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Chapter 1

Introduction

1.1 General comments on multiple scattering

When light shines on a large collection of small particles suspended in a medium, the
scattering by particles diffuses the incident radiation in all directions. This is known as
multiple light scattering and it gives rise to many observable phenomena, from the color
of sky, brightness of clouds to darkening of sand upon wetting [1]. These are all
examples of static light scattering since the time-averaged intensity of scattered light is
observed. A radiative transfer equation has been derived many times from multiple
scattering theory [2-7] and has been used widely in analyzing static scattering problems
in stellar and planetary atmospheres, underwater and atmospheric imaging, and
climatology.

More recently, dynamic light scattering, DLS, where time dependent intensity
fluctuations are measured in highly multiple scattering limits, has been examined both
theoretically and experimentally [8-12]. The intensity fluctuations in the scattered light
occur due to the Brownian motion of the disperse particles in the medium which gives
rise to a Doppler effect. So, the scattered light possesses a range of frequencies shifted
slightly from the frequency of the incident light. That’s why dynamic light scattering is
also named quasi-elastic light scattering, QELS. The data from light scattering

experiments in the weakly scattering sample can be analyzed to determine properties of



the suspended particles in the medium like the diffusion coefficient, scattering
coefficient, asymmetry factor, average size of disperse particles, or viscosity [13,14]. The
technique of measuring time dependent variations of the scattered light from an optically
dense medium requires reinterpretation of the scattering function and is called diffusing
wave spectroscopy, DWS. This technique has been applied to a wide variety of systems
like gels[15], colloidal dispersions[16.17].liquid crystals [18,19],polymers[20,21]. DWS
has also found its applications in biophysics in microrheology [22], imaging and studying
biological tissues [23-26], especially to differentiate between tumorigenic and
nontumorigenic cells. Recently, Page Cowan and Weitz applied DWS to ultrasonic waves

[27].
1.2 Diffusing Wave Spectroscopy — DWS

1.2.a Theory

Fluctuations in the intensity of the multiply scattered light are measured and expressed in
terms of a normalized electric field autocorrelation function. The dependence of the
autocorrelation functions on the experimental geometry provides a powerful means of
exploring the dynamical structural properties of the scattering medium over vastly
different length and time scales [28-32]. DWS extends the single scattering technique of
dynamic light scattering to the multiple scattering regimes by modeling the transport of
light as a random walk between scatterers. DWS uses the diffusion approximation. This

approximation assumes that the propagation of light in the medium is diffusive.

The DWS setup is shown schematically in figure 1. Here, a beam of laser light is



directed through an optically dense medium composed of particles undergoing Brownian
motion. When a photon migrates through the medium, it scatters many times due to the
interaction with the particles. The intensity interference produced by transmitted photons
is composed of many bright and dark regions called speckles. Since the scatterers in the
medium are moving, the speckle pattern fluctuates in time. DWS measurements are made
over an angular area of a typical speckle using an aperture and a photomultiplier. In a

way, photomultiplier collects the scattered electric field.

laser
conelator

$ ek

speckles

J

_— -
time

Fig.1- Schematic representation of the experiment. Laser light incident on a sample of
thickness L is multiply scattered. Light is collected in a region, the size of a typical
speckle and sent to a photomultiplier tube (PMT). Correlation vs. time is obtained from a
correlator that is connected to PMT.



The most convenient measure of the dynamics of the scattered light is the
temporal autocorrelation function of the intensity. The intensity autocorrelation function
is the convolution of the intensity signal with itself at a later time, 7. The relation
between the normalized intensity correlation function and the normalized electric field
correlation function is given by the Siegert relation [28,32,33]. Normalized electric field

autocorrelation function is defined as

E(0)E
g,(r)=w (1.2.1)

(=)

where ( )denotes the average over time, (. The shift time, 7, represents the delay

between the ‘original’ and the ‘shifted’ signal and is generally referred to as the delay

time. The Siegert relation is given as

1(£)1(0)) 2
QLU =1+ Blg,(7)| (1.

(y

[
o]
—

where, f, the efficiency of the photon collection system or signal to noise factor, is
generally less than one. It depends on the number of speckles spanned by the detector and
the stability of the laser.

In the diffusion approximation, the path of an individual photon may be pictured
as a trajectory composed of straight-line segments. The average length of each line

segment is named the transport mean free path, [, or random-walk step of photons

before significant change in direction. Another characteristic length is the scattering mean

free path, /, </ ", which is the average distance between actual scattering events. These



scattering events occur at positions 7 (£),7,(0).....7,(t)....r,(t) for which the scattering
Wave vectors are ¢,,q,.....q,...q,. The change in position of the i particle in a time 7 is

written as Ar,(z) =r,(7)—r,(0).

10

Fig.2- Schematic representation of the change in the direction of scattering
vectors.

The scattering wave vector is the difference between the incident photon wave
vector and the scattering wave vector, thus for multiple scattering

q, =k —k,
q, =k, —k,
=k —K;
i & (1.2.3)
ffr: =kn —kn—l

Z‘,q: == kn B k{l

the sum of the intermediate scattering vectors must be equal to the difference between the

incident and the scattering vectors, Zy, =k, —k, . For large n, a path of n steps has



length s =n/ . The contribution of a path of nscattering events to the decay of the

autocorrelation function is given by

iu}[__}

G (r) =(E"" (0)E™ (7)) = <[E“"(0)F>e“*°’ (1.2.4)
where E™ is the scattered electric field from the n”path with Ag"(r) the phase

change of the field due to all »scatterers where

n

A" (z) =D q,Ar(7) (1.2.5)

i=1

When the particles in the sample move, the phase of the scattered light fluctuates. It goes
through one complete cycle when the path length changes by the light wavelength, 4.
With the approximation that the particles are uncorrelated and the scattering is random,

the following equation can be written for the average contribution of all paths of

n scatterings,

Gi" () :I,P(H}<l—l e"‘“‘“‘f‘”> (1.2.6)

=1
Here, 7 is the total scattered intensity and P(n)is the fraction of photons that travel a

path havingn = s//_ scatterings. The longer paths (larger n) contribute more to the decay

of the autocorrelation function, because they generally represent larger path length

changes. Uncorrelated scattering events correspond to a random distribution of ¢, and a

Gaussian distribution for Ar(r). The average of the square of the change in positions is
given as <Ar3(r)> =6D,7 where D, is the particle Brownian diffusion coefficient. Now,

Eq.1.2.4 can be written as



—r,r,z-:F_\rE(:J\.a-'(r ! !
- (1.2.7)

G (z) =1, P(n)<e \

o
where () denotes the average over ¢ . For isotropic scattering, /* =/, , the mean-square

transfer|8] is

(:ﬁ) =2k, = 2(2—7] (1.2.8)

which gives
G](”)(f) _ ]SP(”)e—llra'r“}n (]29)

where 7, =1/D,k;. For large n, G!”(r)decays rapidly to zero. In the case of

anisotropic scattering, /° >/ , the scattering intensity is peaked in the forward direction

for single scattering particles making the sample. Therefore, more scattering events are

required to randomize the direction of propagation. A complete randomization of the

wave occurs at transport mean free path [ [2,34.35].

L. (1.2.10)

which gives the relation between transport mean free path and the scattering mean free

path, where (;z) = <(Z'usé?> stands for the average cosine of the scattering angle between

successive scatterers. In the case of anisotropic scattering [8], the average of the square

scattering wave is reduced as,

(¢%) =2k, 1) (1.2.11)



Using this, the contribution of the paths of order n is written as in Eq.1.2.12

{
~(2ri7g)En

Gl("](f):.nrsp(”}l' ! (1212)

The contributions of all paths are calculated to obtain the time correlation function.

Summing over scattering paths of all orders yields

e -(2r {ul-{‘_-n
G,(r)zfsz}*‘(n)e t (1.2.13)

n=1

G, (7) 1s called the total autocorrelation function. It is more clear in Eq.1.2.13 that decay
rate of a given path depends on its length. There are so many scatterers on a long path
that each particle must move only a fraction of a wavelength for the phase to change by
7 . This leads to a rapid decay rate. On a short path each particle must move a substantial
distance for a phase change of 7. This leads to a slower decay rate. Summation over nis

approximated as the integral over the path length s.

G, ()=1, J-P(.s- Je e/ go o 1 J.P(.v)e' S3) g (1.2.14)

Here, x = 2!5‘}2(1&?‘3(1')) = G—T

r(}

G,(7) becomes the Laplace transform of P(s) when the limits of integration in

Eq.1.2.14 are extended from s =0 to s =co. Thus, the autocorrelation function can be

obtained by solving the Laplace transform of the Diffusion equation.



1.2.b Transmission:

For the transport geometry, consider a slab of thickness L and infinite lateral extent to be
1lluminated by a pulse of light [32]. The multiple scattered photons are detected at a point
ron the other side of slab. The change of the intensity at ris shown in figure 3. The
intensity of light at point » increases to maximum as the light diffuses through, then
decreases to zero when all photons have left the sample. At time ¢, the photons arriving

at » are the ones that have traveled a distance of s=c¢r. Since P(s) is the fraction of

photons that have migrated a path of length s, 1t is also the number of photons that have

been in the sample at time ¢. The most convenient way to obtain P(s) for transmission is

to solve the diffusion equation with the appropriate boundary conditions [2].

10 1 I
2 08 .
= |
o)
8 06 | y
=
§ 04 I
=
@ 02 | N i
0.0 o . \\:

0 20 40 60 80 100
time (psec)

Fig.3- The dependence of the detected transmission intensity of an incident delta
function pulse sent on a sample with L = lmm and " = 100um .



The diffusion equation is given by

ou(r,ry,t)

& vl (1.2.15)

where a measurable macroscopic observable, U(r,#,,t), is the photon energy density

within the sample. The dependence of the diffusion coefficient on /* is assumed to
beD, =cl /3 where cis the speed of light in the medium. The flux of the diffusing

photons detected on the boundary at r is given by the normal derivative of U and is

assumed proportional to the probability P(s) by these authors [8].

P(s) = A.VU| .

"
where n denotes the unit normal vector, directed outward. Plugging P(s) found from
diffusion equation into Eq.1.2.14 gives Eq.1.2.16 for correlation function for the
transmission geometry under consideration. However, taking the lower limit of

integration as 0 allows unphysical short paths to contribute to the correlation function.

Therefore, this approach is good only for long paths in a transmission measurement.

Gy = ‘Sq:;h(zp\/gj +z, \/;Cos;‘i( zpﬁl (1.2.16)
(1+ z,2x)Sinh(Lx) + 2z, /xCosh(Lx)

Here, L = L/1 is the dimensionless optical thickness. The penetration depth ratio and the
extrapolation depth ratio are shown by zp and z, respectively [37-39]. They are both in
the solution of the diffusion equation and are of order one. The concentration field

U extrapolates to zero atz,/ . The extrapolation depth ratio is specified by the angle

dependent reflectivity, R, () [36].
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2(1+R,) . :
%=z I—R; with R, = “j(n + "R, (u)du (1.2.17)

Accurate calculation of z, for unknown boundary conditions from the angular

dependence of the diffuse transmission has been discussed by Durian [37-39]. To get the
normalized transmission correlation function Eq.1.2.16 should be divided by the static

diffuse transition probability 7, [10].

zp+z, .
T, =ao—%=Gp(0 1218
p I +22 T() ( )

e

The penetration depth ratio depends on scattering length and mostly is taken to be
zp=1. If the scattering is isotropic, the photons are randomized immediately upon
multiple scattering. For anisotropic scattering events photons are not randomized
immediately, since the photons scatter preferentially in the forward direction. A better
approximation results when averaging over the deposition depth zp weighted by Beer’s
law.

(+z,)-(1+z,+ Lye ™'

= (1.2.19)
L+2z,

I .
T, = [T,e™# 41" 1 dzp =
0

The exponential term in the integral corresponds to the attenuation decay of the incident
beam source with depth. The transmission correlation function found in Eq.1.2.16 should

be divided by Eq.1.2.19 after the average over zpis taken in order to get the normalized

correlation function.

(1+ z,)Wx =[(1 + z,x)SinhL~[x + (1 + z,)NxCoshL\x e ™"

; — = (1.2.20)
T, (1-x)[(1+ zfx)SinhL\/; +2z, \/;Crwh[,m

gr(x)=



The decay is nearly exponential in (L//")’x.The coefficient of xshows the mean
numbers of steps for a random walk taken by a transmitted photon. The length
(L/I')*I"is generally called the characteristic path length and is directly reflected in the

autocorrelation function as a characteristic decay time [8]. The characteristic path length
changes by ~ 4 during one characteristic decay time. This corresponds to a total phase

change of .

o A . . .
qv(ﬁh“) = oL This shows that the length scale that the particle motion can

which gives

be probed by transmission DWS is much smaller than A while in weak scattering regime,
the length scales probed are greater or equal to wavelength. The effect of hydrodynamic
interactions for time scales corresponding to particle motion at the angstrom level have
been reported [39]. Using DWS for heavily scattering medium, the time scales can be

controlled by varying the sample thickness. The thickness is often chosen to be in the

range 5<L/l" <20. Typically, the diffusion approximation used in DWS is not

acceptable for thicknesses smaller than 5 [41].
1.2.c Backscattering:

For studying backscattering, the light is uniformly incident on a face of an otherwise

infinite slab of thickness, L [28-30,32]. The source is a delta function pulse deposited
atzpl™ . In backscattering, the light is detected from the illuminated face. The detected

intensity of the pulse source is shown in figure 4. The intensity peaks sharply and then

12



decays slowly. The peak occurring at very early times shows that most of the photons are
back scattered without migrating deep into the sample. A few scattering events are
enough to scatter them back. The subsequent decay of the backscattering function is due
to the contributions from paths of greater lengths. Consequently, as seen in figure 4, there

1s a much broader distribution of time scales in the decay as compared to figure 3.

. 10 — L L] L]
J'_L}
g 0.8 g
0
‘\§/ 06 - L
&
wl
8§ o4 | .
=
@ 02 } i
00 l i L 1 i
0 2 -4 6 8 10
time (psec)

Fig.4- The dependence of the detected backscattered intensity of an incident delta
function pulse sent on a sample with L = lmm and /" =100zm .

The information about the decay in intensity is again embodied in P(s).

However, extending the limits of integration in Eq.1.2.14 from s =0 to s = does not
lead to sensible result for backscattering geometry. At least one scattering event is needed
for us to talk about backscattering. This fact requires n = 1. Therefore, the lower bound

of integration should be taken at least /. To ensure this, the source of diffusing intensity

13



has been taken at a distance of zpl/"with zp>1 inside the illuminated face. For the

backscattering geometry, the unnormalized correlation function is calculated to be

Sinh[\/;{f —-zpl+z, \/;Cosf?{\[;(f —-zp)]

G (x) = - = =
’ (1+ 2, x)SinhLx +2z_\xCoshLx

(1.2.21)

For a sample of infinite thickness, L — o, all light is backscattered and Eq.1.2.21

becomes

=
—zpN

1+3¢1\E

Several authors identify zpwith the average value (zp) of the position of the source

[8,32.42]. The experiments show that the decay of the correlation function is exponential

in the square root of time. This suggests

Gy(x)=gy(x) =V z1-pfx+.. (1.2.23)

where y —-—(zp)-ﬁ- z, to be consistent with a small time expansion of Eq.1.2.22. When

ng'n(x)l2 is plotted logarithmically as a function of Jx . a linear graph, where the slope is
y results. However, circularly polarized light differs iny from linearly polarized light. It
has been shown that the dependence of yon polarization is strongest for isotropic
scatterers and becomes weaker as / /[ ratio becomes larger [11]. Detailed explanation
on the behavior of ¥ will be given later in the thesis.

In summary, DWS extends the application of QELS to multiple-scattering

regimes. However, 1t has its limits of application. It fails to fully describe the transport of

light for thin slabs [41]. Several methods have been used, one of which, based on the
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radiation transfer equation, was proposed by Ackerson, Dougherty and co-workers
[43.44] to improve DWS. MacKintosh and John developed a filed theory method that
describes the nondiffusive propagation of light at distances smaller than transport mean
free path [45]. Within the diffusion approximation the correct treatment of scattering
anisotropy, multiple reflections are not also allowed. Of particular interest is the two-
stream theory proposed by Durian that solves the propagation of light through optically

dense media analytically without invoking diffusion approximation [47].

1.3 Two-Stream Theory

1.3.1 Time-dependent two-stream equations

Durian proposed two-stream theory that studies the transmitted and the backscattered
light, from an optically dense random medium without using diffusion approximation.
The two-stream theory approximates the scattering photons by two counter propagating
concentration fields, /,(z,t)and /7, (z,t). We take the two directions to be up (u)and
down (d), upon scattering. Since this treatment is only in one dimension,z, the
scattering angle is not a continuum variable and the model becomes soluble.

The time dependent two-stream equations are constructed by considering the
mechanisms that change the number of photons in a given direction. The photons are
added to or lost from a beam upon scattering. For example, absorption produces a loss in
the total number of photons. Taking all possible mechanisms into account the change in
the intensity can be written:

I,(z,t +At)—1,(z,t)=[1,(z,t) + (cAt/] )1 = p)], (z +cAt,t)] -[(cAt/1 )] ,(z,1)
+(eAt/1 )= p)l,(z,0)+1,(z +cAtt)] (1.3.1.a)
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L (z+cANt+ A =1 (z+cALE) =[], (z+ AL + (At /1)1 = p), (2.0)] - [(cAt M), (z+cALY)
+(cAt /1)1 = p)I,(z + A1)+ 1, (2.1)] (1.3.1.b)

These equations give the change of the downward and upward going stream intensities in
a length element, [z,z + cAr], during a time interval Ar, respectively. Here, /, stands for
the absorption length and p for the fraction of photons, which go into the forward
direction upon scattering. The terms in the first set of brackets on the rhs represent the

intensity that flows in, and that is transferred from the other stream. The terms in the

second set of brackets are the number of photons that are absorbed from, that scatter out

and that flow out, respectively.

(1-p),(z+cAtt) [,(z+cALL)

Fig.5- Schematic representation showing the gains (filled arrows) and losses (empty
arrows) of downward intensity.

Figure 5 shows the mechanisms that change the number of photons in the downward
intensity. The filled straight arrow represents the intensity that flows in, the filled curved
arrow represents the intensity that scatter in, the downward empty arrow represents the

intensity that flows out and the upward empty arrow represents the intensity that scatter

out.
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The average cosine of the two possible scattering angles may be expressed in
terms of pas < u>=1(p)+(=1)(1- p) =2p—1which leads to/, /I" =1— () =2(1- p).

Taking the limit Az — 0 and neglecting absorption the following differential equations

result:

oly _0ly " 1
ot 0z 2z,

Uy=1,) (1.3.2.2)

of ol
Eo G, o (Iy—-1,) (1.3.2.b)
ot oz 2z,

These equations are expressed in reduced units, where z—z/{ and t —tc/l". For
applications to three-dimensions [48] and to extend the utility of the equations to thick
samples and isotropic scattering, a dimensionality parameter, z,, is added. For a truly
one-dimensional problem its value is 1. The results of these equations are also vahd for
very short length scales for which the light propagation is ballistic. The transmitted and
backscattered fluxes can be deduced from Egs.1.3.2 by using the appropriate boundary

conditions.

1.3.2 Results for DTS

Diffuse Transmission Spectroscopy is a technique where the probability, 7,, that an

incident photon will be diffusely transmitted through an opaque sample is measured. The
transmission probability is given in terms of the ratio of the sample thickness to the
transport mean free path [49]. Eq.1.2.18 is the DTS prediction for the transmitted
photons. The prediction of two-stream theory for the transmission probability is achieved

by time-independent solutions of Egs.1.3.2 with the following boundary conditions:
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1,(00)=RI(0) , [I,(Ly=RI,L) (1.3.

LIS )
(O8]
—

where R is the boundary reflectivity. Eqs.1.3.4 presents solutions for z < zp and z > zp.

[, () +1I (z2)=-" 2.
(2)+1,(2) - (‘_ 1+R] (1.3.4.a)
L - 242, , ZI>Z
1-R)
=T, 2z<zp
I.(2)=1.(z =!J £ 1
rf() u() tll TP :>:p (l.).4b)

Here, 7, is the intensity of the incident light. These solutions also agree with the
expected conditions (1 - R)fd(f) =1,T, and (1-R){,(0)=1,(1-T,). The plus solution
Eq.1.3.4.a indicates that the photon concentration extrapolates to =zero at
z,(1+ R)/(1- R) outside the edges of the sample. This is consistent with the extrapolation
depth ratio introduced in DWS theory. The minus solution, Eq.1.3.4.b being nonzero,
indicates that the photon velocities are not directed isotropically which is contrary to
DWS. According to two-stream theory, this happens only for z < zp when the sample is
thick or across the entirc sample for thinner slabs. This difference is due to the
discontinuity of the streams at originating zp due to the scattering probability p of the

deposited light and can te specified as:

1,Gp )~ 1,Gp") _ p (13.5)
1,(zp7)-1,(sp") 1-p

Eq.1.3.5 with Eqgs.1.3.4 gives the two-stream result for the diffuse transmission

probability:
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7o zp+z,(2p—1)+z,(1+R)/(1-R)

! L+2z,(1+R)/(1-R) (1.3.6)

For the case of isotropic scattering, where p=1/2, Eq.1.3.6 reduces to Eq.1.2.18 with
z, =zy(1+ R) /(1 - R) . Taking the integral over a range of penetration depths, we obtain

a general transition probability result. Multiple reflections at the boundaries, which we

ignored in DWS, can also be taken into consideration. To do this, the probability for an

incident photon to cross the sample without scattering and then reflect, F =R,e™"" | is

considered in the calculation. Here, R, , is the ballistic reflection probability.

L )]e"’F "y Il .dzp

,r

l 1+RY1+F
{_3. +Zn(2 ) ‘*u[ —)(—J}(l __e—.f_ ;‘) o =L,
[ 1-RA1-F L(1-R,)e (13.7)

- - 1+ R T~ 1+R )
[L +2~U(].——R~]:I(I+F) {L +2..n[.i"_'—‘é']:|(l*F )

This result applies for arbitrary slab thickness, boundary reflectivity and scattering

anisotropy. An exact result is obtained for one-dimensional problems withz, =1. Durian
has also showed that with the choice of z, =2/3[38] a better result for three-dimensional

case is achieved compared to the DWS predictions [47]. In the limit of strong scattering,
where the scattering is 1sotropic, Eq.1.3.7 reduces to Eq.1.2.18. When the limit of

anisotropic scattering is considered, where p — 1, Eq.1.3.7 gives

P BN ) (1.3.8)
P L+2z,(1+R)/(1-

The accuracy of Eq.1.3.7 is also tested with random walk computer simulations [38,50].
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1.3.3 Results for DWS

The predictions of two-stream theory for DWS are achieved by taking the Laplace
transform of the time-dependent Eqs.1.3.2. While doing this, the light source is

considered a down going instantaneous source at a distance zp from the edge of the

sample. Thus, the light source can be taken as a delta function in position and expressed

at the initial deposition time as

1,(2,0)= po(z - zp) (1.3.9.2)
[,(2,0)=(1-p)d(z—2zp) (1.3.9.b)
1.3.3.a Results for Transmission

For transmission geometry, we start with differential equations given in Eqs.1.3.2. Taking
the Laplace transform and implementing the source boundary conditions given in
Egs.1.3.9, the Laplace transform of the downward and upward intensities are found to be

Fitzedi) = o B2 g P |l o g g e (1.3.10.)
4z, 2a 2 )

1,(z,0)= l + =g F =P e TP+ 40+ 2zy(w+a))e” + A,(1+ 2z (w—a))e™
4z, a 2 2

(1.3.10.b)

which yield different results for z>zp and z <zp. Here, a =./w(w+1/z,) where @1s
the transformed time variable and the constants A4, and A4,are determined by the

following bou.ndary conditions
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1,(0,0)=RI, (0,0) (1.3.11.2)
I,(L,@)=RI,(L,o) (1.3.11.b)

Now, applying these two boundary conditions to Eq.13.10.a and solving for the
transmitted pulse gives

|:l - 2zu(p _—M]a)}'mh(a zp) + 230( P +—R(l -_-P-l]a Cosh(a zp)

(1-R),(L,w)= Ll =X

1405 SR ) el 230( -llR-]a Cosh(aL)
- R)? =R

(1.3.12)

Taking a Laplace inverse of this result will give the time-dependent emission for a pulse

P(s). Recall that Eq.1.2.14 relates the Laplace transform of P(s) to G(z). Thus

Eq.1.3.12 is the unnormalized field correlation function ,

[1 + 2:03[ P _-IR (lée_ P) )x}Sinh(af p) + 23(,[ "’-f]R;(:—p))a Cosh(a zp)

Gp(x) =

- 3 -

[l + 2302 (i) \‘]Siﬂh(af:) + 23(,[ i L g-)a Cosh(al)

(1.3.13)

where x=w/z, gives @ =+/x(1+z,'x). To obtain the normalized form, Eq.1.3.13

should be divided by diffuse transmission probability,7, given by 7, = (1 - RJ?{,(E,D).

Taking the average over penetration depths as in Eq.1.2.19, the normalized transmission
autocorrelation function for arbitrary thickness with no multiple reflections is found as in

Eq.1.3.14,
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I’ ’ , N * N ,
{A +B —]a’ —HA ‘; -+ Ba” Jan-h(L @) +(‘-i +B E—JaCosh(L af)]e'f“ b

L) 5

(Y , (1+ R _ _
Ly % [I— —a” || 1+2z,° ek 3 % Sfﬁfi'((ZL)+2ZU[!:-EJQCGS}'I(CZL)
(1-R)? " 1-R

(1.3.14)
where A=1+ 2302.\:(;7 ~R(1-p))/(1-R) and B=2z,(p+R(0-p))/(1-R). This
equation represents an improvement to DWS result in Eq.1.2.20.

1.3.3.b Results for backscattering

Applying the same boundary conditions, Eq.1.3.11 but this time solving for Eq.1.3.10.b,

the backscattered pulse is computed as

{] + 2;,(L——FQ;—R}-JQJ}S{H&Q(E —zp)+ 2:-:0[l - JIH(II; -R)-]aCosha(E - zp)
(1= R)L, (0,w) = A —

1+ 2z, (I—+~—R—3w Sinh(al ) + 22(,( l—-iEfoCo.s'fr{aE)
(1-R)? 1-R

(1.3.15)
To generate the two-stream prediction for backscattering autocorrelation function, we

simply evaluate Eq.1.3.15 at @ = xz,), as done in the case of transmission, that yields

21— ~ 1-p(1-R ~
[1 +2z," [}%ﬂ}{'ﬁ'{m‘mu —zp)+ 23;1['—10()?—))636'05}’“(15 —=2zp)

Gy(x)=

s

1+2z,° Laa il X |Sinh(al) + 22”(] i R—JaCosh(aZ)
1-R) 1-R

(1.3.16)
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This result is more accurate than DWS prediction, Eq.1.2.21. The reason lies in the fact
that distances smaller than the transport mean free path has an important role in
backscattering and they cannot be described correctly within diffusion approximation.

The normalized correlation function is reached by dividing Eq.1.3.16 by the diffuse
backscattering probability, 1 - T,,thatobeys 1 -7, = (1 - R)fu(0,0). The final result for a
semi-infinite slab, for which T, goes to zero, after averaging over penetration depths, is

presented in Eq.1.3.17.

1+225(1‘f’(”@]_wgzu[‘*_ﬁﬂ_‘_ﬂ)]a _

0’(\7)_ =R 1-R 1“‘.5 (131?)

o ,73(1+R2')t+%(1i£]a (") +a o
“oy (1_R)3- =<0 l—R

The improvement achieved by two-stream theory over diffusion theory has also been
demonstrated by comparison with the random walk simulation results [47]. The main
advantage of two-stream approach is that, the results apply for arbitrary slab thickness,
scattering anisotropy and boundary reflectivity. This increases the accuracy of diffusing
light spectroscopies and extends their range of validity to thinner, more experimentally
accessible samples. Furthermore, time dependent two-stream equations 1.3.2.a and
1.3.2.b characterize not only the diffusive motion of photons for long paths but also

ballistic motion for short length scales.
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1.4 This Thesis

Polarization becomes a consideration when working with the scattering of light. Since the
light is polarized, both the polarization of light and the direction of propagation change,
upon scattering. In recent years, there has been an increasing interest in the propagation
of polarized light in randomly scattering media since it is used in all aspects of optical
technology. Significant progress has been made in remote sensing for underwater [51].
atmospheric [52] and biological [53.54] imaging. Polarized light is also used in
geophysical engineering as well as industrial metrology. The investigation of
backscattered polarized light is of particular interest in medical applications [23-26]. The
widely used technique in analyzing the propagation of light through an optically dense
random medium is DWS. However, the effects of multiple scattering on a polarized beam
are not obvious and difficult to consider in diffusive wave spectroscopy. In this thesis, a
theoretical model to explain the underlying reason for the observed polarization
dependence behavior of light transmitted or backscattered from an optically dense
medium will be developed based on two-stream theory. In our model, the scattered
photons will be studied in four streams instead of two. We will follow the same steps as
in two-stream to reach our dynamic four-stream results. But, before starting the
derivation of four-stream equations, we consider the transition probabilities and their

microscopic definitions.
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Chapter 2

Transition Probabilities in a Four-Stream Theory

We now generalize the Durian two-stream theory to include polarization. The treatment
in one dimension, introduced in two-stream theory is still assumed: The scattered photons
are represented by two beams, upward (u) and downward (). However, in addition, two
orthogonal polarization states are assigned to each direction, giving a total of four beams:
Lz

Il,.1, . The first index indicates the propagation direction (“up” or “down”™)

dp L dm o Lupo L um
while the second indicates the type of polarization (“positively polarized” or “negatively
polarized”). The two mutually orthogonal polarization states can be horizontal and
vertical in the case of linear polarization or right and left circular in the case of circular
polarization. The phase difference between scattered waves and the phase relation
between two orthogonal polarization states of a single photon are ignored within the
theory.

2.1 Introduction of Transition Probabilities

In Durian’s two-stream model, there are two possible transition probabilities: p is the
fraction of photons, which go into the forward direction and1 - p is the fraction that
change direction. In the four-stream theory, the scattered photons can either change

direction, polarization, or both. There are now 16 possible transition probabilities.



pudpm p:fdmp pu’upm pc."ump

p udpp Pudmm| P dupp | P dumm

P uupm p wump | P ddpm | P ddmp

P uupp Puumm| P ddpp P ddmm |

l

Table-1: Possible transition probabilities in four-stream model.

Here, p,,,, 1s the transition probability that a photon directed downward with positive
polarization is scattered upward with negative polarization. Similar definitions hold for
the other probabilities. Because the scattering medium is assumed isotropic, all elements
in the same row of table-1 must be equal. The fact that the number of photons is
conserved in the scattering processes requires the summation of each column to be one.

Furthermore, Durian’s p consists of two terms. For example, for downward positive

intensity p is expressed as p ., + P upm Which is independent of polarization.

2.2 Introduction of Microscopic Parameters

Before constructing and solving the four-stream model, we need to connect the transition
probabilities to single particle scattering characteristics that can be measured
independently or modeled theoretically. One of the microscopic parameters is the
asymmetry parameter, g, that corresponds to the average cosine of the scattering angle
introduced as < u >=1(p)+(=1)(1— p) in two-stream model. In four-flux theory, ghas
the same meaning as before. It is the mean cosine of the scattered intensity independent

of the state of polarization. Basically, it specifies the degree of anisotropy of the
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scattering process. For example, for the downward positively polarized intensity, its value

becomes g, =(p,,

i

+ Pt + (P + Pi) - TWO oOther microscopic parameters that will
be used in calculations are oand g, :o refers to the probability that polarization state

remains unchanged by scattering and g, refers to polarization difference asymmetry. For

!u‘p , O 18 0‘(u'.f-’.‘l = pn’dpp 25 pn‘u,ﬂp and g;- IS gt‘[{fpl = {pu'dpp — pr!dpm ) + (_])( Pn‘up_u - Pu'upm ] . Olher

/,,, have numerically the same o and g values due to the isotropy

intensities, [/, !'”p A,
properties of the p given in table-1.

The asymmetry parameters g has been defined in terms of single particle
scattering intensities and evaluated using Mie theory with great success [55]. Therefore,

we adopt this method to define the microscopic parameters o, g and g, . The definitions

[~ indicating the single particle scattered

of these parameters are given below, /,, /,
intensities with positive and negative polarizations, respectively, given an incident

positive polarization. Note that the integration is over a continuous distribution of

scattering angles, not just forward and backward directions.

[ (u)d

o [7, (s (2.2.1.2)
J.(]p () + 1, ())du

.- j(fp(;1)+ 1, () pdu (2.2.1.b)
[(, ) + 1, (u)d
[, () =1, () (2.2.1.0)

T [, 0+ L ()du
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The normalization is achieved by dividing by the total scattered intensity integrated over
all angles. It is clear thato is the probability that a given state of polarization survives
scattering, gis the mean cosine of the total intensity averaged over all scattering angles
and g_.is the mean cosine of the polarization difference intensities averaged over all
scattering angles upon a single scattering.

Folarization states may be defined by Stokes Theory of polarization and used to
obtain the numerical estimates of microscopic parameters. Upon scattering from
spherically symmetric, optically inactive particles the scattered wave, which is generally
elliptically polarized, 1s expressed using Stokes Matrix formalism. For example, for a
right-circularly polarized beam incident on the particle, the scattered intensity at an angle

@ becomes

$,,(0) 5,,(0) 0 0 l 8,(0)
S.(0) S, 0 o lo| |5.0
_| e ! =2 222
LO= "0 0 5,0 su@]o]"7]s.© @2.2)
0 0 —85.0) S.0)]1 $,.(0)

where the 4 x 4 matrix is an amplitude-scattering matrix and the column matrix times /,

stands for the incident right-circularly polarized beam. The elements of the amplitude

scattering matrix are

5,0 =1/2(s, )
S, (0) =1 szS l ) (2.2:.3)
S, @) =1/2(s,5, +SS)
S,.0)=i12(5,5, -5,8,")

]+‘S‘

where S, and S, are scattering parameters that relate the incident and scattered electric

field components using Mie scattering theory [51]. For an incoming circularly polarized
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light to the detector, the resultant detected intensity for right or left circularly polarized

light is determined using the appropriate matrix forms for right and left circular

analyzers.
1 0 0 1 511(0)+ 85;(0)
110 0 0 0 1 0
Ip=— yi— 224
*=3lo 0 0 of =2 0 o (2.2.4.2)
1 0 0 1 S1,1(0) + S5, (0)
1 0 0 -1 S,,(0) - S, (0)
10 0 0 0 1 0
= J.=— [ 2.24b
7210 00 of° 2 0 ( )
-1 0 0 1 8,,(0) - S,:(0)

The difference between the first elements of the Stokes vectors 7,and 7/, gives the

degree of circular polarization and the sum gives the total scattered intensity. Thus

/ =8,(0) and [

dey ree

= §,,(0) such that Cand g factors are written as

tatal

1/2 [(8), +S33)du

o= (2.2.5.2)
j‘S”d‘u
S,
g=f s (2.2.5.b)
_[S,ld,u
Sy udu
gf**j S (2.2.5.0)
J.S”dﬂ

The microscopic definitions of aand g, for linearly polarized light are more

ambiguously defined.

[B/8(S,, = 8,00 +1/48 0+ 3/8(5,, + S, b

o= (2.6.a)
IS, du
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~ j[SM(S,, =S’ +1/28,u+314(S,, +8,,) - S, udu
jS”a’,u

B (2.6.b)

As the degree of projection of the final polarization direction along the incident direction.
Figures 6 and 7 show the oand g factors evaluated by Ackerson and Tata [55] for
circular and linear polarization states for a range of ka =2za/A,a being the particle
radius and A the radiation wavelength in vacuum. The particle and suspending refractive
indexes are 1.59 and 1.33, respectively. Linear and circular polarizations evidence quite
different properties on single scattering. For wavelengths large compared to particle
radius, linear polarization tends to be scattered isotropically (g, — 0) but the state of
polarization is preserved (o — 0.8). For circular polarization there is a spin flip on
backscattering compared to forward scattering (g.—0.5)and single scattering
randomizes the polarization (o — 0.5). In the opposite limit all particles tend to scatter
more in the forward direction (g,g,. —1)and the state of polarization is preserved
(o — 1), though much more completely for circular polarization.

Because of the conditions imposed on the transition probabilities in table-1, there
are only three independent parameters needed to define all 16 values. These parameters

are taken as those given in Eqgs.2.2.5 to find,

Puipm =2-g-20 +g,)/4 (2.2.5.a)
Pugpp =(—8+20—-8.)/4 (2.2.6.b)
g =2+ 820 ~g:)/4 (2.2.6.c)
Pugp =(g+20+8.)/4 (2.2.6.d)
and so on.
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Fig.6- The o factors for circular (solid circles) and linear (solid triangles) polarization as
a function of ka for spherical particles with index of refraction 1.59 in a solvent with
index of refraction 1.33. (Polystyrene spheres in water)
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Fig.7- Scalar asymmetry parameter, g (solid squares), and polarization difference
asymmetry factors, g_, for circular (circles) and linear (triangles) polarization as a
function of ka for spherical particles with index of refraction 1.59 in a solvent with index

of refraction 1.33. (Polystyrene spheres in water)
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Chapter 3

Dynamic Four-Stream Model for Polarization

3.1 Time-dependent Four-Flux Equations

We are ready to develop dynamic solutions for the total transmitted and the backscattered
intensities as well as the transmitted and the backscattered intensities that show the
degree of polarization, using a four-stream model. The same steps leading to Durian’s
two-stream theory will be followed. However, here, a matrix formulation proves useful.

Ays1,,. 1, 1namatrix form:

up * " um

Let us begin with writing four-types of intensities /,,,

T dm (313)

The first indices indicate the propagation direction (“up” or “down”), while the second
indices give the type of polarization, “plus” or “minus”. As in two-stream theory, we start
with the development of the time-dependent equations. To do that, all possible
mechanisms that change the intensity, in a given direction and a given polarization, in a

length element [z,z + (.'A!] during a time interval At are considered. Since the polarization
is included, the polarization difference asymmetry, g., and the probability of unchanged

polarization state, o will ultimately appear in the equations along with the asymmetry

parameter, g .
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cAt
I (z,t+At) - !‘;p (Z.1)= .fr,p (z.0)+ I (pmw 1, (z+cAt 1)+ Pudmp Lum (2 + AL 1) + P iy Lot (2 :})

&Y

(CA:[ _ cAr
_1\ i 0'.0( ")1- {prh:p,rl + pdrupm +pddpm )";1;7(39”1" fh;p(:--i'{,'.ﬁf,f]

T :

(3.1.2.2)

\ cAt
L (2ot + ALY =1y, (2,0) = Ly (2,0) + — (pm,,,,m Ly (2 + ALY + Pogpm Lup (2 + ALY + Py L4, (2, :))

5
cAt cAt
il ¢ ',n"m Z, !) E ¢ (prfn-'"m + pr!ump + P:.r':?'mp )f(.fm (z,8)+ in‘m (z+cAtl)

-a 5

(3.1.2.b)

(z+cArt+At) =1, (z+cAtr) =1

) cAt
lrﬂ up{: +CAL, ") + f'_ (pdnpp!dp( o+ prfu.rpl;r‘lrdm(:' !) + memplum{: +cAt, -")]

i

cAt cAt
—[ ‘!up( +edt, f) fe=s {prrd_n_n + pmfpm + Pm.-pm )}np[ +cAl, ‘r) + }uﬂ(“ ”J

(‘f .i'

(3:1.2ic)

{ + LAI [+ “\f] Jr|rr-r (Z + {"Af"'] = ‘! ( + CA: ;] t [pn"lrl'l'rllr !lffr l" '” + P g n"fl' {Z f) i -”rm}r i !ij'i[' + ("A.l' “))

l'rf!l i

¥

cAt cAt
- ('}__ {r.rm (z +cArt) + T( Pudmm + Puidmp + pmrmp wn (2 + €ALL) + !mlr (z,1)

"

(3.1.2.d)

These equations give the change in intensities, /,,,/,,./,,./,,, respectively. The first

term on the right-hand side of each equation represents the intensity that flows in, the
terms in the first set of brackets represent the intensities that scatter in, the last three
terms in the second set of brackets represent the intensities that are absorbed from, that
are scattered out of and that flow out, respectively. Figure 8 shows the mechanisms that

change the number of photons in the downward positive intensity.
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Fig.8- Schematic representation showing the gains (filled arrows) and losses (empty
arrows) of downward positive intensity.

Taking the limit Az — 0, making the change of variables t = ¢f// and z - z/{ and

multiplying both sides by ¢ /¢ the following differential matrix equation results:

d d ..., . 5 u
—[I]=—[N][{]+[M][!] (3.1.3)
dt dz
where
~ Paipp Patnpm ™+ Petipin) =K Pidmp Pudpp Putip
l M I"' 1 Pd.!l.lml =L Ptumm ™ Piaump ™ !Jddrrrpj =K pqume Puadnm
=i} = Pawpp = Pty Pradpp ™ Prucdmp & pr:r-;rm K = Proump
= Puiupm = Peumm = Pugpmn Prtmimn ™ Pudimp ™t Pawmp T K
(3.1.4)
and
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with & =/ /[, defining the dimensionless absorption factor. The sign changes in the third
and forth row of matrix [M] because the downward intensity is attenuated in the
direction of increasing = whereas the upward intensity is attenuated in the direction of
decreasing =, as in two-stream theory.

For applications to three dimensions, z, is added in all four equations as in
Durian’s model. Taking the Laplace transform with respect to time and then Fourier
transform with respect to space, the matrix equation 3.1.3 becomes
s [1]-[1, ]=— ik [i]+ [M1[1] (3.1.0)
Here, “s ” is the Laplace time variable and [1]is the matrix formed from transformed

intensities.

[i]=] ™ (3.1.7)

Fourier transforming the spatial variable results with

—ikz
i
p thelppy
, pddj';m (3 £ 1 _8)
pdrxpp

ikz

: pdn;mi

—ikz P

where the source boundary conditions, Eq.3.1.9 are used. Here we considered a pulse of

light deposited on the plane z=zp=2z,(1-g)zoat 1=0. Then the first scattering

determines how the intensity is distributed to give
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[{Fp Z’O) pddppd(z - Z_r}

)
[ﬁ'm (ZSO) - pr!;f;;p;:5(z = :{J)
)
)

[{(z,0)] = (3.1.9)

[up (Zyo) R p“ruppﬁs(z - ZP
irmu': (Z’U) pdupmé‘(z - ZP

The matrix [M ] may be brought into block diagonal form using matrix [S] in a similarity

form
1 1 1 1
(5]= I 1 -1 -1
21 4 (3.1.10)
I -1 -1 1
such that
0 -l-g-« 0 0
-K 0 0 0
M'1=[S][M][S'] = 3.1.11
(M =SIMIST=| " 5 silegen (3.1.11)
0 -2-20-« 0
The similarity transform produces a new set of “intensities™:
im[ul idm + iL!p +i1|m + iup
Lyier Lgie ¥ b =1t o )
=] . |=f ™ P o8] (3.1.12)
Looiplus “lgm + lgp = lym + lup
i}'mlmmus - idm + idp + ium = iup

Here,i,,, stands for the total intensity independent of polarization, i, stands for the
degree of polarization independent of propagation direction, i, stands for the net
direction of propagation independent of polarization and 1, ... stands for the net
direction of propagation and degree of polarization. Equation 3.1.6 may be written as

[SIIN(s[i]-[ig]) = =ik[S1[i]+[SIMI[S™ I[S][i] (3.1.13)
= -ik[i']+ [M][i"] :
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The matrix product [S][N] introduces a minus sign and interchanges i

woat With 1, and

Loipies With 15 0 in [i]. The resulting set of four equations for the intensities [i'] is

e_’k”g +(=1+ g—5—K) iy —iki

total

—ik= . .
e " —(s+x) o —ik iz
i, ol =0 (3.1.14)
8c.~¢€ L (gf Lt K)lpnlmmus —ih polplus
—ikz i s
(_l + 20)8 f - (2 +s-20+ "C) ipn]p!l.:s = I'.;ﬂ;-mlminus

Now, the four-flux equations have separated into two sets of two equations with each set

having the following form:
Xg—(s=-C)x-iky=0 (3.1.15.a)
Yo—(s=D)y—ikx=0 (3.1.15.b)

The first and third equations in matrix 3.1.14 are in the form of Eq.3.1.15.a while the

second and fourth equations are in the form of Eq.3.1.15.b. For the first set of equations
the (x,,C) pairis (e Rl g,g—1-x) and (e_ib" g..8. —1—x)respectively. For the second
set of equations the (y,, D) pair is (¢ "’ ,—x)and ((20 - e * 20 -2 — k) respectively.
For z <z, the inverse Fourier transforms of xand y are

%, (2,5) = C.e~% + Cpe® +(((s = D)xy - yo. ). "1 )12 (3.1.16.2)

Fr (2,5) = (=C+ 5).C,.6% +(C = 5).Cp.e") A+ |((s — Chyy — mp. A).™P* )12

(3.1.16.b)
and for z>z,
= Az Az ) -a{{:—:r,)ﬂ'k:‘,‘ -
xgremer(z’s) = Cl € + Cz‘e + {((‘5 == D)xn + yf]-/{)-e )?’ 24 (.)1173)
Y areater (2:8) = (=C +5).C, &% +(C—5).Cpe®) A+ (((.5' —C)yo + xu_g)_e—ifs—:,,)ﬂu,, )), 21

(3.1.17.b)
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where A = 4, = /(s — g + & + 1)(s + x) for solution of the first two equations in matrix

3.1.140r A=4, = J(.s- +1-g.+x)(s-20 +2+x) forsolution of the last two

equations in matrix 3.1.14. Using 4 in Eqs.3.1.15 yields two stream theory results where
A, and s can be expressed in terms of two-stream theory parameters, @ and @, and

x — Orespectively.

A =zpa(l—g) (3.1.18)
= z,0(1 - g) leading to szznzx(i~g) (3.1.19)

To determine the coefficients C,and C,, new intensities that are computed by using

Eqgs.3.1.16 and Eqs.3.1.17 are introduced.

1 btess (2,5) = (Kjags + Piss )/ 2 (3.1.20.a)
Tgreater(2,5) = (% grogier + P greater) ! 2 (3.1.20.b)
I tiess (2,8) = ~(Fpugs = Piess) ! 2 (3.1.20.¢)
It greater(2,5) = ~(Z greqter = Vereater) |2 (3.1.20.d)

?um(z,s) s ﬁg,-mm,-(:,s)represent the Laplace transform of either total downward
intensity independent of polarization or degree of polarization in downward direction for

Zz. and >z respectively. Similar definitions hold for ?'Tk-.fs(Z,S).’lnd

8]

?Tgreamr(z, S) .
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3.2 Results for DWS

3.2.1 Results for transmission

The evolution of the transmission of a pulse in Laplace time is written as
T(s)=(1- R)l?lgremur(;;,S}\Vhefe R is the average reflection probability of the diffusing
photons and ;’J‘-:E!'r(zn(l—g))“—-‘,{./fl‘. is the scaled optical thickness. The dynamic
transmitted pulse is calculated as in Eq.3.2.2 after finding coefficients C,and C, upon

implementing the following boundary reflection relations:

L tess (0,5) = R %ess (0, 5) (3.2.1.a)

?Tgrea.‘er(;;,S) = R}lgrcmw(g,S) (321'3)

((R—1)x, —(1+ R)yy JACosHz , )+ (D(1+ R)x, = C(R—1)y, = s(x, + Ry, + y, — Ry, )Sini(z,,2)
(R? =1)2ACosHhA) + (C'(—l +R)? +D(1+R)* -(1+ Rz)Zs)S‘nt(hi}

T(s)=(1-R)

(3.2.2)
It is appropriate to average Eq.3.2.2 by integrating over the penetration depth ratio. While
taking the integral, 7'(s) is multiplied by the term e ™ which represents the exponential

decay of the incident beam with depth into the sample,

h
T'(C.D,R, Xy, Vo 11, Ay8) = j T(s)e "™ zydz,

0

1+

4 e = 1 .R ' =, -: 3
{tu/{z -A' - -l-—ﬁ (B'— yyA~ }}zue_""".?mb(h A)+ {-—!' - i—+—§ (B'—(x, + _vu)zu2 )]zl(l —e " Cosh(h A))

2 B

2= 2)|| c+pOXRY _HU+R) Nein(Ray-2a L+ R cosh(ia)
¢ (1-R)> (1-R)? I-R

(3.2.3)
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where A'=(C-s)yyz, and B'=(D-s)x,z,. For simplicity, the reflections of the

incident, unscattered beam are ignored. In order to find the static transmission result,

Eq.3.2.3 should be evaluated in the limits goes the zero to find

Tp (C$ DJR!'\‘II”VU’}?)

. I+R . Sy = . I+R s | == ~
[\'U(TD—(_VH:U —:}‘;{D,\'Uzu - ¥, C D)}:“c " Sink (_J(J.V:}i—[( VoZo +1 —ﬁ(!}.rﬂ:u—(_ro + ¥y )2y~ )]\a'('D(i—e " Cosh (hA))

2 | o (R — + —
(zp —C D)H( +D{I +ﬁ)j }S'a'nh (v’('ﬂ’J)—ZL'D:—ﬁ Cosh (J(“ﬂrj}
)— -

(3.2.4)
3.2.1.a Result for total transmitted intensity independent of polarization
Substituting  (xy,,,C,D)=(g,l,g-1,0) into T(s)corresponds to the Laplace
transformed transmitted pulse or the field autocorrelation function independent of
polarization. When comparison to the two-stream representations is done by using
equations 3.1.18 and 3.1.19, we find result Eq.3.2.5 to be exactly the same as the two-

stream theory prediction, Eq.1.3.12.

1+ 2:0( p—_R(l?— p) ]m:lenh(azp) + 22{1( ‘r-?-*][%— P) JaCosh(a:zp)

T, == == " (3.2.5)
1+ 2z, (LR,) o |Sinh(al) + 22:,(—+—JaCosh(aE)
1-R) R

The index in7, stands for “independent of polarization”. The relation between Landh is

givenby L = zoh(1—g).
Substitution of the same set of values, this time, in Eq.3.2.4 and neglecting
absorption gives the static transmission probability, that 1s the four-stream prediction for

DTS,
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I+R . o~ .
1+g(zg -1+ 2, 1_R —e [I —g(l=zy+hzy)+z, %+—£ +1130]
T, = —~ (3.2.6)
};zn(l~g) +2z, L&
1=R

In the case of isotropic scattering, g = 0, this reduces to

' l+ze—e_5"“(l+ze+f;z
T, = ) (3.2.7)

7 =
3
hzy +2z,

which is in agreement with the DWS prediction Eq.1.2.19. In order to generate four-flux

correlation function prediction for transmitted pulse independent of polarization, g
S

(x5, 0,C, D) =(g,l, g —1,0) values are used in Eq.3.2.3 and then the result is normalized

by dividing Eq.3.2.6.

T'(g-1,0,R,el.h,A s
g ) =S 2 R

n
Tp

. . * 2 . - . .
The correlation function versus (i z,)” xis shown in figure 9 for four combinations of

boundary reflectivity and scattering anisotropy. As seen from the plots, the correlation
function decays faster when the scattering is anisotropic. It 1s because the light scatters
more before leaving the sample. The influence of anisotropy becomes less for larger
x and thicker samples. However, the effect of reflectivity persists even after the optical

thickness has eliminated anisotropic effects. When multiple reflections are included, the

static transmission becomes

. 1+R] i B o |

142, :—+j::+g(:u ) =Fl 1+ g(zg + 1)+ h'zy + 2, —IJ'R} ‘e L"{F—I){Hg(zﬂ “1)+z, |—+ ot z,,J
T, = = [+ R
(= F2 25+ 27y =

1-R
(3.2.9)
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where the probability for a photon to be reflected from the far boundary after crossing the

sample without being scattered is expressed as F = R,.e " where R,is the reflection

probability of ballistic photons and 4" = A(1 - g)=L/(1"z,).
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Fig.9- Four-stream predictions of Eq.3.2.8 for normalized electric field autocorrelation
function for transmission independent of polarization through slabs of various

thicknesses.
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3.2.1.b Results for degree of polarization in the downward direction
Substituting (x,,y,,C, D) =(g,.20 ~1,g, ~1,20-2) into T(s) gives the degree of

polarization in the downward direction:

1+ R
g.(20-2-5)+(20-1)(g. -1-5) Sinh(A,z ) —| g. +]—-—+R(20'——l) A,Cosh(A,z )
T = 1-R 7 = 1=<R 2 2p

dp

1+RY R* |
(g, —l)—(20‘—2){ s ] —EL}———, § Siuh(Lh)—E1+R2,Cosh(/1,."1)
1-R (I-R)" = 1-R -~ 2

(3.2.10)

The 1ndex 1n po

stands for “degree of polarization”. In order to compute the degree of
polarization of the light transmitted by the scattering medium for incident linearly and
circularly polarized light, we should define the polarization parameter, & .
Experimentally, when a sample is illuminated by linearly polarized light, an analyzer is
used to detect the scattered light whose polarization is either parallel or perpendicular to
the incident light. In four-flux theory, we will take & as 1 for parallel polarization and as
—1 for perpendicular polarization. If the incident light is circularly polarized light, the
scattered light can be either of the same helicity or of opposite helicity. When the incident
and the scattered light are of the same helicity dis 1 and 6is —1 if the other helicity is
measured, for which incident and reflected photons are mirror symmetries of each other.
Now, we are ready to write four-stream expression for the normalized autocorrelation

function including polarization:

T'(g-10,R, g1, h,A,8)+5T'(g, -120-2,R, 8,20 =1,h, A,,5)

: — : 2 (3.2.11)
T, (g-1,0,R.gLh)+5T, (g, —1.20-2,R,g 20—, h)

8y, (x)=

When & =0, the polarization is neglected, and the above equation reduces to Eq.3.2.8 or

the two-stream result for transmission, given in Eq.1.3.14. The plots of the results of

43



gr, (x) for circular polarization channels are shown in figure 10 and 11. These plots are
all logarithm of the correlation function versus (h'z,)’x. The decay of the correlation
function for different & values for three different scaled optical thicknesses, iz, =5, 10
and 20, can be seen in figure 10. The boundary reflectivity and scattering anisotropy are
denoted by curve type: Solid line for R =0,g =0; long dash for R =0,g = 0.9, dotted
for R=1/2,g =0and dash-dot-dot forR =1/2,g =0.9. Figure 10 exhibits polarization

dependence of the autocorrelation function. It is seen that the decay of g,, (x) is more

rapid when the incident and scattered light are of opposite helicity. This is better seen in
the case of thin samples. As thickness increases the difference in the decay rate

ofg, (x)for o =land for & =—1becomes less. Polarization dependence disappears as

the thickness of the slab reaches /'z, = 20. The same data is presented in figure 11 in a

different fashion where it is easier to see how decay rate changes for different
polarizations parameters, o . The decay rate is greatest for & = —1 showing the greater
contribution of long paths in opposite helicity channel. The anisotropy becomes less
important for larger x and thicker samples. The fact that anisotropy increases with particle
size leads to the conclusion that the form of correlation function depends on particle size.
As well as depending on anisotropy, autocorrelation function also depends on the

boundary reflectivity: Greater reflectivity causes quicker decay.
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Fig.12- Four-stream predictions of Eq.3.2.11 for linearly polarized light through slabs of
various thicknesses. The right plots are for perpendicular and the left plots are for parallel
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In figures 12 and 13,the behavior of the autocorrelation function is presented, this time,
for linear polarization. The decay of 8., (x)1s manifested again for different & values and
three different scaled optical thicknesses. The decay rate is greater for perpendicular
polarization, i.e. the direction of the polarization of most of the scattered light is
perpendicular to the incident light. However, as in the circular polarization case, the
difference in the decay rate ofg, (x)for ¢ =land for & =—1becomes less for thicker
samples. For linearly polarized light, we can see the polarization dependence for just a
slab of thickness of %'z, =5. The polarization dependence remains to thicker samples
when circular polarized light is used. This corresponds with the “rule of thumb™ that

h'z, =10 for reliable measurements. When g gets larger, the circular polarization

independence extends to much less than /'z,~10. This should be checked

experimentally.
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3.2.2. Results for backscattering

The evolution of backscattering in time is written as B(s) = (I —R)ka,A._\_(O, s5) . Applying

the boundary conditions, previously given in Egs.3.2.1, the dynamic backscattered pulse
is found as

((R=1yx, +(14 Ry, JiCosh {{5 Sz )A]+[B (14 R)x, +A (=1+R)y, =s(x, +Rx, =y, + R))Sinh ((E -z, ),1)

B (s)=(-1+R) . “ U
(R =024Cosh (hA)+{A (R=17 +B (1+R) ~(1+R)2sSink (hA)

(3.2.12)
From Eq.3.2.12, we will try to get the autocorrelation function for a semi-infinite slab, for
simplicity. For this purpose, B(s)should be integrated over the penetration depth form 0

to co.

B'(C,D, R, X9, y9, 4, 8) = [B(s)e "™ zydz

0

P

b 2 , L+R F 2 = s TR =
(Vo —Xg) Az + [.r(,zl,’ -A'+ ———R-(B = Y020 }}1 —[.—1 + R B ]z”

(2,2 - 22 )H(w pl &) o0+ R:,)s}-zz Hj—}
1-R)? ~(1-R) - R

(3.2.13)

3.2.2.a Results for total backscattered intensity independent of

polarization

In order to generate the four-flux prediction for the backscattered pulse independent of
polarization, the first set of (x,,y,,C,D) are (gl,g—-10) , respectively, should be
substituted in B(s). Comparison with the two-stream representation is done by using
equations 3.1.18 and 3.1.19, we reach Eq.3.2.14 that exactly yields the two-stream theory

prediction for the backscattered pulse, Eq.1.3.16.
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p(l+ R -
[1 +23u( —R )] }Smha(L —-zp)+ 2%,[ =P8 ]a(‘osha(!. —zp)
.\ 1-R

BIP: .

(3.2.14)

1+ R + ~
[l +2z, :Ti R ) m} Sinh(al ) + ——u( -:-: g—Jath(a.{)

To find the backscattered autocorrelation function without polarization, we simply

evaluate B'=(g-10,R, g1, 4,,s). The result will automatically equal to the normalized

autocorrelation function, since in the limit 4 — =, the normalization factor, 1 — T, » » BOES
to 1.
gB_ HB(g_lURa.:n} |9S) (3215)

Four-flux predictions of Eq.3.2.15 are shown in the following graph for different

boundary reflectivity and different anisotropy.

0.01 -
0.0 0.5 1.0 1.9 20 2.5

Fig.14- Four-stream predictions of Eq.3.2.15 for normalized electric field autocorrelation
function for backscattering independent of polarization through slabs of various

thicknesses.



3.2.2.b Results for degree of polarization in the upward direction

The substitution of (x,,y,,C,D)= (8,20 -1,g.—1,20 - 2) into B(s) gives the degree

of polarization in the backward direction, Eq.3.2.16.

[ ‘R s R _ i 1 y
[(g -D2o-1)-(20-2)g, —-3|{7U h-g —{‘—|-I.\'mh)“[h—:,)— I —-'if-(za—n A,CoshA,(h -z,)
g =l R\ 1-R ; L 1= 2 2 :

up =

(n -1) ,(1(_1-

(1+RY 1+
1 -2— R—\ [\mh(h) }—7—84( os‘.‘r(.’:/l. )
!(’ (1- -R

(3.2.16)

Taking the integral of B,, should be taken from zero to infinity, we obtain:

"""'n’:ﬂ (3.2.17)

.F_n

B'(g. -12a-2,R, va—lzb)_jg

The four-flux expression that represents the observed polarization dependence of the
autocorrelation function of backscattered light., is, then,

() BE=10.RgLA5) + 5B(g, ~1.20 ~ 2 Rog, 20 -1 1y.5)
Bip 1+dlimB'(g. —1,20 -2,R,g,,20 - 1)

5=l

2.18)

Results for g, (x)for four polarization channels are shown in figures 15 and 16. For
i

isotropic scattering, helicity preserving channels decays faster. When the scattering
particles are bigger, causing the scattering to be anisotropic, the effects of polarization
differs. This time, opposite helicity channels have the greater decay rate. The helicity flip
can also be observed in figure 17. For g —0 the circular polarization tends to flip on
backscattering giving the slow decay for few scatterings. The preserving polarization
sends the light deeper into the sample. For g¢— 1 the polarization tends to be preserved
on scattering, so the backscattering has the same helicity after one or more events. In the

case of linear polarization, the decay rate is greater for perpendicular polarization for all

four different combinations of boundary reflectivity and anisotropy. The fact that linear
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character of polarization states is not affected that much by backscattering regardless of
particle size can also be scen from figure 18. Linear polarization tends to be preserved.

To change the polarization requires longer paths and hence more modulation.
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Fig.15- The decay of backscattered autocorrelation function for a semi-infinite slab for
circular polarization channels. The left plot shows helicity preserving channel; the right
plot shows opposite helicity channel.
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Chapter 4

Discussion of results and conclusions

4.1 Comparisons of results

[n the previous chapter, the results for dynamic four-stream theory for polarization have
been presented. In this chapter, the linear and the circular polarization results will be
compared for transmitted and backscattered light. A comparison of four-flux results for
polarization with the existing experimental data will also be made. At the same time,
agreement between four-stream and two-stream results will be mentioned.

4.1.a Comparisons of results for transmission

Including polarization in two-stream theory results in four-stream model. Therefore, at
each step of our calculations, we have checked, if our results simplifies to two-stream
results when polarization is neglected. It has been shown that the result of four-flux
model for transmitted pulse independent of polarization, Eq.3.17 is exactly the same with
the two-stream result, Eq.1.3.12. We have also showed when polarization is not
considered the normalized autocorrelation function for degree of polarization in the
downward direction, given by Eq.3.23 simplifies to Eq.3.20 which is in agreement with
the two-stream result, Eq.1.3.14. The dependence of the correlation function on the
polarization type and how polarization proceeds as the size of the particles increases

from very small to very large are presented in figure 19 for various optical thicknesses.
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For anisotropic case, the largest difference in decay rates is between two circular
polarization states. As can be seen from the figure, the correlation function decays faster
when the detector measures the helicity opposite from the incident light. This shows the
greater contribution of long paths in opposite helicity channel. For isotropic case, the
decay rate for incident linearly polarized light is greater than that for incident circularly
polarized light. As the size of scattering particles gets larger, all polarization channels
exhibit more rapid decay. However, as the thickness of the sample increases, all four

channels show the same behavior, i.e. there is no dependence on polarization.

; : . - I\ T T T
= h'z,=3 FNNL himged
e R=0 i \\"‘\. s
~ ‘:;:“h g=A0 a1 > “\..‘\"‘ §=e: 3
o E = E o E
= e TN E N
" ~=. J g R
Z, 4 BB
- 5 I o
of ——e—- =1 circular - ~ Ty
gt} —-— —-—  §=-1_circular . Y %
_____ a=1, linear .
______ 5=-1, linear
i A
0 g0t -; 12 :Is o T ; ' " “
' T T ¥ I l
H \ hz,=5
I k R
01k %ﬂ g=0 3 &
E = i
S E N . ]
- E SR 1
u; “-"“-.._‘.:_: =
ol =3
awnll s oo
) L
9.001 sl T 1Is L S . 2 " "
' . = | 1 T T A
h'z,=10 ] e
R=0 piit
3 e=0.9
u=0 & =% 3
2 3 N R
—_ 3 ‘E&
- &
[
K 4
d aol |
oor E
y a a0t $ 4 r
uonrn !n "n 5 FL 0 5 10 5 2

58



3 h'z,=10
R=1/2 ]
- g0 |
N o 3
-\;f.-g F \ ]
o ~
=11} 4
001 | i
o000t | L
] 18 5 20
1 T
h'z,=20
R=0
g=0
WLe \
oy .
~ 1
‘h—/‘-
oo - _
D001 I 1
0 1o is 20
T T T
i h-z,,-'ltl ]
L R=1/2 |
org =0 )
o \
;< L 4
S - ]
5
=11}
00t |
0.00 L |
0 10 15 20
nt 2
(h z,)°x

Fig.19- Four-stream predictions of transmission autocorrelation functions for four
polarization channels for three different thicknesses. Four different combinations of

a1

UR-1

o.got

20

1 L I}
] 5 10 15

T T T
. h'z,=20
j R=1/2
B g=09

(h.zu):x

boundary reflectivity and anisotropy are labeled.

59

20



A comparison of four-stream predictions with the experimental data for suspensions of
polystryrene latex spheres in water can be done through comparison of the following

figure. Figure 20 illustrates the four-stream static transmission results for degree of
polarization, P, as a function of /'z, for three different dimensionless size parameter ka

values. A general equation for degree of polarization is given as
P=T, (g.-12a-2,R,g.2a~1h) (4.1)

The behavior of P, which is computed from Eq.4.1, is shown for three different ka values
in figure 20.The curves all exhibit linear behavior in these plots. For Mie region, where
particles are large compared to the wavelength, ka>1, the slopes depend strongly on the
incident state of polarization. The slope for linearly polarized light is greater than the one
for circularly polarized light. For ka~1, the slopes of these plots do not depend on the
input polarization.

D. Bicout,C. Brosseau, A.S. Martinez and J.M. Schmitt studied numerically the
depolarization behavior of light, propagating through a slab that is composed of
uncorrelated polystryrene latex spheres, by using Monte Carlo simulation code [56,57].
They have also measured P experimentally with polystryrene latex spheres having
diameters of 0.22,0.48 and 1.05 wmusing a semiconductor laser emitting at 0.67
micrometer as the light source. These experimental values are compared with four-stream
theory results in figure 21. For size parameter values of 1.23, 2.69,5.89 respectively.
Four-stream results are in good agreement with the experimental results, especially for
cular polarization. However, the agreement is not good for linear

large ka values for cir

polarization.
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4.2 Comparisons of results for backscattering

For the backscattering geometry, we have obtained dynamic backscattered pulse. It has
been shown that the result of the four-flux model for the backscattered correlation
function, Eq.3.26 is exactly the same with the two-stream result, Eq.1.3.16. When 0O is
taken zero, the normalized autocorrelation function for degree of polarization for
backscattered light, given by Eq.3.30 also reduces to Eq.3.27 which is in agreement with
the two-stream result Eq.1.3.18. The semilogarithmic plot of the backscattering
autocorrelation function is shown in figure 22 for four polarization channels. The left
plots are for isotropic cases while the right plots are for anisotropic cases. As can be seen
from the figure, for isotropic scattering, the two linear polarization channels exhibit the
largest difference in polarization, parallel polarization having a smaller slope. This shows
that low order paths mostly preserves their incident polarization In the same manner, we
can also conclude that high order paths changes the state of polarization to a high degree,
resulting in a faster decay of the correlation function. There is also difference between
circular channels. However, for circularly polarized light, low order sequences produce
mostly backscattered light of opposite helicity. As a consequence, the opposite helicity
channel decays slower than helicity preserving channel. While going from isotropic to
anisotropic regime, backscattering, in a way, acts as an optical mirror, for circularly
polarized states. Therefore, a reverse in the relative behavior of the circular polarization
channels is observed, resulting the slope of helicity preserving channel to be larger. The

greater contribution of short paths in the parallel polarization is still valid for linear

polarization in the anisotropic regime.
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The slopes of the plots in figure 22 are characterized by the parameter 7. As

explained in section 1.2.c, y appears as the coefficient of vx when the short time

expansion of g5, » given in Eq.3.30, is taken. The four-flux prediction for » is found as

1+R
2 1__7'2""3'(3” _l)"l
4 1+ ON #2)
Here, N is
: I+R , (2 -1-R3+z,-40)  1+R
N=(g, -DQo-1)z, —-2g.(o- I)'{J:u =4y (1+g.—20)z, _A'_ml\g. R —Za -l_-_R (20'_1}'"”}0

where 4, :m:l_) Taking the boundary reflectivity R =0.004, we now
proceed to compare our four-flux results, for ywith the experimental data. The
comparisons between Eq.4.2 for circular polarization states and measurements done by
Mackintosh, Zhu, Pine and Weitz [38] are shown in figures 23 and 24, 7, , showing the
same helicity channel, and y_ showing the opposite helicity. For small scattering
particles y_ <y, while for large particles where forward scattering dominates y_ >y, .
The dependence of yon particle size for two linear polarization types is illustrated in
figures 25 and 26. Both four-flux model predictions and experimental measurements
done by D.J. Pine, D,A,Weitz, J.X.Zhu and E. Herbolzheimer [ 11] are shown for slope of

parallel polarizationy; in figure 25. The similar comparison is shown for the slope of

perpendicular polarization y, in figure 20.
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4.3 Conclusions

The objective of this research is to model for the observed polarization dependence in the
behavior of transmitted or backscattered light, from an optically dense random medium.
Satisfactory agreement of four-stream results with the two-stream results has been found
when polarization is neglected, as mentioned previously. Thus, the achievements of two-
stream theory are true for four-stream theory, as well: The results apply to arbitrary slab
thickness, scattering anisotropy and boundary reflectivity. The improvement achieved by
four —stream theory over two-stream theory is that, four-stream results include the type of
polarization of incident and multiply scatted light. In order to validate our theoretical
approach to polarization dependent scattering, we have compared our results with recent
experimental data. The agreement between the measurements for static transmission with
circularly polarized light and four-stream theory is good. However, for linearly polarized
light, we observe a noticeable failure when compared with the data. Presumably this
failure is related to the more ambiguous definitions of the microscopic parameters o and
g, for linear polarization. Other formulations merit testing. For backscattering, there is
reasonable agreement given the fact that neither two nor four stream theories produce the
exact analytical form seen experimentally.
Our results can be used in multiple light scattering experiments that encounter the

effects of multiple scattering on a polarized beam, thereby, allows one to probe the

structure and dynamics of medium.
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