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NOMENCLATURE

Notations used in this thesis include:

AT := the transpose of matrix A,

C- := open left half complex plane, (z E ~IRe[z] < 0),

CO := unit disk of the complex plane,

1 := identity matrix of size n x n,

Im[z] := complex component of complex number z,

n := symmetric positive definite solution of the filter algebraic Ricatti equation,

<I>(s) := (sl - A)-I,

Rnxm := set of real matrices with n rows, m columns,

Re[z] := real component of complex number z,

s := Laplacian variable,

~c := quadruple ~(A, B, C, D) constrained by (x == Ax + Bu, y == ex + Du),

Ed := quadruple ~d(A, B, C, D) for (x(k + 1) == .L4x(k) + Bu(k), y == Cx(k) + Du(k),

Ts := sampling time,

u := vector of control inputs (ulu E Rmx q
),

x := vector of states (xix E Rnxp
),

z := complex number, (z == a + jb for a, b E R).
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CHAPTERl

Introduction

Control systems generally operate in environments where unknown disturbances are present.

Such unknown disturbances often take the form of varying forces, torques, voltages, etc.,

which can be attributed to natural phenomena such as fluctuations in load or random air flow

variations. The hard disk drive (HDD) is an engineering application which is subject to a

wide spectrum of of disturbances. In recent years, the track density (TPI) and the spindle

angular velocities have drastically increased in response to the demand for higher storage

capacities and lower average seek times. These changes have caused the head positioning

control on the hard disk drives to be more sensitive to a variety of external disturbances.

Loop transfer recovery (LTR) theory has provided a powerful modem compensator de­

sign technique. The LTR technique allows for a control system to counteract disturbances at

the plant input or output for either single-input/single-output (SISO) or multi-inputlmulti­

output (MIMO) systems, yielding designs that retain the properties associated with optimal

control theory.

The LTR theory is based on three main steps as stated [1]. Step 1, fonnulate the de­

sign specifications (i.e., robustness requirement and performance criteria) as restrictions

on singular values of the open loop at either the input or the output of the loop transfer

function matrix obtained by breaking the control loop at either the input or output of the

plant. Step 2, design a target loop using optimal control theory to meet the design specifica-
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tions of Step 1. Step 3, solve a linear quadratic regulator (LQR) problem for small control

weighting to recover the loop shape of the target loop design in Step 2. The feature of the

LTR theory is that a single design process combines the observer and controller design.

Following the three step design procedure, a compensator (i.e., controller/observer pair)

results which meets specific design requirements across a desired range of frequencies.

The LTR theory has been widely applied in designing controllers for the HDD. Hansle­

man et al. [2], successfully used the continuous-time LQGILTR technique to design a

tracking controller for a highly resonant disc drive actuator. Lin et al. [3], used the Lin­

ear Quadratic GaussianILoop Transfer Recovery (LQG/LTR) technique to design a family

of controllers that minimizes the position error variance due to disturbance and measure­

ment noise during track following in the hard disc drive. Beghi et ale [4], analyzed the

performances of discrete-time controllers obtained by means of Linear Quadratic Gaus­

sian (LQG) optimal control theory and the effectiveness of the discrete-time Loop Transfer

Recovery (LTR) technique in achieving a satisfactory recovery. The key control design

issue was to achieve sufficiently high closed loop bandwidth while granting adequate dis­

turbance rejection in the loop gain crossover frequency region. Chang and Ho [5], used

discrete-time Linear Quadratic GaussianILoop Transfer Recovery (LQGILTR) design tech­

nique, and some knowledge on disturbances to develop a systematic method for designing

a track following controller for hard disc. The controller was implemented on a commercial

HDD, and an improvement of 10% in track misregistration (TMR) budget was observed.

The discrete-time LQG/LTR was used by Suh [6] to design a dual stage controller for disc

drives. A structured approach for tuning an Observer Based Discrete Variable Structure

Control (OBDVSC) compensator scheme that combines the OBDVSC and the LTR mech­

anism was proposed by Lyle, [1]. Lyle [1], showed the OBDVSC with LTR hyperplane

design technique on a hard disc drive example.

2



1.1 Objectives and Motivations

The motivation of this research is to develop a structured method to tune the discrete Lin­

ear Quadratic Gaussian/Loop Transfer Recovery controller. Incorporating an optimization

technique into the discrete LQG/LTR control yields a structured tuning method. With this

technique, the initial discrete LQGILTR controller can be initially designed with a low

bandwidth while optimization technique then searches for gains that produce a controller

with higher bandwidth. When the controller gains obtained from simulation were imple­

mented into the hardware, the controller gains needed to be manually tuned to improve the

performance. A solution to this problem is to tune the controller through an optimization

technique while the hardware is running. This technique saves time and reduces user inter­

action given that most of the computations are done by the computer, hence the result is a

hardware in-the-Ioop tuning technique.

1.2 Contributions

The main contributions of this research are as follow:

1. The need for a structured tuning method inspired the idea of integrating a discrete­

time LQG/LTR controller with an optimization method.

2. An automated tuning method with hardware in-the-Ioop using a robust controller

with optimization reduces the control problem to an unconstrained optimization prob­

lem.

3. A comparison of different performance indices used in the optimization-based tuning

of a discrete LQGILTR controller with hardware in-the-Ioop.

Contributions that are significant to the Advanced Controls Laboratory are as fol ows:

1. System identification of the hard disc drive manufactured by Conner.
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2. Simulation of the discrete-time LQG/LTR controller with optimization-based tuning

on the 4th order hard disc drive model.

3. Implementation of the optimization-based tuning of a discrete LQGILTR controller

with hardware in-the-Ioop using the dSPACE controller board.

1.3 Thesis Outline

This thesis is organized as follows. Chapter 2 reviews the loop transfer recovery method­

ology, including the model based compensation (MBC) technique known as LQG/LTR.

Chapter 3 gives an overview of the optimization techniques. Chapter 4 introduces the con­

troller design proposed for this thesis. Chapter 5 discusses the experimental setup, on which

the proposed controller is implemented. Chapter 6 presents the MATLAB-dSPACE inter­

face libraries which were used to interface with the real-time processor from the MATLAB

workspace. Chapter 7 discusses the results obtained from experiments. Chapter 8 provides

the conclusion and future research ideas. Appendix A provides the mathematical model

of the hard disc drive actuator. Procedure to use MLIB/MTRACE is given in Appendix

B. MATLAB m-files used for simulation and experiments are provided in Appendix C and

Appendix D.
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CHAPTER 2

Loop Transfer Recovery Overview

The theory of loop transfer recovery (LTR) evolved from the search for a dynamic com­

pensator which would provide command following and stability robustness properties. Its

development can be traced to the most basic state feedback control techniques, the linear

quadratic regulator (LQR), which involves the selection of an "optimal" control gain ma­

trix, K. This control method provides certain inherent benefits, including nominal stability

and stability robustness. However, while LQR ensures a stable system, it is not designed

for good command following roles.

When state estimation was added to a system, the combined dynamics of this filter

loop and the control loop were found to ha\7e an interesting structure, called the model

based compensator (MBC). This control structure was promising because it allowed for

non-zero reference input to the system. Furthermore, the Separation Theorem permitted

the gain matrices to be selected using pole placement (which, if the poles had negative

real components, ensures nominal stability), Linear Quadratic Gaussian (LQG) techniques

(ensuring both nominal and stability robustness), or any other method. .

One drawback to the MBC is that, even if stability robustness is guaranteed for the

separate controller and filter loops, the same may not be true for the combined MBC/plant

structure. However, it was found if LQG techniques were used to select both the gain

matrices, the singular values of the overall transfer function would approach those of a
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simpler target loop.

2.1 LQG/LTR

In recent years, a design procedure called LQGILTR, originally proposed by Doyle and

Stein [7], has gained some prominence. Essentially, LQG/LTR is a two step design proce­

dure. In the first step of design, "loop shaping" is done utilizing a standard state feedback

controller, and a target loop transfer function is prescribed in terms of the state feedback

gain. One could utilize LQG theory or any other theory to do this. The next step of the

design, called the LTR, is to recover the target loop transfer function attainable by a state

feedback controller by utilizing only the measurement feedback controller.

The fundamental idea for recovery in the LTR mechanism is accredited to Doyle and

Stein [7], although a prior work also by Doyle and Stein [8] alludes to the LTR concept

As discussed by Stein and Athans [9], the objective of the LTR is to shape the target filter

loop, C(81 - A)-lH, where A, B, and C are the standard state-space form, Equation (2.1)

and Equation (2.2),

x(t) == Ax(t) + Bu(t)

y(t) == Cx(t)

(2.1)

(2.2)

and then attempt to recover its singular value loop shapes by properly selecting the recovery

gain matrix, F. Therefore, if the "target filter loop" is designed as a Kalman filter and the

control gain matrix chosen so as to recover this loop, then the complete control system will

exhibit the estimator's stability and robustness properties.

Suppose a continuous linear time invariant (LTI) system, exists such that the Ec (A, B, C)

is a state space representation of the design plant to be controlled given by Equation (2.1)

and Equation (2.2). Figure 2.. 1 shows a block diagram of a standard feedback configuration

6
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Figure 2.1: Standard Feedback Configuration

with blocks representing controller K (s) and design plant G(s ). The design plant must be

a minimum phase plant, where for the continuous plant, G(s), for Lc(A, B, C, D), all the

zeros of G(s) are in the C-. For a discrete plant, G(z) is said to be minimum phase for

Ld(A, B, C, D), if the zeros of G(z) are contained in CO. The transfer function of the

design plant, G(s), defined in Equation (2.3), represents G(s) in Figure 2.1,

G(s) == C(P(s)B

such that the <P (s) is shown in Equation (2.4).

<1>(s) == (sf - A)-l

(2.3)

(2.4)

In order to meet the desired stability, robustness, and performance of the compensator,

K (s), (i.e., controller/observer pair), the pair (A, B) is assumed to be stabilizable, and the

pair (A, C) is assumed detectable [10].

There are three major steps in the LTR methodology, as discussed by Lyle [1].

1. Given a design plant, first characterize design requirements as restrictions on the sin­

gular values of an open loop transfer function matrix formed by breaking the control

loop in Figure 2.1 at the input or output of the plant G (s ).

2. Design a target loop to meet specifications outlined by Step 1 with the intention of

implementing a compensator composed of state feedback control and a state estima­

tor. For example, breaking the control loop at the plant output of Figure 2.1, the

target loop would then be given as Figure 2.2, where the matrix H of appropriate

dimension would be called the filter gain matrix. By breaking the plant at the output,

7
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-- -- H - <t> (s) ~ C--- -

~~
-

Figure 2.2: Target Loop for Recovery at Plant Output.

H represents an observer gain matrix. The target loop in this situation is referred to

as the target filter loop because it consists of designing a state observer.

3. The last step is to hold H found in Step 2 constant and to recover the target filter loop

characteristics in the control loop using compensator K (s) of Figure 2.1 in a special

way such that the performance of control loop approximates that of the target loop.

2.2 Target Filter Loop Design Methods

The design requirement for a system is to have zero steady state error. By putting con-

straint on the number of free integrators and fixing the system to minimum system type,

zero tracking error can be achieved. Thus, it is a common practice to augment the state

dynamics with a free integrators during the target loop shaping phase of the LQGILTR de­

sign. Suppose the plant dynamics is given by E(A, B, C, D), augmenting the system with

a free integrator is achieved by the state vector as shown in Equation (2.5),

(2.5)

where up(t) = u(t) or up(s) = ~u(s). The augmented dynamics is written as shown in

Equation (2.6)

Up(t)

x(t)
~

Xaug(t)

o 0 up(t)

B A x(t)
~~

Ad X aug

8
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+ u(t)
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y(t) [ ]
Up(t)

~ X(t)
Cd ~

X aug

(2.7)

The target filter loop design for the augmented dynamics E(Ad,Bd,Cd) is given in Equa-

tion (2.8),

(2.8)

where solving a continuous time Kalman filter problem often leads to a suitable solution for

observer gain matrix, H. Let ((t) be process noise characterized as white, zero mean with

an identity (I) noise intensity matrix, and at the same time let B(t) be white, zero mean

with noise intensity matrix J-LI. Given the stochastic system using augmented dynamics

from Equations (2.6, 2.7),

x(t) == Adx(t) + L((t)

y(t) == Cdx(t) + B(t)

(2.9)

(2.10)

(2.11)

it is known that the solution of the Kalman filtering problem is given by an observer matrix

in Equation (2.11)

H = (~)nc:r
J-L

where n is the symmetric positive definite solution of the filter algebraic Ricatti equation

(FARE) given in Equation (2.12)

TTl To == AdO + OAd + LL - (- )OCd CdO (2.12)
J-L

where J.-l > 0 and L can be used as design parameters in Cd(s! - Ad)-lH, which is

nominally stable due to Kalman filtering theory assuming [Ad, L] is stabilizable and [Ad, CJ

is detectable.

9



L is chosen from the frequency domain equality (FDE), which can be derived using

FARE and Cd(sf - Ad)-lH. The gain matrix, applying the suggestion by Athans et al., [11]

to partition L into low and high frequency as shown in Equation (2.13),

(2.13)

(2.14)

where L zow is [m x m] and L high is [n x m]. The frequency domain equality is given in

Equation (2.14).

O"dI + Gkf ] = VI + (~)O"l[Cd(SI - Ad)-lL]

The matrix Cd(s! - Ad)-lL in Equation (2.14) reveals conditions sufficient to match sin-

gular values at low and high frequencies. Athans [10], suggested that L zow and L high are se­

lected as in Equations (2.15, 2.16), given that A -1 exists and using p to govern the crossover

frequency (weo!) as in Equation (2.17).

L high == CT(CCT)-l

jj == (_1_)2
w eo!

2.3 Loop Tranfer Recovery

(2.15)

(2.16)

(2.17)

(2.18)

The target filter loop is possible to recover using the Linear Quadratic Regulator (LQR).

The LQR problem seeks to minimize the performance index given in Equation (2.18),

k==oo

J = L xT(k)Qx(k) + pRu2

k==O

where the weighting terms Q == QT > 0 and R == RT > O. When the control weight R

approaches zero, the LQR problem is known as a "cheap control". The following condition

10
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Figure 2.3: Model Based Compensator, K(s).

in Equation (2.19) must hold, in order for the step (3) of the LTR methodology to be valid.

limp-+o JPF == WC, wTw == I (2.19)

Lemma 2.1 [7] For recovery at the plant output, given ~(A, B, C) and the continuous­

time model based compensator ofFigure 2.3 as K(s) == F(sI -A+BF+HC)-lH where

F is the recovery gain matrix and H is the observer gain matrix. G(s) == C(sI - A)-lB

is minimum phase, ifconditions 1 -+ 3 are valid, where

1. Re[Ai(A - BF)] < 0

2. Re[Ai(A - HC)] < 0 and

3. limp-+o -JPF == WC, wTw == I

then

(2.20)

For recovery at the plant output, Lemma 2.1 suggests as p -+ 0 for minimum phase

systems, the LTR mechanism replaces the design plant dynamics with the dynamics of the

target loop. The main LTR result for recovery at the output of the design plant is given by

Doyle et. ale [7].
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CHAPTER 3

Optimization-based Thning of

LQG/LTR Contro ler

Optimization is a powerful tool for design of controllers. The method is conceptually sim­

ple. A controller structure with a few parameters is specified. Specifications are expressed

as inequalities of functions of the parameters. The specification that is most important is

chosen as the function to optimize. There are several pitfalls when using optimization.

Care must be exercised when formulating criteria and constraints. Otherwise, a criterion

will indeed be optimal but the controller may still be unsuitable because of neglected con­

straints. Another difficulty is that the cost function may have many local minima. A third

is that the computation r~quired maybe excessive. Numerical problems may also arise.

Three popular optimization criteria are the integral of absolute error (lAB), the integral

of time multiplied by the absolute error (ITAB), and the integral of the square of the error

(ISE).

3.1 Unconstrained Nonlinear Optimization

Although a wide spectrum of methods exists for unconstrained optimization, the methods

can be categorized in terms of the derivative information that is or is not used. Search

12



methods that use only function evaluations are suitable for problems that are very nonlinear

or have a number of discontinuities. Gradient methods are generally more efficient when

the function to be minimized is continuous in its first derivative. Higher order methods,

such as Newton's method, are suitable when second order information, using numerical

differentiation is computationally expensive.

3.1.1 Quasi-Newton Methods

Among the methods that use gradient information, the most popular are the quasi-Newton

methods. These methods build up curvature information at each iteration to formulate a

quadratic model as shown in Equation (3.1),

1
min _xT H x + cT

X + b
x 2

(3.1)

where the Hessian matrix, H, is a positive definite symmetric matrix, c is a constant vector,

and bis a constant. The optimal solution for this problem occurs when the partial derivatives

of x go to zero, i.e.,

v j(x*) == H x* + c == 0

The optimal solution point, x*, can be written as

(3.2)

(3.3)

Newton-type methods (as opposed to qllasi-Newton methods) calculate H directly and

proceed in a direction of steepest descent to locate the minimum after a number of itera­

tions. Calculating H numerically involves a large amount of computation. Quasi-Newton

methods avoid this by using the observed behavior of f(x) and V'f (x) to build up curvature

information and form an approximation to H using an appropriate updating technique.
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A large number of Hessian updating methods have been developed. MATLAB Opti­

mization Toolbox [12], uses the formula of Broyden [13], Fletcher [14], Goldfarb [15], and

Shanno [16] (BFGS) method. BFGS is thought to be the most effective for use in a general

purpose method. The formula given by BFGS is shown in Equation (3.4),

where

and

(3.4)

As a starting point, Ho can be set to any symmetric positive definite matrix, for example,

the identity matrix I.

3.1.2 Unconstrained Optimization Method

MATLAB Optimization Toolbox's unconstrained nonlinear optimization method was used

to perform the optimization routine. The optimization command is given by the MATLAB

command

» [X] =FMINUNC(FUN,XO)

This FMINUNC command uses a quasi-Newton algorithm. The algorithm consist of two

phases:

1. Determination of a direction of search (Hessian update)

2. Line search procedures

Implementation details of the two phases is discussed in [12].
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3.2 Performance Index

A performance index, as stated by Dorf [17], is a quantitative measure of the performance

of a system and is chosen so that emphasis is given to the important system specifications.

Modem control theory assumes that the system engineer can specify quantitatively the

required system performance. Then the performance index can be calculated or measured

and used to evaluate the system's performance. A quantitative measure of the performance

of a system is necessary for the operation of modem adaptive control systems, for automatic

parameter optimization of a control system, and for the design of optimum systems.

A system is considered an optimum control system when the system parameters are

adjusted so that the index reaches an extremum value, often a minimum value. A perfor­

mance index. must be a number that is always positive or zero in order to be considered

useful. The best system is defined as the system that minimizes this index.

Three performance indexes will be considered:

• Integral of time multiplied by absolute value of the error, ITAE

• Integral of the square of error, ISE

• Integral of absolute magnitude of error, lAE

1. The ITAE index, proposed by Graham and Lathrop [18], is shown in Equation (3.5).

This performance index is designated the integral of time multiplied by absolute

error, ITAE. The performance index reduces the contribution of large initial error to

the value of the performance integral, while emphasizing errors occurring later in the

response.

(3.5)

T is a finite time chosen arbitrarily so that the integral approaches a steady-state

value.
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2. The ISE index, which is the integral of the square of the error, ISE is defined in Equa­

tion (3.6). The squared error in this performance index is mathematically convenient

for analytical and computational purposes [17]

(3.6)

T is a finite time chosen arbitrarily so that the integral approaches a steady-state

value.

3. The IAE index, which is the integral of the absolute magnitude of error, IAE is de­

fined in Equation (3.7). The difference between this performance index compared to

the performance index of ITAE is that, time weighting is not included.

(3.7)

T is a finite time chosen arbitrarily so that the integral approaches a steady-state

value.
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CHAPTER 4

Application of LQGILTR Contro with

Optimization-based Thning on Disc

Drive

This chapter investigates the optimization-based tuning of a discrete LQG/LTR controller

for a disc drive. A symbolic 3rd order disc drive model developed using MATLAB System

Identification Toolbox is used as the design plant. Next, the compensator design technique

encompassing both target filter loop and loop transfer recovery design are covered. Fol­

lowed by, simulation of a discrete LQG/LTR controller with optimization-based tuning on

a disc drive model.

4.1 Disk Drive Model

It is known that the mathematical model of the each disc drive differs from one another. In

order to run experiments on a chosen disc drive, a mathematical model of the disk drive

must be developed. With a known mathematical model of the disc drive, one can do simu­

lations on the controller before implementing the controller on actual hardware.

A 3rd order mathematical model which maps from current to velocity was developed.
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The model is estimated using MATLAB System Identification Toolbox's Estimation of

Parametric Models. Equations (4.1)-(4.4) are the state-space form E3rd (A, B, C, D) of the

3rd order disc drive obtained using MATLAB. Equation (4.5) is the discrete transfer func­

tion of the 3rd order disk drive model with a sampling time of Ts == 1 . 10-5 seconds. The

bode diagram in Figure 4.1 shows the 3rd order disc drive model with the first resonance

mode.

2.9860 -1.4916 0.4986

2.0 o o (4.1)

o 1.0 0

B3rd [0.5 0 0 ] T (4.2)

[ 0.2250 -0.0820 0.0274]

D 3rd == [0.0275]

G 0.0275z3 + 0.03038z2

3
rd == z3 - 2.986z2 + 2.983z - 0.9971

(4.3)

(4.4)

(4.5)

The goal of this controller design is to control the position of the actuator. The 3rd order

model is cascaded with an integrator to give the output of the plant in position. The final

design model is a 4th order mathematical model that maps from current to position. The

discrete-time state-space representation Ed(A, B, C, D) is given in Equations (4.6)-(4.9)

with sampling time Ts == 1 · 10-5 seconds. The discrete-time transfer function of the 4th

order model is given in Equation (4.10). The bode plot of the 4th order disk drive model is

in Figure 4.2.
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Figure 4.1: Bode Plot of the 3rd Order Disk Drive Model

3.9860 -1.4923 9.9506· 10-1 -4.9856· 10-1

A
4.0

o

o

o

1.0

o

o

o

5.0 · 10-1

o

o

o

(4.6)

c

B [ 2.5. 10-1 0 0 0 ] T

[ 1.1· 10-1 3.0382· 10-2 0 0 ]

D == [0]

(4.7)

(4.8)

(4.9)

G =. 0.0275z3 + 0.03038z2

Z4 - 3.986z3 + 5.969z2 - 3.98z + 0.9971
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Figure 4.2: Bode Plot of the 4th Order Disk Drive Model

The continuous-time 4th order state-space representation 2:c(A, B, C, D) is given in Equa-

tions (4.11)-(4.14).

-2.8836 . 102 -6.8354 . 103 0 0

1.6384 . 104 0 0 0
Ae

0 8.1920 · 103 0 0

0 0 8.1920 · 103 0

, Be [ 2048 0 0 o ]T

(4.11)

(4.12)

[ -3.3714· 10-1 -4.5471 1.0047· 102 2.5814· 103
]

D == [0]

(4.13)

(4. 4)

By using the 4th order disc drive model as the plant model, a simple double integrator model

is designed by matching the gain on the bode diagram.. This 2nd order system is used for
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the target loop design and loop transfer recovery design. The state-space representation

2:2nd (A, B, C, D) of the 2nd order model is given in Equations (4.15)-(4.18). Figure 4.3

shows the Bode diagram of the 2nd and the 4th order model.

(4.15)

(4.16)

(4.17)

(4.18)

4.2 Target Filter Loop Design

A double integrator system with gain is used to design the target filter loop. This 2nd order

system has an A matrix which is singular. The target filter loop design suggested by [10],

as shown in Equation (2.15) and Equation (2.16), is not applicable. This is because the A

matrix is not invertable. The Kalman filter method is used to design the target filter loop.

The target filter loop is designed for a cross-over frequency of 1000 rad/sec. The MATLAB

command

»[H,P,E] = LQE(A,G,C,Q,R)

is used to produce the desired target filter loop, where A and C are matrices for the 2nd order

designed model. G and Q are are identity matrices and R == J-l. By setting R == 0.000001,

the observer gain matrix H is found using MATLAB LQE command. Equation (4.19)
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Figure 4.3: Model Matching of the 2nd Order Model with 4th Order Disk Drive Model

shows the observer gain matrix H. Using MATLAB's linrnod. m and sigma. m com-

mands in conjunction with the Simulink diagram shown in Figure 4.4, the frequency re-

sponse of the target filter loop can be estimated.

» [A,B,C,D]=LINMOD('SYS')

» SIGMA(SYS, {WMIN/~~})

Figure 4.5 shows the frequency response of the design target filter loop. Figure 4.5 'show

that a cross-over frequency of 1000 fad/sec will result in a settling time of Ts == 5 rnillisec-

onds.

H
1001

(4.19)
1000
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Figure 4.6: Simulink Block Diagram of the Recovery Loop.

4.3 Loop Transfer Recovery Design

The next part of the controller design is to design the recovery loop. The recovery loop is

designed using the linear quadratic regulator method in Chapter 2. The MATLAB COffi-

mand

[F,S,E] = LQR(A,B,Q,R)

produces the recovery loop, where A and B are matrices of the 2nd order design model.

Let Q == eTe and R == pI, where I is an identity matrix. By setting p == 0.001, the

recovery gain matrix F is found using MATLAB's LQR command. The result is given

in Equation (4.20). The frequency of the recovery loop can be plot using the linmod. m

and sigma. m command from MATLAB in conjunction with the Simulink diagram of the

target loop in Figure 4.6,

F = [ 31.62086 2.90376· 10-5 ] (4.20)

Figure 4.7 shows the plot of the recovery loop, illustrating the crossover frequency at

1000 rad/sec. Figure 4.8 shows the recovery loop converge to the target filter loop.

The target filter loop and the recovery loop are both designed in the continuous-time

domain. Then, the controller, either in state-space form or in transfer function form, is

converted into discrete-time using MATLAB's c 2 d . m command as shown below.
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LQGLTR 4th OrderPlant
Controller
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Clock

Figure 4.9: Block Diagram of LQG/LTR Compensator.

» SYSD = C2D(SYSC,Ts,METHOD)

The discrete LQG/LTR controller found is simulated with a discrete 4th order HDD

plant as shown in Figure 4.9. Figure 4.10 shows the simulation with a reference step input

of 1 j.jffi. The settling time, Ts == 0.005 seconds, corresponds to the target loop cross­

over frequency of 1000 rad/sec. Since the controller is 2nd order and the simulation plant

is 4th order, the oscillation in Figure 4.10 is caused by the unmodelled dynamics of the

simulation plant. The frequency of the oscillation in Figure 4.10 is 10473 rad/sec. This

frequency matches the resonant frequency of the simulation plant which is around 10200

rad/sec.

4.4 Optimization-based lUning of LQGILTR

The target filter loop designed in the previous section has a relatively low crossover fre-

quency of 1000 rad/sec. In this section, an optimization technique is incorporated into the

LQG/LTR design to allow the optimization tool to search for the optimum target filter loop

and recovery loop.
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Figure 4.10: Simulation Result of IJ.Lm Step Response.

MATLAB Optimization Toolbox's unconstrained nonlinear optimization technique is

used to perform the search. This method incorporates the LQG/LTR controller design with

the unconstrained nonlinear optimization method. The unconstrained nonlinear optimiza-

tion command can be found in MATLAB FMlNUNC . m. The FMlNUNC . m command is

shown below,

» X=FMINUNC(FUN,XO,OPTIONS)

In this design, the optimization tool will search two variables: J-l, which corresponds to

the target filter loop, and p,which corresponds to the recovery loop. Q and R from the LQR

and LQE command must be positive definite matrices, therefore the multipliers, J.L and p

have to be positive numbers. Artificial constraint is imposed by squaring the multipliers, J-l

and p. The search parameters are defined as J-l2 and p2. Since there are no constraints to be

dealt with, the unconstrained nonlinear optimization method may be used.

The main function of the unconstrained nonlinear optimization is to find the minimum
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of a scalar function of several variables. The function used for minimization is the per­

formance index of the integral of time multiplied by absolute of error (ITAE), Dorf and

Bishop, [17].

ITAE = iT tle(t)ldt (4.21)

Equation (4.21) is the performance index of ITAE.

Figure 4.11 shows the implementation of the optimization method for simulation. First,

the input signal, the 2nd order controller, and the 4th order simulation plant are developed

in Simulink blocks. The controller gains designed in Section 4.3 are used as the initial con­

troller gains. The m-files used to compute new controller gains and optimization method

is located in the "Optimization Script" in Figure 4.11. There are two m-files for the opti­

mization simulation. The lqg_ltr.m file is a local file that contains the target filter loop,

recovery loop and the performance index. The run_lqgltr.m is the file that runs the opti­

mization technique. The m-files can be found in Appendix C. The initial /-12 == 0.000001

and p2 == 0.001 are set at the value that produced cross-over frequency of 1000 rad/sec.

Outing simulation, the error signal is used to compute the performance index. Optimiza­

tion method searches for /-12 and p2 to compute new controller gains. The new controller

gains are implemented into the "Controller Gain" block in Figure 4.11. The optimization

method will continue to compute new controller gains until an optimum result is computed.

The observer gain or the target filter gain, H, shown in Equation (4.22) is the result for

the unconstrained nonlinear optimization method. The unconstrained nonlinear optimiza­

tion computed /-12 == 0.0001672 to produce the target filter gain, H.

H
5992.03766

5991.03774
(4.22)

The recovery gain, F, in Equation (4.23), is the resulting gain with unconstrained nonlinear

optimization. The p2 computed to produce the recovery gain, F, is p2 == 43162
•
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Figure 4.11: Block Diagram Shows The Implementation of Optimization Method.

F = [ 2.31678· 10-4 7.86008· 10-8 ] (4.23)

The performance index found by this optimization method is f == 6.71001 . 10-7. Fig-

ure 4.12 show the frequency response of target filter loop and loop transfer recovery. The

algorithm, optimized the target filter loop to a cross-over frequency of 6000 rad/sec and the

the recovery loop cross-over frequency to 2000 rad/sec.

Figure 4.13 shows the simulation result of the optimized discrete LQG/LTR. The re-

sponse shows improvement in rise time and settling time. The settling time, defined as the

point at which the trajectory stays within 10% of its final value, was measured as 2.5 ms.

The oscillation in the response is caused by the unmodelled dynamics of the system. The

frequency of the oscillation matches the resonant frequency of the simulation plant.

The optimization method converges to a local minimum as shown by the performance

index, ITAE. The range of J.l2 and p2 that were tested were from fL2 == 0.00001 to J.L2 == 1

and p2 == 0.001 to p2 == 45002
• This range of J.l2 and p2 were used as the initial values
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for the simulation. By using MATLAB's optimization method, the result converges to the

same region. The conclusion is that the result found is likely to be a local minimum for this

range of j.j2 and p2.
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CHAPTERS

Experimental Setup

This chapter gives a detailed description of the experimental setup on which the designed

controller was tested. The equipment used to setup the experiment is shown in Table 5.1.

The disc drive used for the setup was an old drive manufactured by Conner. The model

is CP3000 and the series is E59JK A. Since the focus of this research was to control

the actuator arm, the disc and the cover were removed for convenience. The Polytec laser

doppler vibrometer (LDV) consists of controller OFV-3001 and sensor head OFV-303. The

main purpose of the LDV was to feedback the position and velocity signal of the actuator.

A Kepco power amplifier with a maximum output of 2 Amps was used to supply current

to drive the disc drive. DS 1104 PPC controller board from dSPACE was used to interface

between the real system and computer. This controller board has a frequency range of

100 KHz. A Lecroy 1 GHz digital oscilloscope was used to take measurements. The

software used for the real-time control was MATLAB real-time workshop. The tests were

performed on a Newport vibration isolation table to minimize external disturbances. The

computer used for this experiment has a Pentium II 450 MHz processor.
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Equipments For Disk Drive Research

An open disk drive

Kepco Power Supply/ Amplifier

Polytec Laser Doppler Vibrometer (LDV)

DSI104 ppe Controller Board (dSPACE)

1GHz Lecroy Oscilloscope

MATLAB Real-Time Workshop

Vibration Isolation Table

Pentium II 450 MHz computer

Table 5.1: Equipment for the Disk Drive Experiment

5.1 Hardware

Figure 5.1 shows the block diagram of the hardware architecture of the experimental setup.

In standard operation, the controller is designed in the host computer using MATLAB

and SIMULINK Real-Time Workshop. The controller is built and downloaded on to the

DS 1104 PPC controller board. The DS 1104 controller board sends a signal to the Kepco

power amplifier, which supplies the current to the voice coil motor (VCM). The VCM con­

trols the position of the actuator. The Polytec laser doppler vibrometer (LDV) measures the

position and velocity of the actuator and provides feedback to the DS 1104 PPC controller

board. The Lecroy digital oscilloscope is used to measure the signals of interest.

5.1.1 Polytee Laser Doppler Vibrometer (LDV)

The Polytec vibrometer is an instrument for non-contact measurement of surface vibrations

based on laser interferometry [19]. The vibrometer consists of the controller OFV-3001 and

the sensor head OFV-512.

The beam of a helium neon laser is focused on the object under investigation, scattered
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Figure 5.3: Polytec LDV in the Experimental Setup.

back from there and coupled into the interferometer in the sensor head. The intetferom­

eter in Figure 5.2 compares the phase, ¢mod, and the frequency, fmod' of the object beam

and with those of the internal reference beam, ¢oand foe The frequency difference is

proportional to the instantaneous velocity and the phase difference is proportional to the

instantaneous position of the object.

The signal is decoded using the velocity decoder and the position decoder. Two volt­

age signals are generated which are proportional to the instantaneous velocity and to the

instantaneous position (displacement) of the object, respectively. Both signals are exter­

nally available for measurement. Figure 5.3 shows the Polytee LDV equipment used in the

experiment.

5.1.2 Kepco Power Amplifier

The Kepco power amplifier model BOP 50 - 2M amplifies the controller output to a level

which is capable of driving the voice coil motor. The amplifier has direct current (de) range

35



of ±50V and ±2A. The Kepco power amplifier is a bipolar operational power (BOP)

supply/amplifier, which can be used for in a great variety of applications. As a precision

voltage or current source, the BOP output can be controlled locally through the front panel

bipolar VOLTAGE or CURRENT controls or remotely by voltage and current signals. The

amplifier has independently adjustable or remotely programmable limit circuits for both

voltage and current output. The built-in preamplifiers for the 'voltage as well as the current

channel of the BOP permit amplification of the control signal to the required amplitude and

provide the interface with high and low impedance signal sources. A detailed description

on the Kepco power amplifier is in [20].

5.1.3 DSP Controller Board

THE DSP board model DS 1104 PPC controller board is from dSPACE. This type of board

is specifically designed for development of high-speed multivariable digital controllers and

real-time applications in various fields. It is a complete real-time system based on a 603

PowerPC processor running at 250 MHz. For advanced I/O purposes, the board includes a

slave-DSP subsystem based on the Texas Instruments TMS320F240 DSP micro-controller.

A detailed description about the board is available in [21].

Information on the DS 1104 PPC controller board:

• 603 PowerPC at 250MHz

• 2 MB local SRAM

• 32 MB global DRAM

• 1 16-bit ADC with four multiplexed input signals

• 4 12-bit parallel ADC with one one input signal each

• 8 14-bit parallel DAC
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• Incremental encoder interface (2 inputs)

• 1 bit I/O unit -with 20-bit I/O

• Serial interface

5.1.4 Disc Drive

The disc drive used for the experiment is produced by Conner. The model of the disc drive

is CP3000 and the series number is E59JK A. For the purpose of this experiment, an

open disk drive with the disc and the cover removed is used. The object to be controlled

is the actuator arm. The Polytec LDV shines the laser at the tip of the actuator arm where

the read/write head is located. Figure 5.4 shows the open disc drive that is sed for the

experiment. The function of the voice coil motor is to control the position of the actuator

arm. The read/write head which is located at the tip of the arm read and write information

onto the magnetic disc. Figure 5.5 shows the flexible printed circuit. The flexible printed

circuit creates a one directional force on the disc drive actuator. Figure 5.6 shows the whole

setup of the experiment.

5.2 Software

5.2.1 MATLAB Real-Time Workshop

MATLAB real-time worksh~p provid-ed by MathWorks is the fjnal piece in the design pro­

cess. MATLAB real-time worksh'op provides a real-time development environment. The

real-time workshop is the direct path from system design to hardware implementation. The

MATLAB real-time workshop supports the execution of dynamic system models on hard­

ware by automatically converting models to code and providing model-based debugging

support. It is well suited for accelerating the development of simulations and embedded

real-time applications [23].
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Figure 5.4: Open Disk Drive.

Figure 5.5: Flexible Printed Circuit.
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Figure 5.6: The Experimental Setup.

5.2.2 dSPACE Software

• Control Desk

Control desk is a graphical user interface software for managing the dSPACE board.

In addition, the control desk manages the registering of hardware and applications

via the Platform Manager.

• Real-Time Interface (RTI and RTI-MP)

The real-time Interface communicates between Simulink and the dSPACE board.

The real-time interface, RTI, is used to build real-time code, download and execute

this code on dSPACE real-time processor.

• Control Desk Standard

Control desk standard offers a variety of virtual instruments to build and configure

virtual instrument panels via instrumentation providing functions to perform param­

eter studies via the parameter editor and functions to automate control desk's via
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automation.

• MLIB/MTRACE

This is the MATLAB-dSPACE interface libraries. The functions of these libraries

allow direct access to dSPACE real-time hardware from the MATLAB workspace.
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CHAPTER 6

MATLAB-dSPACE Interface Libraries

This section discusses on the use of the MLIBIMTRACE MATLAB-dSPACE interface

libraries.

6.1 MLIBIMTRACE

The MATLAB-dSPACE interface libraries provide access to dSPACE real-time processor

hardware from the MATLAB workspace. The MLffiIMTRACE functions can be called

from the MATLAB command window or from m-files. Thus, powerful numerical tools

running under MATLAB can be used in combination with the MLffiIMTRACE for:

• Analyzing real-time data

• Test automation

• Optimizing control algorithms

MLffilMTRACE provides basic functions for reading and writing data to the dSPACE

processor board and other functions like generating interrupts, setting the processor state

and getting processor status information.

MLffiIMTRACE provides real-time data capture capabilities including the following

features:
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• Free-running or level-triggered mode

• Pre- and post-trigger

• Simultaneous start of multiple data captures

• Distinction between double, float and integer (signed and unsigned) variables

• Adjustable trace capture sampling rate (downsampling)

• Direct data transfer to the MATLAB workspace

• Data storage on the hard disk drive in continuous mode (optional)

• Specification of data capture parameters by property/values pair

MLIB/MTRACE functions are suited to modify parameters online and to send sequences

of test data to real-time processor with MLffi/MTRACE. One does not need to know the

hardware address because several functions are implemented that return the required ad­

dresses when the symbolic name of a variable is specified.

MLffiIMTRACE complements the software environment, which consist of MATLAB/

SIMULINK real-time workshop, and the dSPACE RTI and control desk. Infonnation on

MLIBIMTRACE functions and programming can be found in [22].

6.2 Experimental Setup Flow Chart with

MLIBIMTRACE

Figure 6.1 shows the flow chart of the experimental setup and how MLIBIMTRACE inter­

faces with the real-time process. In standard operation, the controller that will be imple­

mented is designed in the host computer using the MATLAB/SIMULINK real-time work­

shop. It is then downloaded onto the DS 1104 PPC controller board from the control desk.

The DS 1104 controller board will send a control signal to the Kepco power amplifier, which
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amplifies the current that is supplied to the voice coil motor (VCM). The VCM controls the

position of the actuator. The Polytec laser doppler vibrometer (LDV) measures the position

and velocity of the actuator. It provides position and velocity feedback to the DS1104 PPC

controller board. The Lecroy digital oscilloscope is used to monitor the reference, posi­

tion, velocity, and control signal. In Figure 6.1, the dotted line shows the system running

on real-time process. The MLIBIMTRACE allow direct access to the DS1104 PPC con­

troller board from the MATLAB workspace window using the MLffilMTRACE functions.

Real-time data can be accessed from the MATLAB workspace with MLIBIMTRACE func­

tions. The controller gains in the real-time processor can be modified in real-time through

MATLAB workspace or from the m-files.

6.3 Procedure to Implement M-file with

MLIBIMTRACE on Experiment

This section discusses the steps to use the MLIBIMTRACE functions to access the dSPACE

real-time processor. The m-file scripts given below are attached in Appendix D. The

Simulink model used is dlqgl tr. mdl, and it is given in Figure 7.1.

6.3.1 M-file for Optimization-based Thning of a Discrete Loop Trans­

fer Recovery Controller with Hardware In-the-Ioop

This section gives a detailed explanation on the m-files used to run the optimization-based

tuning with hardware in-the-Ioop experiment. The main file used is dlqgltr..mlib.m

and the secondary file is lqg_ltr.rn. The procedure and setup of dlqgltr.-mlib.m

and lqg_ltr.rn are explained below. In dlqgltrJnlib.rn, the first thing to do is to

select the data-acquisition board used for the experiment. The following MLIB/MTRACE

command selects the data-acquisition board:
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% Initialize dSPACE MLIB

rnlib('SelectBoard', 'DSI104');

Then the following script checks if the real-time processor's application file is loaded. The

real-time application file used is dlqgl tr . ppc. This file is generated by MATLAB Real­

time Workshop when the Simulink file, dlqgl tr. mdl, is compiled.

% Check if the Application dlqgltr.ppc is Running

ApplName = lower([pwd '\dlqgltr.ppc']);

if mlib('IsApplRunning'),

ApplInfo = mlib('GetAppllnfo');

if strcmp(ApplName,lower(Appllnfo.narne)) -= 1

err_msg = sprintf('*** This MLIB file needs the real-time

processor application\n*** "%s" running!', ...

ApplName) ;

error (err_msg) ;

end;

else

err_ffisg = sprintf('*** This MLIB file needs the real-time

pro~essor application\n*** "%s" running!',. a.

ApplName) ;

error(err_msg);

end;

The following paragraphs detail the collection of datas for position signal, reference signal,

and error signal.

• Position Signal

The information on the position in dlqgl tr . rndl Simulink diagram is accessed

through the following MLilllMTRACE function. Model Root / Posi tion/ Inl
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is the address of the position block. The address of the signal is found using the

dSPACE's TraceView Utility. Every time a real-time application is built, dSPACE's

Real-Time Interface generates a TRC file that maps Simulink variable name to the

corresponding global variables in the generated code. Thus, variables can be spec­

ified with the name of the Simulink blocks. Procedure to search for the address of

the signals is given in Appendix B. The MLIBIMTRACE 'GetTrcVar' function

is used to obtain the discriptor for the position block. The MLIBIMTRACE ' Read'

function is used to read data from the real-time processor.

% Get descriptors for the position block

var_narnes = {'Model Root/Position/Inl';

} ;

position_desc = rnlib('GetTrcVar', var_narnes);

position = mlib('Read', position_desc)

• Reference Signal

The reference signal in the dlqgl tr . mdl Simulink diagram is accessed through

the following MLIBIMTRACE functions. The address of the reference signal block

is 'Model Root/SignalJlGenerator/Amplitude'. The functions used to

obtain the discriptor and read data from the real-time processor are the same as those

functions used to access the position block.

% Get descriptors for the Reference Signal block

var_narnes = {'Model Root/Signal\nGenerator/Amplitude';

} ;

referencesignal_desc = rnlib('GetTrcVar', var_narnes);

referencesignal = rnlib('Read', referencesignal_desc)
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• Error Signal

The information on the error in the dlqgl tr. mdl Simulink block diagram is ac­

cessed through the following MLIB/MTRACE functions. The address for the error

block is 'Model Root/error/rnl'. The rest of the MLIB/MTRACE func­

tions used are the same as the ones used to access the position and the reference

signal block.

% Get descriptor for the error block

var_names = {'Model Root/error/rnl';

} ;

error_desc = mlib('GetTrcVar', var_names);

error = mlib('Read', error_desc)

The following part of the dlqgl tr. m script uses the MATLAB Optimization Toolbox's

nonlinear unconstrained optimization command to call MATLAB lqg_l tr. m file. Cost

function computed in lqg_l tr . m is evaluated by the nonlinear unconstrained optimiza­

tion toolbox in MATLAB command window.

% Nonlinear Unconstrained Optimization

[X]=fminunc('lqg_ltr', [roh;mu]);

The secondary file used is lqg_l tr . m. The following part of the script declares the

variables used in the script, initializes the sample time and function ' f' that calculates

the cost function. The final two lines displays the parameters that are used to design the

controller in MATLAB workspace.

% Function Call

function [f]=lqg_ltr(X,T,deltT)

% Declare Global Variables
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global H F abe d Ae Be Cc Dc ae be ee de nUffi_d den_d

nUffi-P den-p y t cs u error roh mu f Ad Bd Cd Dd

% Initialize Variables

deltT=le-5; % Sample Time

t=(O:le-5:1999*le-5) ;

roh=X(l);

mu=X (2) ;

% Display the parameters rou and roh

disp(sprintf('====== roh=roh(l)=%6.8f ======' ,roh(l)));

disp(sprintf('====== rnu=mu(1)=%6.8f ======' ,mu(l)));

The following part shows how the controller is designed. The plant used to design the

controller is based on a 2nd order system with gains that match the 4th order disc drive

model. The 2nd order plant is used to compute the observer gain matrix for target loop

design and to compute the recovery gain matrix for the recovery loop. The continuous-time

controller is converted in to a discrete-time controller using MATLAB's c2d. mcommand.

% 2nd Order Plant

Ac=[0 1; 0 0];

Bc=[O O.75el1]';

Cc=[lO];

Dc=[O];

[nuffi-p,den-p]=ss2tf(ac,bc,cc,dc);

% Target Filter Loop Design (C phi H)
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G= [1 0; 0 1];

Q=diag( [1 1]);

[H,P,E]=lqe(Ac,G,Cc,Q, (mu)~2);

H; % Observer Gain Matrix H

% Recovery Loop Design

Q2=Cc'*Cc;

[F]=lqr(Ac,Bc,Q2, (roh) ~2);

F; % Recovery Gain Matrix F

% Controller in Discrete and Continuous State-Space Form

sys_c=ss(Ac-H*Cc-Bc*F,-H,-F,O) ;

sys_d=c2d(sys_c,Ts, 'tustin');

[a,b,c,d]=dssdata(sys_d);

The error data must be collected for computation of the cost function. The following com­

mand gets the discriptor of the error block from the address and reads the error data. The

trigger command set to trigger on the variable 'Model RootierrorlInl'. The trace interval

is 2000 samples with a post-trigger of 500 samples. Post-triggering will delay the trace

interval by 500 samples before the samples are collected.

% Get descriptor for the error block

var_narnes = {'Model Root/error/Inl';

} ;

var = mlib('GetTrcVar', var_narnes);

Error_data = mlib('Read', error_desc)

rnlib('Set', 'Trigger', 'ON', ...
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'TriggerLevel' ,0, ... % Default, can be omitted

, TriggerEdge' , 'rising', ... % Default, can be omitted

'TriggerVariable', var(l),

'TraceVars', var,

'NurnSarnples', 2000,

'Delay' ,500) ;

The following MLIB/MTRACE ' StartCapture' command starts the capture of error

data on the real-time processor board. The error data that has been traced by the trig­

ger command is captured on the real-time processor board. Then the MLIDIMTRACE

, FetchData I command fetches the data from the real-time processor buffer and trans­

fers the data to the MATLAB workspace.

% Start Capture on DS1I04

mlib ('StartCapture');

while mlib('CaptureState')~=O, end

% Fetch After Capture is Complete

error data = mlib('FetchData');

Once the error data is transfered to the MATLAB workspace, the following functions are

used to compute the cost function. Three types of performance indices are used to compute

the cost function. The cost function computed is evaluated by the MATLAB Optimization

Toolbox's unconstrained nonlinear optimization command.

% Cost Function (minimization)

f=surn(t.*abs(error_data))*deltT;

% f=sum(abs(error_data))*deltT;

% f=surn((error_data)~2)*deltT;
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The new discrete controller gains that are computed through the optimization method are

transfered from the MATLAB workspace to the real-time processor board. Since the con­

troller gains are in the form of state-space matrices, MLIB/MTRACE /ml ib.-rnatrix /

commands are used. These commands are used to write the new controller gains into the

state space block State-Space that resides in the Simulink subsystem controller which

is downloaded into the real-time processor.

% Write New Data to the Following Area: row 1:2, columns 1:2

% for A Matrix

rnyMatrix = rnlib_rnatrix{/Init', ...

'Model Root/Discrete State-Space\nLQGLTR Controller/A', ...

2, 2, 'Row-Wise');

AnewData = a ;

mlib_matrix{'Write/, myMatrix, [1:2], [1:2], AnewData);

% Write New Data to the Following Area: row 2,1, columns 1:1

% for B Matrix

myMatrix = mlib_matrix(/Init' I •••

'Model Root/Discrete State-Space\nLQGLTR Controller/B' I· • •

2, 1/ 'Row-Wise');

BnewData = b;

mlib_matrix(/Write l
l myMatrix l [1:2], [1:1]/ BnewData);

% Write New Data to the Following Area: row 1 / 2 1 columns 1:2

% for C Matrix

myMatrix = mlib_matrix(/Init' / ...
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'Model Root/Discrete State-Space\nLQGLTR Controller/C', ...

I, 2, 'Row-Wise');

CnewData = c;

mlib_matrix('Write', myMatrix, [1:1] , [1:2], CnewData);

% Write New Data to the Following Area: row 1,1, columns 1:1

% for D Matrix

myMatrix = mlib_matrix('Init/, ...

'Model Root/Discrete State-Space\nLQGLTR Controller/D', ...

1, I, 'Row-Wise');

DnewData = d;

mlib_matrix('Write', myMatrix, [1:1] , [1:1], DnewData);

Finally, the command ' siggen_dlqgl tr' resets the reference signal. The reference

signal is a square wave with amplitude of 1 /J;m and the frequency of 50 Hz. By initializing

the reference signal and delaying the data capture by 5 ms, transients from downloading

new controller gains can be omitted from the cost function calculations.

% Reset reference input

siggen_dlqgltr(l,50); % Amplitude = 1 urn

% Frequency = 50 Hz

The optimization process will continue to search for new controller gains and implement

the gains into the real-time processor board until the cost function reaches the optimization

termination tolerance. The MATLAB Optimization Toolbox I fminunc . m/ command's

default termination tolerance is 1 . 10-4
. When the optimization process terminates, the

controller gains obtained are the optimum gains for that choice of performance index.
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6.3.2 Program Block Diagram for Optimization-based Tuning of a

Discrete Loop Transfer Recovery Controller with Hardware in­

the-loop

The optimization-based tuning of a discrete loop transfer recovery controller with hardware

in-the-Ioop discussed in the previous section is shown in Figure 6.2 as a program block

diagram. The program block diagram is used to provide better understanding of the m-file.

First, the experiment which consists of dSPACE data-acquisition board, Polytec LDV,

disc drive, Kepco power amplifier must be running before the dlqgltr...mlib.m pro­

gram is initialized. Then, the dlqgl tr.Jnlib. m program is initialized in MATLAB

Workspace. The 'ml ib ( , Se1 ec tBoard' , 'DS1104 ' ) , command is used by the

program to select the DS 1104 board. When the program selects the DS 1104 board, the

reference signal and the position signal can be accessed with MLIBIMTRACE command.

The 'fminunc ( , lqg_l tr' , ' [roh; rnu] , ) command is used to initialize the MAT­

LAB Optimization method. If the DS 1104 board is not found, an error message will appear

on the MATLAB Workspace and the program will terminate.

The secondary program, lqg_l tr. rn is initialized by the MATLAB Optimization

method. Error signal from the board is accessed using the MLillIMTRACE command.

The error signal is captured on the board using 'rnlib ( , CaptureState' ) , com­

mand. The error signal is fetched from the board to the MATLAB Workspace using

'mlib ( 'FetchData' ) I command.

The data collected in MATLAB is used to compute the cost function. If the cost func­

tion does not reach the termination value, a new set of controller gains is computed. The

new controller gains are written on the board using MLIBIMTRACE commands. The ref­

erence signal consists of a square wave with amplitude of l/-lm and frequency of 50 Hz is

initialized.

The program will go through all the steps of the secondary program in a loop as shown
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in Figure 6.2 until the cost function reaches the termination value. The program will termi­

nate when the cost function reaches the value of 1 . 10-4 •
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dlqgltr_mlib.m

mlib(ISelectBoard ' ,'DSl104 1
}

fminunc(llqg_ltr l , [roh;mu]

NoYes

Write New Controller
Gains on dSPACE

Termination
Tolerance

Write Old Controller
Gains on dSPACE

siggen_dlqgltr{l, 50}

Figure 6.2: Program Block Diagram.
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CHAPTER 7

Experimental Results

This chapter discusses the controller implementations and experimental results performed

on actual hardware. The optimization-based LQGILTR controller designed in Chapter 4, is

implemented into actual hardware. Simulation results from Chapter 4 are compared with

the experimental result. Experimental results for an optimization-based tuning of a discrete

LQGILTR with hardware in-the-Ioop with different cost functions are compared. ITAE,

ISE and lAE are the performance indices used to compute the cost functions.

Figure 7.1 shows the Simulink model of the LQGILTR controller used for the experi­

ment. As shown in Figure 7.1, the reference signal is provided by the signal generator block

or the step function block. The signal generator block provides sinusoidal, square, trian­

gle and random signals. For this experiment, square wave signal is used. The amplitude

corresponds to position measured in /--lm.

Two digital to analog channels of the dSPACE board were used. DSII04DAC_Cl cor­

responds to the reference signal and DSI104DAC_C2 corresponds to the control signal.

Three analog to digital channels from the dSPACE board were used. DSl104ADC_C5

corresponds to position, DSII04ADC_C6 corresponds to velocity and DSII03ADC_C7

corresponds to the control signal. The LDV parameter block and gain constant blocks

provide gains for the unit conversion blocks.

The reference signal used in the experiment is a square wave with an amplitude of IJlffi
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and frequency of 50 Hz. The LDV displacement gain is set at 20 /-LInN and the LDV

velocity gain is set at 25 mm/sN.

7.1 Optimization-based Discrete LQG/LTR Controller

Controller gains from the disc drive simulation in Chapter 4 were implemented on hard­

ware. The result from the experiment did not match the result from simulation. The

experimental results have overshoot and a slow settling time. Thus, the controller gains

needed to be manually tuned to achieve better petformance. Figure 7.2 shows the result of

optimization-based discrete LQGILTR controller with manual tuning. The actual position

tracks the reference signal and has a settling time, Ts == 5 ms. The simulation result in

Figure 4.13 from Chapter 4 has a settling time, Ts == 2.5 ms. This result is 2.5 fiS faster

than the experimental result with manual tuning. This controller uses a substantial amount

of control effort in order to track the reference signal, while the simulation result uses a

small control signal to track the reference signal. The printed flexible cable provide a bias

effect on the experimental result. The bias effect on the experimental result with manual

tuning is compensated by the strong control signal.

Tuning the gains manually on the real-time processor through the control desk can im­

prove response and settling time. However this process requires a lot of time and patience.

A structured method like optimization-based tuning of the controller with hardware in-the­

loop is used to speed up the tuning process.

7.2 Optimization-based Tuning of a Discrete LQG/LTR

Controller with Hardware In-the-loop

The experimental results discussed below are performed using the optimization-based tun­

ing of a discrete LQGILTR controller with hardware in-the-Ioop using different perfor-
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Figure 7.2: Experimental Result for IfLm Step with Manual Tuning.

mance indices. ITAB, lAB and ISE performance indices are used to compute the cost

functions. To avoid transient data caused by implementation of new controller gains, error

data used to compute the cost function is captured 5 ms after new controller gains are im-

plemented. One cycle of data, which is equivalent to 20 illS or 2000 data points is collected

for computation of the cost function. This process will continue to capture data for the

optimization method until an optimum controller is found. To avoid insufficient memory

on the computer for computation, 2000 data points for each iteration is captured.

Figure 7.3 shows the experimental result of optimization-based tuning of a discrete

LQGILTR controller with hardware in-the-Ioop using the ITAE performance index. The

response of the controller is measured according to the settling time. Settling time is de­

fined as the time required for a response to decrease and stay within a specific percentage

of its final value [17]. This experiment is performed on a reference signal having a peak-to­

peak amplitude of 2 fLm. This is a representative of a single track in a 10000 tracks per inch

disc drive. A relevant measure of settling time would be when the response stays within
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Figure 7.3: Experimental Result for IJ.-lm Step with ITAB Perfonnance Index.

10% of the final value. In disc drives, it is very common to use 5% to 10% of the track

as the bound for the response. Using the ITAB perfonnance index, the discrete LQGILTR

controller has a settling time of Ts == 2.5 IDS. The response matches the simulation result

in Chapter 4. As shown in Figure 7.3, the controller tracks the upper half of the reference

signal. However, the bottom part of the reference signal does not track the reference well.

The controller using the ITAB performance index uses less control effort for tracking com-

pared to the controller with manual tuning. There is a one-directional force that pushes on

the opposite direction when the controller tries to track the reference signal. The cause of

the one-directional force is from the flexible printed circuit. The low control signal was not

sufficient to compensate the bias force from the flexible printed circuit. When a response

does not reach steady-state, the definition of settling time cannot be used. The upper part

of the response that reached steady-state is used to measure the settling time.

Figure 7.4 shows the experimental result of optimization-based tuning of a discrete
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Figure 7.4: Experimental Result for If-lm Step with IAE Performance Index.

LQG/LTR controller with hardware in-the-Ioop using IAE performance index. The IAE

performance index produces a response that rises smoother than the ITAE performance

index. The settling time is, Ts == 3.5 ms. The controller tracks the upper half of the

reference signal. The control signal in Figure 7.4 shows strong control signal at the upper

part of the reference. However, the controller does not track the lower part of the reference

signal well. The bias force from the flexible printed circuit caused the controller response

to track poorly. The controller uses low control effort, like the controller that uses ITAE

performance index. The low control effort is not sufficient to compensate the bias caused

by the flexible printed circuit.

Figure 7.5 shows the experimental result of optimization-based tuning of a discrete

LQG/LTR controller with hardware in-the-Ioop using ISE performance index. The settling

time is, Ts == 3 milliseconds. ISE performance index produces response that rises smoother

than ITAE performance index. The controller tracks the upper part of the reference signal.

Strong control signal is used to track the response. The controller does not track the bottom
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Figure 7.5: Experimental Result for If.-Lm Step with ISE Performance Index.

part of the reference signal well. A one directional force from the flexible printed circuit

affects the tracking.

Comparing the results from Figure 7.3, Figure 7.4, and Figure 7.5, the controller us-

ing ITAE and IAE performance index is able to compensate the bias force more compared

to controllers using ISE performance index. The bias force is not an equipment limita-

tion. Bias force do affect manually tuned results but the strong control signal was able to

compensate the bias force.

The mean square error (MSE) method is used to calculate the error and compare the

results from 3 performance indices. A cycle of data is computed for each performance

index. The mean square error method used is shown in Equation (7.1),

M SE = Sl + Si + ···+ S1
I

(7.1)

where 3 2 is the sample and I is the number of sample. The result is given in Table 7.1. The
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Controller Design Mean Square Error

LQG/LTR using ITAE 0.1970

LQG/LTR using lAE 0.1985

LQGfLTR using ISE 0.2022

Table 7.1: Mean Square Error for 3 Performance indices.

I.JQGILTR controller using the ITAE performance index has the lowest mean square error.

The LQG/LTR controller using the ISE performance index has the biggest error. The result

proved that the controller using the ITAE performance index provides better result than the

controller using ISE performance index.
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CHAPTERS

Conclusion & Future Work

When controller gains obtained from simulation are implemented on actual hardware, the

controller gains needed to be manually tuned to improve performance. The solution to the

problem is to tune the controller through an optimization technique while the hardware

is running. An optimization-based method to tune the discrete Linear Quadratic Gaus­

sian/Loop Transfer Recovery controller with hardware in-the-loop is presented.

First, a discrete Linear Quadratic Gaussian/Loop Transfer Recovery controller is de­

signed with a low bandwidth. Then, optimization-based method is integrated with the

LQGILTR controller to search for gains that produce a controller with higher bandwidth.

The controller gains obtained from simulation are implemented into the hardware. Finally,

the controller is tuned using the optimization-based tuning with hardware in-the-Ioop.

The experimental results from manual tuning show that the controller tracks the ref­

erence signal with aggressive control effort and a slower settling time compared to the

automated tuning method. Furthermore, tuning the controller manually requires a lot of

time and patience. The experimental result from optimization-based tuning of a discrete

LQGILTR controller with hardware in-the-loop on the 3 different types of performance

indices used show increased in performance. Table 8.1 show the summary of the perfor­

mance of the controllers. The controller using ITAE has the fastest settling time compared

to controller using lAB and ISE performance index. The automated tuning of the controller
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Controller Design Settling Time, Ts Control Signal (A) Bias Effect

LQG/LTR using manual tuning 5 ms High No

LQG/LTR using ITAE 2.5 ms Low Yes

LQGILTR using lAE 3.5 ms Low Yes

LQGILTR using ISE 3.0ms Low Yes

Table 8.1: Result of the Disk Drive Experiment.

in real-time process produced controllers that used small control effort and achieved faster

settling time.

Optimization-based tuning of the discrete Linear Quadratic GaussianILoop Transfer re­

covery controller with hardware in-the-Ioop shows better result compared to manual tuning

method. The automated tuning method produces faster settling time and smaller control

signal.

8.1 Future Work

Future work on this research are as follow:

1. Experiment show that the flexible printed circuit causes bias on the disc drive. The

bias caused by the flexible printed circuit can be solved by including an estimate of

the bias into the design.

2. A 2nd order controller and a 4th order simulation plant are used for simulation. The

oscillations in Figure 4.10 and Figure 4.13 are caused by the unmodelled dynamics of

the simulation plant. A higher order controller design that matches the characteristics

of the disc drive will be used for simulation and experiment.

3. The idea of incorporating the optimization method to a controller will be applied to

different types of controller.
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APPENDIX A

Mathematical Model of the Disc Drive

A.I Mathematical Modeling

This section discusses the mathematical modeling of the disc drive. The disc drive used

for the experiment is manufactured by Conner. A Simulink model is generated to per­

form system identification of the disc drive actuator. The Simulink model is compiled and

downloaded into the dSPACE board. The input signal used for the system identification

experiment is a random signal.

The data collected is processed using MATLAB System Identification Toolbox. Fig­

ure A.l is the frequency response of the disc drive actuator from current to velocity. The

frequency response is estimated directly using the spectral analysis function in the System

Identification Toolbox. The first peak resonance mode is at 1660 Hz, the second resonance

mode is at 2900 Hz, and the third resonance is at 3350 Hz.

A.I.! 3rd Order Design model

A 3rd order mathematical model which maps from current to velocity is estimated using the

System Identification Toolbox's Estimation of Parametric Models. ARX Model estimation

method is used to produce the 3rd order mathematical model. The transfer function of the
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Figure A.I: Frequency response of the disk drive
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3rd order mathematical model is given in Equation (A.I).

actual data points of frequency, magnitude and phase measured from experiment.

A.l.2 7th Order Model

The sampling period used in this experiment is Ts == 1 · 10-5 seconds.

Figure A.2 shows the bode plot of the 3rd order disc drive model. The * represents the

The 7th order mathematical model which maps from the current to velocity is estimated

using the ARMAX Model estimation method. The transfer function of the 7th order model

is given in Equation (A.2).
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Figure A.2: Bode Plot of the 3rd Order Mathematical Model

G = -1.565z7 + 7.93z6
- 16.11z5 + 16.41z4

- 8.38z3 + 1.716z2

0.9686z7 - 6.664z6 + 19.72z5 - 32.56z4 + 32.37z3 - 19.38z2 + 6.473z - 0.9301
(A.2)

The sampling period used in this experiment is Ts := 1 . 10-5 seconds.

Figure A.3 shows the bode plot of the 7th order disc drive model. The * represents the

actual data points of frequency, magnitude and phase measured from experiment.
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Bode Diagram
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APPENDIXB

Procedure for using MLIB/MTRACE

This section discusses on the procedure to use the MATLAB-dSPACE Interface Libraries4

B.I Getting Started

A real-time processor board for the use of MLIB/MTRACE must be selected before us­

ing the MLIBIMTRACE. The processor board must be registered in the Control Desk's

Platform Manager. To obtain the board that is currently registered in the Control Desk's

Platform Manager, type

board_info = mlib('GetBoardlnfo')

in the MATLAB workspace window. The boardjnfo will contain the basic information

about registered board. If the boardjnfo is empty, no board is registered.

MLIB/MTRACE is implemented as a MATLAB MEX DLL file, which is loaded into

the PC memory when called for the first time during a MATLAB session. MLilllMTRACE

remains loaded until a clear mex, clear functions, clear mlib, or clear all commands is

invoked, or until MATLAB is closed. If MLIB/MTRACE is cleared, SelectBoard must be

called before proceeding with other MLilllMTRACE functions.
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B.2 MLIB/MTRACE Functions

This section discusses on the MLIBIMTRACE functions.

B.2.! Select Board

In order to select the real-time processor board, type

mlib{'SelectBoard', 'DSII04');

DS 1104 represents the board that is selected for real-time process. If a different board is

used, replace 'DSII04' with the real-time processor board used.

B.2.2 CaptureState

The purpose of this function is to get capture status information.

state = mlib('CaptureState')

% wait for a data acquisition to finish

while rnlib('CaptureState')-=O, end

disp('CaptureState') ;

B.2.3 FetchData

This MLIBIMTRACE function fetch the data from the real-time processor buffer and trans­

fer it to the MATLAB workspace.

traced_data = mlib('FetchData')

traced_data = mlib('FetchData', [count ,] ...

property_name, property_value, ...

Depending on the setting in the MLffilMTRACE function Set, the FetchData function

returns the traced data in one of the following fonnats:
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• matrix

• matrix with time

• structure

• structure with time

B.2.4 GetTrcVar

This function obtain the descriptor for a variable specified within the TRC file.

var_vec = rnlib('GetTrcVar', Variable_names)

[varl, ... " varN] = rnlib ( 'GetTrcVar I, variable_names)

If the real-time application is generated from a Simulink model using the MATLAB

Real-Time Workshop and the dSPACE RTI, a TRC file is generated automatically. The

TRC file maps Simulink variable names to the corresponding variable generated code

(source code variable). Variables in real-time applications can be accessed within the names

of the Simulink blocks, or with the label of the corresponding signal line.

B.2.5 Read

This function is used to read data from the real-time processor.

data = mlib( 'Read' I var_vec)

[datal, ... / dataN] = rnlib('Read', var_vec)

B.2.6 Write

This function is used to write data to the real-time processor.

mlib( 'Write', var_vec, 'Data', data)
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The naming conventions and the MLIBfMTRACE function reference are shown in page

40 and page 41 of [22].

B.3 The TraceView Utility

Discriptors for global variables in the real-time application generated with dSPACE's RTI

can be obtain with the GetTrcVar function. Every time a real-time application is built,

dSPACE's Real-Time Interface generates a TRC file that maps Simulink variable name to

the corresponding global variables in the generated code. Thus variables can be specified

with the name of the Simulink blocks whose outputs, parameters, states, or state derivatives

they represent, or with the label of the corresponding signal line.

Below is the procedure to use the TrcView Utility.

1. Enter the command trcview in the MATLAB command window. Then open the

desired TRC file. A model browser and a variable list box let you search easily for

the desired variable.

2. double click in the list box to paste the full variable name with the syntax required

by the GetTrcVar into an edit field.

3. From the edit field copy and paste the variable name into the M-file editor or the

MATLAB cOlnmand window.

B.4 MLIBIMTRACE Error Messages and

Troubleshooting

The appendix in [22] shows the MLffiIMTRACE's error messages in numerical order and

offers solutions where applicable.
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APPENDIXC

Matlab Setup Files

e.l Setup File For Unconstrainted Optimization Method

% This M-file is use to search for the optimum roh and

% mu for Discrete LQG/LTR using MATLAB Toolbox's

% Optimization Method.

% run_lgqltr.m

%

% Design Criteria

% 1) Initial bandwidth of 1000 rad/sec

% 2) Target Filter Loop, mu=O.OOOOOl

% 3) Loop Transfer Recovery, roh=O.OOOl

%

% M-file written by Ban Fu Chee

% Advanced Controls Laboratory

% Oklahoma State University

% Stillwater OK 74075

%

% Initially clear the workspace

clear all

close all

clc

% Initialize values
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global H F abc d Ac Be Ce Dc ae be ee de nUffi_d

nUffi-P den-p t y es e u roh mu f Ad Bd Cd Dd den_d

roh=le2; % Initial value used for uneonstrainted

ffiU= le-6; % Optimization method

Ts=le-5;

deltT=Ts; % sample time per second

stoptime=O.Ol; % Simulation stop time in msec

T=stoptime;

% Optimization Options

options(2)=le-5; % terminal for X

options(3)=le-5; % terminal for f

options(14)=lOOO*4; % max iterations

% Using the Unconstrainted method

% FMINSEARCH Multidimensional unconstrained nonlinear

% minimization (NeIder-Mead).

% [X] = FMINSEARCH(FUN,XO,OPTIONS,Pl,P2, ... )

[XJ=fminsearch('lqg_ltr', [roh;mu]);
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C.2 Setup File for Discrete-Time LQGILTR Control

with Unconstrained Optimization

% This M-file set up all the parameters to be called by

% run_Iqgltr. This file is a local file.

% lqg_ltr.m

%

% Design Criteria

% 1) Initial bandwidth of 1000 rad/sec

% 2) Target Filter Loop, mu=O.OOOOOl

% 3) Loop Transfer Recovery, roh=O.OOOl

%

% M-file written by Ban Fu Chee

% Advanced Controls Laboratory

% Oklahoma State University

% Stillwater OK 74075

%

% Function Call

function [f,g]=lqg_ltr(X,T,deltT)

% Initialize variables

global H F abc d Ac Bc Cc Dc ac bc cc dc num_d

num-p den-p y t cs u e roh mu f Ad Bd Cd Dd den__d

roh=X (1) ;

mu=X (2) ;

Ts=le-5; % Sample time per second

deltT=Ts;

t t " 0 01- ~o Simulation stop times op lme= - ,

T=stoptime;

% Display of the parameters that is been controlled

disp(sprintf('~~~~~roh~roh(1)~%6.8f~~~~~, ,roh(l)));

disp(sprintf('~~~~~mu~mu(1)~%6.8f==~=~' ,mu(l)));
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mu=(mu) .~2; % Keep the values positive

roh=(roh) .~2;

% Load 3rd order model of the disk drive to workspace.

% Note the model is designed from current to velocity

% The 4th order model is the desgin plant

load fina13model.mat

nnum;

nnden=conv(nden, [1 -1]); % 4th order discrete model

dmodel=tf(nnum,nnden,Ts) ;

[Ad,Bd,Cd,Dd,Ed,ts]=dssdata(dmodel);% Disc. State-Space

dmodelc=d2c(dmodel, 'tustin');

[ac,bc,cc,dc]=ssdata(dmodelc); % Cont. State-Space

% A 2nd order state space model with magnitudes that

% match the 4th order plant

Ac = [0 1; 0 0];

Bc= [0 O. 75e11] , ;

Cc=[lO];

Dc=[O];

[nuffi-p,den-p]=ss2tf(ac,bc,cc,dc) ;

% Target filter loop design (C phi H)

G= [1 0; 0 1];

Q=diag ( [1 1]);

%mu=O.OOOOOl; % Initial value for 1000 rad/sec

[H,P,E]=lqe(Ac,G,Cc,Q,mu) ;

H; % Observer Gain Matrix H

% Loop Transfer Recovery

%roh=le-4; % Initial value for 1000 rad/sec

Q2=Cc'*Cc;

[F]=lqr(Ac,Bc,Q2,roh);

F; % Loop Transfer Recovery Gain

% LQG/LTR Controller in State Space form
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sys_c=ss(Ac-H*Cc-Bc*F,-H,-F,O) ;

sys_d=c2d(sys_c,Ts, 'tustin');

[a,b,c,d]=dssdata(sys_d); % Discrete Controller

% Controller in Transfer Function Form

[nuffi_c,den_c]=ss2tf(Ac-H*Cc-Bc*F,-H,-F,O) ;

[nurn_d,den_d]=ss2tf(a,b,c,d) ;

d_ssc=tf(num_d,den_d,Ts) ;

% Call the Sirnulink diagram for simulation

sim('sim2rnodel')

% Error between reference and actual signal

e=r-y;

% Objective Function or Cost Function (minimization method)

f=surn(t.*abs(e))*deltT
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C.3 Setup File for Discrete-Time LQG/LTR Control on a

4th Order Model

% This M-file is used to run simulation using Discrete

% LQG/LTR control with the new observer gain and recovery

% gain with the roh and mu found from the Optimization
~---------------

% search method.

%

% M-file written by Ban Fu Chee

% Advanced Controls Laboratory

% Oklahoma State University

% Stillwater OK 74075

%

% Initially clear the workspace

clear all

----cIose-all---------------------------------------------------------

clc

% physical parameters

Ts=le-5; % samples per second

stcptime=O.Ol; % simulation stop time In miliseconds

T=stoptime;

% Load 3rd order model of the disk drive to workspace.

% Note the model is designed from current to velocity

------------~(J4'_he_-4-t-h--O-r-(1er--ffiQdal--i~--tj1-e--d-e?-g-ip-2J-_a_n_t_

load fina13model.mat

nnum;
nnden=conv(nden, [1 -lJ); % 4th order discrete model

dmodel=tf(nnum,nnden,Ts) ;

[Ad,Bd,Cd,Dd,Ed,ts]=dssdata(dmodel);% Disc. State Space

dmodelc=d2c(drnodel, 'tustin');

[ac,bc,cc,dc]=ssdata(dmodelc); % Cont. State Space

% A 2nd order state space model with magnitudes that match

% the 4th order plant
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Ac= [0 1; a 0];

Bc=[O 0.75el1]';

Cc= [1 OJ;

Dc=[O];

[num-p,den-p]=ss2tf(Ac,Bc,Cc,Dc) ;

% Target Filter Loop Design (C phi H)

G= [1 0; 0 1];

Q=diag ( [1 1]);

mu= (0.000001);

[H,P,E]=lqe(Ac,G,Cc,Q,ffiu) ;

H; % Observer Gain Matrix H

% Plot the Target filter Loop

% Calculate and plot the singular values for the

% filter loop

[At,Bt,Ct,Dt]=linmod('target') ;

[num_t,den_tJ=ss2tf(At,Bt,Ct,Dt) ;

sys=tf(num_t,den_t) ;

sigrna(sys,{lO,lOOOOOO}), grid

hold

% Loop Transfer Recovery

roh=(4315.71447617) .~2); % Roh from Optimization

Q2=Cc'*Cc;

[F]=lqr(Ac,Bc,Q2,roh); % Loop Recovery Loop Gain

% plot the Loop Transfer Recovery

[Ar,Br,Cr,Dr]=linmod('recovery') ;

[num_r,den_r]=ss2tf(Ar,Br,Cr,Dr);

rsys=tf(nuffi_r,den_r);

sigma (rsys, 'r' ,{10,lOOOOO}), grid

% LQG/LTR Controller in State Space form

sys_c=ss(Ac-H*Cc-Bc*F,-H,-F,O);

sys_d=c2d(sys_c,TS, 'tustin'};
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[a,b,c,dJ=dssdata(sys_d); % Discrete Controller

% Controller in Transfer function form

[num_c,den_cJ=ss2tf(Ac-H*Cc-Bc*F,-H,-F,0) ;

[num_d,den_d]=ss2tf(a,b,c,d)

d_ssc=tf(num_d,den_d,Ts)

% Call the Simulink diagram for simulation

sim('sirn2model')
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C.4 UNPCK to Extract Experimental Data

% UNPCK Extracts experimental data from structures

% generated by dSpace Control Desk.

%

% To use, load the data file into the workspace, assign

% the name of the data set to the variable 'data', then

% execute the command 'unpck'. The data arrays are

% assigned to variable names matching their label name

% in Control Desk (i.e., in the Simulink system loaded by

% Control Desk.) This information is displayed by

% 'unpck' as it executes.

%

% Example:

% »load experiment_001.mat

% »data = experiment_G01;

% »unpck

%

% Advanced Controls Laboratory

% Oklahoma State University

% Stillwater OK 74075

%

disp(['Extracting: t'])

t=getfield(getfield(data, 'X'), 'Data');

temp_data=getfield(data, 'Y');

for i=1:size(temp_data,2)

temp_name=getfield(temp_data, {i}, 'Name');

disp(['Extracting: ' ,temp_name(l,findstr(temp_name, '/')

+2:size(temp_name,2)-1)])

assignin('base' ,temp_name(l,findstr(temp_name, '/')

+2:size(temp_~ame,2)-1),getfield(temp_data, {i}, 'Data'));

end

disp(['Extracting: T_sample'])

T_sample=getfield(getfield(data, 'Capture'),
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'SamplingPeriod') ;

clear 1

clear temp_data

clear temp_name

clear temp_label
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APPENDIXD

MLIB/MTRACE Matlab-dSPACE

Interface Libraries

D.I Setup File For Signal Generator Block

% This M-file is used to access and change the amplitude and

% frequency of the signal generator via MATLAB workspace

% when the simulink model is downloaded into the dSPACE

% acquisition board

%

% siggen_dlgqltr.m

%

% M-file written by Ban Fu Chee

% Advanced Controls Laboratory

% Oklahoma State University

% Stillwater OK 74075

%

function siggen_dlqgltr(amplitude, frequency) ;

% --------------------------------------------------------

% function siggen_dlqgltr(amplitude, frequency) ;

%
% SIGGEN_DLQGLTR() sets the parameters (amplitude and

% frequency) of a signal generator using the dSPACE MATLAB

% Interface Library. The signal generator is part of the

% application 'dlqgltr'. It is assumed that the unit of the
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% parameter 'frequency' of the signal generator is 'Hertz'.
%

% Amplitude peak value of the signal measured in micrometer
%

% Frequency frequency of the signal generator in Hz
%

% When called without input parameters, SIGGEN_DLQGLTR

% displays the current settings of the signal generator.
%

% Before invoking this M-file the real-time processor

% application dlqgltr.ppc must be loaded

% ---------------------------------------------------------

% Initialize dSPACE MLIB

rnlib('SelectBoard', 'DSII04');

% check if the application dlqgltr.ppc is running

DemoApplNarne = lower([pwd '\dlqgltr.ppc']);

if mlib('IsApplRunning'),

Appllnfo = mlib('GetAppllnfo');

if strcrnp(DemoApplName,lower(Appllnfo.name)) ~= 1

err_ffisg = sprintf('*** This MLIB file needs the real­

time processor application\n*** , '%s" running!', ...

DemoApplName) ;

error (err_ffisg) ;

end;

else

err_msg = sprintf('*** This MLIB file needs the real-

I , t' \ *** "~s" runnl'ng"time processor app lea lonno. , ...

DemoApplName) ;

error (err_IDsg) ;

end;

% Get descriptors for signal generator parameters

variables = {'Model Root/Signal\nGenerator/Amplitude'; ...

'Model Root/Signal\nGenerator/Frequency'};
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var_desc = mlib(/GetTrcVar l
I variables) ;

if nargin == 0,

% Print out command syntax

fprintf(/\n Usage: siggen_dlqgltr(arnplitude/frequency)\n

\n I ) ;

% Read and print out signal generator parameters

[ampl freq] = mlib(/Read' Ivar_desc);

fprintf (' Signal generator parameters: Amplitude=%g urn,

Frequency=%g Hz\n' ,amp,freq);

return

end

% Set period and peak value

mlib('Write' ,var_desc, 'Data', {amplitude;frequency});
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D.2 Setup File For Step Function Bock

% This M-file is used to access and change the amplitude and

% frequency of the Simulink Step block via MATLAB workspace

% when the simulink model is downloaded into the dSPACE

% acquisition board

%

% step_dlgqltr.m

%

% M-file written by Ban Fu Chee

% Advanced Controls Laboratory

% Oklahoma State University

% Stillwater OK 74075

%

function step_dlqgltr(time,before,after);

% This M-file 'Read' information from the position,

% reference signal and error block.

%

% Get descriptors for the Step input block

%

% var_names = {'Model Root/Step/After';

% } ;

%

% step_desc = mlib('GetTrcVar', var_names);

%

% step = mlib('Read', step_desc)

%

% % Set peak value

% mlib('Write' ,var_names, 'Data', {After}) ;

% Initialize dSPACE MLIB

mlib('SelectBoard', 'DS1104');

% check if the application dlqgltr.ppc is running

DemoApplName = lower([pwd '\dlqgltr.ppc']);
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if rnlib{'IsApplRunning'),

Appllnfo = rnlib('GetApplInfo');

if strcmp(DemoApplName,lower(Appllnfo.name)) ~= 1

err_ffisg = sprintf{'*** This MLIB file needs the real­

time processor application\n*** "%S" running! 1 I •••

DemoApplName) ;
error (err_rnsg) ;

end;

else

err_ffisg = sprintf('*** This MLIB file needs the real-time

processor application\n*** "%s" running!', ...

DernoApplName) ;
error (err_msg) ;

end;

variables = {'Model Root/Step/Time'; ...

'Model Root/Step/Before' ;

'Model Root/Step/After'};

= mlib('GetTrcVar' ,variables);

if nargin == 0,

% Print out command syntax

fprintf ('\n Usage: step_dlqgltr(time,before,after)\n\n');

% Read and print out signal generator parameters

[time,before,after] = rnlib('Read' ,var_desc);

fprintf ('Step Input parameters: Time=%g sec, Initial=%g urn,

Final=%g um\n' ,time,before/after);

return

end

% Set period and peak value

rnlib(/Write' ,var_desc, 'Data/ I {time;before;after});
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D.3 Setup File for Optimization-Based Thning of a

Discrete- Time LQGILTR Control with Hardware

In-the-loop

% This M-file is used to run the Optimization-Based Tuning

% of a Discrete-Time LQG/LTR Controller with Hardware
% In-the-loop.

% dlgqltr_mlib.m

%

% M-file written by Ban Fu Chee

% Advanced Controls Laboratory

% Oklahoma State University

% Stillwater OK 74075
~o

% Initialize dSPACE MLIB

mlib('SelectBoard', 'DSI104');

% Check if the application dlqgltr.ppc is running

DernoApplNarne = lower([pwd '\dlqgltr.ppc']);

if mlib('IsApplRunning'),

ApplInfo = mlib('GetAppllnfo');

if strcmp(DemoApplNarne,lower(ApplInfo.narne)) ~= 1

err_ffisg = sprintf('*** This MLIB file needs the real-time

processor application\n*** "%8" running! ', ...

DemoApplName) ;

error(err_msg);

end;

else

err_msg = sprintf('*** This MLIB file needs the real-time
• I \ * * * ,,~ " runnl"ng' Iprocessor appllcatlon n oS • I···

DernoApplName) ;

error(err_ffisg);

end;
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% Get descriptors for the position block

var_narnes = {'Model Root/Position/rn1'; ...

} ;

position_desc = mlib(/GetTrcVar', var_names);

position = rnlib{'Read' / position_desc)

% Get descriptors for the Reference Signal block

var_names = {'Model Root/Signal\nGenerator/Arnplitude';

} ;

refereneesignal_desc = mlib('GetTrcVar', var_names);

referencesignal = mlib('Read' I referencesignal_desc)

% Get descriptor for the error bloek

var_names = {'Model Root/error/In1';

} ;

error_dese = mlib('GetTreVar' / var_names);

error = mlib{'Read' / error_dese)

OOOOOOOOO*************************************~o~o~o%%%%%%%%:.0:.0:.015:.015:.0:.0:.0

global H F abc d Ac Be Ce Dc ac be ee de num_d den_d

den-p t y cs error u roh mu f Ad Bd Cd Dd num-p

roh= 4342;

mu= 0.0000167;

deltT=le-5; % Sampling time

% Unconstrained optimization
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%%%**** [X] = FMINSEARCH{FUN,XO,OPTIONS,Pl,P2, ... ) ***%%%

if error> (0.001)

[X]=fminunc('lqg_ltr', [roh;mu]);

else

a, b, c, d % [X] = a,b,c,d;

end % Discrete state-space controller gain
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D.4 Setup File for Discrete-Time LQGILTR Control

with Unconstrained Nonlinear Optimization

% This M-file setup all the parameters to be called by

% dlqgltr_rnlib. This is a local file.

%

% IgCLltr.rn

%

% M-file written by Ban Fu Chee

% Advanced Controls Laboratory

% Oklahoma State University

% Stillwater OK 74075

%

% Function Call

function [f,g]=lqg_ltr(X,T,deltT)

% Initialize variables

global H F abc d Ac Be Ce Dc ae be ee de cs u t y

num-p den-p error roh mu f Ad Bd Cd Dd num_d den_d

roh=X(l) ;

mu=X (2) ;

deltT=le-5; % Sample time per second

t=(0:le-5:1999*le-5); % Simulation time

% Display of the parameters that is been controlled

disp(sprintf('====== roh=roh(1)=%6.8f ====' ,roh(l)));

disp(sprintf('====== mu=mu(l)=%6.8f ====' ,mu(l)));

% A 2nd order state space model with magnitudes that

% match the 4th order model

Ac = [0 1; 0 0];

Bc= [0 O. 75ell] , ;

Cc=[lO];

Dc=[O];
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[nurn-p,den-p]=ss2tf(ac,bc,cc,dc) ;

% Target filter loop design (C phi H)

G= [1 0; 0 1];

Q=diag ( [1 1]);

[H,P,E]=lqe(Ac,G,Cc,Q, (mu)~2);

H; % Observer Gain Matrix H

% Loop Transfer Recovery

Q2=Cc'*Cc;

[F]=lqr(Ac,Bc,Q2, (roh)~2);

% LQG/LTR Controller in State Space form

sys_c=ss(Ac-H*Cc-Bc*P,-H,-P,0) ;

sys_c=sys_c*10000;

sys_d=c2d(sys_c,Ts, 'tustin');

[a,b,c,dJ=dssdata(sys_d); % Discrete Controller

% Get descriptor for the error block

var_names = {'Model Root/error/Inl';

} ;

var = mlib('GetTrcVar' I var_names);

mlib(/Set/,/Trigger','ON',

'TriggerLevel'lOI ... % Default, can be omitted

I TriggerEdge' I 'rising / , ... % Default, can be omitted

, TriggerVariable' , var(l),

'TraceVars'1 var,

INumSamples', 2000, ...

, Delay' , 500) ;

% Start Capture on DSll04

mlib ('StartCapture');

while mlib('CaptureState')-=O, end
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% Fetch data to workspace after capture is complete

error_data = rnlib('FetchData');

% Objective Function or Cost Function (minimization method)

f=surn(t.*abs{error_data) )*deltT % ITAE

% f=sum(abs(error_data))*deltT % IAE

% F=sum((error_data)A2)*deltT % ISE

%%% BEGIN WRITE DISCRETE STATE SPACE LQG/LTR CONTROLLER %%%

% Write new data to the following area: row 1:2, columns 1:2

% for A matrix

myMatrix = mlib_matrix{'Init', ...

'Model Root/Discrete State-Space\nLQGLTR Controller/A' , ...

2, 2, 'Row-Wise');

AnewData = a ;%[10 20 ; -0.5 1J;

rnlib_matrix('Write', myMatrix, [1:2J, [1:2], AnewData);

% write new data to the following area: row 2,1, columns 1:1

% for B matrix

myMatrix = rnlib_matrix('Init', ...

'Model Root/Discrete State-Space\nLQGLTR Controller/B', ...

2, 1, 'Row-Wise');

BnewData = b; %[ 20 ; -0.5 ];

mlib_matrix{'Write', myMatrix, [1:2], [1:1], BnewData);

% Write new data to the following area: row 1,2, columns 1:2

% for C matrix

rnyMatrix = mlib_matrix('Init', ...

'Model Root/Discrete State-Space\nLQGLTR Controller/C' I· • •

I, 2, 'Row-Wise');

CnewData = c; %[101];
rnlib_rnatrix('Write', myMatrix, [1:1] ,[1:2], CnewData);

% Wrlte new data to the following area: row 1,1, columns 1:1
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% for D matrix

myMatrix = mlib_matrix('Init', ...

'Model Root/Discrete State-Space\nLQGLTR Controller/D' , ...

1, 1, 'Row-Wise');

DnewData = d; %[10];

mlib_matrix('Write', myMatrix, [1:1] ,[1:1]/ DnewData);

% Reset Reference Input or Signal Generator

siggen_dlqgltr(1/50); % Amplitude = lum

% Frequency = 50 Hz
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