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Chapter 1

EFFECTS OF SOIL TYPE AND PHOSPHORUS LEVEL ON

PHOSPHORUS LOSS IN RUNOFF

ABSTRACT

The loss of phosphorus (P) in runoff from agricultural soils may accelerate

eutrophication in lakes and streams and degrade surface water quality. Several

management strategies are being developed to minimize agricultural runoff P by

considering P loss risk factors, such as, soil P level and transport mechanism.

Current standards of soil P levels for manure application are often based upon

professional judgment rather than scientific data, as limited soil specific data exist

on the relationship between runoff P and soil P. This study investigates the

relationship between runoff P and soil P for three Oklahoma benchmark soils:

Richfield, Dennis, and Kirkland series. Surface soil (0-15 em) was collected from

three designated locations across Oklahoma, treated with diammonium

phosphate (18-46-0) to establish a wide range of Mehlich 3 P level (25-1016 mg

kg-1
), and allowed to reach a steady state (210 days) in 1m x 0.42m boxes before

rainfall simulation. The rainfall simulation was conducted at an intensity of 75

mm hr-1 on 5% sloped soil boxes. Measurable runoff was collected for 30 min.

and analyzed for dissolved reactive P and total P. Soil samples collected

immediately prior to rainfall simulation were analyzed for the following soil P

values: Mehlich 3 P, water soluble P, ammonium oxalate P saturation index, and



P saturation based on sorption maximum. Runoff dissolved reactive P

concentration was significantly (p<O.05) correlated to M3P (~=O.92-0.95), WSP

(~=O.88-0.96), PSlox (~=O.84-0.94), and PSlsmax (~=O.89-0.96). However, the

relationship between runoff dissolved reactive P and soil P varied between soils,

indicating that P loss to surface water would also vary by soil. Low dissolved

reactive P concentrations coincided with low runoff volumes suggesting soil

hydrology has an impact on the relationship between runoff P and soil test P.
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INTRO'DUCTION

Eutrophication of many streams and lakes has been accelerated due to

the influx of phosphorus (P) from agricultural surface runoff (Pote et aI., 1999).

According to USEPA (1998), agriculture has been identified as the primary

source of non-point source (NPS) pollution degrading the quality of stream and

lake water. Especially the transport of P from agricultural soils has been

recognized as an important contributor to the degradation of surface water quality

(Sims et aI., 1998; USEPA, 1998). As a result, a considerable amount of

research has been conducted to provide knowledge of P transport processes

from soil as a P source to surface water.

A better understanding of P transport process will provide more accurate

information to develop site specific P management strategies. The P risk index is

a tool to assess various landforms and management practices for potential risk of

P movement to water bodies that considers P source and transport factors

(Lemunyon and Gilbert, 1993). Many states (e.g. Oklahoma) are currently in the

process of developing state specific P risk indices. Generally, the factors

contributing to P loss potential are weighted and a relative risk index is derived

from the sum of the weighted factors. However, the weights and the relative P

loss index have been derived primarily from professional judgment, as there is

limited site-specific data (Lemunyon and Gilbert, 1993).

Many researchers have found that the P content of the surface soil directly

influences the loss of P in runoff (Romkens and Nelson, 1974; Daniel et aI.,

1994). Other researchers have shown significant relationships between soil P
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and runoff P concentration (Wendt and Alberts, 1983; Sharpley, 1995; Pote et at.,

1999; Cox and Hendricks, 2000). Because there exists a relationship between

runoff P and soil testP, there should be a critical level of soil P that cou:ld result

in runoff P concentrations high enough to impact water quality (Daniel et aI.,

1994). An effective management strategy to minimize P loss in runoff is to

identify this critical level in soil and to prevent further P addition to that soil. It is

the goal of many states and federal water quality agencies to identify critical

levels for benchmark soils and establish cut-off limits for additional P application

(Daniel et aI., 1994). However, the critical levels and the relationships between

runoff P and soil P are soil specific and dependent upon soil and site

characteristics (Daniel et aI., 1994; Sharpley, 1995; Pote et aI., 1999; Cox and

Hendricks, 2000).

In a review paper, Sharpley (1996) compared the findings from eight

studies and found that the relationship between runoff dissolved reactive P

(DRP) and Bray 1 P varied markedly among soils tested, indicating that soil type

influences the relationship between runoff P and soil P. Cox and Hendricks

(2000) found that two soils with clay contents of 5% and 32°A> would require soil

Mehlich 3 P (M3P) values of 253 mg dm-3 and over 700 mg dm-3
, respective y to

produce runoff DRP concentrations of 1 mg L-1
. Using ammonium oxalate

extractable Fe, AI, and P, Hooda et al. (2000) found that ammonium oxalate P

saturation index (PSlox) was the most significant soil property for predicting water

desorbable P from contrasting soils. Therefore, runoff P - soH P relationships
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used to assess the potential for P loss in runoff will probably have to be soil and

site specific (Sharpley, 1995).

As many researchers have illustrated the relationship between runoff P

and soil P among a wide range of soil types, few have compared multiple soils

within one study. Using ten Oklahoma soils, Sharpley (1995) illustrated soil

specific relationships between runoff P and M3P. However, by correlating DRP

with soil P sorption maxima (Smax), it was found that a single relationship could be

used to describe all ten soils. This study suggests that soil P saturation based on

sorption maxima determines the potential for P loss in runoff (Sharpley, 1995).

Using three Ultisols, Pote et al. (1999) also found soil specific

relationships between runoff DRP and soil water soluble P (WSP). However, it

was found that the differences between the three soils evaluated could be

corrected by normalizing the DRP to runoff depth (em). This finding suggests

that the relationship between runoff P and soil P is dependent upon soil

hydrology.

As both the physical and chemical properties of soil have been proven to

profoundly affect the relationship between runoff P and soil P it is important to

differentiate, if possible, which property may be the most important. Such data

are essential to the development of a P risk index to be used as a site specific

risk assessment and management tool. The objectives of this study are: (i) to

evaluate the impact of soil P on runoff P in three soil series within the Mollisol

order and (ii) to study how soil physical and chemical properties influence runoff

P.
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METHODS AND MATERIALS

Soil

Three Oklahoma benchmark soils, Richfield, Dennis and Kirkland, were

selected for this study on the basis of geographic location, major land use area,

and physical properties (USDA - NRCS, 2000). The three soils were collected

from agricultural research stations located across Oklahoma (Fig. 1.1).

At each of the three locations, the top 15 cm of soil was collected using a

front-end loader. After collection, the soils were sieved (16 mm screen) to

remove rocks and plant materials, and then homogenized using an industrial

mortar mixer. Four diammonium phosphate (DAP) fertilizer treatments were

applied to each soil to reach predetermined M3P levels (Table 1.2). Dissolved

DAP fertilizer treatments were applied using a pressure sprayer during soil

homogenization. Fertilizer was added using an estimate of adding 2 mg fertilizer

P per kg of soil to raise soil M3P by 1 mg kg -1 (Philip Moore, personal

communication). The treated and mixed soils were placed in 42.25cm W x

100cm L x 13.75cm H wooden, mesh-bottomed boxes to a depth of 13 em (Fig.

1.2). There were 48 boxes in total (3 soils, 4 treatments/soil test P levels, and 4

replications). The soils were frequently irrigated and allowed to reach a steady

state for M3P over a period of 210 days before rainfall simulation took place.

Representative soil samples were taken periodically to monitor M3P changes

over time. Plants were not grown in the soil boxes throughout the experiment.

Rainfall Simulation
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The rainfall simulation was conducted using a solenoid-operated, var"able

intensity rainfall simulator based on the design of Miller (1987) (Fig. 1.2) over the

week of June 25, 2001. The simulator has one TeeJet™ ~ HH-SS50WSQ

nozzle placed in the center of the 3m H x 2.8m L x 2.3m W aluminum frame. The

intensity of the simulated rainfall was controlled by the on-off spraying times (1.3

son, 0.4 s off) of the nozzle. The pressure of the water supply for the rainfall

simulator was calibrated to deliver 75 mm hr -1, which is in accordance with the

protocol recommended by the National Phosphorus Research Project (2002) and

equivalent to a 1O-year storm event in north-central Oklahoma (USDC, 1961).

Twenty-four hr. prior to the rainfall simulation, the boxes were irrigated

until saturation and the excess water drained naturally. The bare soil surfaces

were roughed to a depth of 3cm to simulate a freshly tilled field. All runoff water

from each box was guided over a metal collection plate to one collection outlet

connected to a 16 mm rubber garden hose that dumped into a 17 L collection

container sealed with a watertight lid. Paraffin wax was used as a sealant

between the soil surface and the metal runoff collection plate to prevent any

runoff leakage from occurring during the rainfall simulation. Rainfall was applied

to soil boxes on a 5°A> slope until 30 min. of measurable runoff was collected.

From each collection container, total runoff volume was recorded for each soil

box. Collected runoff was manually agitated to re-suspend sediment before one

representative runoff sample (500 ml) was obtained for analyses. In addition, an

aliquot (500 ml) of well-mixed runoff from the B treatment for all soils and

replications was collected every 5 min. throughout the 30 min. runoff duration to
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evaluate changes in runoff volume and P concentration over time. Soil samples

were collected from each box prior to rainfall simulation, and analyzed for

different forms of P and then correlated with runoff P.

Soil and Runoff Analyses

Mehlich 3 extractable P (M3P, Mehlich, 1984), water soluble P 0NSP,

Self-Davis et aI., 2000), P sorption maxima, ammonium oxalate extractable P, AI

and Fe, texture, soil organic matter (SOM), and pH was determined for the three

soils series evaluated. Soil characterization results are summarized in Table 1.1.

Phosphorus sorption isotherms were constructed by shaking (end-aver-end, 24

hr.) 1 g soil with 25 ml of the following concentrations of P in 0.01 M CaCI2

solution: 0, 0.5, 1, 5, 10, 15, 20, 25, 40, and 50 mg/L (Graetz and Nair, 2000).

The samples were centrifuged at 10,000 rpm (14,470 x g) for 5 min., filtered

(0.45 ~m), and analyzed calorimetrically (Murphy and Riley, 1962). Phosphorus

sorption maximum (Smax) was determined as 1/slope of the linear Langmuir

equation for each soil (Graetz and Nair, 2000).

Mehlich 3 P was extracted by shaking (end-aver-end, 5 min.) 2 g of soil

with 20 ml of Mehlich 3 extractant (Mehlich, 1984). The extracts were filtered

0Nhatman #4) and analyzed calorimetrically (Murphy and Riley, 1962). In

addition, P sorption saturation (PSlsmax) was computed using soil WSP (mg kg-1
)

and Smax (mg kg-1
) by the following equation (Sharpley, 1995):

PSlsmax (0/0) =(WSP/ Smax)*100 [eq. 1]

Soil WSP was extracted by shaking 2 9 of soil (end-aver-end, 1 hr.) with

20 ml of distilled water and centrifuging at 10,000 rpm (14,470 x g) for 5 min.
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(Self-Davis et aI., 2000). The supernatant was filtered (0.45 IJm) and analyzed

for P colorimetrically (Murphy and Riley, 1962).

Ammonium oxalate extractable P, AI, and Fe was also measured. Thirty

ml of ammonium oxalate solution (16.2 g ammonium oxalate monohydrate, 10.8

g oxalic acid dihydrate made to one L with deionized water) (Schoumans, 2000)

was shaken (end-aver-end, 2 hr) with 1.5 g of soil, filtered (Whatman #4), and

analyzed for Fe, AI, and P using an ICP-AES. Phosphorus saturation index by

ammonium oxalate extraction (PSlox) was computed using the P, AI, and Fe

contents (mmol kg-1
) using the following equation (Schoumans, 2000):

PSlox (%) = ([P]/ [Fe + AI])*1 00 [eq. 2]

Soil texture was determined using the hydrometer method (Klute, 1986).

Soil pH was determined using a glass electrode at a 1:1 soil/water ratio (w/v).

Soil organic matter was determined using a modified loss-on-ignition method

described by Ben-Dor and Banin (1989) in which 2 g of soil was placed in a

150°C oven to remove moisture (2 hr.), weighed (W1) then placed in a 425°C

oven to remove organic matter (2 hr.) and weighed again (W2). Soil organic

matter was calculated using the following equation:

SOM (0/0) =[(W1 - W2)/ W2]*1 00 [eq. 3]

Immediately after rainfall simulation, an aliquot of runoff water sample was

filtered (0.45IJm) and analyzed colorimetrically (Murphy and Riley, 1962) to

determine dissolved reactive P (DRP, Pote and Daniel, 2000). Total P (TP) from

each runoff sample was determined by digesting 25 ml of runoff at 175°C with 1

ml concentrated H2S04 and 5 ml concentrated HN03 until a total volume of 1 ml
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remained (Pote and Daniel, 20'00). All digested samples were neutralized and

analyzed for P calorimetrically (Murphy and Riley, 1962). Particulate P (PP) was

calculated by subtracting DRP from TP. Runoff TP and DRP loads (mg) were

computed by multiplying DRP and TP concentration (mg L-1
) by total runoff

volume (L).

Total suspended solids (TSS) were determined for all runoff water

samples by vacuum filtering (O.45IJm) 50 ml of well-mixed runoff water sample

and drying the vacuum filter cup and filter paper at 95°C. The initial dry weight of

the vacuum cup and filter was subtracted from the final dry weight of the

sediment, vacuum cup and filter to give TSS. Runoff TSS load (mg) was

calculated by multiplying TSS (mg L-1
) by runoff volume (L) for all runoff water

samples.

Statistical Analysis

Simple linear regression was used to correlate runoff DRP and TP

concentrations with different soil P for all plots. The strengths of these

correlations were expressed by the coefficient of determination (~VaIU~ These

data were also analyzed for significant differences among the three soil series

evaluated using analysis of covariance.
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RESULTS AND DISCUSS ON

The Effect of Fertilizer P on Soil Test P

Soil samples were collected from all soil treatments and analyzed

periodically over a year to assess the effect of fertilizer P on soil test P (8 P)

over time. After fertilizer application, soil M3P increased sharply as the amount

of fertilizer P increased (Table 1.2). However, soit M3P decreased with time

since the first sampling. All three soil series evaluated followed a pattern of

rapidly decreasing M3P through the first 60 days followed by a slower decrease

through 120 days. During the remainder of the experiment, M3P continued to

decrease slowly and reached a steady state by 210 days (Fig. 1.3). This

suggests that a considerable amount of free P exists either in solution or as

undissolved P fertilizer shortly after P fertilizer application. This free P is easily

extractable and susceptible to dissolution and transport during a runoff event

resulting in greater P runoff risk. With time this free P is gradually preci,pitated as

Fe and AI phosphates in low pH soils or as Ca phosphates in higher pH soils.

Ultimately, apatite compounds may form over great periods of time rendering soil

P relatively insoluble (Pierzynski et aI., 1994; Havlin et aI., 1999). As runoff P is

directly related to soil test P, the length of time between P applicat"on and the

first runoff event is very important (Sharpley et aI., 1994; Daniel et aI., 1994).

This suggests that as soil P was highest shortly after P fertilizer application,

runoff P would also be highest immediately after fertilizer application.

Based on the changes of M3P averaged over all three soils 1 yr. after P

fertilizer addition, it was determined that soil M3'P would be raised 1 mg kg-1 by
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the addition of 1.48 mg kg-1 fertilizer P or a fertilizer P to M3P ratio of 1.48:1 (Fig

1.4). More specifically, the Richfield and Dennis series had very similar results

requiring ratios of 1.56:1 and 1.58:1, respectively, and the Kirkland series

required 1.32:1. From a long term soil fertility field study, Johnson et al. (1998)

found that the addition of as much as 6 mg kg-1 fertilizer P is required to raise soil

M3P 1 mg kg -1. It is difficult to compare the results of this study with the field

data since the field study lasted for more than 25 yrs. and field P loss beyond

crop removal was not included. However, the present study collected data in a

controlled environment over a period of one year. Producers and researchers

would be able to predict STP if the relationship between STP and P addition can

be established, but short-term experiments may result in different relationships

from those derived from long term field data.

Impact of Runoff Duration on Runoff P

Simulated rainfall was applied to all soil boxes at an intensity of 75 mm

h -1r . At this intensity, measurable runoff began 4 to 7 min. after rainfall was

applied to soil boxes. Rainwater penetrated through the soil surface or

accumulated in small depressions before runoff started. Infiltration rates were

determined by subtracting the volume of runoff collected in 5 min. intervals from

the total volume of rainfall that was applied to the soil surface during the same

time period. Overall infiltration rates were greatest for the Dennis series (Fig.

1.5). Consequently, the Dennis series resulted in lowest runoff volumes while

the Kirkland and Richfie d series had higher but similar runoff volumes and

infiltration rates (Fig 1.5).
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Runoff water samples were also taken fro,m the 235, 225, and 180 mg kg-1

treatments (all replications) for the Richfield, Dennis, and Kirkland soil,

respectively, every 5 min. to evaluate runoff P changes over the observed 30

min. runoff duration. The DRP concentration of the 5 min. samples decreased

with time over the 30 min. runoff duration and was negatively correlated (~-O.64­

0.97; p<O.05) with runoff volume measured also at 5 min. intervals (Fig 1.6, 1.7).

Total P (TP) in the runoff of 5 min. samples also decreased with time and was

negatively correlated to runoff volume as increasing runoff volume with time

diluted the runoff TP concentration. These data suggest that over longer rainfall

- runoff duration runoff P concentrations would likely continue to decrease. This

is in agreement with Quinton et al. (2001) who found that runoff P concentrations

generally decreased with increasing rainfall - runoff event duration.

Relationships between Runoff P and Soil P

Soil samples were collected immediately prior to rainfall simulation and

analyzed for M3P, WSP, PSlox and PSlsmax (Table 1.2). All these soil P values

were well correlated among themselves and were used to correlate with runoff

properties. In addition, the source water (potable well water) used for the rainfall

simulation had an average TP and ORP of 0.07 mg L-1
.

Total P concentrations in runoff ranged from 1.0 to 13.8 mg L-1 for all

treatments (Table 1.3). Total P was significantly (p<0.05) correlated to M3P

(,-2=0.81-0.92), WSP (,-2=0.77-0.85), PSlox (,-2=0.66-0.85), and PSlsmax (~=0.81­

0.92). However, particulate P (PP) was not well correlated to soil M3P, WSP,

13



PSlox, or PSlsmax. Particulate P constituted most (>58%) of TP for al treatme ts

although the percentage of PP decreased with an increase in soil P (Table 1.3).

Runoff DRP ranged from 0.1 to 3.8 mg L-1 for all treatments (Table 1.3)

and was significantly (p<0.05) correlated to M3P (~=0.92-0.95), WSP (,-2=0.88­

0.96), PSlox (,-2=0.84-0.94), and PSlsmax (,-2=0.92-0.95) (Table 1.4). Additionally,

each soil series expressed a significantly (p<0.05) different relationship between

DRP and soil WSP and M3P when compared among the three soil series. These

findings are consistent with that found by Pote et al. (1999) among three Ulti50ls

and other researchers who have studied the relationship between runoff P and

soil P (Sharpley, 1995; Cox and Hendricks, 2000).

Although researchers have found that runoff P is often a function of P

sorption capacities and texture (Cox and Hendricks, 2000; Sharpley 1995), the

high levels of soil P in this study likely masked the influence of P sorption and

texture on runoff P. As a result, the differences observed among the three soils

in the runoff DRP-soil P relationship are probably a result of the varying

hydrologic properties of the three soils evaluated in this study (Table 1.1). For

example, the Dennis series, the soil with the lowest clay content and Smax, had

the lowest DRP concentration at any given level of soil P. The Dennis series

also displayed the greatest infiltration rate and consequently the smallest

average runoff volume. Because the Dennis soil has a high infiltration rate

relative to the remaining soils, the rain that strikes the soil surface is subject to

greater infiltration and less surface flow and thus has a diminished ability to

dissolve P and detach finer soil particles for transport in runoff. In addition, the
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Dennis series resulted in the lowest overall TSS concentration, TP concentrafon,

TP load, and DRP load.

The other two soils were similar in infiltration rate, though the Kirkland

series produced a larger average runoff volume. The Kirkland series produced a

lower concentration of DRP at high levels of soil P compared to the Richfield

series. The Kirkland series also produced the larg,est concentration of TSS, TP

and TP load. However, the Richfield series released the largest concentration of

DRP and DRP load. The difference between the two being that PP constituted a

larger portion of TP in the Kirkland series. This suggests that the Kirkland series

is more susceptible to erosion processes than the Richfield series and the

Richfield series has a higher potential to release DRP to runoff than the Kirkland

series.

Several approaches were examined here in an effort to develop one

regression equation to describe the relationship between runoff DRP and soil P

for all three soils series. Each of these approaches considered a soil chemical or

physical property to attempt to describe the relationship between runoff DRP and

soil P for all three soils in one regression equation. The first approach was to

normalize runoff DRP concentrations (mg L-1
) by including hydrologic data (runoff

depth, mm) using the following equation:

NDRP =DRP / Runoff depth [eq. 4]

However, it was found that when normalized DRP (NDRP) was correlated to soil

WSP the relationships remained soil-specific. This suggests one regression
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equation could not be used to accurately describe the relationship between runoff

NDRP and soil P (Fig 1.12).

In a similar study, Pate et al. (1999) nor.malized runoff DRP concentrations

in a similar manner for three Ultisols to correct for observed DRP-soil P

relationship differences among soils. However, Pote et al. (1999) found that by

normalizing runoff DRP concentration one regression equation could be used to

describe the relationship between runoff DRP and soilP. As the Pote at al.

(1999) study was performed on three Ultisols in a field situation, the hydrological

properties of the soils evaluated were probably not impacted to the extent of the

soils in this study. The soils in this study were removed from the field and

sieved. Both of these actions may have impacted the physical properties (e.g.

bulk density, pore volume, etc.) of the soils. In addition, this study worked with a

much wider range of M3P and WSP and the differences between the regression

lines seem to be amplified at high levels of M3P and WSP. Lastly, all soil

surfaces in this study had no surface cover while the sites evaluated by Pate et

al. (1999) were under well established tall fescue (Festuca arundinacea).

Another approach evaluated to correct for observed differences in the

runoff DRP - soil P relationship considered the degree of soil P saturation.

Runoff ORP was correlated to soil P sorption saturation index (PSlsmax), which

was calculated using soil WSP and soil P sorption maxima, and ammonium

oxalate P sorption index (PSlox). For all three soils, runoff DRP was highly

correlated (~=O.92-0.95; p<O.05) with PSlsmax, although, the regression

equations varied by soil (Table 1.4; Fig. 1.10). This suggests that one regression
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equation can't be used to describe the relationship between runoff DRP and soil

PSlsmax. However, Sharpley (1995) found that by relating runoff ORP to soil

PSlsmax (soil M3PI Smax), one regression equation could be used to describe the

dependence of runoff ORP on PSlsmax from 10 soils recently amended with

poultry litter.

Runoff ORP was also highly correlated (~=O.84-0.94; p<O.05) with PSlox

(eq. 2) for all soils evaluated (Table 1.4; Fig. 1.11). By using the PSlox approach,

it was found that one regression equation could be used to describe the DRP­

PSlox relationship for both the Richfield and Kirkland soil series, but not for the

Dennis series. Using PSlox shows promise as a soil analysis that may be used

to describe the relationship between runoff ORP and soil P for groups of soils.

However, further research is required to define the criteria needed to group soils

to allow for general runoff DRP predictions based only upon PSlox. Furthermore,

as PSlox is not a common soil analysis, additional expenses are needed to

perform this test.
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CONCLUSONS

The addition of fertilizer P to the three soils in this experiment caused a

dramatic increase in soil M3P initially. However, soil M3P decreased rapidly

within the first 60 days and continued to change slowly through 120 days. By

210 days after P fertilizer addition, the change in soil M3P seemingly leveled off

indicating that STP had reached a steady state. This information may be useful

for timing experiments involving the addition of fertilizer P to soil environments,

such as rainfall simulation experiments or to raise soil test P for other studies.

It was found the addition of about 1.5 mg fertilizer P for each kg soil raised

M3P one unit (mg kg-1
) one year after P addition. As this was an indoor

experiment, many environmental variables were controlled and thus provided an

accurate assessment of the actual amount of fertilizer P required to raise soil

M3P by one unit. This information may also provide useful for future controlled

environment experiments involving the addition of fertilizer P to achieve a

predetermined soil M3P level, and to estimate time required to reach a critical

M3P level for farmers.

Dissolved reactive P and TP concentrations decreased over time during

the 30 min. runoff duration for all soils tested. This suggests that with increased

runoff duration, runoff P concentrations would likely continue to decrease.

Of the three soil series studied, runoff DRP and TP were highly correlated

with soil M3P, WSP, PSlsmax, and PSlox. However, the relationship between

runoff DRP and soil M3P and soil WSP was significantly different for each soil

series evaluated. Although relating runoff ORP to PSlsmax and PSlox did not
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result in one regression equation that could describe the relationship between

runoff DRP and soil P for all three soil series evaluated, using PS ox showed

promise as a soil analysis that may be used to describe the relationship between

runoff DRP and soil P for groups of soils. However, further research is required

to define the soil property criteria needed to group soils to allow for general runoff

DRP predictions based only upon PSlox.

In this study, soil hydrology seemed to be the most important soil property

controlling runoff P concentrations. Low DRP concentrations coincided with low

runoff volumes suggesting soil hydrology has an impact on the relationship

between runoff P and soil test P.

19



REFERENCES

Ben-Dor, E., and A. Banin. 1989. Determination of organic matter content in
arid-zone soils using a simple "Ioss-on-ignition" method. Co:mmun. Soil
Sci. Plant Anal. 20:1675-1695.

Cox, F.R., and S.E. Hendricks. 2000. Soif test phosphorus and clay content
effects on runoff water quality. J. Environ. Qual. 29:1582-1586.

Daniel, T.C., A.N. Sharpley,D.R. Edwards, R. Wedepohl, and J.t. Lemunyon.
1994. Minimizing surface water eutrophication from agriculture by
phosphorous management. J. Soil Water Conserve 49:30-35.

Graetz, D.A., and V.D. Nair. 2000. Phosphorus sorption isotherm determination.
p. 35-38. In G.M. Pierzynski (ed.) Methods for P analysis. Southern
Cooperative Series Bulletin No. #396.

Havlin, J.L., J.D. Beaton, S.L. Tisdale, and W.L. Nelson. 1999. Soil fertility and
fertilizers, 6th ed. Prentice-Hall, New Jersey

Hooda, P.S., A.R. Rendell, A.C. Edwards, P.J.A. Withers, M.N. Aitken, and V.W.
Truesdale. 2000. Relating soil phosphorus indices to potential
phosphorus release to water. J. Environ. Qual. 29:1166-1171.

Johnson, G.V., N.T. Basta, H.A. Zhang, J.A. Hattey, W.R. Raun, and J.H.
Stiegler. 1998. Science-based animal waste phosphorus management
for Oklahoma. Production Technology 98-1, Dept of Plant & Soil
Sciences, Okrahoma State University.

Klute, A. 1986. Methods of soil analysis, Part 1, 2nd ed. p. 404-408.

Lemunyon, J.L., and R.G. Gilbert. 1993. The con:cept and need for a
phosphorus assessment tool. J. Prod. Agric. 6:483-486.

Mehlich, A. 1984. Mehlich 3 soil test extractant: A modification of Mehlich 2
extractant. Commun. Soil Sci. Plant Anal. 15:1409-1416.

Miller, W.P. 1987. A solenoid-operated, variable intensity rainfall simulator. Soil
Sci. Soc. Am. J. 51 :832-834.

Murphy, J. and J.Riley. 1962. A modified single solution method for the
determination of phosphate in natural waters. Anal. Chim. Acta 27:31.

20



National Phosphorus Research Project. SERA-17: Minimizing phosphorus
losses from agriculture. Available at http://www.soiLncsu.edu/sera17/
(verified 20 Feb. 2002.)

Pierzynski, G.M., J'.T. Sims, and G.F. Vance. 1994. SoHs and environmental
quality. CRC, Boca Raton, Florida.

Pote, D.H., T.C. Daniel, A.N.Sharpley, P.A. Moore, Jr., D.R. Edwards, and D.J.
Nichols. 1996. Relating extractable soi'l phosphorus to phosphorus
losses in runoff. Soil Sci. Soc. Am. J. 60:855-859.

Pote, D.H., T.C. Daniel, A.N. Sharpley, P.A. Moore, Jr., D.M. Miller, and D.R.
Edwards. 1999. Relationship between phosphorus levels in three Ultisols
and phosphorus concentrations in runoff. J. Environ. Qual. 28:170-175.

Pate, D.H., and T.e. Daniel. 2000. Analyzing for dissolved reactive phosphorus
in water samples. p.91-93. In G.M. Pierzynski (ed.) Methods for P
analysis. Southern Cooperative Series Bulletin No. #396.

Quinton, J.N., J.A. Catt, and T.M. Hess. 2001. The selective removal of
phosphorus from soil: is event size important? J. Eviron. Qual. 30:538­
545.

Romkens, M.J.M. and D.W. Nelson. 1974. Phosphorus relationships in runoff
from fertilized soils. J. Environ. Qual. 3:10-13.

Sauer, T.J., T.G. Daniel, D.J. Nichols, C.P. West, P.A. Moore, Jr., and G.L.
Wheeler. 2000. Runoff water quality from poultry litter-treated pasture
and forest sites. J. Eviron. Qual. 29:515-521.

Schoumans, a.F. 2000. Determination of the degree of phosphate saturation in
non-calcareous soils. p.31-34. In G.M. Pierzynski (ed.) Methods for P
analysis. Southern Cooperative Series Bulletin No. #396.

Self-Davis, M.L., P.A. Moore, Jr., and B.C. Joern. 2000. Determination of water­
and/or dilute salt-extractable phosphorus. p. 24-26. In G.M. Pierzynski
(ed.) Methods for P analysis. Southern Cooperative Series Bulletin No.
#396.

Sharpley, A. N., T.e. Daniel, J.T. Sims, and D.H. Pote. 1996. Determining
environmentally sound soil phosphorus levels. J. Soil Water Canserv.
51: 160-166.

Sharpley, A.N., S. C. Ghapra, R. Wedepohl, J.T. Sims, T.e. Daniel and K.R.
Reddy. 1994. Managing agricultural phosphorus for protection of surface
waters: issues and options. J. Environ. Qual 23:437-451.

21



Sharpley, A.N. 1995. Dependence of runoff phosphorus on extractable soil
phosphorus. J. Environ. Qua1. 24:920-926.

Sims, J.T., R.R. Simard, and B.C. Joern. 1998. Phosphorus loss in agricultural
drainage: historical perspective and current research. J. Environ. Qual.
27:277-293.

USDA - NRCS Soil Survey Division. Official soil series descriptions - data
access [Online]. Available at http://www.statlab.iastate.edu/soils/osd/
(ver~fied 9 Oct. 2000.)

U.S. Dept. of Commerce. 1961. Rainfall frequency atlas of the United States.
Hydrologic Services Division for Engineering Division and Soil
Conservation Service, U.S. Dept of Agriculture, Washington, D.C.

u.S. Environmental Protection Agency. 1998. National water quality inventory.
1998 Rep. to Congress. Office atWater, USEPA, Washington, D.C.

Wendt, R.C., and E.E. Alberts. 1984. Estimating labile and dissolved inorganic
phosphate concentrations in surface runoff. J. Environ. Qual. 13:613-618.

Wolf, A.M., D.E. Bakler, H.B., Pionke, and H.M. Kunishi. 1985. Soil tests for
estimating labile, soluble, and algae-available phosphorus in agricultural
soils. J. Environ. Qual. 14:341-348.

22



Table 1.1. Soil classification and chemical and physical characteristics of three soils series evaluated

Richfield Ardic Argiustoll
Dennis Acquic Argiudoll
Kirkland Udertic Paleustoll

1.8
2.0
2.4

Organic MatterSift

21
30
28

Sand

34
11
24

Clay
-------- % --------

45
59
48

-mgkg-'­
312
189
244

pH

7.6
7.3
5.4

Classification§Soil Series

§ USDA - NRCS, 2000
; P sorption maximum (Smax) calculated as 1/slope of linear Langmuir P sorption isotherms

N
w



PSlsmax §*Soil Series PAdded Mehlich 3 P* Water Soluble P* PSloxf*
Table 1.2. Amount of fertilizer phosphorus added and mean soil phosphorus values for each treatmentt

-mg kg-1- -mg kg-1- -mg kg-1- %--

Richfield 0 28(1.7) 4.3(0.4) 13(1.4)
235 172 (14) 32 (5.7) 26 (4.3)
635 428(15) 58(14) 51(1.0)
1135 817 (42) 196 (21) 78 (3.2)

Dennis 0 35 (1.8) 3.2 (0.2) 10 (1.1)
225 144 (6.7) 17 (1.6) 24 (2.6)
625 411 (28) 67 (8.0) 47 (6.0)
1125 925(79) 230(54) 92(31)

Kirkland 0 57 (0.7) 4.0 (1.4) 11 (0.4)
180 169 (12) 18 (3.3) 19 (0.2)
580 478(19) 67(4.1) 36(1.9)
1080 919 (100) 146 (34) 52 (3.4)

--%--

1.4(0.13)
10 (1.8)
27 (4.4)
63 (14)

1.7(0.12)
9.2 (0.82)
35 (4.2)
122 (28)
1.6 (0.58)
7.5 (1.3)
28 (1.7)
60 (14)

tAli analysis conducted after 210-day soil equilibration time
tAmmonium Oxalate P Saturation Index (PS1ox) based ammonium extractable P, AI and Fe
§P Sorption Saturation (PSlsmax) based on Water Soluble and P sorption maxima
*Values reported as mean of four replications with standard deviation in parentheses



Table 1.4. Runoff dissolved reactive phosphorus (DRP) correlated to four soil phosphorus levels
Richfield Soil Series Dennis Soil Series Kirkland Soil Series

f2
DRP=0.0046M3P - 0.14 0.95
DRP=O.018WSP + 0.037 0.96
DRP=O.054PSlox - 0.72 0.91
DRP=O.058PSlsmax - 0.37 0.96

DRP=0.0019M3P + 0.037
DRP=0.0073WSP + 0.21
DRP=0.019PSlox - 0.037
DRP=0.025PSlsmax + 0.22

f2
0.95 DRP=0.0025M3P + 0.029
0.93 DRP=0.014WSP + 0.19
0.84 DRP=0.053PSlox - 0.54
0.89 DRP=0.053PSlsmax + 0.54

f2
0.92
0.88
0.94
0.94

*AII ? values were significant (0 =0.05)
tM3P - Soil Mehlich 3 P
tWSP Soil Water Soluble P
§PSlox - Ammonium Oxalate P Saturation Index
**PSlsmax - P Sorption Saturation



Richfield

Figure 1.1. Locations of Richfield, Kirkland and Dennis soils collected for the
study.
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Figure 1.2. Solenoid-operated, variable intensity rainfall simulator with paired 1m
x O.42m runoff boxes.
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Figure 1.3. Changes in Mehlich 3 phosphorus over 360 days for four fertilizer
phosphorus treatments in the Richfield soil series.
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Chapter 2

PHOSPHORUS LOSS IN RU OFF FRO LONG-TER

CONTINUOUS WHEAT FERTILITY TRIALS

ABSTRACT

Runoff from intensely managed winter wheat (Triticum aestivum)

production may contain elevated levels of phosphorus (P), which can degrade

surface water quality. However, limited information exists concerning the impact

soil P level has on the P content of runoff from areas of long-term continuous

winter wheat production. Paired 1m x 2m runoff plots were established on three

existing long-term continuous winter wheat fertility experiments. Two experiments

have received annual fertilizer P application at different rates since 1970, and the

third one received a one-time P application at much higher rates in 1977.

Simulated rain (75 mm hr-1
) produced 30 min. of runoff from plots with different

soil test P levels; and runoff was collected and analyzed for dissolved reactive P

and total P. Soil samples (0-15cm) were collected from runoff plots and analyzed

for Mehlich 3 P, water soluble P, ammonium oxalate P saturation index, and P

sorption saturation. Soil Mehlich 3 P ranged from 12 to 130 mg kg-1
. Runoff total

P and dissolved reactive P (DRP) concentrations ranged from 0.47 to 1.5 mg L-1

and 0.07 to 0.70 mg L-1
, respectively. Runoff DRP was well correlated (p<0.05)

with M3P (,-2=0.56-0.69), WSP (r2=O.48-0.69), PSlox (,-2=0.50-0.51), and PSlsmax

(,-2=0.56-0.69) for all soil series tested. However, the regression equations
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between DRP and soil M3P were different for different soils suggesting that soil P

management strategies should be made on a soil specific basis. For a give

level of soil M3P, high soil P sorption maximum coincided with low runoff DRP

concentrations. This suggests the importance of a soil's ability to retain P in

determining P loss in runoff.
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NTRODUCTION

Phosphorus (P) loss from intensely managed agro-ecosystems is often

associated with accelerated eutrophication and algal blooms in lakes and other

surface water bodies (Zemenchik et aI., 2002). Over the past 25 yr., the amount

of plant-available P in some soils have increased substantially from excessive P

fertilizer and manure application (Bundy et aI., 2001). When elevated soil P

levels coincide with zones of surface runoff, elevated soil P levels can account

for most of the total annual load of P in surface water (Edwards et aI., 1993).

Consequently, controlling agricultural non-point source (NPS) P loss is of great

concern to minimize surface water degradation (USEPA, 1998).

At present, a large amount of P runoff information deals with animal

manure applications. Mueller et al. (1984) compared runoff P from varying tillage

systems for corn and found that surfacing spreading manure increased runoff

dissolved reactive P (DRP). Cox and Hendricks (2000) found that two UltisoJs

amended with poultry litter increased in soil Mehlich 3 P and runoff DRP. Sauer

et al. (2000) found that poultry litter treated plots had higher concentrations of

runoff P compared to untreated pasture and forested runoff plots.

Researchers have also compared runoff P from varying tillage and

cropping systems receiving commercial P fertilizers. Romkens et al. (1973)

working with corn, found that reduced tillage systems decreased sediment

nutrient losses but increased runoff dissolved P concentrations when compared

to conventional tillage. Gascho et al. (1998) also working with corn, found that

runoff P losses were greatest one day after commercial P fertilizer application.
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Sharpley et al (1991) stated that conservation ti lage reduced sed,iment and P

transport in runoff relative to conventional tillage while working with sorghum On

the Southern Plains. Doug as et al. (1998) found tha runoff P was hig er for

continuous fallow than for both winter wheat and spring pea cropping systems.

Additionally, earlier runoff P - soil P experiments were conducted on soils

amended with P fertilizer or manure to establish a wide range of soil P levels.

Often times, these fertilizer or manure amendments are applied shortly before

the data were collected resulting in a relatively short time period for the fertilizer

or manure amendment to react with the soil. Reddy et al. (1978), using soil

micro-plots amended with manure and commercial fertilizers that were incubated

for 23 days, found that runoff P loss increased with increased chemical P and

manure applications. Edwards and Daniel (1993) applied simulated rainfall to

soil plots 24 hr. after manure application and found that runoff P increased with

increased manure application. Bundy et al. (2001) found that P in runoff

collected from no-till corn production plots that had received manure and

biosolids for 5 yro increased as Bray 1 P increased. Cox and Hendricks (2000)

found that runoff DRP losses increased with recent fertilizer P application in

wheat (Triticum aestivum) and barley (Hordeum vulgare) production.

However, there are few studies that involve experimental soils or sites that

have been under long-term fertilizer P application and have been under long­

term continuous winter wheat (Triticum aestivum) cultivation. Consequently, the

relationship between soil P and runoff P in soils under long-term continuous

winter wheat cultivation receiving chemical fertilizer has not been thoroughly
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researched. The objective of this study is to evaluate the relationship between

runoff P and soil P on three Oklahoma soils that have been under continuo s

wheat production and have received long-term P fertility treatments for over 30

years.
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MATERIALS AND METHODS

Rainfall Simulation Sites

Three sites (Lahoma, Stillwater, and Haskell research stations) were

chosen from existing long-term fertility research plots located across Oklahoma

to evaluate the relationship between runoff P and soilP (Figure 2.1). The

Lahoma site (long-term fertility experiment #502) was establ"shedon a Grant silt

loam in the fall of 1970 (Raun et aI., 2000) with five fertilizer P (triple sU,per

phosphate, 0-46-0) application rates (0-40 kg P ha-1
, 5 treatments) on an annual

basis and has been under continuous winter wheat (Triticum aestivum)

cultivation (Table 2.2). The last P fertilization was about one year before rainfall

simulation took place.

The Stillwater site (long-term fertility experiment #222) was established on

a Kirkland loam in 1969 (Raun et aI., 2000) with four fertilizer P (triple super

phosphate, 0-46-0) application rates (0-44 kg P ha-1
, 4 treatments) on an annual

basis and has been under continuous winter wheat (Triticum aestivum)

cultivation for 31 years (Table 2.2). The last P fertilization was also about one

year before rainfall simulation.

The Haskell site (long-term fertility experiment #802) was established in

the fall of 1977 ona Taloka silt loam (Raun et aI., 2000) with four, one time

fertilizer P, (triple super phosphate, 0-46-0) application rates (0-587 kg P ha-1
t 4

treatments) in the fall of 1977 (Table 2.2). In addition, winter wheat (Triticum

aestivum) has been planted for 23 continuous years. To alleviate soil acidity
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problems, lime was applied for two consecutive years (July 1998 and July 1999)

at a rate of 1600kg ECCE ha-1 (Raun et aI., 2000).

Runoff Plots

At each of the three sites, two sets of paired runoff plots were established

on each P rate treatment (5-Stillwater, 4-Lahoma, 4-Haskell) to give four

replications per treatment and 52 total runoff plots. Each site was disked before

1m x 2m runoff plots were established using 0.2cm x 15cm metal strips installed

to a depth of 10 em on 5°~ sloped fertility plots. Runoff gutter was installed on

the down-slope end of the plot to collect runoff. In addition, paraffin wax was

used to seal runoff gutter to soil to prevent runoff loss underneath and around the

gutter. Plexi-glass strips were placed over guttering to prevent rainfall from

falling directly into runoff gutter while still allowing runoff collection. Twenty-four

hr. prior to rainfall simulation, all runoff plots were irrigated until saturated.

Rainfall Simulation

Rainfall simulations were conducted at the Stillwater and Lahoma sites

during August 2000 and the Haskell rainfall simulation was conducted during

August 2001. Simulated rainfall was applied using a portable, solenoid-operated,

variable intensity rainfall simulator based on the design of Miller (1987) (Fig. 2.2)

with one TeeJet™ ~ HH-SS50WSQ nozzle placed in the center of the 3m H x

2.8m L x 2.3m W aluminum frame. The rainfall simulator was calibrated to

deliver 75 mm hr-1
, which is in accordance with the protocol recommended by the

National Phosphorus Research Project (NPRP) and equivalent to a 10-year
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storm event in north-central Oklahoma (USDC, 1961). The intens'ty of the

rainfall was controlled by the on-off (1.3 son; 0.4 s off) spraying times of the

nozzle. Water was supplied to the simulator from a 500 gal water tank that was

filled from the respective research station'spotab e well water source.

At each experimental site, simulated rainfall was ap.plied to runoff plots

until 30 min. of measurable runoff was collected. Peristaltic pu,mps were used to

transfer runoff collected in each gutter to 35 L collection containers. The

accumulative runoff volume was recorded every five min. for 30 min.. Collected

runoff was manually agitated to homogenously re-suspend sediment before one

representative runoff sample (500 ml) was obtained from each runoff plot forP

analysis. Runoff samples were stored at 4°C until lab analyses were performed.

Soil and Runoff Analyses

Shortly after rainfall simulations, soil samples (0-15cm) were collected for

characterization and for correlation with runoff P. Mehlich 3 extractable P (M3P,

Mehlich, 1984), water soluble P 0/VSP, Self-Davis et aI., 2000), P sorption

maxima, ammonium oxalate extractable P, AI and Fe, texture, soil organic matter

(OM), and pH were determined for the three soils series evaluated. Soil

characterization results are summarized in Table 2.1. Phosphorus sorption

isotherms were constructed by shaking (end-aver-end, 24 hr.) 1 g soil with 25 ml

of the following concentrations of P in 0.01 M CaCI2 solution: 0, 0.5, 1, 5, 10, 15,

20, 25, 40, and 50 mg/L (Graetz and Nair, 2000). The samples were centrifuged

at 10,000 rpm (14,470 x g) for 5 min., filtered (0.45 IJm), and analyzed for P

calorimetrically (Murphy and Riley, 1962). Phosphorus sorption maximum

46



(Smax) was determ"ned as 1/slope of the linear Langmuir equa ion of the

isotherm for each 50·1 (Graetz and Nair, 2000).

Mehlich 3 P was extracted by shaking (end-aver-end, 5 min.) 2 9 of each

soil with 20 ml of extractant (Mehlich, 1984). Extracts were filtered (Whatman

#4) and analyzed calorimetrically (Murphy and Riley, 1962). In addition, P

sorption saturation (PSlsmax) was computed using WSP and Smax (mg kg-1
) by

the following equation (Sharpley, 1995):

PSlsmax (0/0) = (WSP/ Smax)*100 [eq. 1]

Soil WSP was extracted by shaking 2 9 of soil (end-aver-end, 1 hr.) with

20 ml of distilled water and centrifuging at 10,000 rpm (14,470 x g) for 5 min.

(Self-Davis et aI., 2000). The supernatant was filtered (0.45 fJm), and analyzed

for P colorimetrically (Murphy and Riley, 1962).

Ammonium oxalate extractable P, AI, and Fe were also measured. Thirty

ml of ammonium oxalate solution (16.2 g ammonium oxalate monohydrate, 10.8

g oxalic acid dihydrate made to one L with deionized water; Schoumans, 2000)

was shaken (end-aver-end, 2 hr.) with 1.5 9 of soil, filtered (Whatman #4), and

analyzed for P, AI, and Fe using an ICP-AES. Phosphorus saturation index by

ammonium oxalate extraction (PSlox) was computed using the P, AI, and Fe

contents (mmol kg-1
) by the following equation (Schoumans, 2000):

PSlox (0/0) = ([P]! [Fe + AI])*100 [eq.2]

Soil texture was determined using the hydrometer method (Gee and

Bauder, 1986). Soil pH was determined using a glass electrode at a 1:1 soill

water ratio (w/v). Soil organic matter was determined using a modified loss-on-
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ignition method described by Ben-Dar and Banin (1989) in wh·ch 2 9 of soil was

placed in a 150°C oven to remove moisture (2 hr.), weighed (W1) then placed in

a 425°C oven to remove organ·c matter (2 hr.) and weighed again 0N2). So·1

organic matter was calculated us·ng the following equation:

OM (0/0) = [(W1 - W2)/ W2]*100 [eq. 3]

Immediately after rainfall simulation, an aliquot from every runoff water

sample was filtered (O.45~m) and analyzed calorimetrically to determine

dissolved reactive P (DRP, Pate and Daniel, 2000). Total P (TP) from each

runoff sample was determined by digesting 25 mJ of runoff at 175°C with 1 mJ

concentrated H2S04 and 5 ml concentrated HN03 until a total volume of 1 ml

remained (Pote and Daniel, 2000). All digested samples were neutralized and

analyzed for P calorimetrically (Murphy and Riley, 1962). Particulate P (PP) was

calculated by subtracting DRP from TP. Runoff TP and DRP loads (mg) were

computed by multiplying DRP and TP concentration (mg L-1
) by total runoff

volume (L).

Total suspended solids (TSS) were determined for all runoff water

samples by vacuum filtering (0.45IJm) 50 ml of well-mixed runoff water sample

and drying the vacuum fitter cup and filter paper at 95°C. The initial dry weig t of

the vacuum cup and filter was subtracted from the final dry weight of the

sediment, vacuum cup and filter to give TSS. Runoff TSS load (mg) was

calculated by multiplying TSS (mg L-1
) by runoff volume (L) of each treatment.

Statistical Analysis
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Simple linear regression was used to correlate runoff DRP and TP

concentrations with four types of soil P levels for all pots. The strengths of these

correlations were expressed by the coefficient of determination (~ alue). These

data were also tested for significance among the three soil series evaluated

using analysis of covariance.
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RESULTS AND DISCUSSION

Soil Phosphorus

Using P adsorption isotherms, it was found that the Kirkland soil had the

greatest P sorption capacity (263 mg kg-1
) followed by the Taloka soil (227 mg

kg-1
) and the Grant soil (175 mg kg-1

). In addition, the annual application of

commercial P fertilizers on the Kirkland and Grant soils and the large one-time

application of P fertilizer on the Taloka soil resulted in a wide range (12-130 mg

kg-1
) of soil M3P (Table 2.2). Soil M3P and WSP was linearly related (p<0.05) to

P application rate (~=O.95-0.99; r=0.86-0.99, respectively). As soil WSP

generally constituted a small portion of soil M3P, a minimal amount of free P

existed in soil. In addition, PSlox and PSlsmax were determined to estimate the

amount of soil P as a percent of the amount of P that can be held by the soil.

Both indices were low for all treatments, but were well correlated (,-2>0.95;

p<O.05) to P fertilizer application rate for all soils evaluated.

Rainfall Simulation and Runoff

Rainfall simulation source water used in this study had relatively low TP

and DRP concentrations in comparison to runoff TP and DRP. Water used on

the Grant, Kirkland, and Taloka soils averaged 0.10, 0.04, and 0.07 mg L-1 TP,

respectively. Simulated rainfall was applied to runoff plots 24 hr. after the plots

were saturated. Rainfall infiltrated the soil surface and collected ,in small

pondings before measurable runoff was observed. Time from the start of rain to

measurable runoff began ranged from 4 to 12 min. among all treatment and soils.
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All three runoff study sites had virtually no surface cover except for small

amounts of wheat stubble «50/0) and had s'milar surface slopes (50/0). The Grant

series began runoff quicker on average than the other 2 soil series evaluated.

The Grant and Taloka soils exhibited similar infiltration rates and runoff volumes

and the Kirkland soil exhibited the lowest average infiltration rates and greatest

average runoff volumes (Table 2.3, Figure 2.3).

Total suspended solids (TSS) concentrations in the runoff were similar

among three soil series (Table 2.3). However, as runoff volumes were greatest

for the Kirkland series, TSS load (the total amount of suspended sediment lost,

mg) was greatest for the Kirkland soil (data not shown). Runoff total P (TP) was

well correlated (,-2=0.88; p<O.05) to runoff TSS for the Kirkland soil, but weakly

correlated to runoff TSS for the Taloka (,-2=0.21) and Grant soils (~=O.18) (Fig.

2.4). Runoff TP concentrations were similar for the three soil series tested (Table

2.3). However, as the Kirkland soil produced the greatest overall runoff volume,

it also lost the greatest average amount (load, mg) of P in runoff (Table 2.3).

This suggests that the Kirkland soil would pose the greatest overall risk of Ploss

in runoff among all three soil series evaluated.

Relationship between Runoff TP and Soil P

In this study, soil Mehlich 3 P (M3P), soil water soluble P (WSP)

ammonium oxalate P saturation index (PSlox), and P sorption saturation

(PSlsmax) served as poor predictors of runoff TP concentrations for the Grant and

Taloka soil series (Table 2.4). However, runoff TP from the Kirkland soil was well

correlated with soil M3P (w2=O.66), WSP (r2=O.61), PSlox (,-2-0.72), and PSlsmax

51



(,-2=0.66) (Table 2.4). It is important to note that particulateP (PP) constituted

the majority of TP lost in runoff from all three soil series. This is consistent with

that found by other researchers under similar runoff conditio s (Romkens and

Nelson, 1974; Reddy et aI., 1978; Sharpley, 1997). Particulate P on average

accounted for 93,83, and 70% of TP lost in runoff from the Kirkland, TaJoka, and

Grant soils, respectively (Table 2.3). No significant differences in % PP were

detected between treatments within each soil series.

Relationship between Runoff DRP and Soil P

Runoff dissolved reactive P (DRP), the portion of runoff TP that is

immediately bioavailable, was well correlated (p<0.05) with M3P (r=0.56-0.69),

WSP (r=O.48-0.69), PSlox (~=0.50-0.51), and PSlsmax (~=O.48-0.69) for all soil

series tested (Table 2.5). Of the soil P values tested here (M3P, WSP, PSlox,

and PSlsmax), soil M3P was the most highly correlated (,-2>0.56) to runoff DRP for

all three soils (Fig. 2.5; Table 2.5). Judging by the coefficient of determination (,-2

value), the relationship between runoff DRP and soil P was stronger for the Grant

and Taloka soils than for the Kirkland soil. It should also be noted that DRP

constituted a greater proportion of TP for the Grant (30%) and Tatoka (17%) soils

than for the Kirkland soil (7%). This suggests that when DRP constitutes a

significant portion of runoff TP (i.e. > 17°k), 50ilP would serve as better

predictors of runoff DRP concentrations than when DRP constituted a small

portion of the runoff TP.

The relationship between runoff DRP and M3P was significantly different

(p<O.05) for the Grant and Kirkland soils. Although no other sign·ficant
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differences were observed, the slopes of the relafonships between runoff DRP

and soil M3P for the three soils varied w·dely. This suggests that runoff DRP ­

soil M3P relationships used in P management strategies will probably have to be

soil specific. For example, the Kirkland soil (27% clay, Smax 263 mg kg-1
)

produced a runoff DRP concentration of 0.09 mg L-1 at a soil M3P level of 50 mg

kg-1while the Grant soil (25 % clay, Smax 175 mg kg-1
) produced a runoff DRP

concentration of 0.3 mg L-1 at the same soil M3P level. As the Kirkland soil

series has a larger Smax than the other two soils, ORP concentrations in runoff

were consistently lower than for the remaining soils.

In this study, Smax seemed to be the soil property most related to the

runoff DRP. Phosphorus sorption maximum (Smax) is the maximum amount of

P that a particular soil may hold. For example, the Grant soil had the lowest

Smax (175 mg ha-1) and released the greatest amount of runoff ORP per unit

soil M3P in comparison to the remaining two soils. This is consistent with that

found by other researchers.

The slopes of the relationship between runoff DRP and soil M3P ranged

from 0.0016 to 0.0045. The slopes of the same relationship on pasture lands

(0.0016-0.0035) and forested lands (0.014) are considerably different (Pote at aI.,

1999; Sauer et aI., 2000). In a similar study, Cox and Hendricks (2000) found

that runoff DRP - soil M3P relationship slopes varied (0.0014 to 0.0040) in

conventional and no-till wheat and barley cropping systems. This suggests that

land use and management practices can also greatly affect the relationship
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between soil M3P and runoff DRP. As a result, P management

recommendations should consider land use and management.
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CONCLUSIONS

Due to commercial P fertilizer application, a wide range of soil P levels

was observed in the three long-term continuous wheat fertility trials evaluated.

Additionally, soil P level was well correlated with commercial P fertilizer

application rate at all three sites evaluated. Runoff TP concentrations were

similar for all soil series evaluated though not well correlated to soil test P. Of the

soil series tested, the Kirkland soil produced the greatest runoff volume and the

lowest overall infiltration rate. As a result, the Kirkland soil lost the highest total

amount of P in runoff. This suggests that the Kirkland soil would pose the

greatest overall risk of P loss in runoff when compared to the other two soils

evaluated in this study.

Runoff DRP was well correlated to soit M3P, WSP, PSlox, and PSlsmax• It

was also found that when runoff DRP constitutes a large percentage of runoff TP,

the relationship between runoff DRP and soil M3P improves. However, the

slopes of the relationship between runoff DRP and soil M3P varied considerably

across soils evaluated within this study. The Smax property of soil seemed to be

responsible for the observed variation in the relationship between runoff DRP

and soil M3P among different soils. For example, the soil with the lowest Smax

(the Grant soil) released the highest concentration of runoff DRP per unit soil P

while the soil with the highest Smax (the Kirkland soil) released the lowest

concentration of runoff DRP per unit soil P.

In comparison to the work of others on pasture, forest, and cultivated

sites, it was found that the slope of the regression line between runoff DRP and
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soil M3P varies not only with soil type but also with land use and management

practices and type and method of fertilizer P application. This suggests t at P

management recommendations must be made on a site-specific basis and

include factors such as land use and management practices.
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Table 2.1. Soil Classification and chemical and physical characteristics of long-term fertility runoff plots
Soil Series Classification§ pH Smax+ Clay Sand Silt Organic Matter

-mgkg-1- 0A>

Grant Udic Argiustoll 5.1 175 25 25 50 1.9
Kirkland Udertic Paleustoll 5.4 263 27 20 53 2.3
Taloka Mollie Albaqualf 7.0 227 19 28 53 1.6
§ USDA - NRCS, 2000
+P sorption maximum (Smax) calculated as 1/slope of linear Langmuir P sorption isotherms



Table 2.2. Fertilizer phosphorus rates and mean soil phosphorus values for long-term fertility runoff plots
Soil Series PAdded Mehlich 3 P Water Soluble P PS1ox+ PSlsmax §

--kg ha-1- -mg kg-1- -mg kg-1- --%-- %--

Grant t 0 (0) 19 (1.3) 0.95 (0.06) 7.2 (0.34) 0.54 (0.03)
290(10) 42(6.1) 2.8(0.84) 9.7(0.71) 1.6(0.43)
638 (22) 66 (4.5) 5.3 (0.77) 13 (0.53) 3.0 (0.44)
841(29) 77(11) 6.7(1.5) 13(0.61) 3.8(0.34)
1160(40) 130(18) 16(2.1) 16(2.8) 9.0(1.2)

Kirkland t 0 (0) 15 (2.5) 0.95 (0.13) 5.0 (1.1) 0.36 (0.07)
465 (15) 38 (2.1) 2.3 (0.22) 7.1 (0.42) 0.87 (0.03)
930 (30) 66 (6.4) 3.9 (0.44) 9.1 (0.74) 1.5 (0.17)
1364(44) 85(3.7) 5.1(1.4) 12(0.55) 1.9(0.54)

Taloka t 0 12 (0.41) 0.70 (0.10) 5.9 (0.42) 0.31 (0.05)
117 13 (0.65) 0.93 (0.17) 6.4 (0.42) 0.41 (0.03)
293 27 (0.85) 2.0 (0.23) 8.0 (0.66) 0.86 (0.10)
587 45 (7.9) 3.0 (0.64) 11 (1.3) 1.3 (0.23)

t Total amount of P applied over the duration of the fertility experiment with yearly application in parentheses
i P rates applied once in 1977
§Ammonium Oxalate P Saturation Index (PSlox)
*P Sorption Saturation (PSlsmax)

** Values reported as mean of four replications with standard deviation in parentheses



Table 2.3. Mean runoff water sample characteristics collected from long-term fertility runoff plots
Soil Series P Added Volume Total Suspended Solids Dissolved Reactive P Particulate P Total P

k h -1 L L-1 L-1 L-1 L-1- 9 a - - - -mg - -mg - -mg - -mg-
Grantt 0(0) 31(1.1) 2.5(0.5) 0.14(0.02) 1.1(0.11) 1.2(0.12)

290 (10) 35 (12) 2.6 (0.3) 0.27 (0.03) 0.87 (0.27) 1.1 (0.26)
638(22) 31(1.0) 2.4(0.6) 0.33(0.03) 0.85(0.15) 1.2(0.17)
841 (29) 24 (10) 2.4 (1.0) 0.44 (0.03) 1.1 (0.38) 1.5 (0.32)
1160 (40) 27 (5.2) 1.9 (0.7) 0.70 (0.10) 0.61 (0.24) 1.3 (0.23)

Kirkland t 0 (0) 55 (10) 1.4 (0.1) 0.03 (0.00) 0.56 (0.06) 0.56 (0.06)
465 (15) 57 (8.4) 2.4 (0.3) 0.06 (0.01) 1.1 (0.08) 1.2 (0.03)

~ 930(30) 44(5.2) 2.2(0.7) 0.12(0.03) 0.98(0.18) 1.1(0.13)
1364 (44) 43 (12) 3.5 (0.7) 0.13 (0.03) 1.90 (0.42) 2.0 (0.43)

Taloka t 0 35 (3.4) 2.5 (0.7) 0.07 (0.02) 0.80 (0.31) 0.87 (0.29)
117 26(16) 1.8(0.7) 0.10(0.02) 0.36(0.15) 0.47(0.14)
293 28 (6.3) 1.7 (0.4) 0.16 (0.02) 0.81 (0.21) 0.97 (0.22)
587 28 (7.7) 3.7 (0.6) 0.18 (0.02) 0.81_(().56J~u 9.99 (0.5~

t Total amount of P applied over the duration of the fertility experiment with yearly application in parentheses
:t: P rates applied once in 1977
*Values reported as mean of four replications with standard deviation in parentheses



Table 2.4. Runoff total phosphorus (TP) correlated to four types of soil phosphorus values in long-term fertility runoff
plots

J2
TP=O.0015M3P + 1.2 0.05 TP=0.017M3P + 0.36 *
TP=O.0092WSP + 1.2 0.04 TP=0.26WSP + 0.44*
TP-O.019PSlox + 1.0 0.07 TP=0.18PSlox - 0.28 *
TP=O.081PSlsmax + 1.1 0.19 TP=0.68PSlsmax + 0.44 *

Grant Soil Series Kirkland Soil Series Taloka Soil Series

rz
0.66 TP=O.012M3P + 0.55
0.61 TP=0.19WSP + 0.52
0.72 TP=0.056PSlox + 0.39
0.61 TP=O.44PSlsmax + 0.53

?
0.19
0.21
0.09
0.18

*Denotes significance (0=0.05)
tM3P - Soil Mehlich 3 P
tWSP - Soil Water Soluble P
§PSlox - Ammonium Oxalate P Saturation Index
**PSlsmax - P Sorption Saturation



Table 2.5. Runoff dissolved reactive phosphorus (DRP) correlated to four types of soil phosphorus values in long-term
fertility runoff plots

Grant Soil Series Kirkland Soil Series Taloka Soil Series

DRP=0.0045M3P + 0.073 *
DRP=O.033WSP + 0.27 *
DRP=O.046PSlox - 0.16 *
DRP=O.058PSlsmax + 0.17 *

f2
0.69 DRP=0.0016M3P + 0.0057 *
0.69 DRP=O.023WSP + 0.016*
0.50 DRP=0.015PSlox - 0.041 *
0.69 DRP=0.061 PSlsmax + 0.065 *

f2
0.56 DRP=0.0026M3P + 0.065 *
0.48 DRP=0.039WSP + 0.065 *
0.51 DRP=0.017PSlox - 0.0030 *
0.48 DRP=0.089PSlsmax + 0.065 *

f2
0.59
0.58
0.51
0.58

*Denotes significance (a=0.05)
tM3P - Soil Mehlich 3 P
+WSP - Soil Water Soluble P
§PSlox Ammonium Oxalate P Saturation Index
**PSlsmax - P Sorption Saturation



Figure 2.1. Long-term fertility research sites and soil series evaluated in runoff
phosphorus study.



Figure 2.2. Solenoid-operated, variable intensity rainfall simulator used with
paired 1m x 2m runoff plots established on long-term fertility research
plots.
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SUMMARY CONCLUSIONS A D FUTURE

RESEARCH RECOMMENDATIONS

Summary Conclusions

As there is a need for more information on the relationship between runoff

phosphorus (P) and soil test P, many researchers have performed runoff P

studies using simulated rainfall on indoor soil micro-plots and on larger field

runoff plots. It has been shown that there is a direct relationship between runoff

P and soil P level using each of these methods. However, there is little

information on how the results of these two experimental methods compare.

Results from the indoor (Chapter 1) and outdoor (Chapter 2) rainfall

simulation studies can be compared here as environmental factors such as

rainfall intensity and runoff duration were held constant throughout both of the

rainfall simulation studies. In addition, each study shared a common soil to allow

for soil series specific comparisons. However, the central differences between

the studies were the collection and fertilizer treatment of the soils used in the

rainfall simulations. For the indoor study, soils were collected and placed in

runoff boxes and treated with high levels of commercial P fertilizer. In contrast,

outdoor field plots were established on long-term fertility plots that annually

receive relatively low rates of P application. As a result of the collection and soil

processing methods used for the indoor simulation study, the infiltration rates of

the repacked soils for the indoor study were much higher than those of

comparable soils in the outdoor rainfall simulation study. This suggests that an

70



indoor runoff study may not accurately simulate actual field hydrologic conditions

and may be misleading.

The soil test P levels were much higher for the indoor rainfall simulation

study than for the outdoor study. Consequently, the concentration of total P (TP)

and dissolved reactive P (DRP) lost in runoff was consistently higher for the 50·'5

used in the indoor study when compared to the soils used in the outdoor study.

However this difference was roughly proportional to the amount of soil P for that

respective treatment.

In both studies, runoff DRP was highly correlated to soil P, although the

relationships were stronger (higher ~ value) in the indoor runoff study than in the

outdoor study. Runoff DRP - soil P regression slopes ranged from 0.0019 to

0.0046 between the two studies. This observed difference may be a result of the

P fertilizer method/rates used between the two studies. This suggests that

similar approaches to amendment application method and rates should be taken

to accurately compare indoor (greenhouse) and outdoor (field) studies.

The differences observed between the indoor and outdoor studies include

considerable differences in the infiltration rates of the same soil series and

considerable differences in the relationship between runoff DRP and soil P in the

same soil series. These observed differences suggest that results of indoor and

outdoor runoff simulations may not necessarily be used interchangeably.

However, each experimental method has its advantages and maybe well suited

for different situations.
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Research Recommendations

A considerable amount of interest has been focused on finding ways to

reduce runoff P concentrations. Often times industrial and municipal waste

products may be used to trap P out of runoff. However, there are many waste

substances available, though there is little data quantifying the usefulness and

possible drawbacks of using industrial and municipal wastes to reduce runoff P

concentrations. Performing additional rainfall simulations on the soils used in the

greenhouse study after amendment with industrial or municipal wastes may

provide some useful information for future amendment use. The high levels of

soil Mehlich 3 P in the soil used in the greenhouse study may provide an

assessment of the capacity of waste materials to trap and absorb P from runoff.

In addition, various rates, waste material types, and application methods may be

tested to assess the most effective management strategy of using industrial or

municipal waste amendments for the reduction of runoff P.

The field runoff study assessed the amount of runoff P lost from field soil

plots in between winter wheat growing seasons. Performing rainfall simulations

during different stages of winter wheat growth during the growing season may

provide year-round information of runoff P losses from winter wheat agriculture.

More information may also be gathered concerning P fertilizer impacts on runoff

water quality by timing field rainfall simulations after annualP fertilizer

applications.
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Appendix A-Chapter 1 Data Compilation
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Richfield Soil Series Results

Time To DRP Total P Runoff
Runoff DRP Total P pp Load Load Volume Depth WSP M3P PSlsmax PSJox TSS

Box # min mg/L mg/L mg/L mg mg L mm mg/kg mg/kg % 0/0 mg/L
Richfield Treatment One

34 5 0.10 1.86 1.76 1.29 23.85 12.80 33.75 4.14 25.97 1.33 12.81 4.80
28 6 0.08 2.12 2.04 1.19 31.15 14.70 38.76 3.78 28.18 1.21 13.15 11.38
44 5 0.17 1.90 1.73 2.21 25.37 13.35 35.20 4.50 29.93 1.44 13.68 3.52
45 6 0.08 1.90 1.82 1.17 27.55 14.50 38.24 4.68 26.95 1.50 10.54 2.94

StDev 0.58 0.04 0.12 0.14 0.50 3.17 0.91 2.41 0.40 1.70 0.13 1.39 3.89
Ave 5.50 0.11 1.95 1.84 1.46 26.98 13.84 36.49 4.27 27.76 1.37 12.54 5.66

Richfield Treatment Two

14-1 3 0.87 5.04 4.17 15.12 87.96 17.45 46.02 32.32 162.40 10.36 28.45 5.38
12-1 6 0.69 3.57 2.88 9.60 49.81 13.95 36.79 35.57 160.44 11.40 28.93 3.38
17-1 6 0.74 2.20 1.46 9.47 28.15 12.80 33.75 24.19 176.18 7.75 29.13 1.79
3-1 1 0.62 2.04 1.43 9.31 30.84 15.10 39.82 37.01 190.86 11.86 16.25 2.66

StDev 2.45 0.11 1.40 1.31 2.83 27.59 1.99 5.24 5.73 14.12 1.84 6.30 1.53
Ave 4.00 0.73 3.21 2.49 10.88 49.19 14.83 39.09 32.27 172.47 10.34 25.69 3.30

Richfield Treatment Three

31 3 1.49 5.70 4.22 19.33 74.14 13.00 34.28 73.90 413.80 23.69 52.03 9.58
30 4 1.12 5.93 4.81 15.01 79.19 13.35 35.20 77.83 438.29 24.95 50.21 7.90

41 4 1.82 4.75 2.94 27.86 72.94 15.35 40.48 104.60 444.10 33.53 52.52 2.78

39 8 1.33 7.53 6.20 19.99 113.36 15.05 39.69 83.79 415.92 26.86 48.51 2.20

StDev 2.22 0.29 1.15 1.36 5.35 19.16 1.18 3.12 13.67 15.42 4.38 1.83 3.68

Ave 4.75 1.44 5.98 4.54 20.55 84.91 14.19 37.41 85.03 428.03 27.25 50.82 5.62

Richfield Treatment Four

36 6 4.25 7.74 3.49 65.42 119.20 15.40 40.61 185.80 802.17 59.55 74.09 3.24

20 4 3.76 9.14 5.38 56.79 138.03 15.10 39.82 218.40 867.64 70.00 81.40 1.70

18 4 3.60 8.85 5.25 40.31 99.10 11.20 29.53 207.60 829.41 66.54 78.84 1.76

19 3 3.60 12.98 9.38 48.95 176.53 13.60 35.86 173.20 767.98 55.51 76.03 4.00

StDev 1.03 0.31 2.28 2.49 10.74 32.96 1.92 5.06 20.49 42.20 6.57 3.20 1.13

Ave 4.13 3.80 9.68 5.88 52.87 133.21 13.83 36.46 196.25 816.80 62.90 77.59 2.67
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Dennis Soil Series Results

Time To DRP Total P Runoff
Runoff DRP Total P pp Load Load Volume Depth WSP M3P PSISmax PSJox TSS

Box # min mg/l mg/L mg/L mg mg L mm mg/kg mglkg 0/0 % mg/L
Dennis Treatment One

5 7 0.15 1.00 0.85 1.41 9.28 9.25 24.39 2.87 35.16 1.52 7.75 1.50
27 2 0.13 1.10 0.97 0.45 3.89 3.55 9.36 3.06 34.53 1.62 10.60 3.10
42 2 0.09 1.50 1.41 1.29 22.08 14.75 38.90 3.24 32.53 1.71 11.19 6.40
6 7 0.10 0.47 0.37 0.48 2.27 4.80 12.66 3.42 37.00 1.81 12.01 2.20

StDev 2.89 0.03 0.42 0.43 0.51 8.98 5.07 13.37 0.23 1.84 0.12 1.85 2.17
Ave 4.50 0.12 1.02 0.90 0.91 9.38 8.09 21.33 3.15 34.80 1.66 10.39 3.30

Dennis Treatment Two

46-1 3 0.44 2.17 1.73 6.31 31.40 14.50 38.24 19.13 137.95 10.12 21.05 2.62
23-1 2 0.43 2.88 2.45 6.78 45.89 15.95 42.06 18.05 138.97 9.55 23.20 3.41
13-1 2 0.43 2.36 1.92 5.37 29.13 12.35 32.57 16.42 148.40 8.69 24.10 2.87
22-1 10 0.29 1.53 1.23 3.21 16.64 10.90 28.74 15.70 151.28 8.31 27.25 1.15

StDev 3.86 0.07 0.56 0.50 1.58 11.99 2.24 5.91 1.55 6.69 0.82 2.57 0.97
Ave 4.25 0.40 2.23 1.83 5.42 30.76 13.43 35.40 17.33 144.15 9.17 23.90 2.51

Dennis Treatment Three

9 7 0.68 4.35 3.67 8.57 55.03 12.65 33.36 70.29 399.93 37.19 45.38 3.50
21 8 0.67 3.62 2.95 7.41 40.00 11.05 29.14 74.22 441.80 39.27 56.03 2.06
10 5 0.89 4.83 3.94 9.94 53.82 11.15 29.40 55.62 377.39 29.43 42.14 4.72

26 7 0.66 3.44 2.78 6.58 34.36 10.00 26.37 67.00 425.45 35.45 45.93 2.24

StDev 1.26 0.11 0.65 0.56 1.46 10.23 1.09 2.88 8.01 28.34 4.24 6.01 1.24

Ave 6.75 0.72 4.06 3.33 8.12 45.80 11.21 29.57 66.78 411.14 35.33 47.37 3.13

Dennis Treatment Four

7 11 1.45 9.80 8.35 17.53 118.57 12.10 31.91 192.60 846.47 101.90 69.04 2.88

43 5 2.07 9.73 7.66 25.88 121.58 12.50 32.96 175.40 885.17 92.80 76.74 2.42

24 1 2.10 9.74 7.64 27.23 126.16 12.95 34.15 265.40 940.98 140.42 83.58 4.02

1 6 2.07 7.90 5.83 20.39 77.79 9.85 25.97 285.20 1027.75 150.90 137.30 1.62

StDev 4.11 0.32 0.93 1.08 4.57 22.38 1.38 3.63 53.79 78.67 28.46 31.00 1.00

Ave 5.75 1.92 9.29 7.37 22.76 111.02 11.85 31.25 229.65 925.09 121.51 91.67 2.73
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Kirkland Soil Series Results

Time To DRP Total P Runoff
Runoff DRP Total P pp Load Load Volume Depth WSP M3P PSISmax PSlox TSS

Box # min mg/L mg/L mg/L mg mg L mm mg/kg mg/kg % 0/0 mg/L
Kirkland Treatment One

15 9 0.16 1.57 1.41 1.99 19.72 12.55 33.09 3.24 55.12 1.33 11.07 1.80
40 2 0.13 3.18 3.05 1.73 43.57 13.70 36.13 5.22 56.82 2.14 11.71 8.42
11 8 0.13 1.92 1.80 1.92 29.23 15.20 40.08 2.33 56.16 0.96 10.70 4.82
38 2.5 0.13 2.34 2.21 1.81 33.45 14.30 37.71 5.04 56.24 2.07 11.03 7.88

StDev 3.64 0.02 0.69 0.70 0.12 9.89 1.11 2.93 1.41 0.71 0.58 0.42 3.06
Ave 5.38 0.13 2.25 2.12 1.86 31.49 13.94 36.75 3.96 56.08 1.62 11.13 5.73

Kirkland Treatment Two

29-1 2 0.43 5.18 4.75 7.80 93.00 17.95 47.33 21.52 174.63 8.82 18.69 7.18
16-1 9 0.40 2.64 2.24 5.57 36.60 13.85 36.52 17.69 182.56 7.25 18.85 2.17
33-1 5 0.25 1.61 1.36 3.69 23.58 14.66 38.65 14.07 158.46 5.77 19.18 3.44
37-1 6 0.29 1.92 1.63 5.97 39.62 20.60 54.32 20.21 158.65 8.28 18.70 2.86

StDev 2.89 0.09 1.62 1.55 1.68 30.67 3.11 8.21 3.28 12.02 1.34 0.23 2.24
Ave 5.50 0.34 2.84 2.49 5.76 48.20 16.76 44.21 18.37 168.57 7.53 18.85 3.91

Kirkland Treatment Three

47 6 1.68 10.71 9.03 25.99 165.47 15.45 40.74 68.73 481.59 28.17 34.04 12.58

4 3 1.16 8.70 7.55 16.02 120.52 13.85 36.52 68.44 498.49 28.05 36.81 3.48

32 4 1.03 8.45 7.42 15.87 130.49 15.45 40.74 61.21 478.24 25.09 36.05 3.86

8 7 1.82 11.85 10.03 26.63 173.60 14.65 38.63 70.29 453.69 28.81 38.54 6.08

StDev 1.83 0.39 1.63 1.25 5.99 25.96 0.77 2.02 4.05 18.48 1.66 1.87 4.21

Ave 5.00 1.42 9.93 8.51 21.13 147.52 14.85 39.16 67.17 478.00 27.53 36.36 6.50

Kirkland Treatment Four

48 7 2.41 14.59 12.18 34.52 208.64 14.30 37.71 128.70 794.75 52.75 48.99 7.52

2 8 2.31 10.35 8.04 35.70 159.91 15.45 40.74 129.90 979.44 53.24 54.63 3.50

25 6 2.02 16.67 14.65 28.27 233.38 14.00 36.92 128.10 883.82 52.50 49.72 5.38

35 5 2.33 13.49 11.16 34.67 201.00 14.90 39.29 196.70 1016.33 80.61 55.59 6.86

StDev 1.29 0.17 2.64 2.74 3.39 30.52 0.64 1.70 33.91 99.67 13.90 3.36 1.78

Ave 6.50 2.27 13.78 11.51 33.29 200.73 14.66 38.67 145.85 918.58 59.77 52.23 5.82
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Richfield 5 Minute Interval Sampling Results

DRP • Total p. TSS·
DRP Total P Volume PP Load Load TSS Load

Time Box # mg/L mg/L L mg/L mg mg mg/L mg
5 14-1 1.54 6.04 2.20 4.50 3.39 13.29 1.96 4.31
10 14-2 1.06 5.89 2.60 4.83 2.76 15.31 3.04 7.90
15 14-3 0.85 5.45 3.30 4.60 2.79 17.98 6.74 22.24
20 14-4 0.73 4.53 3.10 3.80 2.26 14.05 4.48 13.89
25 14-5 0.59 4.68 3.10 4.09 1.82 14.50 5.58 17.30
30 14-6 0.67 4.07 3.15 3.40 2.11 12.83 8.94 28.16

5 12-1 1.18 4.39 1.75 3.21 2.06 7.68 3.20 5.60
10 12-2 0.87 3.69 2.35 2.82 2.05 8.68 2.38 5.59
15 12-3 0.61 3.18 2.25 2.57 1.36 7.16 1.92 4.32
20 12-4 0.55 3.52 2.40 2.97 1.31 8.45 2.84 6.82
25 12-5 0.57 3.84 2.70 3.26 1.55 10.36 4.78 12.91
30 12-6 0.51 2.99 2.50 2.49 1.27 7.49 4.74 11.85

5 17-1 1.40 3.00 0.90 1.60 1.26 2.70 2.22 2.00
10 17-2 0.91 2.74 2.25 1.83 2.05 6.17 1.78 4.01

15 17-3 0.74 2.78 2.05 2.04 1.51 5.69 1.40 2.87

20 17-4 0.66 1.86 2.35 1.20 1.56 4.38 2.06 4.84

25 17-5 0.56 1.57 2.60 1.01 1.46 4.08 1.60 4.16

30 17-6 0.62 1.94 2.65 1.32 1.64 5.13 1.88 4.98

5 3-1 0.90 2.23 2.15 1.33 1.93 4.79 2.24 4.82

10 3-2 0.82 2.45 2.00 1.63 1.64 4.90 2.08 4.16

15 3-3 0.64 1.57 2.50 0.93 1.60 3.93 2.42 6.05

20 3-4 0.50 2.23 2.50 1.73 1.26 5.57 3.12 7.80

25 3-5 0.47 2.08 3.05 1.61 1.43 6.35 2.78 8.48

30 3-6 0.50 1.83 2.90 1.32 1.46 5.30 3.04 8.82
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Dennis 5 Minute Interval Sampling Results

DRP* Total P* TSS*
DRP Total P Volume pp Load Load TSS Load

Time Box # mg/L mg/L L mg/L mg mg mg/L mg
5 46-1 0.77 4.75 1.95 3.98 1.51 9.27 3.90 7.60
10 46-2 0.59 2.85 2.10 2.26 1.23 5.99 4.88 10.25
15 46-3 0.42 1.32 2.90 0.90 1.21 3.81 3.48 10.09
20 46-4 0.35 2.63 2.50 2.28 0.88 6.58 2.34 5.85
25 46-5 0.28 1.32 2.35 1.03 0.66 3.09 1.76 4.14
30 46-6 0.30 0.99 2.70 0.68 0.81 2.66

5 23-1 0.57 2.19 3.10 1.62 1.78 6.80 3.12 9.67
10 23-2 0.52 3.51 1.80 2.99 0.93 6.32 3.32 5.98
15 23-3 0.47 3.29 2.60 2.82 1.22 8.55 3.02 7.85
20 23-4 0.42 4.02 2.55 3.60 1.08 10.25 4.34 11.07
25 23-5 0.33 3.25 3.35 2.92 1.12 10.90 3.92 13.13

30 23-6 0.26 1.21 2.55 0.95 0.65 3.07 2.64 6.73

5 13-1 0.59 3.14 0.40 2.56 0.23 1.26 4.66 1.86

10 13-2 0.65 3.80 2.05 3.15 1.34 7.79 4.50 9.23

15 13-3 0.50 2.38 2.50 1.88 1.24 5.94 3.16 7.90

20 13-4 0.41 2.45 2.45 2.04 1.01 6.00 2.96 7.25

25 13-5 0.35 1.50 2.45 1.15 0.85 3.67 2.22 5.44

30 13-6 0.28 1.79 2.50 1.51 0.70 4.48 1.52 3.80

5 22-1 0.56 2.38 1.10 1.81 0.62 2.61 1.44 1.58

10 22-2 0.35 1.53 1.80 1.18 0.64 2.76 1.12 2.02

15 22-3 0.22 1.79 1.90 1.57 0.42 3.40 0.92 1.75

20 22-4 0.32 2.12 2.05 1.80 0.66 4.34 1.42 2.91

25 22-5 0.21 1.06 2.15 0.85 0.45 2.28 0.94 2.02

30 22-6 0.22 0.66 1.90 0.43 0.42 1.25 1.18 2.24
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Kirkland 5 Minute Interval Sampling Results

DRP * Total P* TSS*
DRP Total P Volume pp Load Load TSS Load

Time Box # mg/L mg/L L mglL mg mg mg/L mg
5 29-1 0.72 4.06 1.15 3.33 0.83 4.67 4.84 5.57
10 29-2 0.48 7.35 3.10 6.87 1.48 22.78 7.40 22.94
15 29-3 0.37 6.22 2.55 5.84 0.95 15.85 9.74 24.84
20 29-4 0.40 5.08 3.90 4.68 1.55 19.82 8.10 31.59
25 29-5 0.41 4.50 3.55 4.09 1.44 15.96 7.46 26.48
30 29-6 0.42 3.77 3.70 3.35 1.55 13.93 4.70 17.39

5 16-1 0.48 3.21 1.35 2.73 0.64 4.33 3.06 4.13
10 16-2 0.42 2.74 2.95 2.32 1.25 8.09 1.96 5.78

15 16-3 0.41 3.73 2.25 3.32 0.93 8.39 2.32 5.22

20 16-4 0.39 2.12 5.55 1.73 2.18 11.76 1.74 9.66

25 16-5 0.33 2.30 1.75 1.97 0.57 4.03 3.02 5.29

30 16-6

5 33-1 0.31 2.12 2.20 1.81 0.68 4.66 4.24 9.33

10 33-2 0.26 2.67 3.00 2.41 0.79 8.00 3.82 11.46

15 33-3 0.26 2.56 1.65 2.30 0.42 4.22 4.18 6.90

20 33-4 0.21 1.42 2.46 1.21 0.52 3.50 2.30 5.65

25 33-5 0.22 1.28 2.50 1.05 0.56 3.20 1.74 4.35

30 33-6 0.26 2.67 2.85 2.41 0.73 7.60 4.46 12.71

5 37-1 0.43 4.86 3.55 4.43 1.53 17.26 6.44 22.86

10 37-2 0.33 1.64 3.70 1.31 1.23 6.08 3.02 11.17

15 37-3 0.25 2.08 2.85 1.83 0.71 5.94 3.18 9.06

20 37-4 0.24 1.02 3.25 0.79 0.77 3.32 1.56 5.07

25 37-5 0.25 2.19 3.20 1.94 0.80 7.01 1.30 4.16

30 37-6 0.23 1.61 4.05 1.38 0.93 6.51 1.64 6.64
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Data of Mehlich 3 P Change Over 360 Days

Nov. Dec. Jan Feb Mar Apr May Jun Aug Oct
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 10.0 12.0

PAdded M3P M3P M3P M3P M3P M3P tv13P M3P M3P M3P
Richfield mg/kg mg/kg mglkg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg

0 31.5 35.0 35.0 26.0 25.5 34.0 32.5 27.8 23.0 24.2
235 285.0 255.0 235.0 228.0 156.0 185.9 183.9 172.5 187.4 184.2
635 670.0 650.0 635.0 681.5 443.0 452.9 440.8 428.0 417.6 409.7
1135 1295.0 1105.0 1195.0 1324.5 830.5 925.3 920.3 816.8 817.4 758.7
Avg 570.4 511.3 525.0 565.0 363.8 399.5 394.3 361.3 361.3 344.2

0/0 Change 10.4 -2.7 -7.6 35.6 -9.8 1.3 8.4 0.0 4.7
Dennis

0 35.0 36.0 35.0 30.0 32.0 36.0 36.3 34.8 31.6 31.5
225 185.0 170.0 155.0 133.5 127.5 141.6 138.8 144.2 148.3 140.2
625 545.0 535.0 535.0 606.0 450.5 432.5 433.3 411.1 385.5 383.2

1125 970.0 935.0 1030.0 1191.5 764.5 827.0 842.0 925.1 774.0 739.0

Avg 433.8 419.0 438.8 490.3 343.6 359.3 362.6 378.8 334.8 323.5
0/0 Change 3.4 -4.7 -11.7 29.9 -4.6 -0.9 -4.5 11.6 3.4

Kirkland

0 57.5 64.0 63.5 57.0 53.5 52.8 52.0 56.1 59.4 58.2

180 210.0 205.0 190.0 191.5 163.5 170.1 166.3 168.6 184.7 175.8

580 580.0 540.0 540.0 530.0 450.5 473.5 467.3 478.0 449.0 447.2

1080 1045.0 920.0 980.0 872.0 764.5 909.9 906.0 918.6 846.8 874.9

Avg 473.1 432.3 443.4 412.6 358.0 401.6 397.9 405.3 385.0 389.0

0,10 Change 8.6 -2.6 6.9 13.2 -12.2 0.9 -1.9 5.0 -1.1
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Appendix B-Chapter 2 Data Compilation
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Grant Soil Series Results from Field Study Performed at L homa, OK

Total P

PRate DRP Total P Load Particulate P M3P WSP PSlox PSISm T S
kg/ha mg/L mg/L mg mg/L mg/kg mg/kg 0/0 0/0 gIL

638 (22) 0.31 0.97 31.37 0.66 66.50 5.90 12.85 3.37 28.74
639 (22) 0.37 1.34 44.56 0.97 69.50 5.50 12.61 3.14 29.26
640 (22) 0.33 1.29 43.93 0.96 67.50 5.70 13.38 3.26 29.24

641 (22) 0.32 1.12 25.76 0.80 59.00 4.20 12.11 2.40 25.44

ave. 0.33 1.18 36.40 0.85 65.63 5.33 12.74 3.26 28.17

Stan Dev 0.03 0.17 9.34 0.15 4.59 0.77 0.53 0.44 1.93

0 0.12 1.10 35.67 0.98 20.50 1.00 7.02 0.57 10.24

0 0.14 1.36 43.93 1.21 19.00 1.00 6.98 0.57 9.79

0 0.13 1.12 32.44 0.99 17.50 0.90 7.09 0.51 9.38

0 0.15 1.20 36.63 1.04 19.50 0.90 7.71 0.51 10.30

ave. 0.14 1.19 37.17 1.06 19.13 0.95 7.20 0.55 9.93

Stan Dev 0.02 0.12 4.85 0.11 1.25 0.06 0.34 0.03 0.57

290 (10) 0.23 0.79 34.83 0.56 43.00 3.50 9.04 2.00 18.85

291 (10) 0.25 1.12 31.56 0.88 50.00 3.50 10.57 2.00 21.72

292 (10) 0.39 1.22 56.32 0.83 38.50 2.00 9.86 1.14 17.33

293 (10) 0.20 1.40 31.00 1.21 36.00 2.10 9.14 1.20 16.32

ave. 0.27 1.13 38.43 0.87 41.88 2.78 9.65 1.71 18.55

Stan Dev 0.09 0.26 12.04 0.27 6.14 0.84 0.71 0.48 2.50

841 (29) 0.42 1.86 66.62 1.44 72.00 6.50 12.61 3.71 30.38

842 (29) 0.55 1.11 24.60 0.56 64.50 5.40 12.98 3.09 27.92

843 (29) 0.35 1.68 19.75 1.32 90.50 8.80 13.88 5.03 37.41

844 (29) 0.45 1.43 38.80 0.98 81.00 6.10 13.73 3.49 33.41

ave. 0.44 1.52 37.44 1.08 77.00 6.70 13.30 3.94 32.28

Stan Dev 0.08 0.32 21.06 0.39 11.25 1.47 0.61 0.84 4.18

1160 (40) 0.72 1.42 42.40 0.71 127.50 15.20 14.61 8.69 50.99

1161 (40) 0.95 1.34 27.31 0.39 117.50 14.20 12.56 8.11 46.43

1162 (40) 0.54 0.99 31.88 0.45 156.00 18.90 18.19 10.80 62.84

1163 (40) 0.62 1.52 41.33 0.90 120.50 14.70 18.09 8.40 50.80

ave. 0.70 1.32 35.73 0.61 130.38 15.75 15.86 9.20 52.76

Stan Dev 0.18 0.23 7.34 0.24 17.59 2.14 2.76 1.22 7.47
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Kirkland Soil Series Results from Field Study Performed at Stil water, OK

Total P

PRate DRP Total P Load Particulate P M3P WSP PSlox PSfsmax TSS
kg/ha mg/L mg/L mg mg/L mg/kg mg/kg 0/0 0/0 gIL

930 (30) 0.80 1.21 44.32 1.14 63.50 3.70 8.88 1.41 1.94
931 (30) 0.80 1.21 55.77 1.11 58.00 3.30 8.11 1.25 3.06
932 (30) 1.60 1.17 50.96 0.93 70.00 4.10 9.67 1.56 2.47

933 (30) 1.40 0.83 40.19 0.74 72.00 4.30 9.63 1.63 1.34

ave. 1.15 1.10 47.81 0.98 65.88 3.85 9.07 1.46 2.20

Stan Dev 0.41 0.19 6.91 0.18 6.38 0.44 0.74 0.17 0.73

465 (15) 0.06 1.15 69.64 1.08 41.00 2.40 7.38 0.91 2.16

466 (15) 0.07 1.30 66.55 1.22 39.00 2.50 7.31 0.95 2.30

467 (15) 0.04 1.25 60.87 1.20 37.50 2.20 7.25 0.84 2.76

468 (15) 0.05 1.13 75.00 1.06 36.00 2.00 6.49 0.76 2.50

ave. 0.06 1.21 68.01 1.14 38.38 2.28 7.11 0.87 2.43

Stan Dev 0.01 0.08 5.90 0.08 2.14 0.22 0.42 0.08 0.26

1364 (44) 0.17 1.54 101.47 1.43 90.50 6.20 12.25 2.36 2.59

1365 (44) 0.23 2.58 127.75 2.45 91.50 6.30 12.31 2.40 4.24

1366 (44) 0.04 1.88 114.95 1.79 72.50 3.40 11.12 1.29 3.68

1367 (44) 0.16 2.09 91.12 1.92 85.00 4.40 11.96 1.67 3.60

ave. 0.15 2.02 108.82 1.90 84.88 5.08 11.91 1.93 3.53

Stan Dev 0.08 0.43 15.95 0.42 8.73 1.42 0.55 0.54 0.69

0 0.05 0.57 25.65 0.54 18.50 1.20 6.70 0.46 1.19

0 0.03 0.65 27.56 0.62 15.00 1.00 4.75 0.38 1.36

0 0.03 0.56 31.29 0.53 15.00 0.80 4.53 0.30 1.45

0 0.04 0.49 13.32 0.46 12.50 0.80 4.15 0.30 1.63

ave. 0.04 0.56 24.45 0.54 15.25 0.95 5.03 0.36 1.41

Stan Dev 0.01 0.06 7.78 0.07 2.47 0.19 1.14 0.07 0.18
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Taloka Soil Series Results from Field Study Performed at Haskell,OK

Total P
PRate DRP Total P Load Particulate P M3P WSP PSlox PSISmax TSS
kg/ha mg/L mg/L mg mg/L mg/kg mg/kg % 0/0 gIL
117 0.09 0.49 20.46 0.38 12.00 0.79 7.04 0.35 1.96
117 0.11 0.66 24.76 0.56 12.50 1.15 6.13 0.51 2.84
117 0.13 0.35 3.50 0.22 13.50 0.79 6.15 0.35 1.22
117 0.13 0.38 5.40 0.30 13.00 0.97 6.40 0.43 1.16
ave. 0.12 0.47 13.53 0.36 12.75 0.93 6.43 0.41 1.79

Stan Dev 0.02 0.14 10.66 0.15 0.65 0.17 0.42 0.08 0.79

0 0.07 0.97 20.63 0.89 11.00 0.79 5.56 0.35 2.48
0 0.06 1.14 49.69 1.10 11.50 0.61 6.40 0.27 3.08

0 0.12 0.46 18.87 0.37 12.00 0.61 5.96 0.27 1.48

0 0.08 0.89 30.98 0.82 11.50 0.79 5.51 0.35 2.84

ave. 0.08 0.87 30.04 0.80 11.50 0.70 5.86 0.31 2.47

Stan Dev 0.03 0.29 14.15 0.31 0.41 0.10 0.42 0.05 0.70

293 0.18 0.77 21.71 0.60 27.00 1.86 8.33 0.35 1.54

293 0.17 1.28 40.46 1.10 26.50 1.69 8.02 0.27 1.86

293 0.19 0.86 28.52 0.72 27.50 2.04 8.66 0.27 1.28

293 0.13 0.97 17.29 0.82 25.50 2.22 7.13 0.35 2.08

ave. 0.17 0.97 27.00 0.81 26.63 1.95 8.04 0.31 1.69

Stan Dev 0.03 0.22 10.09 0.21 0.85 0.23 0.66 0.05 0.35

587 0.17 0.57 18.10 0.40 41.50 2.40 11.15 0.82 3.42

587 0.16 36.50 2.58 10.58 0.74 4.04

587 0.19 1.40 33.27 1.22 47.00 2.94 8.03 0.90 3.10

587 0.15 55.00 3.83 12.32 0.98 4.40

ave. 0.17 0.99 25.69 0.81 45.00 2.94 10.52 0.86 3.74

Stan Dev 0.02 0.58 10.72 0.58 7.93 0.64 1.81 0.10 0.59
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