
A COARSE-GRAIN PARALLEL GENETIC ALGORI THM TO

IMPROVE THE BOUNDS OF SOME RAMSEY NUMBERS

By

lKERGONDRA

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

1998

Submitted to the Faculty of the
Graduate College of

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 2002

A COARSE-GRAIN PARALLEL GENETIC ALGORI THM TO

IMPROVE THE BOUNDS OF SOME RAMSEY NUMBERS

Thesis Approved:

I
,/\

/'v }-l.
Thesis Advisor

11

PREFACE

Ramsey Theory studies the existence of highly regular patterns within a large

object or set of randomly selected points or numbers. The role of Ramsey numbers is

to quantify some of the general existential theorems in Ramsey theory. Attempting to

find Ramsey numbers has been an arduous task that is too often unfruitfuL Only a

handful of specific numbers are known.

Genetic Algorithms (GA), which are based on the idea of optimizing by simulating

the natural processes of evolution, have proven successful in solving complex

problems that are not easily solved through conventional methods. However,

premature convergence is an inherent characteristic of traditional GA's that makes

them incapable of searching numerous points in a problem domain. Parallel GA

(PGA) is an extension of the classical GA that takes advantage of a GA's inherent

parallelism to improve its time performance and reduce the likelihood of premature

convergence. A cgGA (Coarse-Grain GA) maintains a number of independent

populations and allows for the occasional interchange of individuals. In this manner, a

cgGA increases the diversity of search paths and helps to stop premature convergence

to non-optimal solutions.

The objective of this thesis was to develop a simulated Coarse-Grain GA to verify

and validate the superior performance of cgGA's over traditional GA's applied to the

problem of improving the bounds of classical Ramsey Numbers. Threads were used

to simulate the parallel evolution of multiple subpopulations. The tool developed is a

JAVA applet called SIPAGAR (SImulated PArallel Genetic Algorithm for finding

111

Ramsey numbers). Significant differences between the simulated cgGA and the

traditional GA were observed in both the premature convergence rate and the quality

of the results. This leads us to the conclusion that future cgGA-based attempts to

improve the bounds of Ramsey Numbers will probably be more promising that those

based on traditional GA's.

IV

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my graduate advisor, Dr. Mansur

H. Samadzadeh, the best advisor I could have wished for, for his supervision and

guidance through the duration of this research, and for his keen interest in my progress. I

thank him for introducing me to the topic of Ramsey Numbers and for his invaluable

advice along the way.

I would also like to thank Drs. John P. Chandler and Blayne E. Mayfield for

serving on my thesis committee and for their valuable input.

I am forever indebted to my parents, family, and friends for their endless

encouragement and support.

v

Chapter

TABLE OF CONTENTS

Page

I. WTRODUCTION 1

II. RAMSEY THEORY 3

III. GENETIC ALGORITHMS 6

3.1 Introduction to Standard Genetic Algorithms 6
3.2 Approach and Representation 9

3.2.1 Solution Encoding 9
3.2.2 Evaluation Function 10
3.2.3 Crossover 11

3.3 Premature Convergence 13
3.4 Why They Work - The Schemata Theorem 15

IV. PARALLEL GENETIC ALGORITHMS 18

4.1 Introduction 18
4.2 Classification of Parallel Genetic Algorithms 19

4.2.1 Micro-GrainGA (mgGA) 19
4.2.2 Fine-Grain GA (fgGA) 20
4.2.3 Coarse-Grain GA (cgGA) 21
4.2.4 Massively Distributed Parallel GA (mdpGA) 24

V. DESIGN AND IMPLEMENTATION 25

5.1 Classes and Methods 25
5.2 Graphical User Interface 27

VI. EXPERIMENTS 32

6.1 Results of Runs for R(3,3,3) 32
6.2 Conclusions 52

VII.RESULTS, CONCLUSIONS, AND FUTURE WORK 54

7.1 Results of Run for R(3,3,3,3) 54
7.2 Conclusions 56
7.3 Future Work 57

VI

REFERENCES 58

APPENDICES 60

APPENDIX A: GLOSSARy 61

APPENDIX B: TRADEMARK INFORMATION 65

APPENDIX C: KNOWN BOUNDS ON RAMSEY NUMBERS 66

APPENDIX D: PERMUTATION-RESPECTING OPERATORS 68

APPENDIX E: PROOF OF R(3,3) == 6 70

APPENDIX F: RESULTS OF EXPERIMENTS 72

APPENDIX G: CODE LISTINGS 90

VII

Figure

LIST OF FIGURES

Page

1. Simple Crossover Operator 7

2. A complete Graph of Order 4 12

3. Creation of Invalid Permutations with Traditional Crossover Operator 12

4. A Micro-graing GA (mgGA) 19

5. A Fine-grain GA (fgGA) 0 0 0.0.20

6. SIPAGAR's Graphical User Interface 0 ••••••••••••••••••••••••• 0 ••••••••••••••••••••28

7. Snaphot of SIPAGAR 0 0 0 30

8. Snaphot of First Run 0 ••35

9. Effect of Population Size on Premature Convergence 37

10. Average Fitness in 10 runs 0 •••41

11. Average Fitness versus Generation Number (2 populations) 43

12. Average Fitness versus Generation Number (3 populations) 44

13. Average Fitness versus Generation Number (4 populations) 0 •••••••••••••••••47

14. Average Fitness versus Generation Number (5 populations) 50

15. Average Fitness versus Generation Number (6 populations) 52

16. Snapshot of Run on R(3,3,3,3) 0 •••56

Vill

Algorithm

LIST OF ALGORITHMS

Page

A. A Standard Genetic Algorithm (SGA) 8

B. A generalized cgGA 22

IX

LIST OF TABLES

Table Page

I. Statistics For R(3,3,3) on traditional GA 34

II. Statistics For R(3,3,3) with different population size 36

ill. Statistics For 10 runs ofR(3,3,3) (1 population) 40

IV. Statistics For R(3,3,3) (2 populations) 42

V. Statistics For R(3,3,3) (3 populations) 44

VI. Statistics For R(3,3,3) (4 populations) 46

VII. Statistics For R(3,3,3) (5 populations) 49

VIII. Statistics For R(3,3,3) (6 populations) 51

x

CHAPTER I

INTRODUCTION

According to Ramsey Theory, a sufficiently large system (no matter how random)

will always contain higly organized subsystems. The role of Ramsey numbers is to

quantify some of these existential theorems. Finding Ramsey numbers has proven to

be a very difficult task that has led researchers to experiment with different methods

of accomplishing this task.

Genetic Algorithms (GA's), originated by John Holland [Holland 75] in 1975, have

been successfully applied to complex problems in a large number of different

disciplines. Most research has been devoted to the original computational model

developed by John Holland [Holland 75], which will be referred to in this thesis as the

Standard Genetic Algorithm (SGA). Because of its implicit parallelism (discussed in

Section 3.4) and the few assumptions it makes about the problem being solved, an

SGA is able to find solutions to complex problems that are not easily solved through

conventional methods. An SGA maintains a set of possible solutions to a specific

problem. It imitates the natural processes of selection and recombination to evolve

better solutions.

In order to decide on the "goodness" of each solution in solving a problem, a

numeric fitness value is computed. The effectiveness of an SGA in finding an optimal

solution is largely detennined by the size of the solution set [Goldberg et al. 92]. A

small solution set usually results in premature convergence to a suboptimal solution -

1

a common problem of any SGA. On the other hand, the computational cost also

increases as a function of the size of the solution set. A parallel GA (PGA) takes

advantage of the highly parallelizable nature of SGAs in order to overcome these

problems. In particular, a Coarse-Grain GA (cgGA) maintains several solution

subsets, each of them "evolving" independently on a separate processor, and

occasionally interchanging solutions. This thesis implements a simulation of a cgGA

to compare the performance of an SGA with that of a cgGA in attacking a GA-hard

problem that is one of the most interesting combinatorial problems - Finding Ramsey

Numbers.

The rest of this thesis is organized as follows. The next chapter presents a brief

introduction to Ramsey Theory. Chapter ill discusses GA's along with their problems

and theoretical foundations. A survey of the different types of PGA's with emphasis

on cgGA's is presented in Chapter IV. Next, Chapter V describes the overall design

and implementation of the simulated cgGA "SIPAGAR". A description of the

experiments that were conducted to compare the performance of an SGA with that of

a cgGA is included in Chapter VI. Chapter VII presents the results achieved, makes

concluding remarks based on the results, and identifies some directions for future

work.

2

CHAPTER II

RAMSEY THEORY

"Complete disorder is impossible. "
T. S. Motzkin

Frank Plumpton Ramsey, an English mathematician and economist, proved that

complete disorder is an impossibility in his paper "On a Problem of Formal Logic"

(1930).

Ramsey theory studies the existence of highly regular patterns within a large object

or set of randomly selected points or numbers. The role of Ramsey numbers is to

quantify some of the general existential theorems in Ramsey theory.

The party puzzle is a classical problem used to introduce the theory. What is the

minimum number of guests that must be invited to a party so that either a group of at

least three people will know one another or at least three guests will not mutually

know each other? The answer to this problem, which equals 6, is called the Ramsey

number R(3,3).

Stated in a mathematical way, given 6 points or vertices, we draw a line segment

between every pair of vertices to obtain a complete graph of order 6 (denoted by ~).

If the symmetric relationship of knowing/not knowing between 2 points in the graph is

represented by the color of the edge connecting the two vertices, then the claim is that

every one of the possible 32,768 colorings will yield a monochromatic K3 (i.e., a

complete graph of order 3 in which every edge has the same color). A proof of this

appears in Appendix E. The special notation ~ -) K3 is used to record this result. In

3

general, Kn ---) K m states that every 2-coloring of the edges of Kn yields a

monochromatic Km.

Generalizing these observations, suppose that a and b are integers with a, b ~ 2,

then a possible integer N has the (a,b) Ramsey property if the following holds: Given

any set S of N elements, if we divide the 2-element subsets ofS into two classes A and

B, then either

1. there is an a-element subset ofS all of whose 2-element subsets are in A, or

2. there is a b-element subset ofSaIl of whose 2-element subsets are in B.

The smallest integer N that has the (a,b) Ramsey property is called a Ramsey

number and is denoted by R(a,b) [Erickson 96]. Thus, number 6 has the (3,3) Ramsey

property and R(3,3) = 6.

As the following theorem shows, Ramsey's theory is generalized to graphs with an

arbitrary number of edge colors.

For any integer c ~ 2, and integers AI, A 2, ... , A c ~ 2, there exists a least integer
R(A l , A2, ... , Ac) with the following property: If the edges of the complete
graph on R(A l , A2, ..., Ac) vertices are partitioned into color classes AI, A2, ... ,
Ac, then for some i there exists a complete graph on Ai vertices all of whose
edges are color Ai [Erickson 96].

The only known value for a multicolor classical Ramsey number is R(3 ,3,3) = 17.

The interpretation of this is the following: Every coloring of the edges of a complete

graph with 17 vertices in 3 colors will give rise to a triangle that is monochromatic in

one of the 3 colors. Ramsey's theorem is also extended to hypergraphs.

Let integer c 2:: 2 and integers A j , A2, ••• , Ac 2:: t 2:: 2. There exists a least integer
R(A], ... , Ac;t) with the following property: Every c-coloring of the complete t­

unifonn hypergraph [R(A l , A2, ... , Ac;t)]t with colors A], A2, ... , Ac yields a
complete t-uniform hypergraph on Ai vertices in color Ai, for some i [Erickson
96].

If in the notation R(G j , G2, ... , Gm;s) s is not specified, a 2-uniform hypergraph

(i.e., a conventional graph) is assumed. Thus R(3,3) == R(3,3;2) and R(3,3,3) ==

4

R(3,3,3;2).

In order to find a Ramsey number, say R(Gj , G2, ... , Gk), we need to find the largest

number N such that a k-colored complete graph K N does not contain a monochromatic

subgraph Gi in color i for 1 ~ i ~ k. Once such an N is found, then (N + 1) is R(G1, G2,

... , Gk). For example, to deduce that R(3,3) = 6, we would have to show that 5 is the

largest N such that a complete graph on N vertices does not necessarily contain a

monochromatic triangle of either of 2 colors.

Unfortunately, attempting to find Ramsey numbers is an arduous task that is too

often unfruitful. Only a handful of specific numbers are known (a table of known

Ramsey numbers is included in Appendix C). Erda's anecdote captures the difficulty

of finding even the comparatively simple diagonal Ramsey numbers (i.e., R(a,a)),

Aliens invade the earth and threaten to obliterate it in a year's time unless
human beings can find the Ramsey number for red five and blue five. We
could marshal the world's best minds and fastest computers, and within a year
we could probably calculate the value. If the aliens demanded the Ramsey
number for red six and blue six, however, we would have no choice but to
launch a preemptive attack [Graham and Spencer 90].

This state of limited knowledge is exasperating because Ramsey numbers are

intimately connected with other numbers and functions such as the Stirling numbers.

It is well known that any new Ramsey number would be very valuable [Erickson 96].

If complete disorder is an impossibility, what order is there in apparent disorder? This

research effort investigated the perfonnance of some methods to improve the bounds

of Ramsey numbers which attempt to quantify this "order".

5

CHAPTER III

GENETIC ALGORITHMS

3.1 Introduction to Standard Genetic Algorithms

Genetic algorithms (GA's) are adaptive methods that can be used to solve search

and optimization problems. They are based on the mechanics of natural selection and

genetic processes of living organisms. From one generation to another, populations

evolve according to the principles of natural selection and the survival of the fittest

individuals [Darwin 59]. By imitation of the natural process, GA's are capable of

developing solutions to real problems.

The basic principles of GA's were established by John Holland in 1975 [Holland

75]. Holland's insight was to be able to represent the fundamental biological

mechanisms that pennit system adaptation into an abstract form that could be

simulated on a computer for a wide range of problems. He introduced bit strings to

represent feasible solutions (or individuals) in some problem space. GA's are

analogous to the natural behavior of living organisms. Individuals in a population

compete for resources. Those individuals that are better adapted survive and have a

higher probability of mating and generating descendants. Therefore, the genes of

stronger individuals will increase in successive generations.

A GA works with a population of individuals, each representing a feasible solution

to a given problem. During each iteration step, called a generation, the individuals in

the current population are evaluated and given a fitness value, which is proportional to

6

the "goodness" of the solution in solving the problem. Individuals are represented

with strings of parameters or genes known as chromosomes.

The phenotype, the chromosome, contains the information that is required to

construct an individual (a solution to the problem). The phenotype is used by the

fitness function to detennine the genotype, which denotes the level of adaptation of

the chromosome to the particular problem. To form a new population, individuals are

selected with a probability proportional to their relative fitness. This ensures that well

adapted individuals (good solutions) have more chances of being reproduced. Once

two parents have been selected, their chromosomes are combined and the traditional

operators of crossover and mutation [Holland 75] are applied to generate new

individuals (i.e., new search points). In its simplest form, crossover consists of

selecting random points in a string and swapping the substrings of the parents (Figure

1).

Parents

Offspring

Crossover point

11001 IT 10010

~
11001

Crossover point

00011 IL10110

Figure 1. Simple crossover operator

The mutation operator is applied by changing at random the value of a bit in a

string with a certain probability called the mutation rate. This operator is used to

prevent premature convergence to local optima by introducing new genetic material

(new points in the search space). Algorithm A below shows a standard or simple GA

(SGA).

7

BEGIN SGA
Randomly Create an initial population
WHILE NOT termination criteria DO

BEGIN
Assign a fitness value to each individual
Select individuals for reproduction
Produce new individuals
Mutate some individual(s)
Generate new population by replacing bad
individuals with some new good individuals

END
ENDSGA

Algorithm A. Standard genetic algorithm (SGA) [Darwin 59]

In Algorithm A, the termination criteria may be triggered when either an acceptable

solution has been found or when a problem-specific maximum number of generations

has been reached.

GAs have been successful in solving complex problems that are not easily solved

through conventional methods [Stracuzzi 98] for several reasons. They start with a

population of points rather than a single point. Therefore, many portions of the

domain are searched simultaneously and, as a result, they are less prone to settling at

local optima during the search. GA's work with an encoding of the parameter set, not

the parameters themselves. Because they do not depend on domain knowledge in

performing the search, inconsistent or noisy domain data are less likely to affect them

as is common with hill-climbing or domain specific heuristics [Stracuzzi 98].

The simulated parallel GA developed as part of this thesis is based on the islands

model [Cohoon et al. 91]. The basic idea behind this model consists in dividing the

population into several subpopulations (or islands). In each one of those islands, an

SGA is run.

8

The next section outlines the representation and approach for the algorithm that

runs in each one of the subpopulations. Parallel GA's and the islands model are

further discussed in Chapter IV.

3.2 Approach and Representation

Given the problem of finding a Ramsey number, say R(G}, G2, ... , Gk), we need to

find the largest number N such that a k-colored complete graph KN does 110t contain a

monochromatic subgraph Gi in color i for 1 ::; i ::; k. Once such an N is found, then (N

+ 1) is R(G], G2, ... , Gk). For example, it is known that 43 ~ R(S,5) ~ 49. Therefore,

to improve the lower bound ofR(5,5), the first step would be to find a 2-colored graph

of order 43 with no monochromatic subgraph of order 5. Then we could conclude that

44 S R(S,5) ~ 49. We would then repeat the same process, each time increasing the

lower bound by one, until 'the largest possible N can be found.

The first step in developing a GA that will solve a given problem is to define the

following two mechanisms:

1) A way of encoding solutions to the problem in terms of chromosomes.

2) An evaluation function that returns a measurement of the fitness of a

chromosome in solving the given problem.

These two steps are discussed in the following two subsections. The third subsection

explains the need to use permutation-respecting crossover operators when using an

order-based solution encoding.

3.2.1 Solution Encoding

A solution to the problem will be a complete graph of order N with a number X of

monochromatic subgraphs of order K. In the optimal solution, x==o. There are several

9

ways of representing a graph as a chromosome. An entry (iJ) in an NxN adjacency

matrix can store the color of the edge (iJ). The lower or upper triangle of the

adjacency matrix can then be mapped into a single dimensional array (a chromosome).

A better approach is to use an order-based representation in which each chromosome

is a permutation of edges, a decoder is then used to color the edges of a permutation

[Eiben and van der Hauw 98]. The results of numerous experiments [Eiben and van

der Hauw 98] conducted on a graph coloring problem have showed that other

representations are inferior to the order-based representation.

3.2.2 Evaluation Function

As the decoder encounters the edges in the order that they occur in a certain

chromosome, it assigns the smallest possible color from the set of k colors. If each of

the k colors leads to a constraint violation (i.e., the fonnation of a monochromatic

subgraph), the edge is left uncolored [Eiben and van der Hauw 98]. The fitness of a

chromosome is then equal to the sum of the uncolored edges. Thus a chromosome

with a fitness value of 5 is more fit than one with a fitness value of 10. The evaluation

function to be minimized is defined as:

n

f(x) == L Wi * X(x,i)
i= 1

where n is the number of edges in the chromosome x, Wt is the local penalty (or

weight) assigned to edge Xi, and

1 if edge Xi is left uncolored
X(x,i) ==

ootherwise

If we simply count the uncolored edges, then ~ == 1. However, not every edge is

10

equally hard to color [Eiben and van der Hauw 98]. For example, coloring the first

edge that appears in a chromosome is an easy task, the decoder may choose any of the

k possible colors. On the other hand, coloring the edges at the end of the chromosome

may be very difficult as the number of colors that do not result in a constraint

violation may be heavily reduced. A better approach would then be to give "hard"

edges (i.e., the edges that are colored last) a high weight, since this gives the

evaluation function a high reward when satisfying them, thus concentrating on these

edges [Eiben and var den Hauw 98].

In this thesis, we use a modified version of the evaluation function in which all

edges are colored. The evaluation function to be maximized is defined as:

n

f(x) == n - ~ Wi * X(x,i)
i= 1

where n is the number of edges in the chromosome x, Wi is the local penalty (or

weight) assigned to edge Xi, and

1 if all k colorings of edge Xi create subgraph(s)
X(x,i) ==

ootherwise

The local penalty Wi is equal to the number of monochromatic subgraphs that are

created after coloring the edge with the color that minimizes the resulting number of

monochromatic subgraphs. Because edges near the end of the chromosome result in

more monochromatic subgraphs, this function gives a higher weight to those edges.

3.2.3 Crossover

Ordinary crossover and mutation operators cause problems for order-based

representations. The reason for this is that offspring generated by means of ordinary

11

operators may not be valid solutions for the problem being solved anymore. For

example, suppose we have a complete graph of order 4 as shown in Figure 2.

a
3

5 6

4

o

2

Figure 2. A complete graph of order 4

Also, suppose two chromosomes are selected for crossover (Figure 3).

Crossover point Crossover point

Parents
146 IT 35 536

~
Offspring 146 II 4 1

Figure 3. Creation of invalid permutations with traditional crossover operator

As can be observed, the offspring are not valid permutations anymore (i.e., for the

first offspring, and analogously for the second offspring, the decoder would try to

color edges 4 and 1 twice and never try to color edges 3 and 5). The way in which the

ordinary mutation operator can produce invalid chromosomes is obvious. Several

solutions have been suggested to deal with this problem [Poon and Carter 95]. An

invalid chromosome could simply be disqualified, it could also be repaired. The

approach that is followed in this thesis consists of using specialized permutation-

12

respecting operators instead of creating invalid chromosomes [Ugoluk 97]. A list of

the permutation-respecting operators is included in Appendix D.

3.3 Premature Convergence

Premature convergence is a common problem of any SGA. It occurs when the

individuals in the population are selected proportionally according to their relative

fitness. Some individuals may have a very high fitness value and, as the algorithm

continues executing, they may dominate the entire population. Once a suboptimal

solution dominates the population, selection will keep it there and prevent any further

adaptation to the problem. When crossover occurs, no new patterns will be created,

causing the search to stop. Previous research has focused on two general approaches

to address this problem [Goodman et a1. 94]. The first approach affects the selection

phase and focuses on lowering the convergence speed so the algorithm can do a more

thorough search before converging. The second approach attempts to keep a high

population diversity by modifying traditional replacement and mating operators

[Goodman et ala 94]. Some proposed methods for avoiding premature convergence are

discussed next.

Goldberg and Richardson [Goldberg and Richardson 87] proposed a method to

increase population diversity by modifying the fitness value of every individual. The

basic idea is to lower the fitness value of individuals that are similar to one another

and to increase the fitness value of solutions that are isolated or different from the rest

of the population. In this manner, individuals that are close to one another (similar)

will reduce their chances of being selected for crossover, thus increasing the

probability of selecting isolated individuals.

For example, if del), L) denotes the Hamming distance between individuals 1j and Ii,

13

and k is a positive real parameter, we can define the following function h:

k- d(J· J.)J, I

o if d(~i, Ii) 2 k

Now, for each individual Ij, d is defined as the summation of h(d(!j, L) for all

individuals Ii where i ;c j [Goldberg and Richardson 87]. The value of d is then used

to modify the fitness function of each individual Ij . If g(Ij) gives the fitness value of

solution -0', the new value would be g(!.i) / d [Goldberg and Richardson 87]. In other

words, we determine how similar each individual is to all the other solutions in the

population and modify its fitness value accordingly.

Another possible improvement over the traditional method of proportional

selection is to set a limit on the number of times that an individual can be selected for

reproduction. For each individual i, we could use a counter initialized to fv i / fvaverage

where fv i is the fitness value of solution i and fvaverage is the average fitness value of

the entire population. In this manner, we allow a good individual to be chosen more

number of times but only up to a certain limit (i.e., until the value of the counter

reaches 0).

Another commonly used method for dealing with premature convergence is

tournament selection. It consists of randomly choosing k individuals out of the entire

population to fonn a tournament. The best individual in the tournament is then

selected for reproduction. In this way, the selection of individuals which are not

necessarily the best solutions in the population is pennitted.

De Jong introduced the concept of a crowding scheme [De long 75]. The approach

consists of randomly choosing a subpopulation of CF (crowding factor) individuals.

14

Hamming's distance is used to detennine a value for each individual according to its

similarity with other individuals in the subpopulation. An offspring then replaces one

of the individuals with a high "similarity value". Therefore, similar solutions in a

subpopulation will compete with one another and the speed at which convergence

occurs is reduced [De Jong 75]. Another approach for maintaining diversity is to

allow the insertion of an offspring into the population only if it is different enough

from all other individuals [Mauldin 84].

Even though much research has been devoted to avoiding premature convergence,

this problem is still an inherent characteristic of traditional GA's. Therefore, these

algorithms are incapable of maintaining different high-fitness individuals within a

single population, thus they are not able to search numerous points of the problem

domain. Chapter IV presents a GA based on a more realistic model of nature that

avoids premature convergence in a much more efficient manner and holds other

advantages as well.

3.4 Why They Work - The Schemata Theorem

In his book, Adaptation in Natural and Artificial Systems, John Holland presents

the theoretical foundations explaining the robustness of GA's as a search technique

[Holland 75]. The key to finding an optimal solution for a given problem is to be able

to identify and exploit useful properties in a large search space S. Each chromosome

(or solution) Ci E S is represented by a set of genes (attributes or bits) Gi . For

example, if two colors (0 and 1) are used to draw the 15 edges of a K6, the

chromosome 011100101011101 represents a coloring (solution). In this particular

problem, S is all the possible colorings (solutions) of a K6 with two colors. The size of

S is 32,768. If "*,, is used as a "don't care" symbol, then this chromosome can also be

15

represented by the string 011 **********01. Strings containing one or more "don t

care" symbols are referred to as schemata [Holland 75]. A string corresponds to a

particular schemata if we can obtain the string by substituying the "don't care"

symbols with the corresponding bit value. For example, the string 100110 corresponds

to the schemata 10***0 but not to 00***0.

Holland makes the important observation [Holland 75] that every string

(chromosome or solution) corresponds to 2m
- 1 different schemata, where m is the

length of the string. To show this, observe that there are m positions in a string of

length m and each position can contain either a bit value or the "don't care" symbol

"*". A one is subtracted because the string of all "*,, symbols represents the search

space S itself, not an schemata (or partition of S) [Holland 75]. As a result, each time a

string (chromosome or solution) is evaluated, many (2m
- 1) different schemata (or

partitions of S) are sampled. Consequently, every time a population is explicitly

evaluated, a number of schemata much greater than the population size is implicitly

sampled. This is what is meant when referring to a GA's implicit parallelism.

John Holland, at the end of Chapter Four on Schemata in his 1975 book [Holland

75] summarizes this important observation as follows:

... the elements A E a each have a representation (b) (A), ... , 81(A)) in terms of
the ordered set of1 attributes 8iCA) E Vi, i == 1, ... ,1. Each ~ E 3 == nj =)1 {Vi U

{D }} [,where a is a search space, A is a point or solution in the search space,
bj is the value of the ith attribute in the representation of A, Vi are the set of
values that bi can have, 3 is the set of all tuples involving combinations of
"don't-care" symbols and attributes, ~ is a member of 3,] designates a
particular subset of a, namely all elements of a for which the corresponding
representations match all positions in ~ which are not 'O"s. Given a set of
observations a(1), a(2), ... , aCt) from a, the average payoff~ of the observed
instances aCt') E ~ is apportioned to ~ as its credit for the performances of the
A E a possesing the corresponding set of attributes. Since each A E a is an
instance of21schemata, it constitutes a valid sample point of21distinct subsets
of (or events on) a. This suggests the existence of algorithms which, by testing
many possibilities with a single trial, are intrinsically parallel and which store

16

the relative rankings of I--l; for a great many schemata by selecting a small set f3
c a [Holland 75].

From one generation to the next, the representation of a particular schemata in the

population will increase or decrease according to the relative fitnesses of the strings

that correspond to that schemata [Holland 75]. For example, if a particular schemata is

sampled by N strings at generation g, it will be sampled by N * (fv(N) / fv) strings at

generation g+1, where fv(N) is the average fitness value of the N strings and fv is the

average population fitness value.

Holland discusses many other important details and observations related to the

Schemata Theorem [Holland 75] which are beyond the scope of this thesis. One of the

most important observations he makes is that crossover disrupts schemata, so an

offspring may not contribute to the representation of its parents' schemata. Therefore,

after crossover is performed, a given schemata will both gain and lose strings in a way

that is independent of the fitness of its current strings. After taking several factors into

consideration, Holland establishes the Schemata Theorem [Holland 75] - Schemata

sampled by a set of strings with an average fitness that is larger than the population's

average fitness value will receive an exponential increase of sampling strings in

successive generations.

17

CHAPTER IV

PARALLEL GENETIC ALGORITHMS

4.1 Introduction

Consider the problem of delaying premature convergence on an SGA (see Section

3.3). We can take either of two approaches. If we maintain a very large population of

individuals on each generation, it will take longer for good individuals to dominate.

However, the high computational cost associated with the evaluation of the fitness of

each individual in a big population makes the algorithm very inefficient. Another

approach is to use a small population and maintain diversity by using some of the

methods discussed in Section 3.3. However, the similarity comparisons on which

those methods are based are also computationally expensive.

The fact that GA's search numerous points in the problem domain simultaneously,

makes them ideal candidates for parallelization. A parallel genetic algorithm (PGA) is

an extension of the classical GA that takes advantage of this property to improve its

time performance and reduce the likelihood of premature convergence.

Following nature's parallel model, these algorithms maintain multiple, independent

populations that each focus on a different area of the problem. The occasional

interchange of solutions between these populations introduces diversity and allows for

combinations that often result in a global optimum. The following section presents a

common classification ofPGA's based on their level ofparallelism.

18

4.2 Classification of Parallel Genetic Algorithms

We can distinguish four different models for implementing a PGA according to the

desired level of parallelism: Micro-Grain GA, Fine-grain GA, Coarse-Grain GA, and

Massively Distributed Parallel GA. These models are briefly described below.

4.2.1 Micro-Grain GA(mgGA)

This model is different from other parallel approaches in that a single population is

maintained. Also known as a global GA, it is the most simple model and it is

equivalent to an SGA. The parallelism of this model comes from the use of multiple

processors for evaluating individual fitnesses [Goodman et al. 94]. A master process

maintains a single population and perfonns classical genetic operators while assigning

the task of fitness evaluations to the slave processes (Figure 4). Maximum speedup

can be attained if every slave process receives an equal amount of work. This model is

useful when the fitness evaluation is the most expensive operation. However, mgGA's

do not address the problem ofpremature convergence [Stracuzzi 98].

Master
process

Slave2

Chromosomen

Fitnessn

Figure 4. A Micro-grain GA (mgGA)

19

4.2.2 Fine-Grain GA (fgGA)

This model is a compromise between the micro-grain GA (mgGA) and models

with fully separated individual populations [Stracuzzi 98]. The algorithm maintains a

single population and allo\vs two individuals to mate only if they are close to one

another (neighbors). The entire population can be viewed as a set of small overlapping

subpopulations (Figure 5). When selection is performed, only individuals within the

same subpopulation may mate. Because some individuals are members of several

subpopulations, genetic material is transferred from one population to another

[Stracuzzi 98].

~ Population5

¥" Population2

k:' Population3
0 0 "'"""' 0 - 0 0
D 0

~
0 = 0 0...,;.. -

I -I LJ 11 I I 1-)

0 0 - 0 !-- 0 0""- ~

0 [] - 0 ~ 0 0i.-O ~

Population 1~

Population4 ,,;Jr

~
Population6

The individuals located on the boundaries between populations can mate.
Thus, genetic material is transferred among populations.

Figure 5: A Fine-grain GA (fgGA)

The purpose of an fgGA is to delay the spread of genetic information among the

subpopulations while still allowing some migration. The main issue affecting this

model deals with the connectivity between neighbors. High connectivity makes

subpopulations susceptible to premature convergence. On the other hand, low

connectivity limits individual interactions and can result in a slowdown of the

algorithm [Stracuzzi 98].

20

4.2.3 Coarse-Grain GA (cgGA)

A cgGA is based upon the theory of punctuated equilibria. In the paper

"Distributed Genetic Algorithms for the Floorplan Design Problem", Cohoon et. al

describe the theory of punctuated equilibria as follows:

Punctuated equilibria is based on two principles: allopatric speciation and
stasis. Allopatric speciation involves the rapid evolution of new species after a
small set of members of a species, peripheral isolates, becomes segregated into
a new environment. Stasis, or stability, of a species is simply the notion of lack
of change. It implies that after equilibria is reached in an environment, there is
very little drift away from the genetic composition of the species. Ideally, a
species would persist until its environment changes (or the species would drift
very little). Punctuated equilibria stresses that a powerful method for
generating new species is to thrust an old species into a new environment,
where change is beneficial and rewarded. For this reason, we should expect a
genetic algorithm approach based on punctuated equilibria to perform better
than the typical single environment scheme [Cohoon et al. 91].

The implication of this theory upon the structure of a GA is that given a single

large population in which the environment is unchanging, equilibrium will be rapidly

attained as the population converges. The offspring produced will be very similar to

each other and to their parents, causing the population to stabilize on a local optimum.

Allopatric speciation indicates that evolution can continue by the introduction of

stabilized species into different subpopulations [Cohoon et a1. 91].

Papadopoulos indicated the effectiveness of the cgGA in solving many "GA-hard"

problems which other GA's are not able to solve [Papadopoulos 94]. He outlines a

common implementation of a cgGA. A set of n individuals can be assigned to a

dedicated processor. Given that N processors are available, the size of the total

population is nxN. During a major iteration or epoch, every processor works in

parallel, yet independently, evolving its individuals [Papadopoulos 94]. In theory, a

processor should continue evolving its individuals until it reaches equilibrium.

However, because there is no known adequate equilibrium stopping criteria, an epoch

21

consists of a fixed number of generations, which greatly simplifies the task of

synchronizing the processors [Cohoon et al. 91]. When the processors stop,

chromosomes are interchanged between subpopulations. This migration of individuals

has the effect of introducing new genetic material into populations that may have

slowed down their evolution due to an equilibrium [Papadopoulos 94]. Algorithm B

below is a generalized cgGA [Stracuzzi 98]

Global Data
graph

Local Data
population
float

int

migration_topology;

my-pop, my_new-'pop, migrantyop;
p_cross, p_mutation,
migration_rate; /* percent ofpop moved during each migration */
N, /* population size */
N_migrants; /* n_migrants = N * migration_rate */

1. for all processing nodes
2. my-pop = new random individual(s)
3. evaluate(myyop)
4. while termination criteria not satisfied
5. if migration criteria satisfied
6. if using dynamic network connection
7. update(migration_topology)
8. migrant---pop == select(N_migrants, my-pop)
9. send migrantyop to another node according to migration_topology
10. migrantyop = receive migrants from another node
11. add migrant.-J)op to my-pop and maintain population size N
12. my_new-pop == select(N, my-pop)
13. myyop == crossover(p_cross, my_new-pop)
14. my-pop == mutate(p_mutation, myyop)
15. evaluate(myyop)
16. end while
17. end forall

Algorithm B. A generalized cgGA [Stracuzzi 98]

The efficiency of a cgGA depends on the choices of several new parameters. The

following are some of the strategies that were considered while developing a

22

simulated cgGA as part of the thesis work:

• Migration Policy

The following parameters define the migration mechanism [Rebaudergo and

Reorda 92]:

Migration Frequency determines the number of generations between two

migrations (i.e., the size of an epoch). Frequent communications are useless because

similar individuals are transmitted on each migration. Less frequent migrations

increase the running time of the algorithm [Rebaudergo and Reorda 92].

Migration Size determines the number of individuals composing each migration.

Sending too many individuals will result in a decrease of the average fitness

[Rebaudergo and Reorda 92]. On the other hand, if only a few individuals are

transmitted, they may be quickly eliminated if the receiving subpopulation has a much

higher average fitness value.

Migrant Selection detennines which immigrants are chosen within the source

subpopulation. The individuals with the highest fitness could be chosen or they could

be selected at random [Rebaudergo and Reorda 92]. The most common method is to

choose an individual with probability proportional to its fitness value. In this manner,

diversity increases as it is not only the good individuals that migrate.

Whether the communication between processing nodes is done in a synchronous or

an asynchronous manner, is another issue to be considered.

• Connection Schemes

There are two widely used connection schemes: static connection scheme and

dynamic connection scheme.

In a static connection scheme, the connections between processors are established

at the beginning and not modified during execution. There are several different

23

topologies: rings, lines, n-cubes, etc. [Goodman et al. 94]. This type of connection

scheme is used in this thesis.

In a dynamic connection scheme, the network topology is allowed to change during

run time.

• Node Structure

There are two different approaches depending on the similarity of the SGA's

running on each processor: homogeneous island GA, and heterogeneous island GA.

In a homogeneous island GA, every processor uses the same parameters (crossover

rate, mutation rate, population size, etc.) [Goodman et al. 94].

A heterogeneous island GA allows subpopulations with different parameters to

evolve. This will increase the chance of finding an ideal set of parameters [Goodman

et al. 94].

4.2.4 Massively Distributed Parallel GA (mdpGA)

In an mdpGA, every processor is assigned a small subpopulation (i.e., 10

individuals). Because of the small population size, selection must be done carefully

[Stracllzzi 98].

24

CHAPTER V

DESIGN AND IMPLEMENTATION

SIPAGAR (SImulated PArallel Genetic Algorithm for finding Ramsey numbers) is

implemented as a JAVA applet. JAVA applets provide a convenient way of displaying

graphs and make the simulation very portable by being able to use it on the Web.

5.1 Classes and Methods

The main class of SIPAGAR is the Ramsey class. It inherits from the JAVA Applet

class. The method evolve starts the threads of all the subpopulations and then starts the

thread of the Gamigration class. The permutation class is the representation of

individual solutions (i.e., graphs). The group class inherits from the JAVA Thread

class. It represents a subpopulation of pennutations that are evolved towards an

optimal solution. The method evolve uses an object of class Decoder to assign fitness

values to each permutation in the subpopulation. It also uses procedures in packages

crossover, mutation, and selection to perform genetic operations. The method decode

in class Decoder assigns a fitness value to a permutation according to the evaluation

function. It uses the suppolting functions of classes table and triangle for this purpose..

Given a permutation of the edges of a complete graph, we need to color the edges in

that order. Because the edges are numbered and mapped to a single dimensional array,

we need two end vertices of an edge to check if a monochromatic subgraph is being

formed as a result of a particular coloring. The class table provides supporting

25

functions to obtain the (i,j) coordinates of a particular edge. Given the (i,j) coordinates

of an edge, the supporting function find_triangle in class triangle checks if a triangle

is being fonned for all possible colorings of the edge and assigns to the edge the color

that results in the fewest number of monochromatic triangles being fonned.

The package crossover contains class pmx, which implements Partially Matched

Crossover. The package mutation contains class swap, which implements swap

mutation. The class Roulette in package Selection implements Roulette-Wheel-based

selection. It takes a population of pennutations as input, and returns a single

permutation which is selected with a probability proportional to its fitness value

relative to the average fitness value. This operation is implemented with an array of

floating point numbers. Each array element corresponds to a permutation in the

population and is initialized to the sum of fitness values of all permutations up to that

particular permutation. A random floating point number between zero and the sum of

all fitness values in the population is generated. The first permutation whose array

value exceeds this value is chosen.

The group_GUI class uses the supporting functions in class graph to display the

graph of a particular permutation in a subpopulation. Statistical data for each

subpopulation is gathered in class group_slats. The class global_stats stores and

graphically displays statistical information for all subpopulations. It displays the

optimal fitness value for a particular run (the goal). As the subpopulations evolve,

they provide information to a global_slats object about the best locally found

permutation. The global_stats object displays a permutation with the best fitness

value found so far among all subpopulations. An object of class Gamigration is a

thread that once started, continuously checks the condition that triggers migration

among the subpopulations. When the condition (migration frequency) is satisfied, the

26

Gamigration object performs the migration according to the migration criteria

(topology, size, selection).

Migration is done synchronously. A subpopulation stops when the migration

criteria has been locally satisfied. The Ganligration object triggers migration only

when the migration criteria has been satisfied in all subpopulations. After migration is

done, Gamigration resumes the evolution of all subpopulations. The class

GAException handles exceptions that may occur when running the simulation. The

class Ramsey_GUI implements the simulation's graphical user interface and connects

events to listeners in class Ramsey_Listener. The classes Ramsey_Action_Listener and

Ramsey_Item_Listener handle the events in the graphical user interface.

5.2 Graphical User Interface

The interface allows the user to input the problem, define the parameters, and run

either a simple GA or the simulated parallel version and view the results. The main

window (Figure 6) is divided into five parts: problem construction, control buttons,

global statistics, log window, and local statistics.

27

LogVrmdow Problem Construction

Figure 6. SIPAGAR's Graphical User Interface

In Figure 6, the problem construction part is used to enter the problem and define

the GA parameters. The Number of Populations parameter determines whether a

simple GA or the simulated cgGA is to be run. For a simple GA, the user only needs

to assign the value 1 to Number ofPopulations and a value in the range 2 to 6 to run

the simulated parallel version. Population Size determines the number of permutations

that will evolve in each subpopulation. Choosing a larger value for this parameter

does not necessarily lead to a better solution since it will slow down the execution.

Number OfColors specifies the number of colors that will be used to color the edges

of the particular complete graph with Number of Vertices vertices. For instance, in

order to test whether R(3,3,3,3) > 51, the user would set Number of Colors to 4 and

Number of Vertices to 51. Selection Strategy and Migrant Selection identify the

28

strategies that will be used to choose the permutations that will mate and migrate to

different subpopulation respectively. Crossover Strategy and Crossover Rate indicate

the pennutation-respecting operator that will be used and the percent of pennutations

that will be involved in crossover respectively. Mutation Rate identifies the

probability that a particular permutation will undergo swap mutation. Migration

Frequency and Migration Size indicate the number of generation between two

migrations and the number of pennutations composing each migration, respectively.

Migration Topology determines the way in which the subpopulations will share

infonnation. If the Elitism option is checked, a pennutation with the highest fitness

value in a given generation is guaranteed to be a member of the successive generation.

The control buttons are used to start, stop, pause, and resume execution. The reset

button is used to stop execution and set parameters to their default values. The log

window displays errors that may occur during execution or while setting the

parameters. It also indicates when migration takes place and the migration pattern

among subpopulations. The local statistics part displays a graphical representation of

the best pennutation as well as local statistical information of each subpopulation.

The basic statistical information gathered for each subpopulation is the following:

gen #: the current generation number.

bestf the fitness value of the permutation with the best overall fitness.

avf average fitness value of all permutations in a subpopulation.

change: change in average fitness value from the previous generation.

The global statistics part displays an enlarged graphical representation of the best

permutation among all subpopulations as well as global statistical information. The

basic global statistical infonnation gathered is the following:

Optimal Fitness: The optimal fitness value of any pennutation for a particular

29

problem (the goal).

Best Permutation: Actual edge permutation of the best permutation among all

subpopulations (the solution).

Coloring: Colors assigned to the edges of the best permutation among all the

subpopulations.

Best: Fitness value of the best permutation among all the subpopulations.

Figure 7 is a snaphot of SIPAGAR when executed with 6 subpopulations. Code

Listings are included in Appendix F.

B

A

C

D

pop6 --) popl A_ Numbef 01 PopUations

PopdabonSize

Number Of Coiofc

Numbef 01 Verbces

Selection Sllategy

. Cros:ovel Rate

.Cros-..ovet Strategy

MlM./tionRate

Figure 7. Snapshot of SIPAGAR

In Figure 7, the box labelled A contains the local statistics for population 1. At

generation 25, the highest fitness value in population 1 was 97.0. The K 15 labelled B is

30

the Ramsey graph of a permutation in population 1 with fitness value 97.0. The global

statistics are inside the box labelled C. The optimal fitness value is 105 and

corresponds to a K 15 all of whose 105 edges can be colored with no resulting

monochromatic triangle in either of the 3 colors (the optimal permutation). The K 15

labelled D is an enlarged display of the Ramsey graph of a permutation with highest

fitness value among the 6 populations.

31

CHAPTER VI

EXPERIMENTS

In this chapter, we will compare the performance of a traditional GA with that of

the simulated cgGA with several parameter values, when applied to the problem of

finding R(3,3,3). R(3,3,3), which is equal to 17, is the only known multicolor Ramsey

Number. It is used to observe and compare the rate of premature convergence as well

as the perfonnance of the traditional GA and the simulated cgGA. Because the value

ofR(3,3,3) is known, the global optimum for a particular run is also known, so we can

detect when the algorithm converges to a local optimum.

6.1 Results of Runs for R(3,3,3)

As previously mentioned, R(3,3,3) is known to be equal to 17 and it is used in this

experiment for perfolTIlance comparisons only. Every coloring of the edges of a

complete graph with 17 vertices in 3 colors will give rise to a triangle that is

monochromatic in one of the 3 colors. To do the comparison of perfonnance

mentioned above, we use the problem of finding a complete graph with 16 vertices in

3 colors and containing no n10nochromatic triangle in either of the 3 colors (the

optimal solution). The fitness value of the optimal solution is 120 (all the edges of the

complete graph can be colored without any resulting monochromatic triangle). The

problem was first run on the traditional GA option of SIPAGAR with the following

32

parameter values:

Number ofPopulations: 1

Population Size: 20

Number ofColors: 3

Nunlber of Vertices: 16

Selection Strategy: Roulette-Wheel

Crossover Rate: 0.85

Crossover Strategy: PMX

Mutation Rate: 0.05

Migration Frequency: N/A (Not Applicable)

Migration Size: N/A (Not Applicable)

Migrant Selection: N/A (Not Applicable)

Migration Topology: N/A (Not Applicable)

Elitism: True

The following table shows the statistics for the first 300 generations of this run.

33

Table 1. Statistics for R(3,3,3) on traditional GA
(Number of Populations == 1, Population Size == 20)

Generation Best Fitness Average Fitness

0 104.00 98.25
10 104.00 99.85
20 104.00 100.50
30 104.00 100.75
40 104.00 101.05
50 104.00 101.50
60 104.00 101.85
70 104.00 101.45
80 104.00 101.85
90 104.00 102.35

100 104.00 102.75
110 104.00 102.50
120 104.00 102.70
130 104.00 102.85
140 104.00 103.30
150 104.00 103.40
160 104.00 102.80
170 104.00 102.90
180 104.00 103.00
190 104.00 102.80
200 104.00 102.80
210 104.00 102.00
220 104.00 102.20
230 104.00 102.60
240 104.00 103.20
250 104.00 103.00
260 104.00 103.60
270 104.00 103.80
280 104.00 103.80
290 104.00 103.80
300 104.00 104.00

> 300 104.00 104.00

From Table I we can observe that when the population size is small, the traditional

GA converges very rapidly to a local optimum. Figure 8 shows a snaphot of this run

when stopped at generation 107,199.

34

Number c:J Populations

POPJlation Size

Number Of Colors

Number c:J Veftices

5election 5trategy

Crossover Rate

Crossover Strategy

Mutation Rate

Migration Frequency

Mioration Size

Migrant Selection

Migration Topology

Figure 8. Snapshot of First Run

In order to observe the relationship between population SIze and the rate of

premature convergence, the same problem was run on the traditional GA with

population sizes of 40, 60, 80, and 100 with the values for all the other parameters

kept unchanged. A summary of the results is shown in Table II (Appendix F contains

statistics reported every 10 generations). Figure 9 shows the effect of population size

on premature convergence.

35

Table II. Statistics For R(3,3,3) with different population sizes (Number of Populations == 1 Population Size = 40,60,80 100)

PopSize=40 PopSize=60 PopSize=80 PopSize=lOO PopSize=40 PopSize=60 PopSize=80 PopS ize= 100

Generation Best Fitness Average Fitne

0 106.00 107.00 106.00 106.00 101.56 101.51 101.75 101.75
100 107.00 107.00 107.00 108.00 103.29 102.41 101.90 103.19
200 107.00 107.00 107.00 108.00 102.49 105.32 102.27 103.48
300 107.00 107.00 107.00 108.00 103.66 104.56 102.23 103.65
400 107.00 107.00 107.00 108.00 103.94 104.40 103.18 104.64
500 107.00 107.00 107.00 108.00 104.03 104.50 104.00 103.72
600 107.00 107.00 107.00 108.00 104.40 104.95 104.50 104.25
700 107.00 107.00 107.00 108.00 106.50 106.25 104.63 104.00
800 107.00 107.00 107.00 108.00 106.83 106.50 103.86 104.60
50 107.00 107.00 107.00 108.00 107.00 105.35 103.22 105.30

900 107.00 107.00 107.00 108.00 107.00 104.80 106.16 106.35
1000 107.00 107.00 107.00 108.00 107.00 105.85 106.81 107.15
1090 107.00 107.00 107.00 108.00 107.00 106.65 106.56 108.00
1100 107.00 107.00 107.00 108.00 107.00 106.90 106.75 108.00
1130 107.00 107.00 107.00 108.00 107.00 107.00 106.81 108.00
1160 107.00 107.00 107.00 108.00 107.00 107.00 107.00 108.00
1200 107.00 107.00 107.00 108.00 107.00 107.00 107.00 108.00

110

109

108

(/) 107
(/)

Q) 106c
+J

tt: 105
CD
Cl 104
E
~ 103
ca 102

101

100

99
Q Q 0 0 0 Q Q 0 0 Q Q Q 0 0 0 Q

= 0 0 0 0 Q Q 0 0 0 0 Q 0 0 0 =>
~ ~ N ~ ~ l/') \0 r- oo 0\ 0 ~ N ~ ~ lI)
~ = c = = = c c = = ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~ ~ ~ ~ = c = c c =~ ~ ~ OJ) OJ) OJ) OJ) OJ) /:)l) ~ Q) ~ ~ ~ Q)
0.() OJ) OJ) OJ) OJ) bIJ

generation number

-+-- popsize20

popsize80

--- popsize40

~ popsizelOO

popsize60

Figure 9. Effect of Population Size on Premature Convergence

As Figure 9 illustrates, increasing the population size results in a solution that is

nearer to the optimal solution. It also delays premature convergence to local optima.

In a small population, a permutation with a relatively high fitness value will be

selected very often and its descendants will quickly dOlninate the population. This will

result in reduced genetic diversity and the search will quickly stop after converging on

a local optimum. On the other hand, as the population size increases, many

pennutations are evaluated at each generation and premature convergence is

discouraged. This results in more paths being searched and thus an increase in the

fitness of the solution. However, in our implementation, the time it takes the

DECODER to evaluate the fitness of a permutation dominates the execution time.

Therefore, a very large population can be very expensive in terms of time, so a smaller

37

population is desirable. A cgGA is capable of maintaining the time performance of a

small population while maintaining a high genetic diversity and thus doing a more

complete search of the problem space. The remaining part of this section consists of

outlines of the experiments that were conducted to validate the previous statement.

In order to compare the performance of a traditional GA with that of a cgGA, an

experiment consisting of the following parts was conducted:

1) A set of values for the parameters is chosen and kept unchanged. The only

parameter with a variable value is Number of Populations. The following parameter

values were chosen:

Number ofPopulations: VARIABLE

Population Size: 20

Number ofColors: 3

Number of Vertices: 16

Selection Strategy: Roulette-Wheel

Crossover Rate: 0.85

Crossover Strategy: PMX

Mutation Rate: 0.05

Migration Frequency: 20 (if Number OfPopulations > 1)

Migration Size: 3 (if Number OfPopulations> 1)

Migrant Selection: Roulette-Wheel (if Number OfPopulations > 1)

Migration Topology: Ring (if Number OfPopulations> 1)

Elitism: True

2) A problem is chosen and kept unchanged. R(3,3,3) was chosen.

3) The problem is run on a traditional GA (Number ofPopulations == 1) 10 times. The

38

purpose of repeating the run 10 times IS to obtain a better view of the average

performance of the traditional GA.

4) 'The problem is run on the simulated cgGA with Number OfPopulations equal to

2,3,4,5, and 6. The results of each one of these runs is compared with the performance

of the traditional GA of Step 3 above.

A summary of the results of Step 3 is shown in Table III below. Figure 10 shows

the change in the average fitness value of the populations in each one of the 10 runs.

39

~o

Table III. Statistics for 10 runs of R(3,3,3) (Nun1ber of Populations == 1, Population Size == 20)

Run 1 Run 2 Run 3 Run 4 RunS Run 1 Run 2 Run 3 Run 4 RunS

Generation Best Fitness Average Fitness

0 107.00 107.00 104.00 106.00 105.00 101.25 101.55 100.55 101.75 101.60
50 107.00 107.00 106.00 106.00 105.00 104.50 104.00 102.65 102.45 101.70

100 107.00 107.00 106.00 106.00 105.00 105.75 104.60 101.60 100.80 101.60
150 107.00 107.00 106.00 106.00 105.00 106.40 103.70 103.20 101.00 102.95
200 107.00 107.00 106.00 106.00 105.00 105.80 105.20 103.60 100.90 102.95
250 107.00 107.00 106.00 106.00 105.00 106.00 105.20 106.00 102.60 104.45
300 107.00 107.00 106.00 106.00 105.00 107.00 104.00 106.00 104.80 104.85
350 107.00 107.00 106.00 106.00 105.00 107.00 107.00 106.00 103.60 104.50
450 107.00 107.00 106.00 106.00 105.00 107.00 107.00 106.00 106.00 105.00
500 107.00 107.00 106.00 106.00 105.00 107.00 107.00 106.00 106.00 105.00
550 107.00 107.00 106.00 106.00 105.00 107.00 107.00 106.00 106.00 105.00
600 107.00 107.00 106.00 106.00 105.00 107.00 107.00 106.00 106.00 105.00

Run 6 Run 7 Run 8 Run 9 RunlO Run 6 Run 7 Run 8 Run 9 RunlO

Generation Best Fitness Average Fitness

0 104.00 105.00 105.00 105.00 106.00 101.05 100.75 101.60 100.80 101.35
50 105.00 106.00 107.00 105.00 106.00 102.65 102.10 103.45 102.00 100.85

100 105.00 106.00 107.00 105.00 106.00 102.15 101.20 105.50 102.15 102.05
150 105.00 106.00 107.00 105.00 106.00 101.85 102.70 105.10 103.05 105.70
200]05.00]06.00 107.00 105.00 106.00 102.60 104.20 104.20 103.50 106.00
250 105.00 106.00 107.00 105.00 106.00 102.00 105.40 103.95 103.95 106.00
300 105.00 106.00 107.00 105.00 106.00 101.55 106.00 104.00 105.00 106.00
350 105.00 106.00 107.00 105.00 106.00 102.00 106.00 105.00 105.00 106.00
450 105.00 106.00 107.00 105.00 106.00 104.10 106.00 104.80 105.00 106.00
500 105.00 106.00 107.00 105.00 106.00 104.55 106.00 105.00 105.00 106.00
550 105.00 106.00 107.00 105.00 106.00 103.95 106.00 106.60 105.00 106.00
600 105.00 106.00 107.00 105.00 106.00 105.00 106.00 107.00 105.00 106.00

110
109
108

fI) 107
tn
C1> 106
~....,
~ 105

~ 104ca
Q; 103
>
ca 102

101
100

99

~ b~ ~~ <,~ ~~ b~ ~~ ~~ ~~ b~ ~~ b~ ~~ b~
0: flI~ ~ ~, ~~ ~ ;S ;; ~ ~ ~ ~ ~~ ~~

~o: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0: 0:
generation number

-+-nml

--'-nm6

----nm2

-+-nm7

run3

-runS

---+..- run4

--nm9

Figure 10. Average Fitness in 10 runs
Number of Populations == 1
Population Size == 20

As Figure 10 shows, there is no improvement after at most 600 generations and the

search stagnates. Many runs were performed for each of the choices of Population

Size and similar results were obtained. As shown in Table II and Figure 9, the larger

the value of Population Size, the longer it took the population to converge to a local

optimum and thus the search to stagnate. However, regardless of the value of

Population !J"ize, the traditional GA was never able to find a fitness value better than

108. After converging to a local optimum, the search stagnated even when allowed to

run for hundreds of thousands of generations. Continuing with the experiment, the

problem was run on the simulated cgGA with Population Size == 2.

Table IV is a summary of the results obtained (Appendix F contains statistics

41

reported every 10 generations). Figure 11 shows the change in the average fitness

value of each one of the two populations.

Table N. Statistics for R(3,3,3) (Number of Populations == 2, Population Size == 20)

Population 1 Population2 Population! Population2

Generatioll Best Fitness Average Fitness

0 105.00]06.00 101.85 101.55

50 107.00 107.00 102.90 102.80

100 107.00 107.00 103.75 102.80

150 107.00 107.00 103.95 100.25

200 107.00 107.00 105.80 102.85

250 107.00 107.00 101.05 105.80

300 107.00]07.00 103.80 106.80

350 107.00 107.00 106.60 106.30

400 107.00 107.00 106.90 107.00

450 107.00 107.00 106.60 106.60

500 107.00]07.00 106.60 106.80

550 107.00 107.00 105.90 105.60

600 107.00 107.00 105.60 106.30

650 107.00 107.00 106.80 106.70

700 107.00 107.00 106.80 107.00

750 107.00 107.00 106.10 106.80

800 107.00 107.00 106.40 106.40

850 107.00 107.00 106.60 106.20

900 107.00 107.00 106.80 105.60

950 107.00 107.00 106.70 105.40

1000 107.00 107.00 106.50 105.80

1050 107.00 107.00 106.20 106.30

1100 107.00 107.00 106.40 106.90

1150 107.00 107.00 107.00 106.90

1200 107.00 107.00 107.00 107.00

42

110 ...,---.,.-..,...,.,....,.

109

108

UJ 107
UJ
Q) 106c:..,

tt= 105
(l)

tn 104ca
~ 103
>
ca 102

101

100

99

~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~
0: ~~ ~~ ~~ ~~ ~ ~~ca ~~ ~~ ~ ~~ ~~ ~'V ~

0: ~ ~ ~ 0: ~ ~ ~ 0: ~~ ~~

generat·on number

-'-popl -II- pop2

Figure 11. Average Fitness versus Generation Number
Number of Populations == 2
Population Size = 20

Comparing Figure 11 with Figure 10, it is seen that the average fitness values

of the two populations take about twice as many generations to converge to a

suboptimal solution.

Table V summarizes the results obtained when the problem was run with 3

populations. Figure 12 shows the change in the average fitness value of each one

of the three populations.

43

Table V. Statistics for R(3,3,3) (Number of Populations == 3, Population Size == 20)

Pop 1 Pop 2 Pop 3 PopI Pop 2 Pop 3

Generation Best Fitness Average Fitness

0 105.00 106.00 107.00 101.65 102.65 101.05
50 107.00 107.00 107.00 102.65 103.85 101.95

100 107.00 107.00 107.00 104.40 103.50 104.45
150 107.00 107.00 107.00 103.40 101.50 104.20
200 107.00 107.00 107.00 105.50 102.20 104.90
250 107.00 107.00 107.00 104.30 104.90 103.40
300 107.00 107.00 107.00 104.00 103.70 104.30
350 107.00 107.00 107.00 107.00 103.70 102.50
400 107.00 107.00 107.00 105.50 104.90 102.80
450 107.00 107.00 107.00 103.10 107.00 104.00
500 107.00 107.00 107.00]05.80 104.30 106.40
550 107.00 107.00 107.00 106.70 106.10 106.70
600 107.00 107.00 107.00 106.40 106.40 107.00
650 107.00 107.00 107.00 107.00 106.40 107.00
700 107.00 107.00 107.00 107.00 107.00 107.00
750 107.00 107.00 107.00 107.00 107.00 107.00

110

109

108

tn 107

~ 106
s:::
; 105
Q)

0)104
ns
G; 103
>
as 102

101

100

99

--+-popl ---- pop2 pop3

Figure 12. Average Fitness versus Generation Number
Number of Populations == 3
Population Size == 20

44

A comparison between Figures 11 and 12 shows a lack of inlprovement when

increasing the number of populations from 2 to 3. The fitness values of the globally

best permutations were identical in both cases. Furthermore, the populations in the run

with 3 populations converged more rapidly than those in the run with 2 populations.

This may be due to the fact that the local optimum (a pennutation with fitness value

equal to 107) was present in generation 0 of the run with 3 populations. The early

appearance of a permutation with a relatively high fitness value may have triggered

these results.

Table VI summarizes the results obtained when the problem was run with 4

populations. Figure 13 shows the change in the average fitness value of each one of

the four populations.

45

~
0\

Table VI. Statistics for R(3,3,3) (NU1l1ber of Populatio1ls == 4, Population Size == 20)

Pop 1 Pop 2 Pop 3 Pop 4 Pop 1 Pop 2 Pop] Pop4

Generatior Best Fitness Average Fitness

0 105.00 106.00 106.00 106.00 100.85 101.60 102.40 101.70
50 105.00 106.00 106.00 106.00 101.50 102.45 102.70 102.35

100 106.00 106.00 106.00 106.00 102.60 103.45 103.25 102.35
150 106.00 106.00 106.00 106.00 102.90 103.30 103.95 105.60
200 108.00 106.00 108.00 108.00 103.25 105.35 103.55 105.60
250 108.00 108.00 108.00 108.00 106.00 104.05 105.80 103.30
300 108.00 108.00 108.00 108.00 104.40 104.30 104.10 107.30
350 108.00 108.00 108.00 108.00 105.00 104.85 105.35 106.50
400]08.00 108.00]08.00 108.00 104.00 105.40 105.00 107.85
450 108.00 108.00 108.00 108.00 106.00 103.20 105.40 107.50
500 108.00 108.00 108.00]08.00 105.40]03.85 105.80]06.55
550 108.00 108.00 108.00 108.00 104.65 104.00 106.00 105.80
600 108.00 108.00 108.00 108.00 106.60 106.00 107.20 107.40
650 108.00 108.00 108.00 108.00 108.00 104.80 107.60]07.60
700]08.00 108.00 108.00 108.00 108.00 105.80 107.80 107.80
750 108.00 108.00 108.00 108.00 107.20 106.00 107.80 108.00
800 108.00 108.00 108.00 108.00 108.00 107.80 108.00 108.00
850 108.00 108.00 108.00 108.00 108.00 108.00 108.00 108.00
900 108.00 108.00 108.00 108,00 108.00 108.00 108.00 108.00

110

109

108

107
en
en 106Q)
r:.... 105t;:
Q)
C) 104m
I.-
Q) 103>m

102

101

100

99

~ ~~ ~~ ~~
o~ ~ ;J ;Src 0: 0: 0:

~~ ~~ ,~~
~ ~ ~~

0: 0: 0:
generation number

-+-popl ---pop2 pop3 ----:1~· - pop4

Figure 13. Average Fitness versus Generation Number
Number of Populations == 4
Population Size == 20

As can be observed, a permutation with fitness value equal to 108 is found when a

run with 4 populations is performed. This is the highest fitness value that was

achieved when multiple runs of the traditional GA with population sizes equal to 40,

60, 80, or 100 were done. This result is very significant from the point of view of

computing time. As previously discussed, the time it takes the DECODER to evaluate

the fitness of a permutation dominates the execution time thus a very large population

can be very expensive in terms of time. However, the simulated cgGA with 4

populations and a small population size of 20 was able to find a permutation with a

fitness value equal to the one found by a traditional GA with a large population size.

This suggests that if several processors are available and a truly parallel cgGA is

47

implemented, a great improvement in execution time \\lould be obtained.

Table VII summarizes the results obtained when the problem was run with 5

populations (Appendix F contains statistics reported every 10 generations). Figure 14

shows the change in the average fitness value of each one of the five populations.

48

~
\0

Table VII. Statistics for R(3,3,3) (Number of Populations == 5, Population Size = 20)

Pop 1 Pop 2 Pop 3 Pop 4 Pop 5 Pop 1 Pop2 Pop3 Pop4 PopS

Generation Best Fitness Average Fitness

0 105.00 104.00 106.00 105.00 107.00 102.35 100.75 101.75 101.65 101.70
50 107.00 107.00 106.00 105.00 108.00]02.80 104.40 102.50 102.30 102.40

100 106.00 105.00 107.00 107.00 108.00 103.25 103.95 103.85 103.50 104.90
150 106.00 108.00 107.00 107.00 108.00 105.05 105.25 104.35 105.50 106.00
200 108.00 108.00 107.00 108.00 108.00 104.50 106.05 105.75 105.95 106.30
250 110.00 108.00 108.00 108.00 108.00 106.20 105.45 106.70 104.75 103.60
300 110.00 1]0.00 110.00]08.00 108.00 104.85 106.75 106.90 106.85 106.45
350 1]0.00 110.00 110.00 108.00 108.00 107.25 105.65]08,00 105.90 105.95
400 110.00 110.00 110.00 110.00 110.00 106.15 107.50 107.50 106.35 104.80
450 110.00 110.00 110.00 110.00 110.00 107.10 105.15 107.75 107.75 107.40
500 110.00 110.00 110.00 110.00 110.00 107.50 106.00 107.25]06.95 106.45
550 110.00 110.00 110.00 110.00 110.00 107.00 108.00 104.25 105.25 107.10
600 1] 0.00 110.00 110.00 110.00 110.00 108.50 104.75 107.75]07.85 107.00
650 110.00 110.00 110.00 110.00 110.00 107.75 108.00 105.00 107.75 107.55
700 110.00 110.00 110.00 110.00 110.00 108.75 110.00 106.75 107.00 108.00
750 110.00 110.00 110.00 110.00 110.00 109.50 107.50 109.75 108.00 107.25
800 110.00 110.00 110.00 110.00 110.00 110.00 109.00 110.00 108.00 109.75
850 110.00 110.00 110.00 1]0.00 110.00 110.00 110.00 110.00 110.00 110.00
900 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00 110.00

110

109

108

(/) 107
(/)
(1,) 106c:....

105't=
CP
C) 104ta
~

(1) 103>
ta

102

101

100

99

~ ~~ ~~ ~~

0: ~ ~'V ;'
0: 0: 0:

--+- popl --- pop2 pop3 -~-~ pop4 -*- popS

Figure 14. Average Fitness versus Generation Number
Number of Populations == 5
Population Size == 20

When several runs of the traditional GA with population size equal to 100 were

performed, no permutation with fitness value higher than 108 was found. Thus, the

results obtained indicate that a cgGA is capable of finding permutations with higher

fitness values than those found with a traditional GA. In the case of a truly parallel

cgGA, one would expect it to do this in a shorter time.

Table vm summarizes the results obtained when the problem was run with 6

populations. Figure 15 shows the change in the average fitness value of each one of

the five populations.

50

V1
~

Table VIII. Statistics for R(3,3,3) (Nunlber of Populations == 6, Population Size == 20)

Pop I Pop 2 Pop 3 Pop 4 Pop S Pop 6 PopI Pop2 Pop3 Pop4 PopS Pop6

Generation Best Fitness Average Fitness

0 104.00 103.00 106.00 105.00 106.00 107.00 101.35 101.80 101.70 102.25 101.90 101.50
50 103.00 106.00 107.00 106.00 105.00 105.00 102.10 102.45 103.60 106.00 101.9C 100.20

100 107.00 109.00 107.00 105.00 106.00 106.00 104.15 103.40 102.95 103.25 103.50 103.50
150 107.00 109.00 109.00 109.00 107.00 106.00 100.35 102.45 103.80 102.85 104.60 104.50
200 107.00 109.00 100.00 109.00 109.00 107.00 104.70 103.50 103.10 104.95 104.00 103.35
250 107.00 109.00 100.00 109.00 107.00 109.00 I0~.70 105.95 105.20 104.60 106.10 103.85
300 109.00 109.00 109.00 109.00 108.00 109.00 104.70 105.65 106.10 105.30 106.00 106.75
350 109.00 109.00 109.00 109.00 109.00 109.00 106.90 106.10 106.85 104.55 106.90 107.00
400 109.00 109.00 109.00 109.00 109.00 109.00 105.30 106.10 107.00 105.20 106.80 106.80
450 109.00 109.00 109.00 109.00 109.00 109.00 106.20 105.80 106.50 107.00 106.80 107.00
500 109.00 109.00 109.00 109.00 109.00 109.00 106.80 106.70 107.00 107.00 107.00 106.20
550 109.00 109.00 109.00 109.00 109.00 109.00 106.80 107.00 106.60 106.80 107.00 107.00
600 109.00 109.00 109.00 109.00 109.00 109.00 105.80 107.60 106.50 107.00 107.00 106.60
650 109.00 109.00 109.00 109.00 109.00 109.00 109.00 107.80 108.00 109.00 106.90 108.90
700 109.00 109.00 109.00 109.00 109.00 109.00 108.80 109.00 109.00 109.00 109.00 109.00
750 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00 109.00

110

109

108

en 107

~ 106
t:

~ 105
(J)

en 104
r:!
~ 103
ns 102

101

100

99
<:> <:> <:> <:> <:> <:> <:> <:> <:> Q Q 0 0 0 <= c:> <:>= If') c:> If') c:> If') c:> If') 0 lI) Q If') 0 If') <0 lr) <:>
~ = ~ ...-l M N ~ ~ ~ ~ If') l£) "CJ \C r- r- oo
=.t) C1J C C = = c = = c = c = = == = =OJ) C1J a,} QJ ~ ~ ~ ~ a,} ~ ~ ~ C1J ~ C1J C1J

=.t) OJ) OJ) OJ) OJ) OJ) OJ) OJ) OJ) ~ OJ) OJ) OJ) OJ) ~

generation number

I-+-POPI ---pop2 pop3 _..' r~'--'- pop4 ---*- popS -e-- pop61

Figure 15. Average Fitness versus Generation Number
Number of Populations = 6
Population Size == 20

From the above results we can observe that increasing the number of populations in

a cgGA does not necessarily result in better perfonnance. What the optimal number of

populations in a cgGA is, is a research question that is beyond the scope of this thesis.

6.2 Conclusions

According to the experimental results, increasing the number of populations in a

cgGA does not help in reducing the rate of premature convergence. However, the

difference between the fitness value of the permutations found with the traditional GA

and with the simulated cgGA is evident. The reason for the superior performance of

the cgGA is that it maintains multiple populations that evolve independently. In this

manner, each population explores different parts of the search space and thus the

52

chances of finding the global optimum Increase. When R(3,3,3) was run on a

traditional GA, no pennutation with fitness value greater than 108 was ever found.

Not only did the simulated cgGA perform better from the point of view of the quality

of the pennutation that was found, it also used a small population of size 20 which

would result in a much faster execution time if it were to be implemented on a truly

parallel platform.

53

CHAPTER VII

RESULTS, CONCLUSIONS, AND FUTURE WORK

The first section of this chapter presents the results achieved using the simulated

cgGA for searching R(3,3,3,3) whose value is known to be between 51 and 64.

Concluding remarks are made in the second section and directions for future research

are presented at the end of the chapter.

7.1 Results of Run for R(3,3,3,3)

Because 51 ~ R(3,3,3,3) ~ 64, in order to reduce the range of possible values for

this Ramsey Number, we could try to increase the lower bound by one first. That is,

finding a complete graph on 51 vertices with no monochromatic triangles on either of

4 different colors would prove that 52 ~ R(3,3,3,3) ~ 64. The massive computation

involved in assigning a fitness value to a complete graph on 51 vertices and the huge

search space makes the goal of improving on this lower bound a very unrealistic goal

for our simulated cgGA. The purpose of developing SIPAGAR was to compare the

performance of a traditional GA with that of a cgGA in finding Ramsey Numbers. In

this respect, this thesis has clearly shown that future attempts to find Ramsey

Numbers based on a cgGA are more promising than those based on a traditional GA.

Nevertheless, the simulated cgGA was run with the following parameter values:

Number ofPopulations: 6

54

Population Size: 50

Number ofColors: 4

Number of Vertices: 51

Selection Strategy: Roulette-Wheel

Crossover Rate: 0.85

Crossover Strategy: PMX

Mutation Rate: 0.05

Migration Frequency: 15

Migration Size: 5

Migrant Selection: Roulette-Wheel

Migration Topology: Ring

Elitism: True

The optimal permutation (a complete graph on 51 vertices with no monochromatic

triangles in either of 4 colors) has a fitness value of 1275. A permutation with a fitness

value equal to 946 was found as a result of running the simulated cgGA with the

above parameter values. Figure 16 shows a snapshot of this run. No permutation with

a fitness value greater than 924 was found when the traditional GA with a population

size of 100 was run several times on this problem.

55

popG-> popl .Number of Poptiations

P~S.i;ze 50

Numbet Of Colols

,Number of Vertice~

Selection Strat~

pop2··> pap3 UOSSOVel Rate
?0p2-> pOp3
pop2 ..>pop3

Crossover 'Strategy'pop2 ..} pop3
pop2 ..) pOp3

Mutation Rate

Mjgr~ion FrequenCy

Migration Size

MigrC!f1t Selection

Mi~at):m Tapology

Figure 16. Snapshot of a Run on R(3,3,3,3)

7.2 Conclusions

This thesis has proposed a cgGA for solving one of the most interesting and

difficult problems in combinatorics - finding Ramsey Numbers. We presented brief

overviews of Ramsey Theory and Genetic Algorithms as a search technique. Parallel

GA's were introduced as an extension of traditional GA's that are capable of

improving the time performance and of reducing the likelihood of premature

convergence. cgGA's were presented as a type of PGA that maintain a number of

independent populations and allow for the occasional interchange of individuals. It

56

was discussed how, in this manner, cgGA's increase the diversity of search paths and

thus have a better chance of finding an optimal solution. In order to verify and validate

the superior performance of cgGA's over traditional GA's in finding Ramsey

Numbers, a simulated cgGA was developed. The results of the experiments conducted

in this thesis lead us to the conclusion that cgGA-based attempts to improve the

bounds of Ramsey Numbers are more promising than those based on traditional GA's,

and hence lead us to look with increased confidence in these directions.

7.3 Future Work

There is ample opportunity for future work on this problem. It is recommended that

future study be conducted on finding the ideal values for the following parameters:

Crossover Rate, Mutation Rate, Migration Frequency, and Migration Size. A

comparative study of the effects of these parameters can give greater insight into their

optimal values. It would also be very interesting to experiment with different

Crossover Selection, Crossover, and Migrant Selection strategies as well as with

different Migration topologies. In the current implementation of SIPAGAR, there are

only two choices for the Migrant Selection, Crossover, and Crossover Selection

strategies. There is only a single choice for the Migration Topology. Probably the

most important work that could be done in the future is to implement the cgGA

proposed in this thesis on a truly parallel platform.

57

REFERENCES

[Cohoon et al. 91] J. P. Cohoon, S. U. Hedge, W. N. Martin, and D. S. Richards,
"Distributed Genetic Algorithms for the Floorplan Design Problem," IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 10, No.4, pp. 483-492, Apri11991.

[Darwin 59] Charles Darwin, On the Origin ofSpecies by Means oJNatural Selection,
J. Murray Press, London, UK, 1859.

[De Jong 75] K. De Jong, An Analysis oJthe Behavior oja Class afGenetic Adaptive
Systems, University of Michigan Press, Ann Arbor, MI, 1975.

[Erickson 96] Martin J. Erickson, Introduction to Combinatories, John Wiley & Sons,
Inc., New York, NY, 1996.

[Eiben and van der Hauw 98] A. E. Eiben and J. K. van der Hauw, "Adaptive
Penalties for Evolutionary Graph Coloring," Lecture Notes in Computer
Science, pp. 95-106, Edited by: G. Goos, J. Hartmanis, and J. van Leeuwen,
Springer-Verlag, Heidelberg, Gennany, 1998.

[Goodman et al. 94] E. D. Goodman, Shyh-Chang Lin, and W. F. Punch III, "Coarse­
Grain Parallel Genetic Algorithms: Categorization and New Approach,"
Proceedings oj the Sixth IEEE Symposium on Parallel and Distributed
Processing, pp. 28-37, Dallas, TX, October 1994.

[Goldberg and Richardson 87] D. E. Goldberg and J. T. Richardson, "Genetic
Algorithms with Sharing for Multi-Modal Function Optimization,"
Proceedings of the Second International Conference on Genetic Algorithms
and Their Applications, pp. 41-49, Cambridge, MA, July 1987.

[Goldberg et al. 92] D. E. Goldberg, K. Deb, and J. H. Clark, "Genetic Algorithms,
Noise, and the Sizing of Populations," Complex Systems, Vol. 6, No.4, pp.
333-362, February 1992.

[Graham and Spencer 90] Ronald L. Graham and Joel H. Spencer, "Ramsey Theory,"
Scientific American, Vo1263, No.1, pp. 112-117, July 1990.

[Holland 75] John Holland, Adaptation in Natural and Artificial Systems, University
of Michigan Press, Ann Arbor, MI, 1975.

58

[Mouldin 84] M. Mouldin, "Maintaining Diversity in Genetic Search" Proceedings of
the Fourth National Conference on Artificial Intelligence, pp. 247-250,
Austin, TX, August 1984.

[Papadopoulos 94] Constantinos V. Papadopoulos, "On the Parallel Execution of
Combinatorial Heuristics," Proceedings of the First International Conference
on Massively Parallel Cornputing Systems, pp. 423-427, Los Alamitos, CA,
May 1994.

[Poon and Carter 95] P. W. Poon and J. N. Carter, "Genetic Algorithm Crossover
Operators for Ordering Applications." Computers and Operations Research,
Vol. 22, No.1, pp. 135-147, March 1995.

[Radziszowski 93] Stanislaw P. Radziszowski, "Small Ramsey Numbers," Technical
Report RIT-TR-93-009, Department of Computer Science, Rochester Institute
of Technology, Rochester, NY, 1993.

[Rebaudergo and Reorda 92] M. Rebaudergo and M. Sonza Reorda, "An
Experimental Analysis of the Effects of Migration in Parallel Genetic
Algorithms," Proceedings of the Euromicro Workshop on Parallel and
Distributed Processing, pp. 232-238, Athens, Greece, January 1992.

[Stracuzzi 98] David J. Stracuzzi, "Some Methods for the Parallelization of Genetic
Algorithms," http://ml-www.cs.umass.edu/~stracudj/genetic/dga.html, creation
date: May 1998 (access date: January 2000).

[Ugoluk 97] Gokturk Ugoluk, "A Method for Chromosome Handling of r­
Permutations of n-Element Sets in Genetic Algorithms," Proceedings of the
IEEE International Conference on Evolutionary Computation, pp. 55-58,
Indianapolis, IN, April 1997.

59

APPENDICES

60

APPENDIX A

GLOSSARY

Allopatric Speciation

Applet

Asynchronous Processes

CF

cgGA

Chromosome

Complete Graph

Crossover

DECODER

The rapid evolution of new species after a small set of
members of a species becomes segregated into a new
environment.

A program written in JAVA that can be included in an
HTMLpage.

Processes that do not block on an input/output operation
waiting for the corresponding output/input reply from
other process. A queue or buffer is used instead to store
messages.

Crowding Factor. Number of individuals In a
subpopulation in De Jong's crowding scheme.

Coarse-Grain Genetic Algorithm. A parallel Genetic
Algorithm based on the theory ofpunctuated equilibria.

A sequence of genes (usually represented as a string of
bits) determining an individual's genotype.

A graph in which every two distinct vertices are joined
by an edge.

Sexual recombination. It is the genetic operation that
allows new individuals to be created. It allows new
points in the search space to be tested.

A function used to decode elements of a permutation­
based chromosome.

Dynamic Connection Scheme A scheme in which the network topology may change
during execution.

61

Evaluation Function

fgGA

Fitness Value

GA

GA-Hard Problem

Gene

Genetic Algorithm

Genotype

Global Optimum

GUI

Hamming's Distance

Heterogeneous Island GA

Homogeneous Island GA

Hypergraph

A function that evaluates and assigns a fitness value to
an individual.

Fine-Grain Genetic Algorithm. A Genetic Algorithm
composed of small overlapping subpopulations.
Individuals belonging to more than one subpopulation
allow for the interchange of information between
subpopulations.

Value assigned to an individual according to its aptitude
in solving a given problem.

Genetic Algorithm.

Problems that are not easily solved by a Standard
Genetic Algorithm.

Specific characteristic or attribute that is encoded in a
chromosome.

A highly parallel mathematical algorithm that
transfonns a set of individual mathematical objects,
each with an associated fitness value, into a new
population using operations patterned after the
Darwinian principle of reproduction and survival of the
fittest.

Observable characteristics of an individual (a solution).

An optimal solution to a given problem.

Graphical User Interface.

Minimum number of bit positions by which codewords
for a particular code differ. Number of different genes
between two chromosomes.

A cgGA in which processes may have different
parameters.

A cgGA in which every processor uses the same
parameters.

A graph whose hyperedges connect one or more
vertices.

62

Islands Model

Local Optimum

Master Process

mdpGA

mgGA

Migration

Migration Frequency

Migrant Selection

Migration Size

Monochromatic Kn

Mutation

Mutation Rate

NP-Complete Problem

A parallel genetic algorithm in which the total
population is divided into several subpopulations or
islands and migration is performed at determined time
intervals.

A sub-optimal solution to a given problem.

A process that maintains a population and performs
classical genetic operations while assigning
computational tasks to the slave processes.

Massively Distributed Parallel Genetic Algorithm. A
Genetic Algorithm in which every subpopulation IS

assigned to a processors. Subpopulations are small.

Micro-Grain Genetic Algorithm. A Genetic Algorithm
that maintains a single population in a master process.
The master process performs classical genetic operators
while assigning the task of fitness evaluations to slave
processes.

Process of interchanging individuals between different
populations.

Determines the number of generations between two
migrations.

Determines which immigrants are chosen within the
source population.

Detennines the number of individuals composing each
migration.

A complete graph of order n in which all the edges have
the same color.

An operation that is usually used in a conventional
genetic algorithm and consists of randomly changing the
bits of a fixed-length string to introduce genetic
diversity.

The frequency at which mutation is performed.

A problem B is NP-hard if solving it in polynomial time
would make it possible to solve all problems in class
NP in polynomial time. A problem is NP complete
when it is both NP hard and it is in NP.

63

Order-Based Representation A representation scheme in which each chromosome is a
permutation of some given problem parameters.

Order of a Graph Let G == (V, E) be a graph with vertex set V and edge set
E, the number of vertices of G is called the order of G.

PGA Parallel Genetic Algorithm. A Genetic Algorithm that
maintains multiple, independent populations that each
focus on a different area of a problem.

Phenotype Genetic structure of an individual (a bit string).

Population A set of individual mathematical objects (typically
fixed-length character strings patterned after
chromosome strings).

Reproduction The creation of two children (chromosomes) by using
two parents of the previous generation.

SIPAGAR SImulated PArallel Genetic Algorithm for finding
Ramsey numbers.

Slave Process A process performing computational tasks for a master
process.

Stasis Stability or lack of change.

Static Connection Scheme A scheme in which the connections between different
processors are established at the beginning and not
modified during execution.

Synchronous Processes A process blocks on an input/output operation until the
corresponding process replies with an output/input
operation.

Tennination Criteria Criteria that cause a genetic algorithm to stop
perfonning the operations on each generation of
individuals to produce new generations.

Thread A parallely executable sequence of instructions In a
program

T-unifonn Hypergraph A hypergraph all of whose hyperedges connect t
vertices.

64

JAVA

APPENDIXB

TRADEMARK INFORMATION

A registered trademark of Sun Microsystems, Inc.

65

APPENDIXC

KNOWN BOUNDS ON RAMSEY NUMBERS

Ramsey Numbers quantify some of the general existential theorems in Ramsey

Theory. A Ramsey number is defined as the smallest integer N such that if the edges

of the complete graph on R(a}, a2, ... , ac) vertices are partitioned into c color classes,

then there exists a complete graph on anyone of ai for 1 [i [c vertices all of whose

edges are of color ai. Ramsey numbers are very difficult to find, only a few are known.

The following bounds on classical and multicolor Ramsey numbers were found in a

technical report by Radziszowsky [Radziszowsky 93].

Two-color classical Ramsey numbers

Table 1. Known values and lower/upper bounds for two color Ramsey
numbers R(k,l):= R(k,I;2) [Radziszowski 93].

I 3 4 5 6 7 8 9 10 11 12 13 14 15
k
3 6 9 14 18 23 28 36 40 46 52 59 66 73

43 51 59 69 78 88

4 18 25 35 49 55 69 80 96 128 131 136 145
41 61 84 115 149 191 238 291 349 417

5 43 58 80 95 121]4] 153 181 193 221 242
49 87]43 216 316 442

6 102 109 122 153 167 203 230 242 284 374
165 298 495 780 1171

7 205 1031 1713 2826 312
540

8 282 3583 6090
1870

9 565 12677
6588

10 798
23581

Table II. Known lower bounds for higher two color Ramsey numbers
R(k,l) [Radziszowski93]

66

I 15 16 17 18 19 20 21 22 23
k
3 73 79 92 98 106 109 122 125 136

4 145 164 1 2 198 230 242 282

5 242 282 338 374 422 434

6 374 434 548 614 710 878

7 578 618 758

8 618 678 740 860 948

What follows are some known bounds for Multicolor Ramsey Numbers:

The only known value for a multicolor Ramsey number is R(3,3,3) == 17

51 ~ R(3,3,3,3) ~ 64
162 ~ R(3,3,3,3,3) ~ 317

500 s R(3,3,3,3,3,3) s 1898

128 s R(4,4,4) ~ 236
458 ~ R(4,4,4,4)

942 ~ R(4,4,4,4,4)

385 ~ R(5,5,5)
1833 ~ R(5,5,5,5)

4711 ~ R(5,5,5,5,5)

1070 s R(6,6,6)
3433 s R(6,6,6,6)
3211 ~ R(7,7,7)

12841 ~ R(7,7,7,7)

30 ~ R(3,3,4)~ 31
45 ~ R(3,3,5) ~ 57

60 s R(3,3,6)
72 s R(3,3,7)
110 S R(3,3,9)

141 ~ R(3,3,11)
55 ~ R(3,4,4) S 79

80 s R(3,4,5) S 161
91 s R(3,3,3,4) s 155

144 s R(3,3,4,4)

67

APPENDIXD

PERMUTATION-RESPECTING OPERATORS

Ordinary crossover and mutation operators cause problems for order-based

representations. The reason for this is that offspring generated by means of ordinary

operators may not be valid solutions for the problem being solved anymore. The

following are some permutation-respecting operators that can be used with an order­

based representation.

CROSSOVER

Uniform Order Crossover [Poon and Carter 95]

The offspring chromosome is initially empty. At each position, the first gene is

selected at random from one of the two parent chromosomes and inserted into the

offspring. The gene is then deleted from both parents.

Parent 1 I 3 4 5 1 7 6 2

Parent 2 I 7 5 4 6 3 1 2 I

Offspring I 3 7 4 5 1 6 2 I

Random parental sequence: 1 2 1 2 1 1 2

Partially Matched Crossover [Poon and Carter 95]

A matching section consisting of two crossover points is randomly chosen. Elements

of the matching sections that occur in the other parent are deleted. The remaining part

of each parent is combined with the matching section of the other parent. The

68

matching section maintains its original position in the new chromosome.

ParentI~

parent2~

5 1 7 2

34 62

MUTATION

OffspringI I 5 I 4 6 3 7 2

Offspring2 I 3 4 5 I 7 6 2

Swap Mutation [Poon and Carter 95]

Two randomly selected genes in a chromosome are swapped.

Individual [Ji5 I 7 tJ Mutated individual I 3 6 5 I 7 4 2 I

69

APPENDIXE

PROOF OF R(3,3) = 6

The party puzzle is a classical problem used to introduce Ramsey Theory. What is

the minimum number of guests that must be invited to a party so that either a group of

at least three people will know one another or at least three guests will not mutually

know each other? The answer to this problem, which equals 6, is called the Ramsey

number R(3,3).

To show this, fix one person (or one point in the graph), say PI, and consider his or

her relationship (or color of the edge) to P2, P3, P4, P5, and P6. By the pigeonhole

principle, PI must either know at least 3 of the other 5 people, or not know at least 3

of them. Suppose PI knows P2, P4, and P6 as represented by the dark edges in the

following figure.

02····················.../ \ \

// P3 \ \

0
:··'

P4 :: \" .

0/::/"')
70

If any pair of P2, P4, and P6 know each other, then at least one of the edges (P2,

P4), (P2, P6), or (P4, P6) will be drawn with a dark edge, thus obtaining at least one

monochromatic triangle (or 3 people who mutually know each other). Ifno pair ofP2,

P4, and P6 know each other, those 3 mutually do not know each other, thus P2, P4,

and P6 are the vertices of a monochromatic triangle as well.

71

APPENDIXF

RESULTSOFEXPE~ENTS

This appendix contains statistics reported every 10 generations for all the runs

perfonned as mentioned in Chapter VI. The statistics in this appendix are indexed by

the corresponding Table number in Chapter VI (in the interest of brevity, only the

statistics for three tables are listed here).

Statistics for Table 2

Population size == 40

generation #: 0 best: 106.0 average: 101.56 change: 101.56

generation #: 10 best: 107.0 average: 101.6 change: 0.03

generation #: 20 best: 107.0 average: 101.28 change: 0.01

generation #: 30 best: 107.0 average: 101.49 change: 0.14

generation #: 40 best: 107.0 average: 101.48 change: 0.03

generation #: 50 best: 107.0 average: 101.96 change: -0.05

generation #: 60 best: 107.0 average: 102.36 change: 0.31

generation #: 70 best: 107.0 average: 102.39 change: 0.03

generation #: 80 best: 107.0 average: 102.93 change: 0.0

generation #: 90 best: 107.0 average: 103.22 change: -0.01

generation #: 100 best: 107.0 average: 103.29 change: -0.04

generation #: 110 best: 107.0 average: 103.45 change: 0.01

generation #: 120 best: 107.0 average: 103.32 change: 0.05

generation #: 130 best: 107.0 average: 103.09 change: -0.04

generation #: 140 best: 107.0 average: 103.15 change: 0.01

generation #: 150 best: 107.0 average: 103.14 change: -0.15

generation #: 160 best: 107.0 average: 102.07 change: 0.02

generation #: 170 best: 107.0 average: 102.03 change: -0.10

generation #: 180 best: 107.0 average: 102.5 change: 0.01

generation #: 190 best: 107.0 average: 102.13 change: -0.04

generation #: 20 best: 107.0 average: 102.49 change: -0.10

generation #: 210 best: 107.0 average: 103.14 change: 0.03

generation #: 220 best: 107.0 average: 102.91 change: 0.010

generation #: 230 best: 107.0 average: 102.92 change: -0.17

generation #: 240 best: 107.0 average: 103.25 change: -0.04

generation #: 250 best: 107.0 average: 103.08 change: 0.14

generation #: 260 best: 107.0 average: 103.04 change: 0.05

generation #: 270 best: 107.0 average: 103.98 change: 0.07

generation #: 280 best: 107.0 average: 104.06 change: 0.0

generation #: 290 best: 107.0 average: 103.54 change: 0.09

72

generation #: 300 best: 107.0 average: 103.66 change: -0.07
generation #: 310 best: 107.0 average: 103.7 change: 0.07
generation #: 320 best: 107.0 average: 103.21 change: -0.18
generation #: 330 best: 107.0 average: 103.78 change: 0.12
generation #: 340 best: 107.0 average: 103.39 change: 0.03
generation #: 350 best: 107.0 average: 103.43 change: -0.09
generation #: 360 best: 107.0 average: 103.45 change: 0.06
generation #: 370 best: 107.0 average: 103.46 change: 0.04
generation # : 380 best: 107.0 average: 103.79 change: 0.13
generation #: 390 best: 107.0 average: 103.59 change: -0.01
generation #: 400 best: 107.0 average: 103.94 change: 0.04
generation #: 410 best: 107.0 average: 103.5 change: 0.0
generation #: 420 best: 107.0 average: 103.96 change: -0.08
generation #: 430 best: 107.0 average: 104.4 change: -0.10
generation #: 440 best: 107.0 average: 104.02 change: 0.0
generation #: 450 best: 107.0 average: 104.05 change: 0.03
generation #: 460 best: 107.0 average: 103.82 change: 0.03
generation #: 470 best: 107.0 average: 103.8 change: 0.00
generation #: 480 best: 107.0 average: 103.76 change: 0.06
generation #: 490 best: 107.0 average: 104.33 change: 0.01
generation #: 500 best: 107.0 average: 104.03 change: 0.10
generation #: 510 best: 107.0 average: 103.74 change: 0.23
generation #: 520 best: 107.0 average: 103.58 change: 0.04
generation #: 530 best: 107.0 average: 103.7 change: -0.11
generation #: 540 best: 107.0 average: 103.51 change: -0.03
generation #: 550 best: 107.0 average: 103.77 change: 0.03
generation #: 560 best: 107.0 average: 104.11 change: 0.0
generation #: 570 best: 107.0 average: 103.92 change: -0.15
generation #: 580 best: 107.0 average: 104.08 change: 0.01
generation #: 590 best: 107.0 average: 103.99 change: -0.02
generation #: 600 best: 107.0 average: 104.4 change: -0.03
generation #: 610 best: 107.0 average: 104.61 change: -0.20
generation #: 620 best: 107.0 average: 104.39 change: -0.07

generation #: 630 best: 107.0 average: 105.32 change: 0.07

generation #: 640 best: 107.0 average: 105.72 change: 0.23

generation #: 650 best: 107.0 average: 105.5 change: -0.15

generation #: 660 best: 107.0 average: 105.58 change: 0.0

generation #: 670 best: 107.0 average: 105.67 change: -0.03

generation #: 680 best: 107.0 average: 105.96 change: 0.0

generation #: 690 best: 107.0 average: 106.41 change: 0.03

generation #: 700 best: 107.0 average: 106.5 change: 0.03

generation #: 710 best: 107.0 average: 106.31 change: 0.0

generation #: 720 best: 107.0 average: 106.48 change: 0.03

generation #: 730 best: 107.0 average: 106.37 change: -0.01

generation #: 740 best: 107.0 average: 106.47 change: 0.04

generation #: 750 best: 107.0 average: 106.11 change: 0.10

generation #: 760 best: 107.0 average: 106.11 change: 0.03

generation #: 770 best: 107.0 average: 106.31 change: -0.04

generation #: 780 best: 107.0 average: 106.47 change: 0.0

generation #: 790 best: 107.0 average: 106.51 change: 0.03

generation #: 800 best: 107.0 average: 106.83 change: -0.03

generation #: 810 best: 107.0 average: 106.97 change: 0.03

generation #: 820 best: 107.0 average: 106.97 change: 0.0

generation #: 830 best: 107.0 average: 106.97 change: 0.03

generation #: 840 best: 107.0 average: 106.97 change: 0.0

generation #: 850 best: 107.0 average: 107.0 change: 0.0

generation #:>850 best: 107.0 average: 107.0 change: 0.0

Population Size == 60

generation#: 0 best: 107.0 average: 101.51 change: 101.51

generation#: 10 best: 107.0 average: 102.32 change: 0.13

generation#: 20 best: 107.0 average: 102.08 change: 0.11

generation#: 30 best: 107.0 average: 102.26 change: 0.10

generation#: 40 best: 107.0 average: 101.97 change: -0.06

73

generation#: 50 best: 107.0 average: 101.73 change: 0.13
generation#: 60 best: 107.0 average: 101.53 change: 0.11
generation#: 70 best: 107.0 average: 102.05 change: 0.29
generation#: 80 best: 107.0 average: 102.47 change: 0.17
generation#: 90 best: 107.0 average: 102.66 change: 0.18
generation#: 100 best: 107.0 average: 102.41 change: -0.23
generation#: 110 best: 107.0 average: 103.57 change: 0.08
generation#: 120 best: 107.0 average: 104.0 change: -0.03
generation#: 130 best: 107.0 average: 103.27 change: -0.08
generation#: 140 best: 107.0 average: 103.58 change: 0.23
generation#: 150 best: 107.0 average: 103.32 change: -0.02
generation#: 160 best: 107.0 average: 104.01 change: 0.08
generation#: 170 best: 107.0 average: 104.33 change: -0.09
generation#: 180 best: 107.0 average: 104.76 change: 0.03
generation#: 190 best: 107.0 average: 105.35 change: 0.08
generation#: 200 best: 107.0 average: 105.32 change: -0.12
generation#: 210 best: 107.0 average: 105.06 change: 0.08
generation#: 220 best: 107.0 average: 104.86 change: 0.02
generation#: 230 best: 107.0 average: 104.77 change: -0.01
generation#: 240 best: 107.0 average: 104.83 change: 0.11
generation#: 250 best: 107.0 average: 104.53 change: 0.12
generation#: 260 best: 107.0 average: 104.53 change: 0.12
generation#: 270 best: 107.0 average: 104.92 change: 0.03
generation#: 280 best: 107.0 average: 104.85 change: 0.08
generation#: 290 best: 107.0 average: 104.65 change: -0.07
generation#: 300 best: 107.0 average: 104.56 change: 0.16
generation#: 310 best: 107.0 average: 104.4 change: -0.08
generation#: 320 best: 107.0 average: 104.76 change: 0.02
generation#: 330 best: 107.0 average: 104.77 change: 0.01
generation#: 340 best: 107.0 average: 104.41 change: 0.01
generation#: 350 best: 107.0 average: 104.1 change: -0.03
generation#: 360 best: 107.0 average: 104.28 change: 0.04
generation#: 370 best: 107.0 average: 104.48 change: 0.11
generation#: 380 best: 107.0 average: 104.57 change: -0.04
generation#: 390 best: 107.0 average: 104.98 change: 0.08
generation#: 400 best: 107.0 average: 104.4 change: -0.14

generation#: 410 best: 107.0 average: 104.63 change: 0.0

generation#: 420 best: 107.0 average: 104.85 change: -0.05

generation#: 430 best: 107.0 average: 105.0 change: 0.09

generation#: 440 best: 107.0 average: 104.7 change: 0.0

generation#: 450 best: 107.0 average: 104.45 change: -0.04

generation#: 460 best: 107.0 average: 104.55 change: 0.0

generation#: 470 best: 107.0 average: 104.25 change: -0.15

generation#: 480 best: 107.0 average: 104.1 change: 0.04

generation#: 490 best: 107.0 average: 104.3 change: 0.14

generation#: 500 best: 107.0 average: 104.5 change: 0.04

generation#: 510 best: 107.0 average: 104.6 change: -0.05

generation#: 520 best: 107.0 average: 104.4 change: 0.10

generation#: 530 best: 107.0 average: 104.55 change: 0.09

generation#: 540 best: 107.0 average: 104.6 change: 0.25

generation#: 550 best: 107.0 average: 104.6 change: 0.09

generation#: 560 best: 107.0 average: 104.55 change: 0.04

generation#: 570 best: 107.0 average: 104.45 change: 0.0

generation#: 580 best: 107.0 average: 104.85 change: 0.0

generation#: 590 best: 107.0 average: 104.95 change: 0.0

generation#: 600 best: 107.0 average: 104.95 change: 0.0

generation#: 610 best: 107.0 average: 105.15 change: 0.0

generation#: 620 best: 107.0 average: 105.0 change: -0.09

generation#: 630 best: 107.0 average: 104.65 change: -0.04

generation#: 640 best: 107.0 average: 104.6 change: 0.04

generation#: 650 best: 107.0 average: 104.95 change: 0.20

generation#: 660 best: 107.0 average: 104.7 change: 0.04

generation#: 670 best: 107.0 average: 105.05 change: 0.14

generation#: 680 best: 107.0 average: 105.15 change: -0.04

generation#: 690 best: 107.0 average: 105.85 change: 0.09

generation#: 700 best: 107.0 average: 106.25 change: 0.0

74

generation#: 710 best: 107.0 average: 106.35 change: 0.0
generation#: 720 best: 107.0 average: 106.55 change: 0.0
generation#: 730 best: 107.0 average: 106.75 change: 0.0
generation#: 740 best: 107.0 average: 106.75 change: 0.04
generation#: 750 best: 107.0 average: 106.8 change: 0.0
generation#: 760 best: 107.0 average: 106.65 change: 0.0
generation#: 770 best: 107.0 average: 106.75 change: 0.15
generation#: 780 best: 107.0 average: 106.45 change: 0.0
generation#: 790 best: 107.0 average: 106.45 change: -0.04
generation#: 800 best: 107.0 average: 106.5 change: 0.04
generation#: 810 best: 107.0 average: 106.5 change: 0.0
generation#: 820 best: 107.0 average: 106.3 change: 0.0
generation#: 830 best: 107.0 average: 105.9 change: -0.14
generation#: 840 best: 107.0 average: 105.6 change: -0.10
generation#: 850 best: 107.0 average: 105.35 change: 0.09
generation#: 860 best: 107.0 average: 105.65 change: 0.0
generation#: 870 best: 107.0 average: 105.55 change: 0.14
generation#: 880 best: 107.0 average: 105.6 change: 0.04
generation#: 890 best: 107.0 average: 105.35 change: -0.05
generation#: 900 best: 107.0 average: 104.8 change: -0.15
generation#: 910 best: 107.0 average: 105.15 change: -0.04
generation#: 920 best: 107.0 average: 104.85 change: 0.0
generation#: 930 best: 107.0 average: 105.0 change: 0.0
generation#: 940 best: 107.0 average: 105.4 change: 0.0
generation#: 950 best: 107.0 average: 105.85 change: 0.04
generation#: 960 best: 107.0 average: 105.8 change: 0.09
generation#: 970 best: 107.0 average: 105.95 change: 0.15
generation#: 980 best: 107.0 average: 105.75 change: -0.09
generation#: 990 best: 107.0 average: 106.0 change: 0.09
generation#: 1000 best: 107.0 average: 105.85 change: 0.0
generation#: 1010 best: 107.0 average: 106.35 change: 0.0
generation#: 1020 best: 107.0 average: 106.05 change: -0.10
generation#: 1030 best: 107.0 average: 106.35 change: -0.05
generation#: 1040 best: 107.0 average: 106.35 change: 0.04
generation#: 1050 best: 107.0 average: 106.4 change: -0.04
generation#: 1060 best: 107.0 average: 106.7 change: -0.04
generation#: 1070 best: 107.0 average: 106.65 change: -0.04
generation#: 1080 best: 107.0 average: 106.5 change: 0.0
generation#: 1090 best: 107.0 average: 106.65 change: -0.04
generation#: 1100 best: 107.0 average: 106.9 change: 0.10

generation#: 1110 best: 107.0 average: 106.95 change: 0.04

generation#: 1120 best: 107.0 average: 106.95 change: 0.0

generation#: 1130 best: 107.0 average: 107.0 change: 0.0

generation#:>1130 best: 107.0 average: 107.0 change: 0.0

Population Size == 80

generation#: : 0 best: 106.0 average: 101.75 change: 101.75

generation#: : 10 best: 107.0 average: 102.11 change: 0.16

generation#: : 20 best: 107.0 average: 102.41 change: 0.12

generation#: : 30 best: 107.0 average: 102.55 change: 0.01

generation#: : 40 best: 107.0 average: 102.4 change: -0.04

generation#: : 50 best: 107.0 average: 102.25 change: 0.02

generation#: : 60 best: 107.0 average: 102.13 change: -0.01

generation#: : 70 best: 107.0 average: 102.27 change: 0.07

generation#: : 80 best: 107.0 average: 102.31 change: 0.04

generation#: : 90 best: 107.0 average: 102.2 change: 0.06

generation#: : 100 best: 107.0 average: 101.9 change: -0.06

generation#: : 110 best: 107.0 average: 101.75 change: -0.05

generation#: : 120 best: 107.0 average: 102.06 change: -0.02

generation#: : 130 best: 107.0 average: 101.96 change: 0.0

generation#:: 140 best: 107.0 average: 101.71 change: 0.06

generation#: : 150 best: 107.0 average: 101.9 change: -0.16

generation#: : 160 best: 107.0 average: 101.46 change: -0.02

generation#: : 170 best: 107.0 average: 101.4 change: 0.02

75

generation#: : 180 best: 107.0 average: 101.7 change: -0.06
generation#: : 190 best: 107.0 average: 101.97 change: 0.04
generation#: : 200 best: 107.0 average: 102.27 change: 0.07
generation#: : 210 best: 107.0 average: 102.95 change: 0.16
generation#: : 220 best: 107.0 average: 103.17 change: 0.04
generation#:: 230 best: 107.0 average: 103.11 change: 0.02
generation#:: 240 best: 107.0 average: 102.93 change: -0.01
generation#: : 250 best: 107.0 average: 102.70 change: -0.12
generation#: : 260 best: 107.0 average: 102.92 change: 0.09
generation#: : 270 best: 107.0 average: 103.18 change: 0.06
generation#: : 280 best: 107.0 average: 103.08 change: 0.06
generation#: : 290 best: 107.0 average: 102.77 change: 0.06
generation#: : 300 best: 107.0 average: 102.23 change: -0.06
generation#: : 310 best: 107.0 average: 101.42 change: -0.07
generation#: : 320 best: 107.0 average: 101.27 change: 0.06
generation#: : 330 best: 107.0 average: 101.23 change: 0.02
generation#: : 340 best: 107.0 average: 101.47 change: 0.0
generation#: : 350 best: 107.0 average: 101.93 change: 0.02
generation#: : 360 best: 107.0 average: 102.25 change: 0.03
generation#: : 370 best: 107.0 average: 102.33 change: -0.09
generation#:: 380 best: 107.0 average: 102.65 change: -0.03
generation#:: 390 best: 107.0 average: 102.92 change: 0.02
generation#:: 400 best: 107.0 average: 103.18 change: 0.06
generation#:: 410 best: 107.0 average: 103.90 change: 0.0
generation#: : 420 best: 107.0 average: 104.17 change: -0.08
generation#: : 430 best: 107.0 average: 104.06 change: -0.13
generation#: : 440 best: 107.0 average: 104.68 change: 0.03
generation#: : 450 best: 107.0 average: 104.48 change: 0.11
generation#: : 460 best: 107.0 average: 104.23 change: 0.14
generation#: : 470 best: 107.0 average: 104.31 change: -0.02
generation#: : 480 best: 107.0 average: 104.01 change: -0.17
generation#: : 490 best: 107.0 average: 104.23 change: 0.08
generation#: : 500 best: 107.0 average: 104.00 change: 0.12

generation#: : 510 best: 107.0 average: 104.48 change: -0.17

generation#: : 520 best: 107.0 average: 104.95 change: 0.17

generation#: : 530 best: 107.0 average: 104.98 change: 0.0

generation#:: 540 best: 107.0 average: 104.40 change: -0.06

generation#: : 550 best: 107.0 average: 104.30 change: -0.36

generation#: : 560 best: 107.0 average: 104.71 change: 0.15

generation#: : 570 best: 107.0 average: 105.16 change: 0.0

generation#: : 580 best: 107.0 average: 104.70 change: -0.27

generation#: : 590 best: 107.0 average: 104.52 change: -0.14

generation#:: 600 best: 107.0 average: 104.50 change: 0.12

generation#: : 610 best: 107.0 average: 104.55 change: 0.18

generation#:: 620 best: 107.0 average: 104.66 change: 0.41

generation#:: 630 best: 107.0 average: 104.51 change: 0.04

generation#:: 640 best: 107.0 average: 104.72 change: 0.0

generation#:: 650 best: 107.0 average: 104.60 change: -0.12

generation#: : 660 best: 107.0 average: 104.13 change: 0.08

generation#: : 670 best: 107.0 average: 103.83 change: 0.02

generation#: : 680 best: 107.0 average: 104.10 change: -0.06

generation#: : 690 best: 107.0 average: 104.52 change: 0.0

generation#: : 700 best: 107.0 average: 104.63 change: 0.06

generation#: : 710 best: 107.0 average: 105.02 change: 0.15

genera t ion# : : 720 best: 107.0 average: 104.88 change: 0.03

generation#: : 730 best: 107.0 average: 104.71 change: 0.01

generation#: : 740 best: 107.0 average: 104.37 change: 0.06

generation#: : 750 best: 107.0 average: 104.72 change: 0.31

generation#: : 760 best: 107.0 average: 104.83 change: -0.12

generation#:: 770 best: 107.0 average: 104.37 change: 0.0

g-eneration#: : 780 best: 107.0 average: 104.03 change: -0.06

generation#: : 790 best: 107.0 average: 103.96 change: -0.06

generation#: : 800 best: 107.0 average: 103.86 change: -0.06

generation#: : 810 best: 107.0 average: 103.83 change: -0.12

generation#: : 820 best: 107.0 average: 104.20 change: -0.06

generation# : : 830 best: 107.0 average: 103.76 change: -0.02

76

generation#: : 840 best: 107.0 average: 103.70 change: 0.01
generation#: : 850 best: 107.0 average: 103.22 change: 0.09
genera t ion#: : 860 best: 107.0 average: 103.43 change: -0.02
generation#: : 870 best: 107.0 average: 104.26 change: 0.02
generation#: : 880 best: 107.0 average: 105.35 change: 0.12
generation#: : 890 best: 107.0 average: 105.66 change: 0.0
generation#: : 900 best: 107.0 average: 106.16 change: 0.0
generation#: : 910 best: 107.0 average: 106.35 change: 0.0
generation#: : 920 best: 107.0 average: 106.66 change: 0.0
generation#: : 930 best: 107.0 average: 106.48 change: -0.06
generation#: : 940 best: 107.0 average: 106.25 change: 0.12
generation#: : 950 best: 107.0 average: 106.66 change: 0.08
generation#: : 960 best: 107.0 average: 106.81 change: 0.06
generation#: : 970 best: 107.0 average: 106.81 change: 0.0
generation#:: 980 best: 107.0 average: 106.87 change: 0.06
generation#: : 990 best: 107.0 average: 106.75 change: 0.0
generation#: : 1000 best: 107.0 average: 106.81 change: 0.0
generation#: : 1010 best: 107.0 average: 106.81 change: 0.0
generation#: : 1020 best: 107.0 average: 106.87 change: 0.0
generation#: : 1030 best: 107.0 average: 106.81 change: -0.06
generation#: : 1040 best: 107.0 average: 106.62 change: -0.06
generation#: : 1050 best: 107.0 average: 106.62 change: 0.0
generation#: : 1060 best: 107.0 average: 106.75 change: 0.0
generation#: : 1070 best: 107.0 average: 106.75 change: 0.06
generation#: : 1080 best: 107.0 average: 106.81 change: 0.0
generation#:: 1090 best: 107.0 average: 106.56 change: -0.06
generation#: : 1100 best: 107.0 average: 106.75 change: 0.12
generation#: : 1110 best: 107.0 average: 106.37 change: 0.0
generation#: : 1120 best: 107.0 average: 106.62 change: 0.0
generation#: : 1130 best: 107.0 average: 106.81 change: 0.0
generation#: : 1140 best: 107.0 average: 106.87 change: 0.0
generation#: : 1150 best: 107.0 average: 106.93 change: 0.0
generation#: : 1160 best: 107.0 average: 107.00 change: 0.0
generation#: :>1160 best: 107.0 average: 107.00 change: 0.0

Population Size = 100

generation#: 0 best: 106.0 average: 101.75 change: 101.75

generation#: 10 best: 108.0 average: 101.46 change: -0.19

generation#: 20 best: 108.0 average: 102.06 change: 0.15

generation#: 30 best: 108.0 average: 102.34 change: 0.24

generation#: 40 best: 108.0 average: 102.46 change: 0.03

generation#: 50 best: 108.0 average: 102.57 change: 0.12

generation#: 60 best: 108.0 average: 102.54 change: -0.04

generation#: 70 best: 108.0 average: 102.86 change: -0.18

generation#: 80 best: 108.0 average: 103.04 change: 0.06

generation#: 90 best: 108.0 average: 103.53 change: 0.06

generation#: 100 best: 108.0 average: 103.19 change: -0.10

generation#: 110 best: 108.0 average: 103.12 change: -0.12

generation#: 120 best: 108.0 average: 103.17 change: 0.07

generation#: 130 best: 108.0 average: 103.16 change: -0.04

generation#: 140 best: 108.0 average: 102.84 change: -0.14

generation#: 150 best: 108.0 average: 102.05 change: -0.17

generation#: 160 best: 108.0 average: 102.38 change: 0.06

generation#: 170 best: 108.0 average: 102.42 change: 0.18

generation#: 180 best: 108.0 average: 102.68 change: 0.09

generation#: 190 best: 108.0 average: 103.19 change: 0.14

generation#: 200 best: 108.0 average: 103.48 change: -0.06

generation#: 210 best: 108.0 average: 103.57 change: 0.10

generation#: 220 best: 108.0 average: 103.26 change: -0.04

generation#: 230 best: 108.0 average: 103.62 change: 0.04

generation#: 240 best: 108.0 average: 104.15 change: 0.23

generation#: 250 best: 108.0 average: 103.81 change: -0.06

generation#: 260 best: 108.0 average: 103.33 change: -0.18

generation#: 270 best: 108.0 average: 103.30 change: 0.03

77

generation#: 280 best: 108.0 average: 103.62 change: -0.03
generation#: 290 best: 108.0 average: 103.25 change: 0.0
generation#: 300 best: 108.0 average: 103.65 change: -0.039
generation#: 310 best: 108.0 average: 103.79 change: 0.03
generation#: 320 best: 108.0 average: 103.16 change: 0.04
generation#: 330 best: 108.0 average: 103.62 change: -0.08
generation#: 340 best: 108.0 average: 104.05 change: -0.03
generation#: 350 best: 108.0 average: 104.32 change: -0.06
generation#: 360 best: 108.0 average: 105.04 change: 0.05
generation#: 370 best: 108.0 average: 104.83 change: -0.29
generation#: 380 best: 108.0 average: 104.55 change: 0.14
generation#: 390 best: 108.0 average: 104.30 change: -0.04
generation#: 400 best: 108.0 average: 104.64 change: 0.23
generation#: 410 best: 108.0 average: 104.94 change: -0.04
generation#: 420 best: 108.0 average: 105.24 change: 0.04
generation#: 430 best: 108.0 average: 105.21 change: 0.09
generation#: 440 best: 108.0 average: 105.01 change: -0.11
generation#: 450 best: 108.0 average: 104.65 change: 0.02
generation#: 460 best: 108.0 average: 104.21 change: 0.04
generation#: 470 best: 108.0 average: 103.87 change: -0.14
generation#: 480 best: 108.0 average: 103.98 change: -0.03
generation#: 490 best: 108.0 average: 104.01 change: -0.09
generation#: 500 best: 108.0 average: 103.72 change: -0.01
generation#: 510 best: 108.0 average: 103.69 change: -0.06
generation#: 520 best: 108.0 average: 103.71 change: 0.00
generation#: 530 best: 108.0 average: 103.72 change: 0.06
generation#: 540 best: 108.0 average: 103.66 change: -0.04
generation#: 550 best: 108.0 average: 104.00 change: 0.09
generation#: 560 best: 108.0 average: 103.80 change: 0.04
generation#: 570 best: 108.0 average: 103.84 change: 0.0
generation#: 580 best: 108.0 average: 104.05 change: 0.04
generation#: 590 best: 108.0 average: 104.45 change: -0.04
generation#: 600 best: 108.0 average: 104.25 change: 0.0

generation#: 610 best: 108.0 average: 104.25 change: 0.0

generation#: 620 best: 108.0 average: 104.40 change: 0.0

generation#: 630 best: 108.0 average: 104.60 change: 0.09

generation#: 640 best: 108.0 average: 104.80 change: 0.09

generation#: 650 best: 108.0 average: 104.95 change: 0.20

generation#: 660 best: 108.0 average: 104.90 change: 0.0

generation#: 670 best: 108.0 average: 104.55 change: 0.09

generation#: 680 best: 108.0 average: 104.70 change: 0.04

generation#: 690 best: 108.0 average: 104.80 change: -0.10

generation#: 700 best: 108.0 average: 104.00 change: -0.04

generation#: 710 best: 108.0 average: 103.90 change: 0.05

generation#: 720 best: 108.0 average: 103.65 change: -0.04

generation#: 730 best: 108.0 average: 103.90 change: -0.04

generation#: 740 best: 108.0 average: 104.30 change: 0.04

generation#: 750 best: 108.0 average: 104.30 change: -0.10

generation#: 760 best: 108.0 average: 104.30 change: -0.10

generation#: 770 best: 108.0 average: 104.55 change: 0.0

generation#: 780 best: 108.0 average: 104.85 change: 0.04

generation#: 790 best: 108.0 average: 104.85 change: 0.0

generation#: 800 best: 108.0 average: 104.60 change: 0.0

generation#: 810 best: 108.0 average: 105.00 change: 0.0

generation#: 820 best: 108.0 average: 104.95 change: 0.04

generation#: 830 best: 108.0 average: 104.75 change: -0.09

generation#: 840 best: 108.0 average: 105.05 change: 0.09

generation#: 850 best: 108.0 average: 105.30 change: 0.09

generation#: 860 best: 108.0 average: 105.55 change: 0.09

generation#: 870 best: 108.0 average: 105.45 change: 0.04

generation#: 880 best: 108.0 average: 105.65 change: 0.0

generation#: 890 best: 108.0 average: 106.20 change: -0.09

generation#: 900 best: 108.0 average: 106.35 change: 0.04

generation#: 910 best: 108.0 average: 106.50 change: 0.0

generation#: 920 best: 108.0 average: 106.75 change: 0.09

generation#: 930 best: 108.0 average: 107.20 change: 0.0

78

generation#: 940 best: 108.0 average: 107.05 change: 0.04
generation#: 950 best: 108.0 average: 107.05 change: 0.0
generation#: 960 best: 108.0 average: 107.00 change: 0.0
generation#: 970 best: 108.0 average: 107.20 change: 0.10
generation#: 980 best: 108.0 average: 107.20 change: 0.04
generation#: 990 best: 108.0 average: 107.30 change: -0.04
generation#: 1000 best: 108.0 average: 107.15 change: -0.04
generation#: 1010 best: 108.0 average: 107.40 change: 0.0
generation#: 1020 best: 108.0 average: 107.15 change: 0.0
generation#: 1030 best: 108.0 average: 107.60 change: 0.0
generation#: 1040 best: 108.0 average: 107.50 change: -0.09
generation#: 1050 best: 108.0 average: 107.70 change: 0.0
generation#: 1060 best: 108.0 average: 107.60 change: 0.09
generation#: 1070 best: 108.0 average: 107.50 change: 0.0
generation#: 1080 best: 108.0 average: 107.95 change: 0.04
generation#: 1090 best: 108.0 average: 108.00 change: 0.0
generation#:>1090 best: 108.0 average: 108.00 change: 0.0

Statistics for Table 4

Population 1

generation#: 0 best: 105.0 average: 101.85 change: 101.85
generation#: 10 best: 106.0 average: 101.95 change: -0.20
generation#: 20 best: 106.0 average: 101.90 change: 0.05
generation#: 30 best: 106.0 average: 102.40 change: 0.25
generation#: 40 best: 106.0 average: 102.25 change: 0.0
generation#: 50 best: 107.0 average: 102.90 change: 0.45
generation#: 60 best: 107.0 average: 102.90 change: 0.0
generation#: 70 best: 107.0 average: 103.25 change: 0.04
generation#: 80 best: 107.0 average: 102.10 change: 0.0
generation#: 90 best: 107.0 average: 102.90 change: 0.0
generation#: 100 best: 107.0 average: 103.75 change: 0.70
generation#: 110 best: 107.0 average: 104.80 change: -0.75
generation#: 120 best: 107.0 average: 102.50 change: 0.0

generation#: 130 best: 107.0 average: 104.80 change: -0.10

generation#: 140 best: 107.0 average: 103.65 change: 0.0

generation#: 150 best: 107.0 average: 103.95 change: -0.39

generation#: 160 best: 107.0 average: 104.55 change: 0.0

generation#: 170 best: 107.0 average: 103.55 change: 0.0

generation#: 180 best: 107.0 average: 101.75 change: -0.34

generation#: 190 best: 107.0 average: 101.65 change: 0.0

generation#: 200 best: 107.0 average: 101.05 change: -0.65

generation#: 210 best: 107.0 average: 103.55 change: 0.0

generation#: 220 best: 107.0 average: 103.75 change: 0.0

generation#: 230 best: 107.0 average: 104.00 change: 0.0

generation#: 240 best: 107.0 average: 104.45 change: 0.0

generation#: 250 best: 107.0 average: 103.80 change: 0.39

generation#: 260 best: 107.0 average: 104.50 change: 0.0

generation#: 270 best: 107.0 average: 104.80 change: 0.0

generation#: 280 best: 107.0 average: 106.20 change: 0.40

generation#: 290 best: 107.0 average: 106.55 change: 0.0

generation#: 300 best: 107.0 average: 106.60 change: 0.09

generation#: 310 best: 107.0 average: 106.70 change: 0.0

generation#: 320 best: 107.0 average: 105.90 change :. -0.09

generation#: 330 best: 107.0 average: 106.10 change: -0.10

generation#: 340 best: 107.0 average: 105.90 change: 0.10

generation#: 350 best: 107.0 average: 106.60 change: -0.10

generation#: 360 best: 107.0 average: 106.50 change: 0.09

generation#: 370 best: 107.0 average: 106.80 change: 0.0

generation#: 380 best: 107.0 average: 106.90 change: 0.0

79

generation#: 390 best: 107.0 average: 106.90 change: 0.0
generation#: 400 best: 107.0 average: 106.90 change: 0.0
generation#: 410 best: 107.0 average: 106.90 change: 0.0
generation#: 420 best: 107.0 average: 106.60 change: -0.20
generation#: 430 best: 107.0 average: 106.60 change: 0.0
generation#: 440 best: 107.0 average: 106.80 change: 0.0
generation#: 450 best: 107.0 average: 106.60 change: 0.09
generation#: 460 best: 107.0 average: 106.50 change: 0.09
generation#: 470 best: 107.0 average: 106.40 change: 0.0
generation#: 480 best: 107.0 average: 106.90 change: 0.0
generation#: 490 best: 107.0 average: 106.90 change: 0.0
generation#: 500 best: 107.0 average: 106.60 change: 0.0
generation#: 510 best: 107.0 average: 106.20 change: 0.0
generation#: 520 best: 107.0 average: 105.60 change: -0.10
generation#: 530 best: 107.0 average: 106.20 change: 0.10
generation#: 540 best: 107.0 average: 106.20 change: 0.10
generation#: 550 best: 107.0 average: 105.90 change: 0.0
generation#: 560 best: 107.0 average: 105.70 change: 0.10
generation#: 570 best: 107.0 average: 105.40 change: 0.0
generation#: 580 best: 107.0 average: 106.20 change: -0.09
generation#: 590 best: 107.0 average: 106.20 change: -0.09
generation#: 600 best: 107.0 average: 105.60 change: 0.0
generation#: 610 best: 107.0 average: 106.00 change: 0.09
generation#: 620 best: 107.0 average: 106.60 change: 0.0
generation#: 630 best: 107.0 average: 106.60 change: 0.0
generation#: 640 best: 107.0 average: 106.60 change: 0.0
generation#: 650 best: 107.0 average: 106.80 change: 0.0
generation#: 660 best: 107.0 average: 106.80 change: 0.0
generation#: 670 best: 107.0 average: 106.70 change: 0.0
generation#: 680 best: 107.0 average: 106.50 change: 0.0
generation#: 690 best: 107.0 average: 106.60 change: 0.0
generation#: 700 best: 107.0 average: 106.80 change: 0.0
generation#: 710 best: 107.0 average: 106.50 change: 0.0
generation#: 720 best: 107.0 average: 106.50 change: -0.09
generation#: 730 best: 107.0 average: 106.40 change: 0.0

generation#: 740 best: 107.0 average: 106.60 change: 0.0

generation#: 750 best: 107.0 average: 106.10 change: -0.30

generation#: 760 best: 107.0 average: 105.80 change: 0.0

generation#: 770 best: 107.0 average: 106.40 change: 0.0

generation#: 780 best: 107.0 average: 106.70 change: 0.0

generation#: 790 best: 107.0 average: 106.40 change: -0.09

generation#: 800 best: 107.0 average: 106.40 change: -0.09

generation#: 810 best: 107.0 average: 106.40 change: 0.0

generation#: 820 best: 107.0 average: 106.50 change: -0.09

generation#: 830 best: 107.0 average: 106.40 change: 0.0

generation#: 840 best: 107.0 average: 106.50 change: 0.0

generation#: 850 best: 107.0 average: 106.60 change: 0.0

generation#: 860 best: 107.0 average: 106.50 change: 0.0

generation#: 870 best: 107.0 average: 106.60 change: 0.19

generation#: 880 best: 107.0 average: 106.70 change: 0.10

generation#: 890 best: 107.0 average: 105.50 change: 0.0

generation#: 900 best: 107.0 average: 106.80 change: -0.20

generation#: 910 best: 107.0 average: 106.70 change: -0.09

generation#: 920 best: 107.0 average: 106.90 change: 0.0

generation#: 930 best: 107.0 average: 106.90 change: 0.0

generation#: 940 best: 107.0 average: 107.00 change: 0.09

generation#: 950 best: 107.0 average: 106.70 change: -0.29

generation#: 960 best: 107.0 average: 106.70 change: 0.0

generation#: 970 best: 107.0 average: 106.60 change: 0.0

generation#: 980 best: 107.0 average: 105.30 change: 0.0

generation#: 990 best: 107.0 average: 105.30 change: 0.0

generation#: 1000 best: 107.0 average: 106.50 change: -0.20

generation#: 1010 best: 107.0 average: 106.40 change: 0.0

generation#: 1020 best: 107.0 average: 106.40 change: 0.0

generation#: 1030 best: 107.0 average: 106.10 change: 0.0

generation#: 1040 best: 107.0 average: 105.80 change: 0.0

80

generation#: 1050 best: 107.0 average: 106.20 change: -0.09
generation#: 1060 best: 107.0 average: 106.50 change: 0.09
generation#: 1070 best: 107.0 average: 106.40 change: -0.09
generation#: 1080 best: 107.0 average: 106.40 change: 0.10
generation#: 1090 best: 107.0 average: 106.60 change: 0.0
generation#: 1100 best: 107.0 average: 106.40 change: 0.10
generation#: 1110 best: 107.0 average: 106.30 change: 0.09
generation#: 1120 best: 107.0 average: 107.00 change: 0.0
generation#: 1130 best: 107.0 average: 106.90 change: 0.0
generation#: 1140 best: 107.0 average: 106.90 change: 0.0
generation#: 1150 best: 107.0 average: 107.00 change: 0.09
generation#: 1160 best: 107.0 average: 107.00 change: 0.0
generation#:>1160 best: 107.0 average: 107.00 change: 0.0

Population 2

generation#: 0 best: 106.0 average: 101.55 change: 101.55
generation#: 10 best: 107.0 average: 101.00 change: 0.0
generation#: 20 best: 107.0 average: 100.90 change: 0.0
generation#: 30 best: 107.0 average: 100.10 change: -0.20
generation#: 40 best: 107.0 average: 102.45 change: 0.04
generation#: 50 best: 107.0 average: 102.80 change: -0.29
generation#: 60 best: 107.0 average: 101.95 change: -0.39
generation#: 70 best: 107.0 average: 102.30 change: -0.60
generation#: 80 best: 107.0 average: 102.60 change: 0.09
generation#: 90 best: 107.0 average: 103.90 change: 0.30
generation#: 100 best: 107.0 average: 102.80 change: 0.04
generation#: 110 best: 107.0 average: 102.95 change: 0.0
generation#: 120 best: 107.0 average: 102.85 change: 0.44
generation#: 130 best: 107.0 average: 100.95 change: 0.0
generation#: 140 best: 107.0 average: 100.25 change: 0.0
generation#: 150 best: 107.0 average: 100.25 change: 0.40
generation#: 160 best: 107.0 average: 101.20 change: 0.40
generation#: 170 best: 107.0 average: 101.20 change: 0.0
generation#: 180 best: 107.0 average: 101.85 change: 0.04
generation#: 190 best: 107.0 average: 101.70 change: 0.25
generation#: 200 best: 107.0 average: 102.85 change: 0.54
generation#: 210 best: 107.0 average: 102.90 change: -0.09
generation#: 220 best: 107.0 average: 103.05 change: 0.0
generation#: 230 best: 107.0 average: 103.75 change: 0.0

generation#: 240 best: 107.0 average: 104.40 change: 0.0

generation#: 250 best: 107.0 average: 105.80 change: -0.40

generation#: 260 best: 107.0 average: 106.50 change: 0.09

generation#: 270 best: 107.0 average: 106.50 change: 0.0

generation#: 280 best: 107.0 average: 106.20 change: 0.0

generation#: 290 best: 107.0 average: 106.50 change: 0.40

generation#: 300 best: 107.0 average: 106.80 change: -0.10

generation#: 310 best: 107.0 average: 107.00 change: 0.09

generation#: 320 best: 107.0 average: 107.00 change: 0.0

generation#: 330 best: 107.0 average: 106.90 change: 0.0

generation#: 340 best: 107.0 average: 106.90 change: 0.0

generation#: 350 best: 107.0 average: 106.30 change: 0.20

generation#: 360 best: 107.0 average: 106.80 change: 0.0

generation#: 370 best: 107.0 average: 106.90 change: 0.0

generation#: 380 best: 107.0 average: 107.00 change: 0.0

generation#: 390 best: 107.0 average: 107.00 change: 0.0

generation#: 400 best: 107.0 average: 107.00 change: 0.0

generation#: 410 best: 107.0 average: 107.00 change: 0.0

generation#: 420 best: 107.0 average: 107.00 change: 0.0

generation#: 430 best: 107.0 average: 106.80 change: 0.0

generation#: 440 best: 107.0 average: 106.50 change: 0.0

generation#: 450 best: 107.0 average: 106.60 change: -0.10

generation#: 460 best: 107.0 average: 106.60 change: 0.0

generation#: 470 best: 107.0 average: 107.00 change: 0.0

generation#: 480 best: 107.0 average: 106.20 change: -0.09

generation#: 490 best: 107.0 average: 106.50 change: 0.0

81

generation#: 500 best: 107.0 average: 106.80 change: -0.10
generation#: 510 best: 107.0 average: 106.10 change: 0.0
generation#: 520 best: 107.0 average: 106.10 change: 0.0
generation#: 530 best: 107.0 average: 105.80 change: -0.10
generation#: 540 best: 107.0 average: 105.60 change: 0.0
generation#: 550 best: 107.0 average: 105.60 change: 0.0
generation#: 560 best: 107.0 average: 105.90 change: 0.0
generation#: 570 best: 107.0 average: 106.10 change: -0.10
generation#: 580 best: 107.0 average: 105.10 change: -0.10
generation#: 590 best: 107.0 average: 105.40 change: 0.0
generation#: 600 best: 107.0 average: 106.30 change: 0.20
generation#: 610 best: 107.0 average: 106.60 change: 0.09
generation#: 620 best: 107.0 average: 106.60 change: 0.0
generation#: 630 best: 107.0 average: 106.90 change: 0.10
generation#: 640 best: 107.0 average: 106.90 change: 0.0
generation#: 650 best: 107.0 average: 106.70 change: 0.20
generation#: 660 best: 107.0 average: 106.90 change: 0.0
generation#: 670 best: 107.0 average: 106.90 change: 0.10
generation#: 680 best: 107.0 average: 107.00 change: 0.0
generation#: 690 best: 107.0 average: 107.00 change: 0.0
generation#: 700 best: 107.0 average: 107.00 change: 0.0
generation#: 710 best: 107.0 average: 107.00 change: 0.0
generation#: 720 best: 107.0 average: 107.00 change: 0.0
generation#: 730 best: 107.0 average: 106.80 change: 0.0
generation#: 740 best: 107.0 average: 106.80 change: 0.0
generation#: 750 best: 107.0 average: 106.80 change: 0.09
generation#: 760 best: 107.0 average: 106.60 change: -0.10
generation#: 770 best: 107.0 average: 106.70 change: 0.0
generation#: 780 best: 107.0 average: 105.90 change: -0.09
generation#: 790 best: 107.0 average: 106.20 change: 0.10
generation#: 800 best: 107.0 average: 106.40 change: 0.10
generation#: 810 best: 107.0 average: 106.50 change: 0.09
generation#: 820 best: 107.0 average: 106.90 change: 0.0

generation#: 830 best: 107.0 average: 106.30 change: 0.0

generation#: 840 best: 107.0 average: 106.40 change: 0.10

generation#: 850 best: 107.0 average: 106.20 change: -0.09

generation#: 860 best: 107.0 average: 105.60 change: 0.0

generation#: 870 best: 107.0 average: 105.50 change: 0.0

generation#: 880 best: 107.0 average: 106.70 change: 0.10

generation#: 890 best: 107.0 average: 107.00 change: 0.0

generation#: 900 best: 107.0 average: 105.60 change: 0.19

generation#: 910 best: 107.0 average: 105.80 change: 0.0

generation#: 920 best: 107.0 average: 105.80 change: 0.0

generation#: 930 best: 107.0 average: 105.90 change: 0.0

generation#: 940 best: 107.0 average: 105.50 change: 0.0

generation#: 950 best: 107.0 average: 105.40 change: 0.30

generation#: 960 best: 107.0 average: 105.50 change: 0.0

generation#: 970 best: 107.0 average: 105.30 change: -0.10

generation#: 980 best: 107.0 average: 106.60 change: 0.0

generation#: 990 best: 107.0 average: 106.70 change: 0.0

generation#: 1000 best: 107.0 average: 105.80 change: 0.29

generation#: 1010 best: 107.0 average: 106.40 change: 0.0

generation#: 1020 best: 107.0 average: 105.80 change: 0.0

generation#: 1030 best: 107.0 average: 106.30 change: 0.09

generation#: 1040 best: 107.0 average: 106.30 change: 0.0

generation#: 1050 best: 107.0 average: 106.30 change: 0.29

generation#: 1060 best: 107.0 average: 106.00 change: -0.09

generation#: 1070 best: 107.0 average: 106.10 change: 0.0

generation#: 1080 best: 107.0 average: 106.80 change: 0.09

generation#: 1090 best: 107.0 average: 106.90 change: 0.0

generation#: 1100 best: 107.0 average: 106.90 change: -0.09

generation#: 1110 best: 107.0 average: 106.90 change: 0.0

generation#: 1120 best: 107.0 average: 106.60 change: -0.20

generation#: 1130 best: 107.0 average: 107.00 change: 0.0

generation#: 1140 best: 107.0 average: 107.00 change: 0.0

generation#: 1150 best: 107.0 average: 106.90 change: -0.09

82

generation#: 1160 best: 107.0 average: 107.00 change: 0.0
generation#: 1170 best: 107.0 average: 107.00 change: 0.0
generation#: 1180 best: 107.0 average: 107.00 change: 0.0
generation#: 1190 best: 107.0 average: 107.00 change: 0.0
generation#: 1200 best: 107.0 average: 107.00 change: 0.0
generation#: 1210 best: 107.0 average: 107.00 change: 0.0
generation#: 1220 best: 107.0 average: 107.00 change: 0.0
generation#: 1230 best: 107.0 average: 107.00 change: 0.0
generation#: 1240 best: 107.0 average: 107.00 change: 0.0
generation#: 1250 best: 107.0 average: 107.00 change: 0.0

Statistics for Table 7

Population 1

generation#: 0 best: 105.0 average: 102.35 change: 102.35
generation#: 10 best: 106.0 average: 101.15 change: -0.19
generation#: 20 best: 107.0 average: 103.50 change: -0.34
generation#: 30 best: 107.0 average: 103.05 change: 0.0
generation#: 40 best: 107.0 average: 102.95 change: -0.09
generation#: 50 best: 107.0 average: 102.80 change: 0.0
generation#: 60 best: 107.0 average: 104.50 change: -0.45
generation#: 70 best: 107.0 average: 104.45 change: -0.04
generation#: 80 best: 105.0 average: 102.70 change: -0.20
generation#: 90 best: 105.0 average: 102.95 change: -0.09
generation#: 100 best: 106.0 average: 103.25 change: -0.29
generation#: 110 best: 105.0 average: 104.50 change: 0.15
generation#: 120 best: 108.0 average: 104.40 change: 0.45

generation#: 130 best: 108.0 average: 104.10 change: -0.30

generation#: 140 best: 106.0 average: 104.90 change: -0.19
generation#: 150 best: 106.0 average: 105.05 change: 0.0

generation#: 160 best: 107.0 average: 104.80 change: -0.15

generation#: 170 best: 107.0 average: 105.30 change: 0.04

generation#: 180 best: 108.0 average: 104.50 change: -0.04

generation#: 190 best: 108.0 average: 103.95 change: -0.45

generation#: 200 best: 108.0 average: 104.50 change: 0.29

generation#: 210 best: 108.0 average: 104.30 change: 0.0

generation#: 220 best: 110.0 average: 105.05 change: -0.65

generation#: 230 best: 110.0 average: 105.55 change: -0.25

generation#: 240 best: 110.0 average: 106.10 change: 0.34

generation#: 250 best: 110.0 average: 106.20 change: 0.0

generation#: 260 best: 110.0 average: 104.85 change: -0.15

generation#: 270 best: 110.0 average: 104.80 change: 0.0

generation#: 280 best: 110.0 average: 104.80 change: 0.39

generation#: 290 best: 110.0 average: 105.95 change: -0.29

generation#: 300 best: 110.0 average: 104.85 change: 0.25

generation#: 310 best: 110.0 average: 105.45 change: 0.25

generation#: 320 best: 110.0 average: 106.35 change: 0.5

generation#: 330 best: 110.0 average: 107.00 change: 0.0

generation#: 340 best: 110.0 average: 107.15 change: 0.15

generation#: 350 best: 110.0 average: 107.25 change: 0.0

generation#: 360 best: 110.0 average: 107.40 change: -0.34

generation#: 370 best: 110.0 average: 106.80 change: -0.10

generation#: 380 best: 110.0 average: 106.00 change: -0.75

generation#: 390 best: 110.0 average: 105.75 change: -0.25

generation#: 400 best: 110.0 average: 106.15 change: -0.34

generation#: 410 best: 110.0 average: 106.00 change: 0.0

generation#: 420 best: 110.0 average: 107.15 change: 1.15

generation#: 430 best: 110.0 average: 107.25 change: 0.0

generation#: 440 best: 110.0 average: 107.10 change: 0.34

generation#: 450 best: 110.0 average: 107.10 change: 0.0

generation#: 460 best: 110.0 average: 106.05 change: -0.40

generation#: 470 best: 110.0 average: 106.00 change: 0.0

83

generation#: 480 best: 110.0 average: 107.75 change: -0.25
generation#: 490 best: 110.0 average: 108.00 change: 0.0
generation#: 500 best: 110.0 average: 107.50 change: -0.5
generation#: 510 best: 110.0 average: 108.00 change: 0.0
generation#: 520 best: 110.0 average: 106.25 change: 0.0
generation#: 530 best: 110.0 average: 106.25 change: 0.0
generation#: 540 best: 110.0 average: 106.50 change: 0.25
generation#: 550 best: 110.0 average: 107.00 change: 0.0
generation#: 560 best: 110.0 average: 105.50 change: 0.0
generation#: 570 best: 110.0 average: 107.25 change: 0.5
generation#: 580 best: 110.0 average: 107.00 change: 0.75
generation#: 590 best: 110.0 average: 108.25 change: 0.5
generation#: 600 best: 110.0 average: 108.50 change: 0.0
generation#: 610 best: 110.0 average: 108.25 change: -0.25
generation#: 620 best: 110.0 average: 107.50 change: 0.0
generation#: 630 best: 110.0 average: 107.25 change: 0.0
generation#: 640 best: 110.0 average: 107.25 change: 0.25
generation#: 650 best: 110.0 average: 107.75 change: 0.0
generation#: 660 best: 110.0 average: 107.75 change: 0.25
generation#: 670 best: 110.0 average: 107.25 change: -0.25
generation#: 680 best: 110.0 average: 107.25 change: 0.25
generation#: 690 best: 110.0 average: 108.50 change: 0.25
generation#: 700 best: 110.0 average: 108.75 change: 0.25
generation#: 710 best: 110.0 average: 109.25 change: 0.0
generation#: 720 best: 110.0 average: 109.50 change: 0.25
generation#: 730 best: 110.0 average: 110.00 change: 0.0
generation#: 740 best: 110.0 average: 109.75 change: 0.25
generation#: 750 best: 110.0 average: 109.50 change: -0.25
generation#: 760 best: 110.0 average: 109.25 change: -0.5
generation#: 770 best: 110.0 average: 110.00 change: 0.0
generation#:>770 best: 110.0 average: 110.00 change: 0.0

Population 2

generation#: 0 best: 104.0 average: 100.75 change: 100.75
generation#: 10 best: 105.0 average: 101.85 change: 0.44
generation#: 20 best: 105.0 average: 102.50 change: 0.29
generation#: 30 best: 105.0 average: 102.75 change: 0.0

generation#: 40 best: 107.0 average: 104.35 change: -0.35
generation#: 50 best: 107.0 average: 104.40 change: 0.40

generation#: 60 best: 107.0 average: 103.55 change: 0.14

generation#: 70 best: 106.0 average: 103.40 change: 0.30

generation#: 80 best: 107.0 average: 104.55 change: -0.35

generation#: 90 best: 107.0 average: 104.30 change: 0.0

generation#: 100 best: 105.0 average: 103.95 change: -0.09

generation#: 110 best: 106.0 average: 103.45 change: 0.0

generation#: 120 best: 106.0 average: 104.45 change: -0.04

generation#: 130 best: 106.0 average: 104.90 change: 0.10

generation#: 140 best: 108.0 average: 105.20 change: 0.95

generation#: 150 best: 108.0 average: 105.25 change: -0.04

generation#: 160 best: 107.0 average: 104.50 change: 0.20

generation#: 170 best: 107.0 average: 104.80 change: 0.14

generation#: 180 best: 108.0 average: 104.80 change: 0.14

generation#: 190 best: 108.0 average: 105.15 change: 0.15

generation#: 200 best: 108.0 average: 106.05 change: -0.20

generation#: 210 best: 108.0 average: 105.70 change: 0.0

generation#: 220 best: 108.0 average: 104.75 change: -0.20

generation#: 230 best: 108.0 average: 103.85 change: -0.20

generation#: 240 best: 108.0 average: 107.05 change: -0.40

generation#: 250 best: 108.0 average: 105.45 change: 0.0

generation#: 260 best: 110.0 average: 107.15 change: -0.44

generation#: 270 best: 110.0 average: 107.20 change: 0.0

generation#: 280 best: 110.0 average: 106.00 change: 0.15

generation#: 290 best: 110.0 average: 104.60 change: 0.25

generation#: 300 best: 110.0 average: 106.75 change: 0.0

generation#: 310 best: 110.0 average: 106.40 change: 0.0

84

generation#: 320 best: 110.0 average: 105.75 change: -0.59
generation#: 330 best: 110.0 average: 107.25 change: 0.25
generation#: 340 best: 110.0 average: 106.45 change: 0.25
generation#: 350 best: 110.0 average: 105.65 change: -0.34
generation#: 360 best: 110.0 average: 104.95 change: 0.35
generation#: 370 best: 110.0 average: 104.45 change: -0.14
generation#: 380 best: 110.0 average: 107.50 change: -0.5
generation#: 390 best: 110.0 average: 106.55 change: 0.14
generation#: 400 best: 110.0 average: 107.50 change: 0.0
generation#: 410 best: 110.0 average: 107.75 change: 0.25
generation#: 420 best: 110.0 average: 107.00 change: -0.5
generation#: 430 best: 110.0 average: 108.00 change: 0.0
generation#: 440 best: 110.0 average: 105.10 change: 0.14
generation#: 450 best: 110.0 average: 105.15 change: 0.0
generation#: 460 best: 110.0 average: 108.00 change: 0.0
generation#: 470 best: 110.0 average: 106.00 change: 0.0
generation#: 480 best: 110.0 average: 106.00 change: 0.0
generation#: 490 best: 110.0 average: 105.50 change: -0.5
generation#: 500 best: 110.0 average: 106.00 change: 0.0
generation#: 510 best: 110.0 average: 106.00 change: 0.0
generation#: 520 best: 110.0 average: 107.75 change: 0.0
generation#: 530 best: 110.0 average: 108.00 change: 0.0
generation#: 540 best: 110.0 average: 105.25 change: -0.25
generation#: 550 best: 110.0 average: 108.00 change: 0.0
generation#: 560 best: 110.0 average: 104.50 change: -0.25
generation#: 570 best: 110.0 average: 104.50 change: -0.25
generation#: 580 best: 110.0 average: 105.75 change: 0.0
generation#: 590 best: 110.0 average: 105.50 change: 0.25
generation#: 600 best: 110.0 average: 104.75 change: -0.75
generation#: 610 best: 110.0 average: 105.25 change: -0.25
generation#: 620 best: 110.0 average: 105.25 change: -0.25
generation#: 630 best: 110.0 average: 105.00 change: 0.0
generation#: 640 best: 110.0 average: 108.00 change: 0.0
generation#: 650 best: 110.0 average: 108.00 change: 0.0
generation#: 660 best: 110.0 average: 105.00 change: 0.0
generation#: 670 best: 110.0 average: 106.75 change: 0.0
generation#: 680 best: 110.0 average: 110.00 change: 0.0

generation#: 690 best: 110.0 average: 110.00 change: 0.0
generation#: 700 best: 110.0 average: 110.00 change: 0.0

generation#: 710 best: 110.0 average: 110.00 change: 0.0

generation#: 720 best: 110.0 average: 110.00 change: 0.0

generation#: 730 best: 110.0 average: 110.00 change: 0.0

generation#: 740 best: 110.0 average: 107.75 change: 1.0

generation#: 750 best: 110.0 average: 107.50 change: -0.25

generation#: 760 best: 110.0 average: 109.00 change: 0.0

generation#: 770 best: 110.0 average: 109.00 change: 0.0

generation#: 780 best: 110.0 average: 109.00 change: 0.0

generation#: 790 best: 110.0 average: 109.00 change: 0.0

generation#: 800 best: 110.0 average: 109.00 change: 0.0

generation#: 810 best: 110.0 average: 109.00 change: 0.0

generation#: 820 best: 110.0 average: 109.50 change: -0.5

generation#: 830 best: 110.0 average: 109.00 change: 0.0

generation#: 840 best: 110.0 average: 109.50 change: -0.5

generation#: 850 best: 110.0 average: 110.00 change: 0.0

generation#: 860 best: 110.0 average: 110.00 change: 0.0

generation#: 870 best: 110.0 average: 110.00 change: 0.0

generation#:>870 best: 110.0 average: 110.00 change: 0.0

Population 3

generation#: 0 best: 106.0 average: 101.75 change: 101.75

generation#: 10 best: 105.0 average: 102.00 change: -0.09

generation#: 20 best: 107.0 average: 103.80 change: 0.70

generation#: 30 best: 107.0 average: 103.65 change: -0.04

generation#: 40 best: 106.0 average: 101.35 change: 0.79

generation#: 50 best: 106.0 average: 102.50 change: 0.15

85

generation#: 60 best: 106.0 average: 103.35 change: 0.34
generation#: 70 best: 107.0 average: 103.55 change: 0.0
generation#: 80 best: 108.0 average: 104.10 change: 0.44
generation#: 90 best: 108.0 average: 104.60 change: 0.14
generation#: 100 best: 107.0 average: 103.85 change: 0.14
generation#: 110 best: 107.0 average: 104.75 change: -0.25
generation#: 120 best: 107.0 average: 104.10 change: 0.1
generation#: 130 best: 107.0 average: 103.70 change: 0.25
generation#: 140 best: 107.0 average: 104.50 change: -0.25
generation#: 150 best: 107.0 average: 104.35 change: -0.10
generation#: 160 best: 107.0 average: 104.60 change: 0.049
generation#: 170 best: 107.0 average: 105.50 change: 0.049
generation#: 180 best: 107.0 average: 105.15 change: -0.39
generation#: 190 best: 107.0 average: 105.80 change: 0.0
generation#: 200 best: 107.0 average: 105.75 change: 0.049
generation#: 210 best: 107.0 average: 105.70 change: 0.0
generation#: 220 best: 108.0 average: 107.30 change: 0.20
generation#: 230 best: 108.0 average: 107.15 change: 0.0
generation#: 240 best: 108.0 average: 105.45 change: 0.04
generation#: 250 best: 108.0 average: 106.70 change: 0.15
generation#: 260 best: 108.0 average: 106.30 change: 0.25
generation#: 270 best: 108.0 average: 106.00 change: 0.0
generation#: 280 best: 110.0 average: 106.50 change: 0.25
generation#: 290 best: 110.0 average: 106.50 change: 0.09
generation#: 300 best: 110.0 average: 106.90 change: -0.14
generation#: 310 best: 110.0 average: 106.65 change: 0.10
generation#: 320 best: 110.0 average: 106.95 change: 0.15
generation#: 330 best: 110.0 average: 106.35 change: -0.15
generation#: 340 best: 110.0 average: 107.75 change: 0.25
generation#: 350 best: 110.0 average: 108.00 change: 0.0
generation#: 360 best: 110.0 average: 108.00 change: 0.0
generation#: 370 best: 110.0 average: 106.00 change: -0.15

generation#: 380 best: 110.0 average: 107.00 change: 0.0

generation#: 390 best: 110.0 average: 107.25 change: 0.0

generation#: 400 best: 110.0 average: 107.50 change: 0.0

generation#: 410 best: 110.0 average: 106.50 change: 0.15

generation#: 420 best: 110.0 average: 107.50 change: 0.25

generation#: 430 best: 110.0 average: 107.25 change: 0.0

generation#: 440 best: 110.0 average: 107.50 change: -0.5

generation#: 450 best: 110.0 average: 107.75 change: 0.0

generation#: 460 best: 110.0 average: 107.75 change: 0.0

generation#: 470 best: 110.0 average: 108.00 change: 0.0

generation#: 480 best: 110.0 average: 107.25 change: 0.0

generation#: 490 best: 110.0 average: 107.50 change: 0.0

generation#: 500 best: 110.0 average: 107.25 change: -0.25

generation#: 510 best: 110.0 average: 105.60 change: -0.75

generation#: 520 best: 110.0 average: 107.85 change: 0.0

generation#: 530 best: 110.0 average: 107.85 change: 0.0

generation#: 540 best: 110.0 average: 106.50 change: -0.5

generation#: 550 best: 110.0 average: 104.25 change: 0.5

generation#: 560 best: 110.0 average: 107.75 change: -0.25

generation#: 570 best: 110.0 average: 108.00 change: 0.0

generation#: 580 best: 110.0 average: 107.50 change: -0.5

generation#: 590 best: 110.0 average: 107.00 change: 0.25

generation#: 600 best: 110.0 average: 107.75 change: 0.0

generation#: 610 best: 110.0 average: 108.00 change: 0.25

generation#: 620 best: 110.0 average: 105.25 change: -0.25

generation#: 630 best: 110.0 average: 108.00 change: 0.0

generation#: 640 best: 110.0 average: 104.50 change: 0.25

generation#: 650 best: 110.0 average: 105.00 change: 0.25

generation#: 660 best: 110.0 average: 106.75 change: -0.25

generation#: 670 best: 110.0 average: 106.50 change: 0.5

generation#: 680 best: 110.0 average: 106.25 change: -0.25

generation#: 690 best: 110.0 average: 106.75 change: 0.25

generation#: 700 best: 110.0 average: 106.75 change: 0.25

generation#: 710 best: 110.0 average: 108.00 change: 0.0

86

generation#: 720 best: 110.0 average: 106.25 change: -0.5
generation#: 730 best: 110.0 average: 109.25 change: 0.25
generation#: 740 best: 110.0 average: 109.25 change: -0.75
generation#: 750 best: 110.0 average: 109.75 change: 0.5
generation#: 760 best: 110.0 average: 109.75 change: 0.0
generation#: 770 best: 110.0 average: 109.75 change: 0.0
generation#: 780 best: 110.0 average: 110.00 change: 0.0
generation#: 790 best: 110.0 average: 110.00 change: 0.0
generation#: 800 best: 110.0 average: 110.00 change: 0.0
generation#: 810 best: 110.0 average: 110.00 change: 0.0
generation#: 820 best: 110.0 average: 108.00 change: 0.75
generation#: 830 best: 110.0 average: 108.00 change: 0.0
generation#: 840 best: 110.0 average: 110.00 change: 0.0
generation#:>840 best: 110.0 average: 110.00 change: 0.0

Population 4

generation#: 0 best: 105.0 average: 101.65 change: 101.65
generation#: 10 best: 107.0 average: 103.65 change: 0.0
generation#: 20 best: 106.0 average: 100.65 change: -0.59
generation#: 30 best: 106.0 average: 101.30 change: -0.60
generation#: 40 best: 108.0 average: 101.40 change: 0.0
generation#: 50 best: 105.0 average: 102.30 change: -0.40
generation#: 60 best: 105.0 average: 102.35 change: -0.05
generation#: 70 best: 108.0 average: 103.30 change: 0.29
generation#: 80 best: 107.0 average: 103.50 change: 0.04
generation#: 90 best: 105.0 average: 103.15 change: 0.0
generation#: 100 best: 107.0 average: 103.50 change: 0.0
generation#: 110 best: 107.0 average: 103.95 change: 0.15
generation#: 120 best: 107.0 average: 103.95 change: -0.39
generation#: 130 best: 107.0 average: 105.10 change: 0.0
generation#: 140 best: 107.0 average: 105.70 change: -0.09
generation#: 150 best: 107.0 average: 105.50 change: 0.20
generation#: 160 best: 108.0 average: 105.15 change: 0.60
generation#: 170 best: 108.0 average: 105.30 change: 0.25
generation#: 180 best: 107.0 average: 105.65 change: 0.20
generation#: 190 best: 107.0 average: 105.50 change: 0.0
generation#: 200 best: 108.0 average: 105.95 change: 0.10

generation#: 210 best: 108.0 average: 106.85 change: 0.0

generation#: 220 best: 107.0 average: 105.55 change: -0.10
generation#: 230 best: 107.0 average: 105.45 change: 0.04

generation#: 240 best: 108.0 average: 104.55 change: -0.40

generation#: 250 best: 108.0 average: 104.75 change: 0.0

generation#: 260 best: 108.0 average: 105.75 change: 0.09

generation#: 270 best: 108.0 average: 106.30 change: 0.0

generation#: 280 best: 108.0 average: 106.15 change: 0.15

generation#: 290 best: 108.0 average: 106.80 change: -0.10

generation#: 300 best: 108.0 average: 106.85 change: 0.25

generation#: 310 best: 108.0 average: 106.60 change: 0.0

generation#: 320 best: 108.0 average: 106.55 change: 0.14

generation#: 330 best: 108.0 average: 106.20 change: -0.34

generation#: 340 best: 110.0 average: 106.30 change: 0.39

generation#: 350 best: 110.0 average: 105.90 change: 0.0

generation#: 360 best: 110.0 average: 106.70 change: 0.10

generation#: 370 best: 110.0 average: 108.00 change: 0.0

generation#: 380 best: 110.0 average: 106.40 change: 0.0

generation#: 390 best: 110.0 average: 107.25 change: 0.0

generation#: 400 best: 110.0 average: 106.35 change: 0.29

generation#: 410 best: 110.0 average: 107.75 change: 0.0

generation#: 420 best: 110.0 average: 106.85 change: 0.04

generation#: 430 best: 110.0 average: 105.15 change: 0.0

generation#: 440 best: 110.0 average: 107.50 change: 0.0

generation#: 450 best: 110.0 average: 107.75 change: 0.0

generation#: 460 best: 110.0 average: 107.40 change: 0.0

generation#: 470 best: 110.0 average: 106.25 change: -0.25

87

generation#: 480 best: 110.0 average: 106.50 change: 0.29
generation#: 490 best: 110.0 average: 106.35 change: -0.15
generation#: 500 best: 110.0 average: 106.95 change: 0.60
generation#: 510 best: 110.0 average: 107.75 change: 0.0
generation#: 520 best: 110.0 average: 105.75 change: 0.0
generation#: 530 best: 110.0 average: 105.50 change: 0.0
generation#: 540 best: 110.0 average: 108.00 change: 0.0
generation#: 550 best: 110.0 average: 105.25 change: -0.25
generation#: 560 best: 110.0 average: 107.40 change: 0.15
generation#: 570 best: 110.0 average: 105.50 change: 0.0
generation#: 580 best: 110.0 average: 107.55 change: 0.0
generation#: 590 best: 110.0 average: 107.70 change: 0.0
generation#: 600 best: 110.0 average: 107.85 change: 0.14
generation#: 610 best: 110.0 average: 107.70 change: 0.0
generation#: 620 best: 110.0 average: 107.55 change: -0.15
generation#: 630 best: 110.0 average: 107.85 change: 0.0
generation#: 640 best: 110.0 average: 107.50 change: -0.5
generation#: 650 best: 110.0 average: 107.75 change: 0.0
generation#: 660 best: 110.0 average: 107.85 change: 0.0
generation#: 670 best: 110.0 average: 108.00 change: 0.0
generation#: 680 best: 110.0 average: 106.00 change: 0.0
generation#: 690 best: 110.0 average: 106.75 change: 0.0
generation#: 700 best: 110.0 average: 107.00 change: -0.5
generation#: 710 best: 110.0 average: 108.00 change: 0.0
generation#: 720 best: 110.0 average: 108.00 change: 0.0
generation#: 730 best: 110.0 average: 105.75 change: 0.25
generation#: 740 best: 110.0 average: 108.00 change: 0.0
generation#: 750 best: 110.0 average: 108.00 change: 0.0
generation#: 760 best: 110.0 average: 106.75 change: 0.0
generation#: 770 best: 110.0 average: 108.00 change: 0.0
generation#: 780 best: 110.0 average: 109.50 change: 0.0
generation#: 790 best: 110.0 average: 109.00 change: 0.0

generation#: 800 best: 110.0 average: 108.00 change: 0.25

generation#: 810 best: 110.0 average: 110.00 change: 0.0

generation#: 820 best: 110.0 average: 110.00 change: 0.0

generation#: 830 best: 110.0 average: 110.00 change: 0.0

generation#: 840 best: 110.0 average: 110.00 change: 0.5

generation#: 850 best: 110.0 average: 110.00 change: 0.0

generation#: 860 best: 110.0 average: 110.00 change: 0.0

generation#: 870 best: 110.0 average: 110.00 change: 0.0

generation#: 880 best: 110.0 average: 110.00 change: 0.0

Population 5

generation#: 0 best: 107.0 average: 101.70 change: 101.7

generation#: 10 best: 108.0 average: 101.55 change: 0.0

generation#: 20 best: 107.0 average: 103.50 change: -0.34

generation#: 30 best: 108.0 average: 102.55 change: 0.0

generation#: 40 best: 105.0 average: 102.20 change: -0.25

generation#: 50 best: 108.0 average: 102.40 change: -0.39

generation#: 60 best: 108.0 average: 102.20 change: -0.04

generation#: 70 best: 105.0 average: 102.60 change: 0.0

generation#: 80 best: 105.0 average: 102.45 change: -0.20

generation#: 90 best: 107.0 average: 103.80 change: 0.0

generation#: 100 best: 108.0 average: 104.90 change: -0.04

generation#: 110 best: 108.0 average: 104.85 change: -0.15

generation#: 120 best: 108.0 average: 105.40 change: -0.04

generation#: 130 best: 108.0 average: 105.70 change: 0.20

generation#: 140 best: 108.0 average: 106.05 change: -0.5

generation#: 150 best: 108.0 average: 106.00 change: 0.04

generation#: 160 best: 108.0 average: 106.00 change: -0.5

generation#: 170 best: 108.0 average: 106.15 change: 0.0

generation#: 180 best: 108.0 average: 106.35 change: -0.30

generation#: 190 best: 108.0 average: 106.15 change: -0.25

generation#: 200 best: 108.0 average: 106.30 change: -0.15

88

generation#: 210 best: 108.0 average: 106.25 change: 0.0
generation#: 220 best: 108.0 average: 106.30 change: -0.04
generation#: 230 best: 108.0 average: 105.85 change: 0.0
generation#: 240 best: 108.0 average: 103.60 change: 0.34
generation#: 250 best: 108.0 average: 103.60 change: 0.0
generation#: 260 best: 108.0 average: 104.80 change: 0.29
generation#: 270 best: 108.0 average: 106.45 change: 0.15
generation#: 280 best: 108.0 average: 106.90 change: -0.5
generation#: 290 best: 108.0 average: 106.45 change: 0.0
generation#: 300 best: 108.0 average: 106.45 change: -0.09
generation#: 310 best: 108.0 average: 106.40 change: 0.15
generation#: 320 best: 108.0 average: 106.55 change: -0.20
generation#: 330 best: 108.0 average: 106.50 change: -0.25
generation#: 340 best: 108.0 average: 106.00 change: -0.79
generation#: 350 best: 108.0 average: 105.95 change: 0.0
generation#: 360 best: 110.0 average: 106.50 change: 0.09
generation#: 370 best: 110.0 average: 106.90 change: 0.0
generation#: 380 best: 110.0 average: 104.05 change: 0.34
generation#: 390 best: 110.0 average: 104.60 change: 0.14
generation#: 400 best: 110.0 average: 104.80 change: 0.34
generation#: 410 best: 110.0 average: 105.15 change: 0.15
generation#: 420 best: 110.0 average: 105.55 change: -0.20
generation#: 430 best: 110.0 average: 107.00 change: 0.15
generation#: 440 best: 110.0 average: 107.40 change: 0.0
generation#: 450 best: 110.0 average: 107.40 change: 0.0
generation#: 460 best: 110.0 average: 106.60 change: 0.39
generation#: 470 best: 110.0 average: 106.80 change: -0.15
generation#: 480 best: 110.0 average: 105.05 change: 0.04
generation#: 490 best: 110.0 average: 105.80 change: 0.0
generation#: 500 best: 110.0 average: 106.45 change: 0.70
generation#: 510 best: 110.0 average: 107.40 change: 0.0
generation#: 520 best: 110.0 average: 107.75 change: -0.25
generation#: 530 best: 110.0 average: 107.50 change: 0.0
generation#: 540 best: 110.0 average: 107.70 change: 0.0
generation#: 550 best: 110.0 average: 107.10 change: 0.0
generation#: 560 best: 110.0 average: 107.10 change: 0.09

generation#: 570 best: 110.0 average: 107.40 change: 0.0

generation#: 580 best: 110.0 average: 107.50 change: 0.0

generation#: 590 best: 110.0 average: 107.50 change: 0.0

generation#: 600 best: 110.0 average: 107.00 change: 0.0

generation#: 610 best: 110.0 average: 107.25 change: 0.0

generation#: 620 best: 110.0 average: 107.50 change: 0.25

generation#: 630 best: 110.0 average: 107.50 change: 0.0

generation#: 640 best: 110.0 average: 107.70 change: 0.0

generation#: 650 best: 110.0 average: 107.55 change: 0.0

generation#: 660 best: 110.0 average: 108.00 change: 0.0

generation#: 670 best: 110.0 average: 108.00 change: 0.0

generation#: 680 best: 110.0 average: 10S.00 change: 0.0

generation#: 690 best: 110.0 average: 108.00 change: 0.0

generation#: 700 best: 110.0 average: 108.00 change: 0.0

generation#: 710 best: 110.0 average: 106.50 change: -0.25

generation#: 720 best: 110.0 average: 106.50 change: 0.0

generation#: 730 best: 110.0 average: 106.00 change: -0.25

generation#: 740 best: 110.0 average: 106.75 change: 0.0

generation#: 750 best: 110.0 average: 107.25 change: 0.0

generation#: 760 best: 110.0 average: 108.00 change: 0.0

generation#: 770 best: 110.0 average: 107.50 change: 0.0

generation#: 780 best: 110.0 average: 110.00 change: 0.0

generation#: 790 best: 110.0 average: 109.00 change: 0.0

generation#: 800 best: 110.0 average: 109.75 change: -0.25

generation#: 810 best: 110.0 average: 107.75 change: 0.25

generation#: 820 best: 110.0 average: 110.00 change: 0.0

generation#:>S20 best: 110.0 average: 110.00 change: 0.0

89

APPENDIXG

CODE LISTINGS

This appendix contains the code listings of the classes and packages that comprise

SIPAGAR in alphabetical order.

class Decoder

public class decoder
{

private int subgraph;

private int num_colors;

private int best color;

private int fewest sub;

private triangle tri;

II Number of vertices in the
II monochromatic subgraph that we are
II trying to avoid
II Number of colors that will be used to
II color the edges of the complete
II graph
II Color that results in the fewest
II number of monochromatic subgraphs
II being formed
II Number of monochromatic subgraphs
II that result with best color
II Helper function to find monochromatic
II triangles

II ** Constructor ** II

subgraph = sub vertices;
num colors colors;
best color = 0;
fewest sub = 1000;
tri = new triangle();

public decoder(int sub_vertices, int colors)
{

II ** getnumsubvertices ** II
IIII Returns number of vertices in monochromatic subgraph

II
public synchronized int getnumsubvertices() { return subgraph; }

90

II ** getnumcolors ** II
II
II Returns nUmber of colors used to color the edges of the
II complete graph
II

public synchronized int getnumcolors() { return num_colors;

II ** getbestcolor ** II
II
II Returns color that results in the fewest number of
II monochromatic subgraphs
II

public synchronized int getbestcolor() { return best color;

II ** setbestcolor ** II
II
II Sets the color that results in the fewest number of
II monochromatic subgraphs
II

public synchronized void setbestcolor(int bestcol) { best color
bestcol; }

II ** getfewestsub ** II
II
II Returns the number of monochromatic subgraphs formed with
II best color
II

public synchronized int getfewestsub() { return fewest sub;

II ** setfewestsub ** II
II
II Sets the number of monochromatic subgraphs that result with
II best color
II
public synchronized void setfewestsub(int numsub)

numsub; }
fewest sub

II ** decode ** II
II
II Assigns a fitness value to a permutation according to the
II evaluation function.It uses supporting functions of class
II "table" and "triangle" for this purpose

II
public synchronized void decode(permutation P, table t)
{

int penalty = 0;

for(int e=O; e < p.getnumedge() i e++)

{
if(subgraph == 3)

{
tri.reset() i

tri.find_triangle(p,t,this/t.i(p.getedge(e)) It.j (p.getedge(e)));

p.setcolor(p.getedge(e) I best_color) ;
penalty = fewest_s~bi
p.setfitval(p.getfltval() - penalty);

91

fewest sub = 1000j
}

II End of decode

II End of decoder

class GAException

import java.awt.TextAreai

II ** GAException ** II
II
II Exce~tion class that handles problems that arise from
II runnlng the genetic algorithm
II

public class GAException extends Exception
{

II ** Constructor ** II

public GAException() {}

II ** report ** II
II
II Displays this exception's error message on a TextArea object
II

public void report (TextArea 109, String message)
{

log.append(I1Error - GAException\n") i

log.append(message + "\n");

II End of GAException

class Gamigration

import java.awt.TextArea;
import selection.*;

II ** GAmigration ** II
IIII A GAmigration object is a thread that once started, continuously
II checks the conditions that trigger migration. When these
II conditions (migration frequency) are satisfied, the GAmigration
II object implements the migration among the populations according to
II the migration criteria (migration topology, migration size, migrant
II selection). Migration is done synchronously. A subpopulation stops
II when the migration criteria has been locally satisfied. The
II Gamigration object triggers migratio~ when the migration criteria
II has been satisfied in all subpopulatlons. After migration is done

92

II Number of populations (between
II 2 and 6
/1 Migration topology indentifier
II Number of individuals composing
II each migration
II Migrant selection policy
II identifier

private int topology;
private int size;

private int mig_select;

II according to the migration topology, GAmigration resumes the
II evolution of all the subpopulations.
class GAmigration extends Thread
{

private int num_populations;

private group popl;
private group pop2;
private group pop3;
private group pop4;
private group popS;
private group pop6;
private group stats popl stats;

private group_stats pop2 stats;

private group_stats pop3 stats;

private group_stats pop4 statsi

private group_stats popS stats;

private group_stats pop6 statsi

II Access to the first population
II Access to the second population
II Access to the third population
II Access to the fourth population
II Access to the fifth population
II Access to the sixth population
II Access to the first
II population's statistics
II Access to the second
II population's statistics
II Access to the third
II population's statistics
II Access to the fourth
II population's statistics
II Access to the fifth
II population's statistics
II Access to the sixth
II population's statistics

private int[] popl_migrantsi II Indexes of selected migrants in
II population 1

private int [] pop2_migrantsi II Indexes of selected migrants in
II population 2

private int[] pop3_migrant s i II Indexes of selected migrants in
II population 3

private int [] pop4_migrantsi II Indexes of selected migrants in
II population 4

private int[] popS_migrants; II Indexes of selected migrants in
II population S

private int[] pop6_migrantsi II Indexes of selected migrants in
II population 6

private TextArea log; II Access to the graphical user
II interface

II ** Constructor ** II

public GAmigration(int numpopulations, int topo, int nummigrants,
int select, TextArea guilog, group islandl,
group island2, group island3, group island4,
group islandS, group island6, group stats
islandl stats, group stats island2 stats,
group_stats iSland3_stats, group_stats
island4 stats, group stats islandS stats,
group_stats island6 stats)

num_populations = numpopulationsi
topology = topo;
size = nummigrants;
mig select = select;
log-= guilog;

93

II Obtain access to all possible populations (even if not all
II populations exist). The populations that actually exist and
II thus the populations that will be operated on is determined by
II *num_populations*. This simplifies the construction of the
II GAmigration object.

popl = islandl;
popl_stats = islandl stats;
pop2 == island2;
pop2_stats = island2 stats;
pop3 == island3;
pop3_stats = island3 stats;
pop4 = island4;
pop4_stats == island4 stats;
popS = islandS;
popS_stats = islandS stats;
pop6 == island6;
pop6_stats = island6 stats;

popl migrants
pop2=migrants
pop3_migrants
pop4_migrants
popS migrants
pop6=migrants

new int[size];
new int[size];
new int[size];
new int[size];
new int[size];
new int[size];

&& pop2.ready()) ;

&& pop2 . ready () && pop3.ready()) ;

&& pop2 . ready () && pop3 . ready () &&

&& pop2 . ready () && pop3 . ready () &&
&& popS.ready()) ;

&& pop2 . ready () && pop3 . ready () &&
&& popS. ready () && pop6.ready()) ;

II End of constructor

II ** trigger_migration ** II
II
II This method runs indefinitely until the number of generations
II that have occurred in all populations since the last migration
II took place is equal to the migration frequency. When this
II occurs, trigger migration returns the value *true*, which
II indicates to GAmigration that migration should take place.

private boolean trigger_migration()
{

switch(num populations)
{ -

case 2:
return (popl.ready()

case 3:
return(popl.ready()

case 4:
return (popl.ready()

pop4.ready()) i

case S:
return (popl.ready()

pop4 . ready ()
case 6:

return (popl.ready()
pop4 . ready ()

default:
return false;

II End of trigger_migration

II ** select_migrants ** II
IIII This method selects the permutation that will be chosen as

94

II migrants in each population according to the Migrant Selection
II Strategy.
II

private void select_migrants()
{

II Select *size* migrants in each population according to the
II selection strategy

for(int i=Oj i < size; i++) II For the number of migrants
{

if(mig_select == 1) II Random
pop1_migrants[i] = (int) (Math.random() * (pop1.get_popsize()

1» j

else II Roulette
pop1_migrants[iJ selection.Roulette.select(pop1.get_pop() I

pop1.get_popsize(» j

if (num populations >= 2)
if(mIg select == 1) II Random

pop2=migrants[iJ = (int) (Math.random()* (pop2.get_popsize()
- 1»;

else II Roulette
pop2 migrants[iJ= selection.Roulette.select(pop2.get_pop() I

pop2.get_popsize(» ;

if (num populations >= 3)
if (mIg select == 1) II Random

pop3=migrants[i] = (int) (Math.random()* (pop3.get_popsize()
- 1» i

else II Roulette
pop3 migrants [i]= selection.Roulette.select(pop3.get_pop() I

pop3.get_popsize(» j

if(num_populations >= 4)
if(mig select == 1) II Random

pop4=migrants[i] = (int) (Math.random()* (pop4.get_popsize()
- 1»;

else II Roulette
pop4 migrants[iJ= selection.Roulette.select(pop4.get_pop() I

pop4.get_popsize(» i

if (num populations >= 5)
if(mIg select == 1) II Random

popS=migrants[iJ = (int) (Math.random()* (popS.get_popsize()
- 1»;

else II Roulette
popS migrants[i]= selection.Roulette.select(popS.get_pop() I

pop5.get_popsize(» i

if (num populations == 6)
if (mIg select =~ 1) II Random

pop6=migrants[i] = (int) (Math.random() * (pop6.get_popsize()

- 1» i
else II Roulette

pop6_migrants[i]= selection.Roulette.select(pop6.get_pop() I

pop6.get_popsize(» ;
}

II End of select_migrants

II ** do_migration ** II
IIII This method transfers the selected migrants in each population
II to another population according to the migration topology.

95

II

private void do_migration()
{

permutation[] temp = new permutation [size] .
permutation[] temp2 = new permutation [size] j

if (topology == 1) II Ring
{

II Make a temporary copy of the permutations in pop2 that were
II selected as migrants

for(int k=O; k < size; k++)
temp[k] = pop2.get_permutation(pop2_migrants[k]);

II Transfer migrants in population 1 to population 2

for(int k=O; k < size; k++)
{pop2.set_permutation(popl.get permutation(popl migrants[k]),

pop2_migrants [k]) ; - -
log.append("pop l --> pop2\n");}
log.append("\n") ;

if (num populations >= 2)
if (num populations> 2)

{ -

II Make a temporary copy of the permutations in pop3 that
II were selected as migrants

for(int k=O; k < size; k++)
temp2[kJ = pop3.get_permutation(pop3_migrants[k]);

II Transfer migrants in population 2 to population 3

for(int k=Oi k < size; k++)
{pop3.set_permutation(temp[k] f pop3_migrants[k]);
log.append(lIpop2 --> pop3\n");}

log.append("\n") ;
}

else II number of populations is 2
{

II Transfer migrants in population 2 to population 1

for(int k=O; k < size; k++)
{popl.set_permutation(temp[k] f popl_migrants[k]);
log. append ("pop2 - - > popl \n") ; }

log. append ('1 \n") ;

if (num populations >= 3)
if (num populations> 3)

{ -
II Make a temporary copy of the permutations in pop4 that

II were selected as migrants

for(int k=Oj k < size; k++)
temp[k] = pop4.get_permutation(pop4_migrants[k]);

II Transfer migrants in population 3 to population 4

for(int k=O; k < size; k++) .
{pop4.set_permutation(temp 2[k] f pop4 mlgrants[k]) i

log. append ("pop3 - - > pop4 \n ") ; }
log. append (II \n II) ;

96

}
else II number of populations is 3

{

II Transfer migrants in population 3 to population 1

for(int k=Oi k < size; k++)
{popl.set_permutation(temp2[k] 1 popl migrants[k]);
log. append ("pop3 - - > popl \n 11) ; }

log.append("\n") ;

if(num_populations >= 4)
if (num populations> 4)
{ -

II Make a temporary copy of the permutations in popS that
II were selected as migrants

for(int k=O; k < size; k++)
temp2[k] = popS.get_permutation(pop3_migrants[k));

II Transfer migrants in population 4 to population 5

for(int k=Oj k < size; k++)
{pop5.set permutation(temp[kJ 1 pop5 migrants[k]);
10g.append(lIpop4 --> pop5\n");} -

log. append ("\n") i

}
else II number of populations is 4

{
II Transfer migrants in population 4 to population 1

for(int k=Oi k < size; k++)
{popl.set permutation(temp[k] 1 popl migrants[k]);
log.append(lIpop4 --> popl\n");} ­

log.append("\n") i

if (num populations >= 5)
if (num populations> 5)
{ -

II Make a temporary copy of the permutations in pop6 that
II were selected as migrants

for(int k=Oi k < size; k++)
temp[k] = pop6.get_permutation(pop6_migrants[k));

II Transfer migrants in population 5 to population 6

for(int k=O; k < size; k++)
{pop6.set_permutation(temp2[kJ 1 pop6_migrants[k]) i

log.append("pop5 --> pop6\n ll
);}

log.append("\n") ;

II Transfer migrants in population 5 to population 1

}
else II number of populations

{

is S

for(int k=O; k < size; k++)
{popl.set_permutation(temp2[k], popl_migrants[k]);
log.append("popS --> popl\n");}

log.append("\n") i

if(~Um populations == 6)
{ -

II Transfer migrants in population 6 to population 1

97

for(int k=Oi k < size; k++)
{popl.set_permutation(temp[k] I popl migrants[k]) i

log. append (l1pop 6 - - > popl \n") ; }
log.append("\n") i

}
}II Ring topology

II End of do_migration

II ** run ** II
II
II The GAmigration thread runs indefinitely. When the migration
II frequency is satisfied (as signaled by *trigger migration*) I

II GAmigration proceeds to do the migration accordlng to the
II migration parameters.
II

public void run()
{

while (true)
{

if (trigger_migration())
{

log.append("*MIGRATION*\n") i

II Select the permutations that will migrate in each
II population according to the selection strategy

select migrants() i

do migration() i

log.append("\n") ;

II Resume the evolution of the subpopulations

popl.resume() ;
popl.set_ready(false) i

if (num populations >= 2)
{ -

pop2.resume() ;
pop2.set_ready(false) ;

if (num populations >= 3)
{ -

pop3.resume() ;
pop3.set_ready(false) ;

if (num populations >= 4)
{ -

pop4.resume() ;
pop4.set_ready(false) ;

if (num populations >= 5)
{ -

pop5.resume() ;
pop5.set_ready(false) i

if (num populations == 6)
{ -

pop6.resume() i

pop6.set_ready(false) ;

98

}
} II End of run
II End of GAmigration

class global slats

import java.awt.*;

II ** global_stats ** II
II
II Stores and graphically displays statistical information for all
II populations. A global_stats object displays the optimal fitness
II value for a particular run of the genetic algorithm (the goal).
II As the populations evolve, they provide information to the
II global_stats object about the best locally found permutation.
II The global_stats object graphically displays a permutation with
II the best fitness value found so far among all subpopulations.
II

class global stats extends Panel
{

private permutation best;
fitness value
private double best fitness;
private double optimal_fitness;
particular run
private int num_populations;
private int num_verticesi
private group_GUI graph;

II A permutation with best

II Fitness value of best
II Optimal fitness value for a

II Number of populations
II Number of vertices
II Graph of permutation best

private TextField optimal;
private TextArea best permutation;
private TextArea best-coloring;
private TextField bestfitness;

II Displays optimal fitness
II Displays edges of best
II Coloring of best permutation
II Displays best fitness

II Label for best_coloring
II Label for bestfitness

optimal_fitness = Oi
best fitness = 0;
num populations = numpopi
num-vertices = numvert;
graph = g;

private Label labell;
II Label for optimal
private Label label2;
II Label for best_permutation

private Label label3;
private Label labe14;
II ** Constructor ** II
public global_stats(ipt numpop, int numvert,

{

labell
labe12
labe13
label4

new Label ("OPTlMAL FITNESS");
new Label ("BEST PERMUTATION");
new Label ("COLORING") i

new Label ("BEST FITNESS");

optimal = new TextField(lO) ;
optimal.setEditable(false) ;

99

best_permutation = new TextArea() i

best_permutation.setEditable(false) .
best_coloring = new TextArea(); I

best_coloring.setEditable(false) ;
bestfitness = new TextField(10) .
bestfitness.setEditable(false) ;'

setLayout(new GridLayout(8,l));
setBackground(Color.lightGray) i

add(label1) ;
add (optimal) ;
add(labe12) ;
add (best_permutation) ;
add(labe13) ;
add (best_coloring) ;
add(labe14) i

add(bestfitness) i

II Calculate and display the optimal fitness value

optimal.setText(Integer.toString((num vertices * (num_vertices -
1)) 12)) ; -

} II End of Constructor

II ** get_best fitness ** II
II
II Returns the fitness value of the globally best permutation
II

public double get_best fitness() { return best fitness;

II ** set best ** II
II
II Records the fitness value of the globally best permutation.
II Displays the edges and coloring of the globally best permutation
II and its graphical representation.
II
public synchronized void set_best (permutation P, double value,
table T)
{

best = Pi
best fitness = value;

II Display graph of best permutation

graph. set_graph (best , T) j

II Display edges of best permutation

best.print_edges(best_permutation) ;

II Display coloring of the edges of best permutation

best.print_colors(best_coloring) i

II Display fitness of best permutation

bestfitness.setText(Double.toString(best_fitness)) ;

} II End of set_best
II End of global_stats

100

class group

import java.awt.TextArea;
import selection.*;
import crossover.*;
import mutation.*;

II ** gro~p ** 1/
II
II A group contains permutations that are evolved towards an
II optimal solution.
II

class group extends Thread
{

private int num_permutations;

private int num populations;
private permutation[] pop;

private permutation[] newpop;
permutation father;

permutation mother;

private decoder Decoder;
private table Table;
private group_GUI display;
private group_stats stats;

private global stats global;
private TextArea log;

private int select strategy;

private int cross strategy;

private double crossover_rate;
private double mutation_rate;
private boolean elitism;
private int frequency;

private int num_migrations;

private boolean migrate_ready;

private int index;
II Temporary variable

II Number of permutations in
subpopulation

II Number of subpopulations
II permutations in this

subpopulation
II permutations in next generation
II Permutation chosen for

crossover
II Permutation chosen for

crossover
II Decoder
II Table
II GUI for this subpopulation
II Statistics for this

subpopulation
II Global Statistics
II Area for displaying of

statistics
II Selection Strategy for this

subpopulation
II Crossover Strategy for this

subpopulation
II Value of Crossover Rate
II Value of Mutation Rate
II Elitism option
II generations between successive

migrations
II Number of migrations performed

so far
II True when ready to perform

migration

II ** Constructor ** II
IIII Builds a new group of n_permutations random permutations

II
public group(int n_permutations, int num_vertices, decod~r d,
table t, group_GUI gui, group_stats my_stats, TextArea gUllog, int

101

class group

import java.awt.TextArea;
import selection.*i
import crossover.*;
import mutation.*i

II ** gro~p ** II
II
II A group contains permutations that are evolved towards an
II optimal solution.
II

class group extends Thread
{

private int num_permutations;

private int num populations;
private permutation[] pop;

private permutation[] newpop;
permutation father;

permutation mother;

private decoder Decoder;
private table Table;
private group_GUI display;
private group_stats stats;

private global_stats global;
private TextArea log;

private int select strategy;

private int cross strategy;

private double crossover_rate;
private double mutation rate;
private boolean elitism;
private int frequency;

private int num_migrations;

private boolean migrate_ready;

private int index;
II Temporary variable

II Number of permutations in
subpopulation

II Number of subpopulations
II permutations in this

subpopulation
II permutations in next generation
II Permutation chosen for

crossover
II Permutation chosen for

crossover
II Decoder
II Table
II GUI for this subpopulation
II Statistics for this

subpopulation
II Global Statistics
II Area for displaying of

statistics
II Selection Strategy for this

subpopulation
II Crossover Strategy for this

subpopulation
II Value of Crossover Rate
II Value of Mutation Rate
II Elitism option
II generations between successive

migrations
II Number of migrations performed

so far
II True when ready to perform

migration

II ** Constructor ** II
II
II Builds a new group of n_permutations random permutations

II
public group(int D_permutations, int num_vertices, decoder d,
table t, group_GUI gui, group_stats my_stats, TextArea guilog, int

101

select, double crossrate, double mutrate, boolean elite, int
cross, int freq, int numpopulations, global stats gs)

{ -

num_permutations = n_permutations;
pop = new permutation [num permutations];
newpop = new permutation [num permutations];
Decoder = d; -
Table = t;
display = gui;
stats = my stats;
log = guilogi
select_strategy = select;
cross_strategy = cross;
crossover_rate = crossrate;
mutation rate = mutrate;
elitism :- elite;
frequency = freq;
num_migrations = 0;
migrate_ready = false;
num_populations = numpopulations;
global = gs;
index = 0;

II Create random permutations

for(int i=O; i < num_permutations; i++)
{
pop[i] = new permutation (num vertices);
newpop[i] = new permutation (nuffi_vertices) ;

}

II ** evolve ** II
II
II Uses an object of class Decoder to assign fitness values to
II each permutation in this subpopulation. It also uses procedures
II in packages "crossover", "mutation", and "selection" to perform
II genetic operations on the permutations.
II

public synchronized void evolve()
{

while (true)
{

II Use the decoder to assign a fitness value to each
II permutation in the current generation

for(int i=O; i < num permutations; i++)
{ -

if (! pop [i] . isdecoded ())
Decoder.decode(pop[i] ,Table);

pop[i] .set decoded (true) ;

II Display statistics for this generation

stats.do_stats(pop, num_permutations);

if (stats.get_prev_best_fitness() < stats.get_best_fitness())
display.set_graph(stats.get_best() ,Table);

II Update global statistics if necessary

102

if(stats.get best fitness() > global.get best fitness())
global.set-best(stats.get best(), - -

stats.get_best fitness() ,Table) ~

II If elitism is enabled, transfer the best permutation to the
II new population

if(elitism)
{

newpop[O] stats.get_best() i

index = 1;
}
else

index 0;

II Create the new population

while(index < num_permutations)
{

switch(select strategy)
{ -

case 1: II Roulette Wheel
father = pop[selection.Roulette.select(pop,

num_permutations)] ;
break;

II Selection of first parent is done

II If crossover needs to be performed

if (Math.random() <= crossover_rate)
{

switch(select strategy)
{

case 1: II Roulette Wheel
mother pop[selection.Roulette.select(pop,

num permutations)];
- break;

II Selection of second parent is done

II Perform crossover according to the crossover strategy

switch(cross strategy)
{

case 1: II PMX
if (index (num_permutations - 1))
{

crossover.pmx.mate(father,mother,newpop[index] ,newpop[index]);

II Perform mutation according to the mutation
II strategy

if (Math.random() <= mutation rate)
mutation.swap.mutate(newpop[index]) ;

}
else

{

crossover.pmx.mate(father,mother,newpop[index] ,newpop[index+l]);

II Perform mutation according to the mutation
II strategy

103

if (Math.random() <= mutation_rate)
{

mutation.swap.mutate (newpop [index]);
mutation.swap.mutate(newpop[index+1]) ;

index++;
index++;
break;

}
} II Crossover is done
else

{
II Directly transfer the parent without doing crossover

newpop[indexJ = father;
index++i

II New population is created

II Exchange the old population with the new population

pop = newpop;

II Increment the generation number

stats.increment_generation() ;

II Check if the migration condition is satisfied

if(num_populations > 1)
if (stats.get_num_generations()

==(num migrations*frequency+frequency))
-{

II Signal to GAmigration

migrate_ready = true;

II Stop the evolution of this population

this.suspend() i

II Increment the number of migrations and reset the
II migration signal

num migrations++i
migrate_ready = false;

} II while

} II End of evolve

II ** ready ** II
II
II Indicates if this subpopulation is ready to perform migration

II
public boolean ready() { return migrate_ready;

II ** set ready ** II
II
II Sets "migrate_ready" to indicate this subpopulation is ready to
II perform migration

104

II

public void set_ready(boolean value) { migrate_ready

II ** get_popsize ** II
II
II Returns number of permutations in this subpopulation
II

public int get_popsize() { return num_permutations;

II ** get_pop ** II
II
II Returns permutations in this subpopulation
II

public permutation[] get_pop() { return pop; }

II ** get_permutation ** II
II
II Returns a permutation in this subpopulation
II

value; }

evolve() ;

public permutation get_permutation(int index) { return pop [index] ;
}

II ** set_permutation ** II
II
II Inserts a new permutation in this subpopulation
II

public void set_permutation(permutation p, int index) { pop [indexJ
= p; }

II ** run ** II
II
II Invokes the method "evolve"
II

public void run()
{

}

II End of class group

class group GUI

import java.awt.*;
import util.*;

II ** group_GUI ** II
IIII Component to display the permutations of a group in a graphical

II manner
II

105

class group GUI extends Canvas{ -

private Dimension size;
private permutation p;
private int Xi

private int Yi
private table ti
private boolean pset;

II ** Constructor ** II

II Permutation of graph to be displayed
II x-coordinate of graph's position
II y-coordinate of graph's position

public group_GUI(int dl, int d2, int x_coord, int y_coord)
{

size = new Dimension(dl,d2) ;
pset = false;
x x_coordi
y = y_coord;

II ** set_graph ** II
II
II Set graph of permutation to be displayed
II

public synchronized void set_graph(permutation permu, table T)
{

p = perrou;
t = T;
pset = true;
update(this.getGraphics()) i

II ** set_position ** II
II
II Set position to display graph of permutation
II

public synchronized void set position(int x_coord, int y_coord)
{ x = x_coord; y = y_coord; T
II ** paint ** II
II
II Display graph of permutation
II

public void paint (Graphics g)
{

if (pset)
util.graph.draw_graph(g,p,t,x,y) ;

public Dimension minimumSize() { return sizei

public Dimension preferredSize() { return minimumSize();

II End of class group_GUI

106

class group stats

import java.awt.*;
import util.*;

II ** group_stats ** II
II
II Stores and graphically displays statistical information for
II each population.
II

class group_stats extends Panel
{

II Best fitness of

II Generation with highest

private permutation best;

private int num generations;
private double best fitness;

private double average_fitness;

II Permutation with highest
fitness value

II Number of generations
II Fitness value of best

permutation
II Average population

fitness value
private double av fitness change; II Change on Average

population fitness-from previous generation
private double best fitness change; II Change on the value of

best fitness from previous generation
private int best generation;

average fitness value
private double best generation fitness; II Average fitness value

of best generation - -
private double prev_best_fitness;

previous generation

private Label Name;
private Label labell;
private Label labe12;
private Label labe13;
private Label labe14;
private Label labelS;

private TextField numgenerations;
private TextField bestfitness;
private TextField avfitness;
private TextField avchange;

II ** Constructor ** II

public group_stats(StTing pop_name)
{

num generations = 0;
best fitness = 0;
average fitness = 0;
av fitness change = 0;
best fitness change = 0;
best-generatIon = 0;
best=generation_fitness = OJ

Name = new Label (pop name);
labell new Label (ligen # ");
labe12 new Label ("best fll);
labe13 new Label ("av. fll);
labe14 new Label ("change") ;

107

labelS = new Label (1111) ;

numgenerations = new TextField(3) ;
numgenerations.setEditable(false) i

bestfitness = new TextField(3) i

bestfitness.setEditable(false) ;
avfitness = new TextField(3) ;
avfitness.setEditable(false) i

avchange = new TextField(3) ;
avchange.setEditable(false) ;

setLayout(new GridLayout(S,2));
setBackground(Color.yellow) ;

add (Name) ;
add(lribelS) ;
add(labell) ;
add (numgenerations) ;
add(labe12) ;
add(bestfitness) ;
add(labe13) i

add(avfitness) ;
add(labe14) ;
add (avchange) ;

II ** set best ** II
II
II Records the permutation with the highest fitness value
II

public void set_best (permutation p)
{

best = p;
bestfitness.setText(Double.toString(best fitness));

II ** get_best ** II
II
II Returns the permutation with the highest fitness value
II

public permutation get_best() { return best; }

II ** get_best_fitness ** II
II
II Returns the fitness value of the permutation with highest

II fitness value
II
public double get_best_fitness() { return best fitness;

II ** set best fitness ** II
II
II Records fitness value of permutation with highest fitness value

II
public void set best fitness(double fitness) { best fitness
fitness; }

II ** set_average fitness ** II
II
II Sets the value of the average fitness

108

II

public void set_average_fitness(double average)
{

average_fitness = average;
avfitness.setText(Double.toString(average_fitness)) ;

II ** set best_generation ** II
II
II Records the generation with the highest average fitness value
II

public void set best generation(int generation)
= generation; } - -

best_generation

II ** set_num_generations ** II
II
II Records the number of generations in this population
II

public void set_num_generations(int number)
{

num_generations = number;
numgenerations.setText(Integer.toString(num_generations));

II ** get num_generations ** II
II
II Returns the number of generations in this population
II

public int get_num_generations() { return num_generations; }

II ** increment_generation ** II
II
II Increments the number of generations in this population
II

public void increment_generation()

II ** do stats ** II
II
II Performs local statistics
II

num_generations++;

II Sum of all fitness

public void do_stats(permutation[] pop, int num_permutations)
{

double total fitness = 0;
values

double prev_av_fitness = average_fitness; II Average fitness of
previous generation

prev_best_fitness = best_fitness;

II Find a permutation with the highest fitness value and
II calculate the sum of all fitness values

best fitness OJ

for(int i=O; i < num_permutations; i++)
{

total fitness += pop[i] .getfitval();

if (pop[i] .getfitval() > best_fitness)
{

best fitness = pop[i] .getfitval ();

109

best pop [i] i

II Find the new average fitness and the change in
II average fitness and best fitness with respect to the
previous generation

average_fitness = total_fitness Inurn_permutations;

best_fitness_change = best fitness - prev best fitness;
aV_fitness_change = average_fitness - prev_av_fitness;

II Change the best generation, if necessary

if(average fitness> best_generation_fitness)
{ -

best generation num_generations;
best=generation_fitness average_fitness;

II Update the graphical interface

numgenerations.setText(Integer.toString(num generations)) i

bestfitness.setText(Double.toString(best fitness));
aVfitness.setText(Double.toString(average fitness));
avchange.setText(Double.toString(av_fitness_change)) ;

II End of do stats

II

II ** get_prev_best fitness ** II
II
II Returns the fitness value of the previously best permutation
II

public double get_prev_best_fitness() { return prev_best fitness;
}
II End of group_stats

class Permutation

import java.awt.TextArea;

public class permutation
{

private int num_vertices; II Number of vertices in graph
corresponding to given permutation
private int num_edges; II Number of edges in the permutation
private int[] permu; II Contains the permutation of

num edges
private int[] color; II Contains the color of each edge in
the permutation
private double fitness; II Fitness value for the permutation
private boolean decoded; II Indicates that this permutation has

already been assigned a fitness value

II ** Constructor ** II
IIII Builds a random permutation according to the number of vertices
II in the graph

110

II

public permutation(int num_vert)
{

int indexl, index2, temp;

II Compute the number of edges in the complete graph with
II num_vertices

num vertices = num vert;
num=edges = (num_vertices * (num_vertices - 1)) I 2;

II Create an array of size num edges to hold the permutation
II of edges and an array of size num-edges to hold the II
coloring of the edges in the permutation

permu
color

new int[num edges];
new int[num=edges];

II Initialize the edges of the permutation and the colors

for(int i=O; i < num_edges; i++)
{

permu[i] i;
color[i] -1;

II Initially the fitness value equals the number of edges in
II the permutation

fitness = num_edges;

II Randomly swap the edge numbers in the permutation to
II create a random permutation of edges

for(int i=O; i < (num_edges/2); i++)
{

indexl
index2

(int)
(int)

(Math. random () * num_edges);
(Math.random() * num_edges);

temp = permu[index2];
permu[index2] permu[indexl];
permu[indexl] = temp;

II Indicate that this permutation has not been decoded yet

decoded = false;

II End of constructor

II ** getnumvert ** II
II
II Returns value of parameter Number Of Vertices
II
public int getnumvert() { return num_vertices;

II ** getnumedge ** II
IIII Returns value of parameter Number Of Edges

II
public int getnumedge() { return num_edges;

II ** getfitval ** II

111

II
II Returns fitness value of a permutation
II

public double getfitval() { return fitness;

II ** setfitval ** II
II
II Sets the fitness value of a permutation
II

public void setfitval(double fit_val) { fitness

II ** getedge ** II
II
II Retu~ns an edge in a permutation
II

public int getedge(int index) { return permu[index] i }

II ** setedge ** II
II
II Sets an edge of a permutation
II

public void setedge(int index, int value) {permu[index]

II ** getcolor ** II
II
II Returns color of an edge in a permutation
II

public int getcolor(int index) { return color [index] ; }

II ** setcolor ** II
II
II Sets color of an edge in a permutation
II

public void setcolor(int edge, int col) { color [edge]

value; }

col; }

II ** isdecoded ** II
II
II Returns true if a permutation has already been decoded
II

public boolean isdecoded() { return decoded; }

II ** set decoded ** II
II
II Sets "decoded" when a permutation is decoded
II
public void set_decoded{boolean value) { decoded value; }

II ** print_edges ** II
II
II Displays the edges of a permutation on a TextArea object

II
public void print edges (TextArea paper)
{

for(int i=O; i < num_edges; i++)
paper.append(permu[i] + ",") i

paper.append("\n") ;

112

II ** print colors ** II
II
II Displays the color of all the edges of a permutation on a

II TextArea object
II

public void print_colors (TextArea paper)
{

for(int i=O; i < num edges; i++)
paper. append (color[iJ + ",");

paper.append("\n U) i

II End of class permutatio

class Ramser

import java.applet.Applet;
import java.awt.*;

II II
11** Main driver **11
II II

public class Ramsey extends Applet
{

private int num_populations;
private int pop size;
population
private int num_colors;
graph edges
private int num_vertices;
graph
private int num_sub_vertices;
subgraph
private int select strategy;
private int mig_selection;
strategy
private int mig_topology;
private int cross_strategy;
private double crossover rate;
private double mutation_rate;
private int mig_frequency;
migrations
private int mig_size;
migration
private boolean elitism;

private decoder D;
private table T;

private boolean numpop_set;
private boolean popsize_set;
private boolean numcolors_seti
private boolean num vert set;

II Number of populations
II Number of permutation in a

II Number of colors used to draw

II Number of vertices in complete

II Number of vertices in complete

II Represents selection strategy
II Represents migrant selection

II Represents migration topology
II Represents crossover strategy
II Crossover rate (between a and 1)
II Mutation rate (between 0 and 1)
II Number of generations between

II Number of permutations in a

II Option to enableldisable elitism

II Decoder
II Table

II True when num_populations is set
II True when pop_size is set
II True when num colors is set
II True when num vertices is set

113

private boolean select_set; II True when select strategy is set
private boolean mig_select_set; II True when mig selection is set
private boolean mig_top_set; II True when mig=topology is set
private boolean cross_set; II True when cross strategy is set
private boolean cross_rate_set; II True when crossover rate is set
private boolean mut rate set; II True when mutation rate is set
private boolean mig=freq=set; II True when mig_frequency is set
private boolean mig size set; II True when mig size is set
private boolean elitism_set; II True when elitism option is
checked

private group islandl; II Thread to run on first
population
private group island2; II Thread to run on second
population
private group island3; II Thread to run on third
population
private group island4; II Thread to run on fourth
population
private group islandS; II Thread to run on fifth
population
private group island6; II Thread to run on sixth
population

private group GUI islandl gui; II GUI for first population
private group_GUI island2_gui; II GUI for secod population
private group_GUI island3_gui; II GUI for third population
private group_GUI island4_gui; II GUI for fourth population
private group_GUI islandS gui; II GUI for fifth population-
private group_GUI island6_gui; II GUI for sixth population

private group_stats islandl stats; II Stats for first population-
private group_stats island2 stats; II Stats for second population-
private group_stats island3 stats; II Stats for third population

-
private group_stats island4 stats; II Stats for fourth population-
private group_stats islandS stats; II Stats for fifth population

-
private group_stats island6 stats; II Stats for sixth population

II Declaration of constants

final public static int NUMPOP = 1;
final public static int POPSIZE = 2;
final public static int NUMCOL = 3;
final public static int NUMVERT = 4;
final public static int START = 5;
final public static int SELECT = 6;
final public static int CROSSRATE 7;
final public static int MUTRATE = 8;
final public static int ELITISM = 9;
final public static int CROSSOVER = 10;
final public static int PAUSE = 11;
final public static int RESUME = 12;
final public static int STOP = 13;
final public static int RESET = 14;
final public static int MIGFREQUENCY 15;
final public static int MIGSIZE = 16;
final public static int MIGSELECTION = 17;
final public static int MIGTOPOLOGY = 18;
final public static int LAUNCH = 19;

II Create a GAException object

private GAException e = new GAException();

II Create a Gamigration object

114

private GAmigration migration;

II Create a global_stats object

private global_stats global;
II Create a group_GUI object

private group_GUI global_graph = new group_GUI(lOO,lOO,lOO,lOO);

II Create a graphical user interface

Ramsey_GUI gui = new Ramsey_GUI(this);

II ** init ** II
II
II Sets all parameters to their default values
II

public void init()
{

num_populations = 0;
pop_size = OJ
num_vertices = 0;
num sub vertices 3j
num_colors = OJ
crossover_rate = 0;
mutation rate = 0;
popsize_set = false;
numpop_set = false;
numcolors set = falsej
num_vert_set = falsej
select set = false;
mig select set = false;
mig-top set = false;
cross_rate_set = false;
cross set = false;
mut_rate_set = false;
select_strategy = 0;
cross strategy = 0;
elitism set = false;
elitism-= true;
gui.init() ;

II ** set_popsize ** II
II
II Sets value for the population Size parameter

II
public void set_popsize(int popsize)
{

try{
pop size popsize;
popsize_set = true;

if (mig_size_set && (pop_size < mig_size)) throwe;

}
catch(GAException e) {

e.report(gui.log, "population size >= Migration Size.\n
Migration Size has been reset") i

mi9_size_set = false; }
}

II ** set_numpopulations ** II

115

II
II Sets value for the Number Of Populations parameter
II Creates a GU1 for each subpopulation
II

yUbliC void set_numpopulations(int numpopl

gui.clear() i

try{
num_populations = numpopi

islandl_gui = new group GU1(50,50,40,40) i

islandl_stats = new group stats("POPl") i

gui.add_population(islandl gui) i

gui.add_stats(islandl stats);

if (num_populations >= 2) {
island2_gui = new group GU1(50,50,40,40);
iSland2_stats = new group stats("POP2") i

gUi.add_population(island2_gui) ;
gui.add_stats(island2_stats) ;}

if (num_populations >= 3) {
island3 gui = new group GU1(50,50,40,40);
island3-stats = new group stats("POP3") i

gui.add=population(island3_gui) i

gui.add_stats(island3_stats) i}

if (num_populations >= 4) {
island4 gui = new group GU1(50,50,40,40) i

island4-stats = new group stats("POP4");
gui.add-population(island4 gui);
gui.add=stats(island4_stats) ;}

if (num populations >= 5) {
islandS gui = new group GU1(50,50,40,40) i

island5-stats = new group stats("POP5");
gui.add-population(island5 gui) i

gui.add=stats(islandS_stats) i}

if (num populations == 6) {
island6 gui = new group GU1(50,50,40,40);
island6-stats = new group stats("POP6") i

gui.add-population(island6 gui) i

gui.add=stats(island6_stats) i}

gui.window.paintComponents(gui.window.getGraphics(» ;
this.paintComponents (this.getGraphics ());

numpop_set = true;

if«num populations == 1) && (mig_freq_set I I mig_size set I I
mig select set II mig_top_set)) throw e;

-} -

catch(GAException e) {
e.report(gui.log, "No migration with #populations = I.\n

Migration parameters have been reset") ;
mig freq set = false; mig_size_set false; mig_select set

false; mig top_set = false;}
} -

II ** set numcolors ** II
II
II Sets the Number Of Colors parameter

II

116

public void set numcolors(int numcolors){ -

num_colors ~ numcolors;
numcolors set = true;

II ** set_num_vertices ** II
II
II Sets the Number Of Vertices parameter
II

public void set_num_vertices()
{

try{
num_vertices = Integer.parselnt(gui.num_vertices.getText());
num vert set = true;
if (num vertices < 3) throw e;

} -

catch(NumberFormatException a) {
e.report(gui.log, "NumberFormatException");
num_vert_set = false; }

catch(GAException e) {
e.report(gui.log, "Number of vertices must be >== 3 11

);

num_vert set = false; }

II ** set selection ** II
II
II Sets the Selection Strategy
II

public void set selection(String strategy)
{
if (strategy.equals("Roulette Wheel"))

select_strategy = 1;
select set = true;

}

II ** set_mig_selection ** II
II
II Sets the Migrant Selection Strategy
II
public void set_mig_selection(String strategy)
{
try{

if (strategy. equals ("Random"))
mig selection == 1;

if (strategy.equals("Roulette Wheel ll
))

mig selection == 2;
mig_select_set == true;

if ((!numpop_set) I I (num_populations 1)) throwe;
}

catch(GAException e) {
e.report(gui.log, "Number of populations must be > 1 for

migration") ;
mig select_set == false; }

} -

II ** set_mig_topology ** II
IIII Sets the Migration Topology

II

117

(UbliC void set_mig_topology{String topology)

try{
if (topology. equals ("Ring ll))

mig_topology = Ii

i} ({lnumpop_set) I I (num_populations 1)) throwe;

catch(GAException e) {
e.report(gui.log, "Number of populations must be > 1 for

migration") ;
mig_top_set = false; }

II ** set_crossover ** II
II
II Sets the Crossover Strategy
II

public void set_crossover(String strategy)
{
if (strategy. equals (" PMX"))

cross_strategy ="1;
cross set = true;

}

II ** set crossover_rate ** II
II
II Sets value for the Crossover Rate parameter
II

public void set crossover_rate()
{

try{
Double temp = Double.valueOf(gui.crossover rate.getText());
crossover_rate = temp.doubleValue(); -
cross rate set = true;
if ((crossover rate < 0) 1 I (crossover_rate> 1)) throwe;

} -

catch(NumberFormatException a) {
e.report(gui.log, "NumberFormatException") ;
cross rate set = false; }

catch(GAException e) {
e.report(gui.log, "Crossover rate must be between 0 and 1");
cross rate set = false; }

II ** set mutation_rate ** II
II
II Sets value for the Mutation Rate parameter
II
public void set mutation_rate()
{

try{
Double temp = Double.valueOf(gui.mutation_rate.getText());
mutation_rate = temp.doubleValue();
mut rate set = true;
if ((mutation_rate < 0) I I (mutation_rate> 1)) throwe;

} .
catch(NumberFormatExceptlon a) {

e.report(gui.log, "NumberFormatException") i

mut rate set = false; }
catch(GAException e) {

118

e.report(gui.log/ "Mutation rate must be between 0 and 1");
mut rate set = false; }

II ** set_mig_frequency ** II
II
II Sets value for the Migration Frequence parameter
II

public void set_mig_frequency()
{

try{
mig_frequency =

Integer.parseInt(gui.migration frequency.getText());
mig freq set = true; -
if (~ig_frequency < 1) throw e;
if «!numpop set) I I (num populations 1)) throwe;} - -

catch(NumberFormatException a) {
e.report(gui.log/ "NumberFormatException") i

mig_freq_set = false; }
catch(GAException e) {

e.report(gui.log/ "Migration Frequency must be >= l\n or number
of populations is not> I");

mig_freq_set = false; }

II ** set_mig_size ** II
II
II Sets value for the Migration Size parameter
II

public void set_mig_size()
{

try{
mig size = Integer.parseInt(gui.migration_size.getText()) j

mig-size set = true;
if (mig:=size < 1) II (!popsize set) II (mig_size> pop_size))

throw ej

if «!numpop set) I I (num_populations == 1)) throwe;
} -

catch(NumberFormatException a) {
e.report(gui.lo9/ "NumberFormatException");
mig size set = false; }

catch(GAException e) {
e.report(gui.log/ "Migration Size must be between 1 and

population size\n or population size has not been set or number of
populations is not> 1");

mig size set = false; }} --

II ** set elitism ** II
II
II Sets the Elitism parameter
II
public void set elitism(boolean on_off)
{

elitism = on_off;
elitism_set = true;

II ** initialize ** II
IIII Initializes all parameters and creates subpopulations

II

119

public boolean initialize()
{

II Create the Decoder and the Table

D new decoder(num sub vertices,num colors) i

T new table (num_vertices) i -

II Create the global statistics handler

global = new global stats(num populations, num_vertices,
global_graph) i - -

gui.add_global_gui(global graph) i

gui.add_global_stats(global) i

gui.window.paintComponents(gui.window.getGraphics()) i

II Create and Initialize the populations and their graphical
interfaces

island1 new group(pop size, num vertices, D, T, islandl gui,
island1 stats~ gui.log, select strategy,
crossover rate, mutation rate,-elitism,
cross strategy, mig frequency,

num_populations, global) i - -

if (num populations >= 2)
island2-= new group(pop size, num vertices, D, T, island2_gui,

island2_stats~ gui.log, select strategy,
crossover_rate, mutation_rate, elitism,

cross_strategy, mig_frequency, num_populations, global) i

if (num populations >= 3)
island3-= new group(pop size, num vertices, D, T, island3_gui,

island3_stats~ gui.log, select strategy,
crossover rate, mutation rate, elitism,
cross strategy, mig_frequency,

num_populations, global) i

if (num populations >= 4)
island4-= new group (pop size, num vertices, D, T, island4 gui,

island4 stats~ gui.log, select strategy,
crossover rate, mutation rate, elitism,
cross strategy, mig_frequency,

num_populations, global) i

if (num populations >= 5)
islandS = new group (pop_size, num_vertices, D, T, islandS_gui,

islandS stats, gui.log, select strategy,
crossover rate, mutation rate, elitism,
cross strategy, mig_frequency,

num_populations, global) i

if (num populations == 6)
island6 = new group (pop_size, num_vertices, D, T, island6 gui,

island6 stats, gui.log, select strategy,
crossover rate, mutation rate,-elitism,
cross strategy, mig_frequency,

Dum_populations, global) i

if (num populations > 1)
migration = new GAmigration(num_populations, mig_topology,

mig size, mig selection, gui.log,
island1, island2, island3, island4 ,- islandS, island6,
island1 stats, island2_stats, island3 stats, island4 stats,
islandS-stats, island6 stats) i

120

return true;

II End of initialize

II ** evolve ** II
II
II Starts the threas of all subpopulations and the thread of
II Gamigration
II

public void evolve()
{

II Check that all necessary parameters have been set

if (num populations == 1)
{ -

mig_freq_set = true;
mig_size_set = true;
mig_select_set = true;
mig_top_set = true;

if(popsize set && numpop set && numcolors set && num vert set
&& select set && cross rate set && mut-rate set && elitism set
&& cross_set && mig freq set && mig size set && mig select set
&& mig_top_set) - - - - -

initialize() ;

islandl.start() ;

if (num populations >= 2)
island2.start() i

if (num populations >= 3)
island3.start() i

if (num populations >= 4)
island4.start() ;

if (num populations >= 5)
island5.start() ;

if (num populations 6)
island6.start() ;

if (num populations > 1)
migration.start() i

}
else

{
if (lpopsize_set) e.report(gui.log, "Population size has not

been set") i
if(lnumpop_set) E.. report (gui.log, "Number of populations has

not been set") ;
if(!numcolors set) e.report(gui.log, "Number of colors has not

been set") i
if(!num vert set) e.report(gui.log, "Number of vertices has

not been set'!) i
if(!select set) e.report(gui.log, "Selection strategy has not

been setH) ;
if(lcross_rate_set) e.report(gui.log, HCrossover rate has not

been set") i
if(!mut rate set) e.report(gui.log, "Mutation rate has not

been set") ;
if(lelitism_set) e.report(gui.log, "Elitism option has not

been set") i
if(!cross set) e.report(gui.log, "Crossover strategy has not

been set");

121

if(lmig freq set) e.report(gui.log, "Migration Frequency has
not been set-;-'); -

if(lmig size set) e.report(gui.log, "Migration Size has not
been set ") i - -

if (lmig_select_set) e.report(gui.log, "Migrant Selection
Strategy has not been set"} i

if(lmig_top_set) e.report(gui.log, "Migration Topology has not
been set");

}

II End of evolve

II ** GApause ** II
II
II Temporarily pause the execution of the genetic algorithm
II

public void GApause()
{

islandl.suspend() ;

if (num populations >= 2)
island2.suspend() i

if (num populations >= 3)
island3.suspend() i

if (num_populations >= 4)
island4.suspend() i

if (num_populations >= 5)
island5.suspend() ;

if (num populations == 6)
island6.suspend() i

II End of pause

II ** GAresume ** II
II
II Restart the execution of the genetic algorithm
II

public void GAresume()
{

islandl.resume() ;

if (num_populations >= 2)

island2.resume() i

if (num_populations >= 3)
island3.resume() i

if (num_populations >= 4)

island4.resume() i

if (num populations >= 5)
island5.resume() i

if (num_populations 6)
island6.resume() i

II End of GAresume

II ** GAstop ** II
IIII Stop the execution of the genetic algorithm

II
public void GAstop()
{

GAresume() i

122

private Ramsey applet;
private int command;

islandl.stop() ;

if (num populations >= 2)
island2.stop() ;

if (num populations >= 3)
island3.stop() ;

if (num populations >= 4)
island4.stop() ;

if (num_populations >= 5)
island5.stop() ;

if (num populations 6)
island6.stop() ;

gui.window.dispose() ;

II End of stop

11** GAreset **11
II
II Reset the genetic algorithm.
II Clear the graphical user interface and reset all parameters.
II

public void GAreset ()
{

stop () ;
gui.clear all();
init(); -
II End of reset

II ** display_window ** II

public void display_window() { gui.window.show(); }

II class Ramsey

class Ramsey Action Listener

import java.awt.event.*;

II
II ** Ramsey_Action_Listener **
II
II Handles the Action events for num vertices, crossover rate,
II mutation rate, start, pause, resume, stop, reset, mig=frequency,
II mig_size~ and launch.
II
public class Ramsey_Action_Listener implements ActionListener
{

II ** Constructor ** II

123

public Ramsey Action Listener(Ramsey ramsey_applet, int
listening command) -
{ -

applet = ramsey applet;
command = listening_command;

II ** actionPerformed ** II
II
II Invokes a procedure in Ramsey_GUI depending on action performed
II

public void actionPerformed(ActionEvent action)
{

switch (command)
{

case Ramsey.NUMVERT:
applet.set num vertices();
break; - -

case Ramsey. START:
applet.evolve() i

break;

case Ramsey.CROSSRATE:
applet.set crossover_rate();
break;

case Ramsey.MIGFREQUENCY:
applet.set_mig_frequency() ;
break;

case Ramsey.MIGSIZE:
applet.set_mig_size() ;
break;

case Ramsey.MUTRATE:
applet.set_mutation_rate() ;
break;

case Ramsey. PAUSE:
applet.GApause() ;
break;

case Ramsey.RESUME:
applet.GAresume() ;
break;

case Ramsey. STOP:
applet.GAstop() ;
break;

case Ramsey.RESET:
applet.GAreset() ;
break;

case Ramsey. LAUNCH:
applet.display_window() i

break;

II End of actionPerformed

II End of Ramsey_ActioD_Listener

124

class Ramsey GU]

import java.awt.*;
import java.awt.LayoutManageri

II
II ** Ramsey_GUI ** II
II
II Implements the applet's graphical user interface and
II connects events to listeners in class Ramsey_Listener
II

class Ramsey GUI
{ -

private Ramsey applet;
private Ramsey Item Listener Item Listenerl;
private Ramsey-Item-Listener Item=Listener2;
private Ramsey-Item-Listener Item Listener3;
private Ramsey=Item=Listener Item-Listener4;
private Ramsey Item Listener Item=Listener5;
private Ramsey=Item=Listener Item_Listener6;
private Ramsey Item Listener Item_Listener7;
private Ramsey=Item=Listener Item Listener8;
private Ramsey_Action_Listener Action_Listenerli
private Ramsey_Action_Listener Action Listener2;
private Ramsey_Action_Listener Action-Listener3;
private Ramsey_Action_Listener Action-Listener4;
private Ramsey Action Listener Action-ListenerS;
private Ramsey=Action=Listener Action=Listener6;
private Ramsey_ActioD_Listener Action Listener7;
private Ramsey_Action_Listener Action=Listener8;
private Ramsey Action Listener Action Listener9;
private Ramsey=Action=Listener Action=ListenerlO;
private Ramsey Action Listener Action_Listenerll;
private GridLayout grId;
private Panel panell;
private Panel pane12;
public Panel panelll;
private Panel panel12;
private Panel pane121;
private Panel pane122;
private Panel pane123;
private Choice Dum_populatioDs;
private Choice pop_size;
private Choice Dum_colors;
private Choice selection;
private Choice crossover;
private Choice migration_topology;
private Choice migrant_selection;
private Checkbox elitism;
public TextField Dum_vertices;
public TextField crossover_rate;
public TextField mutation_rate;
public TextField migration_frequency;
public TextField migration_size;
public TextArea log;
private Button start;
private Button pause;
private Button resume;
private Button stoPi

125

private Button reset;
private Button launch;
private Label labell;
private Label labe12;
private Label labe13;
private Label labe14;
private Label labelS;
private Label labe16;
private Label labe17;
private Label labe18;
private Label labe19;
private Label labellOi
private Label labelll;
private Label label12;

public Frame window;

II ** Constructor ** II

public Ramsey GUI(Ramsey ramsey_applet)
{ -

applet = ramsey appleti
Item_Listenerl : new Ramsey Item Listener (applet,Ramsey.NUMPOP) ;
Item Listener2 = new --

Ramsey_Item_Listener(applet,Ramsey.POPSIZE) ;
Item_Listener3 new Ramsey Item Listener (applet,Ramsey.NUMCOL) ;
Item_Listener4 = new Ramsey-Item-Listener(applet,Ramsey.SELECT);
Item ListenerS = new --

Ramsey_Item_Listener(applet,Ramsey.ELITISM) ;
Item Listener6 = new

Ramsey_Item_Listener{applet,Ramsey.CROSSOVER) i

Item Listener7 = new
RamseY_Item_Listener (applet, Ramsey.MIGSELECTION) ;

Item Listener8 = new
Ramsey Item Listener (applet,Ramsey.MIGTOPOLOGY) ;

Action Llstenerl = new
Ramsey Action Listener(applet,Ramsey.NUMVERT);

Action Listener2 = new
Ramsey Action Listener (applet,Ramsey.START) ;

Action Listener3 = new
Ramsey Action Listener (applet,Ramsey.CROSSRATE) ;

Actlon Listener4 = new
Ramsey Action Listener (applet, Ramsey. MUTRATE) ;

Action ListenerS = new
Ramsey Action Listener (applet,Ramsey. PAUSE) ;

Action Listener6 = new
Ramsey Action Listener(applet,Ramsey.RESUME) ;

Action Listener7 = new
Ramsey_Action_Listener (applet, Ramsey. STOP) ;

Action Listener8 = new
Ramsey_Action_Listene~(applet,Ramsey.RESET);

Action Listener9 = new
Ramsey_Act ion_Listener (applet,Ramsey.MIGFREQUENCY) ;

Action ListenerlO = new
Ramsey_Act ion_Listener (applet, Ramsey.MIGSIZE) ;

Action Listenerll = new
Ramsey_ACtion_Listener(applet,Ramsey.LAUNCH) ;

grid = new GridLayout(l,2);
panell = new Panel() i

pane12 = new Panel();
panelll new Panel();
panel12 new Panel();
pane121 new Panel();
pane122 new Panel();
pane123 new Panel();

126

num_populations ~ new Choice();
num_populations.addItemListener(Item Listenerl) ;
pop_size = new Choice(); -
pop_size.addltemListener(Item Listener2) i

num_colors = new Choice() ; ­
num_colors.addItemListener(Item Listener3);
selection = new Choice(); -
selection.addltemListener(Item Listener4) ;
migration_topology = new Choice() i

migration_topology.addltemListener(Item Listener8) ;
migrant_selection = new Choice() i -

migrant_selection.addltemListener(Item Listener7) i

num_vertices = new TextField(3) ; -
num_vertices.addActionListener(Action Listenerl) i

log = new TextArea(41,32); -
log.setEditable(false) ;
start = new Button(IISTARTIf) ;
start.addActionListener(Action Listener2) ;
pause ~ new Button (IIPAUSE") ; ­
pause.addActionListener(Action ListenerS) ;
resume = new Button (IIRESUME") ;­
resume.addActionListener(Action Listener6) ;
stop = new Button ("STOP") ; -
stop.addActionListener(Action Listener?) ;
reset = new Button("RESET"); ­
reset.addActionListener(Action ListenerS) ;
crossover rate = new TextField(3) ;
crossover-rate.addActionListener(Action Listener3) ;
mutation rate = new TextField(3) ; -
mutation-rate.addActionListener(Action Listener4) ;
elitism -: new Checkbox(IlElitism lf

) ; -

elitism.addltemListener(Item_ListenerS) ;
crossover = new Choice();
crossover.addltemListener(Item Listener6) ;
migration frequency = new TextField(3) ;
migration=frequency.addActionListener(Action_Listener9) ;
migration size = new TextField(3 ;
migration=size.addActionListener(Action_ListenerlO) ;
launch = new Button(IILAUNCH SIPAGAR");
launch.addActionListener(Action_Listenerll) ;

labell
labe12
labe13
labe14
labelS
labe16
label?
labe18
labe19
labell0
labelll
label12

new Label ("Number of Populations ");
new Label ("Population Size ") i

new Label ("Number Of Colors If);
new Label ("Number of Vertices If);
new Label ("S e lection Strategy If);
new Label (IICrossover Rate ");
new Label (IIMutation Rate ") i

new Label (lICrossover Strategy ") i

new Label ("Migration Frequency ");
new Label (II Migra t ion Si ze ") i

new Label (IIMigrant Selection ");
new Label ("Migration Topology ") i

window = new Frame ("SIPAGAR (Simulated Parallel Genetic
Algorithm For Finding Ramsey Numbers) II);

II End of Constructor

II ** init ** II
II
II Initializes the GUI

II
public void init()
{

127

migration_topology.addItem(l Ring") ;

pane121.add(log) ;
pane122.add(labell) i

pane123.add(num_populations) ;
pane122.add(labe12) ;
pane123.add(pop size);
pane122.add(labe13) ;
pane123.add(num colors) i

pane122.add(labe14) ;
pane123.add(num_vertices) ;
pane122.add(labelS) ;
pane123.add(selection) ;
pane122.add(labe16) i

paneI23.add(crossover rate);
pane122.add(labe18); ­
paneI23.add(crossover) i

pane122.add(labe17) ;
paneI23.add(mutation rate);
pane122.add(labe19) ;­
pane123.add(migration frequency);
pane122.add(labellO) ;­
pane123.add(migration size);
paneI22.add(labelll) ;­
pane123.add(migrant selection);
paneI22.add(label12);
pane123.add(migration topology);
pane123.add(elitism) ;­
pane123.add(start) ;
pane123.add(pause) ;
pane123.add(resume) ;
pane123.add(stop) ;
pane123.add(reset) ;

window.setLayout(grid) i

window.add(panell) ;
window. add (pane12) ;
window.resize(8S0,600) ;

applet.add(launch) i

II End of init

II ** add_population ** II
II
II Adds a subpopulation to the GUI

II
public void add_population(group_GUI island)
{

panelll.add(island) ;
} II End of add_population

II ** add stats ** II
IIII Adds a subpopulation's local statistics to the GUI

II
public void add_stats(group_stats stats)

{
panelll.add(stats) ;

} II End of add_stats

II ** add_global_stats ** II
IIII Adds global statistics to the GUI

129

II

yUb1ic void add_global_stats(global stats gstats)

paneI12.add(gstats) i

} II End of add_global stats

II ** add_global_gui ** II
II
II Adds area to display globally best permutation to the GUI
II

public void add global gui(group GUT g){ - - -

paneI12.add(g) ;
} II End of add_global_gui

II ** clear ** II
II
II Deletes all elements from panelll of the GUI
II

public void clear()
{

panelll.removeAII() i

} II End of clear

II ** clear all ** II
II
II Deletes all elements of the GUI
II

public void clear_all()
{

panelll.removeAII() i

paneI12.removeAll() i

pane121.removeAll() i

paneI22.removeAII() ;
paneI23.removeAll() ;
panell.removeAII() ;
paneI2.removeAII() ;
II End of clear all

II End of class Ramsey_GUI

class Ramsey Item Listener

import java.awt.event.*;

II
II ** Ramsey_Item_Listener ** II
IIII Handles the item events for the domain of num populations,
II pop size, num_colors, elitism, selection, crossover,
II migrant_selection, and migration_topology.

II
public class Ramsey_Item_Listener implements ItemListener
{

130

private Ramsey applet;
private int command;

II ** Constructor ** II

~ublic Ramsey_Item_Listener(Ramsey ramsey_applet, int
llstening command){ -

applet = ramsey applet;
command = listening_command;

II ** itemStateChanged ** II
II
II Invokes a procedure in Ramsey_GUI according to the selected
II item.
II

public void itemStateChanged(ItemEvent event)
{

switch (command)
{

case Ramsey.NUMPOP:

applet.set_numpopulations(Integer.parselnt«String) (event.getltem(
)))) ;

break;

case Ramsey.POPSIZE:

applet.set_popsize(Integer.parseInt«String) (event.getltem())));
break;

case Ramsey.NUMCOL:

applet.set_numcolors(Integer.parselnt«String) (event.getltem())));
break;

case Ramsey. SELECT:
applet.set_selection«String)event.getItem()) ;
break;

case Ramsey.ELITISM:
applet.set_elitism(event.getStateChange()

ItemEvent.SELECTED) ;
break;

case Ramsey. CROSSOVER:
applet.set_crossover«String)event.getltem()) ;
break;

case Ramsey.MIGSELECTION:
applet.set_mig_selection«String)event.getltem()) ;
break;

case Ramsey.MIGTOPOLOGY:
applet.set_mig_topology«String)event.getltem()) i

break;

II End of itemStateChanged

} II End of class Ramsey_Item_Listener

131

class Table

II provides supporting functions to obtain the (i,j) coordinates of a
II particular edge

public class table
{

private int[] look_upi; II Table to find the i-th component of a
given edge
private int[] look_upj; II Table to find the j-th component of a

given edge

11** Constructor **11
II
II Build the look-up table according to the number of vertices in

II the graph
II

public table(int num_vertices)
{

int k=O;
int num_edges=O;

II Compute the number of edges in the complete graph with
II num vertices

num_edges = (num_vertices * (num_vertices - 1)) I 2;

look_upi
look_upj

new int[num edges];
new int[num=edges];

for(int i=O; i < num_vertices; i++)
for(int j=Oi j < i; j++)

{
look upi[k] ii
look=upj [k] ji
k = k+1;

}
} II End of Constructor

11** i **11
II
II Takes as input an edge number and returns the corresponding i

II coordinate
1/

public int i(int edge) { return look_upi[edgeJ;

11** j **/1
IIII Takes as input an edge number and returns the corresponding j

II coordinate
II
public int j (int edge) { return look_upj [edge] i

11** edge **//
IIII Takes as input the (i,j) coordinates and returns the
II corresponding edge number

II

132

yUblic int edge(int i, int jl

if (i>j)
return i * (i - 1) 12 + j;

else
return j * (j -1) 12 + i;

II End of class table

class triangle

class triangle
{

private int num_triangles;
private int current color;

edges

II Number of monochromatic triangles
II Current color being used to color

II ** Constructor ** II

public triangle()
{

num_triangles 0;
current color OJ

II ** reset ** II
II
II Sets Unum triangles H and "current color H to their default

II values -
II

public void reset()
{

num triangles OJ
current color OJ

II ** find_triangle ** II
II
II Checks if a triangle is being formed for all possible colorings

II of an edge and assigns to the edge the color that results in
II the fewest number of monochromatic triangles being formed.

public void find_triangle (permutation p, table t, decoder d, int i,
int j)
{

num triangles OJ
current color 0;

k))

!~ d.getnumcolors())

! ~ j) && (i ! ~ k) && (j ! ~if ((i

{

for(int k~O; k < p.getnumvert(); k++)
{

while(current color
{

133

num_triangles = 0;

p.setcolor(t.edge(i,j), current color);

if (p.getcolor(t.edge(i,j)) ==
p.getcolor(t.edge(i,k))) && (p.getcolor(t.edge(i,k))
p.getcolor(t.edge(j,k))))

num_triangles++i

if (num_triangles < d.getfewestsub())
{

d.setfewestsub(num_triangles) i

d.setbestcolor(current color) i

if (num_triangles == 0)
current_color = d.getnumcolors();

else
current_color++j

}
II End of find_triangle

} II End of triangle

package crossover

package crossover;
import permutation;

II ** PMX (Partially Matched Crossover) ** II
II
II A matching section consisting of two crossover points is
II randomly chosen. Elements of each parent that occur in the
II matching section of the other parent are replaced. The
II matching section maintains its original position in the
II new chromosome(s)
II

public class pmx
{

public static void mate (permutation father, permutation mother,
permutation childl, permutation child2)

II Copy *father* into *childl* and *mother* into *child2*

for(int i=Oj i < father.getnumedge(); i++)
{

child1.setedge(i,father.getedge(i)) ;
child2.setedge(i,mother.getedge(i)) ;

II Select two random crossover points to form the matching
II section

int start = (int) (Math.random() * (child1.getnumedge () - 1)) j

int end = (int) (Math.random() * (child1.getnumedge() - 1));

if(start > end)

134

int tmp ::: start;
start ::: end;
end::: tmp;

II Create an array for *childl* which records the position
II of every edge of *childl*, similarly for *child2*

int childl position[]
int child2=position[]

new int[childl.getnumedge()];
new int[child2.getnumedge()];

for(int i:::O; i < childl.getnumedge(); i++)
{

childl_position[childl.getedge(i)] i;
child2 position[child2.getedge(i)] = i;

} -

int childl tmp 0;
int child2=tmp 0;

for(int i=start; i <= end; i++)
{

childl tmp
child2 tmp

childl.getedge(i) i

child2.getedge(child2_position[childl_tmp]) ;

II Swap the contents at position i of *childl* with content
II of *childl* at the position indicated by the content
II of *childl_position* at position i of *child2*

childl.setedge(i,
childl.getedge(childl position[child2.getedge(i)]));

childl.setedge(childl_position[child2.getedge(i)] ,
childl_tmp) ;

II Swap the contents at position i of *child2* with the
II content of *child2* at the position indicated by the II
content of *child2_position* at position i of *childl*

child2.setedge(child2_position[childl_tmp] ,
child2.getedge(i)) j

child2.setedge(i, child2 tmp);

II End of mate

II End of pmx

package mutation

package mutation;

import permutation;

II ** Swap Mutation ** II
IIII Two randomly selected edges in a permutation are swapped

II

135

public class swap
{

public static void mutate(permutation child)
{

II Generate two random numbers from 0 to (num_edges-l)

int edgel
int edge2

(int)
(int)

(Math.random() * (child.getnumedge()
(Math.random() * (child.getnumedge()

1)) j

1)) i

II Swap the edges at positions edgel and edge2 in the permutation

int tmp = child.getedge(edgel) j

child.setedge(edgel, child.getedge(edge2»;
child.setedge(edge2, tmp) j

II End of mutate

II End of swap

package Selection

package selection;

import permutation;

11** Roulette **11
II
II This function implements Roulette-Wheel based selection.
II It takes a population of permutations as input, and
II returns a single permutation which is selected with a
II probability proportional to its fitness value relative
II to the sum average population fitness value.
II

public class Roulette
{

public static int select (permutation[] population, int popsize)
{

double totalsum;
population

double partialsuffi;
population

int stop;
int index;

totalsum == 0;
index = 0;
partialsum OJ

II Calculate totalsum

II Sum of all fitness values in the

II Partial sum of fitness values in the

II Random number between 0 and totalsum
II Index of selected permutation

for(int i==O; i < POPSizei i++)
totalsum += population[iJ .getfitval();

II Generate a random number between 0 and totalsum

136

stop = (int) (Math.random() * totalsum);

II Select the first permutation whose fitness value makes
II partialsum greater than or equal to stop

while((index < popsize) && (partialsum < stop))
{

partialsum += population [index] .getfitval();
if (partialsum < stop) index++;

return index;

II End of select

II End of Roulett

package util

package utili
import java.util.Vector;
import java.lang.Math;
import java.awt.Graphics;
import java.awt.Color;
import permutation;
import table;

public class graph
{

II ** set_points ** II
II
II This function is used to plot complete graph on num_vertices.
II This function returns num vertices equally spaced points
II around the circumference of a circle centered at center
II and with radius radius.
II

public static int[] set_points(int num_vertices, int radius, int
center)
{

int x,y;

II Create an array to hold the (x,y) coordinates for all the
II vertices

int[] C = new int[2*num_vertices];

II Calculate the angle between equally spaced points along the
II circumference

double angle = 2*Math.Pl/num_vertices;

int count = Oi

+ center;
+ center;

(radius * Math.cos(count*angle))
(radius * Math.sin(count*angle))

x = (int)
y = (int)
count++;

for(int i=O; i < 2*num_vert ices i i=i+2)
{

C [iJ = Xi

137

C[i+1] = Y;
}
return C;

II End of set_points

II ** edge_color ** II
II
II This function sets the color of a line to the corresponding

II color of an edge.
yUblic static void edge_color(Graphics g, int color)

switch(color) {
case 0:

g.setColor(Color.black) ;
break;

case 1:
g.setColor(Color.red) ;
break;

case 2:
g.setColor(Color.blue) ;
break;

case 3:
g.setColor(Color.yellow) ;
break;

case 4:
g.setColor(Color.green) ;
break;

case 5:
g.setColor(Color.pink) ;
break;

} II End of edge_color

II ** draw_graph ** II
II
II This function draws the complete graph corresponding to a
II particular permutation given as input.
II

public static void draw_graph(Graphics g,permutation p,table t,
int radius, int center)
{

int[] points set_points(p.getnumvert() ,radius,center);

for(int i=O; i < (p.getnumvert() * 2); i=i+2)
g.drawOval(points[iJ, points [i+1J , 1,1);

int x1,y1,x2,y2;

for(int i=Oi i < p.getnumedge(); i++)
{

xl 2 * t.i(p.getedge(i)) i

yl xl + 1;

x2 2 * t.j (p.getedge(i»;
y2 x2 + 1;

edge color(g,p.getcolor(p.getedge(i));
g.drawLine(points[xl], points [yl] , points [x2] , points [y2]);

}
} II End of draw_graph

II End of graph

138

VITA

Iker Gondra

Candidate for the Degree of

Master of Science

Thesis: A COARSE-GRAIN PARALLEL GENETIC ALGORITHM TO IMPROVE
THE BOUNDS OF SOME RAMSEY NUMBERS

Major Field: Computer Science

Biographical:
Personal Data: Born in Bilbao, Vizcaya, Spain, August 20, 1977, son of Maria

Luisa Luja and Jose Enrique Gondra.

Education: Graduated from the Sagrado Corazon High School, Sucre, Bolivia, in
December 1994; received Bachelor of Science in Computer Science from
Oklahoma State University, Stillwater, Oklahoma, US, in December 1998;
completed the requirements for the degree of Master of Science in
Computer Science at the Computer Science Department of Oklahoma
State University in May 2002.

Experience: Employed by Computing and Infonnation Services, Oklahoma State
University, as a Computer Lab Assistant from August 1997 to August
1999; employed by Computer Science Department, Oklahoma State
University, as a Graduate Teaching Assistant since August 1999.

	Thesis-1.pdf
	Thesis-2.pdf
	Thesis-3.pdf
	Thesis-4.pdf
	Thesis-5.pdf
	Thesis-6.pdf
	Thesis-7.pdf
	Thesis-8.pdf
	Thesis-9.pdf
	Thesis-10.pdf
	Thesis-11.pdf
	Thesis-12.pdf
	Thesis-13.pdf
	Thesis-14.pdf
	Thesis-15.pdf
	Thesis-16.pdf
	Thesis-17.pdf
	Thesis-18.pdf
	Thesis-19.pdf
	Thesis-20.pdf
	Thesis-21.pdf
	Thesis-22.pdf
	Thesis-23.pdf
	Thesis-24.pdf
	Thesis-25.pdf
	Thesis-26.pdf
	Thesis-27.pdf
	Thesis-28.pdf
	Thesis-29.pdf
	Thesis-30.pdf
	Thesis-31.pdf
	Thesis-32.pdf
	Thesis-33.pdf
	Thesis-34.pdf
	Thesis-35.pdf
	Thesis-36.pdf
	Thesis-37.pdf
	Thesis-38.pdf
	Thesis-39.pdf
	Thesis-40.pdf
	Thesis-41.pdf
	Thesis-42.pdf
	Thesis-43.pdf
	Thesis-44.pdf
	Thesis-45.pdf
	Thesis-46.pdf
	Thesis-47.pdf
	Thesis-48.pdf
	Thesis-49.pdf
	Thesis-50.pdf
	Thesis-51.pdf
	Thesis-52.pdf
	Thesis-53.pdf
	Thesis-54.pdf
	Thesis-55.pdf
	Thesis-56.pdf
	Thesis-57.pdf
	Thesis-58.pdf
	Thesis-59.pdf
	Thesis-60.pdf
	Thesis-61.pdf
	Thesis-62.pdf
	Thesis-63.pdf
	Thesis-64.pdf
	Thesis-65.pdf
	Thesis-66.pdf
	Thesis-67.pdf
	Thesis-68.pdf
	Thesis-69.pdf
	Thesis-70.pdf
	Thesis-71.pdf
	Thesis-72.pdf
	Thesis-73.pdf
	Thesis-74.pdf
	Thesis-75.pdf
	Thesis-76.pdf
	Thesis-77.pdf
	Thesis-78.pdf
	Thesis-79.pdf
	Thesis-80.pdf
	Thesis-81.pdf
	Thesis-82.pdf
	Thesis-83.pdf
	Thesis-84.pdf
	Thesis-85.pdf
	Thesis-86.pdf
	Thesis-87.pdf
	Thesis-88.pdf
	Thesis-89.pdf
	Thesis-90.pdf
	Thesis-91.pdf
	Thesis-92.pdf
	Thesis-93.pdf
	Thesis-94.pdf
	Thesis-95.pdf
	Thesis-96.pdf
	Thesis-97.pdf
	Thesis-98.pdf
	Thesis-99.pdf
	Thesis-100.pdf
	Thesis-101.pdf
	Thesis-102.pdf
	Thesis-103.pdf
	Thesis-104.pdf
	Thesis-105.pdf
	Thesis-106.pdf
	Thesis-107.pdf
	Thesis-108.pdf
	Thesis-109.pdf
	Thesis-110.pdf
	Thesis-111.pdf
	Thesis-112.pdf
	Thesis-113.pdf
	Thesis-114.pdf
	Thesis-115.pdf
	Thesis-116.pdf
	Thesis-117.pdf
	Thesis-118.pdf
	Thesis-119.pdf
	Thesis-120.pdf
	Thesis-121.pdf
	Thesis-122.pdf
	Thesis-123.pdf
	Thesis-124.pdf
	Thesis-125.pdf
	Thesis-126.pdf
	Thesis-127.pdf
	Thesis-128.pdf
	Thesis-129.pdf
	Thesis-130.pdf
	Thesis-131.pdf
	Thesis-132.pdf
	Thesis-133.pdf
	Thesis-134.pdf
	Thesis-135.pdf
	Thesis-136.pdf
	Thesis-137.pdf
	Thesis-138.pdf
	Thesis-139.pdf
	Thesis-140.pdf
	Thesis-141.pdf
	Thesis-142.pdf
	Thesis-143.pdf
	Thesis-144.pdf
	Thesis-145.pdf
	Thesis-146.pdf
	Thesis-147.pdf
	Thesis-148.pdf
	Thesis-149.pdf

