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CHAPTER I

INTRODUCTIONS AND LITERATURE REVIEW

Soilborne wheat mosaic virus

Soilborne wheat mosaic (SBWM), is a disease ofwlllter wheat and barley in the

central and eastern U.S.A., and is caused by Soilborne wheat mosaic virus (SBWMV)

(Brakke and Langenberg, 1988). Soilborne wheat mosaic virus is transmitted through the

soil to wheat or barley roots by the plasmodiophorid vector Polymyxa graminis (Brakke

et aI., 1964). SBWM disease has several descriptions: "green mosaic," "yellow mosaic,"

"mosaic rosette," and "eastern wheat mosaic disease" (Wiese, 1987). Symptoms of

SBWM, in wheat and barley, include light green to yellow mosaic pattern on the leaves.

Highly susceptible cultivars (e.g. Vona) can be severely stunted, with rosetting of leaves

and excessive tillering (Wiese, 1987). Lower-lying fields may show more extreme

symptoms due to the preference ofP. graminis for wet ground (Wiese, 1987; Ledmgham,

1939). The optimum temperature for virus transmission to wheat or barley roots is low

(14 to 16°C). Mosaic symptoms and parallel yellow streaks due to SBWM are exhibited

on young expanding leaves, as well as leaf sheaths. Later in spring, symptoms decrease

and plants seem to outgrow the disease (Wiese, 1987).

SBWM is widely distributed throughout the winter wheat and barley growing

areas ofthe eastern and central U.S.A., Japan, Italy, China, France, Egypt, Argentina, and

Brazil (Brakke and Langenberg, 1988; Jianping, 1993). Crop losses due to SBWM

disease in winter wheat vary depending on the cereal cultivar, the strain of the virus, and

weather conditions. Large areas or entire fields may become so damaged that harvest is



completely abandoned (Wiese, 1987). In the central U.S.A., including wheat-growing

areas ofOklahoma, the economic impact of SBWM on annual crop yields can mirror that

ofbarley yellow dwarf disease if SBWM-susceptible varieties are grown (Wiese, 1987).

Hence, the best option to control SBWM of wheat lies in the use ofresistant or tolerant

cultivars. Both hard red winter wheat and soft red wheat cultivars are little damaged by

the disease. Other less effective controls include crop rotation and late fall planting dates

(Wiese, 1987).

SBWMV, identified in 1923 by McKinney, is one of the earliest known wheat

viruses, and the first to be characterized as a soilborne virus (McKinney, 1925). It is a

rigid rod-shaped positive-stranded RNA virus consisting oftwo parts (bipartite) that are

encapsidated separately (Shirako and Brakke, 1984). SBWMV virions are found in roots

and, occasionally, in leaves (Brakke, 1971; Gumpf, 1971). Crystalline cytoplasmic

inclusions and amorphous x-bodies may be found in infected cells (Hibino et at, 1974

a,b). Virions contain 5% nucleic acid, 95% prote~ and 0% lipid (Brakke, 1971; Gumpt:

1971). RNA 1 is approximately 7.1 kb in length. Near the 5' end of RNA 1 are two open

reading frames (ORFs) encoding two proteins of 150 and 209 kDa, which are the putative

replicases. A third ORF, near the 3'end ofRNA 1, encodes a 37 kDa protein that is a

putative cell-to-cell movement protein (Fig. 1) (Shirako and Wilson, 1993). RNA 2 is

approximately 3.6 kb in length, and encodes four proteins. Near the 5' end ofRNA 2, is

an ORF that encodes a 28 kDa protein. An ORF encoding the 19 kDa coat protein (CP)

overlaps the 28 kDa protein ORF. The CP ORF has an opal termination codon at the 3'

end and translational readthrough of this codon produces the 84 kDa protein (Shirako and

Wilson, 1993). The 84 kDa readthrough domain is required for transmission of the virus
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by its vector (P. graminis). Near the 3' end is an ORF that encodes a 19 kDa protein.

The 28 kDa protein and the latter 19kDa protein have no known functions (Shirako and

Wilson, 1993).

R1T 84kDa 19kDa

10
RNAl

150kDa

cap-I
R1T 209kDa 37kDa

1 H_
RNA 2

19kDa

cap4 CP

<=====>
28kDa

Fig. 1. Soilborne Wheat Mosaic Virus Genome. The boxes represent four ORFs in
RNA 1 and RNA 2. The 5' end ofeach genome segment has a methyl guanosine cap.
Molecular weights for each protein are indicated above each box.

SBWMV is the type member of the Furovirus (fungus-borne rod-shaped virus)

genus ofplant viruses (Torrence and Mayo, 1997). Furoviruses are rigid rod-shaped,

bipartite, positive strand RNA viruses. Recently the Furovirus classification was revised

to account for the many differences in segments, nucleotide sequence structures at the 3'

terminal end, and movement proteins (Mayo, 1999). The genus Furovirus has been

divided into four different genera; Furovirus (SBWMV), Pomovirus (Potato mop-top

virus), Pecluvirus (Peanut clump virus), and Benyvirus (Beet necrotic yellow vein virus).

The genus Furovirus now consists ofSBWMV, Oat golden stripe virus, Sorghum

chlorotic spot virus, Chinese wheat mosaic virus and European wheat mosaic virus

(Shirako 2000). The Pecluvirus, Pomovirus, and Benyvirus genera all contain a triple

gene block (Herzog et aI., 1994; Koenig et aI., 1996) that is also found in the Pofex-,

Hordei-, and Carlavirus. This triple gene block is necessary for viral cell-to-cell transport
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(Huisman et aI., 1988; Gilmer et aI., 1992). The Furoviruses do not have a triple gene

block (Mayo, 1999), but contain a 37 kDa putative movement protein encoded by RNA!

(Diao et al., 1999; Shirako et aI., 2000). Susceptible host species for SBWMV include

Bromus commutatus, Bromus tectorum, Hordeum vulgare, Secale cereale, and Triticum

aestivum (Brakke, 1971).

There is evidence SBWMV, unlike most plant viruses, uses the xylem for long

distance transport from the roots to the leaves (Verchot et al., 2001). Inununolocalization

was conducted using segments of roots, stems, and leaves of SBWMV infected wheat

plants, and SBWMV antiserum. Paraffin sections were labeled by inununogold silver

enhancement, analyzed by light microscopy, and scored for the presence of signal in the

xylem vessels, pWoem sieve elements, and phloem companion cells (Verchot et at,

2001). In that study, SBWMV accumulated primarily in the xylem vessels of wheat

roots, stems, and leaves (Verchot et at, 2001). One hundred percent ofthe sections

contained gold particles in the xylem. Only 11 to 64% of the analyzed sections, contained

gold particles in phloem companion cells, and 2 to 9.5% in pWoem sieve elements. The

fact that SBWMV was detected occasionally in phloem, suggests that movement through

the phloem is less likely.

Furthermore, SBWMV was detected in protoxylem in young roots. Viral

inclusion bodies also accumulate in xylem and xylem parenchyma (Verchot et aI., 2001).

Thus we hypothesize that SBWMV may enter the immature protoxylem and replicate in

these cells. Then after programmed cell death and xylem maturation, virus is free to

move long distance through the vessels.
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Wheat spindle streak mosaic virus

Wheat spindle streak mosaic disease, also known as wheat yellow mosaic disease,

was identified in the early 1960s, in winter wheat in Japan, in the eastern U.S.A., and in

Canada (Slykhuis, 1978; Wiese, 1987). In the U.S.A., the disease was attributed to

Wheat spindle streak mosaic virus (WSSMV) from the chlorotic spindle-shaped streaks

that appeared on the leaves in early spring (Langenberg, 1985). Originally, the disease

was thought to be a variant of soilborne wheat mosaic disease, because it is transmitted

through the soil by P. graminis, and is dependent on cool temperatures. Based on

serological analyses, SBWMV and WSSMV were determined to be different viruses

(Langenberg ,1985).

Wheat spindle streak mosaic disease tends to be more evenly distributed in fields

than SBWM (Wiese, 1987). Symptoms are more prevalent on lower leaves since the

plants tend to outgrow the disease as the temperatures warm later in spring. Leaf

symptoms can be variable and are more extreme when temperatures are below 20°C.

Yellow-green mottling, dashes and streaks develop on the young leaves, are oriented

parallel to leaf veins, and taper to form the characteristic chlorotic spindles (Wiese,

1987). If the temperatures stay cool, the centers ofthe spindles may become necrotic and

streaking can continue up to the flag leaf where reddish necrotic streaks develop at the

leaf tip (Wiese, 1987). Mild stunting of the infected plants occurs with fewer tillers than

normal and decreased numbers of seed heads; however, the seed weight is not

significantly affected (Wiese, 1987).

Wheat spindle streak mosaic virus (WSSMV) is widely distributed in France,

Germany, India, Italy, China, Japan, Canada, and the U.S.A. In North America, WSSM
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disease is endemic in most of southern Ontario and the east central United States

including Oklahoma (Wiese, 1987). Annual crop losses to WSSM disease, in

southwestern Ontario, may reach 40% in some fields (Wiese, 1987). WSSM occurs on

wheat (Triticum aestivum and T. durum), rye (Secale cereale), and barley (Hordeum

vulgare). WSSM affects both spring and winter grains, but spring cultivars are not often

symptomatic (Wiese, 1987).

Low temperatures «10° C) are more critical for WSSMV symptoms to develop

than SBWMV. WSSMV infection does not develop above 20° C, and the disease ceases

to be a problem above 18° C (Wiese, 1987). WSSMV has probably the lowest optimal

temperature range for a plant virus (between 8 and 12°C), and without the long cool

periods in winter and early spring necessary for disease development, the disease is not of

any economic importance (Wiese, 1987). Like SBWMV, later planting dates can greatly

reduce the rate of infection with WSSMV. Crop rotations can also be ofsome use in

limiting carryover of the virus from year-to-year, however, the liberal use ofurea and

manure (poultry) also decreases disease incidence (Wiese, 1987).

Wheat spindle streak mosaic virus (WSSMV) is the type member of the genus

Bymovirus. It is a flexible, filamentous virus (Slykhuis, 1976). Virion particles are 300­

2000 run in length and 16 run in width. Few particles are seen in host cells, but they can

be both scattered and in bundles in epidermal and parenchymal cells, in symptomatic

leaves (Slykhuis, 1976).

Bymoviruses are filamentous RNA viruses that are not enveloped (Brunt et aI.,

1996). Virions are usually slightly flexuous and are transmitted through the soil by a
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Plasmodiophorid vector (P. graminis) to wheat or barley roots. The defmitive species in

the group are WSSMV, Barley mild mosaic virus, Barley yellow mosaic virus, Oat

mosaic virus, Rice necrosis mosaic virus, and Wheat yellow mosaic virus.

Thus far the genome sequence ofWSSMV has not been analyzed and there has

been very little research exploring the biology of the virus. Primarily cytological changes

associated with WSSMV have been described, such as prominent pinwheel-shaped

inclusion bodies and extensive membrane proliferation in wheat leafepidermal and

parenchymal cells (Slykhuis, 1976).

WSSMV and SBWMV often are detected in the same host. They may cause a

synergistic disease that is more severe than the diseases caused by the individual viruses

(Kendall and Lommel, 1988). Since they are both transmitted by P. graminis, it is likely

that the path ofSBWMV and WSSMV transmission into, and spread throughout the

plant, may be similar (Brakke and Langenberg, 1988).

Polymyxa graminis

Polymyxa graminis Ledingham was fIrst described in 1939 as an obligate parasite

ofwheat roots (Ledingham, 1939). Ledingham identified this new organism in wheat

roots from three different locations in Ontario. Three cultivars ofwheat were used as

host plants. Later, it was found also in the roots of barley and rye, but not in the roots of

oats (Ledingham, 1939). Ledingham found similar resting spores in roots ofAgropyron,

Scolochloa, Rumex, and Impatiens, but zoospores were not always found in conjunction

with them. Polymyxa graminis is also parasitic on bentgrass (Agrostis palustris, L.)

(Britton and Rogers, 1963), Bromus spp. Leysser, Avena spp. L., and Cynodon spp.
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(Adams et aI., 1986; Adams and Jacquier, 1994). Although cereals are the most common

experimental host for P. graminis, it has also been identified in peanut roots (Arachis

hypogaea L.) (Thouvenel and Fauquet, 1981).

)

Host cell,
Cleavage of

Plasmodium

)

Sporangial
Plasmodium

Zoosporangium

~
2° zoospore -----~Karyogamy

\

~ 1° zoospore

Resting Spore;
Sporosorus in Aggregate

(

Sporogenic
Plasmodium

Meiosis

Cleavage of
Plasmodium

Fig. 2. Polymyxa graminis life cycle (Littlefield et aI., 1998).

The diagram in Fig. 2. illustrates the life cycle ofP. graminis with the shunt

pathways outlined from secondary zoospores to zoosporangial plasmodia and from

primary zoospores to sporogenic plasmodia P. graminis primary zoospores directly

penetrate the cell wall ofthe host (Keskin, 1964) and lie uninucleate in the host

cytoplasm until they develop further by increasing in size and entering the multinucleate
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plasmodial stage (Barr, 1979). A thin membrane surrounds the plasmodium, which

elongates, develops many lobes, and can extend through the host cell walls into adjacent

cells at maturity, and envelops the sporangial plasmodia (Barr, 1979). Cross walls form

and the plasmodia divide into segments that eventually become zoosporangia. Exit tubes

form in zoosporangia, which can extend through several cells to reach the host exterior.

The protoplasm cleaves to form secondary zoospores, which exit the host through the

tubes and swim away. Zoospores may stop swimming after two to three hours and corne

to rest on a new host (Karling, 1968).

Sporogenic plasmodia start out as a naked amoeba with no universal membrane

covering. Many nuclear divisions occur, and a multinucleate myxamoeba is formed,

which may take on varied forms and stretch throughout the cell (Barr, 1979). The

myxamoebae nuclei undergo meiosis, and cell walls are deposited consisting ofan inner

hyaline layer, and an outer darker yellow-brown wall, which is fused with the

neighboring cells (Barr, 1979). Pressure from being so tightly packaged often causes the

cells to be many sided. The individual cells ofthe sporosori range in size from 5 to 7 J.l in

diameter. Upon germination, the biflagellate zoospores that emerge from the resting

spores are indistinguishable from the secondary zoospores after the short time it takes

them to become rounded and begin swimming (Karling, 1968).

There are two economically important Polymyxa spp. P. belae was identified in

sugar beet in Europe (Keskin, 1964), and its hosts include Atriplex spp., Beta spp.,

Chenopodium spp., Kochia spp., Salsola spp., Spinacia spp., Amaranthus spp., and

Portulaca spp. Only after P. graminis and P. betae were shown to transmit plant viruses

that caused serious economic impact on several agriculturally important crops, was the
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genus Polymyxa deemed ofparticular significance to plant pathologists (Karling, 1968).

There are now twelve viruses ofcereal grains, sugar beet and peanut that have been

reportedly transmitted by Polymyxa spp. (Adams, 1991).

RESEARCH OBJECTIVES

There is evidence SBWMV accumulates inside P. graminis zoospores, and is

transmitted by zoospores (Roo, 1968; Rao and Brakke, 1969). There is no evidence

concerning WSSMV and P. graminis interactions. For both WSSMV and SBWMV,

nothing is known about the mechanism by which virus is transmitted by P. graminis. For

both SBWMV and WSSMV, once virus is deposited in wheat roots, it takes several

weeks to observe symptoms in the leaves. Typically, plant viruses move long distance

through the pWoem; however, we believe that SBWMV and WSSMV may follow an

alternative path through the xylem. This is based on previous reports indicating SBWMV

uses the xylem for long distance movement (Verchot et aI., 2001).

In this study we have conducted experiments to:

1) gather additional evidence that SBWMV may use the xylem for vascular transport.

Immunolabeling was conducted to determine if SBWMV movement protein and RNA

accumulate in the xylem for viral vascular transport.

2) determine ifWSSMV also accumulates and moves through the xylem.

3) establish a laboratory culture ofP. graminis for studies ofvirus transmission to plant

roots.
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CHAPTER II

SOILBORNE WHEAT MOSAIC VIRUS RNA ACCUMULATES IN THE XYLEM

WHILE MOVEMENT PROTEIN ACCUMULATES IN THE XYLEM AND

PHLOEM IN WHEAT

ABSTRACT

Soilborne wheat mosaic virus (SBWMV) is a member of the genus Furovirus.

SBWMV is transmitted to wheat roots by the plasmodiophorid vector Polymyxa

graminis. In a previously published report using SBWMV antiserum and immunogold

labeling, we found evidence that SBWMV uses the xylem for vascular movement from

the roots to the leaves. Viral coat protein and virion particles were found in the xylem

and xylem parenchyma. To further test the idea that SBWMV moves through the xyle~

experiments were conducted in this study to determine ifviral RNA and movement

protein also accumulate in the xylem. In this study we found that viral RNA similarly to

coat protein, accumulates in the xylem, while movement protein ofSBWMV

accumulates in the xylem and phloem.

INTRODUCTION

. Five genera ofplant RNA viruses, Furo-, Bymo-, Pomo-, Peclu-, and Benyvirus,

include soilborne viruses transmitted by fungal vectors belonging to the order

Plasmodiophorales (Adams, 1991). Furoviruses, bymoviruses, and pecluviruses are
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transmitted by the plasmodiophorid Polymyxa graminis; benyviruses are transmitted by

P. betae; and Spongospora subterranean transmits pomoviruses (Adams, 1991). These

viruses are associated with fungal zoospores that invade root epidermal cells (Barr,

1988). We do not know if these viruses are internalized or attached to the surface of the

zoospores.

The pathway for soilborne virus movement through the vasculature from roots to

aerial plant parts has been explored in only a few studies. Beet necrotic yellow vein virus

(BNYVV), and Potato mop top virus (PMTV), were detected in xylem vessels in plant

roots (Dubois et a!., 1994; Jones, 1975). In immunogold labeling studies with either light

or transmission electron microscopy, BNYVV has been found in xylem vessels or xylem

parenchyma in infected plant roots (Dubois et a!., 1994). Dubois et al. (1994) proposed

that BNYVV moves into xylem before differentiation occurs. We propose that SBWMV

similarly moves into immature xylem vessels (xylem pole cells) and is translocated

upwards in the plant after the xylem vessels mature (Verchot et al., 2001).

There is some evidence that SBWMV uses the xylem for long distance movement

(Verchot et aI., 2001). In a previous study, SBWMV coat protein was detected in xylem

vessels in roots, stems, and leaves by both light and electron microscopy (Verchot et aI.,

2001). Virion particles in inclusion bodies were found by electron microscopy in xylem

parenchyma cells adjacent to xylem vessels.

To further test the hypothesis that SBWMV moves through the xylem,

experiments were conducted to determine ifSBWMV movement protein and genomic

RNA also accumulate in the xylem of infected wheat plants. Cross sections ofSBWMV

infected wheat roots, stems, and leaves were analyzed using movement protein antibody,

12



irnmunogold labeling, and silver enhancement. Cross sections of SBWMV infected

wheat roots were also analyzed using in situ hybridization to detect viral nucleic acids.

Materials and methods

Plant material

Hard red winter wheat (Triticum aestivum L.) plant material infected naturally

with SBWMV was obtained from a field nursery located just west of Stillwater,

Oklahoma. This nursery has been used for more than twenty years to screen wheat

breeder material for reaction to SBWMV. Winter wheat lines and varieties are planted in

this area in September and then irrigated heavily for approximately five days just as

coleoptiles are emerging through the soil. This protocol facilitates infection of seedling

roots by P. graminis, and results in consistent and severe infection of wheat that is

susceptible to SBWMV. The hard red winter wheat (cultivar Vona) is used as a

susceptible check to indicate the consistent occurrence ofSBWMV in the nursery, and

plant material collected from Vona plants growing in this nursery was used in this study.

Embedding plant material in Paraplast

For light microscopy, root, stem, and leaf segments were taken from six-month­

old (Feekes' scale 6-7), symptomatic, field-gro~ hard red winter wheat plants (cv.

Vona) and embedded in Paraplast (Electron Microscopy Sciences, Fort Washington, Pa.,

USA) (Berlyn and Miksche, 1976; Verchot et a!., 2001). SBWMV infected plants were

identified by an enzyme-linked irnmunosorbent assay of leafextracts, with SBWMV

antiserum (see below). Root segments were collected within ca. four cm ofthe soil
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surface (Verchot et aI., 2001). Samples were placed in fIXative (10:2:1 dilution of

ethanol, formaldehyde, and acetic acid) overnight at 4°C, and then dehydrated in a graded

series of50, 60, 70, 85, 95, and 100% ethanol. Ethanol was replaced with a graded series

of25, 50, 75, and 100% xylene. Paraplast chips were added to the samples at room

temperature, and samples were incubated overnight. Samples were infiltrated with

Paraplast at 62°C for three days, and molten Paraplast was changed twice each day.

Samples were transferred to plastic molds filled with molten Paraplast and allowed to

harden for two h in cool water (Verchot et a!., 2001).

Immunogold-silver enhancement for light microscopy

Paraplast embedded wheat root, stem, and leaf segments were sectioned (8.0 J.!m),

mounted on ProbeOn Plus slides (Fisher Biotechnology, Pittsburgh, PA), and used for

immunogold labeling studies. The slides were incubated in blocking solution (50 mM

Tris-HCI, pH 7.4, 150 NaCI, 2% bovine serum albumin fraction V, 0.1% Tween 20) for

one h, and then with SBWMV movement protein polyclonal antiserum, diluted 1: 100

(prepared by the Oklahoma State University Hybridoma Center), for one h. The slides

were then incubated with secondary polyclonal anti-rabbit antiserum (conjugated to 10

nm diameter gold), diluted 1:50, for one h, and then developed by silver enhancement for

30 min (Electron Microscopy Sciences). The reaction was stopped with sodium

thiosulfate, and then the slides were counterstained with 0.5% safranin-O for 10 s. For

controls, similar slides were treated with a heterologous antiserum Wheat spindle streak

mosaic virus (WSSMV), obtained from Agdia (Elkhart, Ind.).
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Light microscopy was conducted with a Nikon Eclipse £600 microscope. Images

were recorded using Optronics Magnafrre digital camera (Goleta, CA) and Image-Pro

Plus software (Silver Spring, MD). Figures were arranged using Adobe Photoshop

software (Adobe Systems, Inc., Mountain View, CA).

Data were collected from sections of three to five blocks of roots, stems and

leaves of field grown hard red winter wheat plants (cv. Vona). Fifty to 100 cross sections

ofeach tissue were analyzed. Xylem, pWoem, sieve elements and phloem companion

cells were scored for the presence or absence ofsilver staining. Images were collected of

cross sections to demonstrate accumulation of silver particles in each tissue.

In situ RNA hybridization and light microscopy

Paraplast embedded wheat roots were sectioned (8.0 Jim), and then mounted on

ProbeOn Plus slides (Fisher Biotechnology, Pittsburgh, PA). Slides were incubated with

an RNA probe that can hybridize to viral RNAs. A digoxigenin labeled antibody that

recognizes the RNA probe was used. Then slides were developed with NBTIBCIP. A

purple color was produced if viral RNA was present.

The slides were incubated for 15 to 20 min at room temperature in 2X sse (17.5

g NaCl, 8.82 g sodium citrate/l ofwater, pH 7.0), and then in proteinase K (IJlg/ml of

proteinase K dissolved in 100 mM Tris-Hel pH 8.0,50 mM EDTA) at 37°C for 15 to 20

min. Slides were washed for two min at room temperature in PBS-glycine buffer (0.13

M NaCI, 7.0 mM Na2HP04, 3.0 mM NaH2P04, 2.0 mg/ml glycine, pH 7.0), and then

twice with PBS buffer. Then slides were incubated for 10 min at room temperature in

4% paraformaldehyde (pH 7.0) dissolved in PBS. Slides were washed twice with PBS
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for five min at room temperature, twice with 0.1 M TEA buffer (1.492 g

triethanolamine/l 00 ml water, 0.5 ml acetic anhydride) for 10 min at room temperature,

and then twice in PBS buffer for 5 min at room temperature. Slides were incubated for

30 min at 37°C with prehybridization solution (50% deionized formamide, 5% dextran

sulfate, 1% blocking reagent (Boehringer Mannheim), 500 JlglmL poly A, 300 mM NaCI,

lOmM Tris-HCI pH 7.5,1 mM EDTA), and then overnight at 42°C with hybridization

solution (prehybridization solution plus digoxigenin-Iabeled RNA probe).

The plasmid p5114 is a pGEMT plasmid containing a cDNA copy of the 3' 1000

nt ofSBWMV genome. Transcripts were prepared using ApaI linearized p5114

plasmids, SP6 polymerase, and digoxigenin labeled UTP. Then slides were washed

twice with 0.2X SSC for 60 min at room temperature, twice with NTE buffer (0.5 M

NaCI, 10 mM Tris-HCI pH 8.0, 1.0 mM EDTA) for 5 min at 37°C, once in 0.2X SSC for

60 min at 55°C, and once in PBS for five min at room temperature.

For antibody labeling, slides were incubated for 45 min with 1 % blocking

reagent, and then with 1 % bovine serum albumin fraction V (both in a solution of 100

mM Tris-HCI pH 7.5, 150 mM NaCI, 0.3% Triton X-IOO). Slides were incubated for two

h at room temperature with anti-digoxigenin labeled antibody, (diluted 1: 1250 in 100 mM

Tris-Hel pH 7.5, 150 mM NaCl, and 0.3% Triton X-lOO). Slides were washed twice for

15 min in a solution of 100 mM Tris-Hel (pH 7.5) and 150 mM NaCI, followed by a 10

min wash in a solution of 100 mM Tris-HCI (pH 9.5), 100 mM NaCI, 50 mM MgCI2•

For developing the reactio~ the substrate solution was prepared immediately

before use, by diluting 200 f.ll ofNBTIBCIP stock solution (via14, Boehringer Mannheim

DIG Nucleic Acid Detection Kit) in 10 ml buffer 3 (100 mM Tris, 100 mM NaCI, 50 mM
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MgCI2). The slides were incubated in darkness, with the color development solution, for

two h to three days at room temperature, and then rinsed in TE buffer (10 mM Tris-HCI

pH 8.1,1 mM EDTA). Slides were dehydrated in a series of25, 50,75, and 100%

ethanol, for a maximum of five sec in each step, to minimize color loss. The slides were

dipped in xylene. A drop ofPermount and a coverslip was added to each slide prior to

viewing under the light microscope.

Data were collected from root sections obtained from three to five blocks of field­

grown wheat roots (cv. Vona). Thirty-one cross sections were analyzed. As in Table 1,

xylem, pWoem sieve elements, and phloem companion cells were scored for the

presence, or absence, of blue staining. Images were collected to demonstrate the pattern

of in situ labeling.

Experiments were conducted to determine if the pattern of in situ labeling resembles the

pattern of coat protein accumulation, as previously reported.
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Table. 1. Distribution ofSBWMV RNA in wheat roots

Tissue

Cortex

Pericycle

Endodermis

Phloem

Xylem

Proportion (%) ofpositive sections
containing SBWMV RNAa

30/31 (97)

15/31 (48)

15/31 (48)

0/31 (0)

19/31 (61)

a A total of 31 root sections from field-grown wheat
plants were paraffm embedded and sectioned. Following
in situ hybridization, each section was scored positive by
light microscopy for the presence ofSBWMV RNA in
associated tissues. Proportions are the numbers of
sections that contained digoxigenin labeled antibody
to RNA relative to the total numbers of sections analyzed.
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RESULTS

SBWMV RNA accumulation pattern in infected wheat

The pattern ofSBWMV RNA accumulation in the vasculature of infected wheat

roots was analyzed using in situ hybridization. Paraplast embedded roots (cv. Vona)

were sectioned and incubated with an RNA probe that hybridizes with SBWMV RNA.

The sections were treated with a digoxigenin labeled antibody followed by development

with NBTIBCIP, resulting in a purple to black color precipitate where RNA was present

(Fig. 3 A, B).

Precipitate was observed in walls ofxylem vessels (Fig. 3 A). For a control,

infected material was treated with hybridization buffer lacking probe and no precipitate

was detected (Fig. 3 B). Viral RNA was detected in all cell types except phloem.

The proportion of sections containing SBWMV RNA in root xylem, phloem,

endodermis, pericycle, and cortex was determined. Approximately 61 % of sections

contained precipitate in walls ofxylem vessels and none of the sections contained

precipitate in phloem (Table 1). Approximately 48% ofsections contained precipitate in

both the pericycle and endodermis, and 97% contained precipitate in cortex (Table 1).

The fact that phloem cells contained no precipitate supports the notion that SBWMV

moves from the roots to leaves through the xylem.
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Fig. 3. A-H. Light micrographs ofSBWMV infected tissue. Cross sections ofSBWMV
infected wheat roots. A shows in situ hybridization labeling in xylem vessel walls. (X).
Arrows indicate colored precipitate in xylem vessel walls. Control slides treated with
hybridization buffer only B shows no precipitate in xylem vessels. C-D shows
immunogold silver staining prominent in xylem (X), phloem (P), and endodermal cells
(E). Arrows indicate silver particles. D shows individual silver particles in xylem (X),
phloem (P), and endodermal cells (E). E shows an infected wheat leaf section with
immunogold silver staining in xylem vessels (X). Arrows indicate silver particles. F
shows immunogold silver staining in infected wheat leafxylem (X) and phloem (P).
Arrows indicate silver particles. Control slides G-H were treated with either WSSMV
antisera or buffer only. Controls show no silver particles in xylem (X), phloem (P), or
endodermal cells (E). Bars: 20J.lm. Light micrographs were obtained with an XI00
objective.

SBWMV movement protein accumulation pattern in infected wheat

The pattern of SBWMV movement protein accumulation in the vasculature of

field-grown infected winter wheat plants was analyzed using immunogold labeling with

silver enhancement. Paraplast embedded leaves, stems, and roots, were sectioned and

incubated with SBWMV movement protein polyclonal antiserum followed by

immunogold silver enhancement. Silver particles were seen by light microscopy to be

distributed among all tissues (Fig. 3 C-F).

The proportion of sections containing SBWMV movement protein in roots, stems,

and leaves were determined (Table 2). In root, stem, and leaf sections, between 78 and

100% ofthe vascular bundles analyzed contained movement protein in xylem and

phloem (Fig. 3 C-F; Table 2). Unlike viral coat protein or RNA, movement protein did

not preferentially accumulate in xylem. Movement protein was detected in companion

cells and sieve elements (Fig. 3 D). In infected roots, 96 to 100% of the sections
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contained movement protein in cortex, pericycle, and endodermis. In stem and leaf

sections, movement protein was detected in bundle sheath, cortical, and mesophyll cells.

For controls, slides were treated either with WSSMV antiserum or buffer only

(Fig. 3 G, H, respectively). No label was observed in any of the control slides.

Table. 2. Distribution ofSBWMV movement protein in wheat roots, stems, and leaves

Tissue
proteina

Proportion (%) ofpositive sections containing SBWMV movement

Leaf Stem Root

Cortex 50/50 (100)

Pericycle 48/50 (96)

Endodermis 48/50 (96)

Phloem 85/85 (100) 47/55 (85) 48/50 (96)

Xylem 85/85 (100) 43/55 (78) 50/50 (100)

Bundle sheath 27/55 (49)

Mesophyll 85/85 (100)

aFollowing immunogold silver enhancement, each section was scored positive by light
microscopy for the presence ofSBWMV movement protein in associated tissues.
Proportions are the numbers of sections that contained silver labeled antibody to
movement protein relative to the total numbers ofsections analyzed.

DISCUSSION

SBWMV and WSSMV have been identified in hard red winter wheat growing

areas of the U.S.A. and are often detected in the same field (Brakke and

Langenberg,1988; Wiese, 1987). In cytological studies ofplants co infected with
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SBWMV and WSSMV, SBWMV proteins were associated with WSSMV pinwheel-type

inclusion bodies (Langenberg 1985; Langenberg 1986). Paraplast-embedded tissues were

analyzed with WSSMV antiserum, immunogold silver enhancement, and light

microscopy (Fig. 3G) and there was no evidence of WSSMV in the samples.

The strain ofSBWMV used in this study does not produce significant symptoms

in field-grown hard red winter wheat until approximately 5-6 months after planting. Seed

is planted in the autumn and symptoms appear in late February or March. Unlike field­

grown hard red winter wheat, the SBWMV symptoms in hard red winter wheat grown in

growth chambers are often mild and difficult to identify. In addition, the level ofvirus

accumulation is lower in growth chamber-grown plants than in field-grown plants. For

this study, we determined that field-grown plants were more useful because they had

stronger symptoms and contained significantly higher levels ofSBWMV.

The data presented in a previously published study suggests that SBWMV is

likely to move from roots to leaves through the xylem. SBWMV was detected in xylem

vessels in root, stem, and leaf sections viewed either by light or electron microscopy

(Verchot et aI., 2001). In addition SBWMV virion particles were observed in xylem

parenchyma cells adjacent to xylem vessels.

The previously published results indicated that virus is present in the xylem and

did not preclude the possibility that SBWMV can enter or move through the pWoem. The

present study was conducted to determine ifSBWMV could be pWoem associated. We

explored the pattern ofviral RNA and movement protein accumulation in SBWMV

infected wheat plants. We found evidence that viral RNA accumulates primarily in the
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xylem. This evidence supports previous studies showing viral coat protein and virion

particles in the xylem.

Surprisingly, SBWMV movement protein was detected in phloem as well as the

xylem. One explanation is that SBWMV may not move exclusively through the xylem

for long distance transport. There may be a subset ofvirus that can move through the

phloem. Viral phloem transport may be important for movement in a source-to-sink

direction. Virus may need to use the phloem to move from mature source leaves to

young developing sink leaves. Once virus has entered the phloem it may also move

from leaves to roots.

Another explanation is that excess movement protein that is not being used by the

virus is deposited in the phloem. Evidence of virus accumulating in the xylem and viral

movement protein accumulating in both xylem and phloem does not allow us to draw

clear conclusions about the mechanism for virus long distance transport. Since we do not

have an infectious clone of the virus, we are unable to perform mutational analysis to

determine if viral movement protein is essential for virus long-distance transport, or

conduct experiments to determine ifvirus can enter the phloem for source-to-sink

movement. The fact that the movement protein accumulated in the phloem is evidence

that virus may have been in these vessels; however, it is also possible that the movement

protein moved there independently. We do not know, based on these studies, if the

fraction of movement protein accumulating in either xylem or phloem tissue functions to

mediate virus long distance transport. Further research is needed to test these

possibilities.
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CHAPTER III

EVIDENCE WHEAT SPINDLE STREAK MOSAIC VIRUS ACCUMULATES IN

THE XYLEM AND PHLOEM IN WHEAT.

ABSTRACT

Wheat spindle streak mosaic virus (WSSMV) is a member of the genus

Bymovirus. WSSMV and SBWMV cause a synergistic disease in wheat and are both

transmitted to wheat roots by the plasmodiophorid vector Polymyxa graminis. In a

previously published report using SBWMV antiserum and immunogold labeling, we

found evidence that SBWMV likely uses the xylem for vascular movement from the

roots to the leaves. Viral coat protein and virion particles were found in the xylem and

xylem parenchyma. In this study we conducted experiments to determine if WSSMV

also utilizes the xylem for vascular transport. Cross sections of WSSMV infected wheat

leaves and roots were analyzed using WSSMV antiserum and immunogold labeling.

WSSMV was detected in the xylem and pWoem. Unlike SBWMV, WSSMV does not

preferentially accumulate in the xylem.

INTRODUCTION

Wheat spindle streak mosaic virus (WSSMV), the cause ofwheat spindle streak

mosaic disease in winter wheat is the type member of the genus Bymovirus. When

WSSMV was first identified in the early 1960s in winter wheat, it was thought simply to

be a variant ofSoilborne wheat mosaic virus (SBWMV). That misconception arose
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because both WSSMV and SBWMV are transmitted through the soil by the

plasmodiophorid vector P. graminis to the roots of winter wheat, and both are also

dependent on cool temperatures for transmission. However, based on serological

analyses, WSSMV and SBWMV were later detennined to be two different viruses

(Langenberg, 1985).

Mixed infections of both WSSMV and SBWMV commonly occur in winter

wheat. The presence of both WSSMV and SBWMV in the same wheat plant may cause

a synergistic disease that is more severe than either virus would normally cause alone

(Kendall and Lommel, 1988). Since both WSSMV and SBWMV are transmitted by P.

graminis, it is likely that the path of transmission into, and spread throughout the plant,

may be similar (Brakke and Langenberg, 1988).

Since SBWMV moves through the xylem from the roots to the leaves in winter

wheat (Verchot et aI., 2001), we hypothesize that WSSMV also moves in this manner.

Previous studies found SBWMV coat protein accumulating primarily in the xylem of

winter wheat (Verchot et a!., 2001); therefore, we examined the possibility that WSSMV

coat protein also would accumulate mainly in the xylem.

To test the hypothesis that WSSMV moves through the xylem ofwinter wheat,

experiments were conducted to detennine if WSSMV coat protein and virion particles

accumulate in the xylem of infected wheat plants. Cross sections of WSSMV infected

wheat roots and leaves were analyzed using coat protein antiserum, immunogold

labeling, and silver enhancement. Light microscopy was used to study the pattern of

WSSMV accumulation.

26



MATERIALS AND METHODS

Plant material

Hard red winter wheat (Triticum aestivum L.) plant material infected naturally

with WSSMV was obtained from a field nursery located just west of Stillwater,

Oklahoma. This nursery has been used for more than twenty years to screen wheat

breeder material for reaction to WSSMV. Winter wheat lines and varieties are planted in

this area in September and then irrigated heavily for about five days just as coleoptiles

are emerging through the soil. This protocol facilitates infection of seedling roots by P.

graminis, and results in consistent and severe infection of wheat that is susceptible to

WSSMV. The hard red winter wheat (cultivar Sierra) is used as a susceptible check to

indicate the consistent occurrence ofWSSMV in the nursery, and plant material collected

from Sierra plants growing in this nursery was used in this study.

The hard red winter wheat cultivar, Sierra, is SBWMV-resistant and WSSMV­

susceptible. ELISA analysis was conducted to determine ifWSSMV, and/or SBWMV,

were present in the leaves.

Embedding plant material in Paraplast

For light microscopy, root and leaf segments were taken from four, 6-month-old

(Feekes' scale 6-7) symptomatic field-grown Sierra plants and embedded in Paraplast

(Electron Microscopy Sciences, Fort Washington, Pa., U.S.A.) (Berlyn and Miksche,

1976). Paraplast embedding was carried out as described in Chapter 1. WSSMV infected

plants were identified by an enzyme-linked immunosorbent assay of leaf extracts, with
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WSSMV antiserum (see below). Root segments were collected within ca. 4 cm ofthe

soil surface (Verchot et a!., 2001). Samples were placed in fIXative (10:2:1 dilution of

ethanol, formaldehyde, and acetic acid) overnight at 4°C, and then dehydrated in a

graded series of 50, 60,70,85,95, and 100% ethanol. Ethanol was replaced with a graded

series of25, 50, 75, and 100% xylene. Paraplast chips were added to the samples at room

temperature, and samples were incubated overnight. Samples were infiltrated with

Paraplast at 62°C for three days, and molten Paraplast was changed twice each day.

Samples were transferred to plastic molds filled with molten Paraplast and allowed to

harden for 2 h in cool water.

Immunogold-silver enhancement for light microscopy

Paraplast embedded leat: and root segments were sectioned (8.0 11m), mounted on

ProheOn Plus slides (Fisher Biotechnology, Pittsburgh, PA), and used for immunogold

labeling studies, as described in Chapter 1. The slides were incubated in blocking

solution (50 roM Tris-HCI, pH 7.4, 150 NaCI, 2% bovine serum albumin fraction V,

0.1 % Tween 20) for 1 h, and then with WSSMV polyclonal antiserum diluted 1: 100

(Agdia, Elkhart, Ind.). The slides were then incubated with polyclonal anti-rabbit

antiserum (conjugated to 10 run diameter gold) diluted 1:50, for 1 h, and then developed

by silver enhancement for 30 min (Electron Microscopy Sciences). The reaction was

stopped with sodium thiosulfate, and then the slides were counterstained with 0.5%

safranin-O for 10 s. For control experiments, similar slides were treated with SBWMV

antiserum (prepared by the Oklahoma State University Hybridoma Center). For control
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experiments, slides were treated with SBWMV antiseru~ Brome mosaic virus (BMV)

antiserum, or buffer only.

Light microscopy was conducted with a Nikon Eclipse E600 microscope. Images

were recorded using Optronics Magnafrre digital camera (Goleta, California, U.S.A.) and

Image-Pro Plus software (Silver Spring, Maryland, U.S.A.). Figures were arranged using

Adobe Photoshop software (Adobe Systems, Inc., Mountain View, California, U.S.A.).

Data were collected from sections of4 blocks ofroots, and 2 blocks of leaves of field

grown Sierra plants. Forty-six cross sections ofroots and 40 cross sections of leaves

were analyzed. As in Chapter 1, xylem, phloem sieve elements, and phloem companion

cells were scored for the presence or absence of silver staining. Images were collected of

cross sections to demonstrate accumulation ofsilver enhanced gold particles in each

tissue.

RESULTS

WSSMV coat protein accumulation pattern in infected wheat

The pattern ofWSSMV coat protein accumulation in the vasculature of field­

grown infected hard red winter wheat plants (ev. Sierra) was analyzed using

immunolabeling with silver enhancement. Paraplast embedded leaves and roots were

sectioned and incubated with WSSMV coat protein polyclonal antiserum followed by

immunogold silver enhancement. Silver enhanced gold particles were seen by light

microscopy to be distributed among all tissues. (Fig. 4 A-D).

The proportion of sections containing WSSMV coat protein in roots and leaves

was determined (Table 3). In roots, approximately 96% ofthe vascular bundles analyzed

29



contained WSSMV coat protein in the phloe~ and 100% ofthe xylem, cortex, pericycle,

and endodermis (Fig. 4 C, D; Table 3). In infected leaves, 100% of the xylem, phloem,

and bundle sheath cells contained WSSMV coat protein (Fig. 4 A, B).

To verify that WSSMV antiserum binds specifically to WSSMV coat protein

present in the vasculature, sections ofWSSMV-infected wheat roots and leaves were

analyzed either with no primary antiserum (Fig. 4 E) or with SBWMV antiserum (Fig. 4

F), or with BMV antiserum (Fig. 4 G). None of the control antibodies used (gold­

conjugated antiseru~ SBWMV antiserum, or BMV antiserum) reacted with infected

tissue, indicating that under these experimental conditions there was minimal nonspecific

labeling.
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Fig. 4. A-G. Light micrographs ofWSSMV infected tissue. Cross sections ofWSSMV
infected wheat leaves (A-B) show labeling in xylem vessels (X) and phloem (P). Arrows
indicate silver particles in xylem vessel walls. C-D are cross sections ofWSSMV
infected wheat roots and show immunogold silver staining prominent in xylem (X),
pWoem (P), and endodermal cells (E). Arrows indicate silver particles. Control slides
(E, F, and G) were treated with buffer, SBWMV antiserum, or BMV antiserum,
respectively. Controls show no silver particles in xylem (X), phloem (P), or endodermal
cells (E). Bars: 20Jlffi. Light micrographs were obtained with an XIOO objective.

Table. 3. Distribution of WSSMV coat protein in Sierra roots and leaves.

Tissue Proportion (%) ofpositive sections containing WSSMV
coat proteina

Root

Cortex 46/46 (100)

Pericycle 46/46 (100)

Endodermis 46/46 (100)

Phloem 44/46 (96)

Xylem 46/46 (100)

Bundle sheath

40/40 (100)

40/40 (100)

40/40 (100)

a Root and leaf samples from four field-grown wheat plants (ev. Sierra) were
paraffm embedded and sectioned. Following immunogold silver enhancement,
each section was scored positive by light microscopy for the presence of
WSSMV coat protein in xylem, pWoem, and associated tissues. Proportions are
the numbers of sections that contain labeled relative to the total numbers of
sections analyzed.

DISCUSSION

WSSMV and SBWMV are endemic in the hard red winter wheat-growing areas

of the U.S.A., often appearing simultaneously in the same field, and acting synergistically

in the same host plant (Brakke and Langenberg, 1988; Wiese, 1987). SBWMV proteins
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were shown to be associated with WSSMV pinwheel-type inclusion bodies in cytological

studies ofplants co infected with WSSMV and SBWMV (Langenberg, 1985, 1986).

Because plants used in this study were field-grown for six months prior to embedding in

Paraplast, control experiments were conducted to ensure that the samples were only

infected with WSSMV. Segments of infected wheat roots (cv. Sierra) were analyzed

with SBWMV antiserum, immunogold silver enhancement, and light microscopy (Fig. 4

F), and no evidence ofSBWMV was found.

Wheat spindle streak mosaic disease symptoms can be variable, and are more

extreme when temperatures are below 1DoC. The symptoms are more prevalent on lower

leaves since the plants tend to outgrow the disease when ambient temperatures rise later

in spring. Due to the difficulty ofmaintaining growth chamber conditions in the optimal

range for WSSMV to flourish (between 8 and 12°C), plants used in this study were

obtained from the nursery that routinely exhibits WSSMV symptoms (Wiese, 1987).

In a previous study, SBWMV infected material grown in the same nursery was

used to study the pattern ofvirus accumulation in infected wheat (Verchot et a!., 2001).

Paraplast and LR-White embedded wheat leaves, stems, and roots were analyzed using

SBWMV antiserum light or electron microscopy. SBWMV virus was detected primarily

in the xylem suggesting that virus likely uses the xylem for long distance transport from

roots to leaves (Verchot et aI., 2001).

Since both WSSMV and SBW!vfV are transmitted to wheat roots by P. graminis

and produce a systemic infection in wheat plants, we predicted that the pattern of

WSSMV accumulation might resemble the pattern ofSBWMV accumulation. We also
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predicted that since WSSMV and SBWMV cause a synergistic disease, it is likely that

they may utilize the same mechanism for vascular transport, via the xylem.

The data presented in this study suggest that WSSMV, unlike SBWMV, does not

preferentially move from roots to leaves through the xylem. WSSMV was detected in

100% ofthe xylem vessels in leaves and roots examined, and also in 100% ofthe phloem

elements in leaves, but only detected in approximately 96% of the pWoem cells examined

in roots (Table 3). Since WSSMV can be detected in both xylem and phloem tissues, we

cannot conclude, based on these observations, whether virus preferentially moves through

the xylem or pWoem.

34



CHAPTER IV

PROPAGATION OF AN OKLAHOMA ISOLATE OF POLYMYXA GRAMINIS

AND SOILBORNE WHEAT MOSAIC VIRUS IN HYDROPONICALLY GROWN

BARLEY ROOTS

ABSTRACT

Polymyxa graminis is an obligate parasite of winter wheat in the central great

plains of the U.S.A. P. graminis transmits Soilborne wheat mosaic virus (SBWMV) and

Wheat spindle streak mosaic virus, which can both cause significant yield losses in winter

wheat in this region. A viruliferous isolate ofP. graminis obtained from a field in

Oklahoma was propagated in barley roots grown in sand culture. Previous attempts to

establish P. graminis in wheat roots grown in sand culture were unsuccessful; however in

this study we were able to culture the fungus in barley roots. Eleven barley cultivars

were tested to identify the most suitable experimental host for P. graminis. ELISA

analyses were conducted using plant leaves to assess transmission ofSBWMV. Two

cultivars were identified as useful experimental hosts for studying P. graminis and its

ability to transmit SBWMV.

INTRODUCTION

Polymyxa graminis Ledingham is a biotrophic parasite ofmany cereal crops and

is a vector for many plant viruses including Soilborne wheat mosaic virus (SBWMV),

Wheat spindle streak mosaic virus (WSSMV) and Barley yellow mosaic virus (BaYMV)

(Verchot-Lubicz, in press; Adams et a!., 1988; Adams, 1991). These three viruses cause
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disease in winter wheat and barley causing significant yield loss throughout North

America, Europe, and Asia (Brakke and Langenberg, 1988; Chen, 1993). Under field

conditions, P. graminis infects plant roots in the autumn soon after plants are sown with

virus symptoms appearing later in the winter or early spring (Wiese, 1987). Thus the

development ofcontrol measures to limit P. graminis or virus infection is important (Hsu

and Brakke, 1985; Himmel et aI., 1991; Myers et al., 1993).

Since P. graminis is an obligate root parasite, sand-culture techniques are useful

to study influences on the fungal life cycle or its ability to transmit plant viruses. A sand­

culture method was devised to propagate a U.K. isolate ofP. graminis in barley roots

(Adams et at, 1986; Adams and Swaby, 1988). An intermittent irrigation syste~

previously used to culture Olpidium spp. and other zoosporic fungi, was adapted for the

propagation ofP. graminis in barley (Adams et at, 1986; Adams and Swaby, 1988).

That sand-culture system has been valuable for studying the effects of temperature and

barley cultivar on P. graminis growth and BaYMV transmission (Adams and Swaby,

1988).

Until now, sand-culture techniques have not been successfully used to propagate

an OklahomaP. graminis isolate in winter wheat (Verchot-Lubicz and Littlefield,

unpublished data). However, an exhaustive search ofappropriate experimental wheat

hosts has not been conducted. In this study we used a sand-culture method, similar to the

one reported by Adams et al. (1986) to propagate an Oklahoma isolate ofP. graminis in

barley roots.
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MATERIALS AND METHODS

Plant material and hydroponic system used for propagating barley

In this study, ten cultivars of spring barley were used: B1202, Baronesse, Black

Hulless, Bowman, Crystal, Excel, Harrington, Morex, Robust, and Stander. One cultivar

ofwinter barley (Post 90) and one cultivar ofwinter wheat (Sierra) were used. Seven

plants of each cultivar were grown in sterile quartz silica sand (Unimin Corp., Guion,

AR) in Conetainers (Ray Leach "Conetainers"TM, Hummert International, Earth City,

MO) for each experiment. Thus, a totalof77 plants were planted for each experiment.

The conical bottom ofeach Conetainer was cut off and covered with 100 Jlm mesh nylon

membranes (Spectra/Mesh, Fisher Scientific, Pittsburgh, PA). Conetainers were placed

in an ebb and flow hydroponic tank (Foothill Hydroponics, North Hollywood, CA.) (Fig.

5) filled with a nutrient solution (2.5 mM KN03, 1.0 mM KH2P04, 1.0 mM NaN03, 0.75

mM Ca (N03)2, 0.75 mM MgS04, 1.0 mM Fe804, 0.1 ppm MnC12, 0.05 ppm H3B03,

0.025 ppm Zn804, 0.005 ppm CUS04, and 0.005 ppm (N1I4)2Mo04) (Adams et al.,

1986). The hydroponic tank was automatically filled for two periods ofsix hours each

day and was maintained in a controlled environmental chamber at 15-to18°C with a

minimum day length of 12 h. The nutrient solution was changed weekly.
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Fig. 5. Sand-culture system used for propagating P. graminis in barley roots. The
system is an ebb and flow hydroponic system. The lower reservoir contains 40 liters of
nutrient solution. A pump fills the top reservoir with solution that bathes the roots
continuously for 6 hours, then a timer shuts the pump off for 6 hours.
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Preparation of inoculum

P. graminis infected roots were obtained in September 2001 from winter wheat

(cv. Vona) grown in a field nursery near the Oklahoma State University campus. Roots

were cut at the base of the stem from field grown plants, dried on paper for one week in

the greenhouse, and stored in a desiccator at room temperature. To inoculate plants,

approximately five g dried roots, were cut fmely with a scissors and ground with one

tablespoon of sterile silica sand, using a mortar and pestle. Approximately 300 m1 cold

10 mM Na-phosphate buffer (pH 7.0) was added to the inoculum and mixed thoroughly.

Three-, seven-, and 14-day-old seedlings were inoculated with approximately three

ml of liquid inoculum. Liquid inoculum was pipetted into each Conetainer and remaining

solid root material from the mortar was added to the sand in each Conetainer.

Root washing system

With the kind assistance ofDr. Nathan Walker, a large root washing apparatus

(Fig. 6), similar to one used for smaller grass roots, was constructed using 1.5 inch

schedule 40 PVC pipe, five 0.25 inch brass air hose connections, and five, six-inch pieces

ofplastic tubing (0.25 inch in diameter). The PVC pipe was twelve inches in length, 1.5

inch in diameter, and had two plastic end caps attached at each end ofthe pipe as

closures. Holes were drilled into the side of the pipe and five air hose connections were

attached using epoxy resin to function as one inlet attachment for water entering the

system, and four outlet connections which channel the water into four "root-washing

containers". Six-inch pieces ofplastic tubing (0.25 inch in diameter) were attached to the

single inlet brass connection and the four outlet brass connections. The inlet plastic tube
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was connected to a distilled water faucet. The four outlet tubes were each connected to

705 ml Rubbermaid plastic containers through holes in the lid. The four Rubbermaid

containers served as "root-washing containers".

Water flowed from the faucet through the PVC pipe, through the outlet tube, into

the "root-washing container". A square hole was cut into the side ofeach "root-washing

container", which served as a drain, allowing water to flow out ofthe container. A

stainless steel mesh was glued using epoxy resin over the square hole to retain the root

mass inside the container. Barley root masses were cut at the base of the stem, most of

the sand was shaken off, and the root masses were divided in half longitudinally. Each

barley root mass was added to separate "root-washing containers" and using this system,

four root masses could be simultaneously washed. Root masses were washed vigorously

for one hour to remove sand, and micro fauna.

Fig. 6. Home made root-washing system The stainless steel mesh retained the root mass
inside the "root-washing containers" during the washing process.
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Microscopy

Individual plants were removed from Conetainers four to six wpi (weeks post

inoculation), and washed using the root washing system. Washed roots were placed in

distilled water in a 100-ml beaker, and vacuum infiltrated for 20 min to remove air from

the interior ofthe roots. Small branch roots, located within four cm of the stem were

examined by light microscopy to detect P. graminis. Light microscopy was conducted

with a Nikon Eclipse E600 microscope. Images were recorded using Optronics

Magnafrre digital camera (Goleta, CA) and Image-Pro Plus software (Silver Spring, MD).

Figures were arranged using Adobe Photoshop software (Adobe Systems, Inc., Mountain

View, CA).

ELISAs

Approximately four to six wpi, plants were scored for presence or absence of

virus symptoms. Upper non-inoculated barley leaves (0.5 g), were collected and

analyzed by indirect ELISA using monoclonal SBWMV antiserum (Driskel et aI., 2002).

Leaves were ground in five volumes (per gram fresh weight) ofextraction buffer (137

mM NaCI, 8 mM Na2HP04, 1.7 mM NaH2P04, 2.7 mM KCI, 10.3 roM Na2S04, 2%

Tween 20, 2% polyvinylpyrrolidone [PVP 24 to 40,000], and 0.2% chicken albumin). A

1001-11 sample of each homogenate was added to a microtiter plate (Nalge Nunc

International, Dallas, TX) and incubated overnight at 4°C. Microtiter plates were

washed with buffer containing phosphate-buffered saline plus Tween-20 (PBST) (137

mM NaCI, 8 mM Na2HP04, 1.7 mM NaH2P04, 2.7 mM KCI, 10.3 mM Na2S04, and 2%

Tween 20) and incubated for 1 h with SBWMV antiserum diluted 1:50 in PBST
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containing 0.2% bovine serum albumin (BSA) and 2% PVP 24 to 40,000. Plates were

washed with PBST buffer and incubated with horse-peroxidase-Iabeled secondary mous(

antiserum (Kirkegaard and Perry Laboratories, Gaithersburg, MD) that was diluted

1:1,000 in PBST containing 0.2% BSA and 2% PVP 24 to 40,000. o-Phenylene diamine

substrate tablets (Amresco, Solon, OH) were dissolved in 30 ml of sterile H20 containinl

15 f.ll of30% H20 2, and 100 f.ll of substrate was added to each microwell. The reaction

was stopped with 250 mM H2S04 within 5 min of color development. The absorbance

was read at 490 run on an MRX plate reader (Dynatech Laboratories, Chantilly, VA).

RESULTS

Three barley cultivars are useful experimental hosts for P. graminis

Inoculum ofP. graminis was prepared using roots of winter wheat plants (cv.

Vona) grown in a field near the Oklahoma State University campus. Ten spring and one

winter barley cultivar were inoculated with P. graminis and then scored for the presence

or absence ofsporosori. Since that isolate ofP. graminis is known to transmit SBWMV,

plants were also tested for the presence of virus in the leaves.

At four to six wpi each plant had a tortuous root system that was extremely

difficult to clean of sand particles without damaging the roots, therefore, a homemade

root washing system was employed to gently clean plant roots for microscopic analysis

(Fig. 6). At four wpi, an average plant root was 30 em in length and the wet weight

averaged four g. The root ball produced was quite massive, considering the diameter of

the individual Conetainers was small. The sheer mass ofeach root system necessitated

choosing a fairly small number of root segments for examination.
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The greatest proportions ofplants that were positive for P. graminis sporosori

were observed among the plants inoculated three dpp (days post planting) (Table 4). P.

graminis sporosori were detected in the roots ofnine cultivars following inoculation thre

dpp. Eight cultivars accumulated greater than 100 sporosori per cm root segment (Table

4) and one cultivar, Stander, accumulated less than 20 sporosori per cm root segments.

Between 80 and 100 percent ofHarrington, Crystal, and B1202 contained P. graminis

sporosori (Table 4) indicating that these three are likely the best hosts for P. graminis.

Although 60 percent of Stander plants were positive for P. graminis sporosori, the level

ofcolonization was comparatively low (Table 4). Two cultivars, Baronesse and Robust,

did not accumulate P. graminis following inoculation three dpp.

Fewer plants were infected with P. graminis following inoculation at seven or 14

dpp. Among these plants, P. graminis sporosori were detected in the roots of five

cultivars. Only one or two plants ofeach cultivar were positive, indicating that the rate of

P. graminis infection was low. The greatest P. graminis infection occurred in Black

Hulless and Post 90, where an average of20 and 184 P. graminis sporosori per cm root

were detected, respectively (Table 4). In combination, these data suggest seedlings

should be inoculated at three dpp.
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Table. 4. Proportion ofbarley plants infected with P. graminis following inoculation 3
7, and 14 dpp.

Plant inoculated 3 dpp Plant inoculated 7 -14 dpp
Proportion Avg. no. Proportion Avg. no.

Barley infected sporosori/ infected sporosori/
Cultivar plantsa cm rootb plantsa cm rootb

B1202 5/5 >100 1/6 1
Baronesse 0/5 0/6
Black Hulless 1/5 >100 1/7 20
Bowman 1/5 >100 0/6
Crystal 5/5 >100 0/6
Excel 1/5 >100 0/7
Harrington 4/5 >100 1/6 1
Morex 2/5 >100 1/6 1
Post 90 3/6 >100 2/8 184
Robust 0/5 0/6
Stander 3/5 <20 0/7

a Root segments from five to eight plants ofeach cultivar were observed for the presence
ofP.graminis sporosori. The numbers ofplants positive for P. graminis relative to the
total numbers ofplants analyzed for each cultivar are indicated.
bThe numbers of sporosori were counted in one cm root segment. The average number of
sporosori in 6 segments is reported. There was a greater number ofP. graminis sporosori
in roots inoculated 3 dpp (days post planting) than in roots inoculated 7 to 14 dpp.
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Microscopy ofP. graminis in barley roots

In this study emphasis was placed on identifying zoosporangia, sporogenic

plasmodia, mature sporosori and resting spores. Fig. 7 shows a diagrammatic

representation of the P. graminis life cycle taken from Karling (1968) and Ledingham

(1939).

In B1202 roots harvested between four and six wpi, most life cycle stages were

detected and, often, more than one stage would be observed in a single root segment.

Zoosporangia and sporogenic plasmodia were seen in root epidermal and cortical cells

(Fig. 8 A-D). Zoosporangia were sometimes tubular and sometimes lobed with cross­

walls dividing it into segments (Fig. 8 A, B). Exit tubes, appearing to abut on the cell

wall, function as release channels of secondary zoospores to the root exterior (Fig. 8 A).

Plasmodia prior to cleavage and cyst formation were observed (Fig. 8 C-E).

Plasmodia (Fig. 8 D) do not have a discernable limiting membrane and were often in

motion, changing shape during observation (Fig. 8 D). Ledingham also described

plasmodia as being long and slender, and highly motile. Plasmodia (Fig. 8 C) that

appeared to be lobed thalli were observed and we were unable to determine if they were

plasmodia just prior to cleavage into cysts or developing zoosporangial thalli. Resting

spores and mature sporosori were most easy to detect (Fig. 8 E, F). The mature sporosori

were spherical or ovoid in shape and contained aggregates ofresting spores.
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Fig. 7. The P. graminis life cycle reported by Karling (1968). Images were taken from
Ledingham (1939).
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Fig. 8. Images ofP. graminis in barley roots. A Zoosporangium (Zsp) with exit tubes
(ET). Exit tubes abut cell wall. B Zoosporangium has many barrel-shaped lobes and
crosswalls (CW). C Plasmodia (P) prior to cleavage into cysts. D Plasmodium, often
appearing branched, can change shape during observation. E Sporosori (Sp) contain
numerous resting spores. F More than one life cycle stage can be viewed in a root
segment. This image contains sporosori and immature plasmodia that likely will cleave
into cysts. Bars = l0J.lm.
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SBWMV systemic infection of barley

At most, 55 percent ofplants tested for each cultivar were positive for SBWMV

(Table 5 and Figs. 9 and 10). The proportions ofplants positive for P. graminis in Tablt

4 and the proportions positive for SBWMV, Table 5, do not coincide because these data

are pooled from three different experiments that produced extremely different levels of1

graminis infection. These data do indicate that most barley cultivars tested were

susceptible to SBMWV (Table 5, and Figs. 9 and 10). The most susceptible cultivars

were Harrington, B1202, Robust, and Stander. These cultivars had the greatest ELISA

values (Figs. 9 and 10) and between 45 and 55 percent of the plants analyzed, from these

cultivars, tested positive for SBWMV. Less than 25 percent of Bowman, Excel, Post 90,

Black Hulless plants were positive for SBWMV. The ELISA values among Black

Hulless, Baronesse, Morex, Stander, Bowman, Crystal, Post 90, and Excel were more

often below 0.1 (Figs. 9 and 10).
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Table. 5. Proportion ofSBWMV infected barley foliage
following inoculation 3, 7, and 14 dpp.

Barley
cultivar

B1202
Baronesse
Black Hulless
Bowman
Crystal
Excel
Harrington
Morex
Post 90
Robust
Stander

Proportion
Unfectedplantsa

6/11
3/9
2/11
2/10
3/11
1/10
4/12
3/11
2/10
5/10
5/10

a Leaves were taken from 2 to 4 plants ofeach cultivar inoculated at
3, 7, and 14 dpp (days post planting) and analyzed by ELISA to
detect SBWMV. The numbers ofplants positive, by ELISA, for
SBWMV, relative to the numbers ofplants analyzed are shown.
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Fig. 9. Five sets ofELISA values obtained from barley grown in sand-culture. ELISAs
were conducted using leafextracts and SBWMV antiserum. ELISA values taken from
plants from five cultivars inoculated at 3, 7, and 14 dpp. Values greater than 0.1 were
determined to be positive for SBWMV. Between 9 and 12 plants were analyzed for each
cultivar. All cultivars were susceptible to SBWMV infection. Each color represents
ELISA values for plants ofeach cultivar.
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Fig. 10. Six sets ofELISA values obtained from barley grown in sand-culture. ELISAs
were conducted using leafextracts and SBWMV antiserum. ELISA values taken from
plants from six cultivars inoculated at 3, 7, and 14 dpp. Values greater than 0.1 were
determined to be positive for SBWMV. Between 9 and 12 plants were analyzed for each
cultivar. All cultivars were susceptible to SBWMV infection. Each color represents
ELISA values for plants ofeach cultivar.
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P. graminis infection of winter wheat using the sand-culture technique

In a single experiment, the sand-culture system was tested to determine if it could

be used to infect wheat plants with P. graminis. WSSMV and SBWMV often cause a

synergistic disease in winter wheat and are both transmitted by P. graminis. Since there

is no information to date focusing on WSSMV transmission by P. graminis, initial tests

were conducted to determine ifP. graminis could be propagated in the WSSMV­

susceptible, SBWMV-resistant wheat cultivar Sierra. Sand-culture grown Sierra plants

would be useful in the future to study WSSMV transmission.

P. graminis inoculum, derived from roots of winter wheat plants (cv. Vona)

grown in a field near the Oklahoma State University campus, was used to inoculate two

Sierra plants at three dpp. Root segments were harvested four to six wpi and were

studied microscopically to detect P. graminis. As in the B1202 barley roots,

zoosporangia, sporogenic plasmodia, and sporosori were seen in root epidermal and

cortical cells (Fig. 11 A through G).

In these wheat roots zoosporangia at varying developmental stages were

observed. The septate zoosporangial thalli were observed with and without exit tubes

(Fig. 11 A, B, D and F). Exit tubes develop in mature zoosporangia and pass to the

exterior of the cell. Dense regions in the zoosporangia may be secondary zoospores,

which will pass through the exit tubes to the exterior of the cell (Fig. 11 B). Young

sporogenic plasmodia were observed (Fig. 11 C) that filled the entire celL Mature

sporosori were observed along the length of the root and near the root tip, within the zone

ofelongation (Fig. 11 E and G).
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Fig. 11. Images ofP. graminis in wheat roots. A, B, F and D show different
zoosporangial stages (Zsp). A shows exit tubes (ET). C contains the sporogenic
plasmodium (P) that takes up the entire cell. D shows young zoosporangia. E cells
contain numerous sporosori (Sp). F shows multiple life cycle stages can occur in a root
segment. G P. graminis infection can occur near the root tip. Bars == 10 J.lrn.
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DISCUSSION

Results in these studies indicate that Harrington and B1202 may be useful

experimental hosts for studying P. graminis and SBWMV using the sand-culture

technique. The proportion of inoculated plants that became infected with P. graminis

was highest among Harrington, Crystal, and B1202 cultivars. Harringto~ B1202, and

Robust were most susceptible to SBWMV, having the greatest proportion of virus­

infected plants and the greatest ELISA values among the infected plants.

To compare host susceptibility to P. graminis, we counted the number of

sporosori in root segments from plants ofeach cultivar. Mature sporosori are the most

visible P. graminis life cycle stage to identify and enumerate. The irregular, grape-like

clusters of sporosori scattered in the cortex of barley roots are often pigmented, making

them easy to identify microscopically (Littlefield et aI., 1998). Often there can be

multiple sporosori in a single cell. Zoosporangia and plasmodia are often less refringent

than sporosori, and therefore are not as easy to quantify.

In general, plants may be more susceptible to P. graminis when inoculated at

three dpp than at seven or 14 dpp. P. graminis root colonization may depend on both

developmental and environmental factors (Adams and Swaby, 1988; Teakle 1988).

Previous studies have indicated that P. graminis prefers to colonize roots within four cm

ofthe sand surface, where the concentration ofoxygen is greater (Gerik, 1992; Verchot et

a!., 2001). P. graminis may also prefer to infect young developing roots. Root cells

within the top four cm ofthe sand culture are developmentally different at three, seven

and 14 dpp. At three dpp the roots are barely emerging while at seven to 14 dpp, roots

are approximately 10 to 15 cm in length.
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The U.K. isolate ofP. graminis is a vector for BaYMV. In previous studies, P.

graminis- and BaYMV-susceptibility ofcereals and grasses was tested using a

viruliferous P. graminis isolate from the U.K. as well as European cultivars ofbarley,

wheat, oats, and rye (Adams et a!., 1987; Adams and Jacquier, 1994). Studies have not

been previously conducted using any U.S. isolates ofP. graminis or SBWMV.

Unfortunately, the barley cultivars tested in the U.K were not available for our studies,

and therefore we could not compare the susceptibility ofbarley to the different P.

graminis isolates. In the U.K. studies, 51 accessions ofHordeum spp. were tested and all

were susceptible to P. graminis (Adams and Jacquier, 1994). In contrast, we found

variation in the susceptibility ofU.S. barley cultivars to the Oklahoma isolate ofP.

graminis and SBWMV. In this study ofP. graminis infected plants, P. graminis

sporosori always accumulated to high levels, but the numbers ofplants for each cultivar

that were positive for P. graminis varied.

In previous studies, plants were assessed for the presence ofzoosporangia or

resting spores and the intensity ofP. graminis colonization was measured using a scale of

zero to three (Adams et aI., 1987; Adams and Jacquier, 1994). In this study, we directly

quantified the number ofsporosori in a random sampling ofplant roots. Using this

sampling technique we were better able to compare relative differences in infection of

different hosts. This method of sampling also allowed us to determine more accurately

the best time to inoculate roots, and to maximize P. graminis colonization.

In this study we observed that many, ifnot all, P. graminis life cycle stages can be

detected simultaneously in one root system. This may be due to the life cycle of the

plasmodiophorid itself Since P. graminis regularly produces primary and secondary
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zoospores within a short time span, secondary or multiple infections may also occur in

one root system. Thus, Polymyxa graminis infections in wheat and barley may appear to

be asynchronous.

In Oklahoma, P. graminis and SBWMV cause disease in winter wheat. In this

study, experiments were conducted using one winter barley (Post 90) and ten spring

barley cultivars. The infestation rate for Polymyxa graminis in Post 90 was less than 50%

at three dpp, indicating that it was not a suitable cultivar for sand cultivation ofthe

fungus. Furthermore, Post 90 was not an effective host for SBWMV (Table 5, Fig. 9).

Since only one winter barley cultivar was tested, we cannot draw conclusions comparing

the differences between spring and winter cultivars. However, these data indicate that

while P. graminis vectors disease in winter wheat in Oklahoma, this isolate is not

exclusively a parasite ofwinter grown cereals.

56



CHAPTER V

A COMPARISON OF VIRUS-VECTOR INTERACTIONS BETWEEN SOIL­

GROWN WHEAT AND SAND-CULTURE GROWN BARLEY

ABSTRACT

The study ofvirus-vector interactions between Polymyxa graminis and Soilborne

wheat mosaic virus (SBWMV) and Wheat spindle streak mosaic virus (WSSMV) has

been complicated by the fact that the plasmodiophorid vectors is an obligate parasite of

wheat and other cereal crops. With the advent of the sand-culture system (Adams et aI.,

1986), further exploration can be made in the field of virus-vector interactions. We

previously examined wheat roots grown in infested field soil for the presence ofP.

graminis resting spores, SBWMV viral RNA, coat prote~ and movement protein. In this

follow-up study, we grew barley in the sand-culture system, embedded root segments

containing P. graminis, and performed experiments to determine if the accumulation of

virus was similar to that of soil-grown wheat roots. SBWMV movement protein and

WSSMV coat protein were found in P. graminis resting spores. No SBWMV coat

protein was found in P. graminis resting spores. SBWMV viral RNA was also found in

P. graminis resting spores.

INTRODUCTION

Known fungal vectors ofplant viruses include members ofthe Chytridiomycetes

and Plasmodiophoromycetes. Two different mechanisms are involved in transmission of
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plant viruses by these vectors. The spherical tombusviruses and necroviruses are

transmitted by zoospores of the chytrid fungus Olpidium brassicae or O. bornavanus

(Matthews, 1991). The viral coat protein is the only known factor to mediate

tombusvirus-Olpidium interactions. Virions are adsorbed onto the surface of the

zoospore and are carried into the plant cell during zoospore penetration. The filamentous

furoviruses, benyviruses, bymoviruses, and pomoviruses are transmitted by zoospores of

the plasmodiophorid organisms Polymyxa graminis, P. belae, or Spongospora

subterranean (Matthews, 1991). These viruses encode a single transmission factor that is

produced as a readthrough domain of the viral coat protein. These viruses are carried

within the zoospore and are released when the zoospore establishes its own infection in a

root cell.

P. graminis is the vector for Soilborne wheat mosaic virus and together they cause

agronomically important disease in winter wheat grown in the Central Great Plains of the

USA (Wiese, 1987). In the previous chapter, we have shown that a sand-culture

technique can be used to successfully propagate an Oklahoma P. graminis isolate in

barley roots (Adams et a!., 1986). We also determined that at four weeks post inoculation

(wpi), we could detect multiple life cycle stages ofP. graminis in barley roots suggesting

this is the optimum time to study P. graminis infection.

The objective of this study was to determine if the sand-culture system is an

effective method ofexploring virus-vector interactions. We embedded roots from winter

wheat grown in fungus-infested soil and from barley grown in sand-culture to determine

ifthe pattern ofvirus accumulation in culture reflects the pattern ofvirus accumulation in

soil-grown roots.

58



MATERIALS AND METHODS

Embedding plant material in Paraplast and in situ hybridization

Root segments were taken from symptomatic hard red winter wheat plants (ev.

Vona) grown in vector-infested soil and embedded in Paraplast (Electron Microscopy

Sciences, Fort Washington, Pa., U.S.A.) (Berlyn and Miksche, 1976; Verchot et al.,

2001), as described in Chapter II. Root segments were collected within ca. four em ofthe

soil surface (Littlefield, 1994; Verchot et aI., 2001). Samples were placed in fIXative

(10:2:1 dilution ofethanol, formaldehyde, and acetic acid) overnight at 4 °c then

dehydrated in a graded series of 50, 60,70,85,95, and 100% ethanol. Ethanol was

replaced with a graded series of25, 50, 75, and 100% xylene. Paraplast chips were added

to the samples at room temperature and samples were incubated overnight. Samples were

infiltrated with Paraplast at 62°C for three days, with molten Paraplast being changed

twice each day. Samples were transferred to plastic molds filled with moltenParaplast

and allowed to harden for 2 h in cool water (Verchot et aI., 2001). For in situ RNA

hybridization and light microscopy, Paraplast embedded wheat roots were sectioned (8.0

f.lm), and then mounted on ProbeOn Plus slides (Fisher Biotechnology). Slides were

incubated with an RNA probe that can hybridize to viral RNAs, as described in Chapter

II. To prepare the RNA probe we used the plasmid p5114, which is a pGEMT plasmid

containing a eDNA copy ofthe 3' 1000 nt ofSBWMV genome. Transcripts were

prepared using ApaI linearized p5114 plasmids, SP6 polymerase, and digoxigenin

labeled UTP.
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The slides were incubated 15 to 20 min at room temperature in 2X sse (17.5 g

NaCI, 8.82 g sodium citrate/} of water, pH 7.0), then in proteinase K (lJ.lg/ml of

proteinase K dissolved in 100 mM Tris-HCI pH 8.0,50 mM EDTA) at 37°C forI 5 to 20

min. Slides were washed for two min at room temperature in PBS-glycine buffer (0.13

M NaCI, 7.0 mM Na2HP04, 3.0 mM NaH2P04, 2.0 mg/ml glycine, pH 7.0), twice with

PBS buffer and then incubated for 10 min at room temperature in 4% paraformaldehyde

(pH 7.0) (dissolved in PBS). Slides were washed twice with PBS for five min at room

temperature, twice with 0.1 M TEA buffer (1.492 g triethanolamine/l 00 ml water, 0.5 m1

acetic anhydride) for 10 min at room temperature and then twice in PBS buffer for five

min at room temperature. Slides were incubated 30 min at 37°C with prehybridization

solution (50% deionized formamide, 5% dextran sulfate, 1% blocking reagent

(Boehringer Mannheim), 500 J.lg/mL poly A, 300 mM NaCI, 10mM Tris-HCI pH 7.5, I

mM EDTA) and then overnight at 42°C with hybridization solution (prehybridization

solution plus digoxigenin-Iabeled RNA probe). Slides were then washed twice with O.2X

sse for 60 min at room temperature, twice with NTE buffer (0.5 M NaCI, 10 mM Tris­

Hel pH 8.0, 1.0 mM EDTA) for five min at 37°C, once in O.2X SSC for 60 min at 55°C,

and once in PBS for five min at room temperature.

For antibody labeling, slides were incubated 45 min with 1 % blocking reagent

then with 1 % bovine serum albumin fraction V (both in a solution of 100 mM Tris-Hel

pH 7.5, 150 mM NaCI, 0.3% Triton X-IOO). Slides were incubated for two h at room

temperature with anti-digoxigenin labeled antibody conjugated with alkaline phosphatase

(diluted 1:1250 in 100 mM Tris-Hel pH 7.5, 150 mM NaCI, and 0.3% Triton X-100).

Slides were washed twice for 15 min in a solution ofl00 mM Tris-Hel (pH 7.5) and 150
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mM NaCI followed by 10 min wash in a solution of 100 mM Tris-Hel (pH 9.5), 100 mM

NaCI, and 50 mM MgCI2.

For developing the reaction, the substrate solution was prepared immediately

before use, by diluting 200 f.!l ofNBTIBCIP stock solution (vial 4, Boehringer Mannheim

DIG Nucleic Acid Detection Kit) in 10 ml buffer 3 (100 mM Tris, 100 mM NaCI, 50 mM

MgCI2). The slides were incubated in darkness, with the color development solution, for

two h to three days at room temperature then rinsed in TE buffer (10 mM Tris-HCI pH

8.1,1 mM EDTA). Slides were dehydrated in a series of25, 50, 75, and 100% ethanol,

for a maximum of five sec in each step, to minimize color loss. The slides were dipped in

xylene. A drop ofPermount and a coverslip were added to each slide prior to viewing

under the light microscope.

Embedding plant material in LR-White and immunofluorescence labeling

Root segments were taken from winter wheat plants (cv. Vona) grown in vector­

infested soil, or from sand-culture grown four-week-old barley (ev. B1202) plants. All

roots were collected from within ca. four em ofthe soil surface. Segments were

embedded in LR-White resin (Ted Pella, Inc., Redding, Calif, U.S.A.) as described

previously (Littlefield et aI., 1998). Root segments were fixed for two h at room

temperature under vacuum in a solution containing 0.5% glutaraldehyde, 4.0%

paraformaldehyde, and 100 mM sucrose in 50 mM sodium cacodylate buffer (pH 7.2).

The samples were rinsed in 50 mM cacodylate buffer without the sucrose, and then post­

fIXed in aqueous 1% osmium tetroxide for one h at room temperature. Samples were

rinsed in water, dehydrated in a graded series ofwater and ethanol, then infiltrated and
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embedded in LR-White resin. Samples were cut with an ultramicrotome (1J.1) and affixed

on ProbeOn Plus slides (Fisher Biotechnology, Pittsburgh, PAl. The slides were

incubated in blocking solution (50 mM Tris-HCI, pH 7.4, 150 NaCI, 2% bovine serum

albumin fraction V) for one h at 4°C, and then incubated with either undiluted SBWMV

movement protein polyclonal antiserum or SBWMV coat protein antiserum (prepared by

the Oklahoma State University Hybridoma Center), for one h. Slides were then

incubated with secondary polyclonal FITC conjugated rabbit antiserum, diluted 1:50, for

one h. Sierra root cross sections were also treated with Wheat spindle streak mosaic virus

(WSSMV) antiserum obtained from Agdia (Elkhart, Ind.), SBWMV coat protein

monoclonal antiserum (prepared by the Oklahoma State University Hybridoma Center),

or buffer only. All control slides were treated with undiluted primary antibodies. Slides

treated with SBWMV coat protein monoclonal antiserum were incubated with secondary

monoclonal FITC-conjugated anti-mouse antiserum, diluted 1:50, for one h. Slides

treated with WSSMV antiserum were treated with secondary polyclonal FIrC conjugated

anti-rabbit antiserum, diluted 1:50, for one h.

Microscopy

Samples were examined for in situ labeling ofSBWMV RNA in P. graminis

infected wheat roots using a Nikon Eclipse E600 (Nikon Inc., Dallas, TX) microscope.

Images were recorded using the Optronics Magnafire digital camera (Goleta, CA),

attached to the Nikon E600 microscope, and Image-Pro plus software (Silver Spring,

MD). A Leica TCS SP2 (Leica Microsystems, Bannockburn, IL) confocal imaging

system was used to study FITC labeling in sporosori, plasmodia, and zoosporangia found
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in P. graminis infected wheat and barley roots. The Leica TCS SP2 system was attached

to a Leica DMRE microscope. Both microscopes were equipped with water immersion

objectives. All images were processed using Adobe Photoshop software (Adobe Systems

Inc., Mountain View, CA).

RESULTS

Evidence that SBWMV accumulates in P. graminis resting spores in wheat roots

Accumulation of SBWMV in P. graminis resting spores in wheat roots was

analyzed using immunofluorescence labeling and confocal microscopy. Cross sections

ofLR-White embedded wheat roots were analyzed using either using coat protein or

movement protein antiserum. SBWMV movement protein, but not coat protein was

detected in P. graminis resting spores (Table 6, Figure 12). In four sections labeled with

coat protein antiserum, we viewed 17 sporosori and none were positive (Fig. 12 E).

However, in seven sections labeled with movement protein antiserum we viewed 23

sporosori and 100% were positive (Fig. 12 C and D). Fluorescence was concentrated in

the root cell walls and also in P. graminis resting spores. In root sections treated with a

heterologous TMV antiserum, there was no fluorescence detected indicating that

nonspecific labeling of the tissue was minimal (Fig. 12 F)

Wheat roots were also embedded in Paraplast and cross sections were analyzed

using in situ hybridization to detect viral RNA. In three sections analyzed, viral RNA

was detected inside nine P. graminis resting sporosori (Fig. 13 B). Viral RNA was

detected in SBWMV infected wheat roots that were positive controls (Fig. 13 A), as in
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Chapter II ofthis thesis. In sections treated with buffer and antiserum (no RNA probe)

there was no label detected, indicating that nonspecific labeling did not occur (Fig. 13 C).

Table. 6. Proportion ofP. graminis infected root sections ofwheat and barley positive
for SBWMV or WSSMV

Wheat roots Barley roots

vRNA 9/9 (s) ND

CP 0/17 (s) 0/5 (s)

MP 23/23 (s) 16/16 (s, p, z)

WSSMV ND 4/7 (s, p)

Buffer 0/21 0/6 (s)

TMV 0/22 (s) ND

Three separate segments ofP.graminis infested wheat and barley roots were sectioned
and examined through in situ hybridization (viral RNA) or immunofluorescence confocal
microscopy (CP, MP, and WSSMV) for presence ofsporosori (s), plasmodia (P), and
zoosporangia (z). Approximately 90 sections were examined; since results were similar
among all sections, a subset ofthe data is listed here. Controls consisted ofbuffer only
(no primary antiserum), and TMV antiserum. ND = not determined.
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Fig. 12. Immunofluorescence labeling ofmovement protein in cross sections ofwheat
roots. A, B images taken using the transmitted light detector ofthe confocal microscope
showing cross sections ofsporosori. C, D images taken of sporosori that were labeled
with movement protein antiserum. E image of sporosori labeled with coat protein
antiserum. F images of sporosori treated with TMV antiserum. Bar = 20 J.lm.
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In situ labeling
SBWMV-infi cted
wh,eat roots

In situ labeling
SBWMVin
P. graminis
resting spores

SBWMV-infected
wheat roots
treated with
buffer (no probe)

Fig" 13. In situ hybridization ofSBWM- infected wheat roots, and viruliferous P.
graminis sporosori. An RNA probe was used to detect SBWMV RNA. A, B Purple spots
in wheat root cross sections and in sporosori cross sections indicate presence ofSBWMV
RNA. C, No purple spots were detected in samples treated with buffer and no RNA
probe. Arrows in B and C indicate sporosori. Bars = 30 Jlm.
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Evidence that SBWMV accumulates in P. graminis resting spo es in sand-culture

grown barley roots

As in the wheat root cross-sections, SBWMV movement prote~ but not coat

protein was detected in P. graminis resting spores (Table 6, Fig. 14,15). In five sections

labeled with coat protein antiserum, we viewed five sporosori and plasmodia and none

were positive (Fig. 14 A-F). In 16 sections labeled with movement protein antiserum we

viewed 16 zoosporangia, plasmodia, and sporosori and 100% were positive (Fig. 15).

Fluorescence was scattered throughout the body of zoosporangia and was concentrated in

exit tubes (Fig. 15 A, B, and C). Fluorescence was also scattered throughout the

plasmodia except in the vacuoles (Fig. 15 D, E, and F). Movement protein was also

detected inside resting spores and along the wall of the spores (Fig. 15G and H) as was

observed in wheat roots (Fig. 12 C, D).
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Fig. 14. Immunofluorescence labeling with coat protein antiserum in barley roots. A, C,
E and G are images taken with the transmitted light detector of the confocal microscope.
B, D, and F were treated with coat protein antiserum, and H was treated with buffer, no
primary antiserum. A, B transmitted light and fluorescence images ofa sporosorus. C,
D, E, and F transmitted light and fluorescence images ofplasmodial stages ofP.
graminis. G, H, transmitted light and fluorescence images, respectively, ofP. graminis
resting spores treated with buffer, no primary antiserum. Bar= 20 J.lID.
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Fig. 15. Laser confocal images ofP. graminis labeled with SBWMV movement protein
antiserum in barley roots. A P. graminis zoosporangium. B, C zoosporangium with exit
tubes. D-F plasmodial stages. G, H sporosori with resting spores. A, D, and G,
transmission images. B, E, and H, fluorescent images. C and F fluorescent images
enlarged to show internal detail. Bar = 811m.
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Evidence that WSSMV accumulates in P. graminis resting spores in sand-culture

grown barley roots

Because P. graminis transmits both SBWMV and WSSMV, experiments were

conducted to determine if we could detect WSSMV in sand culture grown plants. P.

graminis infected barley roots were analyzed by immunofluorescence labeling and

confocal microscopy using WSSMV antiserum.

WSSMV coat protein was detected in P. graminis resting spores (Table 6, Fig.

16). In seven sections labeled with coat protein antiseru~ we viewed seven sporosori

and plasmodia and four were positive (Table 6). Thus while SBWMV coat protein was

not detected in P. graminis sporosori or resting spores, WSSMV coat protein was seen in

association with P. graminis. These data suggest that the mechanism ofSBWMV-P.

graminis interaction may be different from the mechanism for WSSMV-P. graminis

interaction.
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Fig. 16. Transmitted and confocal images ofP. graminis resting spores (A, B, C, and
D) labeled with WSSMV coat protein antiserum in wheat roots. Bars= 8 J.lrn.
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DISCUSSION

The pattern ofvirus accumulation in P. graminis sporosori was similar in roots of

barley grown in sand-culture and wheat grown in soil. SBWMV RNA and movement

protein, but not coat protein, were detected in P. graminis sporosori in each of the two

studies. Using sand-culture grown barley roots we detected SBWMV movement protein

inside P. graminis resting spores, zoosporangia and plasmodia. Viral coat protein was

not detected in plasmodial stages.

SBWMV is transmitted by P. graminis zoospores to plant roots. Its association

with P. graminis resting spores and zoospores is impervious to acid, alkali, or detergent

treatments and has led others to suggest the virus is inside the vector (Rao and Brakke,

1969). Electron microscopy has been used to show virus is present in a macerated root

inoculum but no one has yet reported virus particles inside P. graminis zoospores or

resting spores (Rao and Brakke, 1969). The presence ofviral movement protein in most

P. graminis life cycle stages suggests that the virus may be intimately associated with the

fungus in an alternative form.

The data presented in this study suggest that there may be a ribonucleoprotein

complex consisting ofviral RNA and movement protein occurring inside P. graminis.

Such a ribonucleoprotein complex has been described in relation to virus cell-to-cell and

vascular transport. Viral movement proteins, related to the '30K superfamily' of viral

movement proteins, mediate viral cell-to-cell and vascular transport by binding viral

nucleic acids and carrying them through plasmodesmata and through the vasculature

(Melcher, 2000). The SBWMV movement protein is related to the '30K superfamily'

and may function in this manner (Melcher, 2000). In relation to P. graminis transmission
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ofSBWMV, the ribonucleoprotein complex may be important for virus movement out of

the fungus and into adjacent, uninfected root cells. The ribonucleoprotein complex may

be released during zoospore penetration, or through zoosporangial exit tubes (Fig. 17).

We do not know if the movement protein mediates movement of the virus out of the

fungus, or if the ribonucleoprotein complex is fortuitously released into the cell and then

immediately moves into adjacent cells to initiate infection (Fig. 17). SBWMV may

require the movement protein to mediate plasmodesmata transport as a fIrst step in virus

infection. Further research is needed to investigate these possibilities.

Another explanation for the data is that SBWMV is able to replicate inside P.

graminis. The occurrence ofviral RNA and movement protein in sporosori could

indicate replication and translation ofviral RNAs. Since SBWMV movement protein is

expressed from a subgenomic RNA, movement protein expression would require

production of minus strand RNAs and subsequent transcription of subgenomic RNAs.

Further in situ hybridization experiments to detect minus strand RNAs are needed to test

this hypothesis. Since we lack antiserum to other SBWMV proteins (such as the

replicase or 19K protein) we could not conduct further experiments to determine if other

viral proteins are translated inside P. graminis. Such information would help us

determine if viral gene expression is occurring inside P. graminis.

We present the fIrst evidence that WSSMV accumulates in P. graminis sporosori.

Unlike SBWMV, WSSMV coat protein was also found in 50% ofthe P. graminis

sporosori examined in infected barley roots. WSSMV is a bymovirus and is not related

to SBWMV. The mechanism for transmission ofWSSMV may be unrelated to
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SBWMV, and further research is needed to characterize the mechanism for WSSMV

transmission.

/

l--------------- --------------/'

Fig. 17. A model for P. graminis release ofSBWMV into plant cells. Since movement
protein is detected in zoosporangial exit tubes (indicated in pink in the bottom cell), it is
possible a ribonucleoprotein complex (indicated in blue) consisting ofviral movement
protein and RNA are released along with secondary zoospores (indicated in pink in the
second cell) into adjacent cells. The complex may fITst move to adjacent cells that are yet
uninfected with P. graminis to initiate virus infection there.
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