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CHAPTERl

INTRODUCTION

A web is· a continuous, flexible strip of material such as paper, plastic film, metal

foil, textile, and non-woven material. Webs are stored at least on an intermediate basis in

wound rolls. The wound roll form is the most efficient and opportune storage format for

automated manufacturing processes. Web handling is the science involving the

mechanics and dynamics of transporting webs from unwind stations, through process

machinery to rewind stations.

Winding is an integral operation in almost every web handling process. During

the course of a web becoming a final converted product, it may be unwound and rewound

several times depending upon the number of web processes that must be performed.

Winding exerts stresses and curvatures upon webs, which can often degrade the web

quality. Winding parameters include drum torque, nip load, web tension, web properties,

machine and operating parameters can affect the stress patterns within a roll. Wound roll

defects can often be cast in terms of stresses. Thus, the ability to predict stresses and roll

defects helps to forecast the quality of wound roll. This project has put efforts to

understand the effect of nip load, web tension, nip and wound roll size on the wound roll

stresses in production size surface wound rolls. During the last few decades, a number of

the theoretical models have been developed for center winding, and the experimental

results have confirmed the validity of those models. Winding with an impinged nip is

common for high speed winding machines as it helps to reduce air entrapment.
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Winding with an impinged nip is common when it is necessary to wind higher stress

levels into the wound rolls. Papers published by Pfeiffer [1-3] in 1960's & 1970's have

proved to be a landmark in the field of web handling to understand the effect of nip

rollers on stresses in wound rolls. Pfeiffer [3] proved that the nip is responsible for a

strain-inducing mechanism, which increases the sheet tension beyond the web line

tension on the outgoing side of the nip. This extra tension induced beyond the web

tension is known as Nip Induced Tension (NIT) and is influenced by nip force, drum

diameter, and web properties. Pfeiffer [3] found that more NIT was produced at constant

nip load when smaller diameters were used.

Previous researchers at the Web Handling Research Center (WHRC) [4-8] have

focused on the nip rollers ranging from 2 to 10 inches in diameter and wound rolls of a

maximum diameter of about 10 inches. Depending upon the winder type, it is known that

the NIT combines with some portion of the web tension, just upstream of the winder, to

produce the Wound-On-Tension (WOT). The WOT is tension in the outer layer of the

winding roll. Hartwig [7] has shown that there is some influence of nip roll diameter on

WOT, but little or no influence of wound roll diameter over the range he was able to

study with his setup. This research focuses specifically on how WOT is affected by nip

and wound roll diameter. The ranges of the nip and wound roll diameter in this study,

approach the ranges of diameters used in the web industry.
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CHAPTER 2

LITERATURE REVIEW

Webs are wound into rolls by two winding methods, center winding and surface

winding. Center winding can be of two types, either with an impinging nip roller or

without a nip roller. In both cases, the torque is applied to the center of the winding core.

In surface winding, the wound roll is free to rotate and the winding torque is applied to

the nip roller. In center winding, winding at very low nip loads is possible. Surface

winding requires a minimum nip load to prevent stalling of the winder. In some cases,

substantial amounts of winding torque are applied to the winding roll and the nip roller,

which is known as combination winding.

Several winding models exist to predict the internal pressures in wound rolls

based on different assumptions of material properties. Pfeiffer [2] is considered as

pioneer in this field. He explored about wound roll stresses through experimental

analysis. Before this only operator skills like club striking etc. were used to infer in-roll

stresses. He observed that the rolls wound with a lay-on or nip roller were found to be

much harder than the rolls wound without a nip roller.

Pfeiffer [3] was the first to explain that the rolling nip is a strain inducing

mechanism, which increases the web tension beyond the web line tension on the outgoing

side of the nip. His first quantitative data showed that the NIT was dependent on nip
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force, nIp diameter, and web properties. The NIT was found to vary empirically as

inverse square root of the drum diameter from his experiments on nip rollers ranging in

diameter from 3" to 10". He didn't extrapolate the result to large nip diameters due to the

small amount of data taken. The NIT was also found to be approximately proportional to

nip load to the 2/3 power. NIT was found to be directly proportional to the number of

sheets between the nip roller and plate. The photomicrographs taken from the side of the

nip/stack interface by Pfeiffer showed that the instant center of rotation did not lie at the

surface of the interface, rather it was located several layers beneath the interface. The

layers above the instant center would travel in the direction of the rolling nip, while

layers below the instant center would move in the opposite direction. These tests were

performed by rolling loaded nip rollers across stacks of web. Thus, it is not clear if these

findings relate directly to wound rolls.

Rand and Erickson [9] extended the work of Pfeiffer [2,3]. They used

experimental stress analysis, including destructive and nondestructive tests. They glued

strain gauges to the paper webs, which provided continuous information about the stress

in the web during the entire winding process.

Pfeiffer [1] proved. that nip force was responsible for increasing the wound-on

tension beyond the magnitude of web tension. He developed a specialized winder, which

is shown in Figure 2-1. It is to be noted that Pfeiffer coined the acronym WIT for Wound

In-Tension and WOT for Wound-Off-Tension. But later on, WOT (Wound-On-Tension)
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was used in spite of WIT in OSU. Therefore, now onwards this thesis will refer to WOT

to what Pfeiffer referred as WIT.

Surface
Winding
Drum

Figure 2-1: Pfeiffer's Winder Configuration.

This winder measured the wound-on-tension by peeling off the outer layer of the

web after it contacted the winding roll and directed it to the load cell, before directing the

web back to the wound roll. The load cells were used to measure the tension of the outer

layer after it had passed under the nip roller. He developed an empirical equation by

curve fitting from the experimental data:

WOT == ~ln(N +AJ+ TN
B A C+DN

where N== nip load (Pli) and T== web line tension (pli).
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The coefficients A-D are his coefficients for WOT, F is the coefficient of friction.

His original data and the curve fit equations agree with each other within 1%. The

coefficients A, B, C, D may be affected by nip or wound roll diameter, but this was not

studied by Pfeiffer. The coefficients A-D for 62g/m2 coated and supercalendered paper

which were obtained through curve fits are as follows:

A==4.75 (pli)

D==1.34

B==O. 736(I/pli)

F==O.311

C==7.14 pli

Pfeiffer's winder stalled at lower nip loads, so he knew that his WOT was limited

by the C.O.F. between the winding nip and the wound roll. He never measured the

C.O.F., he just assumed the limiting slope of his WOT measurements was the static

C.O.F. Since he never measured the C.O.F., he did not know if this was a static or kinetic

C.O.F. He observed that at low nip loads, the frictional forces needed to drive the wound

roll became less, which caused stalling. This is also shown in Figure 2-2. The lower left

hand comer of the WOT vs. nip force graph represents a region, where the normal force

of the nip is not sufficient enough to slippage. Therefore, he deduced the following

expression after conducting experiments on three different materials.

WOT ~ l-lstN

where l-lst == static coefficient of friction, N == Nip Load (Pli)

Equation 2-2

It should be noted this expression applies only to surface winders, which was

Pfeiffer's focus in this study. This expression implies that the WOT cannot exceed the
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friction force between outer layer and the winding drum or nip of a surface winder. It is

clear from graph that WOT increases with increase in nip load. The zero pli web line

tension curve shows the absolute minimum value of WOT, although it is impossible to

run WOT experiments at such a low web tension.

so
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Figure 2-2: Pfeiffer's WOT Curves.

Good and Wu [10] continued the work after Pfeiffer [3] on the mechanism of

NIT in wound rolls and drew certain conclusions based on their experimental and finite

element analysis. They found that the mechanism responsible for NIT is an elongating

machine direction strain in outer layer of the web. This occurs because of compressive

Hertzian-like contact stresses, which exist through the depth of the web beneath the nip

roller. They also determined that NIT couldn't exceed the product of the nip load and

kinetic coefficient of friction between outer wrap & the wrap beneath it.
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As earlier wound roll models applied only to the pure center winding, Good et al

[11] in 1994 published a paper in which they incorporated new boundary conditions to

the earlier wound roll models to consider the effect of an undriven nip roller. Verification

was accomplished by winding pressure sensors into rolls wound under center winding

conditions with fixed nip load and web tension. A winding model was used in the form of

Hakiel [20] in which the WOT was iterated until the predicted and measured pressures

agreed. After winding rolls at several web tensions and nip loads, it was found that:

WOTcenter winding with nip== {Tw} +(~k.N)/h Equation 2-3

where N == Nip Load (lb), J.lk == kinetic coefficient of friction, Tw == Web Line Tension

(Pli), h == thickness of the web (in.).

Raphael [6] conducted an empirical study on surface wound rolls, which was

focused on the interlayer pressure of surface wound rolls. The nip load was applied

through a pneumatic cylinder. The winding conditions are shown in Table 2-1. A 6" wide

roll was used for the study.

Nip Diameter (in.) Nip Load (pli) Web Line Tension (lb.) Material

3,4,5 4,6,8 4.2,5,5.3,6,6.7,7.7,9.5 Newsprint

Table 2-1: Raphael's Winding Conditions

It was concluded from his experimental analysis that under surface winding

conditions, WOT is only a factor of nip force and does not depend on web tension.

8



Raphael also stated that the increase in WOT is due to advancing of the first layer over.

the second layer, resulting in rej ection of web material back into the incoming web span

prior to the winder. He stated that this problem is observed only in case of surface

winding and not in case of center winding with an undriven nip roller.

In 1992, Markum [5] examined NIT for center and surface winding using a

specially constructed circular nip mechanics test bed. His winding conditions are given in

Table 2-2. He stated that NIT is a function of nip load and the C.O.F. for center winding

with a nip roller. Markum found that the NIT does not depend on the nip roller diameter

in case of center winding with a lay-on or nip roller and surface winding for nip roller

diameter ranging from 2" to 8". This is in contradiction to Pfeiffer's study, where he

rolled nip rollers over stacks of web. Markum found that the NIT is a function ofC.O.F.,

nip load, machine rolling resistance and a percentage of web tension in case of surface

winding. Since slippage occurred most of the time, 11e recommended that the kinetic

coeff. of friction to be used in calculating NIT. This supports the results of Good [11]. He

stated that the web in front of the nip is displaced in the direction of nip roller and this

causes the web immediately before the nip roller to leesen the tension, which is

supporting the findings of Rand and Erickson [9]. This effect can be seen in the most

drastic conditions in the fonn of a lateral bubble just before the point of contact of web

and nip roller.

Nip Diameter (in.) Nip Load (lb.) Web Line Tension Web Material

2,4,6,8 2,4,6,8 Unknown Newsprint

Table 2-2: Markum's Winding Conditions

9



Cai [13] studied the effect of nip roll compliancy upon center and surface

winding. The winding conditions are shown in Table 2-3. A pull-tab, thin piece of steel

feeler gauge encased by a piece of brass shim stock, was used to measure the interlayer

radial pressure. The pull-tabs were inserted at various radial distances while winding a

roll. Each pull-tab was tested after the roll was wound to produce discrete profiles of

radial pressure as a function of radius in wound roll. After the roll pressure was found,

Nip Diameter (in.) Nip Load (pli) Nip Compliance T w (pli) Material

5 6 Shore A (37,46,53) 1.4 Bond Paper

Table 2-3: Cai's Winding Conditions

WOT was estimated using winding software such as WINDER developed at Oklahoma

State University. He concluded, that the compliancy of nip rollers had no substantial

effect on wound roll stresses in nip winding. He also stated, "The nip induced tension is

the intrinsic property for winding with a nip roller, and the mechanics can be applied to

both center winding with nip rollers and surface winding." His conclusion was similar to

that of Markum [5], who said that the WOT in surface winding is the sum of NIT and

some part of web line tension. He stated that NIT has been found to be same for both

center and surface winding. He proved experimentally that NIT is dependent only on nip

load and the kinetic coefficient of friction between web and web. He concluded that the

friction coefficient can play much more important role than roll compliancy in

detennining WOT. A few years later, Cai's work was found to be limited when Kaya

[14] found that nip cover compliancy affects WOT when nip load and angle of wrap of

web around nip roller are high.
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Steves [4] studied the effect of nip load on WOT in surface winding. The winding

conditions are shown in Table 2-4.

Nip Dia. (in.) Nip Loads (pli) Tw (Pli) Material Wound

2.5 2,3.33,4,5,6,8,10 0.5, 1, 1.5,2,2.5 Newsprint

6 3.33,6.67,10,15,20,26.67,33.33 0.67,1,1.33,2.67 Newsprint

8 3.33,6.67,10 0.67,1.33,2,2.67 Newsprint

Table 2-4: Steves's Winding Conditions

A similar method was used to estimate the WOT as reported in the review of Cai

[13]'8 work. It was found that the WOT equation 2-4 is valid at low nip loads. At high

nip loads, WOT was found to be less than that calculated by equation 2-4. It was found to

be similar with Pfeiffer [1]. At nip loads higher than 10 pli, there is no interlayer slippage

showing that WOT is lesser than that given by equation 2-4.

WOT== (~k N)/h Equation 2-4

where N==Nip Load, h==Web Caliper, ~k is the kinetic coefficient of friction.

Kaya [14] worked mainly on a 4" O.D. aluminum nip roller and the diameter of

roll he wound was about 10". A 6" wide roll was used for the study. He concluded that

based upon surface winding WOT tests, only some portion of the web tension contributed

to WOT at high nip loads. This is in agreement with the work done by other researchers

[5,7,16]. He also stated, "Wrap angle has little or no effect on WOT for aluminum nip

rollers regardless of the applied nip load." It was also found that in case of surface
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winding, the WOT continuously increases as the wound roll gets bigger and bigger. His

experiments showed an increase of about 2.5 lb in wound-on-tension from start to end of

the roll.

Good et al [16] have done a thorough study on the methods, which can be used to

predict the structure of wound rolls. Their experimental set up is shown in Figure 2-3.

The Wound-On-Tension Measurement (WOTM) is a nondestructive type of

measurement, which makes it perfect for the laboratory and manufacturing environment.

This concept has to be partially credited to Pfeiffer et al. To measure WOT, we measure

the tension in the outermost layer by pulling away the web from the nip roller that is in

contact with core of the roll and passing it over the rollers where load cells have been

mounted before returning it to be the winding roll. Good et al [16] found that WOT is in

fact an interfering method and these values can be corrected to yield true values which

were inferred from pull-tabs. It was proved that there is a friction loss in the WOT due to

extracting the outer layer, which can be corrected by the following band brake

expressIon:

wor = WOT
measured e,uww¢

Equation 2-5

where, J.lww is the kinetic coefficient of friction between web layers and ~ is the angle of

wrap between the nip and the point at which the web is extracted for the WOT

measurement. If there is no slippage between the layers at the point where the web is

extracted:

WOTmeasured == WOT

12



Thus, it is difficult to know when the WOTM method is an interfering method.

Position Guide Unwind

Load Cell - WIT

Load Cell - Nip Load
Measurement & Control

Nip Loading
Cylinder

Figure 2-3: WHRC WOT Apparatus.

Good et al [16] stated that the NIT appears to be independent of the average radial

modulus of the wound roll. He showed that NIT is the same whether there is center or

surface winding. It was also found that NIT appears to bear no-relation with the pressures

that develop due to winding within the wound roll. He told that WOT with an undriven

nip seems to be directly a function of web tension and less a function of nip load, in the

case of center winding. This statement supported the work of previous researchers. He

represented WOT through the following equation:

WOT,.£ . dO == NITsUlJace _ wzn zng

13
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WOI;urfac~winding= NIT+[;:nf3 ~J 10.0::; Nip Load::; 33.3 p1i Equation 2-7

in which, ~ represents the angle of wrap about the nip roll (180 degrees), J.lwn represents

the kinetic coefficient of friction between the web and the nip roll, Tw is the web line

tension, C is a constant, and N is the nip load.

Good [18] has stated, "The NIT appears to be independent of web tension." He

presented figures of experimental data where the WOT changed little with wound roll

radius. He found that WOT is dependent on nip load. He observed that WOT is

proportional to nip load as per equations 2-8 and 2-9 at low nip loads but the slope decays

with increasing nip load. In center winding, WOT is directly a function of web tension at

all nip loads. In surface winding, WOT is independent of web tension at low nip loads,

but exhibits some dependency at high loads.

WOTcenter winding==Tw+ Ilk w/w P

WOTsurface winding == I-lk w/w P

where P is the nip load per unit width of web.

Equation 2-8

Equation 2-9

He stated that "WIT does not exhibit much dependency if any on wound roll

radius" in the case of center and surface winding. This statement has been supported by

Santhanakrishnan [17], who stated that "In the sets of experiments done so far with seven

different type of nip covers and various web types, the value of WOT values were
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independent of wound roll radius, so the value of the WOT was averaged for each nip

load".

Balaji [8] did a study on the WOT measurement method in surface winding

condition on a low modulus material Tyvek® 1 at WHRC. His winding conditions are

shown in Table 2-5. He concluded, "The WOT in surface winding process appears to be a

function of nip load and web tension for Tyvek webs." Steves [4], Kaya [14], Good [16]

concluded that WOT is independent of web tension in case of surface winding below nip

load of 10 pli for winding high modulus material like newsprint. Balaji [8] found the

slope of WOT-Nip Load graph to be less than the kinetic coefficient of friction. Previous

researchers [4,7,15] concluded that at low nip loads, the slope of WOT-Nip Load graph is

proportional to the web/web kinetic coefficient of friction.

Nip Dia. (in.) Web Tension (pli) Nip Load

6 0.5 4 8 16 24 32 40

6 1.0 - 8 16 24 32 40

6 1.5 - - 16 24 32 40

Table 2-5: Balaji's Winding Conditions

Objectives ofthis Research

Previous researchers [4-7,13,14,16] in this area, who have studied the effect of nip

and wound roll diameter on wound-an-tension, have worked on very limited ranges of

nip and wound roll diameter. Thus, the objective of this research is to explore the effect

ofnip and wound roll diameter on WOT on a production scale surface winder.
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CHAPTER 3

EXPERIMENTAL SETUP

3.1: Winding Machine Description:

This winder is composed of components, which previously served as a circular

nip mechanics test bed, which was designed by Markum [9] for use in his research.

Markum at WHRC more recently reassembled these components in the form of a surface

winder with interchangeable winding drums of 6", 30" and 60" diameters (Refer Fig. 3-1

and 3-2).

The unwind station consists of an expanding core shaft which engages the roll

which is to be unwound. The web tension between the unwind stand and the winder is

controlled by a magnetic particle brake (MAGPOWR Model HDB50VDC90) on the

unwind core shaft. The web tension is sensed by passing the web over an idler roll that is

supported by two load cells (MAGPOW~ CL 150). The angle of wrap of the web about

this idler is maintained constant by adjacent idlers upstream and downstream. The signal

from the load cells is input to a Digital tension Readout and Control System

(MAGPOWR DIGITRAC2). This control system provides current to the magnetic

particle brake as required, to maintain a user defined tension level. The stability factors in

DIGITRAC tension controller can be adjusted after the start of the winding experiment to

achieve better stability of the web line tension.
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The web is then passed through a FIFE Model OPG-LRA web guide and an

infrared gate sensor controlled by FIFE A-9 Signal Processor to control the lateral

position of the web in the machine. The web then enters the winder. It first passes over

the nip roller which is driven with an AC Motor (Reliance Electric Duty Master 2HP

1750RPM) that is controlled with a Reliance Electric GV 3000/SE-Sensorless Enhanced

AC Drive. The nip roller, web and wound roll are all in contact, so that when the web

exits the nip roll it passes onto the winding roll. The web is then extracted from the

wound roll where it passes on to an idler roller, an idler roller on load cells (MAGPOWR

CL 150), and another idler. These load cells sense the Wound-On-Tension (WOT) level.

The idler rollers preceding and following the WOT rollers were placed such as to

maintain a 1800 angle of wrap of the web around the WOT roller. This is important as

the output of the WOT load cells would vary with constant WOT if the angle of wrap was

allowed to vary. The web then passes back to the surface of the winding roll and is

wound into that roll. The winding roll sets upon linear ways and the nip load between the

nip roller and the winding roll is controlled through cables, pulleys and a hanger where

various amounts of dead weights can be hung.

Data from the load cells were collected with a data acquisition system. The data

acquired consists of the web tension measured between the unwind and rewind stands,

and the WOTmeasurement. The load cell signals are acquired by a National Instruments Data

Acquisition Card (Model: NI 80MIO-16-E), which resides in the back panel of a personal

computer. A LabVIEW® program controls the rate of acquisition and stores the data to a

file. The nip load was inferred from the stack of dead weights applied. There can be

17



dynamic components of nip load due to Out-Of-Round winding rolls. The winding

velocity was low in these tests and thus the dynamic nip loads should have been small.

The photograph of surface winder is shown below [Figure 3-1] with various components

labeled and the schematic diagram is shown in the following page [Figure 3-2].
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12

Tension
SystelTI
Brake

Figure 3-2: Schematic diagram of the Surface Winder Set Up at WHRC.

Legend:

1. Unwinding roll station with magnetic particle brake.
2. Web line tension load cell.
3. Idler roller.
4. FIFE Lateral Web Guide.
5. FIFE Infrared Gate.
6. Idler aluminum roller.
7. Al ip Roller (6", 30", 60").
8. Winding roll station.
9. Dead weights (Nip Loads).
10. Wound on Tension Load Cells.
11. Idler roller.
12. An AC Motor (Reliance Electric Duty Master 2HP 1750RPM)
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3.2: Winding Conditions:

The winding conditions were set after winding rolls at different tensions and nip

loads. After this exploratory set of tests were completed, a final operating parameter

range for Fine Coated Paper (FCP) was determined and it is presented in Tables 3-1, 3-2,

3-3 for 6", 30" and 60" nip rollers respectively. The winding speed was kept 154 ft/min

in all the experiments. The wrap angles for 30" and 60" nip roller were 47.53 and 57.68

degree respectively.

Web Ten.(pli) Nip Load (pli)

1.0 10 15 20 26.3 33.3

1.5 10 15 20 26.3 33.3

2.0 10 15 20 26.3 33.3

Table 3-1: Operability range for 6" nip roller.

Web Tension (pli) Nip Load(pli)

1.0 10 15 20

1.5 10 15 20

2.0 10 15 20

Table 3-2: Operability range for 30" nip roller.
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Web Ten.(pli) Nip Load (Pli)

1.0 10 15 20 26.3 33.3

1.5 10 15 20 26.3 33.3

2.0 10 15 20 26.3

Table 3-3: Operability range for 60" nip roller.

A set of preliminary tests was conducted on newsprint and the winder operating

parameters are shown in Table 3-4.

Nip Diameter (in.) Nip Load (pU) Web Line Tension (Pli) Material

60 10,15,20,33.3 2 Newsprint

Table 3-4: Operability range for different winding tensions and nip loads.

Figure 3-3 shows the variation of a typical web tension with respect to wound roll

radius. This graph depicts the results of the experiment run at 20 pli nip load, 2 pli web

line tension and 6" nip roller. This graph shows several data points, as the web line

tension data was retrieved at less than one-second interval, and therefore several data

points could be averaged. This particular graph has 32053 points; from these many

points, a good average can be produced fairly accurately. III this run, web tension was

found to be fluctuating between 1.5 pli and 2.5 pli for most of the time. With the help of

"average" function in Excel Software, this fluctuation was filtered out. The average and

standard deviation of this graph have been found to be 2.02 pli and 0.38 pli respectively.
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The machine was run at the best possible tension control. Source of nonuniform web

tension were uneven wound roll, problems in alignment of the roll, and other unknown

reasons.

8.5 ,. _ -- -.-.-..- - -..-- - ..-.-.--.-.-..- --.-..-- -- ---..-- -.- - -- - _ _ - _ _ -- _ ,

7.5

6.5
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5.5

20

•

1816141210
O~--~----.-----~----.--------.-----r------r----...--------.----~
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0.5

1.5

:= 5
.:!:
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c
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~ 3.5
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Figure 3-3: Variation of Web line Tension with radius at a set value of2.0 pi"
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3.3. Repeatability:

Each graph in this section shows 2 sets of the experiments. Each set is showing the

results of two graphs at same winding conditions to check repeatability. Suppose the

average of one experiment in a set is WI and the other one is W2• The difference between

two experiments at same winding conditions has been calculated as percentage of (W2 -

The first set in figure 3-4 shows experiments at 10 pli nip load and 1 pli web tension at

60" nip roller, it shows a difference of 4.07%. The other set of experiments at

·······0······· Tw=1 pli N= 10 pli NO=60"

-0- Tw=2pli N = 20pli N0= 60"

· e.·..·.·· Tw=1 pli N=10 pli NO=60"

-II- Tw=2pli N = 20pli NO= 60"

2.5 .,.-------------.--------------------........,

2.0

1.5

0.5

0.0 -t-------,--------,---------.-------.---------;

o 5 10 15
Wound Roll Radius (in)

20 25

Figure 3-4: Repeatability of the two sets of experiments at two different winding at

60"nip roller.
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20 pli nip load and 2 pli web tension at 60" nip roller shows a difference of 7.3% in

average WOT between two experiments.

Figure 3-5 shows the two sets of experiments. The first set of experiment at 20 pli nip

load and 2 pli web tension for 30" nip roller is showing a difference of 4.6%. The other

set of experiments at 10 pli nip load and 2 pli web tension for 60" nip roller is showing a

difference of 16~~.

--II- Tw=2pli N =20 plj NO = 30"

-+- Tw=2pli N = 10 pli NO = 60"

-0- Tw=2 plj N =20 plj NO =30"

.....~ Tw=2pli N = 10 pli NO = 60"

25201510

3.5

3.0

2.5

~2.0
~
0
~ 1.5

1.0 0-'/

0.5

0.0
0 5

Wound Roll Radius(in)

Figure 3-5: Repeatability of the two sets of experiments at two different winding.
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3.4: Material Properties:

Knowledge about the material properties is necessary to the scope of this study.

The results of this research will be valuable to those attempting to model the effect of nip

roller and wound roll diameter on WOT. The measured parameters were web thickness,

kinetic coefficient of friction between web and web and between web and aluminum,

radial modulus, and the tangential modulus.

3.4.1 Web Thickness and Width:

A stack of 10 layers was prepared and the thickness of the web was measured

along six different points along the width with a micrometer. The thickness of each layer

of the web was calculated from the average values of these trials. Care was taken not to

allow any air entrainment between the web layers while measuring the web thickness.

The width, which is very crucial for further calculations, is documented along with

thickness in Table 3-5.

Web Material FCP NEWS

Thickness (in) 0.0037 0.00295

Width (in) 6 6

Table 3-5: Thickness and Width of Web Materials.
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3.4.2 Radial Modulus (E r):

The radial modulus Er is required to nl0del the pressure distribution inside the

wound roll using mathematical models like Hakiel's [12]. The web samples were cut in

6" by 6" coupons and stacked 2" high. The stack was loaded on the Instron Material

testing machine. An existing LabVIEW® program controlled the application of pressure

to the web stack from zero to 100 psi. The program was set to record the pressure and

corresponding strain values. The pressure versus strain characteristics of webs in radial

direction is typically non-linear in nature.

There are different methods of obtaining radial modulus using the pressure and

strain data. The details about the method used in this study and other methods can be

found in the work of Balaji [8]. A polynomial curve fit was used as shown in Fig 3-4

using the Trend line function in Excel software to finally arrive at the radial modulus

equation given in Equation 3-1 for Fine Coasted Paper (FCP).

Er == 0.0166crr
3

- 2.5067crr
2 + 229.440'r + 48.207

where crr was the radial pressure in the stack in units of psi.
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Figure 3-4: Radial modulus of Elasticity for Fine Coated Paper (FCP).

The coefficients K 1 and K2 in Pfeiffer's [21] expression for pressure vs. strain,

and for modulus vs. pressure given in equations 3-2, 3-3, 3-4 were detennined using the

Solver package in MS Excel software. The error between the experimental pressure vs.

strain data and estimates using the Pfeiffer's equation was minimized to yield the least

error while varying K1 and K2 values. Those K1 and K2 values, which resulted in the least

error, are recorded in Table 3-6.

p=K1[eK2
& -I)

dP _ K 2&
Er = dE: - K 1K 2e
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Web K1 (psi) K2

Fep 0.397 182.57

NEWS 1.803 27.49

Table 3-6: Coefficients K1 and K2 in Pfeiffer's equation

3.4.3: In-Plane Modulus (E t):

The procedure to conduct this experiment has been covered in full detail by Balaji

[8]. An example of the plot of the stress-strain curve for FCP is shown in Figure 3-5.

2000 ,....-------------~--------------------.

--Linear(Curve Fit)

1500

'Ci)
Co

i 1000
~

en

500

0.0005 0.001

-----t~·---· Test

0.0015 0.002 0.0025

Strain(inlin)

Figure 3-5: Stress-strain curve for Fine Coated Paper (FCP) for in-plane modulus

The following equation 3-5 was obtained after using the Trend line function in Excel

software for Fine Coasted Paper (PCP). The in-plane modulus of various web materials

used is given in the Table 3-7.
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at == 909565 £t - 60.496

where a r was the tangential stress in units of psi and 8t are tangential strain.

Web NEWS FCP

Et (psi) 584050 909565

Equation 3-5

Table 3-7: Results of In-plane Modulus test for Web Materials.

3.4.4: Friction Tests:

In this study, friction tests were performed to determine the kinetic coefficient of

friction between web to web and web to aluminum core. The three aluminum rollers of

6", 30" and 60" were fixed at both ends, while running the experiment. A strip of web

was wrapped around the roller and a known weight was hung from one end and the other

end was attached to a force gauge as shown in Figure 3-6. The frictional force was

measured while pulling the web at constant velocity about the roller.

\------_t---_~Al Roller.

Known Weight
Force Gauge

Figure 3-6: Demonstration of the Friction Measurement Test.
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The tests were repeated thrice and averaged to find the kinetic coefficient of

friction between the web and aluminum roller. The same setup was used even for

measuring the frictional force between web and web, except that a layer of web was

wrapped around the 6" diameter roller and not allowed to slip. The values calculated for 3

Aluminum nip rollers are different, which can be attributed to error in conducting friction

tests. The kinetic coefficient of friction was determined using the capstan expression and

results of the friction tests are summarized in Table 3-8. The Capstan expression, which

is used to find the coefficient of friction, is given in equation 3-6.

Equation 3-6

where T1 and T2 are loads, J.l is coefficient of friction and Pis angle of wrap.

Web Roller 60" Roller 30" Roller 6" Web to Web

FCP 0.38 0.38 0.35 0.39

NEWS 0.428 - - 0.35

Table 3-8: Coefficients of friction.
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CHAPTER 4

RESULTS AND DISCUSSION

This chapter reports the results of the surface winding experiments, which were

described in Chapter 3, Experimental Setup.

The first results, which will be presented, will examine the effect of the diameter

of the nip roller (sometimes called a drum). Results will be grouped such that, the only

winder variables will be nip diameter and web tension, with nip load held constant. The

bulk of the results shown were obtained by surface winding Fine Coated Paper (FCP).

This is a heavy glossy finished paper often used for printing brochures, stock reports etc.

4.1: Wound-On-Tension Behavior for Fine Coated Paper (FCP):

The first results shown in the figure 4-1 are for a constant nip load of 10 plio The

trends which first appear are that both the nip diameter and the web tension affect the

WOT.
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-+- N=10 pH Tw=1 pli ND=60"

--<>-N=10pli Tw=1pli ND=30"

~N=10pli Tw=1pli ND=6"

_N=1Q pli Tw=1.5 pli ND=60" --.-N=10pli Tw=2pli ND=60"

-4J-N=10pli Tw=1.5pli ND=30" ~N=10pli Tw=2pli ND=30"

____ N=10pli Tw=1.5pli ND=6" --I:r- N=10pli TW=2pli ND=6"

4.....-.--------------------------------,

3.5

3

N = Nip Load (Ph) Tw = Web Tension (ph) ND = Nip Diameter (in)

2.5

Q.
i= 2o
~

1.5

0.: l-- r------..,r------,......--,--~-~
o 5 10 15 20 25

Wound Roll Radius(in)

Figure 4-1: WOT Data for surface winding FCP at 10 pli nip load.

It can be observed from Figure 4-1 that the WOT data for a 10 pli nip load and 1

pli web tension and a 60" nip roller has a sudden drop in WOT at certain points. This

happened because the machine had to be stopped as there was some problem with

machine alignment resulting in a poorly wound roll.

33



Next, the nip load is increased to 15 pli and the results are shown in Figure 4-2.

Again, both the nip diameter and web tension appear to affect WOT. Also, there appears

to be a consistent dependence on wound roll radius as the roll begins to wind. At low

winding radii, the WOT increases with the wound roll radius. At higher wound roll radii,

the dependence is less clear with several test cases showing little or no dependence,

whilst others show positive or negative slopes in WOT with respect to wound roll radius.

When comparing to the 10 pli nip load data shown in Figure 4-1, the WOT data for the

15 pli nip load is typically higher with the exception of the data shown taken with the 60"

nip diameter.

--+- N =15pli Tw =1 pli ND=60"

-0- N=15pli Tw =1 pli ND=30"

--+- N=15pli Tw =1 pli ND=611

___ N=15pli Tw =1.5 pli ND=60" -.- N=15pli Tw =2pli ND=60

--{].~--- N=15pli Tw =1.5pli ND=30" --fr- N=15pli Tw =2pli ND=30"

-s- N=15pli Tw =1.5pli ND=6" --/rr- N=15pli Tw =2pli ND=611

4 ..,............------.------------------------............,

3.5 N=NipLoad(pli) Tw = Web Tension(pli) ND=NipDia(in)

3

2.5

c.
i=' 2o;:

1.5

0.5

5
O-t--------r------.....-------,-----------r----------l

o 10 15 20 25

L..--- W_o_u_nd_Ro_I_I._Ra_d_iu_s_{i_n_} 1

Figure 4-2: WOT Data for surface winding FCP at 15 pli nip load.
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The nip load was increased to 20 pli and the results are shown in Figure 4-3.

Although the WOT levels increased above those recorded at nip loads of 10 pli (Fig. 4-1)

and 15 pli (Fig.4-2), the trend of the data is similar.

-+- N=20pli Tw=1 pli ND=6011

-<>- N=20pli Tw=1pli ND=30lt

--+- N=20pli Tw=1pli ND=6"

___ N=20pli Tw=1.5pli ND=60lt

-0- N=20pli Tw=1.5pli ND=30"

----ar-- N=20pli Tw=1.5pli ND=6lt

.......- N=20pli Tw=2pli ND=60"

--/r- N=20pli Tw=2pli ND=30"

-.-N=20pli Ttw=2pli ND=6"

N = Nip Load (ph) Tw = Web Tension(pli) ND = Nip Dia(in)

4

25201510
O+---------r---------,---------,.------..,.--------f

o
Wound Roll Radius(in)

Figure 4-3: WOT Data for surface winding FCP at 20 pli nip load.

Nip Loads can be very high in production environments. Some tests were

conducted at nip loads as high as 26.3 pli and 33.3 pli, to study the behavior ofWOT, the

results of which are shown in Fig. 4-4 and 4-5. The following figures do not have any

WOT curves for the 30" nip diameter. Figure 4-4 shows the WOT levels increased above

those recorded in previous figures (Fig. 4-1, Fig 4-2, Fig.4-3); the trend of the data is

similar.
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-+- N=26.3pli Tw=1 pli ND=60" _ N=26.3pli Tw=1.5pli ND=60" --.- N=26.3pli Tw=2pli ND=60"

N=26.3pli Tw=1 pli ND=6" -- -- N=26.3pli Tw=1.5pli ND=6 11
--.- N=26.3pli Tw=2pli ND=6"

6-------------------------------------.
N = Nip Load (ph) Tw = Web Tension(pli) ND = Nip Dia(in)

5

4

2

k ~ ~.

ttt~ot::~

~ .....
W--. 11 1 pe''''''

252015105
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o
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Figure 4-4: WOT Data for surface winding FCP at 26.3 pli nip load.

-+- N=33.3pli Tw=1pli ND=6011

v._--.{~~, N=33.3pli Tw=1 pli ND=6"

__~w__, N=33.3pli Tw=2pli ND=6"

_N=33.3pli Tw=1.5pli ND=60"

~- N=33.3pli Tw=1.5pli ND=6"

6~----------------------------------..,

5

4

2

6QII-- u

...... ., I( 1 1aJ\

N = Nip Load (pli) Tw = Web Tension(pli) ND = Nip Dia(in)

252015105
O+---------,,---------r----------r--------,-----------l

o
Wound Roll Radius(in)

Figure 4-5: Data for surface winding FCP at 33.3 pli nip load.
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From the figures 4-1 through 4-5 presented in this section, it has been found that

all the four variables: nip load, web line tension, nip and wound roll diameter affect the

WOT. It should be noted, however, that nip diameter increases by a factor of 10 with nip

load and web tension increasing only by a factor of 3.3 and 2 respectively.

It has been found that in most of the cases, as the wound roll radius increases,

there is an increase in WOT. Some cases are even reporting an increase of 80% increase

in WOT as roll ends. On the average from Fig 4-1 to 4-5, it has been found that WOT

increases by 280/0 from start to end of roll. So, it can be said that wound roll radius is a

factor affecting WOT.

Kaya [14] worked mainly all 4" O.D. aluminum nip roller and the diameter of roll

he wound was about 10". He found that the slope of WOT curve with respect to wound

roll radius is positive. Earlier, it was stated that Kaya [14] reported 2.5 Ib (0.42 pli)

increase in WOT over a wound roll radius range of 1.7" to 5.3". Based on the average

slopes witnessed in the data shown in Figure 4-1 through 4-5, there was an increase of

2.02 lb (0.34 pli) over a limited range of wound roll radius. It appears that this research

yielded comparable results. Another observation is that, based on the average data shown

in Figure 4-1 through 4-5 for 6" nip roller, there was an increase of 3.24 lb (0.54 pli) over

a limited range of wound roll radius. Comparing it with Kaya's work, who wound with

4" nip roller, the average increase in the WOT over limited range of wound roll diameter

is more in this study.
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It is observed that some of the WOT curves are having a steep rise in slope with

respect to wound roll radius at start of winding the roll. It is can be probably attributed to

poor control of web tension in the start.

4.2: Effect of Nip Load on Wound-on-Tension:

In this section, the WOT for a particular test has been averaged with respect to

wound roll radius. This allows the effects of web tension, nip load, and nip diameter on

WOT to be studied further.

First the effect of nip load on WOT will be studied, the results are shown in

Figure 4-6.

-+- ND=60" Tw =1 pli

--0- ND=30" Tw =1 pli

~ ND=6" Tw =1 pli

~ ND=60" Tw =1.5 pli

-D- ND=30" Tw =1.5 pli

-B- ND=6" Tw =1.5 pli

-.- ND=60" Tw =2 pli

---l::r- ND=30" Tw =2 pli

--fr- ND=6" Tw =2 pH

5.0 ]

4.5
ND= Nip Dia. (in) Tw = Web Tension (ph)

35.030.025.020.015.010.05.0

4.0

3.5

1.5

1.0 1
0.5 .

0.0 -------r-----,----_r---------,.-------,---_r-------,

0.0

Q. 3.0
~
o
~ 2.5

2.0

Nip Load(pli)

Figure 4-6: The effect of Nip Load on average WOT.
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Each curve represents a group of winding experiments, which had nip diameter

and web tension in common. The number of points on the curve shows the number of

experiments carried out on that particular nip roller and web line tension. Some points are

missing, as the experiments at those particular winding conditions could not be carried

out due to problems with machine alignment.

It can be inferred from Figure 4-6 that with increase in nip load, there is a

corresponding increase in WOT. This confirms the work of previous researchers

[8,14,16-18] at WHRC. The average slope of all curves in Figure 4-6 is 0.06, which is

substantially less than f.lk w/w of 0.39 of FCP. This conclusion supports the work of Balaji

[8]. He has shown that the average slope of WOT curves in his study was 0.07 as

compared to the f.!kw/wvalue of 0.2 of Tyvek.

Pfeiffer [3] has shown that by doubling the nip load, wound-an-tension becomes

1.59 times and by tripling the nip load under same winding conditions, wound-an-tension

increases further to 2.08 times the base value of 1pli. This study has shown that by

doubling the nip load, wound-an-tension becomes 1.56 times and by making nip load 3.3

times under same winding conditions, wound-on-tension increases further to 2.2 times. It

appears this study has yielded comparable results.

Pfeiffer [1], Balaji [8], Kaya [14], and Santhanakrishnan [17] have shown that

WOT approaches zero as nip load approaches zero for surface winding. This behavior

was not observed in this study, which can be probably attributed to the poor control of
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web tension. Hartwig [7] also found that WOT did not approach zero as nIp load

approached zero, in his study conducted over 4" and 10" nip rollers. Good [16,18] and

Pfeiffer [1] showed at low nip loads that web tension had little or no impact on WOT, but

this study certainly shows the effects of web line tension on WOT at low nip loads. At

high nip loads, other researchers [1,16] have shown that web tension has substantial

effect on WOT. This study seems to support this finding typically at lower web tensions.

At high nip load and low web tension, the WOT shows little dependency on nip

load; while at high nip loads and high web tension cases, WOT seems to show much

greater dependency on nip load. The average slope of Fig. 4-6 is 0.06, which shows that it

is substantially less than kinetic coefficient of friction for FCP. This confinns the work of

Balaji [8].
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4.3 Effect of Web Tension on Wound-on-Tension:

The impact of web tension on average WOT is shown in Fig. 4-7. Each curve

represents winding experiments, which have nip diameter and nip load in common.

-+-ND=60" N=10 pli

_ ND=60" N=33.3 pli

-+-ND=6" N=10 pli

_ ND=6" N=33.3 pli

_ND=60" N=15 pli

--¢-ND=30" N=10 pli

-B-ND=6" N=15 pli

---..- ND=60" N=20 pli

-D-ND=30" N=15 pli

-8- ND=6" N=20 pli

-e-- ND=60" N=26.3 pli

--tr- ND=30" N=20 pli

-0- ND=6" N=26.3 pli
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Figure 4-7: The effect of Web Tension on average WOT.

It can be inferred from the Figure 4-7, that with increase in web line tension for a

particular nip roller and nip load, there is a corresponding increase in WOT. This has

confirmed the work done by pervious researchers [5,7,14]. Previous researchers [5,7,14]

at WHRC have found that unlike center winding, only some part of web tension

contributes to the WOT, in case of surface winding. This study shows it to be true; even

in case of production size surface wound rolls. Raphael [6] has stated that the WOT is
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only a factor of nip load and does not depend on web tension, which was probably true

for the range of nip load and web material he used. Therefore, the following 3 tables for

60", 30" and 6" nip rollers respectively contain average and standard variation for web

line tension and wound-on-tension for each experiment, whose average value of WOT

has been plotted. The plots of the ratio of WLT standard deviation to WLT average vs.

ratio of WOT standard deviation to WOT average are shown in Figures 4-8, 4-9 and 4-10

for 60", 30" and 6" respectively.

Nip Load-Web Standard Average WLT Standard Average WOT

Tension Deviation of (pli) Deviation of (pli)

(pli-pli) WLT (pli) WOT (Pli)

33.3-1.5 0.11 1.50 0.23 2.53

33.3-1.0 0.10 1.0 0.34 1.73

26.3-2.0 0.11 2.01 0.35 2.88

26.3-1.5 0.12 1.50 0.43 2.42

26.3-1.0 0.09 1.00 0.35 1.64

20.0-2.0 0.34 2.08 0.21 1.88

20.0-1.5 0.34 1.55 0.21 1.43

20.0-1.0 0.09 0.99 0.41 1.75

15.0-2.0 0.36 2.09 0.21 1.44

15.0-1.5 0.24 1.57 0.30 1.15

15.0-1.0 0.33 1.07 1.04 0.29

10.0-2.0 0.31 2.05 0.17 1.33

10.0-1.5 0.51 1.65 0.14 1.07

10.0-1.0 0.49 0.95 0.15 0.76

Table 4-1: Standard Deviation and Average ofWLT and WOT for each Experiment

for 60" nip roller.
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Nip Load-Web Standard Average WLT Standard Average WOT

Tension Deviation of (pli) Deviation of (pli)

(pli-pli) WLT (pli) WOT (Pli)

20.0-2.0 0.26 2.03 0.25 2.98

20.0-1.5 0.11 1.51 0.36 2.24

20.0-1.0 0.19 1.00 0.22 1.88

15.0-2.0 0.23 2.02 0.300 2.22

15.0-1.5 0.21 1.51 0.14 2.02

15.0-1.0 0.22 1.01 0.30 1.74

10.0-2.0 0.21 2.02 0.31 1.81

10.0-1.5 0.17 1.51 0.19 1.51

10.0-1.0 0.21 1.01 0.09 1.4

Table 4-2: Standard Deviation and Average ofWLT and WOT for each

Experiment for 30" nip roller.
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Nip Load-Web Standard Average WLT Standard Average WOT

Tension (pli- Deviation of (pli) Deviation of (pli)

pli) WLT (pli) WOT (pli)

33.3-2.0 0.44 2.05 0.44 4.96

33.3-1.5 0.47 1.62 0.37 4.43

33.3-1.0 0.50 1.13 0.28 3.74

26.3-2.0 0.42 2.10 0.33 3.94

26.3-1.5 0.53 1.61 0.36 3.82

26.3-1.0 0.58 1.16 0.26 3.48

20.0-2.0 0.38 2.02 0.24 3.94

20.0-1.5 0.46 1.54 0.44 3.84

20.0-1.0 0.56 1.10 0.25 3.61

15.0-2.0 0.43 2.05 0.25 3.04

15.0-1.5 0.50 1.59 0.57 2.79

15.0-1.0 0.53 1.10 0.79 2.98

10.0-2.0 0.50 2.08 0.20 2.32

10.0-1.5 0.46 1.57 0.64 2.18

10.0-1.0 0.51 1.11 0.30 2.16

Table 4-3: Standard Deviation and Average ofWLT and WOT for each

Experiment for 6" nip roller.
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The diagonal lines in Figures 4-8,4-9 and 4-10 show that how many points are lying on,

above or below that diagonal line and henceforth, demonstrate the correlation between

independent variable and dependent variable.
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•••• ••• • •• • •••0.10
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«
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o
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0.00

Figure 4-8: Variation ofWOT Std. Dev./WOT Avg. Vs. WLT Std. Dev. / WLT Avg.

for 60" Nip Diameter.

Some of the experiments in Fig 4-8 are very close to the diagonal line, showing that

WOT is strongly correlated with variation in WLT, while others are quite much above or

below the diagonal line, hence showing little correlation. It is difficult to say if it is

following any pattern.
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Figure 4-9: Variation ofWOT Std. Dev./WOT Avg. Vs. WLT Std. Dev. / WLT Avg.

for 30" Nip Diameter.

Most of the experiments in Fig 4-9 are pretty close to the diagonal line showing that

variation in WOT is strongly correlated with variation in WLT.
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Figure 4-10: Variation ofWOT Std. Dev./WOT Avg. Vs. WLT Std. Dev. / WLT

Avg. for 6" Nip Diameter.

Most experiments in Figure 4-10 are lying below the diagonal line showing that

WLT variation is always more than WOT variation and hence it shows little correlation

as compared to Figures 4-8 and 4-9. From Figures 4-8 and 4-9, it can be concluded that

for 30" and 60" nip roller, the variation in WLT is definitely affecting the variation in

WOT, but it seems that there are other factors which are also causing variation in WOT.

From the three graphs (Figures 4-8,4-9 and 4-10) plotted to study the variation of

WOT vs. variation of WLT, it can concluded that variation of WLT is causing variation

in WOT, but certainly other unknown factors are also playing role to cause variation in

WOT.
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4.4 Effect of Nip Roller Size on Wound-on-Tension:

The effect of nip roller diameter on average WOT is shown in Figure 4-8. Each

curve in this figure represents a group of winding experiments, which had both nip load

and web tension in common. It is clear from the figure, that the nip diameter has an effect

on WOT and for the same winding conditions, smaller nip roller will produce more

WOT.

-+-- N=1 0 Tw =1

~N=15 Tw=1

-<>-- N=20 Tw =1

____ N=1 0 Tw =1.5

-o-N=15 Tw=1.5
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--.- N=1 0 Tw =2

-l:r- N=15 Tw =2

-Ir!r- N=20 Tw =2

4 .,------------~------------------

3.5

3
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N = Nip Load (ph) Tw = Web Tension (pli)
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Figure 4-11: The effect of Nip Roll Diameter on average WOT.

This study confirms the work of Hartwig [7], who stated that "The difference in

WOT and web line tension is a function of the nip load and the diameter of the nip

roller." The slope ofWOT vs. nip roll diameter in his study was 0.10, in which nip roller
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diameter was ranging from 4 to 10 inches. This study has lesser slope than what has been

found in Hartwig's study.

This study also supports the work of Frye [21], who stated "The small diameter

drums produce more wound in tension than the large diameter drums." Frye [21] used nip

diameters ranging from about 10-100 illches in his study to see that how much wound-in

tension can be decreased by increasing the size of nip roller. He also found that "There

seems to be a limit where any increase in drum diameter (above 30-40 in.) produced no

further improvement in the reduction of wound-in-tension." In this study conducted over

nip diameters ranging from 6 to 60 inches, there is a sharp decrease in WOT with

increase in nip diameter.

Pfeiffer [3] has shown that when the size of the drunl is doubled by keeping nip

load constant, the wound-an-tension in the rewound roll decreases from a baseline

tension of 1 pli to 0.707 pli and if the drum size is tripled, the WOT reduces further to

0.577 plio In this study, when the size of drum is made 5 times by keeping nip load

constant, the wound-an-tension in the rewound roll decreases by 34% and if the drum

size is made 10 times, the WOT reduces by 56%. It appears this study has yielded

comparable results.

4.5: Relative Sensitivity of Input Parameters on WOT:

The average slopes of the Figures 4-6, 4-7 and 4-8 are 0.06, 0.65 and 0.03

respectively. These values indicate that the order in which three parameters affect WOT

with highest one first are web tension, nip load, and nip diameter respectively. There are
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physical limits that confine the ranges of these sensitivities. The break strength of the

web will be the upper limit at which sensitivities have validity.

4.6: Wound-On-Tension Behavior for Newsprint:

Preliminary studies have been conducted on newsprint to see how a material with

relatively low modulus and low coefficient of friction will behave. The WOT, in this

case, has been found to change with respect to wound roll radius at all nip loads and it

increases more sharply at high nip loads. Figure 4-12 shows the sudden drops of WOT at

certain points across the diameter as the machine was stopped to make J-lines. This figure

shows that nip load has an effect on WOT and it increases with an increase in nip load.

Variation of WOT/Nip Load Vs. Wound Roll Radius

--.- N= 10 pli --ti- N = 20 pH .~ N= 26.3 pli

0.2 ,..--------------------------------.

0.18

0.16

0.14

"0
~ 0.12
-I

.9- 0 1z .
i:::
~ 0.08

0.06

~~ _ .

Nip Load reduced to 10pli

0.04

0.02

161412108642

O+-----r----,----r-----,-----~--~---_,_.--__f

o

Wound Roll Radius(in)

Figure 4-12: The effect of Wound Roll Radius on WOT for Newsprint wound, with

a 60" nip diameter and a web tension of 2pli.
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While winding newsprint rolls at low web tensions, it has been observed that the

rewound roll was very soft and loose. So, the experiments on ne\vsprint have been

conducted only at high web line tension, i.e., 2pli. Given the variability in the

experiments, by comparing experiments at same nip load and web tension conditions for

60" nip roller, WOT's are found to be comparable for FCP and newsprint. Newsprint

rolls were found to be soft as compared to FCP at the same winding conditions.

Therefore, it can be inferred that newsprint rolls had less pressure inside as compared to

FCP. Thus, if 2pli web tension rolls were not acceptable, newsprint would have to be

wound with smaller diameter nip rolls.

4.7: Interlayer Slippage:

Interlayer slippage, which occurred during winding, was detected with the help of

radial lines scribed on the wound roll. In surface winding, slippage is of "loosening"

kind, as opposed to the clinching effect in center winding. Most of the slippage occurs in

the vicinity of the location of the nip. The radial line scribed on the edge of the roll had

started to curve in the direction of the loosening side of the wound roll and gave the

radial line a familiar hook or curving popularly known as "I-Line". The winder was

stopped about 6-7 times to scribe radial line on the roll at about equal interval of time.

The straight portion of the J-Line lies towards the core region while the curved portion of

the J-Line is towards the periphery of the roll with the curve of the I-line pointing

towards a loosening direction of the wind. The figures from B-1 to B-3 attached in

Appendix B are for newsprint and B-4 is for FCP. Newsprint experiments show that

angle of I-lines increases with an increase in nip load. This indicates that it is a nip-
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induced slippage. This supports the work of Vaidyanathan [23]. From the comparison of

the J-line experiments for newsprint and FCP at same winding conditions, the angle of J

line was lower for FCP as compared to newsprint. This may be attributed to the

difference in C.O.F.. Even th.ough the J-lines for News are dramatic, they represent very

little tension change in the web. For instance, Figure B-1 might be having ~" of J-line

movement over a thousand feet of web length. Therefore, it can said that these J-lines are

not causing much change in WOT.
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4.8: Discussion:

Frye [21] has documented that there are about 21 winder and web variables,

which can affect the roll structure. This research work has focused on studying the effect

of four parameters: wound roll diameter, nip diameter, nip load and, web tension.

Figures 4-6 and 4-7 show that the WOT, in case of production scale surface

winder, seems to be dependent on nip load and web line tension. This confirms the work

of previous researchers [5,8,13].

Hartwig [7] has stated that the difference in web line tension and wound-on

tension is function of the nip load and the diameter of the nip roller. This study appears to

support this finding.

Pfeiffer [20] has stated, " The web tension is seen to have proportionately less

effect than the nip." Pfeiffer [3] has stated that WOT is heavily dependent on nip load

and drum diameter. This study has shown that the order in which WOT is dependent on

three parameters with the highest one first are web tension, nip load, and nip diameter

respectively. Therefore, this study does not seem to support the findings of Pfeiffer

[3,20], probably because of poor control of web tension.
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CHAPTERS

CONCLUSIONS AND FUTURE WORK

5.1: CONCLUSIONS:

The following conclusions apply specifically to the web materials studied over the range

of conditions tested (Sections 3.3.1 through 3.3.4 and Tables 3-1 through 3-3).

~ This study shows that the nip diameter is a modifying factor determining the roll

structure of surface wound production size rolls as per Figure 4-11. Hartwig [7],

Lllcas [21], and Frye [22] have reported similar findings. WOT was found to

increase 100% over the range of nip diameters studied, refer to Figure 4-11.

~ This study has shown that on the average,WOT increases by 28% from start to

end of roll (Figures 4-1 through 4-5). So, it can be said that Wound roll radius is a

factor in determining the roll structure of surface wound production size rolls. In

comparison to the nip diameter, it appears that wound roll radius is less important

in determining the level of WOT by as much as a factor of three. This

configuration is based on winder configurations in which wound roll radius and

hence wound roll weight does not effect nip load.

~ Previous researchers [5,7,14] have observed that unlike center winding, only

some portion of the web line tension is added to the WOT in surface winding. The

results in this study appear to support this finding as per Figure 4-7. At high nip

loads, other researchers [1,16] have shown that web tension has substantial effect

54



on WOT. This study seems to support this findillg typically at lower web tensions

as per Figure 4-6.

~ It has been found that with increase in the nip load, there is a corresponding

increase in WOT as per Figure 4-6, which confirms the work of previous

researchers at OSU [4,8,16-18] and other investigators [1,3]. The average slope of

the WOT curves in Fig 4-6 is substantially less than kinetic coefficient of friction

for FCP. This is in confirmation with what has been found by Balaji [8].

~ Kaya [14] worked mainly on 4" O.D. aluminum nip roller and the diameter of roll

he wound was about 10". He found that the slope of WOT curve with respect to

wound roll radius is positive. Earlier it was stated that Kaya [14] reported 2.5 lb

(0.42 pli) increase in WOT over a wound roll radius range of 1.7" to 5.3". Based

on the average slopes witnessed in the data shown in Figure 4-1 through 4-5, there

was an increase of 2.02 lb (0.34 pli) over limited range of wound roll radius. It

appears that this research yielded comparable results.
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5.2: FUTURE WORK

~ To check whether WOT is an interfering method or not in case of production

scale surface winder.

~ To use nip rollers of diameter more than 60 inches, to see whether there is further

decrease in WOT or not as has been reported by Frye [21] in his work.

~ To conduct more experiments on materials exhibiting different material properties

and see how material properties affect the wound roll structure in case of

production scale surface winder.

~ To modify existing wound roll models to incorporate the effect of nip and wound

roll diameter, so that roll structure of a wound roll can be predicted more

accurately.

~ To consider the environmental effects as it can change the COF and hence, WOT

in a particular experiment.
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APPENDIX A
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Figure A-I: WOT measurement setup at WHRC.

Figure A-2: Another view ofWOT measurement setup at WHRC.
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Figure A-3: Three nip rollers of diameters 6", 30" and 60" used in this study.
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Figure A-4: Another view of Machine Setup at WHRC.
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Figure A-5: Data Acquisition system of the machine at WHRC.

Figure A-6: FIFE Displacement guide at WHRC.

64



APPENDIXB

65



Figure B-1: J-line Experiment conducted at 10pii nip load and 2pli web tension for
Newsprint at 60" nip roller.
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Figure B-2: J-line Experiment conducted at 15pli nip load and 2pliweb tension for
Newsprint at 60" nip roller.
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Figure B-3: J-line Experiment conducted at 20pli nip load and 2pli web tension for
Newsprint at 60" nip roller.
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Figure B-4: J-line Experiment conducted at 10pli nip load and 2pli web tension for
FCP at 60" nip roller.
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