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Glossary

Acute Toxicity

ArcView

Brine

Chronic Toxicity

Criteria

Ecological Receptor

Ecological Risk assessment

Ecological Soil Screening
Levels

Ecosystem

A short-term exposure to a contaminant in a
medium and usually at concentrations high
enough to induce an effect rapidly

A computer-based GIS tool produced by the
Enviornmental System Research Institute
(ESRI) for mapping and analyzing processes
and events that are related by their location.
This software package facilitates manipulation
and analysis of spatially arrayed data

Saline water

Long term exposure (weeks, years) to a
contaminant in a medium, often includes
reproduction or the full life cycle of the
organism.

Concentrations of contaminants in
environmental media that may not be
exceeded; legally enforceable and subject to
fine or other regulatory action should
exceedences occur

Ecosystems, habitats, communities,
populations, and individual organisms (except
humans) that are exposed directly or indirectly
to site stressors

A process that involves consideration of the
aggregate ecological risk to the target entity
caused by the accumulation of risk from
multiple stressors

Soil concentrations protective of terrestrial
organisms; unacceptable adverse effects
should not occur to ecological receptors at or
below this value

The biotic community and abiotic environment
within a specified location in space and time.

viii



Effect Concentration (ECx)

Endpoint

Lethal Concentration (Lex)

The concentration of a chemical in the medium
that results in a particular sublethal effect to x%
of the test organisms

An explicit expression of the environmental
value that is to be protected. An assessment
endpoint includes both an eco'logica:1 entity and
specific attributes of that entity_ For example,
salmon are a valued ecological entity;
reproduction and population maintenance of
salmon form assessment endpoints.

The concentration of the chemical in the
medium that results in mortality to x% of the
test organisms

Lowest Observed Adverse The lowest level of a stressor that causes a
Effect Level (LOAEL) statistically significant difference in receptor

health from controls.

No Observed Adverse Effect
Level (NOAEL)

Receptor

Relevant Ecological
Screening Criteria

The highest level of a stressor that does not
cause a statistically significant difference in
receptor health from the controls

The ecological component exposed to the
stressor. This term may refer to tissues,
organisms, populations, communities, and
ecosystems.

Generic, non-site-specific ecological criteria or
guidelines that are determined to be applicable
to relevant ecological receptors and habitats,
exposure pathways, and site conditions utilized
during a Tier 1 evaluation in Risk-Based
Corrective Action. These may include chemical
concentrations, biological measures, or other
relavent generic criteria consistent with the
technical policy decisions.
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Remediation

Risk Assessment

Soil Protection Values

Stressor

Surface Area Disturbance

Activities conducted to protect human health
and the environment. These activities include
evaluating risk, making no further action
determinations, monitoring, institutional
controls, engineering controls, and designing
and operating clean-up equipment.

An analysis of the potential for adverse effect
caused by a chemical(s) of concern from a site
to determine the need for remedial action or to
the development of target levels where
remedial action is required.

A general term used to encompass all soil
concentration values derived to protect all or
part of the terrestrial system from unacceptable
effects due to contamination. It includes
screening level values, criteria, and clean-up
target levels.

Any physical, chemical, or biological entity that
can induce an adverse response (synonymous
with agent).

Any event or series of events that disrupts
ecosystem, community, or population structure
and changes resources, substrate availability,
or the physical environment
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CHAPTERO E

DEVELOPMENT OF RELEVANT ECOLOGICAL SCREEN NG CRITERIA (RESC) FOR
THE ECOLOGICAL ASSESSMENT OF PETROLEUM HYDROCARBON

CONTAMINATED EXPLORATION AND PRODUCTION SITES

INTRODUCTION

The Nature Conservancy Tallgrass Prairie Preserve (TPP) is a 14,800 ha prairie in the

Osage hills of northern Oklahoma (see Figure 1) (Coppedge and Shaw 1998). The

Nature Conservancy (TNC) purchased this land in 1989 to create a preserve that

protects an array of biodiversity features indigenous to the locale in a setting that utilizes

"... ecological processes that are essential to maintaining a naturally functioning tallgrass

prairie landscape" (Hamilton 1996). The TPP supports multiple land uses that include

recreation, cattle and bison ranching, and oil production. Oil production has occurred on

the land now owned by TNC for the last 80 years and has resulted in more than 150

working and derelict oil production facilities. Oil and brine releases have occurred as a

result of wellhead releases, pipeline breaks, and leakage from aboveground storage

tanks. The impact of these spills on the surrounding prairie environment is unknown and

a suitable framework for assessing the ecological risk of the spills is not available.

Addressing these two issues forms the focus of this thesis.

Most of the private oil production wells at the TPP produce less than 10 barrels of oil/day

(Kerry Sublette, pers comm.). These wells also produce an equivalent amount of saline

water (referred to as 'brine'). The oil and brine are stored in separate holding tanks

where the brine is eventually reinjected into the formation from which it was withdrawn.

Releases of brine, oil, and brine and oil mixtures have occurred.

A variety of remediation measures have been initiated to treat oil and brine releases to

soil. Oil spills have been mulched and tilled, amended with fertilizer or gypsum, or, in
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some cases, allowed to passively remediate. Several researchers are presently working

at different spills across the TPP to identify best remediation practices.

Oklahoma

Figure 1. The Nature Conservancy Tallgrass Prairie Preserve is located northwest of
Tulsa, Oklahoma.

In considering the impact of spills at the TPP, it is important to understand how oil-

contaminated soil can affect the environment. For example, the physical characteristics

of the soil, such as water holding capacity or nutrient cycling, may be impaired. The spill

may pose a fire hazard or be mobile enough to be transported to groundwater or other

areas of the TPP. If the spill covers a sufficiently large area or is frequent enough,

habitat continuity may be diminished. Contaminated soil may be toxic to soil

invertebrates, mammals, plants, or other ecological receptors. Longer-chain

hydrocarbons may be persistent and bioaccumulate in those receptors. The spill may

act in a synergistic manner with other environmental stressors in the landscape to cause

cumulative effects to specific receptors or ecosystem function as a whole. The spills

also may have no measurable impact on the ecosystem.
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The measurement of spill-related effects to terrestrial ecological receptors and

ecosystem function is a relatively new field in science and policy. One approach to

assessing ecological risk to the surrounding prairie environment is to conduct an

ecological risk assessment. Ecological risk assessment (ERA) is a process that

evaluates the likelihood that adverse ecological effects may occur or are occurring as a

result of exposure to one or more stressors (US EPA 1992). The objective of an ERA is

to

"identify those factors (stressors) that pose the greatest risk to the integrity or

health of an ecosystem so that environmental protection efforts can be focused on

those strategies likely to yield the greatest reduction in ecosystem risk" (Wenger et

al. 2000).

The U.S. Environmental Protection Agency (US EPA) and the American Society for

Testing and Materials (ASTM) have developed guidance documents that prescribe a

risk-based approach for ecological assessment (US EPA 1998; ASTM 1999). These

documents provide a template to help organize and analyze data, information,

assumptions, and uncertainties when evaluating ecological effects (US EPA 1998). Both

frameworks have similar approaches to protecting ecological receptors in terrestrial

systems through the use of soil protection values. The soil protection values are created

from toxicity tests using selected species of plants, soil invertebrates, mammals, or

birds. The US EPA refers to their version of soil protection values as "Ecological Soil

Screening Levels" (Eco-SSLs) (US EPA 1998). The ASTM guide has adopted a three­

tiered process under their Risk-Based Corrective Action (RBCA) framework that was

originally developed for human health risk assessment. Tier 1 of ecological RBCA

proposes to define "relevant ecological screening criteria" (RESC) as soil protection
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values. An important research need described in both frameworks is the development of

chemical-specific numerical risk-based protection values.

This chapter discusses the development of soil protection values for oil-contaminated

soil at the TPp1. Chapter Two discusses ecosystem-level effects.

OBJECTIVE OF RESEARCH

The objective of this research is to develop relevant ecological screening criteria for

crude oil exposure with plants and invertebrates in soil from the TPP.

METHODS

Description of the TPP

The TPP is located near the southern end of the Flint Hills - the largest extant block of

tallgrass prairie in North America (36°50'N, 96°25'W) (Hamilton 1996). Approximately

80% of the preserve is tallgrass prairie vegetation (Hamilton 1996), dominated by big

bluestem (Andropogon gerardil), Indian grass (Sorghastrum nutans), switchgrass

(Panicum virgatum) , and little bluestem (Schizachyrium scoparium) (Coppedge et al.

1998). Average temperatures range from -5°C in January to 34°C in July and

approximately 877 mm of precipitation falls annually at the TPP (Coppedge et al. 1998).

Each year 20% of the TPP is burned to maintain a functioning tallgrass prairie

community. Burns are conducted at different times of the year to mimic presettlement

fires (Coppedge and Shaw 1998). Bison were introduced to the TPP in 1993. In the fall

of 2000, the Nature Conservancy reported a herd size of 1200 bison (www.tnc.org, Nov,

2001). Herd size is managed by annual round-ups.

1 EcoSSLs were not developed in this research project. Methods more closely followed the RESC
development process under ASTM protocols.
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Description of Test Plots

One release of dewatered crude oil from a pipeline break in early 1999 produced an

area of approximately 0.5 ha of contamination spread out over two lobes (North and

South lobes), see Figure 2. Each lobe was mulched, tilled and then divided into upslope

and downslope areas using a polyethylene divider. Only the downslope side of the lobe

was fertilized. Mulching, tilling, and the addition of fertilizer are typical remediation

strategies for crude oil spills at the TPP. Soil was collected from the unfertilized side of

the lobes to conduct toxicity tests and to perform physical and chemical analysis. An

area of the TPP previously uncontaminated with oil or brine was chosen as a reference

area. Also, a negative control site that was mulched and tilled, but not fertilized, was

created adjacent to the contamination lobes.

Figure 2. Location of north and south lobes of 1999 spill area. A control area was
created adjacent to the north lobe and treated with similar remediation techniques as the
spill areas. Reference soil was collected from a point upslope of the spill area in an
uncontaminated and undisturbed location.

5



Toxicity Tests and RESC Development

The general experimental objective of the first portion of the project was to develop a

soil-screening value for oil-contaminated soil at the TPP. This involved assessing

responses of an array of soil organisms and plants as effects assessment endpoints and

measures of total petroleum hydrocarbon in assessing exposure. Toxicity tests were

conducted with organisms for which no codified toxicity tests are available (Le.,

potworms, springtails), as well as standard soil test organisms (i.e., earthworms), in field

soils contaminated with crude oil at different levels. Screening values were estimated

from no observed effect concentrations (NOECs) or the value at which 5% of the

population is affected (EC5) for sublethal test endpoints such as growth and

reproduction.

Toxicity Tests with Eisenia fetida

A single soil organism test has been standardized in both Europe and North America:

the lethality test with the earthworm Eisenia (etida (ASTM 1997, OECD 1984).

Earthworms are easy to culture and handle in a laboratory setting. As a result, a large

library of E. fetida toxicity data has been produced. Although E. fetida is considered a

useful indicator of soil quality, they are not true soil dwellers because they do not live in

soils but rather in organic matter such as compost. Moreover, E. fetida represent only

one species in the vast spectrum of soil fauna (Crauau 1999). Therefore, it has been

suggested that it is not fully scientifically justified to regard E. fetida as a typical

representative of the soil community (Rombke et al. 1997). Including alternative soil

dwelling organisms in the development of RESC would increase validity and ecological

relevance to the conceptual model of ecological risk.
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The ASTM protocol E 1676-97 was followed to conduct the E. fetida test with the

following exceptions. First, field soils were collected from the TPP to be used as a test

medium rather than the suggested artificial soil medium (although artificial soils were

included as a reference soil). These soils were sieved through a 6-mm screen, then

mixed and stored at 4°C until soil was analyzed for Total Petroleum Hydrocarbon (TPH)

content. TPH levels of the soils were analyzed by standard EPA Methods 418.1 (IR)

and 8015-8 (GC) by Soil Analytical Services, Inc. (SASI), College Station, Texas. Since

toxicity organism tests were conducted using field-contaminated soils, a TPH

concentration gradient of 13243,5168,3733,2118, 1320, and 1278 mg/kg was used.

Second, soils were wetted to a similar consistency using visual observation rather than

wetting soils using similar volumes of water. A 24-hour light cycle was used to ensure

worms burrowed into the soil. Preliminary experiments with a range-finder test indicated

low mortality in these soils, so the 28-day sublethal toxicity test method was followed.

Tests were conducted in quadruplicate. Measurements of worm mortality, body-weight,

reproduction, and behavior were noted. At the end of the exposure period,worms were

rinsed in distilled water,wrapped in hexane-rinsed aluminium foil, and frozen at -20°C.

Toxicity Tests with Enchytraeus albidus

Enchytraeids are a widely distributed annelid species having a broad habitat selection

(Augustsson and Rundgren 1998). These Lumbricids are true soil-dwelling organisms

and are easily bred under laboratory conditions. Enchytraeus albidus offer a reasonable

addition to the E. (etida test because they live in close association with soils and are

native to the TPP. A North American testing guideline has yet to be developed for these

"potworms," however a draft guideline has been published by the Organization for

Economic Development (OECD 1984). This guideline was followed for the Enchytraeid

bioassay, with the following exceptions. Hydrocarbon-contaminated soils were collected
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from the field site, as described above, rather than using artificial soil. Tests were

conducted in replicates of six instead of three. All enchytraeids used in this study were

believed to be white potworms, Enchytraeus albidus, obtained from our laboratory

cultures maintained at 20±2°C. Testing was conducted in environmental chambers with

controlled temperature maintained at 20±2°C with a 16:8 light-dark cycle.

Toxicity Tests with Folsomia candida

Coltembola are important prey items for many soil-dwelling organisms (Hopkin 1997).

They are the most Widely distributed and numerous insects in terrestrial ecosystems and

have been extensively studied as bioindicators of contaminant exposure (Usher 1977).

Folsomia ca·ndida is a Collembola that inhabits primarily the top horizon of soils with high

organic matter content. It is parthenogenic with a high reproductive rate. Because these

organisms have different life history strategies and habitat selection than either of the

Lumbricids being tested, they are an effective addition to the RESC development.

Collembola bioassays were conducted according to the protocol described by ISO

standard 11267 1999-04-01 (ISO 1999), with a few modifications. Bioassays used soil

samples collect~d from TPP and follow the same concentration series and reference

soils as described previously, rather than using artificial substrate. Tests were

conducted in 100-ml mason jars with 20 g of soil (wet weight) smoothed to the bottom of

the jar. Ten 10 to 12-day old F. candida were placed in each jar using a fine paintbrush.

Tests were conducted in replicates of six rather than three. All F. candida were collected

from our laboratory culture maintained at 22±2°C. Testing was conducted in controlled

environmental conditions at 20°C with a 12:12 light dark cycle. F. candida were allowed

to acclimate to light and temperature conditions for 24 hours prior to placement in jars.

F. candida were fed a drop of liquid Brewers yeast on a filter paper disk every four days.
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On day 28, all jars were flooded with de-ionized water dyed dark green w·th food

coloring. This improved the visibility of the white F. candida against the dark green

background to allow for each jar to be digitally photographed. All photographs were then

manipulated in Adobe Photoshop using the 'threshold' function. All pixels darker than a

pre-determined intensity (50) were converted to black and remaining white spots were

counted as individual organisms. Each of the six replicates was photographed three

times to account for the F. candida bunching together on the surface of the water.

Toxicity Tests with Plant Bioassays

Plant bioassays were conducted according to standard protocols for germination and

growth tests- (ASTM E 1963-98) using the composite soil samples obtained in the field.

Seeds were purchased from a certified distributor (Carolina Biological Supply, CA or

Johnston Seed Co., OK) and stored in sealed paper bags at 4±1°C. Seeds were

monitored for time to germination, % germination, and height one week after

germination. Other observations included: color, diameter of stem, leaf size and

number, or any abnormal changes in plant morphology as compared to controls.

At the end of the test, plants were measured for height, stem width, and leaf number and

size. Plants were cut at the soil surface and dried at 10aoe for dry weight measurement.

Radicles (root lengths) were retrieved from the soil, rinsed with de-ionized water, and

stored in separate bags for dry-weight measurements.

Data Analysis

Data interpretation was done using Instat (GraphPad Instat V2.05a, copyright 1990­

1994) and Excel 2000 (version 9.0.2720, Microsoft® 1983-1999). Standard descriptive

statistics, one-way analysis of variance (ANOVA), and linear and non-linear regression

techniques were used.
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EC50s were estimated for earthworm reproduction, potworm morta~lity and reproduction,

springtail reproduction, and plant germination and biomass by statistical comparison of

responses in field-contaminated soils with those in uncontaminated control soils.

Earthworm and potworm reproduction data were normalized to cocoons/adulUweek and

juveniles/adulUweek. For plant tests, the percent germination and mean above-ground

plant biomass were used as response parameters.

Relationships between physical-chemical parameters, hydrocarbon measures, and

bioassay endpoints were evaluated with Pearson product moment-correlation

coefficients. EC50s for growth or reproduction were determined by probit analysis and

NOECs analyzed by ANOVA with a posteriori means comparison using Tukey's

Honestly Significant Difference test (u=O.05).

RESULTS

The results of the physical-chemical and hydrocarbon measurements of the soils

collected at the TPP are displayed in Table 1. Soil pH values ranged between 5.5 and

7.0. Electrical conductivity was highest in 9N1 soils and lowest 'n 7N1 soils at 963 and

291 J.lmhos/cm, respectively. Soil textures were similar, as were available nutrients with

sodium as an exception. Sodium levels were highest in soils 9N1 and ES1 at 177.0 and

177.9 ppm, respectively. Increased sodicity was also reflected in the sodium absorption

ration (SAR: 9N1 and ES1 exhibit ratios of 5.74 and 9.04 whereas all other soils fell

below 2.06). Percent moisture levels were similar between all tilled soils, between 18.2

and 23.0 %. Reference soils were considerably lower, however, at 10.0%. In general,

9N1 and 7N1 appeared to be more saline that other sampled soils. This difference is not

sufficient enough to cause a difference in soil dispersion, but its influence on soil plants

and invertebrates is unknown.
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Table 1. Physical-chemical characteristics of Tallgrass Prairie Soil.

Soil Sample
Physical-Chemical Test Reference Control 6N1 7N1 8N1 9N1 10N1 ES1
alip'hatic (mg/kg) 0 0 1086.3 6184.2 3316.7 1356.3 1918.8 1277.5
aromatic (mg/kg) 0 0 233.8 7058.3 1851.7 761.3 1813.8 0.0
pH (units) 5.5 5.9 5.8 6.2 6.2 7.0 6.6 6.1
EC1 (umhos/cm) 591 861 870 291 461 963 500 789
Texture medium-coarse fine-medium fine-medium fine-medium fine-medium fine-medium fine fine-medium
Na (ppm) 26.9 29.7 74.1 53.7 21.3 177.0 27.8 177.9
K (ppm) 6.5 11.1 8.3 5.6 4.6 5.6 6.5 2.8
Ca (ppm) 33.4 67.9 54.6 37.9 32.3 52.9 40.1 18.4
Mg (ppm) 10.6 17.8 26.2 14.5 12.2 11.7 13.9 6.7
Boron (ppm) 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.1
TS52 (ppm) 390.1 568.3 574.2 192.1 304.3 635.6 330.0 520.7
PAR3

0.15 0.18 0.14 0.11 0.10 0.11 0.13 0.08
SAR4 1.04 0.82 2.06 1.87 0.81 5.74 0.96 9.04

~

EPP5 4.89 5.23 4.80 4.59 4.47 4.50 4.75 4.28~

ESP6 0.27 0.30 1.74 1.46 0.26 6.68 0.16 10.70
TOC? (%) 1.88 2.31 2.89 2.29 3.46 2.29 3.40 1.70
Buffer Index (units) 6.67 6.80 6.77 7.00 6.83 6.87 6.87
N03-N (ppm) 5.17 11.83 27.17 1.83 1.67 1.50 1.67 13.50
P 7.33 7.00 7.67 5.67 5.67 10.00 6.67 7.33
K 135.0 232.0 190.0 215.0 185.3 152.0 203.3 140.7
percent moisture 10.0 18.4 21.8 23.0 22.5 19.6 22.0 18.2
1 = Electrical Conductivity 5 = Exchangeable Potassium Percentage
2 = Total Soluble Salts 6 = Exchangeable Sodium Percentage

7 =Total Organic Carbon determined by dry combustion using a LECO
3 =Potassium Adsorption Ratio 2000CN
4 = Sodium Adsorption Ratio



The TPH concentrations in contaminated soils ranged from 1320 (6N1) mg/kg to

13242.5 (7N1) mg/kg. The aliphatic and aromatic component hydrocarbons are listed in

Table 1. ES1 shows no aromatic fraction whereas 7N1 had the highest aromatic fraction

at 7058.3 mg/kg oil in soil.

Invertebrate Bioassays

Earthworm survival was 100°A> in all contaminated and reference soils for the duration of

the 28-day reproduction test. Earthworm reproduction was highest in the untilled,

uncontamin~ted reference soils and lowest in the artificial reference soils (Figure 3). No

significant difference was observed between control or artificial soil reproduction and

reproduction in all TPH-affected soils. However, a significant difference was observed

when comparing reference soils and all other test soils except 6N1, the lowest TPH

concentration. Mean juvenille production in both reference and 6N1 (1278 mg/kg) soils

was above 200 juveniles, whereas juvenile production in other test soils remained below

150. To obtain an EC50, control and artificial soil values were disregarded. Using

methods outlined by Stephan (1977), the 28-day EC50 for earthworm reproduction is

2811 mg/kg TPH.

Earthworms were fed using plastic whiffle balls that were split in half and filled with

wetted horse manure. These balls contained holes that allowed for easy access of the

worms to the food. Cocoons were collected from both the food contained in the whiffle

ball and the soil itself. The distribution of cocoons found in food compared to the

cocoons found in soil is displayed in Figure 4. A ratio of mean number of cocoons found

in soil to mean number of cocoons found in food is also displayed. The soils containing

less TPH had higher soil to food ratios than the more contaminated soils. This may
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indicate a level of reduced exposure with worms in more highly contaminated soils due

to the preference for depositing cocoons in food rather that soil.

m co 0 co ('f) <X) C")

'0 l"- N ~ ('f) <0 V
N ('I) ~ I"- ~ N

t+= ~ ~ N ('I) t.() C")

t
4.:

TPH concentration (mg/kg)

Figure 3. Earthworm cocoon production was displayed above where a significant (p<
0.0001) decrease in cocoon production was observed with increased TPH concentration.

I]J Cocoons in Soil 0 Cocoons in Food • Ratio of Mean Cocoons Found in Soil:Food

45 ,-----------------------------,

40 9.00

35

1.00

5.00

- 3.00

-- 7.00

00

13243

000

51683733211813201278

o -+-,~i:.I.-..L.._.,_-J.-,.;"-l.--..L.__.,---l...:.....~...L_....,.---I:....:::.-L-.....J....-,..__I__::.......L---L-.,...___t:_:~--I..-_,__L.~---J.-~-----L..---L........._--L~--1. 00

Reference Control Artificial

5

30

15

10

25

20 -

lPHCoocentrntioo (tmJ1a!)

Figure 4. The above graph displays the total number of cocoons collected in test soil,
and the total number of cocoons collected in the food ball that was made available
throughout the 28-day test. The ratio of mean number of cocoons found in soil to mean
number of cocoons found in food isa so displayed, where a valueless than one
indicates more cocoons were found in the food medium than soil.
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Tests performed with Folsomia candida show no significant difference (p>O.05) in

reproduction between control and artificial soils and all TPH-affected soils. A significant

difference was observed between reference and soils and all other soils except 6N 1.

These two soils were observed to be less compacted than other test soils. Differences

in soil moisture and soil surface roughness may have increased variability between test

soils.

Due to low juvenile production in the first round of Enchytraeus albidus tests (n=27), a

second test was conducted in replicates of six. Both tests and subsequent trials resulted

in variable juvenile production at week 6. Test validity criterion require that vessels

produce greater than 25 juveniles (Rombke et al. 1997). This criterion was not met in

either test. However, when reviewing the survival results alone, no significant difference

(p> 0.05) was found among test soils in each test trial conducted (Figure 6).
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Figure 5. Mean Folsomia candida reproduction (n=54 ± SO). Means with the same
letter are not significantly different (p>O.05).
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Figure 6. Enchytraeus albidus adult survival is displayed for two separate test trials (±
SD). Trials were identical except for number of replicates where test one had at least 3
replicates (reference, control and 7N1 all had replicates of four) (p=0.0115) and test two
had six replicates.

Plant Bioassays

Germination for lettuce (Lactuca sativa) and mustard (Brassica rapa) was >60% and

>88°A> , respectively. A concentration-response pattern was not observed for either

standard toxicity tests (p>O.05). A significant (p<0.001) increase in above ground

biomass was observed in mustard seedlings grown in low-TPH affected soil (6N1)

(Figure 7).

Height was determined for mustard at day 14 and day 28 (Figure 8). A significant

difference was observed with 6N1 stem height (p < 0.001) and all other test soils. This

difference is reflected in above ground biomass, as described above. Stem height was

measured successfully on day 28 for lettuce (Figure 9). Height of lettuce seedlings at

day 14 was inconclusive due to a lack of differentiation between beginning of leaf buds

and end of stem. No significant difference was found between height of seedlings in test

soils (p>O.05).
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Germination for big bluestem and little bluestem were both below 5%. Further analysis

or comparisons of stem height or plant biomass proved unsuccessful with the limited

number of samples.
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Figure 9. Lettuce (Lactuca sativa) stem height at day 28. Stem height was
indeterminate on day 14 due to a lack of differentiation between beginning of leaf buds
and end of stem.

DISCUSSION

The objective of this assessment was to develop a relevant ecological screening

criterion for petroleum-hydrocarbon contaminated sites at the Tallgrass Prairie Preserve

(TPP). In total, 13 endpoints from seven soil-organism tests were selected. Of all tests

conducted, only Eisenia felida cocoon production was significantly correlated with

hydrocarbon measurements (Figure 3).

Results of this study support a criterion for the protection of soil invertebrates based

soley on earthworm reproduction. The 28-day E. felida EC50 based on earthworm

reproduction was 2811 mg/kg TPH. The tenth percentile of a distribution of effects
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concentrations is typ'cally used to determine ecotoxicity of petroleum hydrocarbon in

soils. Without a suite of effects concentration values, a criteria protective of 90% of the

soils species is impossible to obtain. To preserve the protective nature of this

calculation the screening value for this study can be set at 10 percent of the earthworm

reproduction EC50, or 281 mg/kg TPH. This value is consistent with soil protection

values found in current literature (410 mg/kg TPH, Salanitro et al. 1997; 120 mg/kg TPH,

Saterbak et al. 1999). Existing numerical standards and screening levels for (TPH)

contaminated soils range from tens to thousands mg/kg of soil (Efroymson 2001).

Similar plant and soil invertebrate toxicity tests proposed criteria at TPH levels between

4000 and 10000 mg/kg soil for earthworm avoidance and survival and between 2000

and 34000 mg/kg soil for seed germination depending on plant species (Wong et al.

1999). Potential toxicity benchmarks for the protection of soil invertebrate communities

are generally lower than those proposed for plant production (Dorn et al. 1998).

In the development of the TPH RESC, standardized tests were adapted for use with TPP

field soils. The protocol developed for TPP field soils allowed for microbes, native

invertebrates, seeds, small stones and vegetative debris to remain in test soil. Although

"relevance" was achieved by testing field soils with native species in addition to non­

native test species, clear dose-response relationships were not observed for tests

performed with native species.

Invertebrate Bioassays

Mean cocoon production by earthworms in control soils ranged from 1.25-9.5

cocoons/adult/week. These rates are higher than those reported by Saterbak et al.

(1999) and Van Gestel et al. (1992) at 1.3 to 2.9 cocoon/adult/week. Variability in
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cocoon production may have been affected by soil texture or other physical-chemical

properties of TPP soils.

The significant correlation between the chemical parameter of soil TPH and the

biological endpoint of earthworm cocoon production suggests that fewer analytical tests

and toxicity measurements may be necessary to sufficiently define TPP contaminated

soils.

Validity criteria for the Enchytraeid reproduction test require the average number of

juveniles to be greater than 25 per test vessel and that the coefficient of variation is less

than 50% at the end of the test (Rombke et al. 1997). Neither criterion was reached in

either of the Enchytraeus albidus reproduction trials conducted. In addition, juvenile

production was low in artificial soils. This indicates that further method development is

necessary before future toxicity tests are performed. Future Enchytraeus albidus toxicity

tests may be improved by ensuring soil pH is within a biologically appropriate (spell

check!) range for this organism.

Tests performed with Foisomia candida show no significant difference in reproduction

between control and artificial soils and all TPH-affected soils. This species of springtail

lives and feeds on the soil surface and therefore experiences reduced dermal and oral

uptake of the contaminant when compared to the earthworm species tested. Differences

in soil moisture and soil surface roughness may have increased variability between test

soils. The protocol developed for TPP field soils should be modified to account for

differences in crevices produced in test soil. The availability of these crevices is

necessary for egg deposition and protection from moisture deprivation.
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Plant Bioassays

An interesting hormetic effect may have been observed with Brassica rapa where small

additions of oil actually enhanced growth when compared to plants grown in

uncontaminated soils. A statistically significant increase (p<0.001) occurred in the

measured dry-weight biomass of seedlings grown in 1278 mg/kg TPH compared to aU

other test soils, including control and reference soils (Figure 9). This enhanced effect of

crude oil on plant growth has been reported previously in the literature (Salanitro et al.

1997; Wang and Bartha 1990; Baker 1970; Carr 1919). Soybean yield increased 50% in

field plots of a sandy soil that contained 7500 mg/kg oil (Carr 1919). Small additions of

petroleum also enhanced growth of corn in bioremediated soils (Salanitro at al. 1997). It

has been suggested that lipophilic organic contaminants, like petroleum hydrocarbons,

partition to the epidermis of the root or to the soil particles and are not drawn into the

inner root or xylem because this part of the translocation system is water-based

(Simonich and Hites 1995). However, wheat and oat seeds grown in medium- and light­

weight crude oils were significantly reduced (20-70% less) (Salanitro et al. 1997). Lower

thresholds for toxic effect are common for bioremediated soils and lighter crude oils,

likely due to the increased bioavailability or toxicity of polar organic metabolites.

Additionally, previous research has shown that lower thresholds for toxic effect of

petroleum mixtures in soil occur at concentrations much greater than those of minor

individual chemical constituents (Efroymson 2001). These conflicting and confounding

effects suggest that until more data is accumulated, phytotoxicity of petroleum

hydrocarbons cannot be predicted and varies widely with oil and soil type, concentration,

and plant species.

Poor growth in plants grown in high levels (5168 -13243 mg/kg TPH) of crude oil­

contaminated soil may have been due to physical changes in the soil matrix and/or toxic
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effects of the hydrocarbons. It was observed that containers with high levels of oil

contamination required higher volumes of water to maintain an equivalent moisture level

with other test soils. Similar effects were found with corn where poor growth was

reportedly due to excJusion of air from roots by oil, the depletion of oxygen by increased

microbial activity, reduction in availability of water to the plants, and possible toxicity of

sulfides and/or manganese during hydrocarbon decomposition (Udo and Fayemi 1975).

Changes to protocol E 1963-98 (ASTM) are recommended for future plant toxicity

testing. A large portion of seedling roots emerged through holes in the bottoms of test

chambers, thereby reducing exposure to contaminants in the soil. Each chamber

contained one or two plants that grew considerably more than the other seedlings,

suggesting that plant growth was not independent. Also, the roots of the five plants

often entangled, such that the root biomass of individual plants could not be determined.

Future tests may be improved by using taller containers, each sown with one seed per

container.

In addition to procedural changes, a wider selection of native plant test species may

have produced more conclusive results. Both native grass species tested requ"red long

(> 2 week) germination times and had slow growth once germinated when compared to

the more standard test species, Brassica rapa and Lactuca sativa. Although

assessments using native species improve ecological relevance, the results may be

difficult to interpret. A low germination rate and slow rate of growth make these species

impractical for use in toxicity testing.

These data show that changes in oil and soil type, and sensitivities of different test

species significantly influence toxic effect. Total petroleum hydrocarbon measures have

been used as a soil standard to predict acceptable levels of risk from a human health
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perspective. This is a very general measure of hydrocarbon contamination and does not

consider specific chemical composition or the b'oavailability of hydrocarbons. These

data show that, except for Eisenia (elida cocoon production, most toxic effects in test

species are poorly correlated to TPH in soil. The development of a chemical measure or

technique that assesses the bioavailability of hydrocarbons in soil is a promising

approach to normalizing differences in chemical bioavailab·lity among sites due to

variations in soil chemical/physical characteristics (Lanna 2001).

The format of this assessment closely follows the protocol outlined for development of

an ASTM RBCA RESC, which analogous to the US EPA Eco-SSL process. Although

these frameworks for assessing ecological risk are theoretically appealing, these data

have shown that it is difficult to produce clear dose-response curves using TPH field­

contaminated native soils and native test organisms and that factors other than toxicity

due to hydrocarbon exposure may be important in assessing risk. The creation of the

TPP site-specific soil protection value was based on earthworm cocoon production, just

one of the 13 endpoints reported. The "ecological relevance" of this type of criteria is

considered below.

To identify factors that pose risk to an ecosystem, it is important to consider how an

ecosystem functions. The measurement of ecosystem function is a heavily debated

topic among scientists and policymakers and it is unlikely that a meter-stick will be

agreed upon soon (Fairbrother 1998; Wilson 1998). Current parameters measured in

ERA studies are far removed from actual ecological risk. This is demonstrated in current

ERA strategies that limit assessment to organism-level effects by basing the core of their

assessment on comparing constituents to existing screening criteria collected from

available online or published databases (ECOTOX, AQUIRE, etc.). To study an

ecosystem, observations must be made at the ecosystem level of organization
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(Vigerstad and McCarty 2000). The problem w·th this approach lies in the ability to

make quantitative measures at this level of organization. Wh·le assessors are relatively

comfortable making predictions about chemical concentrations present in a soil, or even

risk to individual organisms exposed to that soil, population, community or ecosystem­

level assessments are rare and often highly disputed. The state of ecological theory

limits the predictions that can be made at these higher levels of organization (Ferson et

al. 1996). Trophic interactions are complex and basic assumptions about food web and

food chain models are still disputed (Ferson et al. 1996). Without this knowledge,

calculating risk across different spatial and temporal scales in ecosystems is difficult.

Additionally, ERA is limited in that it is typically focused on a single stressor (Dyer at a1.

2000). Cumulative risk from numerous contaminants or other hazards in the landscape

may compromise ecological function. Failure to consider all hazards to which a species

may be exposed may underestimate actual risk. The ASTM tiered process and the EPA

EcoSSL process focus on creating soil protection values from toxicity testing. Other

aspects of the ecological impact of a spill, such as cumulative effects and habitat

continuity, are not addressed. These discontinuities reveal a gap in the science and

policy of ERA. A model that works to bridge that gap will frame the second chapter of

this assessment.
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CHAPTER 2

DEMONSTRAT 0 OF THE VALUE OF GIS IN ASSESSING CUMULATIVE
ECOLOGICAL RISK

INTRODUCTION

The Tallgrass Prairie Preserve (TPP) contains oil and brine spills as well as production

facilities such as roads, pipelines, pumpjacks, and other infrastructure. These

disturbances occur across a range of spatial scales that may affect INC's goal of a

functioning, healthy tallgrass prairie ecosystem. To address this concern it is necessary

to look beyond the toxicological impacts of oil spills alone. For example, surface area

disturbances that are not spill-related can remove vegetation for a period of time. The

combination of oil and brine spills and other surface-area disturbances may impact

habitat continuity. Habitat may be compromised to a point where patchiness reduces

species abundance, which has been shown in a tallgrass prairie community with

disturbances as small as pocket gophers mounds that impact plant community structure

(Collins 1989). An inventory of existing facilities in the TPP and surface area

measurements of the spill sites and surface area disturbances can be used to determine

where tallgrass prairie plant species are being disturbed.

The purpose of this assessment is to develop a method for hazard screening for 1) site

ranking, 2) prioritization for further investigation, and 3) prioritization for remediation.

Information on what facilities are present at the TPP, the land surface areas they

encompass and the spatially explicit risk of these facilities on the ecosystem must be

obtained. To accomplish this task, a profile of hazards of the TPP was mapped and an

ordinal ranking of risk was developed. This method of assessment has allowed for a

synoptic approach for predicting local and site-wide risk to the tallgrass prairie

ecosystem. It has also helped demonstrate the utility of marrying of GIS and ecological
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risk assessment to produce a novel and important example of cumu:lative and

ecosystem-wide assessments.

Cumulative risks occur when an ecological receptor is exposed to multiple hazards. In

the case of the TPP, species could be threatened by hazards such as contamination of

soil by brine or oil, soil compaction, roads, pumping structure, etc. Failure to consider all

hazards to which a species may be exposed may underestimate actual risk. Since the

particular mix of hazards to which a specific species are exposed varies spatially within

an ecosystem, cumulative risks will also vary from one location to another. For this

reason, spatial analysis of ecological risks is required to assess risk on an ecosystem

level.

Currently, EPA guidance documents that discuss cumulative risk are more theoretical

than procedural (US EPA 1999, 1998). The United States government has required

cumulative effects to be considered in assessments for over three decades with

inception of the National.Environmental Policy Act (40 CFR Section 1508.7). In spite of

this law and other laws emphasizing the importance of measuring cumulative risks, they

are still rarely considered during the decision-making process (Abbruzzese and

Leibowitz 1997). Cumulative assessments are impractical for regulators, they can be

costly for responsible parties, and uncertainty exists when deciding what endpoints risk

assessors should be measuring.

The endpoints measured in this assessment focus on vegetative cover, as justified next.

The tallgrass prairie can be valued for the tangible benefits it prOVides, such as a diverse

plant and animal com·munity, valued rangeland for bison and cattle, and oil reserves.

The TPP can also be valued for the intangible benefits it provides, such as aesthetics or

the pres-ervation of the one of the last intact stands of tallgrass prairie in North America.
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The value of e,ach of these ecosystem functions is 'mportant and subjective. The

decision of what is valuable is not a scientific or technical issue, but must be determined

by policymakers (Abbruzzese and Leibowltz 1997). To create a scoring system to

measure cumulative effects on the TPP, the goals set by The Nature Conservancy

(TNC) were consulted. TNC purchased the TPP in 1989 to create a preserve that will

protect an array of biodiversity features indigenous to the locale in a setting that utilizes

"... ecological processes that are essential to maintaining a naturally functioning tallgrass

prairie landscape" (Hamilton 1996). The focus on tall grasses and other prairie flora is

emphasized in TPP literature and web resources (www.tnc.org). The presence of a

healthy prairie-plant community is often a good indicator of a healthy prairie animal

community (and vice-versa). To utilize this linkage, measuring the presence or absence

of prairie plants will provide an appropriate measure of ecosystem health.

A more pragmatic justification for focusing this assessment on plants recognizes the

limits of control that TPP managers have over this ecosystem. The TPP is surrounded

by a fence; however, the maintenance of many of its small mammal, bird, invertebrate,

and microbial communities depends on actions beyond TPP boundaries. TPP

managers also cannot directly control other important ecosystem values, such as how

aesthetically pleasing the prairie is to each visitor. However, TPP managers can work to

maintain coverage of plant communities present in the preserve. They can control the

number of roads and facilities constructed on their lands that disturb prairie vegetation. It

can be argued that if a healthy ptant community exists, the capability of the land to

provide habitat for animal communities will follow. Because it is reasonable to limit this

investigation of cumulative risks to those activities that are controllable by TPP

managers, the presence or absence of plant coverage in the TPP is the focus of this

assessment.
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The TPP contains a variety of activrtes that may 'nfluence plant communities. Roads

and facilities compact soil and, as a result, prevent plant growth. Tillage of soil often

associated with remediation practices uproots plants and limits their growth. Toxicity of

contaminants such as oil or the saline water used to extract oil may prevent growth.

These sources can be considered "hazards" to vegetative cover and are also

quantifiable in surface area and level of toxicity to p:lants.

LITERATURE REVIEW AND EXISTING MODELS

To help organize the parameters that affect the structures of ecological function, a

dynamic and inclusive process of quantifying temporal and spatially explicit ecological

risk is needed. Although the processes are still unclear, assessments at the landscape

scale have been documented. A number of techniques or observations have been

proposed such as, energy flow in units of kg per unit time, production/biomass ratio, and

effluent loading in watersheds (Vigerstad and McCarty 2000). Scientists have employed

the use of new tools, such as geographical information systems (GIS), in linking

organism-level effects to ecosystem-level effects. Graham et al. (1991) developed a

"prototype regional ecological assessment" for elevated ozone levels in the Adirondack

forest. This group used GIS to link terrestrial and aquatic systems in a regional spatial

assessment. Ecosystem level effects from contaminants were also measured in the

body burdens of sentinel organisms using measures of dieldrin by Clifford et al. (1996)

and metals (Ag, Cd, Cr, Cu) by Birge et al. (2000). Culp et al. (2000) used a weight-of­

evidence approach by pooling field and lab measurements and incorporating indicators

at different trophic levels to assess ecological risk in an aquatic system. Each of these

assessments used a different method to predict ecosystem level effects.

The TPP is a spatially heterogeneous system. The quantification of spatial components

can be handled in many ways. Nominal models, weighted (ordinal) models, and
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quantitative (interval/ratio) models are three approaches used in the q antification of

space or to 'simplify reality' (Wadge 1993). Rejeski (1993) discusses weighted models

and how some substances, or the characteristics of an organism, may playa

disproportionate role in producing risk and need to be accounted for in the model. A

recognized ranking scheme that has been peer reviewed is necessary to "debias" this

modeling approach (Rejeski 1993). This is true of all modeling approaches.

Ranking schemes have been used previously in ERA. Ecological risk ranking was used

in an US EPA Comparative Risk Project for the purposes of conducting an

environmental evaluation of 24 distinct ecoregions in US EPA Region 6 (Parrish et al.

1993). The working group assumed that ecological risk existed when environmental

threat impaired the ability of an ecoregion to perform basic ecological functions. This

risk ranking system was derived from seven basic ecological functions identified in the

literature (Le., vegetative cover, soil type). Results were displayed spatially using a GIS

to identify regions of the highest risk. Miller et al. (1998) and Fedra (1998) also

discussed the use of GIS mapping techniques in ecological risk assessment. Miller at al.

(1998) created "toxicity test scores" from weighting factors when evaluating residual risk

from lewisite, nerve agent degradation products, and various metals at a military base.

Fedra (1993) described how the process of integrated risk management improved with

GIS and that models take on a more intuitive understanding with this tool.

OBJECTIVES OF RESEARCH

The objectives of the proposed research are:

1) develop and inventory of existing hazards such as spills, roads, and other

facilities, and to map this data using a Geographical Information System (GIS);
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2) combine relevant ecological screening criteria created in another project related

to th"s work with the hazard inventory; and

3) demonstrate how spatially explicit ecological risk can be predicted across the

prairie locally and site-wide.

Goal

The goal of this study is to develop a method for hazard screening to enable an

assessor to rank a series of sites to be assessed and to prioritize those sites for further

investigation and remediation.

Limitations'

This project is limited in scope in that it will not assess risk to individual test species.

The method employed will assess risk to vegetative cover as a whole and produce a

table that can be used as an indicator of threats to that cover. Greater ecological threat

to that cover is implied with a higher risk score. TPP managers can display this table to

reference areas of hazard concentration. The information may also be used to help

focus remediation strategies or as a reference for future ecological risk assessments

conducted at the TPP.

METHODS

Study Site

The TPP is located near the southern end of the Flint Hills - the largest extant block of

tallgrass prairie in North America (36°50'N, 96°25W) (Hamilton 1996). Approximately

80% of the preserve is tallgrass prairie vegetation (Hamilton 1996), dominated by big

bluestem (Andropogon gerardiJ), indian grass (Sorghastrum nutans), switchgrass

(Panicum virgaturn) , and little bluestem (Schizachyriurn scopariurn) (Coppedge at al.
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1998). Bison were introduced to the TPP in 1993. As mentioned above, the Nature

Conservancy reported a herd size of 1200 bison in the year 2000 with the intention of

expanding that herd to 3300 head in the future (www.tnc.org, Nov, 2001). Herd size is

managed by annual round-ups.

Mapping

GIS is a useful tool that can integrate spatial, temporal, and toxicological information in a

terrestrial ecosystem. ArcVieW® is a computer-based GIS tool for mapping and

analyzing processes and events that are related by their location. This software

package facilitates manipulation and analysis of spatially arrayed data, such as

contaminant release location, surface areas and depth, contaminant type and degree of

contamination, remediation techniques performed, and other physical parameters

(topographical data, temperature data, etc.). This program was used to integrate data

from a range of sources (digital ortho-quadrangles, database files, and image files) to

assist in calculating risk (hazard?) values.

The TPP was divided into two different levels of resolution, 1600 ha and 400 ha grids,

using existing digital ortho-quadrangles (OOOs), obtained from the Oklahoma State

University Spatial and Environmental Information Clearinghouse (SEIC) (Figure 10).

Preserve boundary information was obtained from existing files in a TPP database

where information is collected and maintained by a SEle employee. Spill data was

collected in the field using a Global Positioning System (GPS, GeoExplorer). After

collection, the data were corrected using the Oklahoma State University base-station in

Pathfinder. AU other information was digitized at a scale of 1:1300 m using the 1995

DOOs. Each of the following types of facilities were mapped throughout the TPP:

All visible gravel and 2-track roads
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storage tanks and p mpjack ('rocker-horse') facilities

housing and TPP maintenance buildings

spill areas (crude oil, brine and combination spills)

Any other bare patches of land that were visible from the 1995 DOa that removed

tallgrass prairie vegetation

TPP boundaries

The items listed above were mapped because they each remove a discernible amount of

vegetation from the TPP landscape, with the exception of the TPP boundary. All

features listed above (with the exception of the TPP boundary) are identified as

"hazards" and weighted according to their level of disturbance to plant growth.

1600 ha Grid 400 ha Grid

Figure 10. The TPP is divided into two levels of resolution: 21 equal cells, each 1600
hectares in area and 84 equal cells, each 400-hectares in area.
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In addition to the risks posed by the quantifiable hazards mentioned above, other

occurrences influence TPP vegetation. Invasive species and regular controlled burns

also remove vegetation, but will not be quantified in this assessment. The location of

invasive plant species is difficult to differentiate from indigenous flora when viewed from

a DOQ. Controlled bums are conducted to mimic the response of prairie wildfires and

are considered necessary to maintain healthy tallgrass prairie vegetation and are thus

not considered hazards (Hamilton 1996).

An ordinal scale was employed to create "severity scores" associated with each of the

hazards to measure the type of disturbance imparted to TPP vegetation. For example,

some hazards have different vectors of impact to vegetation such as the toxicity of an oil

spill to plant growth or the compaction of soil due to roads. The hazard severity scores

are related to the permanence in which these hazards disturb the vegetation. A brine

spill is given the highest severity score as it has been shown to remove vegetation for

the longer amounts of time (Kerry Sublette, pers comm.). Oil spills, however, often

sustain plant growth after 3-4 years at the TPP. Vegetation will encroach upon roads

shortly after road maintenance is halted. The designation of severity scores is given in

Table 2, below.
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Table 2. Table of Severity Scores.

Adverse
Ecological Effect

Hazard Hazard Severity Score
(ordinal scale)

Soil compaction

Toxicity

Risk Calculation

Facilities, Roads, Pumpjacks, Tanks,

Buildings, all other super structures

Oil spill

Brine spill

Combination oil and brine spill

2

1

4

5

To calculate risk scores, the percent area covered by each feature in the grid is

multiplied by the hazard severity score. For example, if the roads in grid 1 cover 1 ha

and the pumpjacks cover 0.5 ha and the grid is 400 ha in total area, the risk value

calculation is shown below in Table 3.

Table 3. An example of a Risk Value calcuation.

Example Cell (Total ok Surface Area Risk Rank
Area 400 hal (ha) (ordinal scale)

Roads 0.25 2

Hazard Severity Score
(0/0 S.A. * Risk Rank)

0.5

Pumpjacks

Facilities

Oil Spills

Brine Spills

Combination Spills

Risk Value (L: Hazard
Severity Scores)

0.125

o

o

o

o
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In this assessment, hazard severity scores are additive for the sake of computation

when grids contain more than one hazard type. Although a road is not twice-as

damaging as an oil spill, a grid containing roads and an oil spill (2x + 1x) is less

hazardous that a grid containing roads and a brine sp'lI (2x + 4x).

Coverage for each hazard in individual grid cells was derived using the clip function in

GeoProcessing Wizard, an extension of ArcView. All hazards in the TPP were digitized

as polygons and therefore all had surface area. The surface area of each feature was

determined using the "ReturnArea" command in the field calculator and then exported to

Microsoft Excel for the calculation of risk values. Each hazard theme was digitized into

21 divisions for the 1600 ha grid and then each of those cells was clipped four times for

84 divisions in the 400 ha grid.

RESULTS

Generation of Maps

The TPP was divided into two levels of resolution, 21 1600-ha cells and 84 400-ha cells

(Figure 10). This division was operationally most reasonable based on the size and

shape of the TPP and followed the goal of reviewing local and site-wide risk levels.

The results of the road, pumpjack, and other facility digitizing are shown in Figures 11

and 12. All gravel roads were digitized with a width wider than visible two-track roads.

This difference accommodates the increased presence of vegetation on two-track roads.

All visible pumpjacks were digitized regardless of operational status. The total surface

area for each type of hazard is shown in Table 4.
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Table 4. The total surface area of each hazard in the TPP.

Surface area (ha)

Roads Pumpjacks Oil Spills Brine Spills
& Facilities

Oil-Brine
Combination Spills

81.55 9.01 0.94 4.44 0.16

The area of TPP covering each grid was used to normalize risk scores to account for the

arbitrary placement of the grid lines.

The risk values are tabulated for each grid resolution in Appendix 1. A concentration of

hazards in the northwest portion of the TPP has resulted in high RVs in each grid. The

relatively large amount of oil production in this portion of the TPP is shown by these

increased values. Figure 13 displays the risk values for both grid resolutions.

Figure 11. The above diagram shows a close-up view of road and pumpjacklfacility
layers. The roads are shown in black and pumpjacks and other facirties are shown in
purple.
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MANAGEMENT IMPLICAT 0 S AND CO elUSIONS

The risk values created in this assessment show areas of increased threat to the TPP in

cells 8, specifically 8a and Bc. These cells are listed as priority one in the 1600 ha map

and p(ority one and two in the 400 ha map. The term priority is used 0 express gr"d

cells with the highest risk value and therefore areas that may be of highest concern for

park managers. This northwest portion of the TPP contains all three types of spills: oil,

brine, and oil-brine combinations, and has high road surface areas. All areas that

contain brine spills in the prairie are ranked high: grid 8, 10 and "13 are given priority 2,7

and 5 respectively (see Table 5). Cell 3, specifically 3d, is also given high priority;

40



Figure 12. The above DOa shows the 'before' digitizing view, and the below shows the
map produced after digitizing is completed. Roads are shown in black, TPP boundaries
in red, oil spills in brown, brine spi Is on yellow, and pumpjacks and facilities are in purple.
This area of the TPP is section 8 and produced the highest RV in the preserve.
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however, the small area of the TPP used to norma ize RVs is responsible in part for the

increased value. Although the majority (94%) of this grid cell fa Is outside the

boundaries of the park the area within the park coincidentally contains road and pump

hazards, giving this cell a high RV.

Table 5. Top ten list of high priority sites for both 1600 and 400 ha resolutions.

1600 ha Resolution 400 ha Resolution
Priority Cell Identity Priority Cell Identity

1 3 1 8a
2 8 2 8c
3 1 3 3d
4 20 4 19d
5 13 5 20b
6 9 6 13d
7 10 7 8b
8 12 8 1d
9 18 9 13a
10 21 10 9b

This method of assessment was not designed to assess the effects of a particular action

or object on a specific ecological receptor; instead, it allows for a comparison of potential

risk levels across the TPP. Information on the impacts of roads and other oil-related

facilities to prairie organisms is limited and costly to collect and measure. By creating a

database of threats, future researchers can use it as a screening tool to help focus their

efforts. This assessment may also be used as a platform for a proactive approach to

land use-planning activities in the tallgrass prairie ecosystem. A regional assessment of

the remaining Flint Hills tallgrass prairie stands would show continuity of this landscape

type and potentially aid in Nature Conservancy and state park development decisions.

The facilities and spills that temporarily or permanently remove vegetation at the TPP do

not support TNC's goal of creating a functioning tallgrass prairie ecosystem. Each of

these surface area disturbances can be considered a threat to the goal of the TPP.

Some threats may remove the tallgrass prairie vegetation for longer periods of time,
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such as roads and brine spil s. Other hazards may have d'fferent vectors of 'mpact,

such as the toxicity of oil spills, or the potential risk of a spill from an old pipeline.

Regardless of the type of hazard, each disturbance can be ranked and weighted

depending on the time that area of land requires to regain plant coverage. The creation

of this map will act as a rapid screening tool for tier 1 or first-level assessments. This

habitat-based tool can be used to evaluate contaminant-induced changes from oil

production and surface area disturbances in this heterogeneously contaminated

terrestrial environment.

Cumulative Assessment Conclusion

The second objective of this assessment was to determine what facilities are present at

the TPP, how much surface area they encompass, and to calculate the spatially explicit

potential risk of these facilities and spills across the landscape. This top-down approach

to ecological assessment revealed threats to the TPP landscape that may not have been

discovered with the creation of screening criteria alone. Threats such as brine spills,

roads, pumpjacks and tillage of oil-spill sites were found to pose toxic effects and/or

surface area disturbances not accounted for in the development of a petroleum

screening criteria, Areas of highest priority for park managers are displayed in Figure

15. It is recommended that remediation and deactivation efforts be focused in area

eight, or the NW portion of the TPP. Four historic brine spills and a concentration of oil

production facilities have prevented growth of tall grass species in this area for

approximately 70 years.

The use of the GIS database has allowed a more explicit evaluation of the spatial

distribution of the cumulative ecological risks from spills and other hazards to

vegetation at the TPP. Mapping all disturbed sites and ranking them based on
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permanence of vegetative removal, regardless of the mode of distubance,

removes a toxicological bias that results when screening sites based on RESCs

alone. Using this method can aid the park manager's ability to evaluate

ecological risks by providing a tool that screens hazards for site ranking and

prioritizes these areas for further investigation and remediation.
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Risk Value
CJO
c=J 0.1 -0.6
c=J 0.6 -1.1
IT] 1.1 -1.7

,1.7 -2.2
2.2 - 2.8
2.8 - 3.3
3.3- 3.9
3.9 - 4.5

Risk Value
CJO
CJ 0.1 -1.4
CJ 1.4 -2.9
~ 2.9 -4.3
c==J 4.3 - 5.7

5.7 -7.2
7.2 - 8.6
8.6 -10

. 10 - 11.4

Figure 13. Risk values (RV) are shown for both levels of resolution; 1600 ha, above
diagram, and 400 ha, below diagram. Dark red indicates increased RV.
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Appendix 1

Table 1. Risk values for the TPP in 1600 ha and 400 ha resolution.

1600 ha Resolution 400 ha Resolution
Cell 1600 ha Order of Cell 400 ha RV Order of
Identity RV Priority Identity Priority

1a 0.000 a
1 3.43 3 1b 0.000 0

1e 0.000 0
1d 3.431 8
2a 0.000 a

2 0.00 21
2b 0.000 0
2e 0.000 a
2d 0.000 a
3a 0.000 a

3 4.45 1 3b 0.000 0
3c 0.000 0
3d 4.451 3
4a 0.000 a

4 0.80 14
4b 0.340 45
4c 0.250 48
4d 2.161 12
5a 0.530 41

5 1.05 12
5b 0.000 a
5c 1.371 23
5d 1.105 28
6a 0.000 a

6 0.72 15
6b 1.360 24
6e 0.104 51
6d 0.845 34
7a 0.000 a

7 1.08 11
7b 0.000 a
7c 1.149 27
7d 0.967 31
8a 11.441 1

8 3.63 2
8b 3.868 7
Be 4.906 2
8d 1.172 26
9a 0.489 42

9 1.38 6
9b 2.540 10
9c 1.860 15
9d 0.534 40

Table 5. continued.
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1600 ha Resolution 400 ha Resolution
Cell 1600 ha Order of Cell

400 ha RV
Order of

Identity RV Priority Identity Priority

10a 0.156 50

10 1.19 7 10b 0.902 33
10c 1.692 18
10d 2.019 13
11a 1.064 30

11 0.57 16
11b 0.654 37
11c 0.173 49
11d 0.402 43
12a 1.554 19

12 1.15 8
12b 0.000 0
12c 1.525 21
12d 0.000 0
13a 2.913 9

13 2.62 5
13b 2.428 11
13c 0.000 0
13d 3.945 6
14a 1.546 20

14 0.90 13
14b 0.000 0
14c 0.385 44
14d 1.445 22
15a 0.029 54

15 0.48 18
15b 1.079 29
15c 0.814 35
15d 0.000 0
16a 0.041 53

16 0.35 19
16b 0.593 39
16c 0.618 38
16d 0.000 0
17a 0.000 0

17 0.24 20
17b 0.328 46
17c 0.000 a
17d 0.000 a
18a 1.314 25

18 1.12 9
18b 0.294 47
18c 1.767 16
18d 0.000 0
19a 0.042 52

19 0.57 17
19b 0.000 0
19c 0.945 32
19d 4.211 4

49



Table 5. continued.
1600 ha Resolution 400 ha Resolution
Cell 1600 ha Order of Cell

400 ha RV
Order of

Identity RV Priority Identity Priority

20a 1.861 14

20 3.14 4 20b 3.981 5
20c 0.000 0
20d 0.000 a
21a 1.701 17

21 1.12 10
21b 0.000 a
21c 0.731 36
21d 0.000 a
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