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Chapter 1

Introduction

1.1 General comments on multiple scattering

When light shines on a large collection of small particles suspended in a medium, the

scattering by particles diffuses the incident radiation in all directions. This is known as

multiple light scattering and it gives rise to many observable phenomena, from the color

of sky, bright11ess of clouds to darkening of sand upon wetting [1]. These are all

examples of static lig11t scattering since the tilne-averaged intensity of scattered light is

observed. A radiative transfer equation has been derived many times from multiple

scattering theory [2-7] and has been used widely in analyzing static scattering problems

in stellar and planetary atmospheres, llnderwater and atmospheric imaging, and

climatology.

More recently, dynamic light scattering, DLS, where time dependent intensity

fluctuations are lneasured in highly multiple scattering limits, has been examined both

theoretically and experime11tally [8-12]. The i11tensity fluctuatio11s in tIle scattered light

occur due to the Brownian motion of the disperse particles in the medium wllich gives

rise to a Doppler effect. So, tIle scattered light possesses a range of frequencies sl1ifted

slightly from the frequency of tIle incident light. T11at's why dynamic light scattering is

also named quasi-elastic light scattering, QELS. The data from light scattering

experiments in tIle weakly scattering salnple can be analyzed to determine properties of
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the suspended particles in the medium like the diffusion coefficient, scattering

coefficient, asyn1metry factor, average size of disperse particles, or viscosity [13, 14]. The

technique of measuring time dependent variations of the scattered light from an optically

dense medium requires reinterpretation of tIle scattering function and is called diffusing

wave spectroscopy, DWS. This technique has been applied to a wide variety of systems

like gels[15], colloidal dispersions[16,17],liquid crystals [18,19],polymers[20,21]. DWS

has also found its applications in biophysics in 111icrorheology [22], i111aging and studying

biological tissues [23-16], especially to differentiate between tumorigenic and

nontumorigenic cells. Recently, Page Cowan and Weitz applied DWS to ultrasonic waves

[27].

1.2 Diffusing Wave Spectroscopy - DWS

I.2.a Theory

Fluctuations in the intensity of the multiply scattered light are measured and expressed in

tenns of a normalized electric field autocorrelatioll function. TIle dependence of the

autocorrelation functions on the experimental geOlTIetry provides a powerful means of

exploring the dynamical structural properties of the scattering medium over vastly

different length and time scales [28-32]. DWS extends tIle single scattering technique of

dynamic ligllt scattering to the multiple scattering regimes by modeling the transport of

light as a randOlTI walk between scatterers. DWS uses the diffusion approximation. This

approximation assumes t11at the propagation of light in tIle medium is diffusive.

The DWS setup is s110wn schematically in figure 1. Here, a beam of laser light is
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directed through an optically dense medium composed of particles undergoing Brownian

motion. When a photon migrates through tIle medium, it scatters many times due to tlle

interaction witll the particles. The intensity interference produced by transmitted photons

is composed of many bright and dark regions called speckles. Since the scatterers in the

medium are moving, the speckle pattern fluctuates in time. DWS measurements are made

over an angular area of a typical speckle using an aperture and a photomultiplier. In a

way, photomultiplier collects the scattered electric field.

correlator

-' 'I' -I . + • '+ ,F'fJ\
i

time

Fig.l- Scllematic representation of tile experinlent. Laser ligllt incident on a salnple of
thickness L is rTIultiply scattered. Light is collected in a region, tIle size of a typical
speckle and sent to a photomultiplier tube (PMT). Correlation vs. time is obtained froITI a
correlator tilat is connected to PMT.
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The most convenient measure of the dynamics of tIle scattered light is the

temporal alltocorrelation function of the intensity. The intensity autocorrelation function

is tIle convolution of the intensity signal with itself at a later time, T. The relation

between the nOffi1alized intensity correlation function and the normalized electric field

correlation fU11ction is given by the Siegert relation [28,32,33]. ormalized electric field

autocoTTelation function is defined as

(1.2.1)

where ( ) denotes tIle average over time, t. The shift time, T, represents the delay

between the 'original' and the 'shifted' signal and is generally referred to as the delay

time. The Siegert relation is given as

(I(r)l(O)) _ I 12
--")--1+ pgj(r)

(1)-
(1.2.2)

wllere, j3, the efficiency of the photon collection system or signal to noise factor, is

generally less than one. It depe11ds on the number of speckles spanned by the detector and

the stability of the laser.

In the diffusion approximation, the path of an individual photon may be pictured

as a trajectory composed of straight-line segments. The average length of each line

segment is named the transport mean free path, 1*, or random-wall( step of photons

before significant change in direction. Another characteristic length is the scattering ll1ean

free path, Iss 1* , w11ich is the average distance between actual scattering events. Tllese

4



(1.2.3)

scattering eve11ts occur at positions r1(t), r2 (t), ... , 'i (t) ... , r
n
(t) for which the scattering

wave vectors are Ql,Q2, ... ,Q;, ... ,qn' The change in position of the il!l particle in a time r IS

Fig.2- Schematic representation of the change In the direction of scattering
vectors.

T11e scattering wave vector is the difference between the incident photon wave
vector and the scattering wave vector, thus for multiple scattering

ql == k1 - ko

q2 ==k2 -k 1

q3 = k 3 - k 2

the sum of the intermediate scattering vectors must be equal to the difference between the

incident and the scattering vectors, L;q; =kn - ko . For large n, a path of n steps has

5



length s == nls ' The contribution of a path of n scattering events to the decay of the

autocorrelation function is given by

(1.2.4)

where E(n) is the scattered electric field from the nfhpath with 11¢(tl)(r) the phase

change of the field due to all n scatterers where

n

I1rjJ(l1)(r) = Lq
j
L1r

i
(r)

i=1

(1.2.5)

When tI1e particles in the sample move, tI1e phase of the scattered light fluctuates. It goes

through one con1plete cycle when the path length changes by the light wavelengt11, A.

With the approximatioll that the particles are uncorrelated and the scattering is randOlTI,

the following equation can be written for the average c011tribution of all paths of

n scatterings,

(1.2.6)

Here, Is is tlle total scattered intensity and pen) is the fraction of photons that travel a

path having n = s / Is scatterings. The longer paths (larger n) contribute more to tIle decay

of the autocorrelatio11 function, because they generally represent larger path length

c11anges. Uncorrelated scattering events correspond to a random distribution of qi and a

Gaussian distribution for !1r(r) . TIle average of the square of the change in positions is

given as (l1r 2 (r)) = 6DBr where DB is the particle Browni an diffusion coefficient. Now,

Eq.l.2.4 can be written as

6



G (fl) ( ) . ( -ql (6r
2

( r) ) I 6 ) n
1 T == ISP(n) e

q

(1.2.7)

where ( )q denotes the average over q . For isotropic scattering, l* = Is' the mean-square

transfer[8] is

(1.2.8)

which gives

(1.2.9)

where ro==l/DBk~. For large n, G1(n)(r)decays rapidly to zero. In the case of

anisotropic scattering, Z* > Zs' the scattering intensity is peaked in the forward direction

for single scattering particles n1aking the sample. Therefore, more scatteri11g events are

required to randomize the direction of propagatioll. A complete randomization of the

wave occurs at transport mean free path Z* [2,34,35],

(1.2.10)

which gives the relation between transport mean free path and the scattering mean free

path, where (I-[) == (Cos fJ) stands for the average cosine of the scattering angle between

successive scatterers. In tIle case of a11isotropic scattering [8J, t11e average of the square

scattering wave is reduced as,

(1.2.11)
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Using this, the contribution of the paths of order n is written as in Eq .1.2.12

(1.2.12)

Tile contributions of all patlls are calculated to obtain the time correlation function.

Summing over scattering paths of all orders yields

<Xl -(2r/ro)4 11

G}(r)==IsLP(n)e I

n=l

(1.2.13)

G} (r) is called the total autocorrelation function. It is nlore clear in Eq.1.2.13 that decay

rate of a given path depends on its length. Tllere are so many scatterers on a long path

that each particle lTIUSt n10ve only a fraction of a \vavelength for the phase to change by

TC • Tllis leads to a rapid decay rate. On a short path eacll paliicle lllust move a substantial

distance for a phase change of J[ . This leads to a slower decay rate. SurTIlnation over n is

approximated as the integral over the path length s.

(1.2.14)

G
1
(r) becomes tIle Laplace transfonn of pes) when the limits of integration in

Eq.l.2.14 are extended from s == 0 to s == 00. Thus, the autocorrelation function can be

obtained by solving tile Laplace transform of the Diffusion equation.
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1.2.b Transmission:

For the transport geometry, COllsider a slab of thiclmess L and infinite lateral extent to be

illuminated by a pulse of light [32]. The 111ultiple scattered photons are detected at a point

r on tIle other side of slab. The change of the intensity at r is shown in figure 3. TIle

intensity of light at point r increases to ll1aximum as the light diffuses tI1follgh, tilen

decreases to zero wIlen all photons have left the sanlple. At tin1e t, the photons arriving

at r are the ones that have traveled a distance of s == ct. SinceP(s) is the fraction of

pl10tons that have migrated a path of length s, it is also the number of photons that have

been in the sample at time t. The most convenient way to obtain pes) for transmission is

to solve the diffusion equation with tI1e appropriate boundary conditions [2].

10

:§' 0.8.=
S

.D
~ 0.6

'-'''

a
.~

U2

== 0,4lJ.)
..........s
~

~) 0.2
~

0.0

0 20 40 60

time (psec)

80 100

Fig.3- The dependence of the detected transl11ission intensity of an incident delta

function pulse sent on a sample with L == 1/nl71 and 1* == 100Ian.
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The diffusion equation is given by

(1.2.15)

where a measllrable macroscopic observable, U(r, ro, t), is the photon energy density

within the sample. TIle dependence of the diffusioll coefficient on 1* is assunled to

be DB == cl* /3 w11ere c is the speed of light in the medium. The flux of the diffusillg

photons detected on the boundary at r is given by the nonnal derivative of U and is

assumed proportional to tlle probability pes) by these authors [8].

where Ii denotes tIle unit nonnal vector, directed outward. Plugging pes) found frOln

diffllsion equation into Eq.1.2.14 gives Eq.l.2.16 for correlation function for the

transmission geometry under consideration. However, taking the lower lilnit of

integration as 0 allows unphysical S110rt paths to contribute to the correlation function.

Therefore, this approach is good only for long paths in a transmission measurelnent.

Gr (x) == 2 r--J / r- ~ I
(1 + Ze x)Sinh(L-v x ) + 2ze-vxCosh(L-v x )

(1.2.16)

Here, Z == L / 1* is the dimensionless optical thickness. The penetration depth ratio and the

extrapolation depth ratio are shown by zp and Ze respectively [37-39J. They are both in

the solution of the diffusion equatio11 and are of order one. The concentration field

U extrapolates to zero at zel*. The extrapolation depth ratio is specified by the angle

dependent reflectivity, Rw(J.-l) [36].

10



(1.2.17)

Accurate calculatioll of ze for unknown boundary conditions from the angular

dependence of the diffuse transmission has been discussed by Durian [37-39]. To get the

normalized transmission correlation function Eq.1.2.16 should be divided by tIle static

diffuse trallsition probability T
p

[1 OJ.

(1.2.18)

The penetration depth ratio depends on scattering length and mostly is taken to be

zp = 1. If the scattering is isotropic, the photons are randomized immediately upon

ffillitiple scattering. For anisotropic scattering events photons are not randolnized

immediately, since the phOt011S scatter preferentially in the forward direction. A better

approxin1atio11 results vvllen averaging over the deposition depth zp weighted by Beer's

law.

(1.2.19)

The exponential tenn in the integral corresponds to the attenuation decay of the incident

beanl source with depth. TIle transnlission correlation function found in Eq.l.2.16 s110uld

be divided by Eq.1.2.19 after the average over zpis taken in order to get the normalized

correlation function.

(1 + ze)E - [(1 + zex)SinhlE + (1 + ze)ECoshIEJe- l
a (x) - ~--=---------------------
bT - T

p
' (1- x)[(l + Ze

2 x)SinhlE + 2z
e
ECoshl-J7J

11

(1.2.20)



The decay is nearly exponential tn (L / 1*)2 x. TIle coefficient of x shows the lllean

numbers of steps for a random walk taken by a transmitted photon. The length

(L / 1* )2/* is generally called the characteristic path length and is directly reflected in the

autocorrelation function as a characteristic decay tinle [8J. The characteristic path lengt11

changes by roy A during one c11aracteristic decay tinle. This corresponds to a total phase

change of 7r .

which gives ~(t1r2) ~ ~~ .This shows that the length scale that the particle motion can

be probed by translllissioll DWS is l11uch smaller than A while in weak scattering regime,

the length scales probed are greater or equal to wavelength. TIle effect of hydrodynanlic

i11teractions for tin1e scales corresponding to particle Illotion at the angstrom level have

been reported [59]. Using DWS for heavily scattering ll1ediulTI, the time scales can be

controlled by varying the sample thickness. Tile thickness is often chosen to be in tIle

range 5 < L / 1* < 20. Typically, the diffusion approximation used in DWS is not

acceptable for thicknesses smaller than 5 [41].

I.2.e Baekscattering:

For stlldying backscattering, the light is uniformly incident on a face of an otherwise

infinite slab of thickness, L [28-30,32]. The source is a delta function pulse deposited

at zpl* . In bacl<scattering, the light is detected from tIle illuminated face. The detected

intensity of the pulse source is shown in figure 4. The intensity peaks sharply and then
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decays slowly. TIle peak occurring at very early tinles shows that most of tIle photOllS are

bacl( scattered without migrating deep into the sample. A few scattering events are

enough to scatter them back. The subsequent decay of the backscattering function is due

to the contributions from paths of greater lengths. COllsequently, as seen in figure 4, there

is a much broader distribution of time scales in the decay as compared to figure 3.

~
10

U2
~oS

OoB;j

.0
a

'-'" 006
~\
.~

l.fl.

5 0.4.......
.5
~

~ 0.2
:.:::=

0.0

0 2 4 6

tirIle (psec)

8 10

Fig.4- TIle dependence of the detected backscattered intensity of an incidellt delta

function pllise sent on a sample with L == Imm and [* == lOOJLm.

TIle information about the decay in intensity is agaIn enlbodied in P(s).

However, extending tIle limits of integration in Eq.l.2.14 from s == ° to s == 00 does not

lead to sensible result for backscattering ge0111etry. At least one scattering event is l1eeded

for us to talk about backscattering. This fact requires n ~ 1. Therefore, tile lower bOUlld

of integration sIlould be taken at least Is . To ensure this, the source of diffusing intensity
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has been taken at a distance of zpl* with zp ~ 1 inside the illuminated face. For the

backscattering geometry, the unnormalized correlation function is calculated to be

0B (x) = Sinh[E~l- zp ]~+ Ze ECosh[E(l~- zp)J

(l+z e -x)SinhLE +2zeECoshLE
(1.2.21)

For a sample of infinite thickness, L ~ CIJ, all light IS backscattered and Eq.1.2.21

becomes

(1.2.22)

Several authors identify zp with the average value (zp) of the position of the source

[8,32,42]. The eXper11TIents show t]1at the decay of the correlation function is exponential

i11 the square root of time. This suggests

(1.2.23)

where r == (zp) + ze to be consistent with a slnall time expansion of Eq.1.2.22. When

Ig B (x)1
2

is plotted logarithmically as a function of E , a linear graph, where the slope is

r resllits. However, circularly polarized light differs in r from linearly polarized light. It

llas been shown that tI1e dependence of r on polarization is strongest for isotropic

scatterers and becomes weaker as 1* / Is ratio beCOIl1es larger [11]. Detailed explanation

on tI1e behavior of r will be given later ill the thesis.

In SUlTIlnary, DWS extends the application of QELS to multiple-scattering

regimes. However, it has its limits of application. It fails to fully describe the transport of

light for thin slabs [41]. Several methods have been used, one of which, based on the
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radiation transfer equation, was proposed by Ackerson, Dougherty and co-workers

[43,44] to improve DWS. MacKintosh and J01m developed a filed theory method that

describes tIle I10ndiffusive propagation of light at distances smaller than transport mean

free path [45J. Within the diffusion approximation the correct treatnlent of scattering

anisotropy, multiple reflections are not also allowed. Of particular interest is the two-

stream theory proposed by Durian that solves the propagation of light througll optically

dense media analytically without invoking diffusion approxin1ation [47].

1.3 Two-Stream Theory

1.3.1 Time-dependent two-stream equations

Durian proposed two-stream tlleory that studies the transIllitted and the backscattered

light, froIll an optically dense ralldom medium without using diffusion approxinlation.

TIle two-stream theory approximates tIle scatterillg photons by two counter propagating

concentration fields, Jd(z,t)and Ju(z,t). We take the two directions to be up (u)and

down (d), upon scattering. Since this treatluent is only in one dimellsion, ~, the

scattering angle is not a continuum variable and the model becomes soluble.

The time dependent two-stream equations are constructed by considering the

mechanislllS that change tile number of photons in a given direction. The photons are

added to or lost fronl a beam upon scattering. For example, absorption produces a loss in

the total number of photons. Taking all possible n1echanislTIS into account the change in

the intensity can be written:

I d (z, t + f1t) - I d ( Z , t) == [ I d (z, t) + (cf1t / Is) (1 - p)I u(z + cf1t , t)] - [(cf1t / I(l ) I d (z, t)

+ (c~t / Is )(1- p )Id (z, t) + Jd (z + c~t, t)] (I.3.1.a)
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I u (z + eM,t + M) -Iu(z +eM,t) == [Ill (z +eM,t) + (eM / (. )(1- p)IJ (z,t)] - [(eM / la)lu (z +CM,t)

+ (e~t / 1.\. )(1- p) I u (z + C~t , t) + Ju (z , t) ] (1.3. 1.b)

These equations give tIle change of the downward and upward going streanl intensities in

a length element, [z, z + ci1t] , during a time interval ~t, respectively. Here 'a stands for

the absorption length and p for the fraction of photons, which go into the forward

direction upon scattering. The terms in the first set of brackets on the rhs represent the

intensity that flows in, and that is transferred from the other stream. The ternlS in the

second set of brackets are the number of photons that are absorbed from, that scatter out

and that flow out, respectively.

(1- p)Iu (z + c~t,t) Id(z+c~t,t)

L

Fig.5- Scllematic representation showillg tIle gaIns (filled arrows) and losses (empty
arrows) of downward intensity.

Figure 5 shows the mechanisms that c11an.ge the number of photons in the downward

intensity. TIle filled straight arrow represents the intensity that flows in, the filled cllrved

arrow represents the intensity that scatter in, the do\vnward empty arrow represents the

intensity that flows out and the upward empty arrow represents the intensity that scatter

alIt.
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TIle average cosine of the two possible scattering angles may be expressed in

terms of p as < JL >== l(p) + (-1)(1- p) == 2p -1 which leads to Is /1* == 1- (f.1) == 2(1- p).

Taking the limit tJ..t ~ 0 and neglecting absorption the following differential equations

result:

DIu oIu 1
-==-+-(1 -1 )
at az 2zo d u

(1.3.2.a)

(1.3.2.b)

These equations are expressed in reduced units, where z ~ z / 1* and t ~ tc / 1*. For

applications to tlu·ee-dimensions [48] and to extend the utility of the equations to thick

samples and isotropic scattering, a dimensionality paranleter, 2 0 , is added. For a tnL1y

one-dimensional problem its value is 1. The results of these equations are also valid for

very Sllort length scales for which tIle light propagation is ballistic. The translnitted and

backscattered fluxes can be deduced from Eqs.l.3.2 by using the appropriate boul1dary

conditions.

1.3.2 Results for DTS

Diffuse Transmission Spectroscopy is a technique where the probability, Tp ' that an

incident photon will be diffusely translnitted through an opaque sample is measured. The

transnlission probability is given in tenns of the ratio of tile sample thickness to the

trallsport mean free path [49]. Eq.1.2.18 is the DTS prediction for the transmitted

photons. The prediction of two-stream theory for the transmission probability is ac11ieved

by time-illdependent solutions ofEqs.l.3.2 witll the following boundary conditions:
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(1.3.3)

where R is the boundary reflectivity. Eqs.1.3.4 presents solutions for z < zp and z > zp .

I
lei (z) + III (z) ==_0

Zo

(
1+ RJz + z 0 -- (1 - T )
1- R p

( ~ 1+ RJL-z+zo--T
1- R P

Z <zp

z> zp
(1.3.4.a)

Z <zp

Z > zp
(1.3 .4.b)

Here, 10 is the intensity of the incident light. These solutions also agree with the

expected C011ditions (1 - R)Id (L) == IoTp and (1 - R)I
ll

(0) == 10 (1 - T
p
)' TI1e plus solution

Eq.1.3.4.a indicates that the photon concentration extrapolates to zero at

Zo (1 + R) /(1- R) outside the edges of the sanlple. This is consistent witl1 the extrapolation

depth ratio introduced in DWS theory. The minus solution, Eq.1.3.4.b being nonzero,

indicates tllat the p110ton velocities are not directed isotropically which is contrary to

DWS. According to two-stream theory, this l1appens only for z < zp when the sample is

tilick or across the entire sample for thinner slabs. This difference is due to the

discontinuity of the streams at originating zp due to tI1e scattering probability p of the

deposited light and can ce specified as:

I d (zp + ) - I d (zp - )

III (zp - ) - III (zp + )

P

1- p
(1.3.5)

Eq.l.3.5 witll Eqs.1.3.4 gIves the two-stream result for tIle diffuse transmission

probability:
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T == zp + zo(2p -1) + zo(1 + R)/(l- R)

P L+2zoCl+R)/(1-R)
(1.3.6)

For the case of isotropic scattering, where p==1/2, Eq.l.3.6 reduces to Eq.1.2.18 with

Ze == zo(l + R) 1(1- R) . Taking the integral over a range of penetration depths, we obtain

a general trallsition probability result. Multiple reflections at the boundaries, which we

ignored ill DWS, can also be taken illto consideration. To do this, the probability for an

incident pIloton to cross the sample without scattering and then reflect, F == Rbe -LI '.~ , is

considered in the calculation. Here, Rb , is the ballistic reflection probability.

I

T ,== 1 f[T +F(l- T )]e- zP( I'.,-Z* 1Z dz
p 1- p2 P P s P

o

l(l-Rb)e-Ll's
(1.3.7)

This result applies for arbitrary slab thiclaless, boundary reflectivity and scattering

anisotropy. All exact result is obtained for one-dirnensional problems with Zo == 1 . Durian

has also showed that with the cI10ice of 2 0 == 213 [38] a better result for three-dimensional

case is achieved compared to the DWS predictions [47J. In the limit of strong scattering,

where the scattering is isotropic, Eg.1.3.7 reduces to Eq.l.2.18. When the limit of

allisotropic scattering is considered, where p ~ 1, Eg.1.3.7 gives

2z0 1(1- R)
T == --------

P I + 2zoCI + R)/(l- R)
(1.3.8)

The accuracy ofEq.l.3.7 is also tested with random walk computer simulations [38,50].
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1.3.3 Results for DWS

The predictions of two-stream theory for DWS are achieved by taking t11e Laplace

transfonn of the time-dependent Eqs.l.3.2. While doing this, the light source is

considered a down going instantaneous source at a distance zp from the edge of the

sample. Thus, tl1e light source can be taken as a delta function i11 position and expressed

at the initial deposition tin1e as

I d (z,O) == p5(z - zp)

I u (z,O) == (1- p )5(z - zp)

1.3.3.a Results for Transmission

(I.3.9.a)

(1.3.9.b)

For transmission geometry, we start with differential equations given in Eqs.1.3.2. Taking

the Laplace tra11sform a11d implementing the source boundary conditions given in

Eqs.1.3.9, the Laplace tra11sfonn of the downward and upward intensities are found to be

(1.3.1 a.a)

(I.3.IO.b)

whic11 yield differe11t results for z > zp and z < zp . Here, a == ~ev( (j) + 1/ zo) where (j) is

the transformed time variable and the constants Al and A2 are detennined by tl1e

following bou.ndary conditions
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1u (L, (j)) == RId (I ,()))

(I.3.l1.a)

(1.3.l1.b)

Now, applying these two boundary conditions to Eq.13.10.a and solving for the

transmitted pulse-gives

_ r--J [1 + 2Z0(P - ~l- P)){j)]Sinh(a zp) + 2Z0 (P + R~l- P))a Cosh(a zp)
(l-R)Id(L,OJ) = 1 R 1 R

[ (1 + R2
) J r-....... (1 + R) r--J1+2z0 2 OJ Sinh(aL)+2zo --. aCosh(aL)

(1- R) 1- R

(1.3.12)

Taking a Laplace inverse of this result will give the time-dependent emission for a pulse

P(s). Recall that Eq.l.2.14 relates the Laplace transfonn of pes) to G(T). TIlus

Eq.1.3.12 is the ulu10nnalized field correlation function,

[
1+ 2zo2(P - R~l- P))X]Sinh(a zp) + 2Z0(P + R~l- P))a Cosh(a zp)

GT(x) = 1 R 2 1 R ,

[

? (1 + R ) J r-....... ( 1+ R ) r-.......1+ 2zo- 2 x Sinh(aL) + 2zo -- a Cosh(aL)
(1- R) 1- R

(1.3.13)

where x=OJ/zo gIves a=~x(1+zo2x). To obtain the nonnalized [onn, Eq.1.3.13

should be divided by diffuse transmission probability, Tp given by Tp == (1 - R)Jd (L ,0) .

Taking the average over penetration depths as in Eq.l.2.19, the normalized transDlission

autocorrelation function for arbitrary thickness with no multiple reflections is found as in

Eq.l.3.14,
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(1.3.14)

where
J

A =1+ 2zo- x(p - R(l- p)) /(1- R) and B=2zo(p+R(1-p))/(1-R). This

equation represents an illlprovement to DWS result in Eq.l.2.20.

1.3.3.b Results for backscattering

Applying the san1e boundary conditions, Eq.l.3.11 but this time solving for Eq.l.3.10.b,

the backscattered pulse is computed as

_ [1 + 2ZOC - r~l; R) Jev ]Sinha(l- zp) + 2Z0C - r~l; R) Jacosha(l- zp)

(1- R)Ju (O,m) =---------------------

[
(1 + R 2)) r-..J (1 + RJ '"""-'1+2z0 2 m Sinh(aL)+2z0 -- aCosh(aL)
(1- R) 1- R

(1.3.15)

To generate the two-stream prediction for backscattering autocorrelation function, we

simply evaluate Eq.l.3.15 at OJ = xZo, as done in tIle case of transmission, that yields

[ 7(1-P(1+R)J] r--.J (l-P(l-R)J ~1+ 2zo- 1- R x Sinha(L - zp) + 2zo 1- R aCosha(L - zp)

GB(x)== 7) .
') 1+ R- r--.J 1+ R r-.J

[ 1+ 2zo- ( ! x Sinh(aL) + 2zo(--JaCOSh(aL)
(1- R)- 1- R

(1.3.16)
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This reSlllt is more accurate than DWS prediction, Eq.1.2.21. The reason lies in the fact

that distances smaller than the transport l11ean free path has an important role in

backscattering and they cannot be described correctly within diffusion approxitnation.

The nonnalized correlation function is reached by dividing Eq.1.3.16 by the diffuse

backscattering probability, 1- Tp , that obeys 1- Tp == (1- R)lu (0,0) . The final result for a

semi-infinite slab, for which Tp goes to zero, after averaging over penetration dept11s, is

presented in Eq.l.3 .17.

1 2 2(1-P(1+R)) 2 (l- P(l-R))
+ 2

0
X + 2

0 a [* ]1-R l-R I II
gB(X)== 7 * s

1+2zo" (l+R-) X+2Z o(1+R)a (I Ils)+a
(1- R)2 1- R

(1.3.17)

The ilnprovement achieved by two-stream theory over diffusion theory has also been

demo11strated by comparison witll the randonl walk simulation results [47]. The luain

advantage of two-stream approach is that, the results apply for arbitrary slab thicl<ness,

scattering anisotropy and boundary reflectivity. T11is increases tIle accuracy of diffusing

light spectroscopies and exte11ds their range of validity to thinner, more experin1entally

accessible samples. Furt11erlllore, time dependent two-stream equations 1.3.2.a and

1.3.2.b characterize not only the diffusive 1110tion of photons for long paths but also

ballistic Illotion for short length scales.
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1.4 This Thesis

Polarization becolues a consideration \ hen \vorking with the scattering of light. Since the

light is polarized, both tIle polarization of light and the direction of propagation change,

upon scattering. In recent years, t11ere has been an increasing interest in the propagation

of polarized light in randomly scattering nledia since it is used in all aspects of optical

technology. Significant progress has been made in renl0te sensing for underwater [51],

atil10spheric [52] and biological [53,54] imaging. Polarized light is also used In

geophysical engIneerIng as well as industrial n1etrology. The illvestigatioll of

backscattered polarized light is of particular interest in Inedical applications [23-26]. The

widely used technique in analyzing the propagation of light throug11 an optically dense

randOlTI medium is DWS. However, the effects of nlultiple scattering on a polarized beam

are not obvious and difficult to consider in diffusive wave spectroscopy. In this thesis, a

theoretical model to explain the underlying reason for the observed polarization

dependence behavior of light trans111itted or backscattered from an optically dense

mediulTI will be developed based on two-stream theory. In our model, the scattered

photons \viII be studied in four strean1S instead of two. We will follow the same steps as

in two-strealTI to ~each our dynanlic four-strealTI results. But, before starting the

derivation of four-stream equations, we consider the transition probabilities and their

microscopic definitions.
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Chapter 2

Transition Probabilities in a Four-Stream Theory

We now generalize the Durian two-streanl theory to include polarizatioll. The treatnlent

in one dimension, introduced in two-stream theory is still assumed: The scattered photons

are represellted by two beams, upward (u) and downward ((I). However, in addition, two

orthogonal polarization states are assigned to each direction, giving a total of four beanls:

f dp ,fdm ,fLIp' f ul1I ' The first index illdicates the propagation direction ("up" or "down")

while tIle second illdicates the type of polarization ("positively polarized" or "negatively

polarized"). The two nl11tllally orthogonal polarization states can be horizontal and

vertical in the case of linear polarization or right and left circular in the case of circular

polarization. TIle phase difference between scattered \tvaves and the phase relation

between two orthogonal polarization states of a single photon are ignored within the

theory.

2.1 Introduction of Transition Probabilities

In Durian's two-stream model, there are two possible transition probabilities: p is the

fraction of pll0tons, wilich go into the forward direction and 1 - p is the fraction that

change direction. In the four-stream theory, the scattered photons can either chal1ge

direction, polarization, or both. There are now 16 possible transition probabilities.
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Pudpm Pudmp Pdupm Pdump

Pudpp Pudmln Pdupp Pdunlm

P uupm P UI17np Pddpm Pddmp

Puupp PUllmn1 Pddpp Pddmm

Table-I: Possible transition probabilities in four-stream model.

Here, Pdupm is the transition probability that a photon directed downward with positive

polarization is scattered upward with negative polarization. Similar definitions hold for

the other probabilities. Because tIle scattering mediu111 is assumed isotropic, all elements

in the same row of table-l Inust be equal. Tile fact that the number of photons is

conserved in the scattering processes requires the summation of each column to be OIle.

Furthennore, Durian's p consists of two temlS. For example, for downward positive

intensity p is expressed as Pddpp + Pdr/pm which is independent of polarization.

2.2 Introduction of Microscopic Parameters

Before constructing and solving the four-streaITI model, we need to connect the transition

probabilities to single particle scattering characteristics that can be lneasured

independently or modeled theoretically. One of the microscopic parameters is the

asymmetry parameter, g, that corresponds to the average cosine of the scattering angle

introduced as < J1 >== l(p) + (-1)(1 - p) in two-stream model. In four- flux theory, g has

the same meaning as before. It is the mean cosine of the scattered intensity independent

of the state of polarization. Basically, it specifies the degree of anisotropy of the
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scattering process. For example, for tile downward positively polarized intensity, its value

becomes g(dp) = (Pddpp + PddpnJ + (-l)(Pdupp + Pdupn,)' Two other microscopic parameters that will

be used in calculations are a and gc: a refers to the probability that polarization state

remains unchanged by scattering and g c refers to polarization difference asynlmetry. For

I dp' (J" is CJ(dp) = Pddpp + PdliPP and g c is g c(dp) = (p ddpp - Pddpm ) + (-l)(p dupp - Pdupm ). Other

intensities, I dm ,fup ,film llave numerically the san1e a and g c values due to the isotropy

propeliies of the p giveIl in table-I.

The asymmetry parameters g has been defined in terms of single particle

scattering intensities and evaluated using :Lv1ie theory with great success [55]. Tllerefore,

we adopt this method to define the microscopic parameters a, g and g c • The definitions

of tl1ese paranleters are given below, I p' f
m

ipdicating the single particle scattered

intensities with positive and negative polarizations, respectively, given an incident

positive polarization. Note that the integration is over a continuous distribution of

scattering angles, not just forward and backward directions.

II p (p )d,u
a == --------

Iu p (JL) + 1m (p))d,u

Iup (JL) -1m (,u))pdp

gc = Iu/p) + 1m(JL))dJL
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The normalization is achieved by dividing by the total scattered intensity integrated over

all angles. It is clear that a- is the probability that a given state of polarization survives

scattering, g is the mean cosine of the total intensity averaged over all scatterillg angles

and g c is the mean cosine of the polarization difference intensities averaged over all

scattering angles upon a single scattering.

Polarizatioll states 111ay be defined by Stokes Theory of polarization and used to

obtain the numerical estimates of lllicroscopic parameters. Upon scattering from

spherically' synlmetric, optically inactive particles the scattered wave, which is generally

elliptically polarized, is expressed using Stokes Matrix fonnalism. For example, for a

right-circularly polarized beam incident on the particle, the scattered intensity at an angle

8 beCOlnes

Sll (8) S12 (8) 0 0 1 5 11 (8)

S12 (8) S11 (8) 0 0 0 SI2(8)
I s (8)==

0 0 S33 (8) S34 (8) 0
10 ==

834 (8)
10 (2.2.2)

0 0 -534 (8) 5 33 (8) 1 533 (0)J

\Vllere tIle 4 x 4 n1atrix is all amplitude-scattering 111atrix and the column matrix times 10

stallcts for the incidellt right-circularly polarized beam. The elements of the alnplitude

scattering nlatrix are

51, (0) = 112~S212 + IS,1 2
)

SI2 (0) = 112ijs212 -IS11
2
)

S33(0) = 112(S, 52*+S2 SI*)
S34(0)=il2(SIS2* -S2 S,*)

(2.2.3)

where 8
1
and S2 are scattering parameters that relate the incident and scattered electric

field componellts USil1g Mie scattering theory [51] . For an incoming circularly polarized
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light to the detector, the resultant detected intensity for right or left circularly polarized

light is determined using the appropriate n1atrix forms for rigI1t and left circular

analyzers.

1 0 0 1 SII (8) + S33 (8)

1 0 0 0 0 1 0
I R ==

0 0 0 0
Is =-

0
102 2

1 0 0 1 L Sll(8)+S33(8)

1 0 0 -1 SII (B) - 533 (B)

1 =! 0 0 0 0 1 0
Is ==- I

L 2 0 0 0 0 2 0

-1 0 0 1 S11 (8) - S33 (8)

(2.2.4.a)

(2.2.4.b)

T11e difference between the first elements of tIle Stokes vectors I R and I L gives the

degree of circular polarization and the sum gives the total scattered intensity. Thus

Idegree == S33 (8) and 1,0ral == SII (8) such that (J"a11d g factors are written as

The microscopic definitions of a and g c for linearly polarized light are n10re

ambiguously defined.

f[3/8(SII -SI2)Ji
2

+l!4S33 Ji+3/8(SII +SI2)}tJi
a==~-----------------

fSI,dJi
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f[3/ 4(SII - S12)11
2

+ 1/ 2S33 1l + 3/ 4(SI] + S'2) - S" ~Ldll
gc = fS,Au (2.6.b)

As the degree of projection of the final polarizatio11 direction along the incident direction.

Figures 6 and 7 show the () and g factors evaluated by Ackerson and Tata [55] for

cirClllar and linear polarization states for a rallge of ka = 2JrQ / A ,Q being the particle

radius and A the radiation \vavelengt11 in vacuum. r[he particle and suspending refractive

indexes are 1.59 a11d 1.33, respectively. Li11ear and circular polarizations evidence quite

different properties on single scatteri11g. For wavelengths large con1pared to particle

radius, linear polarization tends to be scattered isotropically (g c ~ 0) but the state of

polarization is preserved (() --). 0.8). For circular polarization there is a spin flip on

backscatteri11g cOll1pared to forward scattering (g c --). 0.5) and single scattering

randomizes the polarization (() --). 0.5) . In the opposite limit all particles tend to scatter

more in tIle forward direction (g,gc --).1) and tlle state of polarization is preserved

(0- -).1), though n1uch more completely for circular polarization.

Becallse of the conditions imposed on the transition probabilities in table-I, there

are only three independent parameters needed to define all 16 values. These parameters

are taken as those given in Eqs.2.2.5 to find,

Pudpm == (2 - g - 20- + gc)/ 4

P - (-0 + 2/T - 0 ) / 4udpp - b L/ be

P - (2 + g - 2cr - g ) / 4uupm - c

Puupp == (g + 20- + g c) / 4

and so all.
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Chapter 3

Dynamic Four-Stream Model for Polarization

3.1 Time-dependent Four-Flux Equations

We are ready to develop dynamic solutions for the total transmitted and the backscattered

intensities as well as the transnlitted and the backscattered intensities that show the

degree of polarization, using a four-strealTI model. TIle same steps leading to Duriall's

two-stream theory will be followed. However, here, a matrix fonnulation proves useful.

Let us begin with writing four-types of intensities I, ,I, ,I ,I in a matrix [onn:{P (m lp um

f
dp

1=
I dm

(3.1.3)
I lip

fum

The first indices indicate the propagation direction ("up" or "down"), while the secolld

indices give the type of polarization, "plus" or "minus". As in two-strealTI theory, we start

with tIle development of the time-dependent equations. To do that, all possible

mechanisms that change the intensity, in a given direction alld a given polarization, in a

length element [2,2 + ellt] during a time interval llt are considered. Since the polarization

is included, the polarization difference asymmetry, g c' and the probability of unchanged

polarization state, a will ultimately appear in the equations along with tIle asymmetry

parameter, g.
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I (z t+t1t)-J (7 t)-/ ( ') ct1t( _ )dp , dp L..-, - dp Z, t/ + -f- Plldpp flip (L: + ctJ.t, t) + Pudmp f lim (z + ctJ.t, t) + Pddmp [dm (z, t)
. S

- (ctJ.t [ z t + c!1t I Jf dp ( ,) 0 (p dllPP T P dllpm + P ddpm ) [dp (z, t) + I dp (Z + ctJ. t , t)
" a {, s

(3.I.2.a)

c~t ( )f dm (z,t+t1t)-[dm(z,t) = [dm(Z,t)+-p- PUdmm 1um(z+c!1t,t)+ PlldpmIllp(Z + cl1t t)+ Pddp",fdp(z,f)
, S

(
C!1t ct1t J- -e- [dm (z, t) + -.f.- (Pdll/nm + Pdump + Pddmp )Jdm (z, t) + Jdm (z + c!1t, t)

a 'S

(3.I.2.b)

(3.1.2.c)

ct1t ( )lum(z + cl1t,t + 6t) - I ul1I (z + c!1t,t) = IU/l1(z + c!1t,t) + - PdlllnIll1dm(z,t) + PtilIpmJdp(Z,t) + PUUP11lfllp(Z + c!1l,t)
es

(
cl1t c~t )

- -Jum(z + C~t,t) + -(Pudllllll + PL/l1J1lfJ + Puwnp)Jul11 (z + c6t,t) + lu",(z,t)
en f s

(3.1.2.d)

These equations give tlle change in intensities, f dp ' I dm , fliP' fum' respectively. The first

term on tl1e rigl1t-hand side of each equation represents the intensity that flows in, the

terms in the first set of brackets represent the intensities t11at scatter in, the last three

tenns in the second set of brackets represent tIle intensities that are absorbed from, that

are scattered out of and that flo\\' out, respectively. Figure 8 s110ws the mechanisms tIlat

cllange tIle l1umber of photons in the do\vnward positive intensity.
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Pddmp I dm ( Z , t)

Fig.8- Schematic representation showing tIle gaIns (filled arrows) and losses (elnpty
arrows) of downward positive intensity.

Taking tIle limit 6./ ~ 0 , n1aking the change of variables t ~ ct / f.\' and z ~ z / f.\' and

multiplying botll sides by f s / c the following differential matrix equation results:

~[I] = ~[N][I] + [M][J]
dt dz

where

(3.1.3)

-(Pr..Iupp + Pdllpm + Pddpm) - K PdUflljJ Pudpp Plldl11p

[M]==~ Pddpm - (pJumm + Pdll/l1P - Pddmp) - K Plldpm PlIdmm

.... 0 - PdllPP - Pdllmp PlIdpp + PUe/fllP + PUI/pm + K -Puump

- Pd/lpm - Pdllmm -PlIlIpm PlIumm + PIIJmp +P""mp + K

(3.1.4)

and

-1 0-1
[N] == (3.1.5)

0 1

1
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with K == Is / la defining t11e dimensionless absorption factor. The sign changes in the third

and forth row of Inatrix [M] because the downward intensity is attenuated in t11e

direction of increasing z whereas the upward intensity is attenllated in tl1e direction of

decreasing z-, as in two-stream theory.

For applications to three dilnensions, 2 0 is added in all four equations as in

Durian's model. Taking t11e Laplace transform with respect to tilne and thel1 Fourier

transform with respect to space, the matrix equation 3.1.3 becomes

s [i] -[ i 0 ]== - ik [i]+ [M] [i ] (3.1.6)

Here, "s " is the Laplace tin1e variable and [i] is tIle l11atrix formed froln transfolmed

intensities.

:d
PI

[i] = tJ
up

1
urn

Fourier transfoffi1ing the spatial variable results with

-ikz P

e Pddpp

-ila p
e Pddpm

-ikz p

e Pdupp

e -ikz p

Pdupm

(3.1.7)

(3.1.8)

where tl1e source boundary conditions, Eq.3.1.9 are used. Here we considered a pulse of

light deposited on the plane z == zp == z p (1- g )zo at t == O. Then the first scattering

detennines how the intensity is distributed to give
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fdp(z,O)

1dm (z,0)
[1(z,0)] ==

I up (z,O)

fum (z,O))

Pddpp 6(Z-zp)

= PddpmO(Z - Z p)

Pdllpp5(z - z p)

Pdupm6(Z - Z p)

(3.1.9)

T11e matrix [M] may be brought into block diagonal fom1 using matrix [S] in a similarity

form

1 1 1 1

1 1 -1 -1
[S] ==

1 -1 1 -1

1 -1 -1 1

such that

0 -l-g-K ° °
[M'] == [S][M][S'] ==

-K 0 0 0

° 0 0 -l-gc -K

° 0 -2 -20"-K 0

The sin1ilarity transfonn produces a new set of "intensities":

(3.1.10)

(3.1.11)

[i ']==
1dirf

1polplus

lpolminus

i dm + i dp - i LIm - i up

- i dm + i dp - i urn + i lip

- i dm + i dp + i um - i up

== [S][i] (3.1.12)

Here, i total stands for the total intensity independent of polarization, Ipolplus stands for tIle

degree of polarization independent of propagation direction, idiff stands for tIle net

direction of propagation independent of polarization and i polminus stands for the net

direction of propagation and degree of polarization. Equation 3.1.6 may be written as

[S][N](s[i] - [i o]) == -ik[S][i] + [S][M][S-l ][S][i]

== -ik[i'] + [M'][i']
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The matrix product [S][N] introduces a minus sign and interchanges i with i" and
total dlff

ipOIP1US with ipOlmil111S in [i] . The resulting set of fOUf equations for tIle intensities [i'] is

-ikzlJ ' ..
e "g + (-1 + g - S - K) 1diff - zki total

e -ikz
p

- (s + K)itotal - ik idiff

ikz ) ( 1 ) . 1-,:'- e I + a - - S - K - '/0g C belpolminus I polplus

( 1 2 ) -ikz p ("'" 2 ) . ki- + a e - /+s- + -'.. a K Ipolplus I polminus

==0 (3.1.14)

Now, the four-flux equations llave separated into two sets of two equations with each set

having the following form:

X o - (s - C)x - ik} == 0

Yo - (s - D)y - ifa == 0

(3.1.15.a)

(3.1.15.b)

The first and third equations in matrix 3.1.14 are in tIle [OllTI ofEq.3.1.15.a while the

second alld fourth equations are in the form of Eq.3.1.15 .b. For the first set of equations

the (-'Yo' C) pair is (e-ikz,Jg,g_l_K) and (e-ikZPgc,gr-l-K)respectively. For the second

set of equations the(Yo,D) pair is (e- ikzp ,-K) and ((2a -l)e -ilu" ,2a - 2 - K) respectively.

For z < Z ,the inverse Fourier trallsforms of xand yare
p

- ( ) C -h C k f(( D) 1) A.-(Z-Zp )+ikZp)1 2 1X1ess Z,S == I·e + 2· e +~ s- Xo - .Yo.A.e A (3.1.16.a)

C ) -, -k (C ) C Az)11 fCC C) 1) A.-(z-zp)+ikzp )/2 1Yless(Z'S)==((- +s.LI.e"+ -so 2.e' A+~S- Yo-Xo.A.e /l,

(3.1.16.b)

alld for Z > Z p

-k C Az 1(( D) 1) -A.-(Z-Zp)+ikz/))I 2 1Xgreater(Z,S)==Cl.e + 2.e +~ S- XO+YO.A.e A (3.1.17.a)

-Az (C ) C .h) 1 1 f(( C) 1) -A(Z-Zp )+ikzp )12 1Ygreater(z,s)=(-C+s).C1.e + -S. 2.e /l.,+~ S- YO+XO.A.e /l,

(3.1.17.b)
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where A = A} = ~(S - g + K + l)(s + K) for solution ofthe first two equations in matrix

3.1.14 or A =~ = ~(s + 1- gc + K)(S - 20- + 2 + K) for solution of the last two

equations in matrix 3.1.14. Using ~ in E.qs.3.1.15 yields two stream theory results where

~ and s can be expressed in tenns of two-stream theory parameters, a and OJ , and

K 0 0 respectively.

S == zoaJ(l- g) leading to S = Zo 2x(l- g)

(3.1.18)

(3.1.19)

To determine the coefficients C1 and C2 , new intensities that are computed by using

Eqs.3 .1.16 and Eqs.3 .1.17 are introduced.

-
I less ( Z , s) == (xless + Yless) / 2

-
1 greater (Z, s) == (Xgreater + Ygreater) / 2

-

I tless (Z, s) == -(X1ess - Yless ) /2

I t greater ( Z, s) == -(Xgreater - Ygreater) / 2

(3.l.20.a)

(3.1.20.b)

(3.1.20.c)

(3.1.20.d)

- -
I-tless(Z,S) , I-tgreater(z,s)represent the Laplace transfonn of either total downward

intensity independent of polarization or degree of polarization in dow11ward direction for

-
z<zp and z>zp' respectively. Similar definitions hold for Itless(Z,s)and

-
J t greater ( Z , s) .
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3.2 Results for DWS

3.2.1 Results for transmission

The evolution of the transmission of a pulse in Laplace time IS written as

- r-..;

T(s) == (1- R)I ~grealer(h, s) where R is the average reflection probability of the diffusing

photons and h ==L/(zo(l-g))=L/ls is the scaled optical thickness. The dynamic

transmitted pulse is calculated as in Eq.3.2.2 after finding coefficients C1 and Cz upon

implementing the following boundary reflection relations:

- -

I ~Less (0, s) == RI tless (0, s)

- ~ - r-.;

I t greater (h , s) == RI J.- greater (h ,S)

(3.2.1.a)

(3.2.1.b)

(3.2.2)

It is appropriate to average Eq.3.2.2 by integrating over the penetration depth ratio. While

taking the integral, T(s) is n1ultiplied by the tellTI e-ZfJ~O 'vvhich represents the exponential

decay of the incident beam with depth into tl1e sample,

II

T'(C,D,R, X o,Yo' h,A,S) = fTCs)e -'1"0 zodz p

o

[
1+ R ] I ~ [ 1+ R ? l -h7 ,...""x ;1?-A'---(B'-YoA?) zoe- 1Z/lSinh(h1) + A'+--(B'-(xo+Yo)zo-) l(l-e -oCosh(hl))

o l-R l-R

- [( (1 + R)
2

(1 + R2) J ~ 1+ R ,...",,]
( z0 2 _12

) C+D -2 s Sinh(hl)-21--Cosh(hA)
(1 - R)2 (1 - R)2 1- R

(3.2.3)
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where A'==(C-s)yozo and B'=(D-s)xozo' For simplicity, the reflections of the

incident, unscattered beam are ignored. In order to find the static transmission result,

Eq.3.2.3 sIl0uld be evaluated in the lilnits goes the zero to find

I ~

Tp (C,D,R,xo,Yo,h)

2 [( (1 +R) 2 J. r;:;;:.,~ 1+R r;:;;:.,'"'-' ](zo -CD) C+D--- Slnh (....;CDh)-2CD-Cosh (....;CDh)
(l-R)2 l-R

(3.2.4)

3.2.1.a Result for total transmitted intensity independent of polarization

Substituting (xo,yo,C,D) =(g,l,g-l,O) into T(s) corresponds to the Laplace

transformed transll1itted pulse or the field autocorrelation function independent of

polarization. When comparison to the two-stream representations is done by using

equations 3.1.18 and 3.1.19, 'vve find result Eq.3.2.5 to be exactly the same as the t'vvo-

stream theory prediction, Eq.1.3.12.

[1 + 2Z0 ( P -1R~~- P)}v]Sinh(azp ) + 2Z0 ( P +1R~~- p) )aCOSh(azP)

T ~ Jlp 1+ R 2 r---J 1+ R r---J

( 1+ 2zo ( 1(j) Sinh(aL) + 2zo(--JaCOShCaL)
(1- R) 1- R

(3.2.5)

"-' "-'

The index in I:
p
stands for "independent of polarization". The relation between Land h is

given by I = zohC1- g).

Substitution of tIle same set of values, tllis time, in Eq.3.2.4 and neglecting

absorption gives the static transmission probability, that is the four-stream prediction for

DTS.

40



1 ( 1) 1+ R -hz [ ~ 1+ R ~ ], +g Zo - +zo---e 0 l-g(l-zo +hzo)+zo--+hzoT == l-R l-R
p ~ l+R

hzo(1-g)+2z o--
l-R

In the case of isotropic scattering, g = 0, this reduces to

, 1+ -hzo (1 h'""-')T = __z_e_-_e +_z_e_+_,2_°_
P

hzo + 2ze

(3 2.6)

(3.2.7)

which is in agreell1ent with the DWS prediction Eq.l.2.19. In order to generate four-flux

correlation functio11 prediction for transmitted pulse independent of polarization, g T ,
IfJ

(Xo,Yo, C, D) == (g,l, g -1,0) values are used in Eq.3.2.3 and then the result is normalized

by dividing Eq.3.2.6.

(3.2.8)

The correlation fU11ction versus (h *zo) 2
X is shown in figure 9 for four combinations of

boundary reflectivity and scattering anisotropy. As seen from the plots, the correlation

fU11ction decays faster when the scattering is anisotropic. It is because the light scatters

more before leavi11g the sall1ple. The influence of anisotropy becomes less for larger

x and thicl(er samples. However, the effect of reflectivity persists even after t11e optical

thick:ness has eliminated anisotropic effects. When multiple reflections are included, the

static transmission beCOll1es

1+ z 0 _1+_R + g (z0 - 1) - F[1+ g (z0 + 1) + h* z 0 + z 0 _1+_Rl+ e -hz" (F - 1)[1+ g (z 0 - 1) + z0 _1+_R + h•z0l
' l-R l-R l-R
T==--------~-----------=-~_=__--~---------

p ? * l+R
(1- F-)h 2 0 + 2.20 --

l-R

(3.2.9)
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where the probability for a photon to be reflected froln the far boundary after crossing the

sample withollt being scattered is expressed as F == R
b

.e -17zo where R
b

is the reflection

probability of ballistic photons and h* =h(1 - g) == L /(l *z0) .
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Fig.9~ Four-stream predictions of Eq.3.2.8 for normalized electric field autocorrelation
function for transmission independent of polarization through slabs of various
thicknesses.
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3.2.1.b Results for degree of polarization in tIle downward direction

Substituting (xo,Yo,C,D)==(gc,2u-1,gc- 1,2u-2) into T(s) gives the degree of

polarization in the downward direction:

[1+ R J [1 + R J-1R gc (20--2-s)+(2cr-l)(gc -l-s) Sinh(A,z )- g +--(20--1) A-,Cosh(A.,z )
- - p c l-R - - P

T
dp

= [ I]l+R - 1+R 2 l+R
(gc -1)-(2cr-2)(--J -2 IS Sinh(A1h)-2--A2 COsh(A 2 h)

l-R (l-R)- - I-R

(3.2.10)

The index in Tdp stands for "degree of polarization". In order to compute the degree of

polarization of the light transmitted by the scattering mediun1 for incident linearly and

circularly polarized light, we should define the polarization parameter, J.

Experimentally, when a sanlple is illuminated by linearly polarized light, an analyzer is

used to detect the scattered light whose polarization is either parallel or perpendicular to

the incidellt light. In four-flux theory, we will take 0 as 1 for parallel polarization and as

-1 for perpendicular polarization. If the incident light is circularly polarized light? the

scattered light can be either of the same helicity or of opposite helicity. When tile incident

and the scattered light are of the same helicity 5 is 1 and 5 is -1 if the other helicity is

measured, for which incident and reflected photons are mirror symmetries of each other.

Now, we are ready to write four-stream expression for the normalized autocorrelation

function including polarization:

T'(g - 1,0, R, g,l, h, AI'S) + g T'(g c -1,20- - 2, R, g c ,20- -1, h, A2 , s)
gTt/p(X)==, ........,' ........,

Tp (g-1,O,R,g,1,h)+5Tp (gc -1,2o--2,R,gc,2o--1,h)
(3.2.11)

When 5 ==0, the polarization is neglected, and the above equation reduces to Eq.3.2.8 or

the two-stream result for transmission, given in Eq.1.3.14. The plots of the results of
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gTe/I} (X) for circular polarization channels are shown in figure 10 and 11. Tllese plots are

all logarithm of the correlation function versus (h"ZO)2 x. The decay of the correlation

flInction for different 5 values for tl1fee different scaled optical thicknesses, h·2
0

== 5, 1°
and 20, can be seen in figure 10. The boundary reflectivity and scattering anisotropy are

denoted by curve type: Solid line for R == 0, g == 0; long dash for R == 0, g == 0.9, dotted

for R==1/2,g==Oand dash-dot-dot forR==1/2,g==0.9. Figure 10 exhibits polarization

dependence of the autocorrelation function. It is seen that the decay of g. (x) is more
I ell)

rapid vvhen the incident and scattered light are of opposite helicity. This is better seen in

tIle case of tl1in samples. As thickness increases the difference in the decay rate

ofg .. (x) for 5 == 1and for 5 == -1 becomes less. Polarization dependence disappears as
7i/}}

the tlliclGleSS of the slab reaches h· Zo == 20. The sanle data is presented in figure 11 in a

different fashion where it is easier to see how decay rate changes for different

polarizations parameters, 5 . The decay rate is greatest for 5 == -1 showing the greater

contribution of long paths in opposite helicity channel. The anisotropy becoilles less

important for larger x and thicker sanlples. The fact t11at anisotropy increases with particle

size leads to tIle conclusion that the form of correlation function depends on particle size.

As well as depending on anisotropy, autocorrelation function also depends on tIle

boundary reflectivity: Greater reflectivity causes quicker decay.
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Fig.12- Four-stream predictions of Eq.3.2.11 for linearly polarized light through slabs of
various thicknesses. TIle right plots are for perpendicular and the left plots are for parallel
polarization. Boundary reflectivity and scattering anisotropy are labeled.
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In figures 12 and 13,the behavior of the autocorrelation functio11 is prese11ted, this time,

for linear polarization. The decay of g (x) is 111anifested again for different 5 values and
Tup

three different scaled optical thicknesses. The decay rate is greater for perpendicular

polarization, i.e. the direction of the polarization of most of the scattered light is

perpe11dicular to the incident light. However, as in the circular polarization case, the

differe11ce in the decay rate ofg. (x) for 5 == 1and for 5 = -1 becomes less for thicker
l up

samples. For li11early polarized light, we can see the polarization depe11dence for just a

slab of tl1iclmess of h"zo == 5. The polarization dependence remains to thiclcer san1ples

when circular polarized light is used. T11is corresponds with the "rule of thumb" that

h*2 0 ~ 10 for reliable measurements. When g gets larger, the circular polarization

independence extends to lTIllCh less than h*2 0 ~ 10. This should be checlced

experimentally.
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Fig.13- The dependence of transmission autocorrelation function on polarization in the
case of linearly polarized incident light. Various thicknesses, boundary reflectivity and
scattering anisotropy are labeled.
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3.2.2. Results for backscattering

The evolution of backscattering in time is written as B(s) = (1- R)liless (O,s) . Applying

the boundary conditions, previously given in Eqs.3.2.1, tlle dynamic backscattered pulse
is found as

B (s) ==(-1 + R) (R-1)xo+(1 +R)Yo)~OSh (h -Zp)~+(B (l +R)x:o+A (-1 +R)yo -s(xo+~ - Yo ~R.JU))Sinh (h -zp)A.)

(R"' -1)2ACosh (hA)+(A (R-l)2 +B (l +R)2 -(1 +R2 )2s)Sinh (hA)

(3.2.12)

From Eq.3.2.12, we will try to get the autocorrelation function for a semi-infinite slab, for

simplicity. For this purpose, B(s) should be integrated over the penetration depth fonn 0

to 00.

w

B'(C,D,R,xo,yo';i.,s) = fB(s)e-z"ZOzodzp
o

12 ( 2 I 1+ R I 2 ) 1 (AI 1+ R B')(Yo - xO)/L 2 0 + xozo - A + --(B - Yozo ) /L - +-- 2 0l-R l-R
(3.2.13)

3.2.2.a Results for total backscattered intensity independent of

polarization

In order to generate the four-flux prediction for the backscattered pulse independent of

polarization, the first set of (xo,Yo,C,D) are (g,l,g -1,0) , respectively, should be

substituted in B(s). Comparison with the two-stream representation is done by using

equations 3.1.18 a11d 3.1.19, we reach Eq.3.2.14 that exactly yields the two-strean1 th~ory

prediction for the backscattered pulse, Eq.l.3.16.
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[1 2 (l-P(l+R))] '"'-' (l-P(l-R)) ,....."
B = + 2 0 l-R OJ Sinha(L-zp)+2z0 l~R aCosha(L-zp)

lp ( 2 )(1 + R ) '"'-' 1+ R ,....."
1+2zo OJ Sinh(aL)+2Zo(--)aCOSh(aL)

(l-R)- 1-R

(3.2.14)

To fi11d the backscattered autocorrelation function without polarization, we sin1ply

evalllate B' == (g -1,0, R, g ,1, AI's) . The result will automatically equal to tIle normalized

,
autocorrelation function, since in the limit h ~ 00 the nonnalization factor 1 - T goes, , p ,

to 1.

gB ==B'(g-l,O,R,g,l,AI,s)
IfJ

(3.2.15)

Four-flllX predictions of Eq.3.2.15 are shown In the following graph for different

boundary reflectivity and different anisotropy.
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x l /2

1.5 2.0 2.5

Fig.14- Four-stream predictions of Eq.3 .2.15 for nom~ali~ed electric field autocorrela:ion
function for bacl<scattering independent of polarIzatIon through slabs of varIOUS

thicknesses.
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3.2.2.b Results for degree of polarization in the upward direction

The substitution of (xo,Yo,C,D)=(gc,2o--1,gc- 1,2o--2) intoB(s) gives the degree

of polarization in the backward direction, Eq.3.2.16.

[c -1)(2 - - I + R ( 1+ RJj. - [ I + R ] -gc a 1) (2a-2)gc---s(2a-l)-g.- lIlhA-,(h-z)- a.--(2a-I)~CohJ(fz-7)
Bdp '" [I- R ' 1- R " P '" 1- R - ""2 - P

I + R ~ I + R2
. - I + R . -

(g(" -1) + (2a - 2)(_1 -2--.., S]Slnh(h A-,) - 2-ACoslz(h A-,)
1-R) (l-Rt - I-R -

(3.2.16)

Taking the integral of Bdp should be taken [ron1 zero to infinity, we obtain:

00

B'(gc -1,2a - 2, R, gc ,2a -1, A, s) = fB i e -Z/JZO clz
- . r.p p

o
(3.2.17)

The four-flux expression that represents the observed polarization dependence of the

autocorrelation function of backscattered light., is, then,

()
B'(g-1,O,R,g,1,A,I,S)+6B'(gc -1,2o--2,R gc,2o--1,~ s)

g x ~ -
Bdp 1+ 5limB'(gc -1,20- - 2,R,g ,20- -1)

O · C
5~

(3.2.18)

Results for gB (x) for four polarization channels are shown in figures 15 and 16. For
dfJ

isotropic scattering, helicity preserving channels decays faster. When the scattering

paliicles are bigger, causing the scattering to be anisotropic, the effects of polarization

differs. This time, opposite helicity chalmels have the greater decay rate. The helicity flip

can also be observed in figure 17. For g ~° the circular polarization tends to flip on

backscattering giving the slow decay for few scatterings. The preserving polarization

sends the light deeper into tIle sample. For g ~ 1 the polarization tends to be preserved

on scattering, so the backscattering has the same helicity after one or more eve11ts. In the

case of linear polarization, the decay rate is greater for perpendicular polarizatio11 for all

fOUf different cOlnbinations of boundary reflectivity and anisotropy. The fact that linear
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character of polarization states is not affected that n1uch by backscattering regardless of

particle size can also be seen from figure 18. Linear polarization tends to be preserved.

To change t11e polarization requires longer paths and hence more n10dulation.
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Fig.15- The decay of backscattered autocorrelation function for a semi-infinite slab for
circular polarization chalmels. The left plot shows helicity preserving c11am1el; the right
plot shows opposite helicity cham1el.
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Chapter 4

Discussion of results and conclusions

4.1 Comparisons of results

In the previous chapter, the results for dynanlic four-stream tl1eory for polarizatioll have

been presented. In this chapter, the linear and the circular polarization results will be

compared for translnitted and backscattered light. A cOlnparison of four- flux results for

polarization with the existing experilnental data \vill also be made. At the sanle time,

agreelnent between four-stream and t\Yo-stream results will be mentioned.

4.1.a Comparisons of results for transmission

Including polarization in two-stream theory results in four-stream model. Therefore, at

each step of our calculations, we have checked, if our results simplifies to two-strealU

results when polarjzation is neglected. It has been shown that the result of four-flux

model for transmitted pulse independent of polarization, Eq.3 .17 is exactly the same with

the two-stream result, Eq.l.3.12. We have also showed when polarization IS not

considered the 110rmalized autocorrelation function for degree of polarization In the

downward direction, given by Eq.3.23 simplifies to Eq.3.20 which is in agreeluent witl1

the two-strealll result, Eq.1.3.14. The dependence of the correlation functiol1 on the

polarization type and how polarization proceeds as the size of the particles increases

from very small to very large are presented in figure 19 for various optical thicknesses.
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For anisotropic case, the largest difference in decay rates is between two circular

polarization states. As can be seen from the figure, the correlation function decays faster

when the detector measures the helicity opposite from the incident light. This shows the

greater contribution of long paths in opposite helicity channel. For isotropic case, the

decay rate for incident linearly polarized light is greater than that for incident circularly

polarized light. As the size of scattering particles gets larger all polarization cham1els

exhibit lTIOre rapid decay. However, as the thiclu1ess of the san1ple increases, all four

channels show the same behavior, i.e. there is no dependence 011 polarization.
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Fig.19- Four-stream predictions of transmission autocorrelation functions for four
polarization c11annels for three different thicknesses. Four different combi11ations of
boundary reflectivity and anisotropy are labeled.
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A comparison of four-stream predictions with the experimental data for suspensions of

polystryrene latex spheres in water can be done through comparison of the followillg

figure. Figure 20 illustrates the four-strean1 static transn1ission results for degree of

polarization, P, as a function of h*2 0 for three different dimensionless size paralneter ka

values. A general equation for degree of polarization is given as

,
P =Tp (gc -1,2a-2,R,gc,2a-l,h) (4.1)

The behavior ofP, which is computed from Eq.4.1, is sl10wn for three different ka values

in figure 20.The curves all exhibit linear behavior in these plots. For Mie region, where

particles are large compared to the wavelength, ka> 1, the slopes depend strongly on tIle

incident state of polarization. TIle slope for linearly polarized light is greater than the one

for circularly polarized ligllt. For ka----- 1, the slopes of these plots do not depend 011 the

inpllt polarization.

D. Bicout,C. Brosseau, A.S. Martinez and J.M. Sclunitt studied numerically the

depolarization behavior of light, propagating through a slab that is composed of

uncorrelated polystryrene latex spl1eres, by using Monte Carlo simulation code [56,57J.

TIley have also Ineasured P experimel1tally with polystryrene latex spheres having

diameters of 0.22,0.48 and 1.05 Ilm using a semiconductor laser emitting at 0.67

micrometer as the light source. These experimental values are compared with four-strean1

theory results in figure 21. For size paranleter values of 1.23, 2.69,5.89 respectively.

Four-strean1 results are in good agreement with the experimental results, especially for

large ka values for circular polarization. However, the agreement is not good for linear

polarization.
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4.2 Comparisons of results for backscattering

For the backscattering geometry, we have obtained dynamic backscattered pulse. It has

been s110wn that the result of the four-flux n10del for the backscattered correlation

function, Eq.3.26 is exactly the same with the two-strean1 result, Eq.l.3.16. Wl1en J is

taken zero, the nonnalized autocorrelation function for degree of polarization for

backscattered light, given by Eq.3.30 also reduces to Eq.3.27 vvhich is in agreement with

the two-strean1 result Eq.l.3.18. The semilogarithn1ic plot of the backscattering

autocorrelation function is shown in figure 22 for four polarization chalmels. The left

plots are for isotropic cases while the right plots are for anisotropic cases. As can be seen

from tIle figure, for isotropic scatteril1g, the two linear polarization channels exhibit the

largest difference in polarization, parallel polarization having a slllaller slope. T11is shows

that low order paths n10stly preserves their incident polarization In t11e same 111anner, we

can also conclude that high order paths changes the state of polarization to a high degree,

resulti11g in a faster decay of the correlation function. There is also difference between

circular c11annels. However, for circularly polarized light, low order sequences produce

mostly backscattered light of opposite helicity. As a consequence, the opposite helicity

channel decays slower than helicity preserving channel. While going from isotropic to

anisotropic regime, backscattering, in a way, acts as an optical mirror, for circularly

polarized states. Therefore, a reverse in the relative behavior of the circular polarization

channels is observed, resulting the slope of helicity preserving channel to be larger. The

greater contribution of short paths in the parallel polarization is still valid for linear

polarization in the anisotropic regin1e.
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The slopes of the plots in figure 22 are characterized by the parameter r. As

explained in section 1.2.c, r appears as the coefficient of j; when the shori tilne

expansion of gB
dP

, given in Eq.3.30, is taken. The four-flux prediction for y is found as

I+R
zo--+g(zo-l)-l

y== l-R
1+5N

Here, N is

(4.2)

') 1+R 7 J ( (~-1-R(3 +z -40-) 1+R }
N=(gc -1)(2o"-1)zo- -2gc(o--1)-zo- -;So-(1+gc -20)2

0
-~o gc 0 0 -zo -(20--1)-1) 0

l-R l-R l-R

where .,120 == ~2(a -l)(gc -1). Taking the boundary reflectivity R == 0.004, we now

proceed to compare our four-flux results, for r with the experin1ental data. The

comparisons between Eq.4.2 for circular polarization states and measurelnents done by

Mackintosh, Zhu, Pine and Weitz [58] are shown in figures 23 and 24, Y+, showing the

same helicity cllannel, alld r_ showing tIle opposite helicity. For small scattering

particles r_< r+ while for large particles where forward scattering dominates y- > r+ .

The dependence of ron particle size for two linear polarization types is illustrated in

figures 25 and 26. Both four-flux Inodel predictions and experimental measurelnents

done by D.l. Pille, D,A,Weitz, J.X.Zhu and E. Herbolzheimer [11] are shown for slope of

parallel polarizationrll in figure 25. The similar comparison is shown for the slope of

perpendicular polarization r.l in figure 26.

65



•

•
• •

10

•

8

•

6

•

42

2.8

•2.6

2.4

2.2

Y 2.0

1.8

1.6

1.4

1.2
0
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4.3 Conclusions

Tl1e objective of this research is to lnodel for the observed polarization dependence in the

behavior of translnitted or backscattered light, froln an optically dense random medium.

Satisfactory agreement of four-strean1 results witll the two-stream results has been found

when polarization is neglected, as mentioned previously. Thus, the achievements of two­

stream theory are tnle for four-strealTI theory, as well: The results apply to arbitrary slab

thickness, scattering anisotropy and boundary reflectivity. TIle improvelnent achieved by

four -strealTI tlleory over two-stream theory is that, four-strean1 results include the type of

polarization of incident and multiply scatted light. In order to validate our theoretical

approacll to polarization dependent scattering, we have cOl11pared our results with reeellt

experimental data. The agreement between the measurements for static transmission with

circularly polarized light and four-stream theory is good. However, for linearly polarized

light, we observe a noticeable failure when compared with the data. Presumably this

failure is related to the more an1biguous definitions of the Inicroscopic paralneters 0' and

gc for linear polarization. Other fom1ulations merit testing. For backscattering, there is

reasonable agreement given tI1e fact that neither two nor four stream theories produce the

exact a11alytical fonn seen experimentally.

OUf results can be used in multiple light scattering experiments that encounter the

effects of multiple scattering on a polarized beam, thereby, allows one to probe the

structure and dynalnics of medium.
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