
IDENTIFICATION OF CONSTITUTIVELY VERSUS

INDUCIBLY EXPRESSED GENES IN THE

STREPTOCOCCAL CONJUGATIVE

TRANSPOSON Tn5252

By

Bilge Erdem

Bachelor of Science

Middle East Technical University

Ankara, Turkiye

1997

Master of Science

Middle East Technical University

Ankara, Turkiye

1999

Submitted to the Faculty of the Graduate College of
the Oklahoma State University

in partial fullfilment of the
requirements for

the Degree of
MASTER OF SCIENCE

August, 2002



IDENTIFICATION OF CONSTITUTIVELY VERSUS

INDUCIBLY EXPRESSED GENES IN THE

STREPTOCOCCAL CONJUGATIVE

TRANSPOSON Tn5252

Thesis Approved:

11



ACKNOWLEDGEMENTS

I wish to express sincere gratitude to my advisor, Dr. Moses Vijayakumar

for his encouragement and advise throughout my research. Also, I would like to

express my appreciation to my committee members, Dr. Sabu Fathepure and Dr.

Robert Burnap for their constructive suggestions and support during my studies.

Special thanks goes to my friends and roommates who were always there

when I needed support. I wish to thank the office staff and the technicians in the

Department of Microbiology who were helpful and supportive in many ways.

I am deeply grateful to my family, especially to my parents, Tahir Erdem

and Selma Ozupek, my sister Selen Erdem, and my grandmother Saadet Erdem

for their encouragement, love and support.

Finally, my deepest appreciation goes to my fiance Evren Ozbayoglu for

his love, support and moral encouragement.

111



Chapter

TABLE OF CONTENTS

Page

1. INTRODUCTION 2

2. LITERATURE REViEW 7

Streptococci and Streptococcus pneumoniae 7
Multiple Antibiotic Resistance in Streptococcus pneumoniae 9
Conjugative Transposons 11

Conjugative Transposons of Gram Negative Bacteria 12
Conjugative Transposons of Gram Positive Bacteria 12

Tn5252 15
Tn917 Insertion Mutagenesis 17
Insertion Duplication Mutagenesis in S. pneumoniae 21

3. MATERIALS AND METHODS 26

Bacterial Strains and Plasmids 26
Bacterial Strains 27
Growth Conditions and Media 30
Chemicals, Restriction Endonucleases and Media 31
Transformation 33

Transformation of E.coli 33
Transformation of E. faecalis 33
Transformation of S. pneumoniae 34

S. pneumoniae Transformation Using Competence Factor 34
DNA Isolation 35

Plasmid DNA Isolation from E. coli 35
Chromosomal DNA Isolation from S. pneumoniae 36

Molecular Cloning Techniques 36
Agarose Gel Electrophoresis 37

Southern Hybridization 37
p-Galactosidase Assay 38

IV



Chapter Page

4. CONSTRUCTION OF A p-GAL REPORTER SYSTEM TO IDENTIFY
CONSTITUTIVELY VERSUS INDUCIBLY EXPRESSED GENES IN Tn5252
USING 917 MUTAGENESiS 39

RESULTS 39

Tn917 Mutagenesis Using pLSI 41
Tn917 Mutagenesis Using pVA838 44
Tn917 Mutagenesis Using pAT29 46

5. CONSTRUCTION OF A f)-GAL REPORTER SYSTEM TO IDENTIFY
CONSTITUTIVELY VERSUS INDUCIBLY EXPRESSED GENES IN Tn5252
USING INSERTION-DUPLICATION MUTAGENESIS 50

RESULTS 50

Insertion-Duplication Mutagenesis Using pSJ 126 50
Insertion-Duplication Mutagenesis Using lacZ-erm Fragment of pTV32Ts 51
Insertion Duplication Mutagenesis Using Insertion Vector Plasmid pEVP3 55
Analysis of ORF3 Using Insertion-Duplication Mutagenesis 65
Analysis of ORF4 Using Insertion-Duplication Mutagenesis 67
Analysis of ORF1, 2 and 5 Using Insertion-Duplication Mutagenesis 67
Analysis of ORF6 Using Insertion-Duplication Mutagenesis 70
The lacZ Gene Expression 72
Pneumoccoccus Transformation 75
Analysis of Self-ligated Plasmid DNA Isolated from Putative Mutants 76

6. DiSCUSSiON 94

BIBLIOGRAPHY 100

v



Table

LIST OF TABLES

Page

1.Bacterial Strains 27

2.Plasmids 29

3.Antibiotic Concentrations 32

4.The "clonability" of Tn917Q./acZ on Various E. coli Vector Plasmids 42

5.Expected and Observed DNA fragments After Southern Analysis 60

6.~-galactosidase activity in mutants with fused E.coli LacZ gene to
ORF3,ORF7, ORF4, ORF1, 2 and 5, and ORF6 in Miller units 74

7.Rx1 and SP1403 transformation results using donor DNA from mutant
strains 77

8.Analysis of Self-ligated Plasmids by Restriction Digestion 91

VI



Figure

LIST OF FIGURES

Page

1. Composite conjugative transposon Tn5253 and its derivative trasposons
Tn5252 and Tn52521 16

2. Restriction map of the left terminal region of Tn5252 in S. pneumoniae
SP1000 18

3. The restriction map of the right terminal region of Tn5252 in S.
pneumoniae SP1 000 : 19

4. Insertion-duplication mutagensis (the reverse orientation) 22

5. Insertion-duplication mutagenesis (the right orientation) 23

6. Map of pTV53Ts 40

7. Map of pLS1 43

8. Map of pVA838 45

9. Map of pAT29 47

10. Map of pSJ126 52

11. Map of pTV32Ts 53

12. Map of pEVP3 56

13. Molecular size markers prepared using pVJ15 58

14. Molecular size markers prepared using pVJ18 59

15. The standard curve for the correlation of fragment size and
electrophoretic migration for ORF3 mutants 61

Vll



16. The standard curve for the correlation of fragment size and
electrophoretic migration for ORF4 mutants 62

17. The standard curve for the correlation of fragment size and
electrophoretic migration for ORF1, 2 and 5 mutants 63

18. The standard curve for the correlation of fragment size and
electrophoretic migration for ORF6 mutants 64

19. Analysis of ORF3 using insertion-duplication mutagenesis 66

20. Analysis of ORF4 using insertion-duplication mutagenesis 68

21. Analysis of ORF1, 2 and 5 using insertion-duplication mutagenesis 69

22. Analysis of ORF6 using insertion-duplication mutagenesis 71

23. Analysis of the self-ligated plasmid DNA from SP1501-1, SP1501-2 and
SP1503-2 79

24. Restriction enzyme analysis of pEB2, pEB3 and pEB4 insertion
plasmids 80

25. Digested Chromosomal DNA from SP1501-1, SP1503-2 and SP1504-4
.....................................................................................................................82

26. Analysis of self-ligated plasmids generated from SP1501-1 and SP1503-
2 84

27. The plasmids generated from ORF3 mutants, SP1501-1 and SP150i-2
(pEB2, pEB3, pEB5 ,pEB6 and pES?) 86

28. Analysis of linearized self-ligated plasmids from SP1501-1 and SP1503-
2 87

29. The plasmids generated from ORF6 mutant SP1503-2 (pEB4 and
pEB10) 88

30. Restriction enzyme analysis of pEB6 89

31. Restriction enzyme analysis of pEB7 90

32. Restriction enzyme analysis of pEB10 93

Vill



CHAPTER I

INTRODUCTION

Multiple antibiotic resistances among clinical strains of Streptococcus

pneumoniae have been of medical concern and biological interest since 19705

(16). Drug resistance among a number of clinical isolates of streptococci was

reported to be associated with plasmids. However, there are numerous examples

of drug-resistant clinical isolates that lack detectable plasmid DNA and several

research groups were unable to show the association of multiple antibiotic

resistances with plasmids (58,89). Previously, it has been shown that resistance

characteristics in S. pneumoniae and beta hemolytic group A, B, F, and G

streptococci can be transferred by a DNase-resistant process requiring cell-to

cell contact. (21 ,36). Later it was demonstrated that multiple-antibiotic resistance

was associated with self-transferring genetic elements named conjugative

transposons (7,15,26,31 ).

Conjugative transposons are mobile elements that can be transferred by

a DNase-resistant process requiring cell-ta-cell contact. Transposition of these

elements can result in rearrangements of DNA sequences in the host genome.

These elements have been discovered both in gram-positive and gram-negative

bacteria. There are four major groups of conjugative elements: the Bacteroides



elements (62), the lactococcal elements (18), Tn916/Tn1545 type streptococcal

elements and Tn5252/Tn3701 type complex streptococcal elements (77,37).

Although these streptococcal elements are capable of conjugal transposition,

they share no structural similarity (68).

Recently, novel conjugative transposon-like elements have been identified

in Vibrio cholerae and Salmonella senftenberg. V. cholerae, a gram negative

bacterium, causes lethal diarheal diseases cholera. A new serogroup of V.

cholera 0139 has multiple drug resistances to the antibiotics sulfamethozaxole,

trimethoprim, streptomycin and furazolidone. It was found that the first three of

these antibiotic resistances are carried on a 62 kb· self transmissible,

chromosomally integrating genetic element which is termed as SXT element. It is

suggested that SXT element has a fairly broad host range including E. coli and V.

cholerae 01. The SXT element integrates into the host chromosome by a site

specific mechanism that does not require recA. The properties of the SXT

element are found to be similar to those of Bacteroides conjugative transposons

(85). In S. senftenberg 5494-57 a 100 kb conjugative transposon, named

CTnscr94 have been identified. This genetic element is capable of self

transmission by conjugation and is able to integrate into target chromosome or

plasmid by RecA-independent recombination process. CTnscr94 codes for a

sucrose fermentation pathway. It is a new example of a complex mobile genetic

element being involved in fast and efficient horizontal gene transfer among

enteric bacteria (30).
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Transposons are capable of carrying drug resistance genes and

considered to be the major cause of multiple antibiotic dissemination in clinical

streptococci (57). In particular the emergence of multiple antibiotic resistance in

streptococci and other related bacterial pathogens continues to be a major

clinical concern.

In many ways conjugative transposons differ from other classes of

transposons. These elements do not cause duplication of the target sequences

when they integrate into the recipient genome. They share several characteristics

with other gene transfer systems such as plasmids and phages (2). The

mechanism involved in conjugative transposition is very similar to integration and

excision of temperate bacteriophages such as bacteriophage lambda. It has

been reported by several researchers that almost all conjugative transposons

have a covalently closed circular intermediate in conjugation just like the circular

intermediate in bacteriophage assembly.

Among these conjugative transposons the molecular biology of Tn5253

has been analyzed in detail by Vijayakumar and coworkers (37,80,82). Tn5253 is

a 65.5 kb streptococcal composite conjugative element carrying genes encoding

resistance to tetracycline and chloramphenicol. Tn5253 was originally identified

in S. pneumoniae BM6001 strain. The entire conjugative transposon was cloned

in E. coli and a detailed restriction map of the element obtained in order to

understand the molecular aspects of its structure and mechanism of transfer (2).

After restriction fragment analysis, an 18 kb DNA fragment carrying a tetracycline

resistance determinant was identified in the center of Tn5253. Upon removal

3



from the parental element (Tn5253), the smaller 18 kb element, termed as

Tn5251, acted as an independent conjugative transposon. Tn5251 displayed

structural and functional similarities to Tn916/Tn1545 family of conjugative

transposons (80). In order to further investigative the characteristics of Tn5253,

the 18 kb element (Tn5251) was deleted and a 47.5 kb element called Tn5252,

which was also capable of conjugative transposition, was obtained (2). These

results suggested that Tn5253 was a composite structure of two independent

conjugative transposons, Tn5251 and Tn5252.

Further studies implicated that Tn5252 shared the same conjugal transfer

properties and target specificity with Tn5253. Thus, the efforts were focused on

studying genetic and molecular organization of Tn5252 to better understand the

nature and evolution of the conjugative transposons. A functional map of Tn5252

was determined by introducing deletions and insertions within the transposon

(36). It was reported that, unlike Tn916 elements, Tn5252 inserts at a unique site

in the chromosome by site-specific recombination (69). The studies showed that

an 8 kb segment of Tn5252 DNA flanked by IS-like elements carry a

chloramphenicol resistance marker (cat gene). The cat gene was shown to be

spontaneously cured as a result of recombination between two IS-like elements.

The loss of cat gene did not affect conjugal transfer of Tn5252. Thus, it was

concluded that the remaining 39 kb segment of Tn5252 carried the essential

genes for conjugal transfer. Using insertion mutagenesis strategy several

workers were dedicated to identification of a total of 24 putative genes at the right

and the left terminus of this element (82).
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The putative DNA transfer related-genes were suggested to be clustered

in the right terminal region of Tn5252. The DNA sequence near right terminus

revealed the presence of the DNA transport genes in an operon like structure. In

this region a cluster of at least 11 potential genes including a DNA cytosine

methyltransferase gene (ORF6) were discovered (64). The protein encoded by

one of these genes, ORF21, was significantly similar to the group of proteins

thought to facilitate the transmission of single stranded DNA across the cell

membrane. Other genes like ORF26 and ORF28 were found to be related with

the microtubule-binding protein and a hydrophobic membrane bound protein,

respectively.

On the other hand, on about 6 kb of left terminal region of the transposon

the presence of 13 potential genes were demonstrated. Among 13 open reading

frames, ORF1 and 2 were identified as genes encoding a site-specific

recombinase (83). ORF5 and ORF4 encode the excisionase and DNA reJaxase,

respectively (69). Computer analysis revealed four open reading frames ORF3,

ORF5, ORF7 and ORF8 clustered in a 1.2 kb region. Later proteins of two genes

ORF3 and ORF4 have been purified and characterized. Recently, the presence

of two open reading frames, showing high level of similarities to umuC and umuD

homologues involved in protection against UV irradiation, were demonstrated in a

region located on the left terminus of Tn5252. Therefore, there is evidence that

Tn5252 has genes involved in 80S response (49).

In between the two clusters of transfer related genes at the termini of

Tn5252, a 25 kb DNA segment devoid of genes related to conjugal mobility has
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been identified. Conjugative transposons were isolated from a variety of clinical

streptococcal species for several years. They were shown to carry regions highly

similar to the central segment of Tn5252 raising the possibility that proteins

encoded by the genes of the central region may provide some type of selective

advantage to the pathogenic bacteria within a host organism.

The aim of this study is to develop a genetic system to identify

constitutively and inducibly expressed genes in Tn5252 using Tn917 and

insertion-dupi ication mutagenesis.
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CHAPTER II

LITERATURE REVIEW

Streptococci and Streptococcus pneumoniae

The streptococci are a heterogeneous group of gram-positive cocci that

includes organisms commonly found among the flora of humans as well as

organisms that cause both mild and severe diseases. Also, in this group are

organisms that inhabit the environment outside the human body, organisms that

cause disease in animals and organisms that are important in several industries

such as dairy industry (67).

The streptococci are gram-positive, spherical cells that occur in chains of

varying length. Most are facultative anaerobes whereas a few are obligate

anaerobes. They are classified primarily by hemolytic behavior and antigenic

characteristics associated with a cell wall carbohydrate called C substance (22).

Beta-hemolytic group A streptococci (Streptococcus pyogenes) are the

most important human pathogens. S. pyogenes is involved in serious infections

in humans, such as cellulites t pharyngitis, impetigo and acute rheumatic fever
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(5). Group A streptococci can secrete a large number of proteins including some

with the activity that suggests a role in pathogenesis. Antigens associated with

pathogenesis include various toxins, hemolysins and spreading factors. The

major antigen associated with pathogenesis is M protein, which inhibits

phagocytosis along with capsule (6). M protein is considered as a possible anti

streptococcus vaccine.

Group B streptococci (Streptococcus aga/actiae) and Viridans group

including Streptococcus gordonii, Streptococcus mutants and Streptococcus

mitis are inhabitants of oral cavity and are associated with dental caries and

endocarditis (5, 22).

Among group 0 streptococci, E. faecalis is a part of normal flora in the

intestinal tract. However, it is the major pathogen in the urinary tract infections.

The anaerobic streptococci classified in the genera Peptococcus and

Peptosreptococcus are found in the oral cavity and intestinal tract. They have

been incriminated in such infections as subacute bacterial endocarditis and

wound abscesses (5).

On the other hand, S. pneumoniae, which is also called pneumococcus, is

an inhabitant of the upper respiratory tract and is the causative agent of otitis

media and bacteremia in children. Also, it causes pneumonia and meningitis

among all populations. The pneumococcus is a fastidious microorganisms that

occurs singly, in pairs or in chains. Since it lacks the enzyme catalase, it requires

addition of blood to the medium in order to proliferate. Pneumococcal colonies on

blood agar are identified by alpha hemolysis around the colonies. Encapsulation
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has been shown to be essential for virulence. However repeated subculturing in

the laboratory leads to the loss of capsule making the laboratory strains less

virulent (5,6,22).

S. pneumoniae is one of the model microorganisms that had been studied

for several centuries by very well known scientists such as Louis Pasteur. Many

important discoveries resulted from molecular genetic studies of S.

pnemunoniae. The studies of Griffith and Avery demonstrating the ability of

pneumococci to be transformed by exogenous DNA revealed that DNA is the

genetic material (1). Other important discoveries resulting from the study of

pneumococcus include the regulatory effects of competence factor, the role of

capsule in avoidance of phagocytosis, the therapeutic effect of penicillin, and the

identification of conjugative transposons including Tn 1545 and Tn5253.

Even today this microorganism is being studied intensively due to its

involvement in several human and animal diseases.

Multiple Antibiotic Resistance in Streptococcus pneumoniae

Since the initial detection of plasmids in streptococci, it has become

evident that the majority of the genes mediating resistance to antibiotics in this

genus are plasmid borne. This type of resistance has spread in recent years

among clinical isolates of all streptococcal species studied with the remarkable

exception of S. pneumoniae (20).
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In S. pneumoniae, multiple drug resistance has emerged since 1977 (34).

Experiments conducted by Buu-Hoi and Horodniceanu showed that the

resistance in pneumococci is a result of a novel form of conjugative transfer in

the apparent absence of extrachromosomal DNA involvement (7,76).

Additionally, DNase-resistant nature of antibiotic resistance dissemination

eliminated the possibility of transfer by transformation. Today, the new groups of

antibiotic resistance vehicles are known as "conjugative transposons".

The existence of conjugative transposons such as Tn 1545 in S.

pneumoniae (20), Tn3701 of S. pyogenes (39) and Tn916 in E. faecalis (26)

could clearly account for the spread of multiple drug resistance to and among

pneumococci.

S. pneumoniae remains a major pathogen responsible for high morbidity

and mortality in both developed and developing world. During the last few

decades there has been a dramatic increase in the incidence of antibiotic

resistant streptococci. In several countries 50-80% of pneumococcal strains

isolated are penicillin resistant, which in most cases are resistant also to

tetracycline, chloramphenicol, cotrimoxazole and erythromycin (19,42).

A plasmid-free clinical isolate of S. agalactiae 8109 can transfer

resistance to chloramphenicol, tetracycline and MLS antibiotics (macrolides,

lincosamides) to group A, S, C, 0, G and H streptococcal recipients, as well as

pneumococcus. At least two conjugative resistance elements have been

identified and genetically analyzed in these bacteria. One of the two elements is

termed as cat-erm-tet element. It has been shown that S. agalactiae B109
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transfers these markers by a conjugation-like process requires cell-ta-cell contact

(32).

Conjugative Transposons

Medically important gram-positive bacteria as well as gram-negative

bacteria possess antibiotic resistance genes often determined by genes present

in a class of transposable elements named conjugative transposons. These

elements range in size from 18 kb to 100 kb. The gram-positive and gram

negative hosts harboring these elements act as conjugative donors and during a

mating event the transposon is transferred to a new location in the genome of the

recipient cell (68). Also conjugative transposons can excise and integrate

elsewhere in the same cell. Conjugative transposition is a DNase-resistant and

recA independent process (60).

Evidently, conjugative transposons seem to be significantly different from

conventional transposons in that they have a circular intermediate transferred by

conjugation and do not create target site duplication when they integrate

(60,57,68).

Conjugative transposons are chimeric molecules. They combine features

of transposons, plasmids, and bacteriophages. These elements are phage-like

molecules such that their excision and integration resemble those of temperate

bacteriophages and some have a circular intermediate. Interestingly, nucleotide

sequence analysis of integrases of some conjugative transposons suggests that

they are members of the lambda integrase family (60,72,54). Many conjugative
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transposons can mobilize coresident plasmids, but unlike plasmids these

elements are devoid of autonomous replication in the host (60). Conjugative

transposons were first isolated from pathogenic streptococcal strains. Among the

most studied conjugative transposons are: Tn916 of E. faecalis; Tn3071

identified in S. pyogenes; Tn 1545 and Tn5253 isolated from S. pneumoniae. All

conjugative transposons isolated to date carry tetM gene or a closely related

gene for tetracycline resistance (68).

Conjugative Transposons of Gram Negative Bacteria

Non-replicating Bacteroides units (NBUs) are 10-12 kb transfer defective

forms of conjugative transposons identified in Bacteroides, a group of gram

negative anaerobic microorganisms (61). Possibly, NBUs have covalently closed

circular intermediate just like conjugative transposons. These elements are

excised and mobilized by a conjugative transposon in which case excision and

integration resembles those of phage lambda (51). Also, SXT element from V.

cholerae 0139 and CTnscr94 of S. senftenberg 5494-57 are recently identified

conjugative transposons in gram-negative bacteria (85,30).

Conjugative Transposons of Gram Positive Bacteria

Tn5276 Element: The 70 kb transposon Tn5276, originally identified in

Lactococcus lactis (55), was shown to be conjugally transferred to other L. lactis

12



strains. This element carries the genes for nisin production and sucrose

fermentation, but it does not carry any antibiotic resistance genes (56).

1n916-1n1545 Family: Members of the Tn916-Tn1545 family of

conjugative transposons are ubiquitous among gram-positive bacteria. Their

presence in more than 50 different bacterial species, both gram-positive and

gram-negative, implies that they can escape restriction mechanisms within a

broad host range. As well as conjugative transposition these elements can

transpose intracellularly to other mobile DNA molecules such as plasmids and

other conjugative transposons. The elements in this family do not show any

target specificity for insertion (14).

The size of the elements in this family range from 18 kb to 25 kb. They

carry the widely disseminated tetracycline resistance gene tetM and some

members of this family can carry determinants for erythromycin and kanamycin

resistance (18).

Tn916, an 18 kb element, was the first conjugative transposon to be

identified. It was discovered on the chromosome of the hemolytic multi-drug

resistant E. faecalis OS16 (72).

Tn 1545 is a 25.3 kb element originally identified in S. pneumoniae

BM4200. This element harbors resistant determinants for tetracycline

erythromycin and kanamycin. Interestingly, Tn 1545 share the same transposition

mechanism with Tn916 (18,8).
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Tn3071-Tn5253 Family: This is a group of complex conjugative

transposons that are reported to be 50 kb or more in size. Each of these

elements carries a region very similar to Tn916. Additionally they harbor many

antibiotic resistant determinants.

Tn3701, a 50 kb element, was originally identified in S. pyogenes A54.

This element encodes for chloramphenicol, erythromycin and tetracycline

resistance genes (39).

Tn5253, a 65.5 kb conjugative transposon, was first identified in S.

pneumoniae BM6001 (74). This co'njugative transposon encoding

chloramphenicol and tetracycline resistance genes was initially called Q cat tet

element. This element is shown to insert into a preferred target region of wild

type S.pneumoniae Rx1 chromosome (80). Tn5253 was studied in detail by

Vijayakumar, et af., using insertion mutagenesis by inserting E. coli plasmid

vector pVA891 at several sites within the transposon (47). After the recovery of

the fragment of Tn5253 on pVA891 derivative plasmids, a restriction map of was

constructed; resistance genes and target sites of the transposon were identified.

Further experiments conducted by Ayoubi et al. showed that Tn5253 is a

composite structure of two conjugative transposons, Tn5251 and Tn5252 (2). An

18 kb tet-carrying element, Tn5251, was inserted within a 47.5 kb transposon

Tn5252. LeBouguenec et al. found that Tn5251 was homologous to Tn916 after

hybridization studies and restriction mapping (39). Tn5251 functional similarity to

Tn916 was demonstrated by Ayoubi et al. (2). Also, it was shown that Tn5251

and Tn5252 didn't share any significant homology. Furthermore, Tn5251 was

14



reported to transpose into different targets on S. pneumoniae genome. Tn5252

was further studied in detail by Vijayakumar, et al. (Fig. 1).

Tn5252

Tn5252 is a conjugative transposon made up of the sequences beyond

Tn5251 within Tn5253. This element was shown to transpose into a preferred

target site on the pneumococcal chromosome (83). DNA sequence analysis of

the target on the chromosome and terminal regions of the transposon showed a

possible aft site on the chromosome (83). A 72 bp DNA segment of the target

region on the chromosome, attS, was identified at both ends of the transposon.

The size of the att sites flanking the transposon, attL and attR, were almost the

same as attB and these flanking copies also contained minor sequence

differences. Interestingly, there were no minor sequence differences within the

termini of Tn5252. On the other hand, attL was shown to be on Tn5252 whereas

attR was on the host chromosome. This observation suggested that Tn5252

integrated as a result of a conservation recombination mechanisms very similar

to site-specific insertion of phages (83).

Insertion mutagenesis using pVA891 led to identification of several clones

carrying different fragments of Tn5252. Analysis of these clones resulted in

identification of transfer-related regions at the right terminus and the genes

involved in regulation and DNA-processing at the left terminus of Tn5252.
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Tn5253 (65.5 kb, em, Tc, tra+)

a cat tet

;=J-------I~ •
rpt rpt

Tn5251 (18 kb, Tc, tra+)

::==-==:

Tn5252 Ll cat (39.2 kb, tra+)
a b:==-_or--I----".,.,.-~-------I-__=:

o 10 20 30 40 50 60 70 kb

1...._ .....1 I _--.....'_ ......'_-....' I _ .....1

Figure 1. Composite conjugative transposon Tn5253 and its derivative
transposons Tn5252 and Tn5251. The cat gene, flanked by 1.7 kb direct
repeats, often spontaneously cures. However, Tn5252~cat is still transfer
proficient.
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Among 13 open reading frames identified at the left terminal region, ORF1

and 2 were shown to carry a site-specific recombinase or integrase (83). ORF5,

ORF 4 and ORF3 were identified as excisionase, DNA relaxase, and the

regulator (Fig. 2), respectively. The regulator was shown to bind to upstream

sequences of ORF1 and 2, ORF4 and to its own promoter (69). On the right
.------

region of Tn5252 among 11 potential genes ORF6 was shown to be a DNA

cytosine methyltransferase gene (64,65) (Fig. 3).

Tn917 Insertion Mutagenesis

Tn917 was first identified as a 5.3 kb transposon on E. faecalis OS16

plasmid pAD2 (89). The element is capable of enhanced transposition on

exposure to low concentration of erythromycin (16). Although Tn917 exhibits

sequence similarity to Staphylococcus aureus transposon Tn551, it is grouped in

the Tn3 family. The members of Tn3 family, including Tn917, generate a 5 bp

duplication of target sequences upon insertion (73). Three major open reading

frames of Tn917 erm, tnpA and tnpR have been analyzed in detail. The erm gene

is the erythromycin resistance determinant. The other two genes tnpR and tnpA,

exhibit significant homology to Tn3 family genes and, thus, they are presumed to

encode for resolvase and transposase, respectively (89).

Transpositon of Tn917 is an effective method of producing insertional

mutants of B. subtilis and potentially other gram-positive and gram-negative

bacteria. In order to understand the origins and properties of most of the Tn917
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Figure 2. Restriction map of the left terminal region of Tn5252 in S.
pneumoniae SP1000. The direction and size of ORFs in this region are
also shown.
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Figure 3. The restriction map of the right terminal region of Tn5252 in S.
pneumoniae SP1 000. The direction and size of ORF6 is shown.
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derivatives, it is important to mention that the interval between the erm and the

nearest terminal repeat consists of nonessential DNA that may be modified

without interfering with transposition (90). Although Tn917 insertions are not

perfectly random in their distribution over the B. subtilis genome, stilt insertions

may be obtained in any chromosomal region and even within the coding

sequence of any gene (90). Tn917 insertion mutagenesis in B.subti/is was used

to generate phenotypically cryptic mutants, auxotrophic mutations, and

sporulation related mutations (90).

Tn917 can be used as a mutagen in other gram-positive bacteria and

even gram-negative bacteria. It has been shown that Tn917 derivatives can

actually function in E. coli (35). Evidently, this transposon has a potentially broad

host range. On the other hand, several laboratories have exploited Tn917 for

physical and functional analyses of conjugative plasmids in streptococci,

enterococci and staphylococci. The most successful application of this

transposon was with the large functionally complex plasmids of E. tasca/is to

identify regions specifying plasmid transfer, pheromone response, conjugative

transposition, drug resistance and hemolysin-bacteriocin activity (89). On the

other hand, it was shown that Tn917 insertions introduce mutations into the

group B streptococci genome (25). Other successful applications of Tn917

mutagenesis have been reported for L./actis (33), Streptococcus mutans (21) and

Staphylococcus epidermidis (27).
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Insertion-Duplication Mutagenesis in S. pneumoniae

Transposons like Tn917 are valuable mutagenic tools but they

occasionally show some degree of target preference, which makes them poor

candidates to be used to identify essential genes. An alternate method of

mutagenesis is insertion-duplication mutagenesis (10M), a widely used technique

for analysis of specific genes (80).

S. pneumoniae is a representative of a diverse group of bacteria capable

of natural genetic transformation. It can take up DNA and insert into its genome

by homologous recombination upon induction of DNA uptake by an intracellular

signaling peptide called "competence factor" (40). When competent

pneumococcal cells are transformed using a linear homologous DNA donor, as a

result of recombination process a linear chromosomal region will be replaced by

a segment of the donor DNA. However, if the donor DNA is a chimeric circle

comprising a homologous sequence to the recipient genome, the result can be

the insertion of the entire circular DNA bounded by a duplication (Fig. 4 and 5).

The heterologous region on the circular donor DNA is often a nonreplicative

plasmid with a marker (40, 41). If the homologous targeting sequence of the

circular donor DNA is totally internal to a gene then the inactivation of gene may

take place (41). The marker on the heterologous region of the donor DNA is

essential for the isolation of resulting mutants by selection.

Insertion-duplication mutagenesis is valuable as a mutagen due to the

creation of highly random insertions as well as its use for specific targeting of
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Figure 4. Insertion-duplication mutagensis. The open reading frame, Le.
ORF3 in Tn5252, is inserted into Tn5252, in the opposite direction as
compared to lacZ. This orientation is designated as the reverse
orientation.
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Figure 5. Insertion-duplication mutagenesis. The open reading frame, i.e.
ORF3 in Tn5252, is inserted into Tn5252, in the same direction as
compared to lacZ. This orientation is designated as the right orientation.
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selected genes (40,52). If the chimeric circular DNA construct includes a lacZ

reporter in addition to an antibiotic resistance marker, such molecules could be

used to monitor the activity of the target gene by creating transcriptional or

translational fusions (13).

Several research groups have mutated different S. pneumoniae strains by

using insertion-duplication mutation strategy to study the function and regulation

of pneumococcal chromosomal genes.

Recently, Holden et al. have identified several novel virulence loci in type

3 pneumococci (38) using insertion-duplication mutagenesis. Over a thousand

mutant strains were analyzed for their ability to survive in mice models and

among 186 mutant strains, 56 were selected for further genetic analysis based

on their ability to excise the integrated plasmid spontaneously. The plasmids

containing the genomic DNA inserts were cloned in E. coli and sequenced. After

database search, 42 new virulence genes were identified but no pathogenicity

islands were found.

Other research laboratories used insertion-duplication mutations to

inactivate certain genes. These studies basically focused on the virulence factors

and antibiotic resistance genes.

Pneumolysin gene, one of the proven virulence genes in S. pneumoniae,

was mutated using 10M (3). It was shown that inactivation of pneumolysin gene

in pathogenic pneumococcal strains (type 2 and type 3) reduced virulence of S.

pneumoniae for mice challenged by the intranasal or intraperitoneal route (3).
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Also, Vollmer and Tomasz reported the inactivation of pneumococcal

teichoic acid phosphorylcholine esterase (pee) gene of S. pneumoniae by 10M

(84). It was demonstrated that this type of mutation resulted in a unique change

in colony morphology and a striking increase in virulence in mouse model.

Finally, the experiments by Filipe and Tomasz showed that the inactivation

of murMN operon (encode cell wall muropeptides) in penicillin resistant S.

pneumoniae strains resulted in correction of cell wall abnormality and complete

loss of penicillin resistance. These results indicate that functioning of murM and

murN genes is an integral component of penicillin-resistance mechanism in

pneumococci (24).
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CHAPTER III

MATERIALS AND METHODS

Bacterial Strains and Plasmids

All E. coli strains used in this study are shown in Table 1. Recombination

deficient strains of E.coli, JM109 and DH5u, were used. for generation and

amplification of recombinant plasmids. The recombination proficient E.coli strain

C600 was used to amplify the vector plasmid pLS 1.

Strains of S.pneumoniae used in this study were derivatives of the

nonencapsulated wild type strain Rx1 (75). Strain SP1000 is an Rx1 derivative

carrying Tn5252. CP1250 strain is a p-gar Rx 1 derivative carrying a point

mutation that confers ~-gar phenotype (2). SP1400 is a derivative of SP1000

carrying a chromosomal point mutation conferring p-gar phenotype. SP1000 was

transformed with CP1250 chromosomal DNA, transformants were selected on X

gal containing plates and among a few white colonies one was chosen and

named as SP1400. SP1403 is a derivative of SP1400, lacking the cat gene after

"curing". E. faecalis strains were used in electroporation experiments especially

due to the absence of their p-gaJadosidase activity. JH2-2 is the wild type plasmid free
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Table 1

Bacterial Strains

Strain

E.coli

Genotype Reference/Source

DH5a

JM109

C600

XLI-Blue MRA

S.pneumoniae

~80 lacZ~M15 recA 1 endA 1 gyrA96 thi-1 BethestaResearch
hsDR17 (rk-, mk+) supE44 relA1 deaR Laboratories
t1lacYU169

recA 1 supE44 endA 1 hsdR17 gyrA96 relA 1 (87)
thiA, (lacproAB)(F'traD36 proAB+ lacl Q

lacZ~M15)

supE44 hsdR thi-1 thr-1 leuB6 lacY1
tanA21

~(mcrA)183, L1(mcrCB-hsd SMR-mrr)173

SP1000

SP1400

SP1403

str-1 fus Tn5252 (cat)

str-1 {us p-gar Tn5252 (cat)

str-1 fus ~-gar Tn5252 Cms

(75)

This study

This study

SP1501-1 to SP1501-6 str-1 fus ~-gal+Tn5252 pEVP3QORF3 (emf) This study

SP1502-1 to SP1502-5 str-1 (us ~-garTn5252 pEVP3QORF4 (emf) This study

SP1503-1 to SP1503-6 str-1 fus ~-gal+Tn5252 pEVP3QORF6 (emf) This study

SP1504-1 to SP1504-4 str-1 fus r3-gal+ Tn5252 pEVP3Q ORF5 IntR This study
(emf)

CP1250

E. faecalis

JH2-2

SF5002

Wild type, plasmid free

(us rifTn5252(cat)
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E. faecalis strain. SF5002 is a derivative of E. faecalis UV202 carrying a Tn5252

insert in the chromosome.

A list of plasmids used in this study is given in Table 2. One of the

plasmids used in our experiments was pLS1, a 4.4 kb shuttle vector. pLS1

contains tetracycline resistance determinant and is used for molecular genetic

studies with both gram-positive and gram-negative bacteria. Normal replication of

pLS1 requires RecA function. Thus, rec+ host strains are used to propagate this

plasmid (66).

The vector plasmid, pAT29, is a shuttle vector used for cloning

experiments in both E. coli and gram-positive bacteria. This plasmid confers

resistance to spectinomycin and contains a multiple cloning site embedded in

lacZa gene (79).

A 9.2 kb plasmid, pVA838 is u·sed as a shuttle vector to clone

streptococcal fragments in E. coli (43,47). This plasmid contains resistance

genes for erythromycin and chloramphenicol.

The pTV1 derivative plasmids, pTV32Ts and pTV53Ts are used to

introduce Tn917 insertion mutation in B. subtilis as well as other gram-negative

and gram-positive bacteria (90). Both pTV32Ts and pTV53Ts carry a

promoterless E. coli lacZ coding sequence that can generate transcriptional lacZ

fusions. Additionally, pTV53Ts contains a promoterless cat-86 gene downstream

of lacZ coding sequence with no transcriptional terminator between these genes.

The plasmid pTV32Ts carries a cat gene as a selectable marker whereas
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Table 2

Plasmids

Plasmid Characteristics Reference/Source

pLS1 4.4 kb, Tetf shuttle vector for both (66)
Gram-positive and Gram-negative bacteria

pAT29 6.7 kb lacZ Spcf, E.coli-Streptococcus shuttle vector (79)

pVA838 9.2 kb, Emf Cmf, E. coli-S. sanguis shuttle vector (43,47)

pTV53Ts 16.9 kb, Tn9171acZ Emf Cmf Tetr (90)

pTV32Ts 15.6 kb, Tn9171acZ Emf Cmf (90)

pEVP3 6.3 kb, lacZ cat, lacZ reporter insertion vector (13)

pEB2 Kpnl cut self-ligated plasmid from SP1501-1 This study

pEB3 Kpnl cut self-ligated plasmid from SP1501-2 This study

pEB4 Kpnl cut self-ligated plasmid from SP1503-2 This study

pEB5 EceRI cut self-ligated plasmid from SP1501-1 This study

pEB6 pEVP3::0RF3, EcoRI cut 8 kb self-ligated plasmid This study
from SP1501-1 with ORF3 inserted in the right
orientation

pEB? pEVP3::0RF3, BamHI cut 10 kb self-ligated plasmid This study
from SP1501-1 with ORF3 inserted in the right
orientation

pEB8 BamHI cut self-ligated plasmid from SP1501-1 This study

pEB9 BamHI cut self-ligated plasmid from SP1501-1 This study

pEB10 pEVP3::0RF6, EcoRI cut 11 kb self-ligated plasmid This study
from SP1503-2 with ORF6 inserted in the right
orientation

pEB11 EceRI cut self-ligated plasmid from SP1503-2 This study
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pTV53Ts codes for a tetracycline resistance marker outside the Tn917

sequence.

The final vector plasmid used in this study, pEVP3, is a 6.3 kb insertion

duplication vector plasmid for S. pneumoniae (13). The vector contains a

promoterless lacZ gene as the reporter gene and a cat gene conferring

chloramphenicol resistance. It also contains unique restriction sites between lacZ

and cat gene useful for cloning purposes.

Growth Conditions and Media

E. coli strains were propagated at 37°C in Luria-Bertani (LB) broth with

aeration and supplemented with the suitable antibiotics to maintain recombinant

plasmids. Cultures were stored in 90% (v/v) LB broth and 10% (v/v) glycerol at 

BO°C.

s. pneumoniae and E. faecalis were grown, at 37°C without aeration, in

CAT broth containing 1% (w/v) casein hydrolysate, 0.50/0 (w/v) tryptone, 0.10/0

(w/v) yeast extract, and 0.5% (w/v) NaCI. After sterilization, CAT broth was

supplemented with 0.50/0 (w/v) glucose and 15 mM K2HP04 for buffering. CTM

was prepared the same as CAT broth except it was supplemented with 10 mM

CaCI2 and 0.2% bovine serum albumin. Since pneumococci tend to autolyse if

grown to high densities, they were routinely grown to a maximum OD550nm of 0.2

(ca. 2x 108 CFU/ml). Cultures were stored in 90% (v/v) CAT broth and 100/0 (v/v)

glycerol at -BO°C.
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Solid medium was prepared by adding 1.5-2.00/0 agar to the broth when needed.

In order to provide anaerobic conditions S. pneurroniae strains were grown between

CAT agar layers supplemented with 20/0 (v/v) bovine or sheep blood. E. coli and

E. faecalis strains were plated on LB agar and CAT agar surfaces, respectively.

Antibiotic concentrations for selection of bacterial strains are given in Table 3.

Chemicals, Restriction Endonucleases and Media

Bacteriological agar and media were obtained from Difco or Fisher.

Antibiotics, DNase I, RNase I, egg white lysozyme, bovine serum albumin were

purchased from Sigma Chemical Co. Restriction endonucleases, T4 DNA ligase,

E. coli DNA polymerase I, Deep Vent DNA polymerase and DNA molecular

weight standards were purchased from Promega Corp., Bethesda Research

Laboratories (BRL) or New England Biolabs (NEB) and used as described by the

manufacturer. IPTG (isopropyl-p-D thiogalactopyranoside) and X-gal (5-bromo-4

chloro-3-indolyl-P-D galactoside) were obtained from BRL whereas ONPG (0

nitrophenyl--p-D galactoside) was purchased from Sigma Chemical Co. Agarose

from Fisher and ultrapure agarose from Bio-Rad Laboratories were used for

agarose gel electrophoresis and electroelution. All other chemicals, compounds

and reagents were purchased from either Sigma or Fisher.
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Table 3

Antibiotic Concentrations

Phenotype

E. coli

Cm
Tet
Ery
Aph
Amp
Spc (pAT29)

Antibiotic

chloramphenicol
tetracycline
erythromycin
kanamycin
ampicillin
spectinomycin

Concentration (Jlg/ml)
stab plate/broth overlay

10
10
200
50
50
150

s. pneumoniae

em chloramphen icol 5 15
Ery erythromycin 0.5 0.5
Fus fusidic acid 10 50
Nov novobiocin 10 10
Rif rifampicin 10 10
Str streptomycin 200 200
Tet (Tn5253) tetracycline 2 5
Spc (pAT29) spectinomycin 200 350
Erm erythromycin 3 5

E. faecalis

Cm chloramphenicol 25
Fus fusidic acid 25
Rif rifampicin 25
Str streptomycin 200

Tet tetracycline 4

Spc (pAT29) spectinomycin 250
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Transformation

Transformation of E.coli

Recombinant plasmids containing Tn917 fragment and pEVP3 derivative

plasmids were used to transform competent cells according to the methods

described by Hannahan (29). Transformants were isolated by plating several

dilutions of the transformation mixture on selective LB agar plates. IPTG

(isopropyl-p-D thiogalactopyranoside) and X-gal (5-bromo-4-chloro-3-indolyl-P-D

galactoside) were added to selective plates for phenotypic differentiation.

Transformation of E. faecalis

Electrocompetent E. faecalis cells were prepared and were transformed

by electroporation using a modified version of Fiedler's and Wirth's protocol (23).

Cells were grown overnight in CAT broth supplemented with potassium

phosphate (dibasic) and glucose. After harvesting the cells by centrifugation, they

were washed three times in chilled 10 % glycerol in distilled water with 1/1 J 1/2

and 1/10 original volume of the growth medium. After the final wash, cells were

resuspended in chilled 10 % glycerol in 1/1000 original volume of growth

medium. Electrocompetent cells were frozen and stored at -80°C for upto two

months. 40 JlI of cells and about 200 ng of plasmid DNA were mixed, transferred

to a chilled O.2-cm electroporation cuvette (Invitrogen) and incubated at O°C for 5
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minutes. Cells were pulsed immediately at 1250 V and 360 Q using an Electro

Cell Manipulator 600 (STX Electroporation System). After electroporation, cells

were transferred to pre-chilled 1 ml of CAT broth and incubated at DoC for 10

minutes. Then they were incubated at 37°C for 90 to 120 minutes to allow time

for phenotypic expression of antibiotic resistance genes. After incubation cells

were spread on CAT plates supplemented with appropriate antibiotics.

Transformation of S. pneumoniae

Competent cells of pneumococcus were prepared according to the

method described by Guild and Shoemaker (28). When needed competent cells

were thawed on ice, mixed with donor DNA (1 Ilg/ml for chromosomal DNA and

10 I-lg/ml for plasmid DNA) and incubated at 37°C for 30 minutes. Then

pancreatic DNase I solution in CAT broth was added at a final concentration of

10 IJ.g/ml and the cultures were incubated 5 more minutes at 37°C. Transformant

cells were transferred on ice and appropriate dilutions were plated on CAT agar

using the overlay method. The plates were incubated at 37°C for 18 to 24 hours.

s. pneumoniae Transformation Using Competence Factor

Lyophilized preparation of competence factor, CSP-1, was dissolved and

diluted in 50 mM potassium acetate buffer (pH: 4.6) at a final concentration of

100 J,lg/ml. 1 ml of CTM broth containing potassium phosphate, glucose, CaCI2,
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BSA and CSP-1 (at a final concentration of 1~glml) was mixed with 20 1-11 of

donor DNA and 50 J.l1 of cells at an 00550 of 0.2 (53,11). The cells were incubated

at 37°C for 90 minutes. DNase I was added to the cultures at a final

concentration of 50 IJ.g/ml and they were incubated at 37°C for 30 minutes. Cells

were plated as described for natural transformation.

DNA Isolation

Plasmid DNA Isolation from E. coli

Alkaline-SOS lysis and rapid plasmid DNA isolation from E.coli were

performed according to Birnboim et al. and Colman et al. (4). Plasmid DNA was

further purified with equal volumes of phenol-chloroform, and chloroform

isoamylalcohol, before ethanol precipitation, and resuspended in 50 JlI of TE

buffer or sterile distilled water.

An alternate method used to isolate small scale plasmid DNA from E. coli

was Wizard Column DNA Preparation Protocol (Promega).

Large scale plasmid DNA purification was essentially performed the same

as alkaline-lysis plasmid DNA purification protocol except for the scale-up

preparation. The lysate was mixed with cesium chloride and ethidium bromide

and treated as described by Sambrook et al. (63).
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Chromosomal DNA Isolation from S. pneumoniae

Pneumococcal strains were grown in 200 ml CAT broth supplemented

with potassium phosphate (330/0) and glucose (10/0). After growing the cells to an

OD550nm of 0.3-0.4, cultures were mixed with 10 ml 10 mM EDTA and kept on ice

for 10 minutes. Cells were washed twice with 50 mM Tris-Hef, 20 mM EDTA, pH

7.5 and pelleted by centrifugation at 5,OOOxg in a Sorvall RC-5B centrifuge

(DuPont Instruments). Cell pellets were resuspended in 5 ml of the same buffer

followed by addition of 1 ml of a solution containing 0.60/0 triton X-100, 0.06%

sarkosyf, 0.60/0 sodium deoxycholate (DOC) and RNase (300 J.lg/ml). The cell

suspension was incubated at 37°C until lysis was visible. Lysis was completed by

adding 1 ml of 1% SDS and Proteinase K (350 J.lg/ml) and by overnight

incubation at 65°C. DNA was further purified by phenol-chloroform extraqtion and

following ethanol precipitation DNA was dried and resuspended in 400 J-li of TE

buffer.

Molecular Cloning Techniques

DNA digestions and ligations were done as described by Sambrook et al

(59). For insertion duplication mutagenesis in S. pneumoniae, the insert:vector

ratio was 5:1 in a 25 J.l1 total volume of ligation mixture. Ligation reaction was

performed for 1-2 days at 16°C and continued 2 more days at 4°C. Ligated DNA

was used as donor DNA for transformation of competent S. pneumoniae cells.
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Agarose Gel Electrophoresis

Agarose gel electrophoresis was performed as outlined by Sambrook et al

(63). Plasmid and chromosomal DNA samples were prepared with a tracking dye

solution (0.25% (w/v) bromophenol blue, 0.25% (w/v) xylene cyanol, 20°A>

glycerol, 0.1 M EDTA, pH 8.0) and loaded onto a 0.8% or 1.20/0 agarose gel

(Fisher) with a molecular size marker (Hind III fragments of lambda phage or 1kb

ladder). Electrophoresis was routinely carried out in TBE buffer (89 mM Tris

Base, 89 mM boric acid and 2.5 mM EDTA, pH 8.0) at room temperature. After

electrophoresis gels were stained with 1.0 IJ.g/ml ethidium bromide for 10 minutes

and destained in deionized water for 20 minutes. DNA .bands were visualized on

the gels using an UV transilluminator and photographed using Alpha Imager

2000 (Alpha Innotech Corporation).

Specific DNA fragments were purified using 0.8% agarose gels made with

UltraPure agarose (Bio-Rad). After staining with ethidium bromide DNA fragment

was electroeluted into a dialysis bag and purified essentially as described by

Sambrook et al (63).

Southern Hybridization

The Southern' hybridization was performed following the methods

described by Southern (71) and according to manufacturer's recommendations.

After electrophoresis on 0.8 % agarose gel, the DNA was denatured by soaking

the gel in 200 ml of 0.5 N NaOH for 30 min. The DNA was transferred to a nylon
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membrane (GeneScreen Plus, NEN) using a vacuum blotter (Model 785 Vacuum

Blotter, Bio-Rad) for 90 min at 5 Hg/inch. The DNA-bound membrane was

prehybridized at 65°C for more than 6 h in a hybridization oven (Techne

Hybridiser HB-2D). Probes were labeled with (a_32p) dATP (NEN) by using the

nick translation protocol described by Sambrook et al (14). The heat denatured

probe was added to 1 to 4x 106 cpm for each hybridization. Hybridization was

carried out at 65°C for 18 h. The membrane was washed, air dried and exposed

to X-ray film (Kodak X-OMAT-AR) at - BOaC for varying time periods.

~-Galactosidase Assay

Cultures of insertion-duplication mutants were grown in 10 ml CAT-PG

broth to an 00550 of 0.2. Cells were collected by centrifugation 5000 rpm for 10

min and the pellet was resuspended in 0.5 ml CAT-PG broth. Cells were lysed by

adding 100JlI of 1% Triton-X-100 and incubated at DoC and 37°C for 10 min. the

lysate was kept at aoc until needed for the assay. The enzyme reaction was

started at room temperature by adding 0.5 m( Z buffer and 0.2 ml ONPG (0-

nitrophenyl--p-D galactoside) at a final concentration of 4 mg/ml. After overnight

incubation in dark, reaction was stopped by adding 0.5 ml 1M Na2C03 (prepared

fresh). 00 was measured at 420 nm and 550 nm. Enzyme activity was

expressed in Miller units with respect to the 00 of culture at 550 nm (48).

38



CHAPTER IV

CONSTRUCTION OF A p-GAL REPORTER SYSTEM TO IDENTIFY
CONSTITUTIVELY VERSUS INDUCIBLY EXPRESSED GENES

IN Tn5252 USING Tn917 MUTAGENESIS

RESULTS

Tn917 mutagenesis has been proven to be a powerful tool for genetic

analysis of several medically important bacteria including S. pneumoniae (1, 2,

3). In this study we were interested in integrase (ORF1 and 2), excisionase

(ORF5), DNA relaxase (ORF4), regulator (ORF3), and DNA-cytosine

methyltransferase (ORF6) genes in Tn5252. To analyze the nature of gene

expression, different vector plasmids were employed to introduce a reporter lacZ

gene downstream the genes of interest in Tn5252 via random insertion of

Tn917Q/acZ. In order to have a promoterless lacZ gene insert we attempted to

clone a 12.6 kb Tn917Q/acZ fragment of pTV53Ts (Fig. 6) into the EcoRI site of

the vector plasmids pLSI (4), pVA838 (5) and pAT29 (6). The 12.6 kb

Tn917Q/acZ fragment contains a promoterless laeZ gene, cat and erm antibiotic

resistance markers.
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Figure 6. Map of pTV53Ts (90).
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Tn917 Mutagenesis Using pLSI

Initially, the broad-host range plasmid, pLS1, was chosen as the vector

plasmid because of its capability to replicate and confer tetracycline resistance in

both gram-positive and gram-negative bacteria (Fig. 7). The plasmid has high

copy number in S. pneumoniae hosts and replication of streptococcal plasmids in

E. coli requires recA function. In order to construct a pLS1 ::Tn917Q.lacZ

recombinant plasmid, the 12.6 kb Tn917Q./acZ fragment and EcoRI cut pLS1

were ligated. The ligation mixture was used to transform E. coli recA+ host strain,

C600. After transformation we selected for Tcr and Emf transformants (tetf gene is

in pLS1 and erm f gene in Tn917Q./acZ). Despite of our efforts, no Tcr and Emf

transformants were isolated. On the other hand, when E. coli C600 was

transformed by pLS1 as the donor DNA, the number of isolated Tcf transformants

was 1800 (Table 4).

To clone the Tn917Q./acZ fragment into pLS1 we also transformed S.

pneumoniae host strains SP1000 and CP1250 using pLS1 and pLS1::

Tn917Q/acZ ligation mixture. When pLS1 was transferred to SP1000, the

number of isolated Te f transformants was 63000. Similarly we obtained 4000 Tcr

transformants when CP1250 was transformed using pLS1 (Table 4). However,

there were no Tef and Emf transformants when SP1000 and CP1250 were

transformed with pLS1 ::Tn917Q/acZ ligation mixture. Transformation

experiments performed by using E. coli C600 and, S. pneumoniae SP1000 and
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Table 4

The "clonability" of Tn917QlacZ on Various E. coli Vector Plasmids

Host Strain Donor DNA Number of Transformants

E. coli JM1 09 pVA838 300 (Emf)
pVA838::Tn9170/acZ 3 (Emf)

pAT29 2300 (Sper
)

pAT29::Tn917Q/acZ 2000 (Spef
)

E. coli C600 pLSI 1800 (Tef)
pLSI::Tn917Q/acZ

E. coli DH5a pAT29 3200 (Spcf
)

pAT29::Tn917Q/acZ 2580 (Spef
)

S. pneumoniae SP1 000 pLSI 63000 (Tef
)

pLSI::Tn917Q/acZ

S. pneumoniae CP1250 pLSI 4000 (Tef)
pLSI::Tn917Q.lacZ

E. faecalis JH2-2 pAT29 750 (Spcf)
pAT29::Tn917D./acZ 170 (Spcf)
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CP1250 as hosts showed that the recipient cells were competent considering the

high number of Tcr transformants when pLS1 was used as donor DNA. However,

it is not possible to clone the 12.6 kb Tn917Q/acZ fragment into pLS1, possibly

due to the potential toxicity of Tn917 in certain hosts.

In addition, pLS1 and pLS1 ::Tn917Q/acZ ligation mixture were introduced

into E. faecalis host strain JH2-2 by electroporation. After incubation a few white

Tcr transformants were isolated on X-gal containing plates, but there were no

Emr transformants. Plasmid DNA isolated from Tcr JH2-2 transformants was

analyzed by restriction enzyme digestion and the observed DNA band patterns

confirmed the presence of pLSI.

Our results show that cloning of the 12.6 kb Tn917Q/acZ fragment into

pLS 1 is not possible. As a result we employed a different strategy in which we

used a new vector plasmid that could be useful to clone Tn917Q/acZfragment.

Tn917 Mutagenesis Using pVA838

The plasmid pVA838 is a shuttle vector that has been shown to be useful

in cloning streptococcal plasmid fragments in E. coli (Fig. 8). It expresses Emr in

both E. coli and Streptococcus spp. Its Cm r marker is only expressed in E.coli

and may be inactivated by DNA insertion at its internal EcoRI site.

In order to clone the 12.6 kb Tn917Q/acZ fragment, pVA838 was cut at

EcoRI site which is internal to its cat gene. Tn917Q/acZ fragment was ligated to

EcoRI cut pVA838. E. coli host strain JM 109 was transformed with pVA838 and
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Figure 8. Map of pVA838 (43,47).
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pVA838::Tn917D./acZ ligation mixture. The number of isolated Emr transformants

was 300 when pVA838 was used as donor DNA (Table 1). However, when

pVA838::Tn917D./acZ ligation mixture was transferred to JM109 we isolated only

three Emf transformants. These Emf transformants were replica-plated on

erythromycin and chloramphenicol containing plates to find out if Tn917Q/acZ

fragment is cloned at EcoRI site on pVA838. Growth was observed on both

erythromycin and chloramphenicol containing plates implying that cat gene was

still intact. Thus, Tn917Q/acZ was not inserted into pVA838. The results

described above implied that Tn917Q/acZ fragment cannot be cloned into

pVA838.

Tn917 Mutagenesis Using pAT29

The shuttle vector pAT29 was employed as the vector plasmid on our final

attempt to mutagenize Tn5252 using Tn917 mutagenesis (Fig. 9). The plasmid

pAT29 is conferring spectinomycin resistance and used for molecular cloning in

E. coli and in gram-positive bacteria. E. coli host strains JM109 and DH5a were

transformed with pAT29 and pAT29::Tn917Q/acZ ligation mixture. After

incubation we isolated 2300 Spcr transformants when pAT29 was transferred to

E. coli JM1 09 (Table 1). Similarly, when the ligation mixture was used as donor

DNA the number of E. coli JM109 Spcf transformants was 2000. However, DNA

analysis showed that all the transformants had only pAT29 plasmid DNA.
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On the other hand, DH5a transformation yielded 2580 Spcr transformants

when the ligation mixture was used as donor DNA whereas the number of Spcr

transformants for pAT29 donor DNA was 3200.To find out if the 12.6 kb

Tn917Q/acZ fragment was cloned into pAT29 at its EcoRI site, Spcf

transformants were replica-plated on tetracycline and erythromycin containing

plates. Tcr and Emf are selective markers on the Tn917n/acZ fragment. None of

the transformants could grow under tetracycline and erythromycin selection

indicating that the 12.6 kb fragment was not cloned into pAT29. After restriction

enzyme digestion analysis of plasmid DNA isolated from blue Spcr transformants

displayed pAT29 DNA fragment band pattern. Although the transformants were

blue it wasn't due to the lael gene on the 12.6 kb fragment. Since replica plate

results showed that DNA fragment was not cloned at multiple cloning site on

pAT29. We can conclude that pAT29 lacZa gene was intact. Therefore, a

possible complementation may be taking place between lacZa gene of pAT29

and laeZ gene on DH5a. As a result, the blue color of transformants is possibly

due to the expression of lacZ gene on pAT29.

E. faecalis JH2-2 served as the recipient strain for the following

transformation experiments. We isolated 750 Spcr JH2-2 transformants when

pAT29 was transferred by transformation. Whereas the number of E. faecalis

JH2-2 Spcr transformants for the ligation mixture was 170 (Table1). DNA was

isolated from E. faecalis JH2-2 Spcr transformants possibly containing the

ligation mixture. Agarose gel electrophoresis analysis displayed smeared DNA

bands implying that the DNA is possibly a mixture of plasmid and chromosomal
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DNA. We observed high molecular weight DNA bands that are possibly as big as

chromosomal DNA. To find out if the isolated DNA is a mixture of chromosomal

DNA and plasmid DNA, E. coli host strain JM 109 was transformed using the

DNA isolated from E. faecalis JH2-2 Spcr transformants. We isolated blue E. coli

JM109 Spcr transformants. After replica-plating and DNA analysis, it was shown

that the transformants contained only pAT29 plasmid DNA. The reason for

isolating blue colonies may be the complementation between the pAT29 lacZ

gene and lacZa fragment on JM109 chromosomal DNA.

It is concluded that pAT29 is not a suitable vector to clone Tn917n/acZ

fragment due to the presence of lacZa on this plasmid. Although beta

galactosidase- host strains were employed for transformation, we observed beta

galactosidase expression due to the lacZa gene on pAT29. Replica plating and

DNA analysis showed that beta-galacatosidase gene expression is not due to the

lacZ gene on Tn917Q/acZ fragment.

All the results presented in this section demonstrate that Tn917Q/acZ

fragment of pTV53Ts cannot be cloned into vector plasmids pLS1, pVA838 or

pAT29, eventhough suitable E. coli, S. pneumoniae and E. faecalis host strains

were employed in transformation experiments.
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CHAPTER V

CONSTRUCTION OF A f3-GAL REPORTER SYSTEM TO IDENTIFY
CONSTITUTIVELY VERSUS INDUCIBLY EXPRESSED GENES IN

Tn5252 USING INSERTION-DUPLICATION MUTAGENESIS

RESULTS

Insertion-duplication mutagenesis (10M) is a widely used mutagenesis

technique for analysis of specific genes (50,13). It is a valuable tool for

mutagenesis due to its use for specific targeting of selected genes. S.

pneumoniae genome has been mutagenized using 10M (40,41). A donor DNA

which is a chimeric circle comprising a homologous sequence (ORF3) to Tn5252

is introduced into S. pneumoniae (Fig. 4 and 5). The heterologous region on the

circular donor DNA is a nonreplicative plasmid (pEVP3) with a emf marker. The

result is the insertion of the entire circular DNA bounded by an ORF3 duplication.

The orientation of insertion of the selected gene is important for evaluation of its

expression by employing If:lcZ as a reporter gene.

Insertion-Duplication Mutagenesis Using pSJ126

Primarily we used a 3.9 kb plasmid, pSJ126, conferring kanamycin and
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ampicillin resistance in E. coli (60). The plasmid has two identical mirror-image

multiple cloning sites flanking the kanamycin resistance determinant which

makes it useful for cloning purposes (Fig. 10). In order to create lacZ

transcriptional fusions with specific genes on Tn5252 and to use lacl gene as a

reporter we sought to replace the kanamycin gene with the lacZ fragment of

pTV32Ts plasmid in pSJ126 (Fig. 11). The plasmid pTV32Ts was doubJe

digested with restriction enzymes, Smal and Hindlii. A 5 kb lacZ-erm fragment

was isolated by electroelution and, after kJenow treatment, it was ligated to a 3 kb

pSJ 126 Sphl fragment purified by electroelution. E. coli host strain JM109 was

transformed with pSJ126[Sphl]::/acZ-erm ligation mixture. A few transformants

that could grow under ampicillin selection were isolated. However, no

pSJ126[Sphl]::/acZ-erm plasmid DNA could be extracted. On the contrary, we

were able to isolate self-ligated pSJ126 plasmid from E. coli JM109 Ampr

transformants. As a result of these transformation experiments we concluded that

the lacZ-erm fragment from pTV32Ts can not be cloned into pSJ126.

Insertion-Duplication Mutagenesis Using lacZ-erm Fragment of pTV32Ts

A different strategy was used to insert the 5 kb /acZ-erm fragment

downstream of different Tn5252 genes. Klenow-treated lacZ-erm fragment was

ligated to the following peR products: ORF1, 2 and 5, ORF3, ORF4 and ORF6p.

p-gar S. pneumoniae strain SP1400 was transformed with each of the ligated
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Figure 10. Map of pSJ126 (61).
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DNA. S. pneumoniae DP1617 DNA was used as a control for transformation.

After transformation we isolated 2200 S. pneumoniae SP1400 Novr

transformants implying that the recipient cells were competent. The amplified

ORFs ligated to lacZ-erm were used as donor DNAs and transformants were

selected on erythromycin plates. We isolated one Emr transformant when lacZ

erm::ORF5 ligation mixture was used as donor DNA. We named this putative

mutant strain as SP1401. Similarly, when lacZ-erm::ORF1, 2 and 5 was used as

the donor DNA we could isolate only one Emr transformant which was named as

SP1402.

Putative mutant strains SP1401 and SP1402 were analyzed by Southern

hybridization and 0-galactosidase enzyme assay. On the autoradiogram DNA

band patterns of both SP1401 and SP1402 were similar to the SP1403 control

DNA (Fig. 17). Furthermore the f)-galactosidase activity of both strains were

significantly low (Table 6). Finally, S. pneumoniae Rx1 and SP1403 strains were

transformed using SP1402 DNA. We isolated no Emr Rx1 transformants.

Similarly, no Emf SP1403 transformants could be isolated. The number of

SP1403 transformants should be several fold more than the number of Rx1

transformants if the inserted DNA is in Tn5252 region. These results indicated

that there was no DNA inserted into Tn5252.

The results explained above show that pTV32Ts lacZ-erm fragment

cannot be used to mutagenize specific Tn5252 genes by employing insertion

duplication mutagenesis. Hence, experiments using lacZ-erm of pTV32Ts were

aborted and we resorted to using another insertion vector plasmid, pEVP3.
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Insertion Duplication Mutagenesis Using Insertion Vector Plasmid pEVP3

The new vector chosen for our studies was pEVP3, a 6.3 kb plasmid

containing a promoterless lacZ gene as the reporter gene (Fig. 12). The plasmid

confers chloramphenicol resistance expressed in both E. coli and S.

pneumoniae. However, the plasmid is capable of replication only in E. coli.

To use the cat gene on pEVP3 as a selective marker for transformation

experiments, SP1400 strain (that is Cmr
) was manipulated. The cat gene located

on Tn5252 was allowed to be spontaneously cured. A new p-gar ems s.

pneumoniae strain, SP1403, was derived from SP1400. In our subsequent

studies SP14'03 was used as the host S. pneumoniae strain.

In order to clone selected Tn5252 genes into pEVP3, the plasmid was cut

with Smal and ligated to promoterless ORF3, ORF4, ORF6 and ORF1, 2 and 5

peR products. The recipient strain SP1403 was transformed with pEVP3

[Sma~::ORF ligation mixture. The transformants were screened for

chloramphenicol resistance. Six Cmr transformants for pEVP3[Smal]::ORF3

ligation mixture were isolated. These putative mutant strains were named as

SP1501-1, SP1501-2, SP1501-3, SP1501-4, SP1501-5 and SP1501-6. Five

mutant strains were isolated when pEVP3 [Smal]::ORF4 ligation mixture was

used to transform SP1403.- These strains were named as SP1502-1·, SP1502-2,

SP1502-3, SP1502-4 and SP1502-5. Also, we isolated six strains when

pEVP3[Smal]::ORF6 was the ligation mixture used as donor DNA and these
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strains were named as SP1503-1, SP1503-2, SP1503-3, SP1503-4, SP1503-5

and SP1503-6. Finally, four Cmr transformants were isolated when

pEVP3[Smal]::ORF1, 2 and 5 ligation mixture was used as the donor DNA.

These strains were designated SP1504-1, SP1504-2, SP1504-3 and SP1504-4.

After isolating several transformants we wanted to fi,nd out if pEVP3[Smal]::ORF

chimeric molecule was inserted into Tn5252 on SP1403 chromosomal DNA.

Chromosomal DNA was isolated from each clone and analyzed by Southern

hybridization. DNA sample from each clone was digested using various

restriction enzymes. 32p-DNA probes were prepared using ORF3, ORF4, ORF6

and ORF1, 2 and 5 PCR products. The observed and expected fragment sizes in

Southern hybridization, calculated for all four ORFs after insertion-duplication

mutation are summarized in Table 5. The standard curves for the correlation of

fragment size and electrophoretic migration for each fragment are shown in Fig.

15-18.
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Figure 13. Molecular size markers prepared using pVJ15.0n agarose gel
. pVJ15 cut with BamHI (lane A), EcoRI (lane B), Bgill (lane C), and
Hindi II (lane D) are shown. The molecular size marker displayed on lane E
is Hindlll cut A- phage DNA ladder.
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Figure 14. Molecular size markers prepared using pVJ18. On agarose gel
pVJ18 cut with Kpnl (lane A), 8g/11 (lane B), and EcoRI (lane C) are
shown. The molecular size marker displayed on lane D is Hindlll cut "-
phage DNA ladder.
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Table 5

Expected and Observed DNA fragments After Southern Analysis

Observed Expected Fragment Sizes (kb)
Mutant Strains Fragment

Sizes (kb) Right Orientation Wrong Orientation

ORF3 (SP1501) 20, 16.5, 6.3 10.4 and a large one 4.1 and a large
one

ORF4 (SP1502) 21 2.3 and 10 3.7 and 8.6

ORF1,2&5 (SP1504) 4.24 and 3.5 3.5 and 8.8 2.5 and a large
one

ORF6 (SP1503) 12 and 6 3.8 and 13.3 7 and 10
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Figure 15. The standard curve for the correlation of fragment size and
electrophoretic migration for ORF3 mutants. Putative ORF3 insertion
duplication mutants (SP1501-1 to SP1501-6) were analyzed by Southern
hybridization. The sizes of DNA hybridization bands were calculated using
the molecular size standards.
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Figure 16. The standard curve for the correlation of fragment size and
electrophoretic migration for ORF4 mutants. Putative ORF4 insertion
duplication mutants (SP1502-1 to SP1502-5) were analyzed by Southern
hybridization. The sizes of DNA hybridization bands were calculated using
the molecular size standards.
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Figure 17. The standard curve for the correlation of fragment size and
electrophoretic migration for ORF1, 2 and 5 mutants. Putative ORF1,2 and
5 insertion-duplication mutants (SP1504-1 to SP1504-4) were analyzed by
Southern hybridization. The sizes of DNA hybridization bands were
calculated using the molecular size standards.
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Figure 18. The standard curve for the correlation of fragment size and
electrophoretic migration for ORF6 mutants. Putative ORF6 insertion
duplication mutants (SP1503-1 to SP1503-6) were analyzed by Southern
hybridization. The sizes of DNA hybridization bands were calculated using
the molecular size standards.
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·Analysis of ORF3 Using Insertion-Duplication Mutagenesis

The expected fragment sizes after hybridization of ORF3 with the

chromosomal DNA from ORF3 insertion-duplication mutants were calculated

using Tn5252 restriction endonuclease map (35,77). After Southern hybridization

we expected to see a 10.4 kb and a larger fragment if pEVP3[Smal]::ORF3 insert

was in the same orientation as the promoterless lacZ gene. This orientation was

designated as the right orientation. A 4.1 kb and a larger fragment were expected

if the insert is in the reverse orientation meaning lacZ gene and ORF3 were in

the opposite direction. ORF3 autoradiogram results displayed two different band

patterns. One of the patterns is possibly representing the insertion in the reverse

orientation in SP1501-2, SP1501-4, SP1501-5 and SP1501-6 and the other

pattern may be representing insertion in the right orientation in SP1501-1 and

SP1501-3 (Fig. 19). However, the fragment sizes according to our results don't

match with the expected results. The sizes of our observed fragments are 20 kb,

16.5 kb and 6.3 kb. This result may be explained by different methylation

mechanisms in E. coli and S. pneumoniae. It is possible to see different

restriction band patterns as a result of differences in methylation. Another reason

may be multiple insertions of pEVP3[Smal]::ORF3 into Tn5252. In addition, some

sequences on Tn5252 may be deleted upon insertion of pEVP3[Smal]::ORF3. A

similar result was observed when pVA891 was inserted into Tn5252 (36).
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Figure 19. Analysis of ORF3 using insertion-duplication mutagenesis.
Autoradiogram showing Southern hybridization of 32P-labelled ORF3 to
BamHI cut chromosomal DNA from putative insertion-duplication mutants
SP1501-1 (lane C), SP1501-2 (lane D), SP1501-3 (lane E), SP1501-4
(lane F), SP1501-5 (lane G), SP1501-6 (lane H) and SP1403 (lane I) as
control. The molecular size markers, pVJ15 cut with BamHI (lane A), 8gll1
(lane B), EcoRI (lane J) and Hindlll (lane K), are also shown.
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Analysis of ORF4 Using Insertion-Duplication Mutagenesis

After Southern hybridization the expected fragment sizes for putative

ORF4 mutants were calculated. When pEVP3[Smal]::ORF4 insert was in the

right orientation the expected fragments were 2.3 kb and a 10 kb fragment. When

the insertion was in the wrong orientation we expected to observe a 3.7 kb and

an 8.6 kb fragment. Southern hybridization experiments were repeated three

times to analyze pEVP3[Smal]::ORF4 insertion. Eventually, we were able to

observe signals for the sample along with some background signal. On the

autoradiogram, the size of the DNA band was determined as 21 kb (Fig. 20).

However, the 21 kb band does not match the expected fragment sizes. On the

other hand, this band is the same size as the DNA band we observe when

SP1403 DNA was used as control. It is possible that pEVP3[Smal]::ORF4 was

not inserted into Tn5252 in SP1403.

Analysis of ORF1, 2 and 5 Using Insertion-Duplication Mutagenesis

After hybridization, the expected DNA band sizes were calculated

considering the insertion in both orientations. The sizes of expected DNA -bands

were a 3.5 kb and an 8.8 kb fragment for the right orientation. For the wrong

orientation the predicted fragment sizes were 2.5 kb and a large fragment. On

the autoradiogram, as predicted, a 2.5 kb hybridization band was observed.

However, we observed a 3.5 and a 4.24 kb band instead of a large fragment
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Figure 20. Analysis of ORF4 using insertion-duplication mutagenesis.
Autoradiogram showing Southern hybridization of 32P-labelled ORF4 to
Kpnl cut chromosomal DNA from SP1502-1 (lane C), SP1502-2 (lane D),
SP1502-3 (lane E), SP1502-4 (lane F), SP1502-5 (lane G), and SP1403
(lane H) as control. The molecular size markers, pVJ15 cut with BamHI
(lane A), 8gll1 (lane B), EcoRI (Jane I) and Hindlll (lane J), are also shown.

68



A B CDEFGH IJ K LM

21

6.3

4.24

3.5
2.5

.Figure 21. Analysis of ORF1, 2 and 5 using insertion-duplication
mutagenesis. Autoradiogram showing Southern hybridization of 32p_

labelled ORF1,2 and 5 to 8g/11 cut chromosomal DNA from SP1504-1
(lane B), SP1504-2 (lane C), SP1504-3 (lane D), SP1504-4 (lane E),
SP1403 (lane F) as control, and to BamHI cut SP1401 (lane H), SP1402
(lane J) and SP1403 (lane L), and to Kpnl cut SP1401 (lane I), SP1402
(lane K) and SP1403 (lane M). The molecular size markers, pVJ15 cut
with BamHI, 8g/II, EcoRI and Hindlll (lanes A and G), are also shown.
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(Fig. 21). This result may be due to the presence of more than two 8g/11 sites on

pEVP3. However, the restriction map of pEVP3 shows that there are only two

8gll1 sites on this plasmid. Since there is a 2.5 kb observed fragment, which is

the size of the expected fragment (2.5 kb), we suggest that the insert may be in

the reverse orientation. However, we observed two band at 3.5 kb and 4.24 kb

instead of a large DNA fragment. This result may be due to different methylation

mechanisms in E. coli and S. pneumoniae and it may result in different restriction

sites.

Analysis of ORF6 Using Insertion-Duplication Mutagenesis

After hybridization the predicted fragment sizes when the insert is in the

right orientation was an 3.8 kb and a 13.3 kb fragment and we expected a 7 kb

and a 10 kb fragment for the wrong orientation. After Southern hybridization we

observe only one major band at 12 kb in the ORF6 mutant strains. On the other

hand, only one of the ORF6 mutant strains, SP1503-2, had an additional faint

signal at 6 kb (Fig. 22). Since the control DNA, isolated from SP1403, doesn't

have any insertion, it is suspected that in five ORF6 strains pEVP3[Smal]::ORF6

was not inserted into their chromosomal DNA. On the contrary, the presence of a

second signal at 6kb and significantly high B-galactosidase activity of SP1503-2

ORF6 mutant may be an indication of pEVP3 [Smal]::ORF6 insertion into the

chromosome. This result was further investigated by analyzing inserted DNA
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Figure 22. Analysis of ORF6 using insertion-duplication mutagenesis.
Autoradiogram showing Southern hybridization of 32P-labelled ORF6 to
8g/11 cut chromosomal DNA from SP1503-1 (lane C), SP1503-2 (lane D),
SP1503-3 (lane E), SP1503-4 (lane F), SP1503-5 (lane G), SP1503-6
(lane H) and SP1403 (lane I) as control. The molecular size markers,
pVJ18 cut with Kpnl (lane A), 8g/11 (lane B) and EcoRI (lane J), are also
shown.
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using restriction digestion analysis (Fig. 24, 26-28). These' results will be shown

later in this section.

When we sum up the observed and expected fragment sizes, for the

observed one we calculate an 18 kb DNA and for the expected one we calculate

a 17.1 kb DNA. The first prediction we can make upon this observation is that the

insert is actually in the right orientation because the total size of the observed

fragments is nearly the size of expected fragments. However, when the DNA is

cut the observed BamHI site seems to be shifted because we get 6 kb and 12 kb

fragments instead of 3.8 kb and 13.3 kb fragments. This result is possibly due to

variations in methylation mechanisms in E. coli and S. pneumoniae.

The lacZ Gene Expression

Previously, promoterless lacZ gene was used as a reporter gene to

analyze the functions and characteristics of several genes, such as competence

specific proteins (41). In this study, we sought to identify the constitutively

expressed genes in Tn5252 using lacZ as a reporter gene.

Several samples were selected based on their DNA band patterns

observed in the autoradiograms. The lacZ gene expression was measured using

ONPG as the chromogenic substrate. ~-galactosidase produced by each sample

was calculated and the enzyme activities are shown in Miller units in Table 6. S.

pneumoniae strain SP1000 was used as a positive control since it contains a wild

type lacZ gene. On the other hand, we measured the lacZ expression of SP1403
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(f)-gar) as our negative control. The results showed that the ORF3 containing

SP1403 mutants, SP1501-1 and SP1501-3 had significantly high ~-galactosidase

activity (Table 6). Both mutant strains had similar DNA hybridization pattern. This

observation implies that lacZ was inserted in the right orientation so that lacZ

gene is expressed under the control of the ORF3 promoter.

SP1501-2, SP1501-4, SP1501-5 and SP1501-6 shared the same band

pattern. These mutants have either no enzyme activity or very low activity as

compared to other two mutants, SP1501-1 and SP1501-3. These mutants have

lacZ gene inserted in the reverse orientation downstream of ORF3. On the

contrary lacZ gene is inserted in the right orientation downstream of ORF7 in the

same mutants. ORF7 was found to be a unique gene after database analysis.

Also, ORF7 located on the left terminal of Tn5252 was shown to express a

protein that is possibly involved in transfer of the element (70). Although the

insertion of lacZ gene is in the right orientation downstream of ORF7, the lack of

f)-galactosidase activity in these mutants implies that ORF7 is possibly an

inducible gene.

On the other hand, mutant strain SP1503-2 was the only ORF6 mutant

that had significantly high p-galactosidase activity. Also, it is the only ORF6

mutant that has an extra 6 kb band other than the common 12 kb band. It is

possible that the unique DNA band pattern and high f)-galactosidase activity of

SP1503-2 as compared to other ORF6 mutants may be an indication of insertion

in the right orientation.
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Table 6

~-galactosidase activity in mutants with fused E.coli LacZ gene to ORF3,

ORF7, ORF4, ORF1, 2 and 5, and ORF6 in Miller units

Mutant Strains p-galactosidase Activity (M.U.)

ORF3 SP1501-1 17.99
Mutants SP1501-3 15.67

SP1501-2 0.11
ORF7 SP1501-4 0.18

Mutants SP1501-5 0.00
SP1501-6 0.14

SP1502-1 0.00
ORF4 SP1502-2 0.00

Mutants SP1502-3 0.00
SP1502-4 0.00
SP1502-5 0.00

SP1504-1 0.00
ORF1,2&5 SP1504-2 0.00

Mutants SP1504-3 0.00
SP1504-4 0.00

SP1503-1 0.02
SP1503-2 11.59

ORF6 SP1503-3 0.19
Mutants SP1503-4 0.17

SP1503-5 0.44
SP1503-6 0.10

LacZ-erm SP1401 0.30
Mutants SP1402 0.08

Positive Control SP1000 25.21
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We observed similar band patterns for all ORF1,2 and 5 mutants. These

mutants had no detectable p-galactosidase activity (Table 6) possibly due to

insertion of lacZ gene in the reverse orientation. Recently, it has been proposed

that expression of integrase and excisionase are induced by some signals

possibly required for mating (44, 45, 46, 59). If the insertion is in the right

orientation we expect that there would be no detectable p-galactosidase activity

unless integrase and excisionase genes are induced. ORF1,2 and 5 mutants will

be further analyzed by restriction enzyme analysis to find the orientation of lacZ

insertion.

Pneumoccoccus Transformation

The goal of this experiment was to obt~in additional evidence to show that

pEVP3 insertion was within the conjugative transposon Tn5252. For this

experiment chromosomal DNA from insertion duplication mutants was used to

transform pneumococcus strains SP1403 (QTn5252) and wild type strain Rx1

that lacks the element. If the pEVP3 plasmid had inserted into Tn5252 in the

insertion-duplication mutants, then the transformation of the plasmid marker, emf

,of SP1403 should be more efficient than transfromation of Rx1. If the plasmid

hadn't been inserted into the element, then SP1403 and wild-type Rx1 should be

transformed with equal efficiency.

Transformation results for SP1403 and Rx1 are shown in Table 7. None of

the chromosomal DNAs from the insertion-duplication mutants yielded Rx 1
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transformants. However, 1500 Novr transformants arose when DP1617 DNA was

used as control indicating that the recipient cells were competent. On the other

hand, we had several fold more SP1403 Cmf transformants for each insertion

duplication mutant DNA except for ORF4 mutant strain. These results

demonstrate that putative ORF3, ORF6 and ORF1,2 and 5 mutants carry pEVP3

DNA inserted in Tn5252.

The number of Cmf transformants resulting from using SP1501-1 DNA

was five times greater than from using SP1501-2 DNA as donors. This result

may be due to insertion in different orientations in these mutants or DNA

concentration and purity. In addition, p-galactosidase activity of SP1501-1 is

significantly higher than the activity of SP1501-2. In any event, these results

strongly demonstrate that lacZ was inserted within Tn5252 in both mutants.

However, the inserted lacZ DNA is in the reverse orientation in SP1501-2 mutant.

Similarly, in SP1503-2, one of the ORF6 mutants, the lacZ was inserted within

Tn5252 as high number of Cmf transformants of SP1403 resulted when SP1503

2 DNA was used as donor DNA (Table 7).

Analysis of Self-ligated Plasmid DNA Isolated from Putative Mutants

In order to further confirm that pEVP3 has been inserted into Tn5252 in

the mutant chromosomal DNA and in appropriate orientation, we transformed E.

coli DH5a and XL1 Blue strains with digested chromosomal DNA from mutant
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Table 7

Rx1 and SP1403 transformation results using donor DNA from mutant

strains.

Donor Cmr Transformants

Rx1 SP1403

SP1501-1 0 580
SP1501-2 0 194
SP1502-4 0 a
SP1504-4 a 4
SP1503-2 0 764
SP1402 0 0

Novr Transformants

DP1617
1500
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strains, SP1501-1, SP1501-2, and SP1503-2. The strategy is to digest the

chromosomal DNAs of the insertion-duplication mutants at sites flanking the

inserted vector, ligate the molecules to themselves, and use it as donor DNA to

transform E. coli. As pEVP3 carry an E. coli origin of replication, the resulting

recombinant plasmids would yield information on the orientation. Kpnl digested

chromosomal DNAs from ORF3, ORF4 and_ ORF1, 2 and 5 mutants were self

ligated and used to transform E. coli host strain DH5a. Also, another E. coli host,

XL1 Blue, was transformed with the digested and self-ligated DNA from ORF6

mutant. Previously, it was shown that DNA-cytosine methyltransferase (ORF6)

may be toxic for some strains of E. coli. Therefore, we decided to use E. coli XL1

Blue as host strain. We isolated several Cm r E. coli DH5a and XL1 Blue

transfromants. We were able to extract plasmid DNA from E. coli DH5a and XL1

Blue transformants containing the ligated DNA from ORF3 (SP1501-1 and

SP1501-2), and ORF6 (SP1503-2) mutants (Fig. 23). The isolated self-ligated

plasmids were named as pEB2, pEB3 and pEB4.

We performed a restriction enzyme analysis to determine the orientation

of pEVP3 inserted in these strains within Tn5252 and to check whether there are

any deletions. As expected the plasmids, pEB2 and pEB3, generated from

SP1501-1 and SP1502-2 followi.ng Kpnl digestion and self-ligation, were about 7

kb in size. This result implied that pEVP3 was inserted within Tn5252 resulting in

creating an insertion-duplication mutation precisely at the site of ORF3. On the

other hand, pEB4, the self-ligated plasmid DNA of SP1503-2 mutant strain was

also digested with Kpnl. We expected to observe a 7 kb fragment and as
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23.1
9.4
6.7
4.4

2.3
2.0

Figure 23. Analysis of the self-ligated plasmid DNA from SP1501-1,
SP1501-2 and SP1503-2. The molecular weight standard, Hindi II cut 'A
phage DNA ladder, is shown on lanes 1 and 5. Recombinant plasmid
isolated from SP1501-1, named pEB2, is illustrated on lanes 2, 3, and 4.
The plasmid isolated from SP1501-2, pEB3, is shown on lanes 6, 7 and 8.
The plasmid isolated from SP1503-2, named as pEB4, and pEVP3 are
displayed on lanes 9 and 10.
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12.2
11.1
10.1
9.16
8.14
7.12
6.11
5.09
4.07
3.05
2.03
1.83

1.02

0.51
0.39
0.34
0.29

Figure 24. Restriction enzyme analysis of pEB2, pEB3 and pEB4 insertion
plasmids. The molecular weight standard, 1 kb DNA ladder, is shown on
lanes 1 and 10. Plasmids, pEB2, pEB3, pEB4, and pEVP3 are shown on
lanes 2, 4, 6 and 9. Kpnl cut plasmids, pEB2, pEB3, pEB4 and pEVP3 are
illustrated on lanes 3, 5, 7, and 8.
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expected we obtained a 7 kb band after Kpnl digestion (Fig. 24). This result

indicated that ORF6 was a part of pEVP3::0RF6 plasmid and the resulting ORF6

insertion-duplication mutants have pEVP3::0RF6 recombinant plasmid inserted

within Tn5252.

In order to further extend the confirmation that pEVP3::0RF chimeric DNA

molecule has been inserted into Tn5252 at the corresponding ORFs, we digested

chromosomal DNA from ORF3, ORF1, 2 and 5 and ORF6 mutants with more

restriction enzymes to generate plasmids in E. coli. Chromosomal DNA from the

insertion-duplication mutant SP1501-1 was cut with EcoRI and BamHI. Similarly,

chromosomal DNA from the insertion-duplication mutant SP1504-4 was digested

with Pstl and BamHI. Also, chromosomal DNA from the insertion-duplication

mutant, 1503-2, was cut with EcoRI and 8g/l1 (Fig. 25). The resulting DNA

molecules were ligated and used as donor DNAs to transform E. coli HB1 01 and

XL1 Blue strains. We were able to obtain a few emf E. coli HB101 and XL1 Blue

transformants whe.n digested DNAs from ORF3 and ORF6 mutants were used.

Self-ligated plasmid DNA from each Cmf transformant was extracted and

analyzed using restriction enzyme analysis (Fig. 26).

When Xbal digested DNA from ORF1, 2 and 5 mutants was used as

donor DNA we isolated a few Cmf transformants and we could isolate a 7.3 kb

plasmid DNA. The new plasmid pEB12 was analyzed by restriction enzyme

analysis. The plasmid was linearized after cutting with Xbal, EcoRI, Sphl, SaIl

and Kpnl . However, the plasmid was not linearized when it was cut with BamHI
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1 2 3 4 5 6'

Figure 25. Digested Chromosomal DNA from SP1501-1, SP1503-2 and
SP1504-4. SP1501-1 chromosomal DNA digested with EcoRI and BamHI
(lanes 1 and 2), SP1503-2 DNA cut with EcoRI and 8g/11 (lanes 3 and 4),
and SP1504-4 DNA digested with PstI and 8gll1 (lanes 5 and 6) are
shown.
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1 2 3 4 5 6 7 8 9 10

12.2
11.1
10.1
9.18
8.14
7.12
8.11
5.09
4.07
3.05
2.03
1.63

1.02

0.51
0.39
0.34
0.29

Figure 26. Analysis of self-ligated plasmids generated from SP1501-1 and
SP1503-2. The molecular size marker, 1 kb DNA ladder (lane 1), pEB5,
pEB5, pEB6, pES7, pEB8, pEB8, pEB9, pEB10 and pEB11 (lanes 2,3,4,
5, 6, 7, 8, 9 and 10) are shown.
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possibly due to the loss or modification of BamHI restriction site. Furthermore,

pEB12 was double digested with Kpnl and EcoRI and, we obtained DNA

fragments at 1.2 kb and 6.2 kb. When the plasmid was cut with EcoRI and Xbal

we observed a 0.2 kb and a 7 kb fragment as expected. The expected size of the

plasmid inserted in the reverse orientation is ?.3kb. Our experiments indicated

that pEVP3 is in the reverse orientation in SP1504-4.

The plasmids generated from ORF3 mutants SP1501-1 and SP1501-2

(pEB2, pEB3, pEB6, pES7) are illustared in Fig. 27.The self-ligated plasmids,

pEB6 and pES?, were generated from SP1501-1 after EcoRI and BamHI

digestion, respectively. In order to linearize pEB6 and pES? we digested these

plasmids with EcoRI and BamHI, respectively (Fig. 28). After digestion we

observed an 8 kb pEB6 and a 10 kb pEB? plasmids as expected. The only

plasmid that did not meet with our predictions was the 9 kb BamHI cut plasmid

isolated from E. coli HB101 transformants. This plasmid was expected to be a 10

kb plasmid. Certain deletions may be observed as a result of insertions.

Probably, a 1 kb deletion took place in Tn5252 resulting in a 9 kb plasmid instead

of a 10 kb one.

The plasmids generated from ORF6 mutant SP1503-2 (pEB4 and pEB10)

are shown in Fig. 29.

We named the self-ligated plasmid isolated from Cmr E. coli XL1 Blue

transfromants as pES 10. When this plasmid was linearized with EcoRI we

observed an 11 kb DNA band. The expected size of the plasmid was also 11 kb.

Thus, this result is in agreement with our predictions.
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Figure 27. The plasmids generated from ORF3 mutants, SP1501-1 and
SP1501-2, are shown.
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1234567

12.2
11.1
10.1
9.16
8.14
7.12
6.11
5.09
4.07
3.05
2.03
1.63

1.02

0.51
0.39
0.34
0.29

Figure 28. Analysis of linearized self-ligated plasmids from SP1501-1 and
SP1503-2. The molecular size marker, 1 kb ladder, (Janes 1 and 7), EcoRI
cut pEB6 (lane 2), BamHI cut pES7, pEB8 and pEB9 (lanes 3, 4 and 5)
and BamHI cut pE810 (lane 6) are shown.
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Figure 29. The pJasmids generated from ORF6 mutant SP1503-2 (pEB4
and pEB10) are shown.
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To confirm that the recombinant molecule is inserted in the expected

ORFs in Tn5252 we analyzed the isolated plasmid using restriction enzyme

mapping. The 8 kb and 10 kb plasmids, pEB6 and pES?, and 11 kb plasmid,

pES10 were digested with several restriction enzymes (Fig. 30 and 31). The

expected and observed fragment sizes after each digestion is summarized in

Table 8. We could observe the expected fragments for most of the digestions but

a few of these fragments were unexpected. When 8 kb plasmid, pEB6, was cut

with Kpnl we observed a 6.3 kb and a 1.5 kb fragment instead of the expected

6.3, 1.5 and 0.2 kb fragments. The 0.2 kb fragment is too small to be seen on

0.8% agarose gel. After digesting pEB6 with Xbal we observed 7 and 1 kb bands

as expected.

We also analyzed pES? by cutting this 10 kb plasmid with several

restriction enzymes (Table 8). When the plasmid was cut with Kpnl and EcoRI

we observed a single 10 kb band as expected. The Xbal cut pES? plasmid gen

erated two bands at 0.8 and 9.5 which are in agreement with our predictions. The

pES? double digestion with BamHI/Xbal and BamHI/Sall also generated the

expected bands.

Finally, we analyzed pEB10 with the enzymes EcoRI, Xbal, Kpnl and Aval

(Fig. 32). When the plasmid was cut with EcoRI we observed an 11 kb plasmid

as expected. On the contrary, when the plasmid was cut with EcoRI and Xbal we

observed that an expected 1 kb fragment was not generated. This result may be

due to a deletion that took place within Tn5252 after the insertion of pEVP3. In

addition, EcoRI and Kpnl double digested pEB10 generated 0.5, 2.9 and 7 kb
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1 2 3

12.2
11.1
10.1
9.16
8.14
7.12
6.11
5.09
4.07
3.05
2.03
1.63

1.02

0.51
0.39
0.34
0.29

Figure 30. Restriction enzyme analysis of pEB6. The molecular size
marker, 1 kb ladder (lane 1), and Kpnl and Xbal cut pEB6 (lanes 2 and 3),
are shown.
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1 2 3 4 5 6 7 8 9 10

Figure 31. Restriction enzyme analysis of pES? The molecular size
marker, 1 kb ladder (lanes 1 and ?), BamHI and Sail cut pES? (lane 2),
BamHI and Xbal cut pES? (lane 3); Xbal cut pES? (lanes 4); EcoRI cut
pES? (lane 5) and Kpnl cut pES? (lane 6) are shown.
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Table 8

Analysis of Self-ligated Plasmids by Restriction Digestion

Inserted Plasmids Observed Fragment Sizes (kb) Expected Fragment Sizes
(kb)

SP1501-1 (ORF3)

pEB6 8 8

pES7 10 10

Kpnl cut pES6 6.3 and 1.5 6.3, 1.5 and 0.2

Xbal cut pE86 7 and 1 7 and 1

Kpnl cut pES7 10 10

Xbal cut pES7 0.8 and 9.5 0.8 and 9.2

EcoRI cut pES7 10 10

BamHI\Xbal cut pES7 0.8, 2.6 and 7 0.8, 2.3 and 7

BamHI\Sall cut pES7 1.3 and 9.5 1.1 and 9

SP1503-2 (ORF6)

pEB10 11 11

Kpnl cut pES10 0.5,3 and 7 0.5, 3.3 and 6.8

Xbal cut pEB10 0.5,1.6 and 7.5 0.5, 1.5, 1.8 and 6.8

EcoRI cut pEB10 11 11

EcoRI\Xbal cut pES10 0.5, 0.5, 1.6 and 7 0.5,0.5,1, 1.8 and 6.8

EcoRI\Kpnl cut pEB10 0.5, 2.9 and 7 0.5, 1, 2.3 and 6.8

Aval\EcoRI cut pES10 2 and 9.S 2.2 and 8.4

SP1504-4 (ORF1,2 and 5)

pEB12 7.3 7.3

EcoRI\Xbal cut pEB12 0.1 and 7.2 0.2 and 7

EcoRI\Kpnl cut pEB12 1.1 and 6.2 1.2 and 6.2
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1 2 3 4 5 6 7 8 9 10

Figure 32. Restriction enzyme analysis of pEB10. The molecular size
marker, 1 kb ladder (lanes 1 and 8), EcoRI cut pES10 (lane 2), EcoRI and
Xbal cut pES10 (lane 3), EcoRI and Kpnl 10 (lane 4); Xbal cut pEB10
(lanes 5), Kpnl cut pES10 (lane 6) and, EcoRI and Aval cut pES10 (lane
7) are shown.
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instead of 0.5, 1, 2.3 and 6.8 kb bands. Similarly, Xbal cut pEB10 plasmid

generated several fragments but an expected 1.5 kb fragment was not observed.

These result may be explained by possible differences in methylation in E. coli

and S. pneumoniae.
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CHAPTER VI

DISCUSSION

During this study our goal was to create lacZ operon fusions with the

regulator, relaxase, DNA-cytosine-methyltransferase, integrase and excisionase

genes in Tn5252 to understand their transcriptional patterns. We intended to

identify constitutive and inducible genes in Tn5252 by placing lacZ gene under

the regulatory control of the promoter of the targetted gene.

First we focused on constructing a laeZ reporter system in S. pneumoniae

using Tn917 mutagenesis. We used several hosts strains such as, E. coli JM109

and C600, S. pneumoniae SP1 000, and E. faecalis JH2-2. In addition, we utilized

a variety of vector plasmids including pLSI, pVA838 and pAT29 to clone the

Tn917Q/acZ fragment of pTV53Ts. Our Tn917 mutagensis results indicated that

Tn917 cannot be cloned in S. pneumoniae. There are no reports on cloning of

Tn917 in S. pneumoniae. Presumably, Tn917 is not stable due to the absence of

a host factor in S. pneumoniae (46). Furthermore, Tn917 may be toxic for some

S. pneumoniae strains which makes utilization of this element impossible in this

host.
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Several researchers have shown that Tn917 is a powerful tool for

mutagenesis in B. subtilis, L. lactis S. mutans, S. aureus and S. pneumoniae

(25,21,27,33,72,91). In addition, cloning of chromosomal DNA adjacent to Tn917

insertions after mutagenizing these hosts has been reported for E. coli. On

thecontrary, th~re are no reports on cloning of Tn917 DNA fragments in E. coli.

The most likely explanation for not being able to clone Tn917 in E.coli may be the

presence of genes with strong promoters in Tn917. It is possible that, due to

strong promoters, the vector is expressed excessively and therefore the

replication of plasmid vectors will be no longer control,led. Strong term·nator

signals are required in a vector to eliminate this discrepancy (11,12). Another

explanation for this result may be the lack of certain host factor(s) required for the

stability of Tn917 in E. coli.

As an alternative method, we employed insertion-duplication mutagenesis

to analyze .the expression of Tn5252 genes by establishing a lacZ reporter

system in S. pneumoniae. We utilized a variety of plasmid vectors to insert the

lacZ gene under the control of the promoters of each targeted ORF using

insertion-duplication mutation. The results of cloning of lacZ-erm fragment on

pSJ126 indicate that this fragment can not be cloned on this plasmid. A possible

explanation for this resul~ may be the presence of a strong promoter on lacZ-erm

fragment. This may. result in plasmid instability due to excessive expression of

certain genes. We used the same lacZ-erm fragment and ligated this fragment to

peR products of ORFs, to insert lacZ gene downstream Tn5252 ORFs. We

isolated two putative .insertion-duplication mutants named SP1401 and SP1402.
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The results of Southern hybridization, ~-galactosidase assay and

pneumococcus transformation experiments showed that lacZ-erm fragment was

not inserted into Tn5252 in these putative mutants. These experiments indicate

that lacZ-erm fragment of pTV32Ts cannot be used to mutagenize Tn5252 genes

using insertion duplication mutagenesis.

Alternatively, we used the insertion plasmid vector pEVP3 to insert a

promoterless lacZ gene downstream of ORF3, ORF4 and ORF6, ORF1, 2 and 5

by insertion-duplication mutagenesis. We created several putative insertion

duplication mutant strains. First, we analyzed the insertion of pEVP3 plasmid

using Southern hybridization. ORF3 insertion-duplication mutants displayed two

different band patterns on autoradiogram. However, VJe did not- observe the

expected hybridization bands. This result may be due to variations in methylation

mechanisms in E. coli and S. pneumoniae. In addition, multiple insertions of

pEVP3::0RF3 may have resulted in unexpected fragment sizes. Two ORF3

mutants, SP1501-1 and SP1501-3 sharing the same band pattern have high B

galactosidase activity whereas the other four mutants that share a different band

pattern have no detectable ~-galactosidase activity. In addition, Rx1 and

SP1403 transformation results show that when SP1501-1 DNA was used as

donor the number of Cmr SP1403 transformants several fold more than Rx1

transformants indicating that the inserted DNA is within Tn5252. Also, E. coli

JM109 transformation using restriction digested chromosomal DNA from

SP1501-1 shows that this mutant has pEVP3 inserted. The analysis of self

ligated plasmid isolated from SP1501-1 indicates that ORF3 has been ligated to
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pEVP3 a~d has been inserted as pEVP3::0RF3 chimeric molecule. Additionally,

to confirm that the insertion of pEVP3::0RF3 is at ORF3 in Tn5252 we performed

restriction enzyme analysis. The results after analysis of self-ligated pJasmids

isolated from ORF3 insertio,n-duplication mutant, SP1501-1, indicate that the

insert was in the right orientation.

According to our results SP1501-1 is an insertion duplication mutant that

carries a JacZ reporter gene downstream of ORF3. Additionally, we are able to

detect high ~-galactosidase activity. Therefore, we suggest that ORF3 is an

active gene i.n normal cells. Previously, the homology between the repressor

(ORF3) and xre repressor of B. subtiJis phage PBSX has been shown. Xre

repressor is a regulatory protein encoded by a gene that is expressed

constitutively. We suggest that Tn5252 repressor gene (ORF3) is also expressed

constitutively in S. penumoniae based on our experimental results.

Similarly, putative ORF4 insertion-duplication mutants were analyzed by

Southern hybridization. On the autoradiogram we could only observe one type of

band pattern which is the same as the control, SP1403. When we tested ORF4

mutants for their J3-galactosidase activity, no enzyme activity was detected. In

addition, we could not isolate any Cmr transformants when SP1504-4DNA was

used to transform pneumococcus strains Rx1 and SP1403. These results

suggested that pEVP3 was not inserted into Tn5252 and therefore no ORF4

insertion-duplication mutant .was created. On the other hand, we can stilt predict

the expression of relaxase is possibly induced upon excision of the element or by

other factors involved i,n transposition process. Since this gene is involved in site-
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specific nicking of supercolied DNA during conjugal transfer its expression may

only be essential during the transfer process.

Also, we employed Southern hybridization to analyze putative ORF1, 2

and 5 insertion-duplication mutants. On the autoradiogram all ORF1, 2 and 5

mutants displayed the same DNA hybridization band pattern. When we

compared the expected and observed hybridization bands, we observed a 2.5 kb

band as expected but we couldn't see a large band. The most likely explanation

for this result may be the deletion of Tn5252 sequences upon insertion of pEVP3.

In addition, the consequences of different methylation mechanisms in E. coli and

S. pneumoniae may result in considered to explain this result. Furthermore, all

putative ORF 1, 2 and 5 insertion-duplication mutants had no detectable ~

galactosidase activity. Additionally, restriction enzyme analysis of the self-ligated.

plasmid (pEB12) generated from ORF1, 2 and 5 mutant indicated that the

insertion is in the reverse orientation. Further analysis of ORF1, 2 and 5 mutants

by transforming Rx1 and SP1403 with chromosomal DNA from one of these

mutants indicate that pEVP3 is possibly inserted into Tn5252.

Finally, all ORF6 insertion-duplication mutants displayed the same

hybridization band pattern on autoradiogram, except SP1503-2. On the

autoradiogram, this mutant had an extra weak signal at 6 kb. Also, we detected

significantly high ~-galactosidase activity for SP1503-2 whereas other five

mutants had very low p-galactosidase activity. In addition, pnemococcus

transformation results indicate pEVP3 is inserted into Tn5252. To investigate the

site of pEVP3 insertion in Tn5252 we analyzed the self-ligated plasmids isolated
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from mutant strain SP1503-2. Restriction enzyme analysis implied that

pEVP3::0RF6 is inserted at ORF6 site in the right orientation. Furthermore, we

suggest that ORF6 is always active in the ceB and therefore it's expressed

constitutively.

In addition, although the insertionoflacZ gene is in the right orientation as

compared to ORF7 we detected no enzyme activity after lacZ gene fusion

downstream of tra-related gene ORF7. Therefore, we propose that ORF7 is

possibly an inducible gene.

ORF6 is not transfer-related (61). As it is not a tra related gene, it is not

expected to be controlled by factors responsible for regulating genes involved in

transposition. This expectation matches the experimental findings.

In, sum, it seems likely that the genes involved in transfer of the element

are subject· to negative regulation and induced only during mating conditions.

Also, this study provides further evidence that ORF3 is more likely to be a

negative regulator.
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