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CONSERVATION GENETICS OF NORTH AMERICAN WOLVERINE (GULO 

GULO) POPULATIONS: MANAGEMENT IMPLICATIONS 

Abstract 

Habitat loss, fragmentation, overharvest, and other anthropogenic factors have 

resulted in declines of North American populations of wolverines (Gufo gulo). 

Currently, wolverines east of Hudson Bay are endangered and possibly extinct, 

whereas the status of wolverines throughout the remaining Holarctic is 

vulnerable. Because they are highly vagile, wolverines in Canada have been 

considered to be a single, panmictic population. In this study, we assessed 

microsatellite and mitochondrial DNA (mtDNA) variation of 270 wolverines from 

nine collecting localities throughout Canada. Microsatellite analyses revealed 

low levels of population substructure as indicated by FST (0.0331) and genotype 

assignments. However, analysis of mtDNA detected 11 haplotypes throughout 

Canada and analysis of molecular variance revealed that 78.92% of the total 

genetic variability was attributable to variation among individuals within 

populations and 21.08% of the variation was due to variation among populations. 

Nested clade analysis identified restricted gene flow with isolation by distance 

coupled with infrequent long-distance dispersal as processes responsible for 

distribution of wolverine mtDNA haplotypes. In contrast to the recent study of the 

genetic structure of Canadian wolverine populations, results of this study 

document significant genetic structuring at both nuclear and mitochondrial loci. 

Moreover, these independent loci best fit a pattern of isolation by distance. 



Key words: carnivore, Gulo gulo, intraspecific phylogeography, microsatellite, 

population structure, wolverine 

Introduction 

Wolverines (Gulo gulo) are solitary animals that occur at low population densities 

throughout tundra, taiga, and boreal forests of North America and Eurasia 

(Wilson 1982; Nowak 1991). Prior to human settlement in North America, 

wolverines were distributed throughout Canada and Alaska with populations 

reaching as far south as Arizona and New Mexico (Hash 1987). However, due 

to habitat loss, fragmentation, overharvest, and other anthropogenic factors 

associated with the arrival of human settlers, wolverines experienced severe 

population declines throughout much of their distribution (Wilson 1982). In North 

America, wolverines currently are distributed throughout western Canada and 

Alaska with individuals extending southward into remote areas of Washington, 

Oregon, California, Idaho, Montana, Wyoming, and Colorado (Banci 1994). 

Although wolverines historically occurred throughout Canada, today, east of 

Hudson Bay wolverines are extremely rare, with only incidental sightings 

(COSEWIC 2001). 

Although genetic issues have become important in the management and 

conservation of natural populations, only two published studies have examined 

the genetic structure of wolverine populations. Wilson et a/. (2000) examined 

allozyme and mtDNA sequence variation for 43 wolverines from the Northwest 

Territories, Canada. Allozymes revealed a low degree of genetic differentiation 

(FST = 0.0760) whereas mtDNA analysis revealed a high degree of genetic 



differentiation (&T = 0.5360) among localities. From those data, Wilson et a/. 

(2000) concluded that gene flow was male biased and wolverine populations in 

northern Canada were structured genetically as a result of female philopatry. 

They further concluded that each collecting locality represented an independent 

management unit that needed to be preserved to maintain the current level of 

genetic diversity. 

Kyle & Strobeck (2001) examined microsatellite variation among 461 

wolverines from Idaho, Montana, Wyoming, Alaska, and parts of western and 

central Canada. To investigate population genetic structure, they used a 

genotype assignment test, paimise comparison of kT, and distance-based 

measurements. Based on those analyses, they concluded that populations of 

wolverines in northern Canada exhibited low levels of genetic structuring and due 

to a lack of dispersal barriers, represented a single, randomly breeding 

population. 

Wilson et a/. (2000) and Kyle & Strobeck (2001) arrived at discordant 

conclusions regarding the metapopulation dynamics and resulting management 

strategy for wolverines in northern Canada. This may, in part, be due to the 

serious limitations of each of these studies. At the time of publication, the study 

by Wilson et a/. (2000) represented the largest sampling of North American 

wolverines, however, it was limited to 43 individuals from five localities. The 

study by Kyle & Strobeck (2001) was limited by examining only biparentally 

inherited markers for a species that exhibits male-biased dispersal (Wilson et a/. 

2000). Slatkin (1 985) demonstrated the importance of using at least two 



independent loci when estimating levels of gene flow and, more importantly, use 

of a nuclear and mitochondria1 marker when determining dispersal. 

The need to re-evaluate the metapopulation dynamics of wolverines in 

Canada becomes more critical in light of two other factors. One is the lack of a 

conservation/management plan for Canadian wolverines. The other is the fact 

that the present number of wolverines in Canada is unknown and the current 

practice of unlimited harvesting by trappers may significantly impact the species. 

Because the investigation of genetic structure can provide insight into levels of 

gene flow and connectivity among populations, the objective of this study was to 

provide a stronger assessment of the genetic structure of wolverine populations 

by increasing the geographical range of sampling and using two independent loci 

(hypervariable microsatellites and mtDNA control region sequences). 

Materials and Methods 

Sample collection 

Tissue samples for 270 trapped wolverines were obtained from nine collecting 

localities in the Northwest Territories, Nunavut, and Manitoba, Canada by 

personnel from the Department of Sustainable Development and the Manitoba 

Trappers Association (Fig. I). Tissues samples from the Northwest Territories 

and Nunavut were obtained from wolverine carcasses and stored at -20°C or - 

70°C whereas desiccated skin samples were obtained from Manitoba wolverines. 

Because wolverines were assigned to collecting localities according to the area 

in which they were tagged, it is possible for the harvest area to be different from 

the assigned collecting locality. 



Laboratory methods 

Whole genomic DNA was extracted using the method of Longmire et a/. 

(1 997). Nine hypervariable microsatellite loci were amplified via the polymerase 

chain reaction (PCR) with previously developed primers from wolverine (Davis & 

Strobeck 1998; Duffy et al. 1998) and American mink (Mustela vison; O'Connell 

et a/. 1996). PCR amplification for microsatellites were conducted in 15pI 

volumes containing 50 ng of genomic DNA, 10 pmols of each primer, 3.8~1 

ddH20, and 9pl ABI Prism True ~ l l e l e ~ ~  Premix (Perkin-Elmer Applied 

Biosystems, Foster City, California). The thermal profile consisted of a 

denaturation and enzyme activation cycle at 95°C for 12 min; 10 cycles of 94°C 

for 15 s, 55°C for 60 s, and 72°C for 30 s; followed by 25 cycles of 89°C for 15 s, 

55°C for 60 s, and 72°C for 30 s. A final 72°C incubation for 30 min was used to 

ensure that all reactions went to completion. For samples that did not amplify 

after repeated steps of the aforementioned thermal profile, one or more of the 

following avenues were taken: the annealing temperature in the 10-step cycle 

was lowered, the original sample was redialyzed in IXTE (Tris, EDTA) for two 

days to remove inhibitors, or new DNA was extracted from that particular 

individual. Microsatellite variation was visualized using a Perkin-Elmer Applied 

Biosystems 377 Automated DNA Sequencer. GENESCAN ANALYSIS 2.02 and 

GENONPER 2.0 (Applied Biosystems, Inc., Foster City, California) software 

were used to determine individual genotypes. 

Approximately 200 base pairs (bp) of the mtDNA control region were 

amplified by PCR using flanking primers (OSU 7863L, 5'- 



CTAAGACTCAAGGAAGAAGCAACAGC-3' and OSU 7864H, 5'- 

AGCTCGTGATCTAAGTGAGA-3'). Amplifications were conducted in 50-p1 

volumes containing 200-500 ng of DNA, 1 mM each primer, 1 mM Mg free buffer, 

I mM MgC12, I mM dNTPs, and 1 unit Taq DNA polymerase. Cycling conditions 

consisted of a denaturation cycle at 94°C for 3 min followed by 35 cycles of 94°C 

for 40 s, 52°C for 60 s, and 72°C for 90 s. To ensure that all reactions have gone 

to completion, a final extension of 72°C for 30 min was used. 

Double-stranded amplicons were electrophoresed through a 0.8% 

agarose gel stained with ethidium bromide and exposed to ultraviolet light for 

visualization. Successful amplicons were purified using the Wizard PCR Prep 

DNA Purification System (Promega Corporation, Madison, Wisconsin). Both 

strands of the amplified products were sequenced using the aforementioned 

flanking primers and cycle sequencing according to the manufacturer's 

instructions (Big-DyeTM chain terminators, Applied Biosystems, Inc., Foster City, 

California). Cycling conditions were as follows: 25 cycles at 96°C for 10 s, 50°C 

for 5 s, and 60°C for 4 min. Sequence products were electrophoresed on a 377 

automated DNA sequencer (Applied Biosystems, Inc., Foster City, California). 

Data analysis 

To test for significant departures from Hardy-Weinberg equilibrium, all nine 

microsatellite loci were assessed by the computer program Arlequin version 2.000 

(Schneider et a/. 2000), which used a modified version of the Markov-chain random 

walk algorithm described by Guo & Thompson (1 992). Genetic variation in terms of 

observed heterozygosity (Ho), unbiased expected heterozygosity (HE), mean 



number of alleles per locus, allele frequencies, and degree of genetic structure 

(F-statistics; Wright 1965) were estimated by Arlequin version 2.000 (Schneider et 

a/. 2000). Finally, an assignment test was used to identify genotypes to 

populations from which they were sampled (Paetkau et a/. 1995). 

For all mtDNA sequences, the computer program AssemblyLIGNTM 1.0.9 

(Oxford Molecular Group PLC 1998) was used to assemble overlapping 

fragments within individuals and CLUSTAL X (Thompson et a/. 1997) was used 

to obtain a multiple sequence alignment of all individuals sequenced plus the 43 

individuals originally examined by Wilson et a/. (2000; GenBank accession 

numbers AF 21 0090-AF 21 01 32). t he  multiple sequence alignment was 

subsequently imported into the computer program MacClade (Madison & 

Madison 2000) to identify variable nucleotides and resulting haplotypes. The 

REDUNDANT TAXA option of MacClade was used to compile redundant 

sequences for further analyses. Genetic divergence among haplotypes was 

estimated using the distance method of Tamura & Nei (1993) with the computer 

program PAUP version 4.0 (Swofford 2001 ). Haplotype diversity (h),  nucleotide 

diversity (n), haplotype frequencies, and degree of genetic structure (&statistics; 

Wright 1965) were calculated using Arlequin 2.000 (Schneider et a/. 2000). The 

computer program TCS Alpha version 1.1 3 (Clement et a/. 2000) was used to 

generate an unrooted haplotype network with resulting ambiguities in the network 

resolved following the recommendations of Crandall & Templeton (1993) and 

Templeton & Sing (1 993). The haplotype network was converted into a series of 

nested clades: haplotypes were grouped into 1 -step clades, 1 -step clades into 2- 



step clades, 2-step clades into 3-step clades until -all subclades were grouped 

into a single clade (Templeton et a/. 1987). This information, along with 

geographic distances, was incorporated into the computer program GeoDis 

version 2.0 (Posada et a/. 2000). GeoDis calculates clade distance (D,), which 

measures the geographic distribution of a particular clade and nested clade 

distance (D,), which measures how a clade is distributed geographically in 

relation to its closest evolutionary sister clade (Templeton et a/. 1995). The 

distance distribution of the nested clade vs. geographical position were 

recalculated using 10,000 permutations under the null hypothesis of no 

geographic association between haplotypes. The resulting distance values of the 

nested design were used with a revised inference key 

(http://bioag. byu.edu/zoology/crandall~lab/programs. htm) to infer contemporary 

and historical factors responsible for clades showing significant associations of 

haplotype distributions and geography. 

To evaluate whether these data fit a pattern of isolation by distance, 

paiwise FST and pairwise hT values were incorporated into a two-way Mantel 

test (Smouse et a/. 1986) with geographic distance using Arlequin 2.000 

(Schneider et a/. 2000) to determine the correlation between genetic distance 

and geography. 

Results 

Based on genotyping 270 wolverines for nine microsatellite loci, the mean 

number of alleles per locus ranged from 1.3 to 6.0 (Table 1). Among collecting 

localities, observed heterozygosity (H,) ranged from 0.4127 to 0.7407 whereas 



unbiased expected heterozygosity (HE) ranged from 0.5177 to 0.7407. After 

correcting for multiple comparisons (Bonferroni adjustment; Rice 1989), seven 

loci deviated from Hardy-Weinberg expectations, all of which were due to 

heterozygote deficiencies. Because no locus deviated from Hardy-Weinberg 

expectations in all populations and because individuals were grouped according 

to check-station information, it is most likely that these deviations from Hardy- 

Weinberg equilibrium are the result of artificial lumping (i-e., Wahlund effect). 

Assignment test and pairwise FST 

The genotypic assignment test correctly assigned 156 of 270 (57.8%) individuals 

to the area from which they were sampled (Table 2). With the exception of the 

sole individual from Arviat, considerable variability was detected in the 

percentage of correctly assigned individuals. The highest probability of assigning 

an individual to its collecting locality occurred for Aklavik, Rendezvous Lake, 

Kugluktuk, and Manitoba; the four most geographically separated collecting 

localities (Table 2; Fig. 1). For the five remaining collecting localities in central 

Canada, correct assignments ranged from 0.00 (for the area between Kugluktuk 

and Bathurst Inlet, Nunavut) to 0.52 (Bay Chimo, Nunavut). The inability of the 

assignment test to correctly assign a large proportion of individuals to the area of 

capture was supported by the low level of genetic differentiation among collecting 

localities (FST = 0.0331) and only 13 of 36 statistically significant pairwise FST 

comparisons (Table 3). The general pattern revealed by 13 statistically 

significant pairwise FST comparisons was that the two western-most collecting 

localities were significantly different from the three eastern-most localities and 



that Bathurst Inlet and Bay Chimo were significantly different from Kugluktuk and 

Manitoba. Moreover, Kugluktuk and Manitoba were significantly different from 

each other (Table 3). Results from paitwise FsTcomparisons were entered into a 

two-way Mantel test with corresponding geographic distances to analyze for 

isolation by distance. Results of the Mantel test suggest that FST values are 

significantly correlated to geographic distance (FSTvs. geographic distance 

r = 0.42 P = 0.037). 

Mitochondria1 variation 

An approximately 200-bp fragment of the mtDNA control region was sequenced 

for all 270 wolverines. Alignment of these sequences revealed nine variable 

nucleotide positions (6 transitions, 1 transversion, and 2 insertionldeletion 

events), resulting in 11 haplotypes (Table 4). Due to larger sample size and 

increased geographic scope, we detected 2 haplotypes (J and K) not identified 

by Wilson et a/. (2000). These two haplotypes were detected only in samples 

from Manitoba. A representative sequence of haplotypes J and K have been 

deposited in GenBank (accession numbers AY 1851 67-AY 1851 68). Percent 

sequence divergence among haplotypes ranged from 0.00% (2 haplotypes 

differing by a single insertion/deletion event) to 2.07%, with a mean of 1 .lo%. 

The number of haplotypes per locality ranged from 1 to 5 with a mean of 

3.3. Within population haplotype diversity (h) was generally high (range of 

0.5265 to 1.000, with a mean of 0.7129; Table 5) whereas within population 

nucleotide diversity (n) was low (range of 0.0000 to 0.0154, with a mean of 

0.0054; Table 5). Haplotypes A and C were widespread, occurring throughout 



the sampled geographic area whereas haplotypes 8, D, and E were restricted to 

the two most western localities; haplotypes G and H were found only in the five 

most central localities, and haplotypes J and K were restricted to the two most 

eastern collecting localities (Table 5). Hierarchical analysis of mtDNA variation 

revealed that 78.92% of the genetic variation was attributable to differences 

among individuals within populations whereas 21.08% of the variation was 

partitioned among collecting localities. Considerable genetic differentiation was 

detected among collecting localities based on mtDNA sequence data (kr = 

0.2890). When analyzed in a pairwise fashion, 15 of 36 statistically significant 

pairwise hT comparisons also were revealed (P = 0.001 ; Table 3). The emerging 

pattern from the 15 statistically significant painnrise kT comparisons was that the 

western-most localities were significantly different from Kugluktuk, Bay Chimo, 

and Manitoba and that Bay Chimo was significantly different from Kugluktuk and 

Manitoba. Arviat also was significantly different from the central collecting 

localities while Kugluktuk and Manitoba were significantly different from each 

other (Table 3). Results from painnrise hT comparisons were entered into a two- 

way Mantel test with corresponding geographic distances to analyze for isolation 

by distance. Results of the Mantel test suggest that &T values are correlated to 

geographic distance (hTvs. geographic distance r = 0.60 P = 0.005). 

Using the computer package TCS (Clement et a/. 2000), which 

incorporates the formulae given in Templeton et a/. (1 992), mtDNA haplotypes 

separated by up to two mutational steps have a probability of r 0.95 of being 

connected in a parsimonious fashion. Using the rules of Templeton & Sing 



(1993), a nested design was generated (Fig. 2). Within this network, two loops 

indicate ambiguous haplotype connections. The first loop contained haplotypes 

C, F, G, and H, whereas the second loop consisted of haplotypes A, B, E, and F. 

Despite these ambiguities, the logic of Crandall & Templeton (1 993) allowed 

these loops to be resolved. Although the nested contingency analyses did not 

incorporate information of geographic distance between localities, it revealed 

significant associations among haplotypes comprising clades 1-2, 1-3, 2-1, 2-2, 

and the entire cladogram and their geographic locations (Table 6). No other 

contingency tests were significant at the 5% level. 

The null hypothesis of no association between geographic distribution of 

haplotypes and mtDNA genealogy was rejected for five clades (Table 7; Fig. 3). 

Use of the inference key led to the conclusion that the null hypothesis was 

rejected in favor of restricted gene flow with isolation by distance for clades 1-2, 

2-1, and 2-2. The null hypothesis was rejected for clade 1-3, but our sampling 

design was inadequate to discriminate between fragmentation, range expansion, 

and isolation by distance. The null hypothesis also was rejected for the entire 

cladogram, but our sampling design was inadequate to discriminate between 

fragmentation, range expansion, or long-distance colonization. 

Discussion 

Levels of intrapopulation genetic variation 

Three collecting localities (Kugluktuk and Bay Chimo, Nunavut and Manitoba) 

were sampled in both this study and the study of Kyle & Strobeck (2001), which 

allowed direct comparisons of mean number of alleles per locus and 



heterozygosity based on several microsatellite loci. Kyle & Strobeck (2001) 

detected mean number of alleles per locus of 4.83, 5.00, and 4.50 for these 

collecting localities, respectively, which is in good agreement with the mean 

number of alleles that we detected for these same localities (Table 1). These two 

studies also were in agreement regarding levels of expected heterozygosity. 

Kyle & Strobeck (2001) detected expected heterozygosity values of 0.6361, 

0.6468, and 0.6699 for Bay Chimo, Kugiuktuk, and Manitoba, respectively, 

whereas our independent analysis for these same sampling areas revealed 

expected heterozygosity levels of 0.6365, 0.6370, and 0.6921. Because these 

descriptive statistics are based on independent analyses involving different 

individuals and several different loci, they indicate considerable agreement in 

documenting levels of genetic variation within these three populations of 

wolverines. Additionally, because calculations of expected heterozygosity are 

fairly robust to small sample sizes, the high levels of expected heterozygosity 

detected for each of our collecting localities (with the exclusion of Arviat in which 

we had only a single individual) probably are accurate depictions of current levels 

of genetic variation within our sampling of wolverines. 

North American wolverines exhibit greater levels of genetic variability than 

their Scandinavian counterparts. Walker et al. (2001) examined microsatellite 

and mtDNA sequence variation of 169 wolverines from Scandinavia and revealed 

mean expected heterozygosity values of 0.3930, 0.3450, 0.3710, and 0.3480 

from northern Norway, southern Norway, Sweden, and a historical population 

(extinct), respectively. Also, mean number of alleles per locus was 3.0. 



Sequence analysis of a 338-bp fragment of the mtDNA control region revealed 

only a single haplotype among all individuals whereas the number of haplotypes 

occurring per locality in our study ranged from 1 to 5 with a mean of 3.3. This 

single Scandinavian haplotype was not detected among the 270 individuals we 

examined, indicating a long separation between Eurasian and North American 

wolverines. Additionally, the number of nucleotide differences between the 

Scandinavian haplotype and haplotypes detected in our study ranged from 3 to 8, 

with a mean of 5. Walker e t  a/. (2001) concluded that low levels of genetic 

variation observed in extant and extinct populations of Scandinavian wolverines 

are likely the result of an extirpation-induced bottleneck and post-glacial founder 

events. 

Levels of genetic structure 

Two previous studies examined levels of genetic structuring among populations 

of wolverines from Canada. Wilson et a/. (2000) examined five polymorphic 

allozyme loci whereas Kyle & Strobeck (2001) examined 12 hypervariable 

microsatellite loci. Both studies concluded that wolverines in northern Canada 

exhibited little geographic structuring. Although Kyle & Strobeck (2001) 

examined a large number of wolverines (461), they were unable to examine 

wolverines from the Northwest Territories and concluded that without these 

samples, it is unclear as to whether the lack of genetic differentiation observed in 

northern regions is an accurate representation. Although sample sizes in our 

study were small, we were able to include samples from two distinct areas of the 

Northwest Territories (Fig. I) .  Based on pairwise FST comparison of 



microsatellite variation and, to a lesser degree, the genotypic assignment tests, 

these two areas appear to exhibit significant genetic differentiation from the 

eastern localities of Kugluktuk and Manitoba (Tables 2 and 3). Moreover, these 

statistics indicate significant genetic differentiation within and among many of the 

sampling localities in Nunavut and Manitoba. Similarly, results of the Mantel test 

indicate that FST values are correlated with geographic distance, supporting this 

level of genetic differentiation. The most likely explanation for low levels of 

genetic structuring based on biparentally inherited genetic loci is the result of 

long-distance dispersal of subadult males to establish their home ranges and a 

lack of topographical features inhibiting dispersal (Magoun 1985). 

In contrast to results based on nuclear microsatellite variation, but in 

agreement with the conclusions of Wilson eta/. (2000), significant genetic 

structuring among collecting localities was detected based on a mitochondrial 

locus (kT = 0.2890). Furthermore, 15 of 36 statistically significant pairwise hT 

comparisons (P = 0.001 ; Table 3) indicate considerable genetic structuring 

among localities. Our western-most localities are significantly different from 

Kugluktuk, Bay Chimo, and Manitoba. Moreover, Bay Chimo is significantly 

different from Kugluktuk and Manitoba (Table 3). Also, significant structuring was 

detected between Arviat and central collecting localities, and between Kugluktuk 

and Manitoba (Table 3). Results of the Mantel test (kT vs. geographic distance), 

which tests for isolation by distance, re-affirms the level of genetic structure 

among collecting localities. The contrasting patterns of nuclear and 

mitochondrial variation suggest that gene flow in wolverines is male biased. 



Moreover, the observed high levels of haplotype diversity coupled with low 

nucleotide diversity suggests that wolverines in northern Canada may have 

experienced a rapid expansion from an ancestral population with a small 

effective population size (Avise 2000). 

Nested-clade analysis has been shown to have more statistical power for 

detecting population subdivision than traditional F-statistics and can distinguish 

between contemporary and historic processes responsible for the observed 

patterns of genetic variation (Templeton 1998). Eight clades were detected in 

the mtDNA haplotype network for wolverines (Fig. 2). The null hypothesis of no 

association between haplotype distribution and geography could not be rejected 

for three of these clades (1-1, 1-4, and 1-5); failure to reject the null hypothesis 

results from sufficient gene flow between localities, small sample sizes, 

inadequate geographic sampling, or insufficient genetic variation in sampled 

populations (Templeton et a/. 1995). Considering haplotypes comprising these 

clades, the most plausible explanation for the failure to reject the null hypothesis 

is inadequate sampling in terms of numbers of individuals and geography. Clade 

1-1 comprises haplotypes A and B. Haplotype A was detected in 16 individuals 

representing all collecting localities except for Rendezvous Lake, Northwest 

Territories (n = 3), Kugluktuk, Nunavut (n = 181), Bathurst Inlet, Nunavut (n = 7), 

and Arviat, Nunavut (n = I).  Because of the large sample size for Kugluktuk, if 

haplotype A occurs in this area, it must be present at a very low frequency. In 

contrast, haplotype B was detected only in three individuals from our western- 

most collecting locality (Table 5). Therefore, the most likely explanation for 



failure to reject the null hypothesis for this clade is inadequate geographic 

sampling. 

The presence of three haplotypes (DIE, and F) comprising clade 1-2 

occur only in the western-most collecting localities (Aklavik, Northwest 

Territories; Rendezvous Lake, Northwest Territories; and Kuglu ktu k, Nunavut) 

contributes to the high degree of genetic differentiation detected. However, the 

failure to detect a significant association between geography and these closely 

related haplotypes is perhaps due to insufficient sampling of individuals at most 

collecting localities and inadequate geographic sampling. Finally, clade 1-5 

comprises a hypothetical intermediate haplotype and haplotype K, which was 

present only in Manitoba (Fig. 2). The presence of haplotype K in eight 

individuals from Manitoba further supports the genetic uniqueness of this 

collecting locality. 

Regarding clades for which the null hypothesis was rejected (Table 7), the 

most likely explanation for the distribution of haplotypes in clades 1-2, 2-1, and 2- 

2 is restricted gene flow with isolation by distance. Clade 1-2 consists of the 

closely related haplotypes D, E, and F (Fig. 2). Haplotypes D and E are 

restricted to Aklavik and Rendezvous Lake, Northwest Territories, respectively, 

whereas haplotype F is present at Aklavik, Northwest Territories and Kugluktuk, 

Nunavut. It is interesting to note that greater geographic distance separates 

Rendezvous Lake and Kugluktuk than Kugluktuk and the other four central 

collecting localities, however, haplotype F was not detected in the other localities. 

Similarly, clade 2-1 contains two I-step clades (1-1 and 1-2) and with the 



exception of the geographically widespread haplotype A, the remaining 

haplotypes are indicative of low levels of gene flow between the collecting 

localities in western parts of the Northwest Territories and localities in western 

Nunavut. Clade 2-2 consists of three 1-step clades ( I  -3, 1-4, and 1-5). 

Haplotype C is present in all localities from Kugluktuk to Manitoba (except for the 

area between Kugluktuk and Bathurst Inlet (n = 3), haplotypes J and K are 

restricted to Manitoba whereas haplotype I is present in Rendezvous Lake, 

Kugluktuk, and Bay Chimo. When the haplotype ne'hvork is interpreted in light of 

geographic distribution of the three I-step clades, the most probable explanation 

is restricted gene flow with isolation by distance. 

Clade 1-3 consists of haplotypes G, H, and J. Haplotypes G and H are 

found only in wolverines from the five most central collecting localities in western 

Nunavut whereas the closely related haplotype J is restricted to Manitoba. The 

explanation for rejection of the null hypothesis for clade 1-3 is fragmentation, 

range expansion, or isolation by distance. Although it is not possible to 

discriminate among these hypotheses bdsed on our data, the most plausible 
. . 

* .  
explanation is isolation by distance. a % : : 

Finally, the null hypothesis has rejected for the entire cladogtam2&ith the 
ir 

, 4  

possible explanation being either fragmentation, range expansion, or- 
: z - 

\-> 

long-distance colonization.  ejection of the null hypothesis for this clade is . 

primarily due to haplotypes B, E, F, and D occurring in the western-most 

collecting localities, haplotypes C, G, and H being restricted to the central and 

eastern localities, and haplotypes J and K being restricted to the southeastern- 



most collecting locality in Manitoba. It is unlikely that fragmentation is a suitable 

explanation for the distribution of haplotypes because there appear to be no 

barriers to dispersal in these areas (Hornocker & Hash 1981 ; Banci 1994). The 

most probable explanation for the distribution of haplotypes making up the entire 

clade is long-distance colonization, which is well supported by several life-history 

characteristics (i.e. long distance dispersal capability, subadult males disperse 

far from natal areas to establish home ranges, and topographic features such as 

mountains, rivers, and lakes do not serve as barriers to gene flow) of wolverines. 

Although previous studies (Wilson et a/. 2000; Kyle & Strobeck 2001) 

and results of our analyses suggest that gene flow is male biased, female 

wolverines are capable of dispersing long distances (Gardner 1985; Gardner et 

a/. 1986; Copeland 1996). Magoun (1 985) reported a 300-km excursion by a 

female yearling over a five-month period. Similarly, investigation of dispersal 

among 24 Scandinavian wolverines revealed that 100% of males and 69% of 

females dispersed (Vangen et al. 2001). Dispersal distance of males averaged 

51 km whereas females averaged 60 km (likely underestimates due to loss of 

radio contact). Moreover, Vangen et al. (2001) concluded that resource 

competition influenced female dispersal patterns, whereas competition for mates 

influenced male dispersal. 

Conclusions and management recommendations 

The unregulated harvesting of any organism can have serious implications for 

the survival and well being of the species. Thus, for most harvested wildlife, 

detailed management plans are developed to maintain sustainable populations in 



conjunction with harvesting. However, a management plan for wolverines in 

Canada does not currently exist. Even though estimates of population size, 

connectivity, and autonomy are uncertain, wolverines continue to be harvested 

throughout much of their North American distribution (Banci & Harestad 1990; 

Banci 1994). Because of their circumpolar distribution and ability to disperse 

long distances in a relatively short time (Gardner 1985; Magoun 1985, Gardner 

etal. 1986, Copeland 1996, Vangen etal. 2001), it has been assumed that 

wolverines in Canada represent a single, panmictically breeding population 

(Banci 1994). Development of a management plan to allow continued 

harvesting of wolverines has been complicated by these factors coupled with the 

solitary and secretive nature of the taxon in which it inhabits very remote regions 

of North America. 

Two recent studies have contributed information on the partitioning of 

genetic variation of Canadian wolverines but made contradictory conclusions 

regarding the potential management implications of their data. Wilson ef al. 

(2000) concluded that wolverines in Canada exhibited male-biased gene flow 

with female philopatry and as such, to maintain genetic diversity within the 

species, each of the collecting localities examined should be regarded as 

separate management units. In contrast, Kyle & Strobeck (2001) concluded that 

low levels of genetic structure in northern Canada were a result of high levels of 

gene flow and few barriers to dispersal. However, the pattern of genetic 

structuring revealed by mitochondria1 data Wilson ef al. 2000), which Kyle & 

Strobeck (2001) failed to address, provides additional information regarding 



population dynamics and failure to include this information can lead to the 

development of misguided management plans. 

As discussed by Avise (1995, 2000), a significant connection between 

population demography and matrilineal structuring can occur when female 

dispersal is extremely low and male dispersal is high, as shown by our study and 

that of Wilson et a/. (2000). In such a case, populations could be independent 

demographically even in the absence of significant genetic structure based on 

nuclear loci (Avise 2000). Moreover, estimates of genetic structuring based 

solely on nuclear loci could provide a misleading base for management decisions 

(Avise 2000). Therefore, given the low level of genetic structuring portrayed by 

nuclear loci (Wilson ef a/. 2000; Kyle & Strobeck 2001; This study) in 

conjunction with results from the analysis of mitochondria1 DNA sequence 

variation (Wilson et a/. 2000; This study), the most conservative 

recommendation for the development of a management plan for wolverines in 

northern Canada is to treat our western (Aklavik, Rendezvous Lake, Northwest 

Territories), central (Kugluktuk, Bathurst Inlet, Bay Chimo, Cambridge Bay, and 

the area between Kugluktuk and Bathurst Inlet, Nunavut), and eastern (Arviat, 

Nunavut and Manitoba) collecting localities as separate management units. 

Support for this recommendation is obtained from eight pairwise comparisons 

that reveal values statistically different from zero (Table 3). Six of these eight 

comparisons involve our sampling localities with the largest sample sizes 

(Aklavik, n = 12; Kugluktuk, n = 181; Bay Chimo, n = 29; Manitoba, n = 28). The 

fact that these sampling areas contain significant structuring at both autosomal 



and mtDNA loci suggests demographic autonomy of these localities (Avise 

2000). 

As indicated by Kyle & Strobeck (2001), a limitation of their study, as well 

as our study, is the inability to fully describe the likely complicated local social 

structure of wolverines. Kyle & Strobeck (2001) point out that due to their broad 

geographic sampling of wolverines, it is unlikely that local wolverine groups, in 

which juvenile females establish home ranges adjacent to their mothers would be 

revealed. Although we also sampled over a broad geographic area, we were 

able to document female site fidelity, however, due to their large home ranges 

and remoteness of their habitat, it is unlikely that our grouping of wolverines 

accurately reflects autonomous demographic units. Therefore, additional 

ecological, behavioral, and genetic studies need to be conducted to better 

understand metapopulation dynamics of wolverines in North America. Future 

genetic studies should attempt to include additional individuals from the localities 

sampled in this study, intermediate areas between ours, and between localities 

sampled by Kyle & Strobeck (2001). Finally, all samples examined by Kyle & 

Strobeck (2001) should be sequenced for the 200-bp mtDNA fragment that we 

examined, and these data should be combined with our results to provide a more 

accurate portrayal of the partitioning of genetic variation within and among 

populations. These additional data would add considerable information to the 

management plan for wolverines in northern Canada. 
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Table 1. Descriptive statistics of microsatellite genetic variation 
from collecting localities including number of individuals (n), mean 
number of alleles per locus (A), observed heterozygosity (Ho), and 
unbiased estimate of expected heterozygosity (HE). 

Aklavik, NWT 

Rendezvous Lake, NWT 

Kugluktuk, NU 

Kug-61, NU* 

Bathurst Inlet, NU 

Bay Chimo, NU 

Cambridge Bay,NU 

Arviat, NU 

Manitoba 

* Samples collected from the area between Kugluktuk and 
Bathurst Inlet, Nunavut. 



Table 2. Population assignments from genotype assignment test following the method of Paetkau 
et al. (1 995). The number of correctly assigned individuals for each collecting locality appear along 
the diagonal. R. Lake = Rendezvous Lake, Northwest Territories; Kug = Kugluktuk, Nunavut; Kug-BI = 
area between Kugluktuk and Bathurst Inlet, Nunavut; BI = Bathurst Inlet, Nunavut; Bay = Bay Chimo, 
Nunavut; CB = Cambridge Bay, Nunavut; Man = Manitoba. 

n Aklavik R. Lake Kug Kug-BI BI Bay CB Arviat Man 

Aklavi k 

R. Lake 

Kug 

Kug-BI 

B I 

Bay 

CB 

Awiat 

Man 



Table 3. Pairwise comparisons of genetic differentiation among the nine collecting localities throughout 
Canada. Values above the diagonal are glsTwhereas numbers below the diagonal are FST. Values denoted 
by an asterisk (*) are significantly different from 0 (a = 0.05) based on the Bonferroni adjustment for multiple 
comparisons. R. Lake = Rendezvous Lake, Northwest Territories; Kug = Kugluktuk, Nunavut; Kug-BI = area 
between Kugluktuk and Bathurst Inlet, Nunavut; BI = Bathurst Inlet, Nunavut; Bay = Bay Chimo, Nunavut; 
CB = Cambridge Bay, Nunavut; Man = Manitoba. 

Aklavik R. Lake Kug Kug-BI B I Bay CB Arviat Man 

Aklavi k 

R. Lake 

Kug 

Kug-BI 

B 1 

Bay 

CB 

Arviat 

Man 



Table 4. Polymorphic nucleotide sites within the 200 bp fragment of mtDNA 
control region sequences and resulting haplotypes (A - K) for 270 wolverines 
sampled from nine collecting localities in the Northwest Territories, Nunavut, and 
Manitoba, Canada. Numbers at the top indicate the position among 200 aligned 
sites. Small, solid circles represent nucleotide characters identical to that found in 
haplotype A at that position. Insertion-deletion events are denoted by dashes. 

Haplotype 21 50 60 63 125 126 149 180 187 



Table 5. Distribution 9f each of the 11 mtDNA haplotypes within the nine collecting localities throughout northern Canada 
and within locality haplotype (h) and nucleotide (n) diversity along with their respective standard error (SE). R. Lake = 
Rendezvous Lake, Northwest Territories; Kug = Kugluktuk, Nunavut; Kug-BI = area between Kugluktuk and Bathurst Inlet, 
Nunavut; BI = Bathurst Inlet, Nunavut; CB = Cambridge Bay, Nunavut; Bay = Bay Chimo, Nunavut; Man = Manitoba. 

mtDNA haplotypes 

Locality A C G H I F D B E J K h SE n SE 

Aklavik 7 1 3 1 0.6364 0.1277 0.0040 0.0035 

R. Lake 2 I 0.6667 0.3143 0.01 02 0.0096 

Arviat 1 0.7163 0.0162 0.0055 0.0040 I 

Man 6 1 14 8 0.6700 0.0540 0.0155 0.0092 



Table 6. Nested contingency analysis of geographic associations based upon 
1,000 iterations. Clades are the same as in Fig. 2 and include only those clades 
with a probability value less than 0.05, indicating significant geographic 
structuring. 

- 

Clade Observed Chi-square statistic Probability 

1 -2 

1 -3 

2-1 

2-2 

Entire cladogram 



Table 7. Interpretation of the evolutionary processes responsible for the 
clades depicted in Fig. 3 for which the null hypothesis of no association between 
haplotype distribution and geography was rejected. Final inferences were 
determined by use of an inference key available at 
(http://bioag. byu.edu/zoology/crandalI~lab/programs. htm). 

Clade Inference 

1 -2 Restricted gene flow with isolation by distance. 

Sampling design inadequate to discriminate between l3 fragmentation, range expansion, and isolation by distance. 

2-1 Restricted gene flow with isolation by distance. 

2-2 Restricted gene flow with isolation by distance. 

Entire Sampling design inadequate to discriminate between 
cladogram fragmentation, range expansion, and long distance colonization. 



Fig. I .-- Collecting localities (1-9) within the Northwest Territories, Nunavut, and 
Manitoba, Canada. Site I: Aklavik; site 2: Rendezvous Lake; site 3: 
Kugluktuk; site 4: Kug-BI (area between Kugluktuk and Bathurst Inlet); site 
5: Bathurst Inlet; site 6 Bay Chimo; site 7: Cambridge Bay; site 8: Arviat; 
site 9: Manitoba. 

Fig. 2.--- Unrooted estimated 95% parsimony cladogram of I I haplotypes 
detected in wolverines. Haplotypes are connected by a single line, which 
represents a single mutational event. Haplotypes are represented by 
letters A - K whereas solid circles represent intermediate haplotypes that 
are not present in the sample, but are necessary to link all observed 
haplotypes via a single mutational event. 

Fig. 3.--- Results of nested clade analysis of geographical distance for wolverine 
mtDNA haplotypes. Haplotype designations are at the top of the figure 
and organized to depict the nested design shown in figure 2. Dc and DN 
are the clade distance and nested-clade distance, respectively whereas, 
(I-T)c and (I-T)N are distances for the difference between interior and tip 
clades, respectively. A superscript "S" indicates that the measured 
distance was significantly small at the 5% level whereas, a superscript "L" 
indicates that the measured distance was significantly large at the 5% 
level. 
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