
AN INTERFACE BETWEEN OBJECT-ORIENTED

DATABASES AND RELATIONAL DATABASES

USING B-TREE OBJECT-RELATIONAL

ACCESS INTERFACE

By

QINGCHEN

Bachelor of Science

Xian Jiaotong University

Xian, P. R. China

1994

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 2002

AN INTERFACE BETWEEN OBJECT-ORIENTED

DATABASES AND RELATIONAL DATABASES

USING B-TREE OBJECT-RELATIONAL

ACCESS INTERFACE

Thesis Approved:

ii

ACKNOWLEDGEMENTS

I would like to thank Dr. G. Hedrick for his constant support and advice that made

this work possible. I am grateful for his willingness to discuss the work at any time and his

thoughtful criticism. I am grateful to other committee members, Dr. John P. Chandler and

Dr. Debao Chen for their helpful suggestions, advisement, and readiness to be my co­

referee.

I am specially grateful to Dr. Hong, the Vice Present of BarDyne, Inc., both for

supporting the design and implem.entation of the B-Tree database access interface kernel

and for providing ideas for future directions of this work. III addition, I would like to give

special appreciation to my parents for their strong encouragement at times of difficulty,

love, support, and understanding throughout the whole process to implement this thesis.

Finally, I would like to thank the Computer Science Department for supporting me

during my studies.

III

Chapter

TABLE OF CONTENTS

Page

I. INTRODUCTION 1
1.1 Motivation 3
1.2 Organization .. . 0 •• 0 0 o. 5

II. LITERATURE REVIEW 00 •••••• 0 ••••• 00 •••••• 0 ••••••••• 0 .0 ••• O. 0 6

2.1 Relational Database Model 0 0 ••• 0 0 •••••••• 0 0 •••••••• 0 • 0 • 0 0 0 0 •• 6

2.2 Relational Database Query Languages . 0 • 0 0 0 ••• 0 •• 0 ••••••••••• 0 • 0 0 • 0 12

2.3 Basic Concepts of Object-Oriented Programming 14

2.4 Object-Oriented Database 0 •••••• 0 0 •• 17

2.5 Introduction of Object Query Language. 19

2.6 B-Trees 0 0 0 ••••• 0 •••••• 0 •• 0 ••• 0 0 22

III. B-TREE OBJECT-ORIENTED DATABASE ACCESS INTERFACE
STRUCTURE AND IMPLEMENTATION 0 •••••••• 0 • 0 • • • • • • • • • • • •• 32
3.1 B-Tree object-oriented Database Access Interface Structure 0 ••• 32

3.2 Implementation of Object-Relational Mapping Layer 0........ 36
3.3 Implementation of Object B-Tree Layer 43
3.4 Implementation of Object-oriented Query Operation Layer 0 •••••••••• 51

IV. PERFORMANCE ANALYSIS 0 •••• 0 0 •••••••• 0 0 •••••• 0 • • • • •• 58
4.1 Platform, database and applications for performance anal)Tsis O. 0..... 58
4.2 Test Results 0 ••••••• 0 ••••••••••• 0 0 •••• 0 • •• • •• 0 • •• • ••••••• 0 • •• 63
4.3 Performance Test Summary e ••••••• 0 0 • • • • • • • • • • • • • • •• ••••••• 67

v. CONCLUSIONS 0 •••••• 0 • 0 • 0 ••••••••• O. •• • 69
5.1 Advantages vSo Disadvantages 69
5.2 Research Contribution 0 • 0 • 71
5.3 Future Work ... 0 0 0 .0 •••••••• 0 •••• 0 • 0 • 0 • 0 0 •••••••••••••••• 00. 71

BIBLIOGRAPHY ... 00.0.000 •••••• 000 ••• 00.00 ••••••••••• 0 •••• 0 •• 0... 73

GLOSSARY

iv

76

Chapter Page

APPENDIX A - Class Schema Definition for B-tree Object-Relational Database
Access Interface 79

v

LIST OF TABLES

Table

3.1 Customer Contact Table

3.2 Products Information Table

4.1 Definitions of Test Database Table FluidProperty .

4.2 Definitions of Test Database Table FlowData .

4.3 Definitions of Test Database Table PressureData .

4.4 Definitions of Test Database Table TemperatureData .

4.5 Definitions of Test Database Table ViscosityData .

4.6 Definitions of OBT Access Interface of Select Queries .

Page

46

47

58

59

59

59

59

62

4.7 Definitions of OBT Access Interface of Join Queries 62

4.8 Performances of Select Query (A) 63

4.9 Perfonnances of Select Query (B) 64

4.10 Performances of Join Query (A) .. 65

4.11 Performances of Join Query (B) 66

VI

LIST OF FIGURES

Figure

1.1 Entity-Relationship Schema .

1.2 The Tabular Representation of E-R Schema .

2.1 The Flow of commands and data between the user and the database .

2.2 Union and Difference Relations .

2.3 The Intersection ofR and S

2.4 The Division ofR and S

2.5 The Theta-join of Rand S .. .

2.6 The Natural join ofR and S .

2.7 Expression of Relational Algebra in SQL .

2.8 Inheritance from super class to sub class .

2.9 The structure of a B-tree node .

Page

2

3

8

9

10

10

11

12

14

16

23

2.1 0 The Structure of a B-tree of order 5 .. 24

2.11 B-tree Insertion Step 1 of order 5

2.12 B-tree Insertion Step 2 of order 5

2.13 B-tree Insertion Step 3 of order 5

2.14 B-tree Insertion Step 4 of order 5

2.15 B-tree Insertion Step 5 of order 5

2.16 B-tree Insertion Step 6 of order 5

VB

............................. 25

••• « •••••••• « •••••••••••••••• 25

•••••••••••••••• « •••••••••••• 25

•••••• « •••••••••• «« •••• « ••••• 26

« ••••••• « ••••••• « •• « • « ••••• ~« 26

••••••••••••• «.« ••• «.« e 0 0 •••• 27

2.17 B-tree Insertion Step 7 of order 5 .. 27

2.18 B-tree Insertion Step 8 of order 5 ~ 28

2.1.9 B-tree Deletion Step 1 of order 5 .. 28

2.20 B-tree Deletion Step 2 of order 5 .. 29

2.21 B-tree Deletion Step 3 of order 5 .. 30

2.22 B-tree Deletion Step 4 of order 5 .. 30

2.23 B-tree Deletion Step 5 of order 5 .. 31

3.1 B-Tree Object-Oriented Database Access Interface Structure 35

3.2 ODBC components .. . 37

3.3 CMapDB Class Schema Definition 79

3.4 CMapRecordset Class Schema Definition 80

3.5 CMapException Class Schema Definition 81

3.6 Try-Catch for Exception Handling Schema Definition 42

3.7 Try-Catch for Database Mapping Schema Definition 43

3.8 MapBtltemType Class Schema Definition .. 81

3.9 Schema Definition of Template Class MapDBltem 83

3.10 Schema Definition of Template Class MapBtNodeType 84

3.11 Schema Definition of Template Class MapBtMidNode 85

3.12 Schema Definition of the template class MapBTree 87

3.13 Schema Definition of the class template MapBTreelterator 88

3.14 Schema Definition of CMapParser .. 89

viii

3.15 The Pseudo-code for Smart parser 54

3.16 The Architecture of classes in B-Tree Object-relational Database Access
Interface .. 56

3.17 An Instance of class MapBTree .. 57

4.1 Performance Test Output Screen for table FluidPorperty 60

4.2 Performance Test Output Screen for table ViscosityData 61

4.3 Performance Curve for Select Query (A) 63

4.4 Performance Cllrve for Select Query (B) 64

4.5 Performance Curve for Join Query (A) 65

4.6 Performance Curve for Join Query (B) .. 66

IX

CHAPTER I

INTRODUCTION

Many information systems use relational database systems for efficient sharing,

storage, and retrieval of large quantities of data. The large-scale use of relational database

systems can be attributed to the relational model that is easy to understand and has a well

understood theoretical foundation. Structured Query Language (SQL) is an integrated

database language with strong declarative features that encompass the full range of

functionality: data definition, data manipulation, query, data control, transaction

management, and database security [Loomis, 1995].

Relational database systems face a growing challenge from object-oriented

technology. This technology's attraction results from the semantically rich modeling

constructs that give users a natural, flexible, and easily extendable and reusable

mechanism to model complex data structures such as those used in multimedia,

compound documents, and computer-aided design (CAD) applications. Unlike the

relational data model, the object-oriented data model stores all data in the objects which

are instances of data classes, Figure 1.1 is an Entity-Relationship (E-R) schema [Ullman,

1988] of an IT company employee management database. Figure 1.2 is the tabular

representation of the E-R schema. There is more redundancy shown in Figure 1.2 than in

Figure 1.1 because the object model can easily represent this kind of relationship as

inheritance. At this point, the relational and object-oriented data models are not, in their

current state, compatible. If relational database systems are to become the predominant

model for managing not only simple data, but also complex structures, we must develop

special techniques to convert data in a relational database to a format that object-oriented

applications can access and manipulate easily.

Figure 1.1 Entity-Relationship Schema [Ullman, 1988]

2

.. . . ~

. .

1N~U*t~~ID;, Op~~S1Stem;·P~murD.c~

Figure 1.2 The Tabular Representation ofE-R Schema

1.1 Motivation

In the last a few years it became obvious, to the database industry and its

customers that the relational model is neither designed for nor able to cope effectively

with the new types of data that it is expected to store. These new types of data can

include audio, video and image files as well as user-defined types. Traditional relational

databases support data types such as integer, decimal and character plus special data

types for date and time, and these relational database systems cannot meet the needs of

new data types and new applications developed with object-oriented programming

language. On the other hand, object modeling is not standardized, so each programming

environment implements its own variation. This motivates one to study how to combine

the current relational database system and object-oriented programming to offer benefits

of real environment. Fortunately, relational theory is concerned with knowledge and

3

object techniques are concerned with behavior. Mapping between the two models

describes how the two worlds can refer to each other and show how they can be

integrated.

This thesis extends traditional B-Tree structures to include a new object-oriented

access method --- B-Tree Object-Relational Database Access Interface (Figure 3.1) that

extracts object-oriented constructs such as object classes and relationships between object

classes (association, aggregation, and other inheritance relationships) from the definition

of an existing relational database. The resulting methods provide at least four benefits

that can be used in current relational systems:

• The new access algorithm provides for the use of binary data types to store either

multi-valued attributes or complex-valued attributes in a relational column, and

optimizes forms of the major schemas to reduce cost of data operations that involve

multiple tables.

• This approach allows object-oriented access to relational databases with no penalty

and minimal overhead for either style of access.

• The underlying database system supports traditional business applications through the

standard relational interface, and supports advanced multimedia or compound

document applications through the object-oriented interface.

• New advanced object-oriented applications can use existing data in relational

databases through tuple-to-object translations.

4

1.2 Organization

The next chapter reviews related work in existing literature. Chapter III introduces

the design and implementation of object B-tree D~tabase Access Interface; Chapter IV

summarizes the performance of object B-tree Database Access Interface; Finally, Chapter

V presents conclusions and suggestions future work to be done in this area.

5

CHAPTER II

LITERATURE REVIEW

2.1 Relational Database Model

The database systems and models can be distinctively categorized under the

following three generations of database systems:

1. Hierarchical and Network Databases

2. Relational Databases

3. Object-Oriented, Object-Relational Databases

Except for these three prominent generations of database systems, other types of

databases for special purposes have also been designed. Some of the important ones

include knowledge-based database systems, temporal database systems, spatial database

systems, document databases, and multi-media databases [Ullman, 2001].

The relational model, described in [CODD, 1990], is clearly the model on which

most current systems are being designed. In this section, the relational model is presented

as background to the future work in the area. No intent is made to provide the same

mathematical preciseness as provided in the original presentation, however, examples are

given to supplement the discussion.

The relational model is a conceptual data model for representing data objects.

The data objects may represent real or abstract objects but have in common the fact that

within each relation; each object can be described by a unique set of values taken from a

predefined set of domains. The relational model divides naturally into two sections: the

data structures, and the rules for data manipulation.

6

The data structures of the relational model are merely abstract data structures and

not necessarily implemented physically [Date, 1995]. That is, the data a user wishes to

access or manipulate should appear to respect all of the properties to be described in this

section. For example, according to the model, all tuples within the same relation are

unique. In distributed systems, however, it may be cost efficient to store several copies of

certain records (the physical implementation of a tuple) in various locations permanently.

This does not violate any rules of the model as long as the user is not able to detect this

no matter what operations he performs on the data. The user should be shielded from all

knowledge of how the data actually is stored. For this reason, research in query

optimization is extremely important. If a user is supposed to be ignorant of how the data

is stored, he cannot be expected to pose his queries in a manner that can be processed

efficiently. Thus, it is the job of a query optimizer to ensure that queries to the database

are answered in a reasonable amount of time while preserving the intent of the user.

A relational database is a collection of tables that the user can access and

manipulate abstractly according to the restrictions set in the relation model. The actual

structural implementation may not conform to the relational model [Date, 1995]. A

database management system (DBMS) is an application for handing the storage and

retrieval of data. Generally, a DBMS provides the following advantages:

• Access control.

• Centralized control.

• Controlled data redundancy.

• Data concurrence and consistency.

• Data independence.

7

• Data integrity.

• Data maintenance.

• Recovery.

A relational DBMS (RDBMS) is a type of DBMS, which is perceived to hold data

in a series of two-dimensional tables. Each table consists ofa number of rows (tuples)

and columns (attributes). Relationships between rows in the different tables are

represented by the storage of foreign keys (A foreign key is a column in a table where

that column is a primary key of another table, which means that any data in a foreign key

column must have corresponding data in the other table where that column is the primary

key) within one table. The method of data access in a RDBMS is through a set of

operators in the relational algebra. The relational algebra serves only to manipulate

permanently stored relations into temporary relations that may in tum either be reviewed

by the user or permanently stored via "update" commands of the data manipulation

language (Figure 2.1).

SQL
Request

Database
lvlallagen1e11t

Systell1

Data

Figure 2.1 The Flow of commands and data between the user and the database

8

The basis of the relational algebra is the following set of five operators: selection,

projection, union, difference, and Cartesian product. Four other commonly used

operators that are expressible in terms of the basic operators are: unions, difference,

intersection, division, theta-join, and natural-join. To illustrate application of the basic

relational operators, Ullman [Ullman, 1988] gives the following relations which result

from application of each of the basic operators to the relations R and S from Figure 2.2 to

Figure 2.6.

Figure 2.2 describes unions and difference relations. The columns of R and S can

have different names as long as the relations have the same number of components.

However, the resulting relation has no obvious names for its columns.

d a f
----- -----

c b d

A

a

B

b

c

c

D E F

b g a
- - - -- - - - -- - - - --
d a f

Relation R Relation S

d a f
----- ------

c b d
b---- ~g---- a----

a b c
f~----f~---- f~----J

Union (R uS) Difference (R - S)

Figure 2.2 Union and Difference Relations

Figure 2.3 describes intersection relation. The intersection ofR and S can be

expressed as shorthand for R - (R - S). A, B, C, D, E and F are the column names of

reiatioll R and S.

9

d a f----- -----

c b d

A

a

B

b

c

c

D E F

b g a
- - - -- - - - -- - - - --
d a f

Relation R Relation S

Intersecti on (R n S }

Figure 2.3 The Intersection of Rand S

Figure 2.4 describes division relation. Tuple ab is in the resulting relation because

tuples abed and abelare in R, and tuple ed is in the resulting relation for a similar reason.

Tuple be, which is the only other pair appearing in the first two columns of R, is not in

the resulting relation because heed is not in R.

a b c d

a b e f
1--· -·_·-1--

b c e f

e d c d

e d e f

a b d e

Relation R

c

e

d

f

Relation S

a

e

b

d

R --=- S

Figure 2.4 The Division of Rand S

10

Figure 2.5 describes theta-join of relation R and S on columns "i" and "j" written

R Ix IS. e (theta) is an arithmetic comparison operator (==, <, and so on). That is, the
i OJ

theta-join of Rand S is those tuples in the Cartesian product of Rand S such that the ith

component ofR stands in the relation e to the jth component of S. In Figure 2.5, "8" is the

arithmetic comparison operator "<", "i" is attribute Band "j" is attribute D.

A B C

1 2 3

4 5 6
c·····,··········

7 8 9

Relation R

0 E

3 1

6 2

Relation S

A B C 0 E

1 2 3 3 1
..

1 2 3 6 2
4 5 6 6 2

Theta-join Rlxl S
i lJ j

Figure 2.5 The Theta-join of Rand S

Figure 2.6 describes natural join relation, written RlxIS. Each tuple in R can be

considered to see which tuples of S agree with it in both columns B and C. For example,

tuple abc in R agrees with bed and bee in S, so the resulting relation gets tuples abed and

abee. Similarly, dbe gives dbed and dbee for the natural join. Tuple bbfagrees with no

tuple of S in columns Band C, so natural join obtains no tuple in that begins with bbf

Lastly, tuple cad matches adb, and natural join gets tuple eadb.

11

A B C B C D

a b c b c d
., ...

d b c b c e
............................~•...........-........................ •.•••••••-••••••..J •.•.• c/,"

b b f a d b
c a d

Relation R Relation S

A B C D

a b c d

a b c e
······'·13·······.. · " ,..

d c d
d b c e

c a d b

Natural join Rlxls

Figure 2.6 The Natural join ofR and S

2.2 Relational Database Query Languages

Structured Query Language (SQL) is the most popular relational database query

language. The database records exist outside the context of any particular application. A

relational database can be accessed from programs written in any of a variety of

languages using embedded SQL. The syntax and semantics of SQL are inseparable

[Loomis, 1995].

In 1974 Donald Chamberlin and others defined the language SEQUEL

(Structured English Query Language) at IBM Research [Chamberlin, 1974]. This

language was first implemented in an IBM prototype called SEQUEL-XRM in 1974-75.

In 1976-77 a revised version of SEQUEL called SEQUEL/2 was defined and the name

was changed to SQL subsequently. IBM developed a new prototype called System R in

1977. System R implemented a large subset ofSEQUEL/2 (now SQL) and a number of

changes were made to SQL during the project. System R was installed in a number of

user sites, both internal IBM sites and also some selected customer sites. Thanks to the

success and acceptance of System R at those user sites IBM started to develop

12

commercial products that implemented the SQL language based on the System R

technology [Matheus, 1993]. Although not part of relational model theory, SQL is

considered by some people to be equal in importance to development of the relational

DBMS products [Fleming And Von Hall, 1989]. The American National Standards

Institute (ANSI) adopted it in 1986 as a standard language for interacting with relational

databases. Since the early eighties SQL has prevailed as the database language

implemented in most commercial relational DBMS products. The popularity of SQL and

the relational model even has prompted the makers of many non-relational database

products to provide SQL as a means of access to their product [Halpin, 1995]. SQL as a

common relational database language enables consistency across product

implementations, at least in the way that users, application developers, and, to some

extent, database designers interface with the products. Using a common language allows

users to deal with only one syntax for invoking those mechanisms.

SQL is based on tuple relational algebra and comprised of data definition

statements, and data manipulation statements. SQL provides two types of data

manipulation statements: database "update" statements and database manipulation

statements. UPDATE, DELETE, and INSERT all make changes in permanent storage to

the database. A distinctive feature of SQL is that queries can be nested to an arbitrary

depth by using SELECT statements in the predicate of the WHERE clause [Date And

Darwen, 1993].

SQL can implement all of the basic relational operators. The following table from

[Date, 1995] illustrates the implementation of each relational operator in SQL.

13

AuB SEl..ECT
FROM
UNION
SEIFer
FROM

SELECT
fROM
l,lIJ{J?RE

•
A

B

•
A
NOTEJCJSTS
(sa fer *
fROM· 8
WHERE .Jl·field$&of A lIE:

aJ (7 fie.[d s-of B
AxB

1t:t.y.oI ..•1.(A)

SELEcr II

fROM ~B

SEl.ECT •
~OM A
\VHERE P
SELECT DISllNCT
FROM

x..Y•.I z.
A

Figure 2.7 Expression of Relational Algebra in SQL

Thus, techniques that serve to optimize a general SQL expression also optimize a query
posed in the relational algebra.

2.3 Basic Concepts of Object-Oriented Programming

Object-oriented programming supplies the raw modeling power of objects with

the management flexibility of classes and inheritance [Date, 1995]. In the object-oriented

paradigm, objects are the atomic units of encapsulation; classes manage the collections of

objects; inheritance structures the collection of objects and the inheritance structures of

classes.

Objects

Complex objects are built from simpler ones by applying constructors to them.

The simplest objects are integers, characters, byte strings of any length, boolean values,

14

and floats (one might add other atomic types). Objects may be attached to, or

communicate to another one by way of a well-defined user interface such as class pointer

or structure pointer; also, objects maybe classified according to common behavior and

other characteristics, such as: (1) Abstract data type; (2) Data encapsulation; (3)

Inheritance. The object constructors must be orthogonal to the objects; that is, any

constructor should apply to any object.

Class

Class is a prototype that defines the variables and the methods common to all

objects of a certain kind. Class includes two parts: the interface and the implementation.

Only the interface part is visible to the users of the class; the interface consists of a list of

operations together with the data type of their input parameters and the results.

Implementation consists of a data part and an operation part. The data part

describes the data type and data structures of class member variables. The operation part

consists of procedures that implement the operations of the interface part.

Inheritance and Class Hierarchies

The concept of inheritance is a second reusability mechanism derived from its

parent proprieties. It lets a class, called a subclass, be defined starting from the definition

of other classes and messages. In addition, a subclass can have specific attributes,

methods, and messages that are not inherited. Moreover, the subclass can override the

definition of the super class's attributes and methods.

A class can have several subclasses. Some systems let a class have several super

classes (multiple inherence), while others impose the restriction of a single super class.

Based on inheritance, the set of classes in the schema can be organized in an inheritance

15

graph (Figure2.8).

sub class

In .e~:ii.Jt:~:t.~

dL\plt.1}.'~·

read.

Cia'
Hierarchi(i$.

lrtlcliilce
dt5;play~

_Hate: 'r'ur :

ranger...

sub class

:1 u· 1a.llces

super class

Figure2.8 Inheritance from super class to sub class

Encapsulation

The idea of encapsulation comes from the need for a clear distinction between the

specification and the implementation of an operation, and the need for modularity.

Modularity is necessary to structure complex applications designed and implemented by

a team of programmers. It is also necessary as a tool for protection and authorization.

The idea of encapsulation in programming language comes from the theory of

abstract data types. An object has operations that can be performed on the object. It is the

only visible part of the object. The implementation part has a data part and an operation

part. The data part is the representation or state of the object, and the operation part

describes the implementation of each operation.

16

2.4 Object-Oriented Database

An Object-Oriented Database Management System (OODBMS) stores, shares,

and manages objects instead of tables of data as in Relational Database Management

Systems (RDBMS). Roughly, "an object oriented database system is one that supports the

classical features of database systems", which were summarized by Ullman as a system

that supports "large amounts of persistent, reliable, shared data." [Ullman, 1988]. Objects

in an OODBMS reassemble real-world objects in many ways; they all have states,

behaviors, and identities, and the structure and behavior of similar objects can be defined

in common classes. An OODBMS maintains the basic functionality of a traditional

database management system, such as persistency, concurrency, and recoverability, by

transparently integrating database capabilities with an object-oriented programming

language such as C++ or SmallTalk. Unlike a RDB:lvIS that stores simple and often fixed

length data in tables and thus has difficulties in representing complex relations, an

OODBMS can easily support complex structures naturally by using objects. Therefore an

OODBMS is the "combination of object-oriented analysis (OOA) and design (OOD),

object-oriented programming language (OOP), and object-oriented database (OODB)

offers the benefits of a synergistic development environment" [Loomis, 1995]. OODB:tvlS

features include:

Persistence

The ability of the programmer to have the data survives the execution of a

process. In OODB, each object is allowed to become persistent independent of its type

without explicit casting.

17

Secondary Storage Management

The performance features (such as index management, data clustering, data

buffering, access-path selection, and query optimization) hidden to the user.

Concurrency

The ability of the DBMS to offer all users working simultaneously the same level

of service

Recovery

The ability enables software to bring itself back to some coherent state of the data

in case of hardware or software failure.

Object-oriented (00) features include:

Complex Objects

Complex objects are built from simpler ones by applying constructors to them.

Constructors must be orthogonal to the objects (i.e., they can be applied to every object).

The use of complex objects improves the capability of representing of the real world.

Object Identity

00 systems are identity-based, meaning that each representation of information

has its own identifiers. Identity-based model are common in 00 programming language

but rather new in DB technology, since n most relational DB, relations are valued based.

Encapsulation

An object contains both programs and data and has both an interface and an

implementation part. The interface part is the specification of the set of operations that

18

can be performed on the object; the implementation part describes the implementation of

each operation. In most OODB, even data specification is part of the interface.

Types and Classes

A type summarizes the common features of a set of objects; a class has an

extension which contains a set of operations and class instances using which the user can

manipulate the objects.

Class or Type Hierarchies

Inheritance is the ability of a subclass to receive all data and operations coming

from its super-classes. It helps to build reusable and better-structured code, presents more

concise description of the real world and the shared specifications of applications.

Overriding

Overloading and Late Binding: when a single identifier is bounded to different

operation codes in different types, then the code is overridden and the operation is side to

be overloaded. To provide this functionality, code is not bound to an operation identifier

at compile time but at run time, performing late binding.

2.5 Introduction of Object Query Language

Object Query Language (OQL) is an object database query language for querying

and manipulating object databases that conform to the Object Data Model, and is

specified as a part of the ODMG (Object Data Management Group) standards 93 [Cattell,

1997]. OQL is an object database sub-language in that the sort of queries and

19

manipulations are expressed in the object algebra. OQL is a declarative (as opposed to

procedural) language that allows ODBMS seamless operations and algebraic

transformation: expressions factorization, priority to selections and constant expressions.

The features of OQL are listed as follows:

1) OQL is used to describe the retrieval and manipulation of objects.

2) The Object Definition Language (ODL) defines interfaces to object types used by

the OQL code;

3) OQL does not provide a full programming environment, but it can be imbedded in

a programming language and invoke programming language functions

4) The object-oriented programming languages (C++, Smalltalk, and Java) are used

to implement applications programs, with embedded OQL statements to

manipulate the object database.

"The designers of OQL have adopted an evolutionary approach. Rather than

designing a completely new language, they have based OQL on SQL, the standard

language for the relational databases." [Cattell, 1997]. Many queries in SQL are also

valid in OQL, tllOUgh sometimes with minor changes, and have a similar meaning.

However, OQL also extends SQL to deal with object-oriented notions, such as complex

structured objects, object identity, and relational data model. The design of OQL is

functional and the results of queries have types, which allow them to be queried again.

The syntax of OQL based on SQL, the queries can return:

20

• An object

• A collection of objects

• A literal

• i\ collection of literals

For example:

select distinct struct(t: title, d: department) from people x where

x.title="programmer"

This builds a structure containing title and department and returns a literal of type

set<struct>. The OQL expressions can take one of the two forms: implicit or explicit. The

explicit form uses the select clause, while the implicit one does not use it. For instance:

Person.name = "fonda";

This is an implicit expression that returns all Person instances whose name is "fonda".

select x.name from x in Person where x.name = "fonda";

This is an explicit expression that returns all Person instances whose name is "fonda" . A

particular limitation of OQL is that "it cannot express arbitrarily complex computations.

It is therefore necessary to use OQL in conjunction with other computer languages".

There are other limitations when the OQL is used to make complex queries, such as joins

[Jordan, 1998].

21

2.6 B-Trees

A B-tree is a particular type of tree-structured index. Since its introduction by

Bayer and McCreight (1972), there have been many variations on the original theme and

it is the index structure that has become the most popular for structuring the physical

database. Most objected-relational databases offer some variation of the B-tree while

some provide no other option [Date, 1994]. The popularity of the B-tree stems from the

fact that its associated algorithms for inserting and deleting a key value ensure that the

tree remains balanced. Balanced trees are those where the leaf nodes are the same

distance (i.e. the same number of levels) away from the root node. Other tree structures

become unbalanced over a period of time and as a consequence have unpredictable

search path lengths since accessing a multi-level index requires accessing one node on

each level.

Each node in a B-tree contains pointers that act as delimiters of key values. The

structure of a node is shown in Figure 2.9 where Po to Pn are pointers to sub-trees and Ko

to Kn are key values that appear in ascending order. Nodes of the original B-tree also

contain the addresses of the records of the corresponding key values [Wirth, 1986]. A B­

tree of order m has no more than m pointers in each node (i.e. n <== m). Following a

middle pointer will lead to values between the value on its left and the value on its right.

Following the leftmost pointer Po will lead to values less than Koand following the

rightmost pointer will lead to values greater than Kn- l .

22

Figure 2.9 The Structure of a B-tree node

The definition of a B-tree of order m is:

• All leaves are on the bottom level.

• All internal nodes (except the root node) have at least [m / 2] children.

• The root node can have as few as 2 children if it is an internal node, and can

obviously have no children if the root node is a leaf (that is, the whole tree

consists only of the root node).

• Each leaf node must contain at least [m / 2] - 1 keys.

[x] is the ceiling function. Its value is the smallest integer that is greater than or equal to

x. Thus [3] = 3, [3.35] = 4, [1.98] = 2, etc [Crotzer, 1975].

The following is an example of a B-tree of order 5 (Figure 2.1 0). This means that

(other that the root node) all internal nodes have at least ceil (5 / 2) == [2.5] == 3 children

(and hence at least 2 keys). The maximum number of children in a node is 5 (so that 4 is

the maximum number of keys).

23

M

Figure 2.10 The Structure of a B-tree of order 5

The typical operations on a B-Tree include insertion, deletion and split. The

insertion algorithm proceeds as follows: When inserting an item, first make a search for it

in the B-tree. If the item is not already in the B-tree, this unsuccessful search will end at a

leaf. If there is room in this leaf, just insert the new item here. This may requires some

existing keys be moved one to the right to make room for the new item. If instead this

leaf node is full so that there is no room to add the new item, then the node must be split

with about half of the keys going into a new node to the right of this one. The median

(middle) key is moved up into the parent node. (If that node has no room, then it may

have to be split as well.) When adding to an internal node, not only might we must move

some keys one position to the right, but the associated pointers have to be moved right as

well. If the root node is ever split, the median key moves up into a new root node, thus

causing the tree to increase in height by one.

An example of Insertion: Insert the following letters into what is originally an

empty B-tree of order 5: A G F B K D H M J E SIR X C L N T UP. Order 5 means that

a node can have a maximum of 5 children and 4 keys. All nodes other than the root must

24

have a minimum of 2 keys. The first 4 letters get inserted into the same node (Figure

2.11).

A G

Figure 2.11 B-tree Insertion Step 1 of order 5

When try to insert the K, we find no room in this node, so we split it into 2 nodes,

moving the median item F up into a new root node (Figure 2.12).

F

K

Figure 2.12 B-tree Insertion Step 2 of order 5

Inserting D, H, and M proceeds without requiring any splits (Figure 2.13).

F

D G M

Figure 2.13 B-tree Insertion Step 3 of order 5

25

Inserting J requires a split. J is the median key, and so it is moved up into the parent node

(Figure 2.14).

D

Figure 2.14 B-tree Insertion Step 4 of order 5

The letters E, S, R and I are then added without needing any split (Figure 2.15).

A s

Figure 2.15 B-tree Insertion Step 5 of order 5

When X is added, the rightmost leaf must be split. The median item R is moved up into

the parent node. By moving up the median key, the tree is kept balanced, with 2 keys in

each of the resulting nodes (Figure 2.16).

26

A x

Figure 2.16 B-tree Insertion Step 6 of order 5

The insertion of C causes the leftmost leaf to be split. C happens to be the median key

and so is the one moved up into the parent node. The letters L, N, T, and U are then

added without any need of splitting (Figure 2.17).

Figure 2.17 B-tree Insertion Step 7 of order 5

Finally, when P is added, the node with K, L, M, and N splits sending the median M up to

the parents. However, the parent node is full, so it splits, sending the median J up to form

a new root node. Note how the 3 pointers from the old parent node stay in the revised

node that contains C and F (Figure 2.18).

27

x

1

x

Figure 2.18 B-tree Insertioll Step 8 of order 5

An example of Deletion: delete H from the B-tree we built above. At first, we do

a lookup to find H. Since H is in a leaf and the leaf has more than the minimum number

of keys, this causes to move lover where the H had been (Figure 2.19).

x

Figure 2.19 B-tree Deletion Step 1 of order 5

28

Next, delete the R. Since R is not in a leaf, its successor (the next item in ascending

order), which happens to be S, and move S up to replace the R (delete S from the leaf)

(Figure 2.20).

Figure 2.20 B-tree Deletion Step 2 of order 5

Next, delete P. Although P is in a leaf, this leaf does not have an extra key; the deletion

results in a node with only one key, which is not acceptable for a B-tree of order 5. If the

sibling node to the immediate left or right has an extra key, we can then borrow a key

from the parent and move a key up from this sibling. In our specific case, the sibling to

the right has an extra key. So, the successor of P which is S, is moved down from the

parent, and the T is moved up (Figure 2.21).

29

Figure 2.21 B-tree Deletion Step 3 of order 5

Finally, delete D. This causes several problems. Although D is in a leaf, the leaf has no

extra keys, nor do the siblings to the immediate right or left. In such a case the leaf must

be combined with one of these two siblings. This includes moving down the parent's key

that was between those of these two leaves. In this example, it is to combine the leaf

containing E with the leaf containing A and B and move down the C (Figure 2.22).

J

A

F

s

Figure 2.22 B-tree Deletion Step 4 of order 5

30

Then the parent node contains only one key, F. This is not acceptable. If this node had a

sibling to its immediate left or right that had a spare key, then we would again "borrow" a

key. However, in this example, there is no way to borrow a key from a sibling, we must

again combine with the sibling, and move down the J from the parent. In this case, the

tree shrinks in height by one (Figure 2.23).

x

Figure 2.23 B-tree Deletion Step 5 of order 5

31

CHAPTER III

B-TREE OBJECT-RELATIONAL DATABASE
ACCESS INTERFACE STRUCTURE AND IMPLEMENTATION

Chapter III describes work that relates to the design and implementation of a B-

tree Object-Relational Database Access Interface (BORDBI). First, section 3.1 describes

the structure of a BOODAI; Section 3.2 introduces the implementation of database-object

mapping because its construction is the first step of building a BORDBI. Then it

describes how objects are mapped into a persistent address space since the mapping

methods determine features of an object store. Section 3.3 describes how objects can

become B-tree nodes in main memory because memory-residency is the key feature of a

BORDBI. At the end of tIlis chapter, section 3.4 will introduce how to parse an SQL

query and retrieve records from relational database.

3.1 B-tree Object-relational Database Access Interface Structure

The B-tree object-relational database access interface (Figure 3.1) is defined in

object-oriented class to achieve a mapping interface to the relational tables. This interface

includes three layers:

• Object-oriented Query Operation Layer

• Object B-Tree Implementation Layer

• Object-relational Mapping Layer

32

The top layer is the Object-oriented Query Operation Layer. It uses an Object

Organizer that acts as a project manager. First, the Object Organizer in the database

access interface checks with the Object B-Tree Implementation Layer to determine

whether the object (B-tree node) already exists in memory. If it does, then Object

Organizer returns this object; Otherwise, it passes SQL query to back-end relational

database. Within the database access interface the Object Organizer registers all

persistent objects existing in memory using a B-tree pointer array, which hold all B-tree's

memory address. Registration is done during the execution of object's constructor.

Database access is performed only when necessary.

The middle layer is the Object B-Tree Implementatioll layer. All objects are

organized into the B-Tree structure allowing insertion, update, selection and deletion of

objects. The object's properties and behaviors include:

Object Status: Every persistent object has a unique status that is managed by Persistent

Object in the B-Tree structure. The object's status determines whether and how the object

is written to the database at the end of a database transaction. Each object has one of the

following states:

• Active: The object has been retrieved from the database but has not been changed

since then. At the end of the database transaction the object is deleted from memory

without writing on the database;

• New: The object has been constructed since the last commit statement so that it must

be inserted into the database;

• Modified: The object has been modified. At the end of the database transaction the

corresponding data are to be updated on the database;

33

• Deleted: The object has been marked as deleted so that the corresponding data must

be deleted on the database;

• New Deleted: The object has been constructed and then been marked as deleted. At

the end of the database transaction no database action has to be performed;

Object Delete: Ensures the object's deletion from the database.

Object Read (input parameter): Returns the persistent object to which the table refers.

Object Write (including insert, update, delete): The object is written on the database

according to the object's status. This method uses the virtual methods such as insert,

update and delete that are implemented for every different subclass of the class persistent

object.

Object Mark Modified: Marks the object as modified. This guarantees that the object will

be written on the database if it has been modified before committing the database

transaction.

Object B-Tree: Converts memory-resident objects into B-Tree nodes; Uses the relational

primary key as a B-tree search index to Search, Delete, Insert and Update B-Tree nodes

(objects).

The bottom layer is the Object-relational mapping layer. It supports the transition

frOITI object references in the application to foreign keys in the database and vice versa.

As tuples are retrieved from the back-end relational database, object-relational mapping

class functions will convert them into memory-resident objects and load these objects

into an object array, and then pass these objects to Object B-Tree Implementation layer to

form B-tree nodes. The object that is responsible for writing the relationship to the

database is defined as either the relationship source object or the target object. Usually it

34

is the source object that manages the relationship between the database and the

application. On the database, foreign keys at the target object represent relationships. In

this case, the source object requests the target object to write the relationship on the

database.

RawSQL
Query

f

f·

~:

B-Tree ()bject-REtl:.riollM

~(tess Intelface

Presentation
Obje·cts

Ob.ject-oriented

Application
~ #."~,,~~~~=t!~~~~~~.

·~QLQ~lY-_--~~:1~;;;;;;;::~erct fS~il---___.

a1r~ady exists inmemory.lf it does, then
; Object Organizer returns this object.
. Otherwise, 1tpasses SQL query to

~ue~~~~;;turn I p~~:~~"~~a~~~_
Ir~",,",-__----_--JI . Oltject B..Tree tm,lemeJluDeJl L~yer

\~"·'ii<:~·Mnmi.li<~~r:m:t~",mm~m!"0,'~mmm~~w' Convert memoty.resident objects into
B-Tree nodes~

Use reb.tiona! primary key as B-ltee
search index to Search, Delete, Insert
and Update B-Tret rlodes (objects).

,1-""'"
~ ..~~" r~. · '\."1.

t:;./ ;.~"'i:;'"..-.;. J~ "::;, ,,~~...~.... ',... 1 '\ , 1-, I , '\

-& ~;~Si~: ~:? b~;~~~)~·(.J 4)~i;

~ :

r:::..__- ~-..

---- Relational '/
Data

~... ~~

{
Cache data instances read trom the databa$e. ~

register their primary key values. and respond
to queries based on this cached date, As

~:-

tuples are retrieved from the database, they . ~
are converted to objec1s and~ together 1::;?IJ!ilIII.~ -~

to form memory-restdert objects.

Qutty Result Return
by Row (Recordset)

Figure 3.1 B-Tree Object-Relational Database Access Interface Structure

35

3.2 Implementation of Object-relational Mapping Layer

The Database Object-Relational Mapping Layer is composite of a set of classes to

provide a framework for using ODBC API to manipulat~ database.

The Microsoft® Open Database Connectivity (ODBC) is a C programming

language interface that makes it possible to access relational databases with SQL

statemellts. ODBC allows Windows-based desktop applications need to be independent

of the source database without rewriting the application for each database. The following

are components of ODBC (Figure 3.2):

ODBC API (Application Programming Interface)

A library of function calls, a set of error codes, and a standard Structured Query

Language (SQL) syntax for accessing database.

ODBC Driver Manager

A Dynamic-Link Library (ODBC32.DLL) that loads ODBC database drivers on behalf of

an application. This DLL is transparent to the application.

ODBC database drivers

One or more DLLs that process ODBC function calls for specific database.

ODBC Administrator

A tool used for configuring a database to make it available as a data source for an

application.

36

Ap Ii at~· ..

Dato­
.~

• • ~ +. '. • ••

.Or-o:cle Serve:! 'SOl Serve,"
<:Dofo So'ufre) ';. : tDDt.: Souc<e} ;: .

Figure 3.2 ODBC components [Simon, 1996]

The object-relational Mapping Layer consists of three classes: CMapDB,

CMapRecordset and CMapException (Figure 3.3,3.4 and 3.5, Appendix A), which are

designed for database open, SQL query, database information retrieve and tuple-to-object

conversion respectively. The function members of each class include constructor,

destructor and member variables and functions associated with each class. The detailed

class information are listed as following:

Name: CMapDB

Member Functions: CMapDB(); virtual---CMapDB();

bool DBOpen(); bool DBClose(); bool SQLDBQuery();

booIIsDBOpen();

void ThrowDBError(); SQLRETURN GetDBRetumCode();

37

bool DBTransactions(); bool SQLDBCommit(); bool

SQLDBRollback();

Member Variables: SQLRETURN m_hRetumCode; SQLHENV m_hEnv;

SQLHDBC m_hODBC; HSTMT m_hDesc; string m_strDSN;

string m_strUerName; string m_strPWD; string ill_strQueryReturn;

booI m_blsOpen; bool m_BAutoCommit;

Class Description:

Class CMapDB is designed to represents an object-relational mapping to the

back-end relational database. Examples include Microsoft SQL Server, Microsoft Access,

Sybase, and Oracle. Class CMapDB calls following ODBC API functions in its member

functions:

SQLConnect, SQLDisconnect, SQLAllocHandle, SQLFreeHandle, SQLExecDirect,

SQLTransact, SQLEndTran, SQLGetInfo [Simon, 1996]. Before an application can

connect to a database, the ODBC environment must be initialized.

CMapDB (SQLAllocHandle) allocates the melTIory environment and returns a connection

handler to the application;

~ CMapDB (SQLFreeHandle) releases memory environment handler when Class

CMapDB is unloaded from memory;

DBOpen (SQLConnect) builds database connection by a data source name (DSN), a user

ID (UID) and a password (PWD).

SQLDisconnect terminates a data source connection.

SQLGetInfo retrieves information about the ODBC driver or data source associate with

an ODBC connection.

38

SQLDBQuery (SQLExecDirect) compiles and executes an SQL statement.

DBTransactions (SQL.Transact), SQLDBCommit and SQLDBRollback make a commit

or rollback operation for all statements associated with a connection. SQLEndTran stops

a commit or rollback operation.

By using above member functions, CMapDB can operate on the back-end database with

SQL. CMApDB also supports multi-thread so that front-end application can get a

connection to one or more database objects active at a time.

Name: CMapRecordset

Member Functions: CMapRecordset(); CMapRecordset(CMapDB& db);

virtual ~CMapRecordset(); void ResetContent();

void operator «(const char* statement);bool

ExecMaplnsertSQL();

bool ExecMapUpdateSQL(); bool ExecMapDeleteSQL();

bool ExecMapSelectSQL(); bool ExecMapFetch();

void SetMapDBOrderBy(); 'loid SetMapDBGroupBy();

void SetMapDBWhere();void ThrowError();

canst char* SQLGetValue(); int GetColumnDataType();

int GetColumnNumber(); void SetHDBC(); bool

MapSQLAllocStmt();

void MapSQLFreeStmt();

Member Variables: SQLRETURN m_hRetumCode; SQLHDBC m_hODBC;

SQLHSTMT ffi_hStatement;

39

Class Description:

Class CMapRecordset represents a set of records selected from a database. "fhis

class can process raw SQL statements, so it can make a SQL query to any kind of

relational database table without creating a derived application-specific class from it.

CMapRecordset uses a pointer of CMapDB object to access database.

ro.J CMapRecordset releases all memory resources for database tables and SQL query.

ExecMapSelectSQL selects data from the database table.

ExecMapFetch dynamically fetches table fields at run time rather than statically binding

them at

design time.

SQLGetValue retrieves field data in the current record (tuple), it supports following data

type: string, date, double, integer and long. Using this function, we can build B-tree

nodes, which will be described later.

ExecMaplnsertSQL adds the new data on the database;

ExecMapUpdateSQL saves the edited data;

ExecMapDeleteSQL deletes the current record from the database.

SetMapDBOrderBy and SetMapDBGroupBy control how the records are sorted

according to a

SQL ORDER BY or GROUP BY clause.

SetMapDBWhere filter those records that meet certain criteria according to a SQL

WHERE clause.

GetColumnNumber returns the number of fields in a CMapRecordset object.

ffi_hStatement contains the ODBC statement of a CMapRecordset object.

40

m hODBC is an ODBC h(L~dler for the database.

Name: CMapException

Member Functions: CMapException()

CMapException(SQLRETURN return) { m_nRetCode == return; }

~CMapException(); Delete();

Member Variables: SQLRETURN m_nRetCode; string m_strError; string

m_strStatement;

bool m_bExceptionAgain;

Class Description:

Class CMapException is designed for CMapDB and CMapRecordset error

handling. The.C++ language has built-in exception (error) handling abilities. With C++

exception handling, applications can recover from abnormal events. These exceptions are

handled by code that is outside the normal flow of control. Exception handlers must

delete the exception objects that they handle, because any kind of failure to delete the

exception causes a memory leak, in another words, the system resources used for class

CMapDB and CMapRecordset are not released from main memory. The structure for

C++ exception handling is represented by the following compound-statement syntax:

[Simon, 1996]

try-block:

try compound-statement handler-list

handler-list:

handler handler-listopt

handler:

catch-block: (exception-declaration) compound-statement

41

exception-declaration:

type-specifier-list declarator

type-specifier-list abstract-declarator

type-specifier-list

throw-expression:

throw assignment-expressionopt

Figure 3.6 Try-Catch for Exception Handling Schema Definition

The Figure 3.7 shows the use ofCMapException to catch and delete CMapDB

and CMapRecordset exceptions. Statement "try" builds a try block in which we can open

a database connection or execute SQL statements might throw an exception within a try

block. Statement "catch" builds a catch block and places CMapException code into a

catch block. The code in the catch block is executed only if the "try" block th..rows an

exception.

try
{

CMapDB.open();

CMapRecordset.ExecMapSelectSQL(SQL statement);

}
catch(CMapException* pMapException)
{

if (m_bExceptionAgain)
throw;

else

{
cout<< pMapException->m_strStatement<<endl;
pMapException->Delete();

42

Figure 3.7 Try-Catch for Database Mapping Schema Definition

3.3 Implementation of Object B-Tree Layer

The Object B-Tree (OBT) Layer implements an interface that organizes memory­

resident objects (database tuples) into the nodes of a B-tree hierarchical structure. An

OBT is a database table; the tuples belonging to a table are composed of the attribute

values, became the items in its corresponding node. Each node in an GBT is considered

to be a collection of several items (keys) and sub-nodes (children). This introduces the

problem of 'varying columns' in a table that means different tables in a database may

contain different information from each other; each tuple may have a different set of

attribute types. Therefore, different classes of objects will be created for their own GBT.

Each OBT holds the data and attribute information of a database table. An OBT Layer is

a B-tree forest including all kinds of OBT with different structures.

The definitions of the OBT concepts are based on the multi-way search tree

algorithms. A multi-way search tree of order m has to fulfill the following conditions

related to the ordering of the keys:

• The keys in each node are in ascending order.

• At every given node the following is true:

43

• The subtree starting at record Node.Branch[O] has only keys that are less

than Node.Key[O].

• The subtree starting at record Node.Branch[n] has only keys that are greater

than Node.Key[n-l] and at the same time less than Node.Key[n). (O<n<m)

• The subtree starting at record Node.Branch[m] has only keys that are

greater than Node.Key[m-l].

If less than the full number of keys is in the node, these conditions are truncated so that

they speak of the appropriate number of keys and branches. [Shaffer, 1997]

A B-tree is declared to be of a certain order (In the testing program of this

thesis, m==3 is default). This number determines the number of keys contained in any

interior node of the tree. Each interior node will contain order keys, and therefore

order+1 pointers to sub-trees. A B-tree of order m is a multi-way search tree of order

m sucl1 that:

• All leaves are on the bottom level.

• All internal nodes (except the root node) have at least ceil (m /2) (nonempty)

children.

• The root node can have as few as 2 children if it is an internal node, and can

obviously have no children if the root node ·s a leaf (that is, the whole tree

consists only of the root node).

• Each leaf node must contain at least ceil (m / 2) - 1 keys.

Ceil (x) is the ceiling function. Its value is the smallest integer that is greater than or

equal to x. [Weiss, 1997]

44

The Object B-Tree Layer is consisted of six classes (templates), they describe the

implementation of an GBT: how to build an item (key) in the OBT node, how to build an

OBT node and how to build an OBT. The detail class (templates) information is listed as

follows:

Name: MapBtItemType

Member Functions: Figure 3.8 (Appendix A)

Member Variables: Figure 3.8 (Appendix A)

Class Description:

MapBtItemType defines the abstract class structure of an item (key) stored in the

GBT node; it is a super-class of the sub-class MapDBItem. MapDBItem can use all

virtual functions inherited from class MapBtItemType to reload some specific functions

for itself.

Name: MapDBltem

Member Functions: Figure 3.9 (Appendix A)

Member Variables: Figure 3.9 (Appendix A)

Class Description:

45

MapDBItem is a class template derived from class MapBtItemType, defines the

real item (key) structure stored in the OBT node according to the attributes of relational

tables. An instance of class MapDBltem is an item (key) in the OBT node that contains

tuple information. MapDBltem can express any kind of relational table structure. For

example, Table 3.1 is suppliers' contact information of a company:

1tCharlotte IPurchasing :49 iLondon' UK ,011-44-
, ,Cooper !Manager 'Gilbert i' : (1 71)
: ~ ~ lSt. :555-
; ~ ! ~; 12222

,"'" 3lR.~gi~~ ISales 707 IAnn ,MI ,USA (313) (313)

"Murphy JRepresentative Oxford lArbor :555- 555-
Rd. ;5735 3349

Table 3.1 Customer Contact Table

The data structure for Table 3.1 is:

typedef struct
{

int ID;
string Name;
string Title;
string Address;
string City;
string Region;
string PostCode;
string Country;
string Phone;
string Fax;

} SupplierType;

46

The instantiation of Class MapDBItem for Table 3.1 is:

SupplierType SupplierTable;

MapDBltem < int, SupplierType > Supplier (SupplierTable.ID,

SupplierTable) ;

Table 3.2 is a products infonnation table of the above company:

I ~.I~;~~ =je~;~:~.~ ~.~~d~=~~t~: $1..~ 0~! 13: ~.~I... . ~~I
: 4.fCh~f Anton's !New •Condiments! $22.00: 53 Oil

ilCaJun .IOrleans Ii

! I.~.~:~~~i~~ ll~il~~~~..... . . 1.

Table 3.2 Products Information Table

The data structure for Table 3.2 is:

typedef struct
{

int PID;
string PNarne;
string Supplier;
string Category;
float UnitPrice;
int UnitslnStock;
int UnitsOnOrder;
booI Discontinued;

} ProductType;

47

The instantiation of Class MapDBltem for Table 3.2 is:

ProductType ProductTable;

MapDBltem < string, ProductType > Product (ProductTable.PName,

ProductTable) ;

Name: MapBtNodeType

Member Functions: Figure 3.10 (Appendix A)

Member Variables: Figure 3.10 (Appendix A)

Class Description:

MapBtNodeType is a class template defines abstract class structure for an OBT

node according to the relational tables; it is a super-class of the sub-class

MapBtMidNode. MapBtMidNode can use all virtual functions inherited from class

MapBtNodeType to reload some specific functions for itself.

Name: MapBtMidNode

Member Functions: Figure 3.11 (Appendix A)

Member Variables: Figure 3.11 (Appendix A)

Class Description:

MapBtMidNode is a class template derived from class template MapBtNodeType,

defines actual interior node class for an OBT according to the relational table structure;

48

an instance of class template MapBtMidNode is an OBT node in which it contains items

(MapDBltem) and pointers of sub-tree (MapBtMidNode).

Name: MapBTree

Member Functions: Figure 3.12 (Appendix A)

Member Variables: Figure 3.12 (Appendix A)

Class Description:

MapBTree encapsulates object B-tree algorithms; the algorithms implemented in

this thesis assume that items are stored in the internal nodes as well as in the leaves.

MapBTree includes member functions to manage nodes (append, delete, insert and

update) and B-tree (split, rotate, merge and balance).

Name: MapBTreelterator

Member Functions: Figure 3.13 (Appendix A)

Member Variables: Figure 3.13 (Appendix A)

Class Description:

MapBTreelterator allows inspection of the items in an OBT node in ascending

order according to item index (primary key).

Based on above class templates, the OBT layer provides an object-oriented

interface to the relational schema in the back-end database. The main purposes of OBT

layer includes:

49

1. Minimize back-end relational database queries and requests. In order to minimize

the total access number to the relational database, an OBT layer should be able to

send all the record changes at once instead of updating database as soon as each

attribute is changed.

2. Maxinlize the back-end relational database response abilities and performance.

Because the OBT layer is located in the main memo,ry, the relational database

stays in the secondary storage devices (disk access). Hence, queries and updates

can be processed much faster and more efficiently in the OBT layer than in the

database.

Efficient object management in memory and navigation is the key to realize those two

purposes. In the OBT layer, as soon as basic tuple information (a record set) is retrieved

and passed by the Object-relationall'.1apping Layer using the primary key to make an

SQL query, it is converted to objects. Next their primary key is registered as the index of

a B-tree node key (item), and stored into the node as an item according to the B-tree

insertion algorithm. Each item in the OBT has one of three status: Active, Update and

Delete. These status indicate whether the item is experiencing "reading", "updating" or

"deleting" operations within an OBT without accessing the database each time. OBT

will just read the item of "Active"; If an item's status is set as "Delete", then the OBT

still holds this item in main memory, treats it as garbage and doesn't deletes it until

database transaction is committed, this feature decreases B-tree balance, merge and split

operations in the memory and simplifies the object in-memory management. "Update"

status makes OBT notice database to update records. This approach provides a way to

optimize database query performance.

50

Using the primary key as an OBT item index will make a faster information query

and search than the corresponding operation done in the database. Once the data has been

retrieved from the database, in-memory navigational queries (B-tree search) allow

efficient use of cached object (item/node) information. In order to take advantage of this

query support, appropriate indexes should be built to columns that are to be used for class

and relationship queries. In general, indexes to be built include all primary and foreign

keys in the database schema.

OBT layer also has multi-threaded capabilities to perform background non­

blocking query processing. This approach optimizes the database system response time.

However, the disadvantages of the above OBT features are the system hardware

requirements. In order to keep lots of many database table tuples (sometimes the number

is very l1uge, 100,000 "-' 200,000 tuples) in the memory, the larger main memory, the

better the perfonnance is obtained. A multi-threaded B-tree query needs high-speed

processors in the system. About ten years ago, the memory chip and CPU were very

expensive, the size and speed were very small and slow, it's very hard to implement an

OBT layer, but today, hardware components are good enough to develop large scale

object systems efficiently.

3.4 Implementation of Object-oriented Query Operation Layer

The Object-oriented Query Operation (OQO) Layer provides an interface between

Object-oriented application and relational database. The key objective of this layer is

51

how to query and update database efficiently. In order to achieve this objective, OQO

layer employs the following phases:

1. It builds a smart SQL parser (Figure 3.14, Appendix A). This parser

recursively recognizes standard SQL key words: Select, From, Where,

Update, Set, Delete, Insert, Order by, Group by, etc. Using these key

w0rds, the parser can decide from a SQL statement the table names, the field

names, and how the query is. Next, it contacts with the OBT layer to make an

SQL-like B-tree query; following pseudo-code (Figure 3.15) shows how the

smart parser recursively recognizes "Select-From-Where" clause.

#define MAXNUM 50
#define RAWSQL OxOAOO
#define GETTABLE OxOA20
#define GETFIELD OxOA22
#define GETWHERE OxOA24

int nTCounter==O,nFCounter==O;
string m_strSQLStatement, strTableName[MAXNUM], strFieldName[MAXNUM];
string m_strQuery, ill_strWhereField, ill_strWhereValue;

void OnParserSQL(UINT nFlag) {

int nL, nP, nPl, nP2;
nL == ill_strSQLStatement.GetLength();

switch(nFlag) {
case RAWSQL:

break;

case GETFIELD:
nP 1==m_strSQLStatement.Find (" [ft);
nP2==m_strSQLStatement.Find (n] ");

52

if(nP2-nPl>O) {
strFieldName[nFCounter++] == m_strSQLStatement.Left (nP2-nP 1);
m_strSQLStatement== m_strSQLStatement.Right (nL-nP2);
OnParserSQL(GETFIELD);

}
else if (nFCounter>O) OnParserSQL(RA\VSQL);
else Throw Error Message("No Field Found!");
return;

case GETTABLE:
nPI == m strSQLStatement.Find (ft,");
nL == m_strSQLStatement.GetLength();

if(nPl>O) {
strTableName[nTCounter++J == m_strSQLStatement.Left (nPI);
m_strSQLStatement== m_strSQLStatement.Right (nL-nP 1);
OnParserSQL(GETABLE);

}
else if(nTCounter>O) OnParserSQL(RAWSQL);
else Throw Error Message("No Table Found!");

return;

case GETWHERE:
nP==m_strSQLStatement.Find ("And");
if(nP!==-l) OnParserSQL(GETWHERE);

nP==m_strSQLStatement.Find ("<>" or "<==" or ">==" or "<" or ">" or "LIKE");

if(nP!==-l) {
ITI_strWhereField == ill_ strSQLStatement.Left (nP);
m_strWhereValue == m_strSQLStatement.Left (nL-nP);

}
else Throw Error Message("Incorrect 'Where' statement! ");

default:
return;

}

if(m_strSQLStatement===="") return;
else if(nP==m_strSQLStatement.Find ("Select")====O) {

if(rn_strQuery ===="") m_strQuery == "Select";
else {

Throw Error Message("Incorrect 'Select' statement! ");
Return;

}

53

}

m_strSQLStatement= m_strSQLStatement.Right (nL-nP);

OnParserSQL(GETFIELD);
}
else if(nP==m strSQLStatement.Find ("From")~O) {

m_strSQLStatement== m_strSQLStatement.Right (nL-nP);
OnParserSQL(GETTABLE);

}
else if(nP==m_strSQLStatement.Find ("Where")====O) {

m_strSQLStatement== ill_ strSQLStatement.Right (nL-nP);
OnParserSQL(GETWHERE);

}

else Throw Error Message("Unrecognized SQL statement!")"

Figure 3.15 The Pseudo-code for Smart parser

2. Process OBT layer query. A two-step algorithm processes the OBT query.

The first step finds the OBT layer to determine which B-tree is holding the

table. If the B-tree is found, then it performs a post-order, depth-first search of

the tree using the node index (primary key), to perform necessary accesses

and to expose each operation node to the formats of the tuples upon which it is

to operate. If none of the trees is found, the smart parser passes that original

SQL statement directly to the back-end database to do a query. The second

step of the algorithm involves a series of tree traversals that passes the results

of the searches up the tree. When a B-tree search is executed to retrieve the

tuple information from the item (object) stored in the node (Figure 3.17) a

filter is constructed to restrict the results from select and project nodes

immediately precede the node, if they exist.

54

3. The result of a search is an array of items (tuples). The array is converted into

a collection of tuples: attribute values are placed in the tuple structures,

missing attributes in the items are converted to the relational value NULL.

The result is stored in main memory as a list that is accessed in a manner

similar to accessing a database table. Performance analysis of the select and

join operations are described in Chapter 4. Usually, a From clause specifies a

single table; however the smart parser must determine all table names, fields

name and corresponding database operations for the join queries. This can

deteriorate query efficiency.

4. If the smart parser cannot find the correct tree in the OBT layer, as mentioned

in the step 2, then the original SQL statement is passed to database directly to

make a query. As soon as the query finished, the bottom layer, Object­

relati.onal Mapping Layer, transforms all tuples into the objects and notice

middle layer, Object B-Tree Layer, to build an OBT in the memory to store

those objects, then send a message to the smart parser to make another OBT

layer query again.

55

object- oriented
Query Operation ~-----1 CIvIapPars fT I
Layer

,/~'\,

..... v".
MapBtItemType
MapDBltem

B-Tree 0 bject - relatiorml Object B- Tree Layer I MapBtN odeType

Database Access Interface MapB tMidNode
MapBTree

)'/'~ MapETree1tera.tor

...... "v/

CMapDBI 0 bjec~ 1" elatioruU I CrvIapRecordset
f Mapping Layer ,

eMapEx ception

Figure 3.16 The Architecture of classes in B-Tree Object-relational Database Access

Interface

56

Figure 3.17 An Instance of class MapBTree

57

CHAPTER IV

PERFORMANCE ANALYSIS

This chapter describes the timing experiments and presents the test results. The tests

include raw SQL performance measurement and scalability measurement under various

computer systems. The purposes of the performance analysis for B-Tree object-relational

access interface are:

1. To determine the significant performance benefits by comparing SQL queries

between a relational database and a database using the B-Tree access interface;

2. To gain insights into the feasibility of the B-Tree access interface.

4.1 Platform, database and applications for performance analysis

The platform used for the tests is a Windows 2000 Server running SQL server 2000.

The kernel hardware and database table configurations include:

• Processor Speed: PentiumIII 500 MHz, PentiumVI 1900 MHz (dual-processor)

• ~1emory Size: 512Mb, 2000Mb

• Test database: FluidTestData, a hydraulic engineering database that includes five

tables:

Table Name: FluidProperty
Primary key: FID; Foreign key: N/A

Field Name Data Type Description
FID Number Fluid ID

Name Text Fluid Name
Manufacturer Text Fluid Manufacturer

ProductNo Number Fluid Manufacturer's Production No.
Use Text Usage of Fluid

Table 4.1 Definitions of Test Database Table FluidProperty

58

Table Name: FlowData
Primary key: Time; Foreign key: FID

Field Name Data Type Description
Index Number Data Index
Time Text Time of Fluid Flow

FValue Double Test Data Value of Fluid Flow
FID Number Fluid ID

Table 4.2 Definitions of Test Database Table FlowData

Table Name: PressureData
Primary key: Time; Foreign key: FID

Field Name Data Type Description
Index Number Data Index
Time Text Time of Fluid Flow

PValue Double Test Data Value of Fluid Pressure
Fill Number Fluid ID

Table 4.3 Definitions of Test Database Table PressureData

Table Name: TemperatureData
Primary key: Time; Foreign key: FID

Field Name Data Type Description
Index Number Data Index
Time Text Time of Fluid Flow

TValue Double Test Data Value of Fluid Temperature
FID Number Fluid ID
Table 4.4 Definitions of Test Database Table TemperatureData

Table Name: ViscosityData
Primary key: Time; Foreign key: FID

Field Name Data Type Description
Index Number Data Index
Time Text Time of Fluid Flow

VValue Double Test Data Value of Fluid Viscosity
FID Number Fluid ID

Table 4.5 Definitions of Test Database Table ViscosityData

All of the above hardware and software are provided by BarDY11e, Inc., Stillwater,

Oklahoma. The test application is implemented under the Microsoft Visual C++

development platform version 6.0 on the Windows 2000 server. It is a windows dialog

application that can build a B-tree object-oriented database access interface, open

59

database via ODBC, make SQL queries, display system information, query time, query

results and evaluate query performance. Figure 4.1 and Figure 4.2 show sample output

screens.

Figure 4.1 Performance Test Output Screen for table FluidPorperty

60

Figure 4.2 Performance Test Output Screen for Table ViscosityData

Table 4.6 and Table 4.7 show several typical SQL queries used in the experiment

and represent the typical use of SQL queries, which involve selections and joins in the

database. For every query, computer system configurations and B-tree order are given

(table 4.8'""-' 4.11), and the size of the query result, the mean time required processing the

query, and the percentage of time spent performing OBT search are listed in the table

4.8'""-' 4.11.

61

Query
No. Test SQli Statements

1 Select * from FluidProperty order by FID = 8H2000
2 Select * from FluidProperty order by FID
3 Select * from ViscosityData order by Time
4 Select * from ViscosityData where Time< 4500.00 order by Time
5 Select * from PressureData where PValue > 150.00 order by Time
6 Select * from TemperatureData where TValue >= 50.00 order by Time

Table 4.6 Definitions of OBT Access Interface of Select Queries

Query
No. Test SQL Statements

7 Select Time, FValue, PValue, TValue from FlowData, PressureData,
TemperatureData where FID= SH0201 order by Time

8 Select Time, FValue, VValue from FlowData, ViscosityData where
FlowData.FID = ViscosityData.FID order by Time

9 Select Time, VVaIue, PValue from ViscosityData, PressureData where
ViscosityData.FID = PressureData.FID order by Time and PValue

10 Select Time, FValue, PValue from FlowData, PressureData where
FlowData.FID = PressureData.FID order by Time and FValue

11 Select Time, FValue, PValue, VValue from FlowData, PressureData,
ViscosityData where FlowData.FID = PressureData.FID and

ViscosityData.FID>100 order by Time and Vva ue

Table 4.7 Definitions of OBT Access Interface of Join Queries

62

4.2 Test Results

Database OBT % Time OBT
Number of Query Query Time Search Time Search in

Query No. Result (tuples) (s) (s) Database Query
CPU: Pentium 500 MHz; Memory: 512Mb; OBT order m: 50

1 8360 70.335 66.572 94.65
2 25368 141.126 123.167 87.25
3 58000 293.413 240.230 81.87

4 92000 516.268 478.151 92.62
5 114585 790.232 710.257 89.88
6 150000 912.458 842.564 92.34

CPU: Pentium 500 MHz; Memory: 512Mb; OBT order m: 100
1 8360 70.335 57.781 82.15
2 25368 141.126 110.509 78.31
...,

58000 293.413 210.412 71.72.)

4 92000 516.268 434.967 84.25
5 114585 790.232 689.362 87.25
6 150000 912.458 812.810 89.09

Table 4.8 Performances of Select Query (A)

200000

r
I
I

I

I
I

i
I

len
j,
I Q)

I E
i=

1000

900

800

700 -

600

500

400

300

200

I 100
I 0

I 0 50000 100000 150000
I

I Select Query (A) Result (tuples)

I

I 11 - __5_00_M_Hz/512M/DataSase --- 500MHz/512M/OBT/m=50
. ---.- 500MHz/512M/OBT/m=100

Figure 4.3 Performance Curve for Select Query (A)

63

Database OBT %TimeOBT
Number of Query Query Time Search Time Search in

Query No. Result (tuples) (s) (s) Database Query
CPU: Pentium 1900 MHz; Memory: 2000Mb; OBT order m: 50

1 8360 50.427 30.046 59.58
2 25368 103.156 57.283 55.53
...,

58000 134.802 83.732 62.11-'
4 92000 189.381 123.309 65.11
5 114585 240.178 160.473 66.81
6 150000 371.168 220.618 59.44

CPU: Pentium 1900 MHz; Memory: 2000Mb; OBT order m: 100
1 8360 50.427 8.312 16.48
2 25368 103.156 10.581 10.26
3 58000 134.802 17.609 13.06
4 92000 189.381 28.461 15.03
5 114585 240.178 47.523 19.79
6 150000 371.168 89.526 24.12

Table 4.9 Performances of Select Query (B)

400

350

300

----. 250
U)
~

E200

;:: 150

100

50

a
o 50000 100000 150000 200000

Select Query (B) Result (tuples)

__ 1900MHz/2000M/Database

--.- 1900MHz/2000M/OBT/m=100

---.- 1900MHz/2000M/OBT/m=50

Figure 4.4 Performance Curve for Select Query (B)

64

Database OBT % Time OBT
Number of Query Query Time Search Time Search in

Query No. Result (tuples) (s) (s) Database Query
CPU: Pentium 500 MHz; Memory: 512Mb; OBT order m: 50

7 3532 84.011 78.592 93.55
8 7074 109.347 89.709 82.04
9 15400 213.412 177.314 83.09
10 26900 288.167 268.581 93.20
11 45200 342.812 329.442 96.10

CPU: Pentium 500 MHz; Memory: 512Mb; OBT order m: 100
7 3532 84.011 66.221 78.82
8 7074 109.347 81.701 74.72
9 15400 213.412 159.054 74.53
10 26900 288.167 259.319 89.99
11 45200 342.812 315.720 92.09

Table 4.10 Performances of Join Query (A)

I ---- 500MHz/512M/DataBase

L'----_--.-__5_0_0M_H_zl_5_1_2M_I_O_BT/rn= 100

-+- 500MHz/512M/OBT/m=50

Join Query (A) Result (tuples)

I

I

I
!
J

I

I
I

I
50000 I

I
i
I

I
I

40000300002000010000

50

o :;:;.~~:

a

I

I 400

350

300

~ 250
fA

""--'"

cv 200E
t= 150

100

Figure 4.5 Performance Curve for Join Query (A)

65

Database OBT I % Time OBT
Number of Query Query Time Search Time I Search in

Query No. Result (tuples) (s) (s) I Database Query
CPU: Pelltium 1900 MHz; Memory: 2000Mb; OBT order m: 50

7 3532 60.701 53.885 88.77
8 7074 71.312 62.471 87.60
9 15400 110.035 101.836 92.55
10 26900 133.107 122.230 91.83
11 45200 166.183 151.575 91.21

CPU: Pentium 1900 MHz; Memory: 2000Mb; OBT order m: 100
7 3532 60.701 45.468 74.90
8 7074 71.312 52.426 73.52
9 15400 110.035 93.334 84.82
10 26900 133.107 114.319 85.89
11 45200 166.183 135.720 81.67

Table 4.11 Performances of Join Query (B)

____ 1900MHz/2000M/Database

--.-1900MHz/2000M/OBT/m=100

50000

I

-+- 1900MHz/2000M/OBT/m=50I I
.~ I_j

20000 30000 40000

Join Query (B) Result (tuples)

10000

60

40

20

o
a

180

160

140

120
...--..
~ 100
Q)

I .§ 80
't-

Figure 4.6 Perfonnance Curve for loin Query (B)

66

4.3 Performance Test Summary

Table 4.8,-...,4.11 present the perfonnance test results obtained from select and join

queries. Following results are observed:

• No matter how big the B-tree order m is, there is no obvious performance

increase between database queries and aBT interface searches when system the

CPU speed and memory are in low-end configurations. Because the system's

main memory is too small to hold all object information, the operating system

must page the most of objects to the hard drive, this causes the OBT interface

search to happen on the hard drive instead of memory; it is as same as database

query.

• OBT is a balanced m-way (order m) tree, which means the B-tree search (Select)

must make an m-way choice, so the number of memory access (search) is a (logm

N), each memory access carries overhead 0 (log m) to determine the direction to

branch. Therefore, when the system CPU speed and memory are fast and big

enough, the aBT interface exhibits an obvious increase in the performance, and,

the lager the B-tree order m in main memory is, the better the performance is

obtained; this confirms the assllmption that for optimal performance, all selection

operations in the OBT interface should take place in main melnory and B-tree

needs to be relatively flat.

• The split operation in the OBT transforms a full node with 2m - 1 keys into two

nodes with m - 1 keys each and one key is moved into the parent node, the split

algorithm will run in time 0 (m). Queries 5 and 6 (Table 4.4) exhibit very poor

join performance compared to Queries 1, 2, 3 and 4 when the OBT interface is

67

used. Join queries require a greater filtering during the search in order to retrieved

objects from the memory. The OBT interface must treat the entire join relations as

B-tree merge, split, and rotate operations. This significantly increases the system

processing times as well as the number of attributes returned per tuple.

• Table 4.5 indicates that, if a primary key is used as an OBT search index for any

relational table, on a high-end system configuration with a lager B-tree order

number m (tree height is at most [logm/2 N]), the GBT interface yields satisfactory

performance optimizations, since the running time of the search operation

depends upon the height of the tree

68

CHAPTER V

CONCLUSIONS

The design and implementation of the object B-tree interface demonstrates how to

achieve high performance in object-oriented applications linked to relational database.

The advantages and disadvantages of object B-tree interface are summarized below:

5.1 Advantages vs. Disad\rantages

Advantages:

1. High-speed object accessing abilities. All objects are memory-resident and

organized as B-tree nodes. Using the primary key as the index ofB-tree node key

simplifies the object search minimizing the cost of evaluating the query;

2. Flexible data type processing ability. A B-tree class template can build complex

data types according to the various relational table attributes;

3. The inheritance and encapsulation of the B-tree object provides a seamless link to

the OODBMS and OO-applications;

4. All class templates and classes can be reusable.

69

Disadvantages:

1. A high-end hardware configuration is required; this increases the total system

expense;

2. The two sets of SQL queries used for performance analysis indicate that

perfonnance of select queries is acceptable in the most cases, better than a direct

database query. However, joins can depredate performance significantly in these

situations because they are related to many-to-many relationships and not a native

query for the OBT layer.

According to the performance analysis, the design of GBT layer must take into

account the weaknesses and strengths of the relational data store. One-to-one

relationships must be embedded into a single table using the primary key, but also using

foreign keys to navigate one-to-many relation-ships while avoiding many-ta-many

relationships. We must keep the classes used to map tuples to node items as simple as

possible except for cases that minimize database traffic. The multi-thread (a thread is a

process running in the memory, multi-thread means several processes are running in main

memory which are sharing one or more CPUs at the same time) is critical memory­

resident object navigation and updates in order to maximize performance benefits for

deploying large-scale object systems. The actual performance is dependent greatly upon

how the application can take advantage of objects (data) stored in main memory.

According to Loomis, "Persistence offers many of the performance benefits of an

OODBMS while retaining the reliability and portability of the underlying relational

database." [Loomis, 1994]

70

5.2 Research Contribution

The main research contribution in this thesis is the actual implementation of a

flexible and multi-threaded main memory resident object B-tree interface for relational

database access. This interface can be configured easily to satisfy different relational

table structures and is in full working order. Unlike database systems that are almost

universally based on a secondary storage (hard disk) architecture, the interface features a

mapping from database tables to the memory resident B-tree architecture; this enables

system to eliminate the information search and communication overhead, one of the

major sources of poor performance, between the database and applications. Therefore,

this kind of architecture design allows applications to operate directly on a persistent

memory objects instead of tuples. This approach eliminates object moving between the

database cache and persistent memory space, further improving the system performance.

5.3 Future Work

As shown by performance analysis, the good-performance of the object B-tree

interface is based on the primary key index B-tree search; the foreign key search and the

"join" operation are not good for the B-tree. One possible improvement is to reduce the

number of B-tree operations: merge, split and rotation, based on the notion of a join index

and rewriting the query to process an exhaustive B-tree search of the objects (tuples)

from one B-tree (table) based on items (key values) obtained in the another B-tree (table).

71

This should result in improvements in the time required to the process depending upon

the selectivity of the join index.

72

BIBLIOGRAPHY

[1] Cattell, R.G.G (1997). The Object Database Standard: ODMG (Revised Edition).

New York, NY: Addison-Wesley Publishing Company, 1997

[2] Codd, E. F. (1990). The Relational Model for Database Management (2nd
Edition)~

New York, NY: Addison-Wesley Publishing Company, 1990.

[3] Crotzer, A.D. (1975). Efficacy ofB-Trees In An Information Storage And Retrieval

Environment. Thesis. Oklahoma State University, 1975.

[4] Chamberlin, Donald D., & Boyce, Raymond F. (1974). SEQUEL: A Stnlctured

English Query Language (Vol. 1). Ann Arbor, Michigan: SIGMOD Workshop,

1974.

[5] Date, C. J. (1995). An Introduction to Database Systems. Reading, MA: Addison­

Wesley Publishing Company, 1995.

[6] Date, C. J., & Darwen, Hugh (1993). The SQL Standard, Third Edition. New York

NY: Addison-Wesley Publishing Company, 1993.

[7] Fleming, C.C., & Halle, B.V. (1989). Handbook of relational database design. New

York, NY: Addison-Wesley Publishing Company, Reading, 1989.

[8] Garcia-Molina, H., Ullman, J., and Widoill, J. (1998) Database System

Implementation. Upper Saddle River, NJ: Prentice Hall, 1998.

[9] Gray, J., and Reuter, A. (1993). Transaction Processing: Concepts and Techniques.

San Francisco, CA: Morgan Kaufmann, 1993.

73

[10] Halpin, Terry (1995). Conceptual Schema & Relational Database Design (2
nd

Edition). Englewood Cliffs, NJ: Prentice Hall, 1995.

[11] Jordan, D (1996). c++ Object Databases: Programming with the ODMG Standard.

New York, NY: Addison-Wesley Publishing Company, 1996.

[12] Keller, A.M., Agarwal, S. and Jensen, R. (1993). Enabling The Integration of

Object Applications With Relational Databases. Proceedings of 1997 ACM

SIGMOD Conference, San Jose, CA, 1997.

[13] Knuth, Donald (1973). The Art of Computer Programming. New York: Addison

Wesley Publishing Company, Melno Park, California, 1973.

[14] Loomis, M. (1994). Querying Object Database. Journal of Object-Oriented

Programming, 7(3): 56-78. June, 1994.

[15] Loomis, M. (1995). Object Databases: The Essentials. Reading, MA: Addison­

Wesley Publishing Company, 1995.

[16] Matheus, C. J., Chang, P. K., & Piatetsky-Shapiro. (1993). Systems for Knowledge

Discovery in Databases. En IEEE Transactions on Knowledge and Data

Engineering, vol. 5(6), December, 1993.

[17] Shaffer, Clifford A. (2000) A Practical Introduction to Data Structures and

Algorithm Analysis (C++ 2nd Edition). Englewood Cliffs, NJ: Prentice-Hall, 2000.

[18] Simon, Richard J. (1996). Windows 95 multimedia & ODBC API Bible. Corte

Madera, CA: Waite Group Press, 1996.

74

[19] Ullman, J. (1988). Principles of Database and Knowledge-base Systems (Vol. II).

Rockville, MD: Computer Science Press, 1988.

[20] Ullman, J. and Widom, J (2001). A first course in Database Systems (2nd Edition).

NY: Prentice Hall, 2001.

[21] Ullman, J. (1991). A comparison between deductive and object-oriented database

systems.

DOOD Conference, Munich, Germany, 1991.

[22] Weiss, M. A. (1997). Data Structures and Algorithm Analysis in C (2nd Edition),

Menlo Park, CA: Addison-Wesley Publishing Company, 1997.

[23] Wirth, Niklaus (1986). Algorithms + Data Structures == Programs. Englewood

Cliffs, NJ: Prentice-Hall, 1986.

[24] Zaratian, Beck (1998) Microsoft Visual C++ 6.0 Programmer's Guide. Redmond,

WA: Microsoft Press, 1998

75

GLOSSARY

aggregation A part-of relationship between a component object and an aggregate object.

The process of transforming data from a detailed to a summary level.

attribute A conceptual notion employed to express an identifiable association between

the object and some other entity or entities.

behavior The observable effects of performing the requested service.

binding The process of selecting a method to perform a requested service and selecting

the data to be accessed by that method.

class Template from which objects can be created. It is used to specify the behavior and

attributes common to all objects of the class.

constraint A restriction placed on a form, table, field or other object to either force an

action to happen in a certain way, or to prevent an action from happening all together.

Constraints enforce referential integrity, and promote fault tolerance.

DBMS Database management systems.

encapsulation The facility by which access to data is restricted to legal access. Illegal

access is prohibited in an object by encapsulating the data and providing the member

functions as the only means of obtaining access to the stored data.

inheritance The mechanism by which new classes are defined from existing classes.

Subclasses inherit operations of their parent class. Inheritance is the mechanism by which

reusability is facilitated. It is a mechanism for sharing behavior and attributes between

classes. It allows one class to be defined in terms of another class. Objects can inherit

iata and methods from other objects. Inheritance helps implement ois-ao or okind-ofo

76

relationships.

integrity A kind of consistency that guaranteed the existence of all objects referenced.

The consistency of the database can be typically expressed through predicates or

conditions on the current state of the database.

object A combination of data and the collection of operations that are implemented on ?

data; also, a collection of operations that shares a state. The representation of a real->rld

entity. An object is used to model a person, place, thing, or event from the real -rid. It

encapsulates data and operations that can be used to manipulate the data and ponds to

requests for service.

OBT Object B-Tree

OODBMS Objected-oriented database management system that can be used to store and

retrieve objects.

persistence The ability of data to exist beyond the scope of the program that created it.

The phenomenon whereby data outlive the program execution time and exist between

executions of a program. All databases support persistence.

persistent object An object whose existence is independent of the lifetime of the creating

program.

query An activity that involves selecting objects from implicitly or explicitly identified

collections based on a specified predicate.

request An event consisting of an operation and zero or more actual parameters that

causes a service to be performed.

reusability The concept of easily using existing software within new software; the ability

to use well-designed software modules that have been tested, in several places, in

77

different applications, so as to minimize development of new code. Object-oriented

languages employ inheritance as a mechanism for reusability.

stored procedure A program running in the database that can take complex actions

based on the inputs you send it. Using a stored procedure is faster than doing the same

work on a database client, because the program runs right inside the database server.

table The grouping of information in a relational database. Tables are composed of

columns and rows.

transaction A sequence of database operations that transforms a consistent state of a

database into another consistent state, without necessarily preserving consistency at all

intermediate points.

trigger A program in a relational database that gets called each time a row in a table is

inserted, changed, or deleted. Triggers allow you to check that any changes are correct

before they are accepted.

type A predicate defined over value that can be used in a signature to restrict a possible

parameter or characterize a possible result.

78

APPENDIX A

CLASS SCHEMA DEFINITION FOR B-TREE OBJECT-RELATIONAL
DATABASE ACCESS INTERFACE

class CMapDB
{
public:

CMapDB();
virtual ~CMapDB();

//variables
public:

SQLRETURN m hReturnCode;
SQLHENV m_hEnv;
SQLHDBC m hODBC;
HSTMT m_hDesc;

//operations
public:

booI DBOpen(const char* strDSN, const char* strUerName=="", const char*
strPWD=="");

bool DBCIose();
bool SQLDBQuery(const char* strSQL);
bool IsDBOpen() { return m_bIsOpen; }
void ThrowDBError(SQLSMALLINT ErrorHandIer==SQL_HANDLE_STMT);
SQLRETURN GetDBReturnCode() { return m_hReturnCode; }
bool DBTransactions();
bool SQLDBCommit();
bool SQLDBRollback();

private:
string
string
string
string
bool
bool

};

m_strDSN;
m_strUerName;
m_strPWD;
m_strQueryRetum;
m_blsOpen;
m_BAutoCommit;

Figure 3.3 CMapDB Class Schema Definition

79

class CMapRecordset :
{

II constructor/destructor
public:

CMapRecordset();
CMapRecordset(CMapDB& db);
virtual '"'-'CMapRecordset();
void ResetContentO;
void operator «(const char* statement);
bool ExecMapInsertSQL(const char* strSQL);
bool ExecMapUpdateSQL(const char* strSQL);
booI ExecMapDeIeteSQL(const char* strSQL);
booI ExecMapSelectSQL(const char* strSQL);
bool ExecMapFetch();

void SetMapDBOrderBy(canst char * strOrderBy);
void SetMapDBGroupBy(const char* strGroupBy);
void SetMapDBWhere(const char* strWhere);

public:
canst char* SQLGetValue(int nRow, int nDataType);
int GetColumnDataType(int nColumnNumber);
int GetColumnNumber();
void SetHDBC(HDBC* hdbc);
bool MapSQLAllocStmt();
void MapSQLFreeStmt(SQLUSMALLINT a_uType==SQL_DROP);

protected:
void ThrowError();

private:

SQLRETURN ill_ hReturnCode;
SQLHDBC ill_ hODBC;
SQLHSTMT m_hStatement;

};

Figure 3.4 CMapRecordset Class Schema Definition

80

class CMapException
{
public:

CMapException() :m_nRetCode(0) {;}
CMapException(SQLRETURN return) { m_nRetCode == return; }
'"'-'CMapException() {;}

SQLRETURN m_nRetCode;
string m_strError;
string m_strStatement;
bool m_bExceptionAgain;
void Delete() { delete this; }

private:
CMapException(const CMapException& 0) {;}

};

Figure 3.5 CMapException Class Schema Definition

class MapBtltemType
{
public:

NIapBtltemType();
~MapBtltemType();

int m_nIndex; // the index of this item in the host node

virtual void OnSetStatus(); //item status: update/delete/active
virtual int OnGetStatus(); //item status: update/delete/active
virtual void OnSetValue(); //setup item values
virtual void OnGetValue(); //return item values
virtual void OnPrintOutValue(); //print out item vailles

private:
int m_nStatus;

};

// S_UPDATE/S_DELETE/S_ACTIVE

Figure 3.8 MapBtltemType Class Schema Definition

81

template <class KeyType, class ValueType >
class MapDBltem : public MapBtItemType
{
friend class MapBTree<KeyType, ValueType>;
friend class MapBtMidNode<KeyType, ValueType>;

public:

MapDBItem(const KeyType& key, const ValueType&
value):m_tPrimaryKey(key), m_tValue(value){}

MapDBltem(const KeyType& key): m_tPrimaryKey(key) {};
virtual ~MapDBltem(){}

public:
int m_nField;
string m_strTableName;
KeyType ill_ tPrimaryKey;
ValueType m_tValue;

virtual int operator«const MapBtltemType& Operand) const
{

return (m_tPrimaryKey < «const MapDBltem<KeyType,
ValueType>&)Operand).m_tPrimaryKey);

}

virtual int operator====(const MapBtItemType& Operand) const
{

return (m_tPrimaryKey ==== «const MapDBItem<KeyType,
ValueType>&)Operand).m_tPrimaryKey);

}

virtual int operator>(const MapBtltemType& Operand) const
{

return (m_tPrimaryKey > ((const MapDBltem<KeyType,
ValueType>&)Operand).m_tPrimaryKey);

}

virtual const MapBtltemType& operator==(canst MapBtltemType& Operand)
{

m_tPrimaryKey=((const MapDBItem<KeyType,
ValueType>&)Operand).m_tPrimaryKey;

ill_ tValue==((const MapDBltem<KeyType,
ValueType>&)Operand).m_tValue;

return *this;
}

82

MapBTree<KeyType, ValueType>* myBTree; // the parent B-Tree
MapBtMidNode<KeyType, ValueType> *myHostNode; 1/ the node hosts this

item
MapBtMidNode<KeyType, ValueType> *myLeftNode; /1 left sub-tree of this

item
MapBtMidNode<KeyType, ValueType> *myRightNode; II right sub-tree of

this item

virtual MapBtMidNode<KeyType, ValueType> *OnGetNode(int nNode); //0: host; 1:
left; 2: right

virtual void OnSetStatus(); //item status: update/delete/active
virtual int OnGetStatus(); //item status: update/delete/active
virtual void OnSetValue(CMapRecordset* pSet); //setup item values
virtual void OnGetValue(); //retum item values
virtual void OnPrintOutValue(); //print out item values

};

Figure 3.9 Schema Definition of Template Class MapDBItem

83

template <class KeyType, class ValueType >
class MapBtNodeType
{

friend class MapBTree<KeyType, ValueType>;
friend class MapBtMidNode<KeyType, ValueType>;

public:

MapBtNodeType(MapBtMidNode<KeyType, ValueType > *pParent, MapBTree
*pBTree == NULL);

virtual '"'-'MapBtNodeType();

int m_nNodelndex;
int m_nItemCount; II Number of Items stored in the current node
bool m_blfLeaf;
MapBtltemType ffi_Item[Maxltems]; II indexing starts at 0, Items in the node
MapBtMidNode<KeyType, ValueType >* m_ChildNode[MaxltemsPlusOne]; II

pointers to child nodes

public:
booIlsNodeFull();

MapBTree* GetHostBTree() const {return m-'pBTree;}
MapBtMidNode<KeyType, ValueType >* GetParentNodeO const {return

m-'pParentNode;}
virtual MapBtltemType* operator[](int nIndex) const == NULL;
virtual MapBtMidNode<KeyType, ValueType >* GetChiIdNode(int

nChildlndex) const
{return m_ChildNode[nChildIndex];}

protected:

MapBTree* m-'pBTree;
MapBtMidNode<KeyType, ValueType >* m-'pParentNode;

};

Figure 3.10 Schema Definition of Template Class MapBtNodeType

84

template <class KeyType, class ValueType >
class MapBtMidNode : public MapBtNodeType
{

public:
MapBtMidNode(MapBtMidNode<KeyType, ValueType > *pParent, MapBTree

*pBTree == NULL);
MapBtMidNode(MapBtMidNode<KeyType, ValueType > *pParent, MapBTree

*pBTree, MapBtNodeType *pOldRoot);
~MapBtMidNode();

virtual void Addltem(const MapDBltem<KeyType, ValueType> objMapBtltem,
int nItemIndex);

void Addltem(MapDBltem<KeyType, ValueType>& objMapBtltem, int
nItemIndex);

void AddltemAt(MapDBltem<KeyType, ValueType> objMapBtltem, int
nItemlndexAt,MapBtNodeType *pNode);

virtual void Deleteltem(int nItemlndex);
virtual bool SearchItem(const MapDBltem<KeyType, ValueType> ObjTarget,int

& nLocation) const;

virtual MapDBltem<KeyType, ValueType>* operator[](int nIndex) const ==
NULL;

virtual MapBtMidNode<KeyType, ValueType >* GetChildNode(int
nChildlndex) const {return ffi_ChildNode[nChildIndex];}

int Getltemlndex(MapDBItem<KeyType, ValueType> objMapBtltem) const;
int Getltemlndex(MapDBltem<KeyType, ValueType>* pMapBtItem) const;

void Setltem(int nIndex, MapDBItem<KeyType, ValueType>& objItem)
{ m_Item[nIndex] == objltem; objltem.myHostNode == this; }

void SetChildNode(int nIndex, MapBtMidNode<KeyType, ValueType >
*pChild)

{ ffi_ChildNode[nIndex] == pChild; }

bool IsNodeFull();
bool IsNodeFull(MapBtNodeType *pNode);

};

Figure 3.11 Schema Definition of Template Class MapBtMidNode

85

template <class KeyType, class ValueType >
class MapBTree
{

friend class MapBTreelterator<KeyType, ValueType>;

protected:

MapBtMidNode<KeyType, ValueType> ffi_tHd; II MapBTree header
MapBtMidNode<KeyType, ValueType>* ffi_tNodeCache; II Node cache
MapBtMidNode<KeyType, ValueType>* myRoot; II Pointer to the root node

public:

string ffi_strTableName;
KeyType m_kPrimaryKey;
long ffi_nNumNodes; II number of nodes in the B-tree
if!t ffi_nNodeSize; II number of bytes per node
int ffi_nOrder; II order of the B-tree

MapBtMidNode<KeyType, ValueType> m_tCurrentNode; II storage for current
node being worked on

bool Insertltem(MapDBltem<KeyType, ValueType> &tltem);
bool Updateltem(MapDBltem<KeyType, ValueType> &tltem, int nNodelndex,

int nItemlndex);
bool DeIeteltem(MapDBltem<KeyType, ValueType> &tltem);
bool Deleteltem(int nNodelndex, int nltemlndex);

bool InsertNode(MapBtMidNode<KeyType, ValueType> &tNode);
bool DeleteNode(MapBtMidNode<KeyType, ValueType> &tNode);
bool DeIeteNode(int nNodelndex);

void LeftBalance (MapBtMidNode<KeyType, ValueType> *pLNode, int
nIndex);

void RightBalance (MapBtMidNode<KeyType, ValueType> *pRNode, int
nIndex);

void RestoreBaiance(MapBtMidNode<KeyType, ValueType> &tNode, int
nIndex);

void BaianceNode(MapBtMidNode<KeyType, ValueType> *pNode, int nIndex);

void Split();
void SplitNode(MapBtMidNode<KeyType, ValueType> *pNode, int nIndex);
void RotateRight(MapBtMidNode<KeyType, ValueType> &tNode, int nlndex);
void RotateLeft(MapBtMidNode<KeyType, ValueType> &tNode, int nlndex);

86

void MoveToLeft(MapBtMidNode<KeyType, ValueType> *pLeftSibNod, int
nParentPos);

void MoveToRight(MapBtMidNode<KeyType, ValueType> *pRightSibNod, int
nParentPos);

void RightMerge (MapBtMidNode<KeyType, ValueType> *pRNode, i11t
nIndex);

void Merge(MapBtMidNode<KeyType, ValueType> &tNode, int nIndex);

void AppendFrom(MapBtMidNode<KeyType, ValueType> *pSrcNod, int
nStartPos, int nStopPos);

void Append(MapBtMidNode<KeyType, ValueType> *pObjNod,
MapBtNodeType& Node);

void Append(CMapDBltem<KeyType, ValueType> &itm);

static void PrintNode(MapBtMidNode<KeyType, ValueType> tNode);
static void PrintTree(MapBtMidNode<KeyType, ValueType> tTree, int

nStartPos);

public:

MapBTree();
MapB'free(const MapBTree<KeyType, ValueType>& objMapBTree);
I"'¥MapBTree();

};

Figure 3.12 Schema Definition of the template class MapBTree

87

template <class KeyType, class ValueType >
class MapBTreelterator
{
private:

const MapBTree<KeyType,VaIueType>* myBTree; //btree being iterated
int ffi_nCursor; //current position in btree
booI ffi_bDirection; //iteration direction
MapBTreelterator() : myBTree(O), ill_ nCursor(O) { }

public:
MapBTreelterator(const MapBTree<KeyType,ValueType> *BTree, bool

bPathDir);
MapBTreelterator(const MapBTreelterator<KeyType,ValueType> &Iter);
"-'MapBTreelterator() { }
MapBTreelterator &operator==(const MapBTreeIterator<KeyType,ValueType>

&rhs);

};

Figure 3.13 Schema Definition of the class template MapBTreelterator

88

class CMapParser
{
public:

CMapParser() :m_nRetCode(0) {;}
~CMapParser();

//attributions
public:

string ffi_strError;
bool m_bExceptionAgain;

CMapDB ill_DB;
CMapRecordset *mySet;

//operations

BOOL OnOpenDB();
BOOL OnCloseDB();
void OnParserSQL();
void OnSendRawSQL();
void OnSearchBTree();

void OnSetSQL(string strSQL);
string OnGetSQL(string strSQL);

private:

void OnBuldOBT();
void OnDeleteOBT();
string strTableName[50];
string strFielsName[50] [20];
string ffi_strSQLStatement;

};

Figure 3.14 Schema Definition of CMapParser

89

d
VITA

Qing Chen

Candidate for the Degree of

Master of Science

Thesis: AN INTERFACE BETWEEN OBJECT-ORIENTED DATABASES AND

RELATIONAL DATABASES USING B-TREE OBJECT-RELATIONAL ACCESS

INTERFACE

Major Field: Computer Science

Biographical:

Personal Data: Born in Changchun, Jilin, P. R. China, Oct 10,1971, the only son
afMr. Chaoda Chen and Mrs. Zaiying Hu

Education: Graduated from the No. 84 High School of Xi'an, Shaanxi, P. R.
China, in July 1989; received the Bachelor of Science from Xi'an Jiaotong
University, Xi'an, China, in July 1994; Completed the requirements for
Master of Science at Oklahoma State University in December, 2002.

Professional Experience: Employed by Xi'an Petroleum Institute, Xi'an, Shaanxi,
China, as a Teacher, August 1994 to July 1997; Employed by Vysys Inc.
(National Inter Bank), Tulsa, Oklahoma, as a Senior System Analyst,
January 2000 to January 2002. Employed by Businet LLC, Tulsa,
Oklahoma, as a Senior Design Engineer from August 2002.

	Thesis-1.pdf
	Thesis-2.pdf
	Thesis-3.pdf
	Thesis-4.pdf
	Thesis-5.pdf
	Thesis-6.pdf
	Thesis-7.pdf
	Thesis-8.pdf
	Thesis-9.pdf
	Thesis-10.pdf
	Thesis-11.pdf
	Thesis-12.pdf
	Thesis-13.pdf
	Thesis-14.pdf
	Thesis-15.pdf
	Thesis-16.pdf
	Thesis-17.pdf
	Thesis-18.pdf
	Thesis-19.pdf
	Thesis-20.pdf
	Thesis-21.pdf
	Thesis-22.pdf
	Thesis-23.pdf
	Thesis-24.pdf
	Thesis-25.pdf
	Thesis-26.pdf
	Thesis-27.pdf
	Thesis-28.pdf
	Thesis-29.pdf
	Thesis-30.pdf
	Thesis-31.pdf
	Thesis-32.pdf
	Thesis-33.pdf
	Thesis-34.pdf
	Thesis-35.pdf
	Thesis-36.pdf
	Thesis-37.pdf
	Thesis-38.pdf
	Thesis-39.pdf
	Thesis-40.pdf
	Thesis-41.pdf
	Thesis-42.pdf
	Thesis-43.pdf
	Thesis-44.pdf
	Thesis-45.pdf
	Thesis-46.pdf
	Thesis-47.pdf
	Thesis-48.pdf
	Thesis-49.pdf
	Thesis-50.pdf
	Thesis-51.pdf
	Thesis-52.pdf
	Thesis-53.pdf
	Thesis-54.pdf
	Thesis-55.pdf
	Thesis-56.pdf
	Thesis-57.pdf
	Thesis-58.pdf
	Thesis-59.pdf
	Thesis-60.pdf
	Thesis-61.pdf
	Thesis-62.pdf
	Thesis-63.pdf
	Thesis-64.pdf
	Thesis-65.pdf
	Thesis-66.pdf
	Thesis-67.pdf
	Thesis-68.pdf
	Thesis-69.pdf
	Thesis-70.pdf
	Thesis-71.pdf
	Thesis-72.pdf
	Thesis-73.pdf
	Thesis-74.pdf
	Thesis-75.pdf
	Thesis-76.pdf
	Thesis-77.pdf
	Thesis-78.pdf
	Thesis-79.pdf
	Thesis-80.pdf
	Thesis-81.pdf
	Thesis-82.pdf
	Thesis-83.pdf
	Thesis-84.pdf
	Thesis-85.pdf
	Thesis-86.pdf
	Thesis-87.pdf
	Thesis-88.pdf
	Thesis-89.pdf
	Thesis-90.pdf
	Thesis-91.pdf
	Thesis-92.pdf
	Thesis-93.pdf
	Thesis-94.pdf
	Thesis-95.pdf
	Thesis-96.pdf
	Thesis-97.pdf
	Thesis-98.pdf
	Thesis-99.pdf

