
MODIFIED SET ASSOCIATIVE TLB

By

ABDURASHID ABDURAHMAN

Bachelor of Science
Xinjiang University
Urumqi, Xinjiang

People's Republic of China
1991

Master of Science
Oklahoma State University

Stillwater, Oklahoma
2001

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 2001

MODIFIED SET ASSOCIATIVE TLB

Thesis Approved:

/PI

----~--.;.,-:-e~r~e-----

11

ACKNOWLEDGEMENTS

I sincerely thank my adviser Dr. Nohpill Park, for his guidance, help,

encouragement and continuous support in finishing this thesis. Special thanks are

extended to my committee members Dr. G. E. Hedrick, Dr. Blayne Mayfield for their

advice, cooperation and suggestions for the completion of this thesis. I would like to

express my sincere gratitude to Dr. G. E. Hedrick for his precious help in organizing and

proofreading this thesis.

So many people have helped me during the completion of this thesis. It is

impossible to acknowledge them all personally. I extend my special th.anks to Dr. Mansur

Samadzadeh for his help for finding the needed input trace files.

I thank God for giving me intelligence and courage. My special gratitude is

extended to my parents and brother, sisters for their continuous support for my education.

Finally, I would like to dedicate this thesis to my lovely wife Aisha for her

priceless sacrifices during the last four years of my higher education at OSu.

111

Chapter

TABLE OF CONENTS

Page

1. INTRODUCTION.. 1

1.1 Background ,. 1

1.2 Motivation ,..................... 1

1.3 Tenninology , , 3

2. LITERATURE REVIEWS 4

3. PRELIMINARIES 7

3.1 Virtual Memory 7

3.2 Paging and Page Table 7

3.3 Locality of Memory References 9

3.4 Translation Lookaside Buffer (TLB) 9

3.5 Page Placement Policies , 11

3.5.1 Direct Mapped , 11

3.5.2 Fully Associative 11

3.5.3 Set Associative , 12

3.6 Page Replacement Policies ' 12

3.6.1 Random Replacement Policy 12

3.6.2 LRU Replacement Policy 13

3.6.3 LFU Replacement Policy , 13

tV

Chapter Page

3.6.4 MFU Replacement Policy 13

3.6.5 Optimal Replacement Policy 14

4. MODIFIED SET ASSSOCIATIVE TLB 15

4.1 Basic Idea 15

4.2 Mapping Functions Choosing Criteria 15

4.3 Overhead due to Multiple Mapping Function 16

4.4 Mapping Functions for the Modified Set Associative TLB 17

4.5 Which Replacement Policy for the Modified TLB ? 26

5. SIMULATION RESULTS AND DISCUSSIONS 28

6. CONCLUSION " 44

REFERENCES 46

APPENDIX

Source Code for the Simulator of Modified 2-way Set Associative TLB 48

v

LIST OF TABLES

~k P~

1. Valid Page Numbers in a Traditional 2-way TLB After One Read. 28

2. Valid Page Numbers in a Modified 2-way TLB After One Read 28

3. Miss Rates for a Modified, a Conventional2-way Set Associative TLB and a

Fully Associative TLB When the Page Size is 512 30

4. Miss Rates for a Modified, a Conventional 2-way Set Associative TLB and a

Fully Associative TLB When the Page Size is 1024 30

5. Miss Rates for a Modified, a Conventional 4-way Set Associative TLB When

the Page Size is 512 33

6. Miss Rates for a Modified, a Conventional 4-way Set Associative TLB When

the Page Size is 1024 " 34

7. Miss Rates for a Modified, a Conventional 8-way Set Associative TLB When

the Page Size is 128 36

8. Miss Rates for a Modified, a Conventional 8-way Set Associative TLB When

the Page Size is 256 l()

9. Miss Rates for a Modified, a Conventional8-way Set Associative TLB When

the Page Size is 512 37

10. Miss Rates for a Modified 2-way Set Associative TLB When the Page Size

is 128 41

VL

Table Page

11. Miss Rates for a Conventional 8-way Set Associative TLB When the Page Size

is 128 41

VB

LIST OF FIGURES

~~e P~

1. Paging hardware 8

2. TLB acts as a cache 10

3. An implementation of a modified 2-way TLB 20

4. Miss rate comparison for the program, Ii, when the page size is 512 31

5. Miss rates for the program, spice2g6, when the page size is 512 31

6. Miss rates for the program, nasa, when the page size is 1024 , 32

7. Miss rate comparison for the program, fpppp, when the page size is 1024 33

8. Miss rates for the program, espresso, when the page size is 512 34

9. Miss rates for the program, Ii, when the page size is 1024 35

10. Miss rate comparison for the program, Ii, when the page size is 128 38

11. Miss rates for the program, spice2g6, when the page size is 128 38

12. Miss rate comparison for the program, doduc, when the page size is 256 39

13. Miss rate comparison for the program, gee, when the page size is 512 39

14. Miss rate comparison for the program, fpppp, when the page size is 512 40

15. Miss rate comparison for the program, Ii, when the page size is 1024 40

16. Miss rate comparison for the program, nasa, when the page size is 128 42

17. Miss rate comparison for the program, spice2g6, when the page size is 128 42

VIll

NOMENCLATURE

CPI clock cycles per instruction

CPU central processing unit

LFU least frequently used

LRU least recently used

MFU most frequently used

MMU memory management unit

NNR not-used, not-written random

OR bit wise inclusive or operation

TLB translation lookaside buffer

XOR bit wise exclusive operation

+ OR

EB XOR

IX

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

Virtual memory is supported In almost all modem computer systems [10]. In 1959,

Kilburn et a1. [8] introduced the concept of a one-level store", known now as virtual

memory, to allow larger programs than available physical memory. Since then, a number

of new mechanisms have been created to utilize the advantages of virtual memory to

benefit the computer systems. One of these techniques is paging. In a paging scheme,

physical memory is broken into fixed sized blocks called frames, logical memory is also

broken into blocks of the same size called pages. Every address generated by the CPU is

divided into two parts: page number and page offset. We locate pages by using a full

table called a page table that contains the base address of each page in physical memory.

Since the page tables are stored in main memory, every memory access by a program can

take at .Ieast twice as long: one memory access to obtain the physical address and another

access to get the data. Since most of the references exhibit both temporal and spatial

locality, modem machines include a special cache that keeps track of recently used

translations. This special address translation cache is called Translation-Lookaside Buffer

(TLB) [6].

1.2 MOTIVATION

• Today this is frequently called multi-lever store.

As the microprocessor improves its perfonnance at a speed of 1.35 times per year, the

memory perfonnance must improve at a speed of several percent per year. The gap

between CPU perfonnance and main memory has been widening with higher

performance CPUs creating performance bottlenecks for memory access instructions [7].

A recent study shows that the memory system may stall the CPU for over 50% of the

execution time [12]. The many recent studies on memory system behavior and

perfonnance have concentrated almost exclusively on cache design [11,15]. Little

attention has been given to TLB performance. Early studies have shown that TLB miss

penalties consume 6% of all machine cycles [3] and 4% of execution time [4]. This effect

is even larger in today's modem computers that have a larger memory size. Because in

modem computers TLB can be in the critical path of memory access, good TLB

performance is essential to good overall performance of a machine [12].

A TLB keeps the average translation cost low since instruction accesses generally exhibit

repetitive memory reference behavior i.n keeping with the principle of spatial and

temporal locality. The efficiency of the virtual memory mechanism is measured by miss

rate and miss penalty [I]. Reducing TLB misses and miss penalties becomes increasingly

important to overall performance of machines. As with cache misses, TLB misses can be

classified into three categories, capacity miss, compulsory miss and conflict miss.

Chen et al. [2] have shown that TLB misses are dominated primarily by capacity misses,

because the mapping size of the TLB is not big enough to map the entire working set of

the program.

2

Technological and architectural trends have led to increased memory sizes, decreased

Clock Cycles Per Instruction (CPO, and larger working set programs. Both factors cause

more significant performance impact due to TLB misses. It is therefore highly desirable

to improve TLB hit ratios in future systems.

1.3 TERMINOLOGY

For the sake of clarity, a few tenus that are used in this paper are defined as tollows.

• associativity is the number of blocks in each set.

• hit is the existence of the data requested by the processor in the upper level [6].

• hit ratio is the fraction of memory accesses found in the upper level [6].

• LRU Stack is a stack that maintains a list of address references ordered according

to how recently they were accessed with the most recent at the top [13].

• miss is the nonexistence of the data request by the processor in the upper level [6].

• miss penalty is the time to replace a block in the upper level with the

corresponding block from lower level, plus the time to deliver this block to the

processor [6].

• miss rate is 1- hit ratio.

• recency is the depth of a reference in the LRU Stack [13].

• TLB reach is the amount of memory that can be accessed without causing a TLB

fault [16].

3

CHAPTER 2

LITERATURE REVIEWS

Traditional approaches for increasing the TLB hit ratio; that is, decreasing the TLB miss

rate, include using more TLB entries and/or bigger page sizes. Increasing the number of

TLB entries is expensive and inefficient. Allowing bigger page sizes can result in poor

memory utilization, due to fragmentation problems. Therefore, these techniques often are

subject to significant costs in implementation [10].

Designers have used a wide variety of associativity in TLBs. Some systems use fully

associative TLBs because a fully associative mapping has a lower miss rate. However

with a fully associative mapping, choosing the entry to replace becomes tricky since

implementing a hardware LRU scheme is expensive [6].

Using variable page Slzes involves complexities in both hardware and software

implementations, and may not be incorporated easily into many existing architectures

[10].

Recently a number of manufacturers introduced split TLB designs in which the TLB is

split into data and instruction translation. The unpredictable nature of process reference

patterns makes the predicting the optimal split of the TLB into portions impossible

without prior knowledge of the application. An incorrectly selected partition size can lead

to thrashing within a partition with associated loss in perfomlance.

4

To solve the above problem, Channon and Koch [1) introduced a re-configurable

partitioned TLB. Because this approach involves the dynamic partitioning the hardware

and an adaptive algorithm for managing the TLB, it is expensive both in hardware and

software implementation.

Liu [10) introduced a Multiple-Page Translation Lookaside Table MPTLB in addition to

the conventional TLB. When a requested virtual address misses both TLB and MPTLB

the slower translation process is invoked, which translates k pages together into a new

entry at the MPTLB. One potential usage of the MPTLB is to serve only for selected

types of memory references (e.g., vector operands, or accesses to special data areas

marked by software). Therefore its usage is limited to some specific applications.

Other methods to improve TLB performance are to use software pre-fetching and

caching. Saulsbury et al. [13] introduced a pre-fetching technique based on th recency

of references. This technique uses an LRU stack to measure the recency of memory

references. Upon a TLB miss, it predicts the translation for the next miss based on the

recency of the miss currently being handled. If the prediction is incorrect, then a full TLB

reload occurs with associated loss in performance. However, these type of methods are

useful for dynamically allocated data structures such as kernel data structures, and they

also add extra work for the operating system. Also, software managed TLBs can exhibit a

high miss penalty [5].

5

Swanson et a1. [16] proposed a mechanism of increasing the TLB reach by introducing a

notion of shadow pages. A secondary MMU and a secondary TLB are placed in the main

memory, makes the mechanism expensive and complex. Also, shadow regions are not

supported on extremely high end machines [16].

Lee et a1. [9] proposed a dual TLB structure which consists of two conventional TLBs; a

conventional small page (4KB size) TLB and a conventional large page (16KB size)

TLB. Both TLBs are designed as fully associative. This structure is simpler than the one

proposed by Swanson et a1. [16]. However, when there is a miss in both TLBs, we must

flush both TLBs which invokes a slower translation process.

Another well-known alternative is the set associative organization. Increasing the

associativity usually decreases the miss rate [6]. Previous studies have showed that, for a

cache size larger than 64KB, direct mapped caches exhibit hit ratios nearly as well as set­

associative caches [6]. But TLB is relatively small cache in size. A typical TLB has

entries between 32 and 4096 [6]. This paper introduces a modified set associative TLB

design that gives lower miss rate than a conventional set associative TLB.

6

-

CHAPTER 3

PRELIMINARIES

3.1 VIRTUAL MEMORY

Many years ago, when people first encountered programs that had larger size than

available memory size, they usually split the program into pieces called overlays [17].

The overlays were kept on disk and swapped in and out of memory by the operating

system. Since the generation of overlays was very time consuming, and complex, to

overcome this drawback a way known as virtual memory was soon developed [14].

The basic idea behind the virtual memory is only a portion of the program is kept in main

memory, the rest is stored in secondary storage. When the system needs other portions of

the program, any of the well-known general schemes can be used to swap the portions

between main memory and second storage. Therefore, program size is no longer a

constraint for programmers and multiprogramming becomes feasible.

In virtual memory systems, there are two types of addresses for programs: virtual

addresses and physical addresses. Virtual addresses are produced by programs and from

the virtual address space. Physical addresses are the actual physical address in memory.

3.2 PAGING AND PAGE TABLE

There are two common techniques used in virtual memory system: pagmg and

segmentation. We do not discuss segmentation here because our study is related to

7

paging. In a paging scheme, physical memory is broken into fixed sized blocks called

frames. Virtual memory, also known as logical memory, is also broken into blocks of the

same size called pages. Every address generated by the CPU is divided into two parts:

page number and page offset.

A Page table is a table that contains the base address of each page in physical memory.

This base address is combined with the page offset to define the physical memory address

that is sent to the memory management unit (MMU) [18]. When a virtual address is sent

to the MMU, the MMU determines the page number (P) to which the virtual address

belong, gets the corresponding frame number if) according to the page table, translates

the virtual address into physical address, and sends it to the bus. The paging model of

memory is given in figure 1.

virtual address physical address

CPU --1 p
Idl I f I d I ...

I ,~ t
Physical
memory

p

f I--..

Figure 1. Paging Hardware

8

3.3 LOCALITY OF MEMORY REFERENCES

Locality is the property that references in a program tend to cluster into groups in time

and/or space (18). There are two types oflocality: spatial and temporal.

Temporal locality is with respect to time clustering for a set of pages. That is, if a set of

pages are referenced during a given time interval, it is likely that they will be referenced

again soon [7].

Spatial locality occurs when two successive references have adjacent virtual spaces. In

other words, if a word w is referenced at time t, then words in the range of w-i to w+i for

some small i are likely to be referenced at time t+ 1 (7).

Most ofthe programs exhibit good spatial and/or temporal locality.

3.4 TRANSLATION LOOKASIDE BUFFER (TLB)

Since the page tables are stored in main memory, every memory access by a program can

take at least twice as long: one memory access to obtain the physical address and another

access to get the data. Also, because most of the references exhibit both temporal and

spatial locality, the key to improving access performance is to rely on the locality of the

references in the page table. When a translation for a virtual page number is used, it will

probably be needed again in the near future. Accordingly, modem machines include a

special cache that keeps track of recently used translations. This special address

translation cache is called translation-Iookaside buffer (TLB).

A TLB is a cache that holds only page table mappings. Thus, each tag entry in the TLB

holds a portion of the virtual page number, and each data entry of the TLB holds a

physical page number. On each reference, we look up the virtual page number in the

TLB. If there is a hit, the physical page number is used to fonn the address. If there is a

miss, then we look up the page table. Because the TLB has many fewer entries than the

number of pages in main memory, TLB misses are much more frequent than true page

faults. This is another reason why the improving TLB hit ratio is important. Figure 2

shows how the TLB acts as a cache for the page table references.

virtual page number

I I

valid tag

TLB

physical address

physical memory

.....

-

page table "~

t-+------lr--------- "".1---------1
:::-c:: '".,t---------;
disk~I---------I

Figure 2. TLB acts as a cache

10

3.5 PAGE PLACEMENT POLICIES

Since TLB is a cache used for fast translation of page numbers, conventional cache block

placement policies apply. Most commonly used block placement policies are direct

mapped, fully associative and set-associative schemes.

3.5.1 Direct Mapped

In a direct mapped placement scheme, TLB is one set of entries, and a page can go

exactly one entry in the TLB. Assume the number of entries in the TLB is n, then a page

goes to the entry = page number MOD n. A direct mapped scheme can be considered as a

one-way set associative scheme.

The direct mapped scheme is very common among cache implementations, since it is

easy to implement. However, it performs poorly compared to other schemes in terms of

hit ratio for caches that the cache size is less than 64KB. The hit ratio may drop sharply if

many addressed blocks have to map into the same block frame [7]. For this reason, direct

mapped caches tend to use a larger cache size with more block frames to avoid

contention.

3.5.2 Fully Associative

In a fully associative scheme, the TLB is again one set of entries as in a direct mapped

scheme, but a page can go anyone of the entries in the TLB. When a page is referenced.

we must search all entries in parallel to decide whether it is a miss or a hit. These

11

comparators significantly increase the hardware cost, effectively making fully associative

placement practical only for small caches.

3.5.3 Set Associative

The middle range of design between direct mapped and fully associative is called set­

associative. In a set-associative TLB, there are fixed number of entries in each block; a

set-associative TLB with n blocks is called n-way set associative TLB. An n-way set­

associative TLB consists of a number of sets, each ofwhich consists of n blocks.

The advantage of increasing the degree of associativity is that it usually decreases the

miss rate [6]. The improvement in miss rate comes from reducing misses that compete for

the same location. But as discussed in section 2, when the cache size is large (larger than

64KB), a direct mapped scheme performs as well as a fully associative and a set­

associative scheme.

3.6 PAGE REPLACEMENT POLICIES

If there is a miss on a page reference, then we must decide which entry should be

replaced from the TLB. Following are some general replacement policies.

3.6.1 Random Replacement Policy

In a random replacement policy, the victim page is chosen randomly. Therefore, it may

not utilize locality of references. However, since random replacement policy is easy to

implement, it is commonly used in smaD size caches and in simulations.

12

3.6.2 LRU Replacement Policy

In a LRU (Least Recently Used) replacement policy, the victim page to be replaced is

the one that has not been used for the longest time [14]. In general, LRU replacement

policy exhibits lower miss rate than random replacement policy. But, it is quite expensive

to implement, since there is a time stamp associated with each reference. There is a

modification of LRU replacement policy that works almost as welL but less expensive to

implement. This modification is described later in this thesis.

3.6.3 LFU Replacement Policy

LFU (Least Frequently Used) replacement policy is an approximation to LRU. Instead of

having a time tag for each reference, each page is attached with a frequency counter. The

page to be replaced is the one with lowest frequency count. This policy suffers from the

situation in which a page is used heavily during the initial phase of a process, but then is

never used again. Since it was used heavily, it has a large count and remains in cache

even though it is no longer needed [14].

3.6.4 MFU Replacement Policy

The MFU (Most Frequently Used) page replacement is based on the argument that the

page with the smallest count was probably just brought in and yet to be used [14]. MFU

has same characteristics as LFU.

13

3.6.5 Optimal Replacement Policy

Optimal replacement policy simply replace the page that will be not be used for the

longest period of time [14]. An optimal page replacement has the lowest page fault rate of

all poLicies. Unfortunately, it is difficult to implement, because it requires future

knowledge ofthe reference string. It is used mainly for comparison studies.

14

CHAPTER 4

MODIFIED SET ASSCOCIATIVE TLB

4.1 BASIC IDEA

In a set-associative TLB, there are a fixed number of entries in each block; a set­

associative TLB with n blocks is called n-way set associative TLB. An n-way set­

associative TLB consists of a number of sets, each of which consists of n blocks. In an n­

way set associative TLB, a page number p that mapped onto a set S; (i = 0, 1, ... , #of

sets), can be placed in the entry flp) in one of the block Bj (j = O, ... ,n) , wherefis the

mapping function. When n+1 pages contend for the same entry in a set S;, one of the

pages should be replaced from the TLB, because flpl) = fip2) = ... = Mn) = flp"+I), and

there are only n blocks available in the set. The modified set associative TLB uses

different mapping functions for different blocks so that if two pages contend for the same

entry in block i, they have a low probability of being mapped onto the same entry in

block}. For example, in a 2-way set-associative TLB, a page p can be mapped onto entry

!o(P) in block °or onto entry ji(P) in block 1, so that for two distinct pages PI and P2,

!o(Pl) = !o(P2) but fl(Pl)* ji(P2).

4.2 MAPPING FUNCTIONS CHOOSING CRITERIA

In the previous section, we gave the idea of scattering data within blocks, by using

different mapping functions for different blocks. In order to achieve above expectation,

the mapping functions should have some special properties.

15

1. Assumption

For each entry in the TLB, the numbers of pages that may be mapped onto this entry are

equal.

2. Inter-Block Dispersion

Mapping functions should have the inter-block dispersion property. That is, the set of

pages that can be mapped onto an entry of block i will be equally distributed over the

entries in other blocks.

3. Intra-Block Dispersion

Since many applications exhibit spatial locality, mappmg functions should avoid

mapping neighboring pages into the same entries in any block. In other words, the

mapping function fi should limit the number of conflicts when mapping a memory block

within block i.

4.3 OVERHEAD DUE TO MULTIPLE MAPPING FUNCTIONS

Since multiple functions are used in address translation, some extra delay is introduced as

compared to using a single mapping function in conventional set associative TLB. But as

long as we perfonn address computation in a noncritical stage of the pipeline and do not

lengthen the pipeline cycle, the effect on overall performance can be negligible.

Nowadays, in most of the new generation microprocessors, the address translation stage

is not the critical stage of the pipeline. Surely, this works on non-pipelined machines as

well as pipelined machines. Therefore, the mapping function should be simple to

implement in hardware, and should introduce few extra gates and delays.

16

4.4 MAPPING FUNCTIONS FOR THE MODIFIED SET ASSOCIATIVE TLB

Assume the virtual memory address generated by the CPU is N bits, the page size is 2c

bytes, and the number of entries in each block is 2m
.

In a conventional n-way set associative TLB, the N bit memory address is divided into

three parts: page offset (lowest c bits), entry index (mid m bits), and tag (highest N-m-c

bits).

For example, let N = 16, c = 5 and m = 3.

tag (N-m-c) index (m) page offset (c)

A page p can be placed in an entry determined by the index bits on anyone of the n

blocks. That means a set of pages with the same index bits has only one entry associated

with it. When n+1 pages contend for that entry, one of them must be rejected.

A Modified TLB scheme avoids this situation by using different indexes for different

blocks. Architecture of a modified TLB is very simple. An N bit memory address is

divided into four parts as shown below.

A3 (N-2m-c) Ao (c) (page offset)
~

The index is determined by AI and A z, and by using a different function for each block,

multiple indices are generated for a set of pages that have same index in a conventional

set-associative TLB.

17

Here, we present some preliminary work about memory addresses. Given an N-bit

memory address, let q = N-2m-c then

A - 2q- 1 . 2q-2 2°.1 - aN-l +aN-2 + ... +aN-q ,

A 2m-l 2m-2 20
2 = aN-q-1 +aN-q-2 + ... + aN-q-m ,

A 2m-I 2m-2 20
1 = aN-q-m-l +aN-q-m-2 + ... + aN-q-2m ,

IL - 2 c-1 2 c-2 20~ - aN-q-lm-l +aN-q-lm-2 + ... + ao .

Now we have

A 2 2m+c + A 2 m+c + A 21' + A - = (a 2Q- l+a, 2q-~+ +a 2 0)22m+c + (a 2m- l+a 2 m-3 2 l ~ N-I N-2 . .• N-q N-q-I N-q-2

~ 2 0)2m+c (2 m-1 2 m-2 20)2C 2c-1+ ... + aN-q-m + aN-q-m-l +aN-q-m-2 + ... + aN-q-2m + aN-q-lm-1 +aN-Q-2m-

2(.'-2+ + !:l~20 = a 2 q- I+2m+c+a 2 q-2+2m+c+ +a 22m+c + a 22m+c -1 + + !:lft2° =
~ ••• 1 N-l N-2 ... N-q N-q-l wu

2N- 1 2N-2 22m +c 2 2m+c -I 2aN-l +aN-2 + ... +aN-q + aN-q-l + + al + ao·

That is, any memory address can be written in the form of A322m
+

c + A22
m

+
c + A12c + Ai:!.

Now, let us consider a 2-way set associative TLB with 2/11 entries in each block. Let us

assume that each page size is 2c bytes. Then a virtual memory address A in the fonn of

A = A32
2m

+
c + A22

m
+

c + A 12
e + Ai:! may be mapped onto the entry fo(A) = A I~ A2 on block

0, or onto the entry fiCA) = g(AJ)~ A2 on block 1, where g is one-bit circular shift, and ffi

is exclusive OR on each bit. g can be a right circular shift or a left circular shift. For

example, let the binary representation ofAI be 1011 then g(A 1) = 1101 or 0111.

More generally, in an n-way set associative case, a page with the address

onto the entry fo(A) = Al EEl A2 on block 0 or

18

onto the entryfiCA) = g(AI)EB A2 on block 1 or

onto the entryh(A) = l(AI)Ef) A2 on block 2 or

As discussed in the prevIOUS section, the mappmg function should be simple to

implement in hardware, and should introduce few extra gates and delays. The exclusive

OR (XOR) operation is used instead of inclusive OR to avoid the situation where all bits

of AI are 1. When all bits of Al are 1, regardless the value of A2, A] + A2 = g(A]) +A2 =

lCAI) +A 2 = ... gn-I(A I) +Az thus even if multiple functions are used, all pages still be

mapped to the same entry, and we cannot reach the goal of scattering the data among

entries. Here + denotes the inclusive OR operation. A hardware implementation of a

modified set associative TLB and a conventional TLB is almost the same, only fewer

XOR gates are introduced.

Figure 3 shows the implementation of a sample modified 2-way TLB.

For the sake of simplicity, here we assume a 16-bit virtual address, the number of entries

in each block is 8, and page size is 64 bytes.

19

Virtual Address

Ao (page offset)........t--------i..t-------..,...t------..t-----------..

tag
~

r-

ill lag ilo la7 r 1<\6 lall 1<\6 i lo lag 1
39 la7

....- ,/ 10 I xor I XOT I xor I xor I XOT I xor

I I I I-- -- -- --
index l-) index /3

/
/

tal! nhv add tall ohvaddv v

~

~

r- : ... :

r
Figure 3. An implementation of a modified 2-way TLB

20

Claim 1. Mapping functions described above satisfy the Inter-Block Dispersion property.

In other words, the set of distinct pages that can be mapped onto an entry of block i have

a low probability of being mapped to the same entry in block), where 0$ i<j $ n.

In mathematical terms, let P = {Po. PI, ... , Pk-/} be a set of k distinct pages to be mapped

onto an entry on block i, i.e. j;{Po) = j;{P I) = ... = J,{Pk-,) for block i, where k is the

number of entries in the block. Then the probability of these pages to be mapped into the

same entry in block) is 2/(k+l), in other wordsp[jj(Po) = jj(P,) = ... = jj(Pk-/)] = 2/(k+l).

Proof: Before proving Claim 1, let us first tind the probability p[AEf;lB = C$D), where

A, B, C, and D are any rn bit numbers such that A:;t:C, A:;t:D, B:;t:C, and B:;t:D. Since A, B,

C, D are m bit numbers, the range ofA, E, C, Dis {a, k-l}, where k = 2/11.

Let IXORI be the total number of distinct bit-wise XOR operations on k distinct numbers

between °and k-l. A Ef> Band B EfJ A are considered same XOR operation. Start with 0,

there are k distinct bit-wise XOR operations, namely 0$0,0$1, . oo,0$k-2,0$k-1. For

1, there are k-l XOR operations, 1$ 1,1$2,1$3, ... ,1$k-l. Since 1$0 is already

been included in the set of XOR operations for 0. Similarly, there are k-2 distinct bit-wise

XOR operations for 2. Therefore, IXORI = k + (k-l) + (k-2) + .00 + 2 + 1 = k(k+l)/2.

Thus A Ef> Band C $ D are one of these k(k+ 1)/2 XOR operations. Now we need to find

how many of these k(k+1)/2 numbers are equal.

Since A EBA = °for any number A, there are total k zeros among these k(k+ 1)/2 numbers.

Thus the result of XORing two numbers being zero has highest probability among k

21

k 2
numbers between 0 and k-l and its probability IS =

k(k + 1) k + 1
2

probability p[A EBB = CEBD] = 2/(k+l).

Now let us prove Claim 1.

Therefore the

Az, A1, Bz, H] are m bit numbers. In order prove the claim, it suffices to prove that for any

Ps and Pt in P, iff;(Ps) = f;(Pt) then prJj(Ps) = jj(Pt)] = 2/(k+1) for any 0 ~ i<j ~ n, where n is

the number of blocks in each set of the TLB.

By the defmition of the mapping function, we have

There are several cases to consider.

In this case, f;(Ps) = f;(P,) and liPs) = h(P,) all the time. But we can avoid this situation

simply by choosing the number of set in the TLB not equal to 2", where m ~ r ~ 2m, so

they don not contend for the same entry in the same block.

or

CEB Hz for some C. Let am-J am-L a] ao. bm•J bm-2 ... b, bo, Cm-, Cm-2 ... C, Co be the bit

22

representation of A2 , B2 and C respectively. Because A2 is not equal to ~, they differ at

least at one bit position, call it the/I position. Then there are 4 subcases.

Subcase 1 c- = 0 a- = 0 b- = 1 but c- I"I'> a- = 0 and c- I"I'> b- = 1-J 'J 'j' J'J:J'j 'j'J:Jj-

Subcase2 c-=O a-= 1 b-=O but c-I"I'> a-=1 andc-I"I'> b=O'J 'J 'j' J'J:J'j . J'J:Jj -

Subcase 3 c- = 1 a- = 0 b- = 1 but c- I"I'> a- = 1 and c- I"I'> b- = 0-J 'J 'j' J'J:J'j 'j'J:Jj'

Subcase 4. Cj = 1, Qj = 1, bj = 0, but Cj ffi aj = 0 and Cj ffi bj = 1.

Therefore, in any subcasej;{Ps) :l=fi(Pt), in other words if AI = B1 and A2 :l=B2, thenfi(ps)

can not be equal to fi(Pt)-

Same argument when Al :1= B1 and A2 =B2-

We need to consider

jj(Ps) = g(AI) ffiA 2 = g-i(gi(AJl) ffiA 2 = i-i(B2) ffiA 2 and

t(Pt) = i(B1) (f)A 2 = i-i(gi(A 1» (f)A 2 = i-i(A2) (f)B2-

Since A2 :1= B2, above equations can be written as

jj(Ps) = i-i(B2) ffi A2 = C E9 A2 and

jj(Pt) = i- I(A 2) (f) B2 = D (f) B2 for some C and D such that C:I=D.

Thus, as we have shown at the beginning of the proof, p[fj(Ps} = jj(Pt)] = 2/(k+]).

Case 4_ None of the above.

In all other cases, Jj(Ps) and jj(Pt) can be written as Jj(Ps) = A E9 BandJj(Pt) = C ffi D for

some A, B, C, D such that none of them are equal. Again we have shown at the beginning

of the proofthat prJj(Ps) =Jj(P,)] = 2/(k+1).

23

Claim 2. The mapping function satisfies the intra-block dispersion property. In other

words, neighboring pages have low probability to be mapped onto the same entry on any

block}.

In mathematical tenns, let P = {Pk/2, Pkl2+l... "Po, Pl, ... , Pk/2-/) be a set of k adjacent

pages. Then the probability of these pages being mapped onto the same entry in block} is

2/(k+ 1), where k is the number of entries in each block, i.e.

P[fj(Pk/2) =jj(Pk/2+/) = ... =h{Pk/2-/)] = 2/(k+l).

where S, t E {k/2, k/2-1 }, k = 2m and A2 and AI are m bit numbers.

Again it suffices to prove that for any Ps and PI in P, p[fj(Ps) = jj(PI)] = 2/(k+1) for any

O":;}":;n, where n is the associativity of the TLB.

There are four cases to consider.

Case l.{ A I + S > 0

Al + t> O.

There are two subcases.

In either case, Ps and PI can be written as

Now we have, jj(Ps) = g(B) ffi (A2 +1) and

24

As showed in the proof of Claim 1> liPs) "* }j(Pt) in this case.

Subcase 2. {Al + S ~ 2
m

or

Al + t < 2m

IfA, + S ~ 2m and A I + t < 2m
, then

IfA] + S < 2m and A, + t ~ 2111
, then

In either case prJj(Ps) =/;{Pl)] = 2/(k+1) as proved in Claim 1.

Case 2. {A 1 + S < 0 or { AI + S > 0

A]+t>O A1+t<O

Assume A I + S < 0 and A I + t > O. Again there are two subcases.

Subcase 1. AI + t ~ 2m
.

Subcase 2. AI + t < 2m
.

Therefore in either of the subcases, prJj(Ps) =}j(Pt)] = 2/(k+1) by the proof of Claim 1.

25

f

The proof of the case when A I + S > 0 and A I + t < 0 follows the same argument.

Case 3.

{

AI +s<O

AI +t<O.

Again p[fj(Ps) =fi(Pt)] = 2/(k+1) by Claim 1.

Case 4. Either A} + s = 0 or Al + t = O.

the value of Aj+t, p[fj(Ps) =..f;{Pt)] = 2/(k+1) by the proof of Claim 1, except the case that

Same argument holds for the case AI + t = O.

4.5 WHICH PAGE REPLACEMENT POLICY FOR THE MODIFIED TLB?

In section 3.5, we discussed some of the most common page replacement policies.

Generally LRU or Random replacement policies are used in set associative TLBs.

For the modified TLB scheme, we may use the revised random replacement policy called

Not-used Not-replaced Random (NNR) Replacement Policy as discussed below.

26

Not-used Not-replaced Random (NNR) Replacement Policy:

We associate a reference bit for each entry. This reference bit is asserted when the entry

is accessed. When there is a miss, the victim page is selected among n possible pages in

the following priority order.

1) Randomly among the entries for which the reference bit is clear. In other words, a

victim page is selected among the pages that never been accessed again since

loaded.

2) Randomly among the entries for which the reference bit is set but the dirty bit is

clear. That is, if all the pages have been accessed, then select among the pages

that have not been replaced yet.

3) Randomly among the entries for which the reference bit and dirty bit are set.

Eventually all the reference bits will be set, therefore we reset the reference bit at some

point.

27

CHAPTERS

SIMULATION RESULTS AND DISCUSSIONS

First let us look at a simple example to illustrate how the modified TLB may improve hit

ratio. For the sake of simplicity, let us consider a 2-way set associative TLB with 16

entries. A pseudo-random sequence of 16 page numbers within the range of {O, ... , 22o_1}

was generated randomly. The following tables show the valid page numbers in the TLB

after reading the sequence once. The number inside parentheses on Entry column is the

number of pages that mapped to this entry. For example, 0(6) denotes 6 pages were

mapped onto entry O.

~
0(6) 1(0) 2(4) 3(0) 4(1) 5(2) 6(1) 7(2)

Bloc

BlockO 594368 919746 697940 828477 532238 119839

"._.._.

Block] 973104 863442 1021125 973903

Table]. Valid page numbers in a traditional 2-way TLB after one read.

~
0(3)] (l) 2(2) 3(1) 4(1) 5(2) 6(4) 7(2)

Bloc
BlockO 863442 919746 930024 973]04 532238

Block] 697940 828477 926800 989074] 19839 817768 102]125 511352

Table 2. Valid page numbers in a modified 2-way TLB after one read

28

From the above tables we can see that 6 pages mapped for entry 0 in a traditional 2-way

associative TLB so that 4 of them must be rejected. In a modified 2-way TLB only 3

pages contented for entry O. There are 10 valid pages on the conventional 2-way TLB,

while there are 13 valid pages on the modified 2-way set associative TLB after one read.

To measure the TLB miss rate, the SPEC92 benchmark programs are used as workloads.

The SPEC92 benchmark consists of floating point programs and integer programs which

are various application programs. Seven SPEC92 benchmark programs are used in

simulations. One million memory references, generated by a R3000 CPU, are collected at

some midpoint for each benchmark program. These traces are downloaded from

ftp://ftp.cs.newcastle.edu.au/pub/r3000 traces/ and originally provided by New Mexico

State University Trace Database Parallel Architecture Research Laboratory.

TLBs with different entries and with different associativity are simulated for different

page sizes. Increasing the page size decreases the number of distinct pages for a

particular program. Since, these benchmark programs contain only one million memory

references, we experimentally discovered that when the number of entries in the TLB is

larger than 128 and the page size is larger than 512 bytes, the number of distinct pages for

benchmark programs are very close to the number of entries in the TLB so that the misses

are dominated by compulsory misses and the miss rates for a modified TLB and a

conventional TLB differ little. Therefore, in order to exploit the advantage of a modified

TLB fully, small page sizes are used for the TLB yielding a higher number of entries to

increase the number of distinct pages. TLBs with entries from 16 to 512 are simulated,

29

with the page size from 128 bytes to 1024 bytes. Performances of conventional 2-way, 4-

way and 8-way set associative TLBs versus modified 2-way, 4-way and 8-way set

associative TLBs are compared in terms of miss rate. The NNR page replacement policy,

described in section 6.5, is used throughout the simulations. In all the tables in this paper,

the terms new n- way, old n-way stand for modified noway set associative TLB and

conventional n-way set associative TLB respectively.

program miss % for new 2 -way miss % for old 2-way miss % f or fully as sodative
16-entry 32-entry 64-entry 16-entry 32-entry 64-entry 16-entrv 32-entrv 64-entry

nasa 0.1 0.0713 0.0508 0.1398 0.0932 0.0601 0.1114 0.0773 0.0546
gee 5.6968 3.5274 1.888 6.1173 3.9101 2.1448 5.5957 3.6941 1.9234

espresso 1.0981 0.1047 0.0358 3.4035 0.5384 0.1301 0.741 0.0753 0.0259..

fpppp 3.1317 1.3598 0.4332 3.4984 1.9758 0.8764 2.7784 1.1104 0.3925
Ii 3.0045 1.077 0.2824 3.9566 2.1149 0.5715 2.7243 0,814 0.148

doduc 2.3429 0.8752 0.2221 2.6164 1.4322 0.5583 1.9298 0.8417 0.1391
spiee2g6 3.2639 1.08 0.5737 4.2482 1.6525 0.8054 2,8804 1.1196 0.6317

Table 3. Miss rates for a modified, a conventional 2-way set associative TLB and

a fully associative TLB when the page size is 512.

program miss % for new 2 -way miss % for old 2-way miss % for fullv as sociative
16-entry 32-entry 64-entry 16-entry 32-entry 64-entry 16-entry 32-entry 64-entry

nasa 0.0714 0.0424 0.0248 1.4179 0.6826 0.1309 0.0618 0.0347 0.0251
qee 4.4353 2.1098 0.7123 4.4295 2.4546 1.3067 4.157 2.2894 0.5579

espresso 0.3564 0.0405 0.0142 0.8385 0.1521 0.0368 0.3446 0.0241 0.012
fpppp 2.0218 0.6736 0.1444 2.471 1.1786 0.638 1.6071 0.4777 0.123

Ii 2.7804 0.6025 0.17 3.6204 1.5161 1.0958 1.8523 0.3795 0.0407

dodue 1.5437 0.4071 0.106 1.9649 0.8559 0.227 1.2801 0.3305 0.0577
spiee2q6 1.5928 0.5311 0.2144 2.6702 0.8281 0.2178 1.4397 0.608 0.1881

Table 4. Miss rates for a modified, a conventional 2-way set associative TLB and

a fully associative TLB when the page size is 1024.

30

Tables 3 and 4 give miss rates for a conventional 2-way, a modified 2-way, and a fully

associative TLBs, when the page size is 512 and 1024. As expected and as shown in the

Tables 3 and 4, increasing the page size decreases the miss rate.

From the results in the tables, we can see a fully associative TLB performs better than a

set associative TLB. Also, a modified 2-way TLB exhibits lower miss rate than a

conventional 2-way and performs close to a fully associative TLB.

Figure 4. Miss rate comparison for the program, Ii*, when
the page size is 512

5"-----1-4r;e.
Ql 3
~
III 2 I
.~ 1

a I

~ Proposed 2-way

_ Conventional 2-way

-4- FUlly associative

16 32

number of entries

64

Figure 5. Miss rates for the program, spice2g6,
when the page size is 512

5

-4
~0-
CII 3-nl...
Ul 2
Ul

E

0

~ Proposed 2-way

- Conventional 2-way

---.- Fully associative

16 32

number of entries

64

A benchmark program from SPEC92 test suite.

31

Figures 4 and 5 show that a modified 2-way associative TLB exhibits a much lower miss

rate than a conventional 2-way TLB. Numerical results from tables 3 and 4 give us a 23%

- 50% lower miss rate for the modified 2-way set associative TLB than the conventional

2- way set associative TLB. Although, it seems from the graph that, a TLB with fewer

entries performs better than one with more entries, but experimental numerical results

show that better performances are gained when the TLB has more entries. For example, a

modified 2-way set associative TLB exhibited a 24% lower miss rate when the number of

entries were 16, 49% lower miss rate when the number of entries were 32, and 51 % lower

miss rate when the number of entries were 64. This explains the advantage of the idea of

scattering the data among entries. Because when each block has more entries, more pages

can be scattered within the block and to be put in the TLB so that achieve the goal of

decreasing miss rate.

Figure 6. Miss rates for the program, nasa, when
the page size is 1024

1.6 -r-----------------,
1.4

_ 1.2

e:. 1
Ql-~ 0.8

~ 0.6
E 0.4

0.2
o -i----.J~=:;=:::=::::t==;::==*--__J

-+- Proposed 2-way
_ Conventional 2-way

-.- Fully associative

16 32

number of entries

64

32

Figure 7. Miss rate comparison for the program,
fpppp, when the page size is 1024

3,..----------------,
2.5

~
~ 2

~ 1.5
II)
II) 1
'E

0.5

O+-----..---------,r---------l

~ Proposed 2-way

-..- Conventional 2-way
-+- Fully associative

16 32

number of entries

64

Figure 7 is based on the simulation results for program, fpppp, when the page size is

1024. Interestingly, for the benchmark program, nasa, a modified TLB gave better miss

rate with fewer entries rather than more entries while it still exhibited better performance

with more entries for the benchmark program, fpppp. Tahles 3 and 4 indicate that a

modified 2-way associative TLB gives an 18% - 95% lower miss rate than a conventional

2-way set associative TLB. Also, for program, nasa, a modified 2-way set associative

TLB performed as well as a fully associative TLB.

Same of the simulation results for 4-way set associative TLBs are shown in Table 5.

program miss % for new 4-way miss % for old 4-wav
16 entries 32 entries 64 entries 16 entries 32 entries 64 entries

nasa 0.0958 0.0648 0.0488 0.1238 0.0805 0.0569
QCC 5.6255 3.4761 1.6714 5.5131 3.7556 1.9638

tomcatv 0.2519 0.1901 0.1686 0.5119 0.2679 0.1926
espresso 0.6196 0.0943 0.0227 1.9931 0.2433 0.0904

fpppp 2.7434 0.9769 0.3391 3.0257 1.3295 0.4554
Ii 2.9764 0.6646 0.1411 3.0514 1.1079 0.3522

doduc 1.9715 0.7519 0.1447 2.0082 0.9436 0.2564
spice2q6 3.1892 0.9027 0.5538 3.2573 1.294 0.682

Table 5. Miss rates for a modified, a conventional 4-way set associative

TLB when the page size is 512.

33

program miss % for new 4 -way miss % for old 4-wav
16 entries 32 entries 64 entries 16 entries 32 entries 64 entries

nasa 0.0523 0.0322 0.0247 0.0678 0.0398 0.0248
gee 4.0553 2.1317 0.5155 4.2476 2.3962 0.7927

tomeatv 0.1515 0.1176 0.1093 0.2221 0.1374 0.1196
espresso 0.3219 0.0206 0.0123 0.4033 0.0982 0.0138

fpppp 1.5857 0.4701 0.0971 1.8137 0.5354 0.14
Ii 1.8598 0.3049 0.0349 2.1703 0.8951 0.1509

dodue l' .2432 0.3127 0.0494 1.3581 0.4103 0.0915
spiee2g6 1.4893 0.487 0.1629 2.5664 0.7295 0.2248

Table 6. Miss rates for a modified, a conventional 4-way set associative

TLB when the page size is 1024.

Increasing associativity generally decreases the miss rate [14]. This fact is exhibited in

our simulation. It can be seen easily by comparing the results in the table 3 with those

from table 5 and results from table 4 with those from table 6. Below are some graphic

comparisons of the miss rates of a modified and a conventional 4-way set associative

TLB.

Figure 8. Miss rates for the program, espresso,
when the page size is 512

2.5

2-~e.....
Q) 1.5-ca...
1Il 1
1Il

'E
0.5

0

-.- Proposed 4-way

___ Conventional 4-way

16 32

number of entries

34

64

Figure 9. Miss rates for the program, Ii, when the
page size is 1024

2.5

- 2
~
~

III 1.5....
ca
"-
CIl 1
CIl

'E 0.5

0

-+- Proposed 4-way

_ Conwntional 4-way

16 32

number of entries

64

On these two cases, a modified 4-way set associative TLB gave a 14% - 77% lower miss

rate than a conventional 4-way set associative TLB. It showed better perfonnance in

tenns of miss rate with more entries in each block. The miss rate reduction percentage for

lisp interpreter on a 2-way and a 4-way set associative TLB when the page size is 1024

can be compared. For the 2-way case, the miss rate reduction percentages are 23%, 60%

and 84% while the number of entries are16, 32, 64 respectively. For the 4-way case, the

miss rate reduction percentages are 14%, 66% and 77%. This tells us that a 2-way set

associative TLB yields more improvement than a 4-way set associative TLB. This is nOl

unusual, since the total number of entries in the TLB are equal, increasing associativity

decreases the number of entries in each block. Since a 2-way set associative TLB has

twice as many entries in each block than a 4-way set associative TLB, more pages can be

put in the TLB by scattering pages among the entries in a 2-way set associative TLB.

This shows that scattering data among entries is a good idea to reduce the miss rate.

We can compare a conventional and a modified 8-way set associative TLB. As discussed

at the beginning of this section, more entries and smaller page sizes are used for 8-way

35

...'.

associativity. Because if we used fewer entries, the number of entries in each block will

be even less and we cannot exploit the advantage of scattering data among entries. For

example, if the total number of entries is 16, then there are only 2 entries in each block;

consequently there will be no room for putting more entries into the block. The reason for

using small page sizes is to increase the number of distinct page numbers for the

program. If the total number of distinct pages is close to total number of pages, then the

miss rate will be dominated by compulsory misses, for which we can do little. It is hard

to compare the miss rates for conventional TLB methods and modified TLB methods

effectively.

program miss % for new B-way miss % for old 8-way
128 entries 256 entries 512 entries 128 entries 256 entries 512 entries

nasa 0.1744 0.1567 0.1528 0.1861 0.1624 0.1546
qee 2.8927 0.7109 0.2756 3.1453 1.0023 0.2993

espresso 0.076 0.0555 0.0456 0.091 0.0575 0,0464
fpppp 0.8957 0.3025 0.1859 1.1382 0.3695 0.1816

Ii 0.3435 0,1596 0.0901 0.4149 0.1748 0.0969
dodue 0.7437 0.2566 0.1922 0.848 0.2909 0,1915

spiee2q6 1.3974 0.4744 0.0622 1,5266 0.578 0,1063

Table 7. Miss rates fOT a modified and a conventional 8-way set associative

TLB when the page size is 128.

program miss % for new 8-way miss % for old 8-way
128 entries 256 entries 512 entries 128 entries 256 entries 512 entries

nasa 0.0845 0.0812 0.0797 0.0917 0.0824 0,0804
gee 0.9592 0.2199 0.1022 1.2784 0.2784 0.109

espresso 0.0352 0.0269 0.0268 0.0415 0.0284 0,0268
fpppp 0.2796 0.1216 0.0753 0.373 0.1367 0,0754

Ii 0.1197 0.0544 0.0401 0.145 0.065 0,0404
,.

dodue 0.1568 0.1135 0.0812 0.1907 0.1179 0.0821
spiee2g6 0.592 0.0593 0.0341 0.6752 0.1159 0.0341

Table 8. Miss rates for a modified and a conventional 8-way set associative

TLB when the page size is 256.

36

program miss % for new 8-way miss % for old 8-way
128 entries 256 entries 512 entries 128 entries 256 entries 512 entries

nasa 0 ..0431 0.0425 0.0423 0.0448 0.0427 0.0426
gee 0.25 0.0677 0.0448 0.3268 0.0906 0.0501

espresso 0.0159 0.0155 0.0155 0.0171 0.0158 0.0158
(PDDD 0.0899 0.0469 0.0365 0.1054 0.0482 0.037

Ii 0.0397 0.0228 0.0226 0.0531 0.024 0.0228
dodue 0.0678 0.0468 0.0384 0.0747 0.0489 0.0381

spice2g6 0.0909 0.0205 0.0201 0.1467 0.0215 0.0205

Table 9. Miss rates for a modified and a conventional 8-way set associative

TLB when the page size is 512.

Tables 7, 8 and 9 show miss rates for a modified 8-way set associative TLB and a

conventional 8 - way set associative TLB when the page size is 128, 256 and 512

respectively. From the tables one can observe that although a modified TLB exhibits

lower miss rates than traditional TLB, as the number of entries increases and/or page size

increases the difference between miss rates for a modified and a conventional TLB is not

very significant. The author believes this is due to the following factors. Firstly, all

benchmark programs have only one million memory references which is fewer than the

actual memory references for a program. A typical midsize application program usually

has over hundred million instructions. Secondly, it would have either a larger page size

and/or more entries in the TLB. Increasing the page size decreases the total number of

distinct pages for a program. If the number of entries in the TLB is near the number of

distinct pages in the program, then most of the pages are kept in the TLB so that miss rate

is dominated by the compulsory misses.

37

.,

Figure 10. Miss rate comparison for the program, Ii,
when the page size is 128

0.45 r----------------,
0.4

~ 0.35
';; 0.3-E 0.25
::l 0.2
'E 0.15

0.1
0.05 +------,------,--------l

-+- Proposed a-way

_ Conventional 8-way

128 256

number of entries

512

Figure 11. Miss rates for the program, spice2g6,
when the page size is 128

1.8 ,.----------------,
1.6

0'1.4
~ 1.2
.! 1
III
... 0.8
Ul
Ul 0.6
'E 0.4

0.2
O+-----.,--------,--..%.....----j

-+- Proposed 8-way

_ Conventional 8-way

.,

128 256

number of entries

512

Figures 10 and 11 are based on simulation results of a conventional and a modified 8-

way set associative TLB for benchmark programs, lisp interpreter and spice2g6, when the

page size is 128. For lisp interpreter. a conventional TLB showed 17.2%, 8.7% and 7%

larger miss rate than a modified TLB when the number of entries were 128,256 and 512,

respectively. For the benchmark program, spice2g6, a modified TLB gave 8.5%, 18%

and 41 % lower miss rate when compared to a conventional TLB. Although, the above

38

perfonnance improvements in tenns of miss rate are not as good as in a 2-way or a 4-way

case, they are still improvements that cannot be neglected.

Figure 12. Miss rate comparison for the program,
doduc, when the page size is 256

0.25 -,----------------,

;? 0.2
~
Q)-~ 0.15
II)
II)

'E 0.1

--+- Proposed 8-way

_ Conventional 8-way

0.05 -1--------,..----......-------l

128 256

number of entries

512

II

Figure 13. Miss rate comparison for the program,
gee, when the page size is 512

0.35 --r-----------------,
0.3

~ 0.25

.! 0.2
llJ

~ 0.15
II)

'E 0.1

0.05

O+------,-----..------i

--+- Proposed 8-way

_ Conventional 8-way

128 256

number of entries

512

Figures 12 and 13 show the miss rate comparison for the benchmark programs, doduc

and gee, when the page size is 256 and 512. Figures 10, 11, 12 and 13 show that as the

number of entries in the TLB increases, the miss rates for a conventional and a modified

39

TLB get closer. However, when the number of entries was 128, a modified TLB still

exhibited 17% - 23 % lower miss rate than a conventional TLB.

We did not compare modified 2-way, 4-way set associative TLBs together with 8-way set

associative TLB, because a different number of entries were used for 8-way set

associativity.

Figure 14. Miss rate comparison for the program,
fpppp, when the page size is 512

4 -.-----------------,

3.5

~ 3
o
-; 2.5

~ 2
~ 1.5

E 1

0.5
a+-----------,------f

~ Proposed 2-way

___ Conventional 2-way

-..- Proposed 4-way

-)(- Conventional 4-way

16 32

number of entries

64

figure 15. Miss rate comparison for the program, Ii,
when the page size is 1024

4-.------------------.
3.5

~ 3
-; 2.5

~ 2
~ 1.5
'E 1

0.5
o ~--__.__-.::::=.===;::::=;~-~

~ Proposed 2-way
___ Conventional 2-way

-..- Proposed 4-way

-t:t- Conventional 4-way

16 32

number of entries

64

40

These two figures show that a modified 2-way set associative TLB performs close to a

traditional 4-way set associative TLB. Results from table 3 and table 4 also show that a

modified 2-way set associative TLB performs close to a fully associative TLB. Thus,

modified 2-way set associative TLB should be preferred to conventional 2-way set

associative TLB.

Table 10 and 11 show the miss rates fOT modified 2-way and conventional 8-way set

associative TLBs.

program miss % for new 2 - way
16 entries 32 entries 64 entries 128 entries 256 entries 512 entries

nasa 0.5264 0.31 0.2462 0.1975 0.1676 0.1583
qee 9.8303 7.4291 5.4942 3.2869 1.3801 0.3988

espresso 2.3826 1.1577 0.3502 0.1044 0.061 0.0501
fpppp 7.4141 4.6783 2.7642 1.1111 0.6217 0.2237

Ii 6.651 3.4508 1.421 0.5042 0.2301 0.1089
dodue 5.4091 3.8208 2.2575 0.9805 0.3776 0.2168

spiee2q6 7.885 4.0074 2.4232 1.5423 0.5956 0.094

Table 10. Miss rates for a modified 2-way set associative TLB when the

page size is 128.

program miss % for old 8 - way r

16 entries 32 entries 64 entries 128 entries 256 entries 512 entries]

~asa .3704 .271 .2195 .1861 .1624 .1546

Qec 9.552 7.4075 4.8028 3.1453 1.0023 .2993 I
espresso 1.8415 .9443 .194 .091 .0575 .0464

fpppp 6.7614 4.3016 2.3254 1.1382 .3695 .1816

Ii 6.0816 3.0429 1.279 .4149 .1748 .0969
doduc 5.0938 3.6226 2.098 .848 .2909 .1915

spice2g6 7.2773 3.4428 2.1034 1.5266 .578 .1063

Table 11. Miss rates for a conventional 8-way set associative TLB when the

page size is 128.

From tables 10 and 11, one can observe that a modified 2-way set associative TLB does

not perform better in terms of miss rate than a conventional 8-way set associative TLB.

41

•..
"J'

)

However, when the number of entries were bigger or equal to 128, the modified 2-way

set associative TLB exhibited as well as the conventional 8-way set associative TLB.

This supports the idea of scattering data among entries.

Figure 16. Miss rate comparison for the
program, nasa, when the page size is 128

0.6

0.5-';!. 04- '

OJ- 0,3III
~

III
III 0.2
E

0.1

0

16

~ Proposed 2-way

_ Conventional 8-way

32 64 128 256 512

number of entries

Figure 17. Miss rate comparison for the program,
spice2g6, when the page size is 128

;,...

9--.------------------,

8

7

- 6C
~ 5

"'~
III 4
III

'E 3

2

o+---.------,--,---.-----,,---::>~

--+- Proposed 2-way

__ Con\€ntional 8-way

l~

16 32 64 128 256 512

L

number of entries

42

Figure 16 and 17 show that, as the number of entries increases, a modified 2-way set

associative TLB performs in terms of miss rate very close to a conventional 8-way set

associative TLB. Since increasing the associativity complicates the structure of the TLB,

it is favorable to use a modified 2-way set associative TLB instead of a conventional 8-

way TLB that has more than 128 entries.

43

I~
'"

CHAPTER 6

CONCLUSION

In modern computers a TLB can be in the critical path of memory access. Good TLB

performance is essential to good overall performance of a machine [12]. Technological

and architectural trends have led to increased memory sizes, decreased CPls, and larger

working set progranls. Both factors cause more significant performance impact due to

TLB misses. Therefore, it is highly desirable to improve TLB hit ratios in future systems.

Designers have used a wide variety of associativity in TLBs. Some systems use fully

associative TLBs because a fully associative mapping exhibits a lower miss rate.

However, with a fully associative mapping, choosing the entry to replace becomes tricky

since implementing a hardware LRU scheme is expensive [6]. Therefore, some systems

use set associative mapping. A multiple mapping function scheme is introduced to

modify the conventional set associative TLB. It is shown that the modified set associative

TLB has a good data scattering property among entries as the number of entries in each

block increases. Simulation results also showed that an n-way modified set associative

TLB gives lower miss rate than an n-way conventional set associative TLB. Also,

performance gain is greater for smaller size TLBs than it is for larger size TLBs.

Specifically, a modified 2-way set associative TLB performs in terms of miss rate much

better than a conventional 2-way set associative TLB. It performs as well as a fully

associative TLB or a 4-way set associative TLB. Simulation results also showed that a 2-

way modified set associative TLB performs close to a conventional 8-way set associative

44

TLB when the number of entries are bigger or equal to 128. Though a modified set

associative TLB introduces some extra overhead due to multiple mapping functions, its

hardware implementation is almost the same as for a conventional set associative TLB,

and since the address translation is not on the critical stage of the pipeline, this overhead

is negligible. Therefore a modified n-way set associative TLB should be preferred to a

conventional n-way set associative TLB.

45

REFERENCES

[1] Channon, D. and D. Koch. Perfonnance Analysis of Re-configurable Partitioned

TLBs. Proceedings of the 30th Hawaii International Conference on System Sciences,

Volume 5, 1997.

[2] Chen, J. B., A. Borg, and N. P. Jouppi. A Simulation Based Study of TLB

Perfonnance. WRL Research Report 91/2, Palo Alto, CA, Digital Equipment Western

Research Laboratory, May, 1992.

[3] Clark, D. W., P. 1. Bannon, and J. B. Keller. Measuring VAX 8800 Performance with

a Histogram Hardware Monitor. Proceedings of the 15th Annual International Symposium

on Computer Architecture, June 1988.

[4] Clark, D. W., and 1. S. Eroer. "Perfonnance of the VAX 11/780 Translation Buffer:

Simulation and Measurement". ACM Transactions on Computer Systems Volume 3,

Number 1,1985.

[5] Denning, P. 1.. Working Sets Past and Present. Communications of the ACM, Volume

6, Number 1, 1980.

[6] Hennessy, 1. L., and D. A. Patterson. Computer Organization and Design. 2nd ed. San

Francisco, CA, Morgan Kauffmann Publisher, Inc., 1999.

[7] Hwang, Kai. Advanced Computer Architecture: Parallelism, Scalability,

Programmability. New York, McGraw-Hill, 1993.

[8] Kilburn, T., et al. One-level Storage System. IEEE Transactions on Electronic

Communications, Volume 11, Number 2,1962.

[9]. Lee, Jung-Hoon, et al. Dual TLB Structure for Supporting Two Page Sizes.

Electronics Letters, Volume 36, Number 8, 2000

46

[10] Liu, Lishing. Multiple-Page Translation for TLB. Proceedings of the IEEE

International Conference on Computer Design: VLSI in Computers and Processors.

Volume 3, Number 6, 1993.

[11] Przybylski, S. A.. Cache Design: A Performance-Directed Approach. San Mateo,

CA, Morgan Kaufmann Publisher, Inc., 1990.

[12] Rosenblum, M., et a1. The Impact of Architectural Trends on Operating System

Performance. In Proceedings of 15th Symposium on Operating Systems Principles, pages

285-298, December 1995.

[13] Saulsbury, Ashley, et al. Recency-Based TLB Preloading. Proceedings of the 2th

International Symposium on Computer Architecture, 2000.

[14] Silberschatz, A., and P. B. Galvin. Operating System Concepts. 5th ed. Reading, MA,

Addison Wesley Longman Inc., 1997.

[15] Smith, A. J .. "Cache Memories". ACM Computer Surveys Volume 14, Number 3,

1982.

[16] Swanson, Mark, et al. Increasing TLB Reach Using Superpages Backed by Shadow

Memory. Proceedings of the 25 th Annual International Symposium on Computer

Architecture, 1998.

[17] Tanenbaun, A. S.. Modem Operating Systems. Upper Saddle River, NJ, Prentice

Hall, Inc., 1992.

[18] Thoreson, S. A., and A. N. Long. Locality: A Memory Hierarchy and Program

Restructuring in a Dataflow Environment. The Journal ofSystems and Software Volume

9, Number 4, May, 1989.

47

-- ---- -----------------------------

APPENDIX

Source Code for the Simulator of Modified 2-way Set Associative TLB

/**
AUTHOR: ABDURASHID ABDURAHMAN

***/

/**
This program simulates the modified 2-way set associative TLB.
***/

/**
Header files
**/

#include <iostream.h>
#include <stdlib.h>
#include <math.h>
#include <fstream.h>
#include <time.h>

/**
Global variables

There are 6 global variables:
miss: a counter to count the number of pages missed in the TLB
numOfBits: is the number of bits of A1 and A2 from the virtual

address.
numOfEntries: is the number of entry in each bank (block in thesis).
numOfSet : is the number of sets in the TLB
numOfAsso: is the number associativity in the TLB
pageSize: is the size of a page
***/

int miss=O;
const int numOfBits = 8;
const int numOfEntry =256;
const int numOfAsso = 2;
const int numOfSet = 1;
const int pageSize = 128;

/**
ENTRY is a structure for each entry in the TLB. It has
data members called validBit, a bit to validate whether the
entry is in the TLB, dirtyBit is a bit to determine
whether this entry has been replaced, referenceBit is
used to determme whether this entry has been referenced
and tag, IS used to check if new page number is In TLB.
***/

48

struct ENTRY
{

int validBit;
int dirtyBit;
int referenceBit;
int tag;

} ;

/**
Class BANK has a private data member called Entry. It is an
array of structure ENTRY. Total number of ENTRY in each bank
is predefined by numOfEntry.

Methods in the class BANK:

BANKO: constructor

checkPage (int, int): This method checks if the page referenced
in the first argument is in the TLB or not. Second argument is
entry number to be checked. If the entry to be checked is
empty it returns O. If the page in the entry not equal to the
page to be checked it returns 1. If the page referenced is a hit
then It returns 2.

putPage (int, int): This method puts thc page in the first argument
into the entry in the second argument.

replacePage (int, int): This method replaces the page in the first
argument with the page in the entry at the second argument.

getVictim (int, int, int): This method decide which entry to be
replaced in case there is a conflict miss.

countValid (int, int): This method counts the valid page numbers
inside at some point.

reset 0: This method resets the reference bits in each entry for
this bank.

***;

class BANK
1
(

private:

ENTRY Entry[numOfEntry);

pubhc:

BANKO; //constructor

49

int checkPage (int, int);
void putPage (int, int);
void replacePage (int,int);
int getVictim (int, int);
int countValidO;
void resetO;

};

/***
Class SET has a data member called Bank. It is an array of
strucrure BANK. Array size is the number of associativity.

Methods in SET class:

checkPage (int, int, int): Calls checkPage method for the bank
given int the second argument.

putPage (int, int, int) : Also calls putPage method for the bank
in the second argument.

replacePage (int, int, int): Same as above calls replacePage method
for the bank in the second argument.

getVictim (int, int, int): Again calls getVictim method for the bank
in the second argument.

countValid 0: Counts the valid entries in the Set by calling
countValid() method for each bank in the Set.

resetO: Resets the reference bit of each entry in this set.

class SET
{
private:

BANK Bank[numOfAsso]';

public:

SET 0; //constructor
int checkPage (int, int, int);
void putPage (int, int, int);
void replacePage (int, int, int);
VOId getVictlm (int, int&, int&);
int countValidO;
VOId resetO;

};

50

/***.*••*****.*
This is the class TLB. It has data member Set which is an array
of SET. Size of the array is predefined by number of sets.
Our TLB has number of sets, each set has number of banks determined
by the associativity of the TLB and each bank has number of entries
which is predefined.

TLB class has only four methods:

TLBO : constructor

accessPage (int) : This method calculates the entries corresponding
to the page in the argument. Then calls checkPage methods for the
corresponding Set and decide whether the referenced page is hit or
miss. After that I calls related methods in the set.

countValidO: Calls countValidO method in the set to count the
valid pages in the TLB.
***/

class l'LB
{
private:

SET Set[numOfSet];

public:

TLBO; //constructor
void accessPage (int);
int countValidO;
void resetO;

};

/***
This function converts an integer to its binary representation
***/

VOId mtToBin(int num, int binary[])
{

int i=O;
int n = numOfBits;
while(num>O)
{

if(num%2==1)
bmary[n-l-i]=l ;

else
binary[n-l-i]=--O:

num=num/2;
i++;

51

} I lend of while(num>O)

forCint j=O;j<n-i;j++) 11this loop fills with zeros.
binary[j]=O;

/***
This function converts a binary number to an equivalent integer
***1

int bmToInt(int binlJ)
{

intnum=O;
//this loop calculates the integer value of the binary string
for(int i=O;i<numOfBits;i++)
{

num = num+ static_cast<int>(bin[i]*pow(2,numOfBits-i-l));

return num;
}

/***
This function returns an integer value after bit by bit XORing
the two arguments. This is actually the first mapping function
used to calculate the entry for a page.
***1
int XOR (int numl, int num2)
f

mt bitl [numOfBits]; Ilbit1 is the bit representation ofnuml
int bit2[numOfBits]; IIbit2 is the bit representation ofnum2
int bit3[numOfBits]; Ilbit3 is the bit representation of the

/Iresult of XORing num1 and num2

intToBin(numl, bitl); I/converts numl to binary
intToBin(num2, bit2); I/converts num2 to binary

/Ithis loop performs the XOR operation bit by bit
for (int i=O; i<numOfBits;i++)
{

if(bit 1[i]==O && bit2[i]==O)
bit3[i] = 0;

if(bitl[i]=O && bit2[i]==I)
bit3[il = I;

if(bitl[i]=l && bit2li]==0)
bit3[i] = I;

if(bitl[i)==1 && bit2ri)=l)
bit3 [I] = 0;

return binToInt(bit3); //converts result to lTIteger

52

1***
This is the second mapping function to calculate entry for a page.
First it shifts first arguments circularly to the right, then
XOR it with second argument.
**1

int XOR2(int numI, int num2)
{

int bit! [nurnOfBits]; Ilbitl is the bit representation ofnuml
int temp;

intToBin(numl, bitl); Ilconverts to binary

Ilimplementation of circular right shift
temp = bitl [numOfBits-l]: Iistore the last bit

for (int j=numOfBits-l; j>O;j--) Iishift
{

bit I UJ = bitl [j-l J;
}
bitl [0] = temp;

numI = binTolnt(bitl); Ilconvert back to integer

return XOR(numl, num2); Ilperform XOR after shift

1***
Following is the constructor and method implementation for BANK
***1

1**
Constructor for class BANK. It initializes each data member (ENTRY)
of the instance of BANK.
**1

BANK.: :BANKO
{

for (int i=O; i<numOfEntry;i++)
{

Entry[i].validBit = 0;
Entry[i].dirtyBit = 0;
Entry[i].referenceBit = 0;
Entry[i].tag = -1; II since zero can be a valid tag address,

II -1 is used for tag initiahzation

53

/**
Method checkPage:
First argument is the page number referenced, second argument is
the entry offset for this page in the banle Method returns 0 if the
page is a compul sory miss. returns 1 if it is conflict miss, and
returns 2 for a hit.
**/

int BANK: :checkPage(int page, int entry)
[

if (Entry[entry].validBit == 0)
return 0;

else if (Entry[entry].tag != page)
return 1;

else

Entry[entry].referenceBit=1;
return 2;

/**
putPage method

set valid bit and tag for the entry.
**/

void BANK::putPage(int page, int entry)
{

Entry[entry].validBit = 1;
Entry[entry].tag = page;

Method replacePage:

First argument is the page number referenced, second argument is the
entry to be replaced. Replace the victim page with the new referenced
page and set dirty bit.
***/

void BANK::replacePage(int page, int entry)
{

Entry[entry].dirtyBit = 1;
Entry[entry].tag = page;

54

/***
Method getVictim finds the victim page to be replaced in the TLB.

This method has argument called flag. It checks the victim page
according to the NNR replacement policy described in the thesis.
First it checks if the entry clear, ifnot it checks whether it
has been replaced or not.
***/

int BANK::getVictim(int entry, int flag)
f

if (flag = 1)
{

if (Entry[entry].referenceBit == 0)
return l;

else
return 0;

}
else if (flag == 2)
{

if (Entry[entry].dirtyBit = 0)
return 1;

else
return 0;

}
else

return l;

/***
countValid method implementation. It counts the valid pages in the
BANK by checking the valid bit of each entry.
***/

int BANK::countValidO
{

int valid = 0;
for (int i=O;i<numOtEntry;i++)
{

if(EntryliJ.validBit== I)
valid++;

}
return valid;

/***
reset method. It resets the reference bit at some period
***/

void BANK: :resetO
{

55

for (int i=O;i<numOfEntry;i++)
{

Entry[i].referenceBit = 0;
}

/***
Following are the methods implementation for SET
***/

/***
Constructor for SET
***/

SET::SET()
{}

/**
Method checkPage:
First argument is the page number referenced, second argument is
bank offset, third one is the entry offset for this page in the bank.
Method calls checkPage method for the BANK. given by second argument
and checks if the page is in this Set. It returns 0 if the page is
a compulsory miss, returns 1 if it is conflict miss, and returns 2
If it is a hit.
**/

int SET::checkPage(int page, int bank, int entry)
{

return Bank[bank].checkPage(page, entry);

/***
putPage method calls putPage method for the BANK. in the
second argument to put the page in the first argument
into the entry in the third argument.

***/

void SET::putPage(int page, int bank, int entry)
{

Bank[bank].putPage(page, entry);

/**
Method replacePage:

It calls the replacePage method for the bank given by second argument
and replaces the referenced page into the entry.

***/

void SET: :replacePage(int page, int bank, int entry)

56

{
Bank(bank] .replacePage(page, entry);

}

1**
getVictirn method implementation for class SET.
This method decides which page to be replaced from TLB once the
referenced page is a conflict miss.
First, it calculates the entry number for the referenced page.
Then it decides which one to be replaced by checking the entries
according to the NNR replacement policy described in Thesis.
**1

void SET::getVictirn(int page, int& bank, int& entry)
f

int power = static_cast<int>(pow(2, numOfBits»;

int A1 = page % power;
int A2 = «page - AI)/power) % power;

II we have only two entries, because this is simulator for 2-way
II set associative TLB.
II For n-way, there are n entries to be checked.

int entry I = XOR(Al,A2); Ilca1culate entry I
int entry2 = XOR2(A 1,A2); Ilcalculate entry2

int flag = I;

while(true)
{

if(Bank[O].getVictim(entryl, flag)==1 && Bank[I].getVictim(enlry2,
flag)==])

{
bank = randO%2;
if (bank==O)

entry = entry];
else

entry = entry2:
break;

}
else if(Bank[O].getVictim(entryl, flag)=O && Bank[1].getVictim(entry2,

flag)==l)

bank=l;
entry=entry2;
break;

}
else if(Bank[O].getVictirn(entryl, flag)==l && Bank[1].getVictim(entry2,

flag)==O)

57

bank=O;
entry=entry1;
break;

else if(Bank[O].getVictim(entryl, flag)=O && Bank[I).getVictim(entry2,
flag)=O)

flag++;

/***
countValid method implementation. Counts valid pages in the SET
***/

int SET: :countValidO
{

int valid = 0;
for (int i=O;i<numOfAsso;i++)
{

valid = valid + Bank[i).countValidO;
}
return valid;

/***
reset method. It resets the reference bits of each entry in the Set
***/

void SET: :resetO
{

for (int i=O;i<numOfAsso;i++)
{

Bank[i) .resetO;

/***
Following is the constructor and method implementation for TLB
***/

TLB::TLBO
{}

58

1**
Method accessPage: This is the first method to be called to each
referenced page.

Argument is the page number referenced.
This method first calculates the set number, bank number and entry
number for this page in the TLB then calls the corresponding set
to check whether the page is in TLB.

Here it is assumed that page number can be written in the form
page number = A3*2"(2n)+A2*2"'n+AI where 2"'n is the number of entry
in each bank.

Al = page number MOD 2"'n
A2 = [(page number - AI)/2"nj MOD 2"'n
We do not need A3

set number = page number MOD numOfSet

bank number is calculated in the foHowing way.

First we calculate entryl = Al XOR A2, entry2 = Al XOR2 A2.
Then we check these entries. If the referenced page is a hit, we do
nothing. If not, and both entries are empty (compulsory miss)
then we randomly choose one of them. If anyone of them is empty then
the page to be out in that entry. If both of them are taken, then
victim page should be decided and the referenced page to be put in
the entry of the victim page.

void TLB: :accessPage(int page)
{

int AI;
int A2;
int checkI ,check2;
int set;
int bank;
int entry,entry I ,entry2;

int power = static_cast<int>(pow(2, numOfBits»;
A I = page % power;
A2 = «page - AI)/power) % power;
set = page % numOfSet;
entryl = XOR(AI,A2);
entry2 = X0R2(AI,A2);
checkI = Set[setj.checkPage(page, 0, entryl);
check2 = Set[setj.checkPage(page, 1, entry2);
if(checkI ==0 && check2 ==0)
{

59

miss++;
bank=randO%2;
if(bank=O)

Set[set].putPage(page, 0, entryl);
else

Set[set].putPage(page, 1, entry2);
}
else if(checkl=O && check2=l)
{

rniss++;
Set[set].putPage(page,O,entryl);

}
else if(checkl=1 && check2=O)
{

miss++;
Set[set] .putPage(page, 1,entry2);

}
else if(checkl==l && check2=I)
{

miss++;
Set[set].getVictim(page, bank, entry);
Set[set] .replacePage(page, bank, entry);

/***
countValid method implementation
***/

mt TLB::countValidO
{

int valid = 0;
for (int i=O;i<numOfSet;i++)
{

valid = valid + Set[i].countValidO;
}
return valid;

/***
reset method. It resets the reference bit at some period
***/

void TLB::resetO
{

for (int i=O;i<numOfSet;i++)
{

Set[i] .resetO;

60

1***
Main function

***1

void mainO
{

ifstream INFILE;
int access=O;
unsigned long random, page;
char line[80];
char* stop="\n";

TLBmyTLB;
INFILE.open ("spice2g6"); II open the input file

while(! lNFILE.eofO)
{

lNFILE.getline(line,80);
random=strtoul(line,&stop, 10);
page=random/pageSize;
myTLB.accessPage(page);
access++;

}
lNFILE.close 0;
cout«"Miss = "«miss«endl;

61

b

VITA

Abdurashid Abdurahman

Candidate for the Degree of

Master of Science

Thesis: MODIFIED SET ASSOCIATIVE TLB

Major Field: Computer Science

Biographical:

Personal Data: Born in Atush, Uyghuristan, eldest son of Abdurahman Aji and
Reyimgul Mamut.

Education: Received Bachelor of Science degree in Computational Mathematics
from Xinjiang University, Urumqi, Xinjiang, China in July 1991.
Received Master of Science degree in Applied Mathematics from
Oklahoma State University in May 2001. Completed the requirements for
the Master of Science degree in Computer Science at Oklahoma State
University in August 200 I.

Experience: Employed as Patent Agent & Patent Searcher by Science &
Technology Commission of Xinjiang Uyghur Autonomous Region from
Aug. I 991 to Aug. 1997.
Employed as Teaching Associate & Lecturer by Mathematics Department
of Oklahoma State University from Aug. 1997 to Dec. 2000.
Employed by School of Mechanical & Aerospace Engineering and
Department of Microbiology as Research Assistant from May 2000 to July
2001.

-

