason why the improving TLB hit ratio is important. Figure 2

shows how the TLB acts as a cache for the page table references.

virtual page number TLB
I]

valid tag physical address

physical memory

q >

page table N

> disk

: >

S

Figure 2. TLB acts as a cache

10

3.5 PAGE PLACEMENT POLICIES
Since TLB is a cache used for fast translation of page numbers, conventional cache block
placement policies apply. Most commonly used block placement policies are direct

mapped, fully associative and set-associative schemes.

3.5.1 Direct Mapped

In a direct mapped placement scheme, TLB is one set of entries, and a page can go
exactly one entry in the TLB. Assume the number of entries in the TLB is n, then a page
goes to the entry = page number MOD n. A direct mapped scheme can be considered as a

one-way set associative scheme.

The direct mapped scheme is very common among cache implementations, since it is
easy to implement. However, it performs poorly compared to other schemes in terms of
hit ratio for caches that the cache size is less than 64KB. The hit ratio may drop sharply if
many addressed blocks have to map into the same block frame [7]. For this reason, direct
mapped caches tend to use a larger cache size with more block frames to avoid

contention.

3.5.2 Fully Associative
In a fully associative scheme, the TLB is again one set of entries as in a direct mapped
scheme, but a page can go any one of the entries in the TLB. When a page is referenced.

we must search all entries in parallel to decide whether it is a miss or a hit. These

11

comparators significantly increase the hardware cost, effectively making fully associative

placement practical only for small caches.

3.5.3 Set Associative

The middle range of design between direct mapped and fully associative is called set-
associative. In a set-associative TLB, there are fixed number of entries in each block; a
set-associative TLB with n blocks is called n-way set associative TLB. An n-way set-

associative TLB consists of a number of sets, each of which consists of » blocks.

The advantage of increasing the degree of associativity is that it usually decreases the
miss rate [6]. The improvement in miss rate comes from reducing misses that compete for
the same location. But as discussed in section 2, when the cache size is large (larger than
64KB), a direct mapped scheme performs as well as a fully associative and a set-

associative scheme.

3.6 PAGE REPLACEMENT POLICIES
If there is a miss on a page reference, then we must decide which entry should be

replaced from the TLB. Following are some general replacement policies.

3.6.1 Random Replacement Policy
In a random replacement policy, the victim page is chosen randomly. Therefore, it may
not utilize locality of references. However, since random replacement policy is easy to

implement, it is commonly used in small size caches and in simulations.

12

3.6.2 LRU Replacement Policy

In a LRU (Least Recently Used) replacement policy, the victim page to be replaced is
the one that has not been used for the longest time [14]. In general, LRU replacement
policy exhibits lower miss rate than random replacement policy. But, it is quite expensive
to implement, since there is a time stamp associated with each reference. There is a
modification of LRU replacement policy that works almost as well, but less expensive to

implement. This modification is described later in this thesis.

3.6.3 LFU Replacement Policy

LFU (Least Frequently Used) replacement policy is an approximation to LRU. Instead of
having a time tag for each reference, each page is attached with a frequency counter. The
page to be replaced is the one with lowest frequency count. This policy suffers from the
situation in which a page is used heavily during the initial phase of a process, but then is
never used again. Since it was used heavily, it has a large count and remains in cache

even though it is no longer needed [14].

3.6.4 MFU Replacement Policy
The MFU (Most Frequently Used) page replacement is based on the argument that the
page with the smallest count was probably just brought in and yet to be used [14]. MFU

has same characteristics as LFU.

13

3.6.5 Optimal Replacement Policy

Optimal replacement policy simply replace the page that will be not be used for the
longest period of time [14]. An optimal page replacement has the lowest page fault rate of
all policies. Unfortunately, it is difficult to implement, because it requires future

knowledge of the reference string. It is used mainly for comparison studies.

14

CHAPTER 4

MODIFIED SET ASSCOCIATIVE TLB

4.1 BASIC IDEA

In a set-associative TLB, there are a fixed number of entries in each block; a set-
associative TLB with n blocks is called n-way set associative TLB. An n-way set-
associative TLB consists of a number of sets, each of which consists of n blocks. In an n-
way set associative TLB, a page number p that mapped onto a set §; (i =0, 1, ... , #of
sets), can be placed in the entry f{p) in one of the block B; (j = 0,...,n) , where f'is the
mapping function. When n+1 pages contend for the same entry in a set §;, one of the
pages should be replaced from the TLB, because fip)) = fip:) = ... = f(ps) = fAipa+n1), and
there are only n blocks available in the set. The modified set associative TLB uses
different mapping functions for different blocks so that if two pages contend for the same
entry in block i, they have a low probability of being mapped onto the same entry in
block ;. For example, in a 2-way set-associative TLB, a page p can be mapped onto entry

fo(p) in block 0 or onto entry fi(p) in block 1, so that for two distinct pages p; and p,,

Jo(p1) = folp2) but fi(p1)# fi(p2)-

4.2 MAPPING FUNCTIONS CHOOSING CRITERIA
In the previous section, we gave the idea of scattering data within blocks, by using
different mapping functions for different blocks. In order to achieve above expectation,

the mapping functions should have some special properties.

15

1. Assumption
For each entry in the TLB, the numbers of pages that may be mapped onto this entry are
equal.

2. Inter-Block Dispersion
Mapping functions should have the inter-block dispersion property. That is, the set of
pages that can be mapped onto an entry of block / will be equally distributed over the
entries in other blocks.

3. Intra-Block Dispersion
Since many applications exhibit spatial locality, mapping functions should avoid
mapping neighboring pages into the same entries in any block. In other words, the
mapping function f; should limit the number of conflicts when mapping a memory block

within block /.

4.3 OVERHEAD DUE TO MULTIPLE MAPPING FUNCTIONS

Since multiple functions are used in address translation, some extra delay is introduced as
compared to using a single mapping function in conventional set associative TLB. But as
long as we perform address computation in a noncritical stage of the pipeline and do not
lengthen the pipeline cycle, the effect on overall performance can be negligible.
Nowadays, in most of the new generation microprocessors, the address translation stage
is not the critical stage of the pipeline. Surely, this works on non-pipelined machines as
well as pipelined machines. Therefore, the mapping function should be simple to

implement in hardware, and should introduce few extra gates and delays.

16

4.4 MAPPING FUNCTIONS FOR THE MODIFIED SET ASSOCIATIVE TLB
Assume the virtual memory address generated by the CPU is N bits, the page size is 2°
bytes, and the number of entries in each block is 2",

In a conventional n-way set associative TLB, the N bit memory address is divided into
three parts: page offset (lowest ¢ bits), entry index (mid m bits), and tag (highest N-m-c¢
bits).

For example, let V=16, c=5 and m = 3.

tag (N-m-c) index (m) page offset (¢)
2 | <

A page p can be placed in an entry determined by the index bits on any one of the n
blocks. That means a set of pages with the same index bits has only one entry associated
with it. When n+1 pages contend for that entry, one of them must be rejected.

A Modified TLB scheme avoids this situation by using different indexes for different
blocks. Architecture of a modified TLB is very simple. An N bit memory address is

divided into four parts as shown below.

A; (N-2m-c¢) e Ay (m) i Ay (m) - Ay (c) (page offsct}_b

The index is determined by A; and A;, and by using a different function for each block,
multiple indices are generated for a set of pages that have same index in a conventional

set-associative TLB.

17

Here, we present some preliminary work about memory addresses. Given an N-bit
memory address, let ¢ = N-2m-c then
A= a~.12q”l+aN.;2“"2+ +aN,420,
A2 = aN.q-lzm-l+aN.q.22m-2+ R o aN_q.mzo,
A= 2m-l+ m-2+ + 2{)

1 = aN-g-m-1 ay-g-m-22 v T aNgImd,

_ -1 -2 0

Ag = angam127 tang.m22F ... + 22",
Now we have
A322m+(' + A22m+c + Alzt‘ + AO = (aN-lzq-}"‘aN-qu'_"' +a~_42[|}22m+c + (aN-q-lzm-l'i-aN-q-sz-
2 OyAm+c m-1 m-2 DyAe c-1
F e ¥ Bngmd)2 T (Ngm12" FONgmdZ" ¥ .o F BNgIn2)2 t BNgami2 TBN.gdN
:2t.-.2+ g 3020 - aNylzq-l+2m+c+a-22q-2+2m+c+ . +aN‘q22m+c SR a-N-q-IzanC_l + ...+ 302[] -
aN_IZN"+aN.22N'Z+ sy +a~.q22'"“ + aNﬂ.|22’”+‘ R a2 + ag.

That is, any memory address can be written in the form of 432%™ + 4,2™" + 4,2° + A,.

Now, let us consider a 2-way set associative TLB with 2" entries in each block. Let us
assume that each page size is 2° bytes. Then a virtual memory address 4 in the form of

A= A2 + 4,2™C + 4,2° + Ay may be mapped onto the entry fy(4) = 4, & A on block
0, or onto the entry fi(4) = g(4,)® A, on block 1, where g is one-bit circular shift, and @
is exclusive OR on each bit. g can be a right circular shift or a left circular shift. For

example, let the binary representation of 4; be 1011 then g(4,) = 1101 or 0111.
More generally, in an n-way set associative case, a page with the address

A=A32"" + 4,2" + A, may be mapped:

onto the entry fo(4) = A, @ A> on block 0 or

18

onto the entry fi(A4) = g(4,)&® Az on block 1 or
onto the entry f5(4) = gz(A])@ A; on block 2 or

......................

onto the entry f,.1(4) = g""(41)@® A4 on block z-1.

As discussed in the previous section, the mapping function should be simple to
implement in hardware, and should introduce few extra gates and delays. The exclusive
OR (XOR) operation is used instead of inclusive OR to avoid the situation where all bits
of A, are 1. When all bits of A4, are 1, regardless the value of 43, 4| + 4, = g(4,) + 4> =
gz(Al) + A4, = ... g"'(4,) + 4> thus even if multiple functions are used, all pages still be
mapped to the same entry, and we cannot reach the goal of scattering the data among
entries. Here + denotes the inclusive OR operation. A hardware implementation of a
modified set associative TLB and a conventional TLB is almost the same, only fewer

XOR gates are introduced.
Figure 3 shows the implementation of a sample modified 2-way TLB.

For the sake of simplicity, here we assume a 16-bit virtual address, the number of entries

in each block is 8, and page size is 64 bytes.

19

Claim 1. Mapping functions described above satisfy the Inter-Block Dispersion property.
In other words, the set of distinct pages that can be mapped onto an entry of block i have
a low probability of being mapped to the same entry in block j, where 0<i<j<n.

In mathematical terms, let P = {Py, P;, ..., Py} be a set of k distinct pages to be mapped
onto an entry on block i, i.e. f(Pp) = fdP;) = ... = flPs;) for block i, where & is the
number of entries in the block. Then the probability of these pages to be mapped into the

same entry in block j is 2/(k+1), in other words p[f{(Py) = fi(P1) = ... = fi(Pi1)] = 2/(k+1).

Proof: Before proving Claim 1, let us first find the probability p[A@® B = C@ D], where
A, B, C, and D are any m bit numbers such that A=C, A#D, B#C, and BzD. Since A, B,
C, D are m bit numbers, the range of 4, B, C, D is {0, k-1}, where k= 2"

Let | XOR| be the total number of distinct bit-wise XOR operations on k distinct numbers
between 0 and k-1. A® B and B@ A are considered same XOR operation. Start with 0,
there are k distinct bit-wise XOR operations, namely 0@ 0, 0 1, ...,0® k-2,0® &-1. For
1, there are k-1 XOR operations, 1@ 1,1®2,1@3, ... ,1@4-1. Since 1@ 0 is already
been included in the set of XOR operations for 0. Similarly, there are £-2 distinct bit-wise
XOR operations for 2. Therefore, [XOR| = k + (k-1) + (k-2) + ... + 2 + 1 = k(k+1)/2.
Thus A@® B and C@ D are one of these k(k+1)/2 XOR operations. Now we need to find
how many of these k(k+1)/2 numbers are equal.

Since A @® A = 0 for any number A, there are total k& zeros among these k(k+1)/2 numbers.

Thus the result of XORing two numbers being zero has highest probability among 4

21

. Therefore the

. e 7 4
numbers between O and k-1 and its probability is =
3 B R T k4

2

probability p[A@® B = C@ D] = 2/(k+1).

Now let us prove Claim 1.
For V P, P, € P, let Py = 432" + 4;2™ + 4, and P, = B32™" + B,2" + B, where
Aa, Ay, By, By are m bit numbers. In order prove the claim, it suffices to prove that for any
P; and P, in P, if fi(P;) = fi(P,) then p[f{(Ps) = f{(P,)] = 2/(k+1) for any 0<i<j<n, where n is
the number of blocks in each set of the TLB.
By the definition of the mapping function, we have

fi(Ps) =€(41) @ Az and fi(P) = g'(B1) @ Ba.
There are several cases to consider.
Casel. 4, = By, A; = B,.
In this cuse, fi(Ps) = fi(P;) and f(P;) = fi(P,) all the time. But we can avoid this situation
simply by choosing the number of set in the TLB not equal to 2, where m<r<2m, so
that P, = 4322 + 42" + A, and P, = B;2*" + B,2" + B, are mapped to different sets and

they don not contend for the same entry in the same block.

Case 2. A =B or A #B)
Ay #B> Ay =B;
Assume 4, = B, and A; By, then fi(P;) = g'(4)) ® A2 = C® A, and f(P)) = g'(B)) ® B, =

C@® B, for some C. Let ap.; Qm2._ a; ap, bm.y bz ...y by, Cm.1 Cm-2.. €1 €y be the bit

|
|

representation of 4, B, and C respectively. Because A, is not equal to B,, they differ at
least at one bit position, call it the ;" position. Then there are 4 subcases.

Subcase 1.¢;=0,a;=0,b;=1,but ¢;® a;=0andc;® b;=1.

Subcase 2.¢;=0,a;=1,5;=0,but ¢;® gj=1andc; ® b;=0.

Subcase 3.¢;=1,a;=0,b;=1,but ¢; gj=1and¢; ® b;=0.

Subcase 4.¢;=1,aq;=1,b;=0,but ¢;@® a;j=0andc;® b;=1.

Therefore, in any subcase f{(P;) # fi(P), in other words if 4) = B) and A4, #B,, then f(P;)
can not be equal to f(P,).

Same argument when 4, # B, and 4; = B,.

Case 3. g'(4,) = B, and g'(B)) = 4.
We need to consider
TP =g(4)) @ 4, = g"(g'(4))) @ 4= ¢"'(B;) @A, and
f(P)=g(B) @ 42 =g (g(4))) @4 =¢"(A) ®B..
Since A, # B,, above equations can be written as
i(P)=¢g"(B;) ®@4,=C @Ayand
f(P)=¢"(A;) ®B>=D @ B; for some C and D such that C#D.

Thus, as we have shown at the beginning of the proof, p[fi(Ps) = f(P)] = 2/(k+1).

Case 4. None of the above.
In all other cases, f{(P;) and fi(P,) can be written as f(P) =A & B and f(P,) = C@ D for
some A4, B, C, D such that none of them are equal. Again we have shown at the beginning

of the proof that p[f{(Ps) = fi(P))] = 2/(k+1).

23

Claim 2. The mapping function satisfies the intra-block dispersion property. In other
words, neighboring pages have low probability to be mapped onto the same entry on any
block ;.

In mathematical terms, let P = {Pyy, Pio+y, ...,Po, P1, ..., Prp.g) be a set of k adjacent
pages. Then the probability of these pages being mapped onto the same entry in block j is

2/(k+1), where k is the number of entries in each block, i.e.

Pl(Pw2) = fi(Pra+1) = ... = f{(Pra)] = 2/(k+1).

Proof: For V Py, P, € P, let Py = A2™" + 42" + 4y + s and P, = 432" + 42" + A) +1,
where s, t € {k/2, k/2-1}, k=2" and 4; and 4, are m bit numbers.

Again it suffices to prove that for any P and P, in P, p[f{(P;) = fi(P,)] = 2/(k+1) for any
0<j<n, where n is the associativity of the TLB.

There are four cases to consider.

Casel.[A4, +s5>0
A +t>0.
There are two subcases.
Subcase .| A4, +5=>22" or Ay +s >2™
A+t >2" A+t =2"
In either case, P, and P, can be written as
P, = 432"+ (4,+1)2" + B for some B and
P, = A:2*™ + (4, +1)2" + C for some C.

Now we have, f(P;)=g(B) ® (A,+1) and

24

2 Eae o ru o gL S AR w

MP)=¢g(C) @ (42+1).

As showed in the proof of Claim 1, f{(Ps) = f{(P,) in this case.

Subcase 2. [4;+s5 > 2™ or A +s<2™
Ay +t<2¥ di+r22
IfA) +s > 2"and 4 +¢ < 2", then
P, = 432" + (4, +1)2™ + B for some B, and
Pi=A2" + A, 2™ + A+t
IfA) +s<2Mand 4, +¢ > 2", then
Py=A:2""+ 4,2" + A;+s and
P, = 432’ + (Ay+1)2" + C for some C .

In either case p[f{(Ps) = f{P:)] = 2/(k+1) as proved in Claim 1.

Case2. |A;+s<0 or | A;+5>0
A +t>0 A +1<0
Assume 4; + s <0 and A, +¢> 0. Again there are two subcases.
Subcase 1. 4, +1 > 2™,
Py=A:2"" + 4,2" - B= B32*"+B,2"+B, for some B, B,, B;, B; and
P, = 432" + (A2+1)2" + C for some C.
Subcase 2. 4, +¢t<2™.
Py = A32*™ + A, 2™ - B= B:2""+B,2"+B, for some B, B;, B;, B;and

P, = A:2*™ + 4,2" + C for some C, where C = A4, +1.

Therefore in either of the subcases, p[fi(Ps) = fi(P.)] = 2/(k+1) by the proof of Claim 1.

25

The proof of the case when 4, + s > 0 and 4, + ¢ <0 follows the same argument.

Case 3. A +s5<0
Ay +1<0.
In this case, Py = A32*™ + 4, 2™ - B = B32*"+B,2™+B, for some B, B,, B, B;, and
P, = A32"" + 4;2" - C = C32*™+C2"+C, for some C, C), C3, C.

Again p[fi(Ps) = fAP))] = 2/(k+1) by Claim 1.

Case 4. Either 41 +s=0o0r 4, +t=0.
Consider 4, + s =0, then P, = 432" + 4, 2" and P, = A:2*™ + A;2™ + A, +1. Regardless of
the value of A;+t, p[fi(Ps) = f{(P.)] = 2/(k+1) by the proof of Claim 1, except the case that
A+t < 0and P, = A2™™ + 4,2™ + A+t = By2*™+B,2" for some B; and B; in which case
JAPs) # f(P,) simply because 4; # B,.

Same argument holds for the case 4, + ¢ = 0.

4.5 WHICH PAGE REPLACEMENT POLICY FOR THE MODIFIED TLB?

In section 3.5, we discussed some of the most common page replacement policies.
Generally LRU or Random replacement policies are used in set associative TLBs.

For the modified TLB scheme, we may use the revised random replacement policy called

Not-used Not-replaced Random (NNR) Replacement Policy as discussed below.

26

4 aBt 4 aoaums sas il 9

Not-used Not-replaced Random (NNR) Replacement Policy:

We associate a reference bit for each entry. This reference bit is asserted when the entry
is accessed. When there is a miss, the victim page is selected among n possible pages in
the following priority order.

1) Randomly among the entries for which the reference bit is clear. In other words, a
victim page is selected among the pages that never been accessed again since
loaded.

2) Randomly among the entries for which the reference bit is set but the dirty bit is
clear. That is, if all the pages have been accessed, then select among the pages
that have not been replaced yet.

3) Randomly among the entries for which the reference bit and dirty bit are set.

Eventually all the reference bits will be set, therefore we reset the reference bit at some

point.

27

From the above tables we can see that 6 pages mapped for entry O in a traditional 2-way
associative TLB so that 4 of them must be rejected. In a modified 2-way TLB only 3
pages contented for entry 0. There are 10 valid pages on the conventional 2-way TLB,

while there are 13 valid pages on the modified 2-way set associative TLB after one read.

To measure the TLB miss rate, the SPEC92 benchmark programs are used as workloads.
The SPEC92 benchmark consists of floating point programs and integer programs which
are various application programs. Seven SPEC92 benchmark programs are used in
simulations. One million memory references, generated by a R3000 CPU, are collected at
some midpoint for each benchmark program. These traces are downloaded from

ftp./ftp.cs.newcastle.edu.auw/pub/r3000_traces/ and originally provided by New Mexico

State University Trace Database Parallel Architecture Research Laboratory.

TLBs with different entries and with different associativity are simulated for different
page sizes. Increasing the page size decreases the number of distinct pages for a
particular program. Since, these benchmark programs contain only one million memory
references, we experimentally discovered that when the number of entries in the TLB is
larger than 128 and the page size is larger than 512 bytes, the number of distinct pages for
benchmark programs are very close to the number of entries in the TLB so that the misses
are dominated by compulsory misses and the miss rates for a modified TLB and a
conventional TLB differ little. Therefore, in order to exploit the advantage of a modified
TLB fully, small page sizes are used for the TLB yielding a higher number of entries to

increase the number of distinct pages. TLBs with entries from 16 to 512 are simulated,

29

Tables 3 and 4 give miss rates for a conventional 2-way, a modified 2-way, and a fully
associative TLBs, when the page size is 512 and 1024. As expected and as shown in the
Tables 3 and 4, increasing the page size decreases the miss rate.

From the results in the tables, we can see a fully associative TLB performs better than a
set associative TLB. Also, a modified 2-way TLB exhibits lower miss rate than a

conventional 2-way and performs close to a fully associative TLB.

| Figure 4. Miss rate comparison for the program, li*, when
‘ the page size is 512
|
|

°7
g4 R |
- —&— Proposed 2-way '|
= & —a— Conventional 2-way |
g% ——Fuly associative |
E 14 ‘ '
0 = A= Eees,
16 32 64
number of entries
Figure 5. Miss rates for the program, spice2g6,
when the page size is 512
° |
=41 |
a-... = = ———
‘:g' 3 | —e— Proposed 2-way
g —=— Conventional 2-way
@ & | —&—Fully associative
E 1.
0 T
16 32 64
number of entries

" A benchmark program from SPEC92 test suite.

31

2 SIS aniTia Simad 4 25 Aa B Tad i BA P ek TR L o

Figures 4 and 5 show that a modified 2-way associative TLB exhibits a much lower miss
rate than a conventional 2-way TLB. Numerical results from tables 3 and 4 give us a 23%
— 50% lower miss rate for the modified 2-way set associative TLB than the conventional
2- way set associative TLB. Although, it seems from the graph that, a TLB with fewer
entries performs better than one with more entries, but experimental numerical results
show that better performances are gained when the TLB has more entries. For example, a
modified 2-way set associative TLB exhibited a 24% lower miss rate when the number of
entries were 16, 49% lower miss rate when the number of entries were 32, and 51% lower
miss rate when the number of entries were 64. This explains the advantage of the idea of
scattering the data among entries. Because when each block has more entries, more pages
can be scattered within the block and to be put in the TLB so that achieve the goal of

decreasing miss rate.

Figure 6. Miss rates for the program, nasa, when
‘ the page size is 1024

1.4 'a

Lo —— Pr;p;o;ed 2-way

—&— Conventional 2-way

08 - | —&— Fully associative

0.6
0.4 1

miss rate (%)

0 —— ~
| 16 32 64

number of entries

32

BE N s T i

LAZ At e T 4

Figure 9. Miss rates for the program, li, when the
page size is 1024 i

25
g 2
2157 I[—o— Proposed 4-way
;u; 1- | —=— Conventional 4-way |
€ 05

0 .
16 32 64
number of entries

On these two cases, a modified 4-way set associative TLB gave a 14% - 77% lower miss
rate than a conventional 4-way set associative TLB. It showed better performance in
terms of miss rate with more entries in each block. The miss rate reduction percentage for
lisp interpreter on a 2-way and a 4-way set associative TLB when the page size is 1024
can be compared. For the 2-way case, the miss rate reduction percentages are 23%, 60%
and 84% while the number of entries arel6, 32, 64 respectively. For the 4-way case, the
miss rate reduction percentages are 14%, 66% and 77%. This tells us that a 2-way set
associative TLB yields more improvement than a 4-way set associative TLB. This is not
unusual, since the total number of entries in the TLB are equal, increasing associativity
decreases the number of entries in each block. Since a 2-way set associative TLB has
twice as many entries in each block than a 4-way set associative TLB, more pages can be
put in the TLB by scattering pages among the entries in a 2-way set associative TLB.
This shows that scattering data among entries is a good idea to reduce the miss rate.

We can compare a conventional and a modified 8-way set associative TLB. As discussed

at the beginning of this section, more entries and smaller page sizes are used for 8-way

35

‘ Figure 10. Miss rate comparison for the program, li,
| when the page size is 128

0.45
0.4
0.35
0.3 1
0.25
0.2
0.15

—— Proposed é-way
l—l— Conventional 8-way

miss rate (%)

0.05

128 256 512

number of entries

‘ Figure 11. Miss rates for the program, spice2g6,
when the page size is 128

1.8 ¢
1.8 1
1.4 -
‘ 1.2 — = i
| —&— Proposed 8-way
0.8 —&— Conventional 8-way |
0.6
‘ 0.4 -
. 0.2 1
1
[

miss rate (%)

128 256 512
number of entries

Figures 10 and 11 are based on simulation results of a conventional and a modified 8-
way set associative TLB for benchmark programs, lisp interpreter and spice2g6, when the
page size is 128. For lisp intcrpreter, a conventional TLB showed 17.2%, 8.7% and 7%
larger miss rate than a modified TLB when the number of entries were 128, 256 and 512,
respectively. For the benchmark program, spice2g6, a modified TLB gave 8.5%, 18%

and 41% lower miss rate when compared to a conventional TLB. Although, the above

38

performance improvements in terms of miss rate are not as good as in a 2-way or a 4-way

case, they are still improvements that cannot be neglected.

doduc, when the page size is 256

!- Figure 12. Miss rate comparison for the program,
I
|

0.25
gg 0.2 |
.2 845 —e— Proposed 8-way |
o~ —=— Conventional 8-way |
&4 '
g 0.1-
0.05 : :
128 256 512
number of entries
Figure 13. Miss rate comparison for the program,
gcc, when the page size is 512
0.35
0.3
< 025 - |
. .2 0.2 (—0— Proposed 8-way [
| @ 0.15 ' —=— Conventional 8-way |
| 7] ‘
E 0.1
0.05
0

128 256 512

number of entries

Figures 12 and 13 show the miss rate comparison for the benchmark programs, doduc
and gcc, when the page size is 256 and 512. Figures 10, 11, 12 and 13 show that as the

number of entries in the TLB increases, the miss rates for a conventional and a modified

39

G § 4

w v Yt at

TLB get closer. However, when the number of entries was 128, a modified TLB still

exhibited 17% - 23 % lower miss rate than a conventional TLB.

We did not compare modified 2-way, 4-way set associative TLBs together with 8-way set
associative TLB, because a different number of entries were used for 8-way set

associativity.

Figure 14. Miss rate comparison for the program,
fpppp, when the page size is 512

|—o— Proposed 2-way
'—m— Conventional 2-way
'—a— Proposed 4-way
—X— Conventional 4-way |

miss rate (%)
o = N
h = 0 N O W

16 32 64
number of entries

figure 15. Miss rate comparison for the program, li,
when the page size is 1024

r —— |
|—— Proposed 2-way |
!+Convenlional 2-way ||

!—i— Proposed 4-way
—s— Conventional 4-way |

miss rate (%)
= B @
= M MNOYW O

16 32 6

number of entries

B

40

Figure 16 and 17 show that, as the number of entries increases, a modified 2-way set
associative TLB performs in terms of miss rate very close to a conventional 8-way set
associative TLB. Since increasing the associativity complicates the structure of the TLB,
it is favorable to use a modified 2-way set associative TLB instead of a conventional 8-

way TLB that has more than 128 entries.

43

CHAPTER 6

CONCLUSION

[n modern computers a TLB can be in the critical path of memory access. Good TLB
performance is essential to good overall performance of a machine [12]. Technological
and architectural trends have led to increased memory sizes, decreased CPIs, and larger
working set programs. Both factors cause more significant performance impact due to

TLB misses. Therefore, it is highly desirable to improve TLB hit ratios in future systems.

Designers have used a wide variety of associativity in TLBs. Some systems use fully
associative TLBs because a fully associative mapping exhibits a lower miss rate.
However, with a fully associative mapping, choosing the entry to replace becomes tricky
since implementing a hardware LRU scheme is expensive [6]. Therefore, some systems
use set associative mapping. A multiple mapping function scheme is introduced to
modify the conventional set associative TLB. It is shown that the modified set associative
TLB has a good data scattering property among entries as the number of entries in each
block increases. Simulation results also showed that an n-way modified set associative
TLB gives lower miss rate than an n-way conventional set associative TLB. Also,
performance gain is greater for smaller size TLBs than it is for larger size TLBs.
Specifically, a modified 2-way set associative TLB performs in terms of miss rate much
better than a conventional 2-way set associative TLB. It performs as well as a fully
associative TLB or a 4-way set associative TLB. Simulation results also showed that a 2-

way modified set associative TLB performs close to a conventional 8-way set associative

44

TLB when the number of entries are bigger or equal to 128. Though a modified set
associative TLB introduces some extra overhead due to multiple mapping functions, its
hardware implementation is almost the same as for a conventional set associative TLB,
and since the address translation is not on the critical stage of the pipeline, this overhead
is negligible. Therefore a modified n-way set associative TLB should be preferred to a

conventional n-way set associative TLB.

45

REFERENCES

[1] Channon, D. and D. Koch. Performance Analysis of Re-configurable Partitioned
TLBs. Proceedings of the 30"™ Hawaii International Conference on System Sciences,
Volume 5, 1997.

(2] Chen, J. B., A. Borg, and N. P. Jouppi. A Simulation Based Study of TLB

Performance. WRL Research Report 91/2, Palo Alto, CA, Digital Equipment Western
Research Laboratory, May, 1992.

[3] Clark, D. W., P. J. Bannon, and J. B. Keller. Measuring VAX 8800 Performance with
a Histogram Hardware Monitor. Proceedings of the 15" Annual International Symposium
on Computer Architecture, June 1988.

[4] Clark, D. W., and J. S. Emer. “Performance of the VAX 11/780 Translation Buffer:
Simulation and Measurement”. ACM Transactions on Computer Systems Volume 3,
Number 1, 1985.

[5] Denning, P. J.. Working Sets Past and Present. Communications of the ACM, Volume
6, Number 1, 1980.

[6] Hennessy, J. L., and D. A. Patterson. Computer Organization and Design. 2" ed. San
Francisco, CA, Morgan Kauffmann Publisher, Inc., 1999.

[7] Hwang, Kai. Advanced Computer Architecture: Parallelism, Scalability,
Programmability. New York, McGraw-Hill, 1993.

[8] Kilbumn, T., et al. One-level Storage System. [EEE Transactions on Electronic
Communications, Volume 11, Number 2, 1962.

[9]. Lee, Jung-Hoon, et al. Dual TLB Structure for Supporting Two Page Sizes.

Electronics Letters, Volume 36, Number 8, 2000

46

[10] Liu, Lishing. Multiple-Page Translation for TLB. Proceedings of the IEEE
International Conference on Computer Design: VLSI in Computers and Processors.
Volume 3, Number 6, 1993.

[11] Przybylski, S. A.. Cache Design: A Performance-Directed Approach. San Mateo,
CA, Morgan Kaufmann Publisher, Inc., 1990.

[12] Rosenblum, M., et al. The Impact of Architectural Trends on Operating System
Performance. In Proceedings of 15th Symposium on Operating Systems Principles, pages
285-298, December 1995.

[13] Saulsbury, Ashley, et al. Recency-Based TLB Preloading. Proceedings of the 27
International Symposium on Computer Architecture, 2000.

[14] Silberschatz, A., and P. B. Galvin. Operating System Concepts. 5" ed. Reading, MA,
Addison Wesley Longman Inc., 1997.

[15] Smith, A. J.. “Cache Memories”. ACM Computer Surveys Volume 14, Number 3,
1982.

[16] Swanson, Mark, et al. Increasing TLB Reach Using Superpages Backed by Shadow
Memory. Proceedings of the 25" Annual International Symposium on Computer
Architecture, 1998.

[17] Tanenbaun, A. S.. Modern Operating Systems. Upper Saddle River, NJ, Prentice
Hall, Inc., 1992.

[18] Thoreson, S. A., and A. N. Long. Locality: A Memory Hierarchy and Program
Restructuring in a Dataflow Environment. The Journal of Systems and Software Volume

9, Number 4, May, 1989.

47

APPENDIX

Source Code for the Simulator of Modified 2-way Set Associative TLB

[k ok e o o ok ok o ok sk ok ok sk s ok s ok o ok sk ok ok ks sk s s o ook o o ok sk o s ok ook o o ok ok ok ok

AUTHOR: ABDURASHID ABDURAHMAN

ok ok oo ok s ool o o o ok ok ok s s sk o o o ke ok ok sk s sk e s s ok ok ok ks s s okl s Rk ok |/

f***********************#t#*********#*****#**t*i*tt#t*#****‘i**

This program simulates the modified 2-way set associative TLB.
#****************t**#*t*#*******#******#*t##*#***‘t********;

AR R o R oK ook KK KRR R R K kKR R R kKK kK

Header files

********#*‘**#*#***###***#**#*********#*#*********#***(

#include <iostream.h>
#include <stdlib.h>
#include <math.h>
#include <fstream.h>
#include <time.h>

f******#*************t********#*******************‘***#**t*****

Global variables

There are 6 global variables:

miss: a counter to count the number of pages missed in the TLB

numOfBits: is the number of bits of Al and A2 from the virtual
address.

numOfEntries: is the number of entry in each bank (block in thesis).

numOfSet : 1s the number of sets in the TLB

numOfAsso: is the number associativity in the TLB

pageSize: is the size of a page
##*************#**#*t*t**#****&**#*********#***************!

int miss=0;

const int numOfBits = §;
const int numOfEntry =256;
const int numOfAsso = 2;
const int numQOfSet = 1;
const int pageSize = 128;

[0 o o oo o o o o oK o oK K o o K o o ok o ok o ok ok ok ok ok ok s ook ok ok ok o o oF ok e oK ok oK o oK ok oK ok ok

ENTRY is a structure for each entry in the TL.B. It has
data members called validBit, a bit to validate whether the
entry is in the TLB, dirtyBit 1s a bit to determine

whether this entry has been replaced, referenceBit 1s

used to determine whether this entry has been referenced

and tag, 1s used to check if new page number is in TLB.
e ok sk ko ok ok e e e s e sk ok sk sk ook sk ok ok s s ke s s oo ek ik sk o ok ok ok ok s s s s s Sk ok ok ok ek ok

48

struct ENTRY
{
int validBit;
int dirtyBit;
int referenceBit;
int tag;
15

;*******t#*********‘*‘**t********#********tt*‘*‘*****#*******

Class BANK has a private data member called Entry. It is an
array of structure ENTRY. Total number of ENTRY in each bank
is predefined by numOfEntry.

Methods in the class BANK:
BANK(): constructor

checkPage (int, int): This method checks if the page referenced
in the first argument is in the TLB or not. Second argument is
entry number to be checked. If the entry to be checked is
empty it returns 0. If the page in the entry not equal to the
page to be checked it returns 1. If the page referenced is a hit
then 1t returns 2.

putPage (int, int): This method puts the page in the first argument
into the entry in the second argument.

replacePage (int, int): This method replaces the page in the first
argument with the page in the entry at the second argument.

getVictim (int, int, int): This method decide which entry to be
replaced in case there is a conflict miss.

countValid (int, int): This method counts the valid page numbers
inside at some point.

reset (): This method resets the reference bits in each entry for
this bank.

s ok 3 ok s ok o e ke o e o ok e o ok ok o ok o ook sk ofe o ok ke of ok s ok ok o b ok o s o e o s o ok e ol ofoR ok ok sk sk ok sk ok Rk ok /

class BANK
it
private:
ENTRY Entry[numOfEntry];
public:

BANK(Y); //constructor

49

int checkPage (int, int);
void putPage (int, int);
void replacePage (int,int);
int getVictim (int, int);
int countValid();

void reset();

b

AR R oK o ok sk ok e ko ko ks ok oo o o o o R ks ook o ko o o

Class SET has a data member called Bank. It is an array of
structure BANK. Array size 1s the number of associativity.

Methods in SET class:

checkPage (int, int, int): Calls checkPage method for the bank
given int the second argument.

putPage (int, int, int) : Also calls putPage method for the bank
in the second argument.

replacePage (int, int, int); Same as above calls replacePage method
for the bank in the second argument.

getVictim (int, int, int): Again calls getVictim method for the bank
in the second argument.

countValid (): Counts the valid entries in the Set by calling
countValid() method for each bank in the Set.

reset(): Resets the reference bit of each entry in this set.

o s s ok o ok o o ks sl o ook ok o ok ok s s ok sk sk sk ok ks s e ok st ook ok s o ok ks R ek ok sk ok ok

class SET
{

private:
BANK Bank[numOfAsso];
public:

SET (); /constructor

int checkPage (int, int, int);
void putPage (int, int, int);

void replacePage (int, int, int),
void getVictim (int, int&, int&);
int countValid();

void reset();

e

50

/o st oo koK s R R K oK K S R o K oK K o o o o o o o koK o R ok S FOK o K

This is the class TLB. It has data member Set which is an array

of SET. Size of the array is predefined by number of sets.

Our TLB has number of sets, each set has number of banks determined
by the associativity of the TLB and each bank has number of entries
which is predefined.

TLB class has only four methods:
TLB() : constructor

accessPage (int) : This method calculates the entries corresponding
to the page in the argument. Then calls checkPage methods for the

corresponding Set and decide whether the referenced page is hit or
miss. After that I calls related methods in the set.

countValid() : Calls countValid() method in the set to count the
valid pages in the TLI.

e 3 o 3 o o e ok ok s ok s e ok Sk o b ok o sk of fe o ok ok s ok o ok ke e ok ok e s okl ok Sk ke o sl ol o sf e o sk e o sk o ok e ok e S fofe ok ok ok ok o/

class TLB
{

private:
SET Set[numOfSet];
public:

TLB(): //constructor
void accessPage (int);
int countValid();

void reset():

ok ek ok ok ook sk ok ok ok ok o ok KR KR K K R e R oK ook ok ok Ok Ak R ke ok sk o ok sk o ok o ok

This function converts an integer to its binary representation
****#************************#********#‘*#**********#*********‘**K

void mtToBin(int num, int binary[])
{
int 1=0;
int n = numOfBits;
while(num>0)
i
if(num%2==1)
binary[n-1-1]=1:
else
binary[n-1-i]=0:
num=num/2;
1++;

21

}//end of while(num=>0)

for(int j=0:j<n-i;j++) //this loop fills with zeros.
binary[j]=0;
i

{*************#*************#*t**ﬁ*‘********ti*#**#**#**********

This function converts a binary number to an equivalent integer
Ak K ek ko R ok st o R ok 3k o R ok sk ok s o ko ok ks o koK o ok K ok ok o |

int binToInt(int bin| |)
{
int num=0;
//this loop calculates the integer value of the binary string
for(int i=0;1<numOfBits;i++)
|
num = num-+ static_cast<int>(bin[i]*pow(2,numOfBits-i-1));
}

return num;

I'

{#**t******************#****#*#*t*#**#*************#**************

This function returns an integer value after bit by bit XORing
the two arguments. This is actually the first mapping function
used to calculate the entry for a page.
***********************************#****#*******#****************!
int XOR (int num1, int num2)
!

int bit1 [numOfBits]; //bitl is the bit representation of num|

int bit2[numO1Bits]; //bit2 is the bit representation of num2

int bit3[numOfBits]; //bit3 is the bit representation of the

f/result of XORing num] and num?2

intToBin(numl, bitl); //converts numl to binary
intToBin(num?2, bit2); //converts num?2 to binary

//this loop performs the XOR opcration bit by bit
for (int i=0; i<numO{Bits;i++)
{

if(bit1[1]==0 && bit2[i]==0)

bit3[i] = 0;
if(bit1[i]==0 && bit2[i]==1)
bit3[i] = 1;
if(bit1[i]==1 && bit2|i]==0)
bit3[i] = 1;
if(bit1[i]==1 && bit2[i]==1)
bit3[i] = 0;

i

return binTolnt(bit3); //converts result to integer

32

[AR ek Ak AR Rk ok ok dok ok o ol ok ksl ok ko ok sk ok ok sk ok okokok
This is the second mapping function to calculate entry for a page.

First it shufts first arguments circularly to the right, then
XOR it with second argument.

o o oo o ook ook sk R oK o ok s KRR ook Rk ok ok sk ko Rk KRR SR ek ok ko sk Ok ok ok

int XOR2(int numl, int num?2)

!
int bitl [numOfBits]; //bitl is the bit representation of num1

int temp;

intToBin(numl, bitl); /converts to binary

//limplementation of circular right shift
temp = bit] [numOfBits-1]: //store the last bit

for (int j=numOfBits-1; j>0:j--) //shift
{

i
bit1[0] = temp;

bit1(j] = bitl[j-1]:

numl = binTolnt(bitl); //convert back to integer

return XOR(num1, num2); //perform XOR after shift
f

/e e e ok ok o ok e o ok ke o e e ok e o of ok e ok ok o ook ok ook o ok e o ool o ok ke sk sk ok o ok ofe ol s e o ok o ok ok o sk e s ok ke o e o ook e ok ok

Following is the constructor and method implementation for BANK
t******t**##****#******#****#*********##**********#**‘#*****‘**#*x

ok s o ko e ok o oo s ks ok R o ok sk fe s o R Kl Kl o o o R R K ok ok R K ok

Constructor for class BANK. It initializes each data member (ENTRY)
of the instance of BANK.

S e o e e ook o o oo R R ok o oo o o o ok 8k R koK o sk o o o o R K K oK o oK Sk R oK ok s o o ok o ok

BANK::BANK()
{
for (int i=0; 1<numOfEntry;i++)
}
Entry[1].validBit = 0;
Entry[i].dirtyBit = 0;
Entry[i].referenceBit = 0;
Entry[i].tag = -1; // since zero can be a valid tag address,
// -1 is used for tag initialization

53

f*t****‘*************‘***#*****#*‘*****************‘***'**'****‘l**
Method checkPage:

First argument is the page number referenced, second argument is

the entry offset for this page in the bank. Method returns 0 if the

page is a compulsory miss. returns 1 if it is conflict miss, and
returns 2 for a hit.
#*##*t#**t******t*t**t**************t*#*t**t**t*********‘**‘**;

int BANK::checkPage(int page, int entry)

{
if (Entry[entry].validBit == 0)

return 0;

else if (Entry[entry].tag != page)
return 1;

else

{

Entry[entry].referenceBit=1;

return 2:

|

f**************#**#**************************

putPage method

set valid bit and tag for the entry.

#***#**#****t*tt****t******#**********#**#**;
void BANK ::putPage(int page, int entry)
{
Entry[entry].validBit = |;
Entry[entry].tag = page;
}

o oo o o o ok o ok ok ook ok K sk s o o o R ok o ok ok ok o oo o o ok o ok o Kok ok KKK K o oo o o o o o o o o ok

Method replacePage:

First argument is the page number referenced, second argument is the
entry to be replaced. Replace the victim page with the new referenced
page and set dirty bit.

**********************************t******#**#**#*****#***#*##*#i***;

void BANK ::replacePage(int page, int entry)
{
Entry[entry].dirtyBit = ;
Entry[entry].tag = page:

54

/#***********t*#****#**************************t*****#**#***#*tt**

Method getVictim finds the victim page to be replaced in the TLB.

This method has argument called flag. It checks the victim page
according to the NNR replacement policy described in the thesis.
First it checks if the entry clear, if not it checks whether it

has been replaced or not.
stk ook ok o 3k ok ok 36 ok koK koK ook o oo oK o ok ke Kook oK o o SR R SR Kok sk ok o o o ok ok ok Kk Rk oKk ok ok ok ok

int BANK::getVictim(int entry, int flag)

I
i

if (flag == 1)
{
if (Entry[entry].referenceBit == ()
return 1;
else
return 0;
1
else if (flag == 2)
{
if (Entry[entry].dirtyBit == 0)
return 1;
else
return 0;
}
else
return 1;

!

3k 3 ke ok o ok ok o o ok ok ok ok ke ok ok ok 8 3 o oK oK kK o 3 ok ke 3 ok ok 3 ok ok K ok ok o ko o 3K ok ke ok ke ok 31Ok ok 3K ek 3k ok ok ok ok ok ok o ok ok oK

countValid method implementation. It counts the valid pages in the
BANK by checking the valid bit of each entry.

************#****#*****t*##***#*******#****************#********#;

int BANK::countValid()

{
int vahd = 0;
for (int 1=0;i<numOfEntry;i++)

{
if (Entry|i].validBit == 1)
valid++;

)

return valid;

f

}**#*****#*****#**********************‘*******************t**#*****t

reset method. It resets the reference bit at some period
********#***********t************#*###**#************#**********#**;

void BANK ::reset()
{

55

for (int i=0;1<numOfEntry;i++)
{
Entry[i].referenceBit = 0;

b

f#**********#*****#*t*t‘#t******#*******t*t*t**t*tt**t**t#**#*t‘**

Following are the methods implementation for SET
3 s ok ok ook o ook o R oK ok ook sk ok ok s ok s skok sk ik sk ok sk ok kol s skskok sk ik ok kol ok sk ok ki ok ok ok ok ok /

X#*******#*****************#**#**#********t*#**#*#*#*t***i*##*****

Constructor for SET
ok R Rk R ok ok ok ok ko KoK K R HOR R K R K K ok o ok ok ok Kok ok |

SET::SET()
{}

f**t*****#*i***************#****i**‘**t****************************

Method checkPage:

First argument is the page number referenced, second argument is

bank offset, third one is the entry offset for this page in the bank.

Method calls checkPage method for the BANK given by second argument
and checks if the page is in this Set. It returns 0 if the page 1s

a compulsory miss, returns 1 if it is conflict miss, and returns 2

if it is a hit.
ﬁ******************************#*‘****************#***********;

int SET::checkPage(int page, int bank, int entry)

1]
I

return Bank[bank].checkPage(page, entry);

f**#**t*****

putPage method calls putPage method for the BANK in the
second argument to put the page in the first argument

into the entry in the third argument.
#***#*******#*****#*‘***************#*******#*****#I

void SET::putPage(int page, int bank, int entry)
{
Bank[bank].putPage(page, entry);

f**#t#****t#*t**i****#******************t#*****‘**‘#*********$*$***

Method replacePage:

It calls the replacePage method for the bank given by second argument
and replaces the referenced page into the entry.

*****************##************&***#********************#**********;

void SET::replacePage(int page, int bank, int entry)

56

{
}

/% % 3 e e ok ok e o e e s o e ok e o ok s o ok ok Ok S ok ok s ok ok e ok e e ol ok o ok ok 3 ok kol ok Sk ok sk ok ok ok ook ok ok lok okokok ok

Bank{bank].replacePage(page, entry);

getVictim method implementation for class SET.

This method decides which page to be replaced from TLB once the
referenced page is a conflict miss.

First, it calculates the entry number for the referenced page.

Then it decides which one to be replaced by checking the entries

according to the NNR replacement policy described in Thesis.
e b sk ok 4 o o o K Ko oK 3 3 oK e o o e o e o ok o ok ok ok ok o ke o ok ok ok i 3 ok 8 a6k o e ke ok ok ok o ok koK ok

void SET::getVictim(int page, int& bank, int& entry)

I
1

int power = static_cast<int>(pow(2, numOfBits));

int A1 = page % power;
int A2 = ((page - Al)/power) % power;

// we have only two entries, because this is simulator for 2-way
// set associative TILB.
// For n-way, there are n entries to be checked.

int entryl = XOR(A1,A2); //calculate entryl
int entry2 = XOR2(A1,A2); //calculate entry2

int flag = 1;

while(true)
{
if(Bank[0].getVictim(entry1, flag)==1 && Bank[1].getVictim(entry2,
flag)==1)
i
bank = rand()%2;
if (bank==0)
entry =entryl;
else
entry = entry2:
break;
}
else if(Bank[0].getVictim(entryl, flag)==0 && Bank[1].getVictim(entry2,
flag)==1)
d
bank=1;
entry=entry2;
break;
!
clse 1f(Bank[0].getVictim(entryl, flag)==1 && Bank[1].getVictim(entry2,
flag)==0)

57

bank=0;

entry=entryl;
break;
1
I
else 1f(Bank[0].getVictim(entry1, flag)==0 && Bank[1].getVictim(entry2,
flag)=0)
{
flag++;

/3% % 3% e i 3 o e ok ok e ok ok e sk ofe s e ok e o e s o e e o e o ok e e ok ke e e o ke sk sk e s sk e sk e ok o ko ok ok ok ok ook

countValid method implementation. Counts valid pages in the SET
#*****************#********#**##*#*#*t********#***********$***$**{

int SET::countValid()

{
int valid = 0;
for (int 1=0;1<numOfAsso;i++)
{
valid = valid + Bank[i].countValid();
}
return valid;
H

f**t*****t**#********#**********************#*t*#tt*tt*‘**i#**#*##*t

reset method. It resets the reference bits of each entry in the Set
********###**************#*********#***************t****#***#******f

void SET::reset()
{

for (int i=0;1<numOfAsso;i++)

¥
I

Bank[i].reset();

[0 0 ok ok o ok ok s s ok of ok ok o sk o e o o 3 o oK 6 o ok e o ok o o o o e o ok i e ok b ok ok ook ok ok ok o ok ok ok ok ok ook ook ok ok ok ok ok ok

Following is the constructor and method implementation for TLB
********#*****#**ﬁ*******#***************t***#*****‘*****‘*******;

TLB:: TLB()
4

58

/% 3% e v sk ke sk ook ok sk ok ook o ok ok e ok ok o sl ok ok o o o ok ok e ok ke o ok ke s ke s ok ke ok e e s ok ko ok ok ok ko ok ke ok ok e ok ok o ok ok

Method accessPage: This is the first method to be called to each
referenced page.

Argument is the page number referenced.

This method first calculates the set number, bank number and entry
number for this page in the TLB then calls the corresponding set

to check whether the page is in TLB.

Here it is assumed that page number can be written in the form
page number = A3*2~(2n)+A2*2*n+A1 where 2”n is the number of entry
in each bank.

Al = page number MOD 2”n
A2 = [(page number - A1)/2”n] MOD 2”n
We do not need A3

set number = page number MOD numOfSet
bank number is calculated in the following way.

First we calculate entryl = A1 XOR A2, entry2 = A1 XOR2 A2.

Then we check these entries. If the referenced page is a hit, we do
nothing. If not, and both entries are empty (compulsory miss)

then we randomly choose one of them. If any one of them i1s empty then
the page to be out in that entry. If both of them are taken, then

victim page should be decided and the referenced page to be put in

the entry of the victim page.

##*#*‘**#*#***************************t****#***#**#******#**#***f

void TLB::accessPage(int page)

i
i

int Al;

int A2;

int checkl,check2;

int set;

int bank;

int entry.entryl,entry2;

int power = static_cast<int>(pow(2, numOfBits));
Al = page % power;

A2 = ((page - Al)/power) % power;

set = page % numOfSet;

entryl = XOR(A1,A2);

entry2 = XOR2(A1,A2);

checkl = Set[set].checkPage(page, 0, entry1);
check2 = Set[set].checkPage(page, |, entry2);
if(check] ==0 && check2 ==0)

{

59

miss++;
bank=rand()%?2;
if(bank==0)
Set[set].putPage(page, 0, entryl);
else
Set[set].putPage(page, 1, entry2);
H
else if(check1==0 && check2==1)
{
miss++;
Set[set].putPage(page,0.entryl);
t
else if(checkl==1 && check2==0)

{

misst+;

Set[set].putPage(page,l entry2);
}
else if(checkl==1 && check2==1)
{

miss++;
Set[set].getVictim(page, bank, entry);
Set[set].replacePage(page, bank, entry);

}

4K oK ok e e ok o o o oK e o e ae ok e ok ok e e ok ok st ok e ok o ok o ok o ok s ok 3K o o o o ok e ook e ook ok ok ok ok ok kol ook ok ok

countValid method implementation
*****************#*******‘****#****************#*****l**‘********f

int TLB::countValid()
{
int valid = 0;
for (int i=0;1<numOfSet;i++)
!
valid = valid + Set[i].countValid();
!

return valid;

j

;************#***#*************#***********#****#t********‘i**t##t*‘

reset method. It resets the reference bit at some period
********#**#*****#*t**t*#t**#*#**#*#*******#***********#*******##**;

void TLB::reset()

{
for (int i=0;i<numOfSet;i++)

{
Set[1].reset():

i

60

f***t*#****##*##*##***********t****k*tt*t************#*********#****

Main function

**********#******#***#***#***t*****#****#t##******#**t******‘i**#x

void main()

{

ifstream INFILE;

int access=0;

unsigned long random, page;
char line[80];

char* stop="\n";

TLB myTLB;
INFILE.open ("spice2g6"); // open the input file

while(!INFILE.eof())

{
INFILE.getline(line,80);
random=strtoul(line,&stop,10);
page=random/pageSize;
myTLB.accessPage(page);
accesstt;

I

INFILE.close ();
cout<<"Miss = "<<miss<<endl;

61

VITA
Abdurashid Abdurahman
Candidate for the Degree of

Master of Science

Thesis: MODIFIED SET ASSOCIATIVE TLB
Major Field: Computer Science
Biographical:

Personal Data: Bomn in Atush, Uyghuristan, eldest son of Abdurahman Aji and
Reyimgul Mamut.

Education: Received Bachelor of Science degree in Computational Mathematics
from Xinjiang University, Urumgqi, Xinjiang, China in July 1991.
Received Master of Science degree in Applied Mathematics from
Oklahoma State University in May 2001. Completed the requirements for
the Master of Science degree in Computer Science at Oklahoma State
University in August 2001.

Experience: Employed as Patent Agent & Patent Searcher by Science &
Technology Commission of Xinjiang Uyghur Autonomous Region from
Aug. 1991 to Aug. 1997.
Employed as Teaching Associate & Lecturer by Mathematics Department
of Oklahoma State University from Aug. 1997 to Dec. 2000.
Employed by School of Mechanical & Aerospace Engineering and
Department of Microbiology as Research Assistant from May 2000 to July
2001.

