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Chapter 1 

Introduction 

Background and significance 

The vegetable crop production industry is held to quality standards implemented 

by the United States Department of Agriculture (USDA) and Food and Drug 

Administration (FDA). Growers must prevent the occurrence of insect pest infestations 

to avoid detectable insect damage and contaminants in the harvested products. 

Marketing of leafy greens such as kale, collards, mustard, spinach, and cabbage is 

of two types. First, the crops may be harvested as fresh produce which is not processed 

or changed in any meaningful manner. These products fall under the regulatory 

guidelines of USDA. Secondly, processed products in which the leaves are changed in a 

meaningful manner fall under the regulatory guidelines of the FDA. There are strict 

standards on the level of contaminants allowed in processed foods including leafy greens 

packaged in 'cello packs' of fresh cut greens, canned greens, and frozen greens (Gecan et 

al. 1990). FDA has regulatory authority to inspect the produce prior to processing, 

during processing and after completion of processing. Contamination may occur during 

the production phase of growing such as that from infestation by insects, insect parts, 

insect wastes and insect skins. 

The primary insect pests that occur on and damage leafy greens include the green 

peach aphid; lepedopteran larvae such as the cabbage looper, arrnyworrn and 

diamondback moth; and various species of grasshoppers (Sweeden 1996). Of these 

insects, grasshoppers do not necessarily reproduce and spend their entire life cycle in the 



same fields. They are more abundant in weeds, soybean, or surrounding vegetation than 

in leafy greens (Sweeden 1996). 

Literature on grasshoppers on vegetable crops in the south central United States is 

scarce. In 1962, Coppock (1962) conducted a study of grasshoppers in Oklahoma and 

cataloged species of grasshoppers belonging to the family Acrididae. The differential 

grasshopper Melanoplus differentialis nigricans Cockrell was one of the most common 

and destructive grasshoppers that has adapted to agricultural environments of its range. 

Its habitat range is very general, occurring in cultivated crops as well as waste areas, 

roadsides, field borders, and grasslands (Coppock 1962). It probably does more damage 

to cultivated crops than any other species of grasshopper in Oklahoma (Coppock 1962). 

According to Harvey et al. (1 993), the differential grasshopper causes damage to corn, 

wheat, and alfalfa in central parts of the United States. Sweeden (1 996) studied the 

species composition and distribution of grasshoppers within and around fields of leafy 

greens adjacent to soybean fields in the Arkansas River Valley. He found that the 

Acrididae grasshoppers, Schistocerca americana (Drury), the red legged grasshopper 

Melanoplus femurrubrum (De Geer), the differential grasshopper, M differentialis 

(Thomas), and the Carolina grasshopper, Dissosteira carolina (Linnaeus) were common 

in crop fields and surrounding vegetation. 

Management of grasshopper populations in leafy green vegetables is important to 

the quality of the final product. This is critical late in the growing season when 

grasshoppers move into the field just prior to harvest. They move into the actively 

growing crops when other crops are senescing. The tolerance for insects, insect parts, 

and contaminants for leafy green crops marketed in United States is practically zero. 



Therefore, populations of pests must be maintained at very low levels. The major tool for 

controlling insect pests has been the application of insecticides, mostly organophospates 

and carbamates because they have broad-spectrum activity and have been shown to be 

very effective (Ware 2000). Grasshoppers can be managed either by killing the migrating 

and feeding grasshoppers or repelling them from the field. The control strategies must be 

fast-acting to stop insects moving into the field just prior to harvest and must have 

residual activity so that control can be achieved at a reasonable interval prior to harvest 

and yet continue to be active until harvest. 

The implementation of the Food Quality Protection Act (FQPA) in 1996 may 

result in loss of registration andlor restriction of use of many pesticides including 

organophospates, carbamates, and Group A, B and C classes of carcinogenic pesticides 

currently used by growers to produce leafy greens for processing. Under these 

circumstances, there is a need for determining the efficacy of new insecticides that could 

be used in the management of insect pests of leafy greens. Many of these have been 

newly registered or are currently under consideration. 

Leafy green vegetables in the south-central United States are grown from August 

through May and thus the crops and insects are subject to a wide range of temperatures 

varying between 5°C and 35°C. Temperature is a major factor affecting insecticide 

efficacy (Johnson 1990). Toxicity effects mediated by temperature can be either positive 

or negative (Ware 2000). These response relationships depend on the target species, 

method of application and quantity of insecticide ingested or contacted (Johnson 1990). 

Different classes of insecticides can react differently at varying temperatures. Therefore 



it is important to determine the effects of different temperatures on the efficacy of 

insecticides targeted for grasshoppers damaging leafy green vegetables. 

The objectives of this research were to determine toxicity of selected insecticides 

as they affect grasshoppers and to determine how toxicity may be mediated by 

temperature. 

Objectives 

A. Evaluate and compare the efficacy and residual activity of different classes of 

insecticides including: an insect growth regulator, diflubenzuron [Dimilin]; a 

botanically derived insect growth regulator, azadirachtin [Neemix 4.51; a microbial 

insecticide, Beauveria bassiana GHA [Mycotrol]; a microbial-derived insecticide, 

spinosad [Spintor] to currently recommended insecticides for insect pest control in 

leafy greens (cyclodine, endosulfan [Thiodan]; pyrethroid, esfenvalarate [Asana]; 

and organophosphate, naled [Dibrom]) for control of the differential grasshopper. 

B. Evaluate the effect of temperature on the efficacy of the insect growth regulator, 

diflubenzuron [Dimilin]; the botanically derived insect growth regulator, 

azadirachtin [Neemix 4.51; the microbial insecticide, Beauveria bassiana GHA 

[Mycotrol]; the microbial-derived insecticide, spinosad [Spintor]; and the pyrethroid, 

esfenvalerate [Asana] for the control of differential grasshoppers damaging leafy 

greens. 
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Chapter I1 

Literature Review 

Leafy green vegetables 

~ e a f y  green vegetables are classified as minor crops by the United States 

Department of Agriculture due to the low acreage grown and low production value 

relative to agronomic crops such as corn and cotton. However they are important 

components of our diet. Most of the important leafy green vegetables such as kale, 

collards, mustard, turnips, chinese cabbage, and cabbage belong to the Cruciferae, which 

is commonly called the Mustard family (Ware et al. 1980). The above mentioned 

crucifers belong to the Genus Brassica (Ware et al. 1980) and are often called brassica 

greens. Spinach belongs to the genus Spinacia within the family Chenopodiaceae which 

is commonly called the Goosefoot family (Ware et al. 1980). 

Insect pests of leafy greens 

Leafy vegetables such as collards, kale, mustard, and turnip greens are 

susceptible to attack by a wide variety of insects and other pests while in the field (Gecan 

et al. 1990). Because of the physical form of greens leaves and the numerous pests that 

may become entrapped among the leaves, these raw products must be thoroughly washed 

before processing. They are usually soaked in tanks of water combined with agitation 

and sprays, followed by a series of high-pressure water sprays to remove strongly 

adhering soil and insects (Gecan et al. 1990). In spite of processors' best efforts, many 

insect pests such as adult and larval moths, beetles, flies, ants, wasps, aphids, scale 



insects, thrips, psocids, and mites are found as minute contaminants in canned processed 

greens (Gecan et al. 1990). 

The primary insect pests that occur on and damage leafy greens in temperate 

North America include the green peach aphid, cabbage aphid, and turnip aphid; 

lepedopteran larvae such as the cabbage looper, armyworm species, and diamond black 

moth and various species of grasshoppers (Sweeden 1996). 

Aphids. Aphids are small soft bodied insects belonging to the family Aphididae and are 

frequently found in large numbers feeding on stems or leaves (Borror et al. 1989). 

Groups of aphid often occur that include individuals in all stages of development. The 

members of this family can usually be recognized by their characteristic pearlike shape, a 

pair of cornicles at the posterior end of the abdomen, and fairly long antennae (Borror et 

al. 1989). They have numerous parasites and predators. The principal parasites of aphids 

are braconid and chalcidoid wasps and the most important predators are ladybird beetles 

and lacewings (Borror et al. 1989). Aphid species such as the green peach aphid, Myzus 

persicae (Sulzer) can be serious pests of cultivated plants (Borror et al. 1989). It is one 

of the most important aphid species damaging leafy greens including spinach, primarily 

because it is a potential contaminant of processed products (Sweeden 1996), and when 

abundant may attract other insect predators and parasites to the crop that then serve as 

contaminants. 

Lepidopteran larvae. Of the important lepidopteran larvae that damage leafy greens, 

the cabbage looper, Trichoplusia ni (Hubner) and armyworm belong to the family 



Noctuidae (Borror et al. 1989). The Noctuidae is the largest family of the order 

Lepidoptera and has moths with nocturnal habits. Another important Lepidoptera that 

damages leafy greens is the diamondback moth, which belongs to family Plutellidae 

(Borror et al. 1989). The diamondback moth is a serious pest of cabbage and other 

cruciferous plants. The larvae eat holes in the leaves and pupate in silken cocoons 

attached to the leaves and thus act as contaminants (Borror et al. 1989). 

Grasshoppers. Grasshoppers belong to the order Orthoptera, which contains two sub- 

orders, Ensifera and Caelifera (Preston-Mafham 1990). The suborder Ensifera contains 

the families, Gryllidae (crickets), Gryllotalpidae (mole crickets), Gryllocrididae and 

Tettigonidae (katydids). The sub-order Caelifera is comprised of the Acrididae (short 

horned grasshoppers) and Tetrigidae (pigmy grasshoppers) (Preston-Mafham 1990). The 

family Acrididae is hrther subdivided into several sub families, Melonoplinae (spur 

throated grasshoppers), Gompahocerinae (slant faced grasshoppers) and Oedipodinae 

(band winged grasshoppers) that are of economic importance (Pfadt 1994). 

Research literature on grasshoppers in the South Central United States is scarce. 

Coppock (1 962) studied and cataloged acridid species in the region. The Acrididae is 

one of the most widely distributed groups of insects in the world. They are found in 

every continent and are especially adapted to a grassland environment (Coppock 1962). 

Sweeden (1 996) studied the species composition and distribution of grasshoppers 

within and around an actively growing field of leafy greens adjacent to soybean fields in 

the Arkansas River Vally. According to this study, acridid grasshoppers, Schistocerca 

americana (Drury); the red legged grasshopper, Melanoplusfemurrubrum (De Geer); the 



differential grasshopper, Melanoplus differentialis (Thomas); and the Carolina 

grasshopper, Dissosteira carolina (Linnaeus) were common in leafy greens fields and 

surrounding vegetation. Of these S. americana, M femurrubrum and M differentialis 

belong to the sub-family Melanoplinae and D. carolina to the sub family Oedipodinae. 

This study will focus on M. differentialis because it is abundant and more damaging to 

cultivated crops. 

Melanoplus differential& (Thomas) 

There are two sub-species of M differentialis (Thomas) according to the listing 

of Roberts (1 942). They are M differentialis differentialis (Thomas) and M differentialis 

nigricans Cockerel. These two subspecies can be separated only on the basis of internal 

male genetalia (Coppock 1962). Of the two subspecies, only M differentialis nigricans 

Cock. is found in Oklahoma, while M. differentialis differentialis (Thomas) is not found 

any closer to Oklahoma than eastern Arkansas (Coppock 1962). 

M differentialis is one of the most common and destructive grasshoppers among 

the acridids (Coppock 1962). It has adapted to the local agricultural environments of its 

range better than any other acridid (Coppock 1962). Its range of habitat is very general, 

occurring in cultivated crops as well as waste areas, roadsides, field borders, and 

grasslands. Additionally, M. differentialis does more damage to cultivated crops than any 

other species of grasshopper in the state of Oklahoma. It is a severe pest of small grains, 

corn, alfalfa, soybeans, cotton, various vegetables, and deciduous fruit trees (Pfadt 1994). 

According to Pfadt (1994) M dzflerentialis is responsible for much damage to alfalfa, 

corn, and cotton in southern states including Oklahoma and Missouri. 



The differential grasshopper is a polyphagous insect feeding on both grasses and 

forbs although it prefers forbs to grasses (Pfadt 1994). Both in its nymphal and adult 

stages, M differentialis is a mobile insect. After hatching from eggs, nymphs concentrate 

in groups along field boarders and roadsides (Pfadt 1994). The third and older instars 

move into barley, wheat, and alfalfa by crawling and hopping (Pfadt 1994). In contrast, 

adults fly upwind in short, low flights in search for green, actively growing crops (Pfadt 

1994). 

The nymphs are inactive at night and rest on vegetation. Nymphs descend to the 

ground and bask in the sun on clear mornings when temperatures reach 18°C. They start 

to feed when temperatures reach 20 -23°C and continue (Pfadt 1994) feeding until air 

temperatures reach 32°C and soil surface is around 44°C (Pfadt 1994). At higher 

temperatures, they climb vegetation to seek shade in order to escape from heat. Usually 

nymphs are on the ground from 6000 to 1 100 hour. The nymphs remain inactive if the 

skies are cloudy, irrespective of the temperature (Pfadt 1994). 

Adults and nymphs of the differential grasshopper rest high on plants descending 

when the air temperature exceeds 20°C. They respond to light striking the ground, and 

begin to feed. Feeding slackens when temperature reach 30°C and cease at temperatures 

above 32°C andlor soil surface temperatures exceed 44°C. They seek shade or rise in 

flight (Pfadt, 1994). 

Characteristics. M differentialis is a large grasshopper with a body color that varies 

from yellowish brown to light-brown dorsally, and bright to dull yellow ventrally 

(Coppock 1962). The chevron-like markings on the hind femur and shape of the male 



cercus are diagnostic characteristics of the differential grasshopper (Pfadt 1994). There 

are three oblique, dark bars in the inner faces of hind femur (Coppock 1962). The cercus 

is one of the characteristics that identify the adult male. Both male and female can be 

identified by the black chevrons in the hind femur (Pfadt 1994). 

Development from eggs to adult. Differential grasshoppers have one generation 

annually. Eggs are the over-wintering stage of the life cycle. In late spring, eggs which 

were deposited in the previous summer start to hatch (Pfadt 1994). Nymphs grow rapidly 

with the exposure to the high temperatures of early summer and become adults after 

about thirty-two days (Pfadt 1994). In the following several weeks they feed and 

increase in weight. During this time their ovaries and testes mature. Pairs form in the 

morning and copulation may continue for 20 to 24 hours (Pfadt 1994). For oviposition, 

females seek adjacent grassland or rank weeds. When ready to lay eggs, a female may 

brace herself in a vertical position against a grass or weed stalk and work her ovipositor 

down into the soil and deposits 45 to 194 eggs among the roots and in the form of a large 

pod for their protection (Pfadt 1994). The egg pods are curved and 2.54 to 3.8 1 cm in 

length and 0.635 cm in diameter. The eggs are olive and 0.44 to 0.5 1 cm in length (Pfadt 

1994). 

Insecticides 

The conventional insecticides currently recommended for the control of aphids 

and caterpillars damaging lea@ green vegetables are dimethoate, malathion, diazinon, 

and endosulfan (Extension Agents' Handbook 2002). In addition, neem extracts, 

pyrethrins, insecticidal soap, Beauveria bassiana-based products, and Bacillus 



thuringiensis-based products are recommended as organic insecticides for insect pest 

control in leafy greens (Extension Agents' Handbook 2002). None of these insecticides 

are specifically recommended for grasshopper control in leafy green vegetables. 

This study was conducted to evaluate insecticides that may serve as alternatives to 

organophosphate and carbamate insecticides for control grasshoppers. The insecticides 

selected were from different categories of insecticides i.e. an insect growth regulator, 

diflubenzuron [Dimilin]; a botanical insect growth regulator, azadirachtin [Neemix 4.51; 

a microbial insecticide, Beauveria bassiana GHA [Mycotrol] and a microbial derived 

insecticide, spinosad (Spintor). In addition to these, several currently used insecticides 

for insect control in leafy green vegetables were included for comparison of efficacy. 

They were the organophosphate; naled (Dibrom), the pyrethroid; esfenvalerate (Asana), 

and the cyclodine; endosulfan (Thiodan). 

Reduced risk insecticides 

The Environmental Protection Agency's (EPA) uses various criteria to grant 

reduced-risk status to insecticide registrations (Pesticide Regulation [PR] Notice 97-3, 

1997). These include human health effects such as very low mammalian toxicity, lower 

toxicity than alternatives, displacement of chemicals that pose potential human health 

concerns [e-g. organophosphate insecticides, probable carcinogens] and reduced risk of 

exposure by mixers, loaders, applicators and reentry workers; reduced risk to non-target 

organisms such as birds, fish, honey bees, and beneficial insects; groundwater effects 

such as low potential for ground water contamination, low drift and runoff potential; and 

finally the criteria such as lower use rate than alternative insecticides, low pest resistance 



potential (i.e., new mode of action), compatibility with integrated pest management and 

the efficacy (Pesticide Regulation (PR) Notice 97-3, 1997). Of these criteria, the most 

important are human health effects, non-target organism effect to birds and fish, potential 

groundwater impact, displacement of higher risk alternatives and the efficacy (Pesticide 

Regulation (PR) Notice 97-3, 1997). 

Diflubenzuron (Dimilin). Diflubenzuron belongs to the class of benzoylphenylureas 

(Environmental Health Criteria 184, 1996). Benzylphenylureas act as insect growth 

regulators (Ware 2000). They are different from typical nerve poisons that attack insect 

nervous system in that they interfere with chitin synthesis andlor deposition in the cuticle 

(Environmental Health Criteria 184, 1996). They are taken up more by ingestion than by 

contact and are important in the control of caterpillars and beetle larvae (Ware 2000). 

Diflubenzuron is the only benzoylphenylurea currently registered in U.S. It was 

first registered for gypsy moth, cotton boll weevil, forest caterpillars, soybean 

caterpillars, and mushroom flies and now has a broader range of targets (Ware 2000). It 

is an effective stomach and contact insecticide and acts on larval stages of most insects 

by inhibiting or blocking the synthesis of chitin. Typical effects on developing larvae are 

the rupture of a malformed cuticle or death by starvation (Ware 2000). Thus all stages of 

insects that form a new cuticle should be susceptible to diflubenzuron exposure. It has no 

systemic activity and does not penetrate plant tissue thus making it generally non- 

effective for sucking insects (Environmental health Criteria 184, 1996). 



Spinosad. Spinosad is a fermentation derived insect control agent and belongs to 

perhaps the newest class of insecticides, the spinosyns (Sparks et al. 1999). Spinosad is a 

product of fermentation metabolites of the soil inhibiting actinomycete Saccharoplyspora 

spinosa (Ware 2000). It has a novel molecular structure and mode of action that results 

in insect mortality typically associated with synthetic insecticides. It acts by disrupting 

the binding of acetylcholine in nicotinic acetylcholine receptors at the postsynaptic cell 

(Salgado 1997). 

Spinosad was first registered for use on cotton in 1997 (Ware 2000). Spinosad is 

a mixture of spinosyn A and D thus making its name spinosAD. These molecules belong 

to a family of new, unique macrolides which are molecules containing macrocyclic 

lactones (Sparks et al. 1999). Spinosad has broad-spectrum activity against most 

caterpillar pests at very low active ingredient rates per acre (Ware 2000). It has both 

contact and stomach poison activity against lepidopteran larvae, leafminers, thrips and 

termites with long residual activity. In the US., it is currently registered for use on 

cotton, vegetables, tree fruits, and ornamentals. Spynosyn A acts on the insect nervous 

system to increase spontaneous activity, leading to involuntary muscle contractions and 

tremors. This increased excitation appears to result from persistent activation of nicotinic 

acetylcholine receptors and prolongation of acetylcholine responses. (Sparks et al. 1999). 

In addition, the spinosyns can also alter the functions of GABA-gated chloride channels 

in a manner distinct from all known insect control agents making the mode of action of 

spinosad unique (Sparks et al. 1999). 



Azadirachtin. Oil extracts from neem tree seeds (Azadirachta indica: Meliaceae) 

contain the active ingredient azadirachtin, a nortriterpenoid belonging to the lemonoids 

(Ware 2000). Azadirachtin has insecticidal, fungicidal and bactericidal properties 

including insect growth regulator qualities. It disrupts molting by inhibiting biosynthesis 

or metabolism of ecdysone, the juvenile molting hormone (Ware 2000). It is sold as a 

stomach/contact insecticide for use in green house and ornamental crops (Ware 2000). 

Neem extracts function primarily as insect growth regulators (IGR), but also as a 

behavior-modifying substance, deterring feeding and /or oviposition in certain pest 

species (Isman 1999). Of equal importance, neem has minimal toxicity to vertibrates, has 

minimal effect on natural enemies and pollinators and degrades rapidly in the 

environment. It has non-neurotoxic modes of action (Isman 1999). It does not disrupt 

foraging by honeybees and other pollinators. These properties suggest that neem as an 

insecticide is compatible with integrated pest management in many crop ecosystems 

(Isman 1999). 

Azadirachtin acts as an insect growth regulator (IGR) effecting the hormonal 

system of insects and, preventing them fiom normal development (Walter 1999). 

Azadirachtin is structurally similar to the natural insect hormone ecdysone which 

regulates the development of insects. Any disruption in its balance causes improper 

development (Walter 1999). Azadirachtin interferes with the production and reception of 

ecdysone during an insect's growth and molting, thus blocking the molting cycle and, 

causing the insect to die (Walter 1999). 

Because of its IGR effect, azadirachtin does not immediately kill insects and does 

not kill adult insects. Immature insects die during their development, thereby reducing 



the overall population over a period of time. The length of time depends mostly on the 

species of insect, age of insect, and the size of the population (Walter 1999). Mortality 

can be seen as quickly as 1-2 days, to as long as a few weeks. Therefore Azadirachtin 

has its greatest effect on the early instars (Walter 1999). 

One drawback of many IGR's is that they do not immediately kill the insect pest, 

thus leaving the insect to cause further damage or contaminate the harvested product until 

it succumbs to the IGR. In the case of azadirachtin, additional modes of action help 

protect the plants from damage while the IGR works on the insect. For example many 

insects exposed to azadirachtin will stop feeding shortly after exposure which in effect, 

stops further damage to the plants even though the insects are still present (Walter 1999). 

Beauveria bassiana strain GHA (Mycotrol). The application of insect pathogens may 

offer an environmentally sound method for managing grasshoppers and locusts. 

Hypomycete fungi are the most promising candidates because in addition to causing 

diseases in many insects, they are not pathogenic to non-target organisms (Johnson et al. 

1990). They can penetrate directly through the cuticle and do not necessarily need to be 

ingested in order to initiate disease. Grasshoppers are highly susceptible to some of the 

isolates of the entomopathogenic fungus B. bassiana (Johnson et al. 1990). 

According to Moore & Earlandson, 1988 B. bassiana infects orthopterans and has 

been demonstrated to be pathogenic to grasshoppers under laboratory conditions. B. 

bassiana strains have been isolated from Melanoplus spp. (Moore et al. 1988). Adult 

males, females, and emerging nymphs of Melanoplus sanguinipes are susceptible to 

infection by B. bassiana in sand under controlled environments (Inglis et al. 1995). B. 



bassiana and other entomopathogenic f h g i  are being examined as potential biological 

agents for insect control. Present knowledge of hngal pathogenesis in insects indicates 

that it occurs via a series of integrated, systematic events progressing from spore 

attachment to germination, penetration, growth, and proliferation within the body of the 

host, interaction with insect defense mechanisms and finally reemergence from the 

cadaver (Hegedus et al. 1996). Environmental conditions such as high temperature and 

exposure to UV radiation can adversely affect this pathogenesis of B. bassiana ( Inglis et 

al. 1997). 

High-Risk Insecticides 

According to EPA's criteria, insecticides with very high mammalian toxicity, 

higher toxicity than alternative insecticides, broad-spectrum activity; high toxicity to 

birds, fish and beneficial insects; and high potential for ground water contamination are 

considered as high-risk insecticides (Pesticide Regulation [PR] Notice 97-3, 1997). In 

addition they have high pest resistance potential and less compatibility with integrated 

pest management (Pesticide Regulation [PR] Notice 97-3, 1997). Insecticides such as 

organophosphates, carbamates, cyclodines, and organochlorines fall under this category. 

Organophosphate Insecticides. Organophosphate insecticides are derived from 

phosphoric acid and are generally the most toxic of all pesticides to vertebrate animals. 

They are related to the nerve gases sarin, soman and tabun (Ware 2000). The 

organophosphate insecticides have two distinctive features. Firstly, they are generally 

much more toxic to vertebrates than the organochlorine insecticides, and secondly they 



are chemically unstable or non-persistent compared to persistent organochlorines (Ware 

2000). 

Organophosphate insecticides exert their toxic action by inhibiting cholinesterases 

which are important enzymes of the nervous system. At the nerve synapse, an impulse is 

transmitted by acetylcholine which is then destroyed by the cholinesterase enzyme so the 

synapse will be cleared for another transmission (Ware 2000). These chemical reactions 

happen within microseconds and continue constantly, as needed, under normal 

conditions. Organophosphates prevent the cholinesterase enzyme from clearing away the 

acetylcholine transmitter. This inhibition results in the accumulation of acetylcholine, 

which interferes with the neuromuscular junction in mammals, producing rapid twitching 

of voluntary muscles and finally resulting in paralysis and death due to respiratory 

failure. Symptoms in insects follow the same pattern of nerve poisoning with 

restlessness, hyper-excitability, tremors and convulsions and paralysis (Ware 2000). 

Carbamate Insecticides. Carbamate insecticides are derivatives of carbamic acid (Ware 

2000). Like the organophosphate insecticides, the mode of action of carbamates is 

inhibition of the enzyme cholinesterase. The carbamates mimic the molecular shape of 

acetylcholine. They are broad spectrum in effectiveness. Carbamates have both contact 

and systemic activity (Ware 2000). They are used as insecticides, miticides and 

molluscicides (Ware 2000). 

Cyclodiene Insecticides. Cyclodiene insecticides are also known as the diene - 

organochlorine insecticides. Cyclodienes are generally persistent and stable in soil and 



relatively stable to the ultraviolet action of sunlight. Because of their persistence, their 

use on crops was restricted as undesirable residues remained beyond the time for harvest 

(Ware 2000). 

The toxicity of cyclodienes increases with temperature (Ware 2000). They act on 

the inhibitory mechanism that is naturally active in the insect nervous system, the GABA 

(gamma-aminobutyric acid) receptor, which operates by increasing chloride ion 

permeability into neurons. Cyclodienes prevent chloride ions from entering the neurons, 

and thereby antagonize the calming effects of GABA. They are thus known as GABA- 

gated chloride channel antagonists (Ware 2000). 

Pyrethroid Insecticides. The basis for synthetic pyrethroid insecticides is pyrethrum a 

natural extract from the flowers of chrysanthemum which causes the immediate paralysis 

of insects (Ware 2000). Pyrethrum has mostly been used as a household insecticide. 

Because of its cost and instability in sunlight, it has seldom been used for agricultural 

purposes. Unlike pyrethrum, synthetic pyrethrum-like materials termed "synthetic 

pyrethroids" are stable in sunlight and effective against most of agricultural insect pests 

(Ware 2000). The structure of pyrethroid insecticides are similar. They aiso share 

similar modes of action, resembling that of DDT, by keeping open the sodium channels 

in neuronal membranes. There are two types of pyrethroid insecticides, Type I and Type 

11. Type I pyrethroids are more effective when temperature is lowered. In contrast, 

Type 11, pyrethroids have increased activity with increase in temperature (Ware 2000). 

Pyrethroids are axonic poisons which act as sodium channel blockers. The axon of a 

nerve cell or neuron is an elongated extension of the cell body and is especially important 



in the transmission of nerve impulses from the region of the cell body to an other cell. 

Virtually all axonic transmission of impulses is electrical. Axonic chemicals are those 

that in some way affect this impulse transmission in the axon. All DDT type chlorinated 

insecticides and pyrethroids are considered axonic poisons (Ware 2000). 

Pyrethroid insecticides affect both peripheral and central nervous system of the 

insect. They initially stimulate nerve cells to produce repetitive discharges and 

eventually cause paralysis. Such effects are caused by their action on the sodium 

channel, a tiny hole through which sodium ions are permitted to enter the axon to cause 

excitation. 

Effect of Temperature on activity of insects and insecticides 

One of the most important factors affecting biological processes in all 

living organisms is temperature. Temperature affects metabolic rate, locomotion, rate of 

water loss, food consumption, growth, maturation, and habitat selection of grasshoppers 

(Chappell et al. 1990). Temperature also affects insecticide efficacy (Johnson 1990) and 

toxicity (De Vries 1978). The relationship between temperature and toxicity can be 

either positive or negative, depending on the target species, method of application, and 

quantity of insecticide ingested or contacted (Johnson 1990). DDT and the pyrethroid 

insecticides have a negative temperature coefficient, i.e. higher mortality with decreasing 

temperature. Carbamate insecticides may have a slightly negative coefficient and 

organophosphate insecticides a slightly positive temperature coefficient (De Vries 1978). 

The toxicity of organophosphate insecticides (e.g. chlorpyrifos, diazinon, malathion and 

parathion) to the onion maggot (Delia antiqua) has been positively correlated with post- 



treatment temperature, while temperature has little effect on naled toxicity (Turnbull et al. 

1986). In contrast, the toxicity of the pyrethroids such as fenvalerate, deltamethrin, 

permethrin and cypermethrin were negatively correlated with temperature for D. antiqua 

(Turnbull et al. 1986). Studies conducted with boll weevils using the organophosphates, 

methyl parathion and malathion also indicated positive temperature coefficients of 

toxicity (Norment et al. 1970). 

Results of experiments conducted using second instar nymphs of the grasshopper 

Melanoplus sanguinipes (Fab.) indicated that the pyrethroid insecticides deltamethrin, 

fenvalerate and cyfluthrin have negative temperature coefficients (Hinks 1985). When 

used at lower dosages, cypermethrin, was shown to increase mortality of second instar 

nymphs of the grasshopper Melanoplus sanguinipes (Fab.) with increasing temperature 

from 15" to 30°C, and then leveled off above 30°C (Ewen et al. 1984). At higher 

dosages, mortality increased slightly with increasing temperature from 15' to 20°C and 

then declined at higher temperatures. (Ewen et al. 1984). The carbarnate insecticide, 

methomyl was more toxic to larvae of Spodoptera littoralis (Boisd.) when the post 

treatment temperature was increased from 20" to 35°C (Riskallah 1983). 

Insecticide application decisions should include knowledge of efficacy as affected 

by temperature (Edelson et al. 1997). This is especially important in crop production 

systems that encounter large variations in temperatures when pesticides are likely to be 

applied. Previous research results indicate that for brassica crop production in south- 

central United States, permethrin and other similar pyrethroid insecticides work best for 

diamondback moth control when applied under low temperature conditions (I1 0°C) 

(Edelson et al. 1997). In contrast metharnidophos and similar organophosphate 



insecticides are most effective when applied under high temperature conditions (235°C). 

Within intermediate temperature regimes (20"-30°C) the two materials provide similar 

control (Edelson et al. 1997). 

Temperature may also affect toxicity of microbial-based insecticides. Recent 

evidence suggests that environmental conditions limit the efficacy of B. bassiana in the 

field (Inglis et al. 1996). Reduced efficacy of B. bassiana against rangeland grasshoppers 

has been a result of unfavorable temperature and light conditions and not the result of 

inadequate pathogen virulence (Inglis et al. 1997a). In addition, high temperatures and 

therrno-regulation can adversely affect B. bassiana mycosis of grasshoppers and may be 

the cause of reduced efficacy observed in some field experiments (Inglis et al. 1996). The 

activity of B. bassiana on mortality of Melanoplus sanguinipes was increased at low 

temperatures in comparison to high temperatures (Inglis et al. 1997b). 

The influence of post-treatment temperature on the insecticidal activity of 

Azadirachta indica (A. Juss) a seed extract, against the dessert locust, Schistocerca 

gregaria (Forskal) was reported by Kabaru et al. 2000. In tests on adults, the toxicity of 

crude A. indica seed extracts increased by about 10-fold when the post-treatment 

temperature was raised from 22°C to 40°C. This temperature dependent toxicity was 

observed in insects treated tropically or via injection (Kabaru et al. 2000). 



Bibliography 

Borror, D. J., C. A. Triplehorn, and N. F. Johnson. 1989. An introduction to the 

study of insects. 6" Edition. Saunders College Publishing. 875pp. 

Coppock, S., Jr. 1962. The grasshoppers of Oklahoma (Orthoptera : Acrididae). M. Sc. 

thesis. Okla. State Univ. 220pp. 

DeVries, D. H., and G. P. Georghiou. 1979. Influence of temperature on toxicity of 

insecticides to susceptible and resistant houseflies. J. Econ. Entomol. 72:48-50. 

Edelson, J. V., J. J. Magaro, and F. W. Plapp, Jr. 1997. Mortality of diamondback 

moth, Plutella xylostella (L.), larvae treated with insecticides as a function of 

temperature. J. Agric. Entomol. 14(4): 435-440. 

Ewen, A. B., M. K. Mukerji and C. F. Hinks. 1984. Effect of temperature on the 

toxicity of cyperrnethrin to nymphs of the migratory grasshopper, Melanoplus 

sanguinipes ( Orthoptera: Acrididae). Can. Ent. 1 16: 1 153 - 1 156. 

Gecan, J. S., and R. Bandler. 1990. Microanalytical quality of canned collard, creecy, 

kale, mustard and turnip greens. J. Food Protection. Vol. 53. No.65 1 1-5 12. 

Hegedus, D. D., and G. G. Khachatourians. 1996. Analysis of cellular defense 

reactions of the migratory grasshopper, Melanoplus sanguinipes, infected with 

heat-sensitive mutants of Beauveria bassiana. J. Invertebrate Pathology. 68: 166- 

169. 

Hinks, C. F., 1985. The influence of temperature on the efficacy of three pyrethoid 

insecticides against the grasshopper, Melanoplus sanguinipes (Fab.) (Orthoptera: 

Acrididae), under laboratory conditions. Can. Ent. 1 17: 1 007- 10 12. 

Inglis, G.D., R. P. Feniuk, M. S. Goettel, and D. L. Johnson. 1995. Mortality of 



grasshoppers exposed to Beauveria bassiana during oviposition and nymphal 

emergence. Annals of Invertebrate Pathology. 65: 139-146. 

Inglis, G. D., D.L. Johnson, and M.S. Goettel. 1997a. Effects of temperature and 

sunlight on Mycosis (Beauveria bassiana) (Hyphomycetes: Sympodulosporae) of 

grasshoppers under field conditions. Environ. Entomol. 26 (2): 400-409. 

Inglis, G. D., D.L. Johnson, K. J. Cheng, and M.S. Goettel. 1997b. Use of pathogen 

combinations to overcome the constrains of temperature on entomopathogenic 

hypomycetes against grasshoppers. Biol. Control 8: 143- 152. 

Inglis, G. D., D.L. Johnson, and M.S. Goettel. 1996. Effects of temperature and 

therrno-regulation on mycosis by Beauveria bassiana in grasshoppers. Biol. 

Control 7: 13 1-1 39. 

Isman, M. B. 1999. Neem and related natural products. Methods in biotechnology, Vol. 

5: Bio-pesticides: Use and Delivery. Eds. F. R. Hall and J. J. Menn. Human Press 

INC., Totawa, NJ. 139-153. 

Johnson, D.L. 1990. Influence of temperature on toxicity of two pyrethroids to 

grasshoppers (0rthoptera:Acrididae). J.Econ. Entomol. 83(2):366-373. 

Kabaru, J. M. and R. W. Mwangi. 2000. Effect of post-treatment temperature on the 

insecticidal activity of neem, Azadirachta indica (A. Juss) seed extract on 

Scistocerca gregaria (Forskal): A preliminary report. Insect Sci. Applic. 20(1): 

77-79. 

Moore, K. C. and M. A. Earlandson. 1988. Isolation of Aspergillusparasiticus Speare 

and Beauveria bassiana (Bals.) Vuillemin from Melanoplinae grasshoppers 

(Orthoptera: Acrididae) and demonstration of their pathogenicity in Melanoplus 



sanguinipes (Fabricius). Can Ent. 120: 989-991. 

Norment, B. R. and H. W. Chambers. 1970. Temperature relationships in 

organophosphorus poisoning in boll weevil. J. Econ. Entomol. 63(2): 502-504. 

Extension agents' handbook of insect, plant disease, and weed control. 2002. 

Oklahoma Cooperative Extension Service. Oklahoma State University. 598pp. 

Pesticide regulation (PR) Notice 97-3.1997. Guidelines for expedited review of 

conventional pesticides under the reduced-risk initiative and for biological 

pesticides. Office of Pesticide Program. United States Environmental Protection 

Agency. 2 1 pp. 

Pfadt, R. E. 1994. Field guide to common western grasshoppers. Second Edition. 

Wyoming Agr. Exp. Stn. Bull. 912. 

Preston-Mafham, K. 1990. Grasshoppers and mantids of the world. Facts on file, Inc. 

New York. 192 pp. 

Salgado, V. L., G. B. Watson and J. J. Sheets. 1997. Studies on the mode of action of 

spinosad, the active ingredient in Tracer@ insect control. Proc. Beltwide Cotton 

Conf. 1082-1 086. 

Scott, J. G.  1995. Effects of temperature on insecticide toxicity. Rev. Pestic. Toxicol., 

Vol. 3, 1 1 1 - 135 ( R. M. Roe and R. J. Kuhr, Eds.). Toxicology Communications 

Inc., Raleigh, NC (1 995) 

Sparks, T.C., G. D. Thompson, H. A. Kirst, M. B. Hertlein, J. S Mynderse, J. R. 

Turner, and T. V. Worden. 1999. Methods in biotechnology, Vol. 5: 

Bio-pesticides: Use and Delivery. Eds. F. R. Hall and J. J. Menn. Human Press 

INC., Totawa, NJ. 171-188. 



Sweeden, M.B. 1996. Towards integrated pest management in spinach and greens. 

Ph.D. dissertation, University of Arkansas. 90pp. 

The environmental health criteria 184.1996. Diflubenzuron. World Health 

Organization. 164 pp. 

Turnbull, S.A. and C. R. Harris. 1986. Influence of post-treatment temperature on the 

contact toxicity of ten organophosphate and pyrethroid insecticides to onion 

maggot adults (Diptera: Anthomyiidae). Proc. ent. Soc. Ont. 1 17:41- 44. 

Walter, J. F. 1999. Commercial experience with neem products. Methods in 

biotechnology, Vol. 5: Bio-pesticides: Use and Delivery. Eds. F. R. Hall and J. J. 

Menn. Human Press INC., Totawa, NJ. 155-170. 

Ware, G. W. 2000. The pesticide book. 5" Edition. Thompson Pub Fresno, CA. 41 8 pp. 

Ware, G. W. and J.P. McCollum. 1980. Producing vegetable crops. 3rd Edition. The 

Interstate Printers & Publishers, Inc. Danville, IL. 607pp. 



Chapter 111 

Effect of temperature on toxicity of insecticides applied to control the differential 

grasshopper in leafy green vegetable crops 

Abstract 

This study was conducted to determine the effect of temperature on activity of 

possible alternative insecticides for replacing the use of organophosphate and carbarnate 

insecticides for controlling grasshoppers in leafy green vegetables. The research focused 

on different classes of insecticides such as: an insect growth regulator, diflubenzuron 

[Dimilin]; a botanically derived insect growth regulator, azadirachtin [Neemix 4.51; a 

microbial insecticide, Beauveria bassiana GHA [Mycotrol]; a microbial-derived 

insecticide, spinosad [Spintor] and a pyrethroid, esfenvalarate [Asana] to control third 

instars of the differential grasshopper Melanoplus diflerentialis (Thomas). 

Esfenvalarate provided excellent efficacy in controlling third instar M 

differentialis and its activity at labeled use rates is not temperature dependent. The 

microbial-derived insecticide spinosad was equally effective but efficacy increased with 

time after application and at increasing treatment temperature of 10°C, 15"C, 25°C and 

35°C. The activity of B. bassiana is more pronounced at 25°C and was adversely 

affected by high and low temperatures. The insecticide diflubenzuron provided good 

activity at high temperatures. The activity of azadirachtin is moderate in regard to 

mortality of M dfferentialis and its activity is temperature dependent. 



Introduction 

Leafy green vegetables such as kale, collards, mustard, turnips and spinach are 

grown in the south central United States from August through May. Thus the crops and 

insects encounter temperatures that vary between 5°C and 35°C. The important insect 

pests of leafy green crops in the south central region include aphids, cucumber beetle 

species, seed maggots, and larvae of several lepidopteran species including the 

diamondback moth and armyworm. In addition, grasshoppers have been identified as a 

significant contaminant problem in leafy green fields. They are often difficult to control 

due to their large size and mobility. Due to the strict standards limiting insect parts and 

feeding contamination of processed vegetable crops, the number of grasshoppers 

tolerated in fields of leafy greens grown for the processing market is practically zero. 

Therefore, management and control of grasshoppers is a critical issue. The application of 

insecticides to kill grasshoppers is the main tool for managing populations. Due to the 

variation of temperatures during the time period in which the leafy greens are grown, 

both insecticides and insects are exposed to a broad range of temperatures. 

One of the most important factors affecting biological processes in all living 

organisms is temperature. Thus, temperature influences metabolic rate, locomotion, rate 

of water loss, food consumption, growth, maturation and habitat selection of 

grasshoppers (Chappell et al. 1990). Temperature also is a major factor affecting 

insecticide efficacy (Johnson 1990 and Scott 1995) and toxicity (De Vries 1978). 

Temperature effects on toxicity can be either positive or negative. These response 

relationships depend on the target species, method of application, and quantity of 



insecticide ingested or contacted (Johnson 1990). Different categories of insecticides can 

react differently at varying temperatures. 

Insecticides such as DDT and various pyrethroids have been shown to have 

negative temperature coefficients, ie they are more toxic as temperature decreases. 

Carbamate insecticides may have a slightly negative coefficient and organophosphate 

insecticides may show a slightly positive temperature coefficient (De Vries 1978). This 

study focussed on the effect of temperature on toxicity of different insecticides 

representing different insecticide classes to the differential grasshopper. 

Materials & Methods 

Insecticides. The insecticides used were as follows: diflubenzuron (Dimilin 2L, 

Uniroyal Chemical Comp., INC, Middleburg, CT 06749) 0.07kg a.i./ha, appl. rate, 0.28 

kgha; azadirachtin (Neernix 4.5, Certis USA, Columbia, MD 21046) 0.048 kg a.i./ha, 

appl. rate, 1.12 1 kg/ha; Beauveria bassiana GHA (Mycotrol, Mycotech Corp. Butte, MT 

597022) 0.179 kg a.i. /ha. appl. rate, 1.592 kg/ha; esfenvalerate (Asana XL, E. I. Du 

Pont de Nemours & Comp., INC, Wilmington, DE 19898) 0.055 kg a.i./ha, appl. rate 

0.673kgha; spinosad (Spintor 2SC, Dow Agro Sciences LLC, Indianapolis, IN 46268) 

0.175 kg a.i./ha, appl. rate, 0.7 kglha. 

Third instar Melanoplus differentialis (Thomas) were collected from a pasture in 

southeast Oklahoma in June and July 200 1 and June 2002 using a 3 8cm diameter sweep 

net (Bioquipo). The third instars were identified by the general color of pale yellow to 

tan, with body length in the range of 9.4 to 12.4 mrn and a black stripe of the hind femur 

occupying the center of the medial area (Pfadt 1994). The Systematic Entomology 



Laboratory, USDA, Beltsville, MD identified and verified the samples of the third instars 

and adults as M dzflerntialis nigricans (Lot No.010778 1). The collected grasshoppers 

were transported to the entomology laboratory at the Wes Watkins Agricultural Research 

and Extension Center (WWAREC), Lane, Oklahoma and kept in aluminum wire mesh 

mosquito cages of 45x45x45cm (BioquipB). Cages were covered on the bottom with a 

layer of fine sand of 3cm thickness. Fresh collard leaves and water were provided each 

day. Cages were maintained under a 14-hour photoperiod and a room temperature of 

26.7 zk 0.5"C throughout the duration of the experiment. 

Collard seeds (Brassica oleraceae L. var. acephala cultivar "Champion') were 

planted in plastic pots (10cm in height and 1 lcm in diameter) containing a soil-less 

medium (Horticultural vermiculite [45%] and Canadian sphagnum moss [55%]) and 6g 

of Osmocote (controlled releasing fertilizer with 14: 14: 14 NPK). They were raised in a 

greenhouse for 6 weeks at 30°C. 

Individual leaves with a mean leaf area of 27.2 + 1.5 cm2 were selected from the 

plants grown in the greenhouse and were treated with the insecticides. Each insecticide 

solution was prepared as a 100 ml solution using distilled water and stirred for 10 

minutes using an electrical stirrer. Individual leaves were dipped in specific insecticides, 

removed and dried at 25°C for 30 minutes. The cut end of the leaf petioles were covered 

with moist cotton plugs and placed in plastic cages containing a third instar M 

differentialis nymph that had been starved for 24 hours. The containers were then 

transferred to environmental temperature chambers and held at a 14-hour photoperiod 

and a temperature of either 10°C, 15"C, 25"C, and 35°C. After 48 hours the treated 

leaves were replaced with untreated leaves. Insecticide efficacy was determined based on 



mortality of grasshoppers over a ten-day observation period. Mortality was determined 

by either lack of movement, the insect lying on its side, or inability to respond to a slight 

shaking of the cage with a coordinated movement. The cadavers in cages containing 

leaves treated with B. bassiana were kept in an environmental temperature chamber at 

25°C for 14 days for determination of mycelium growth. Mortality due to B. bassiana 

was determined when mycelia of B. bassiana, were visible on the integument through a 

microscope. The experimental design was completely randomized with 6 replications 

and with a water-treated control. One cage each with a third instar was used per 

treatment. The experiment was repeated with the addition of the insecticide spinosad 

(Spintor 2SC) with 5 replications, in July 2001 and June 2002. SAS (SAS Institute 1999) 

software was used for the data analysis. The CATMOD procedure was used to find the 

experiment versus treatment interactions at a 0.1 significance level. The data for all three 

experiments (Experiment 1,2001, Experiment 2,2001 and Experiment 3,2002) were 

pooled and Proc Freq in SAS with Fisher's Exact Test was used to determine the 

treatment effect for each temperature and the effect of temperature for each treatment. 

We determined the efficacy of insecticides as insect mortality and used P<0.1 

significance level. Pooled data of spinosad represents the data from Experiment 2 and 3 

only. 

Results 

We used the pooled data to determine the treatment effect for each temperature 

and effect of temperature for each treatment. The treatments were compared at 1 O°C, 



15"C, 25°C and 35°C at the intervals of 1 and 10-DAT (Days After Treatments). No 

mortality of nymphs was observed in water-treated controls in all temperatures. 

For each treatment except the water and B. bassiana, results indicated that 

efficacy increased with an increase in temperature. For B. bassiana efficacy was low at 

low and high temperatures. 

Treatment effect at each temperature (Table 3. 01). 

10°C. At 10°C and 1 -DAT treatment with esfenvalarate resulted in 100% mortality of 

nymphs and spinosad treatment resulted in 40% mortality. Both were significantly 

greater than the control. At 10-DAT each treatment resulted in mortality of nymphs. 

Mortality ranged from 100% with esfenvalarate to 18% with B. bassiana and azadirachtin 

which were not significantly different from the control. Results indicate that the 

treatment with esfenvalarate resulted in the greatest mortality. 

15°C. At 15°C at 1-DAT, application of esfenvalarate resulted in 100% mortality and 

spinosad treatment with 40% mortality. Both were significantly greater than the control. 

Both B. bassiana and diflubenzuron resulted in mortality of 6% and were not 

significantly different from the control. At 10-DAT each treatment resulted in mortality 

of nymphs. Mortality ranged from 100% with esfenvalarate to 18% with azadirachtin 

which was not significantly different from the control. As at 10°C esfenvalarate resulted 

in the greatest mortality followed by the treatment with spinosad. Results indicate that 

the treatments with esfenvalarate resulted in the greatest mortality followed by the 

treatment with spinosad. 



25°C. At 25"C, treatment with esfenvalarate resulted in 81% mortality of nymphs and 

spinosad resulted in 60% mortality. Both were significantly greater than the control. 

Application of diflubenzuron resulted in 13% mortality but was not significantly different 

from the control. Mortality increased with time for each treatment and at 10-DAT it 

ranged from 100% mortality with esfenvalarate and spinosad to 3 1 % with azadirachtin 

which was significantly greater than the control. B. bassiana treatment resulted in 63% 

mortality. Results indicate that the treatments with esfenvalarate and spinosad resulted in 

greatest mortality of nymphs. 

35°C. At 3S°C, esfenvalarate treatments resulted in 94% mortality of nymphs and 

spinosad resulted in 80% mortality at 1 -DAT. Both were significantly greater than the 

control. The treatment with diflubenzuron resulted in 6% mortality and was not 

significantly different from the control. Mortality increased with time for each treatment 

except B. bassiana. AT 1 O-DAT, the treatments with esfenvalarate and spinosad resulted 

in 100 percent mortality and were significantly greater than the control. Treatment with 

diflubenzuron resulted in 94% mortality and azadirachtin treatment with 38% mortality 

of nymphs and were significantly greater than the control. Results indicate that the 

greatest mortality was recorded for the treatments with esfenvalarate, spinosad and 

diflubenzuron and their activity is not statistically different. 

Temperature effect for each treatment (Table 3.02). 

There was no mortality noted for the water-treated control in all 4 treatment 

temperatures of 1 O°C, 15"C, 25°C and 35°C. 



B. bassiana. At 1-DAT, 6% of the nymphs were killed when exposed to treatment with 

3. bassiana at 15°C. Mortality increased over time at all temperatures except 35°C where 

we found no mortality across all dates. At 10-DAT, mortality was significantly higher at 

15°C and 25°C than at 10°C and 35°C. Results indicate that the activity is reduced at by 

high (35°C) and low (10°C) temperatures. 

Spinosad. The treatment with spinosad resulted in an increase of mortality of nymphs 

ranging from 30 to 80% with increasing treatment temperatures at 1 -DAT. Mortality 

increased over time at each temperature and at 10-DAT, it ranged from 100% for both 

temperatures at 25°C and 35°C and 60 percent at 10°C. There were no significant 

differences among mortality at 15"C, 25°C and 35°C. Results indicate that there is a 

trend of increasing mortality with increasing temperatures over time for spinosad but was 

not statistically significant. 

Diflubenzuron. At 1 -DAT, with diflubenzuron, the mortality of nymphs ranged from 

13% at 25°C and 6% at 15°C and 35°C and were not significantly different among the 

temperatures. Mortality increased over time and at 10-DAT ranged from 94% at 35°C 

and 25% with 15°C. Mortality at 35°C was significantly greater than the mortality at 

1 O°C, 15°C and 25°C. Results indicate that the activity increases with increasing (35°C) 

temperature. 



Azadirachtin. For the treatment with azadirachtin, there was no mortality of nymphs at 

1-DAT. Mortality increased slightly over time and at 10-DAT ranged from 38% at 35°C 

and 19% at 1 0°C and 15°C and were not significantly different among the temperatures. 

Results indicate that there was a trend of increasing mortality with increasing 

temperatures but was not statistically significant. 

Esfenvalarate. At 1 -DAT, for the treatment with esfenvalarate, the mortality of nymphs 

ranged from 100% for 10 "C and 15°C to 8 1 % and 94% for 25°C and 3S°C, and were not 

significantly different. Mortality at 25°C and 35°C increased to 100?h at 2-DAT. Results 

show that the activity is not influenced by temperature at the concentration used in this 

research. 



Table 3.01 Percent mortality of M. dzferentialis (Thomas) due to insecticide treatments 
across time by temperature using pooled data fiom Experiment 1, Experiment 2 and 
Experiment 3. 

Percent Mortality 
Temprc) Treatment Days after treatment 

10 control O.Oa O.Oa O.Oa O.Oa O.Oa O.Oa 
B. bassiana O.Oa O.Oa 12.5a 12.5a 12.5ab 18.75ab 
spinosad 40.0b 50.0b 50.0b 50.0b 6 0 . 0 ~  60 .0~  
diflubenzuron O.Oa O.Oa 12.5a 18.75a 25.0b 3 1.25bc 
azadirachtin O.Oa O.Oa O.Oa 12.5a 12.5ab 18.75ab 
esfenvalarate 1 00 .0~  100.0~ 1 00 .0~  100.0~ 100.0d 100.0d 

15 control O.Oa O.Oa O.Oa O.Oa O.Oa O.Oa 
B. bassiana 6.25ab 6.25ab 12.5a 18.75a 25.0b 5 0 . 0 ~  
spinosad 30.0b 30.0b 70.0b 80.0b 8 0 . 0 ~  90.0d 
diflubenzuron 6.25ab 6.25ab 18.75a 18.75a 25.0b 25.0bc 
azadirachtin O.Oa 6.25ab 12.5a 18.75a 18.75ab 18.75ab 
esfenvalarate 100.0~ 100.0~ 100.0~ 100.0b 100 .0~  100.0d 

25 control O.Oa O.Oa O.Oa O.Oa O.Oa O.Oa 
B. bassiana O.Oa 18.75a 31.2% 50.0b 50.0b 6 2 . 5 ~  
spinosad 60.0b 60.0b 90.0d 100.0~ 100.0~ 100.0d 
diflubenzuron 12.5a 12.5a 25.0bc 25.0b 3 1.25b 37.5bc 
azadirachtin O.Oa O.Oa 6.25ab 25.0b 25.0b 3 1.25b 
esfenvalarate 81.25b 93.752 100.0d 100.0~ 100.0~ 100.0d 

35 control O.Oa O.Oa O.Oa O.Oa O.Oa O.Oa 
3. bassiana O.Oa O.Oa O.Oa O.Oa O.Oa 6.25a 
spinosad 80.0b 9 0 . 0 ~  100.0~ 100.0d 100.0~ 100.0~ 
diflubenzuron 6.25a 25.0b 50.0b 6 2 . 5 ~  8 7 . 5 ~  93.7% 
azadirachtin O.Oa O.Oa 12.5a 31.25b 37.5b 37.5b 
esfenvalarate 93.75b 100.0~ 100.0~ 100.0d 100.0~ 100.0~ 

For each insecticide percent mortality followed by the same letter in a column for each 
date (DAT) are not significantly different (P > 0.1, Fisher's Exact Test) 



Table 3.02 Percent mortality of M. differentialis (Thomas) due to insecticide treatments 
across time by treatments using the pooled data from Experiment 1, Experiment 2, and 
Experiment 3. 

Percent Mortalitv 
Treatment TempPC) Days after treatment 

B. bassiana 10 0.0 0.0 12.5ab 12.5a 12.5ab 18.75a 
15 6.25 6.25 12.5ab 18.75a 25.0bc 50.0b 
2 5 0.0 18.75 31.25b 50.0b 50 .0~  62.5b 
3 5 0.0 0.0 O.Oa O.Oa O.Oa 6.25a 

spinosad 10 40.0a 50,Oa 50.0a 50.0a 60.0a 60.0a 
15 30.0a 30.0a 70.0ab 80.0ab 80.0ab 90.0ab 
25 60.0ab 60.0ab 90.0bc 100.0b 100.0b 100.0b 
3 5 80.0b 90.0b 100.0~ 100.0b 100.0b 100.0b 

diflubenzuron 10 0.0 O.Oa 12.5a 18.75a 25.0a 31.25a 
15 6.25 6.25ab 18.75a 18.75a 25.0a 25.0a 
25 12.5 12.5ab 25.0ab 25.0a 31.25a 37.5a 
35 6.25 25.0b 50.0b 62.5b 87.5b 93.75b 

azadirachtin 10 0.0 0.0 0.0 12.5 12.5 18.75 
15 0.0 6.25 12.5 18.75 18.75 18.75 
2 5 0.0 0.0 6.25 25.0 25.0 31.25 
35 0.0 0.0 12.5 31.25 37.5 37.5 

esfenvalarate 10 100.0 100.0 100.0 100.0 100.0 100.0 
15 100.0 100.0 100.0 100.0 100.0 100.0 
25 81.25 93.75 100.0 100.0 100.0 100.0 
35 93.75 100.0 100.0 100.0 100.0 100.0 

For each insecticide, percent mortality followed by the same letter in a column for each 
date (DAT) are not significantly different (P > 0.1, Fisher's Exact Test) 



Discussion 

We observed significant differences in activity among treatment insecticides 

within set temperatures at 1 -DAT but with time the difference in levels of activity 

gradually decreased and at 10-DAT there were few significant differences among 

treatments. Variation in temperatures did not result in mortality of the third instar M. 

differentialis. This was indicated by the zero mortality recorded for the control treatment 

in all four temperatures during the experiment. 

Esfenvalarate was the most effective insecticide at 1 -DAT at each treatment 

temperature. Pyrethroid insecticides have quick killing action compared to other classes 

of insecticides (Ware 2000). Temperature did not affect mortality of grasshoppers 

exposed to esfenvalarate. Other pyrethroid insecticides have been shown to respond 

negatively or positively to temperature (Scott 1995), however the temperature effect for 

the activity of esfenvalarate for grasshoppers has not been previously studied. Therefore, 

this information is important for the use of this pyrethroid in field conditions, at varying 

environmental temperatures. 

Spinosad treatment provided comparatively better activity at I -DAT, compared to 

other treatments except esfenvalarate at 25OC and 35°C. At 10-DAT, no differences in 

activity were observed between spinosad and esfenvalarate except at 1 O°C. This efficient 

and quick activity of spinosad may be due to its unique mode of action affecting nicotinic 

acetylcholine and GABA receptors in insect nervous system (Sparks et al. 1999). The 

activity of spinosad increased with increasing temperature but was not statistically 

different from each other except at 1 0°C. Mortality was significantly greater than the 

control at 10°C and 15°C but activity was comparativelv higher at 25OC and 35°C. 



temperatures. Mortality reached 100% 4- DAT at 35OC and at 6-DAT at 25O. This 

suggests that spinosad is active quickly at high temperatures. Other than the pyrethroid 

esfenvalarate, spinosad is the only insecticide with significant activity at all temperatures 

tested. Due to its quick killing action at varying temperatures, spinosad is a possible 

choice of insecticide for use in grasshopper control in leafy green vegetables. 

Beauveria bassiana treatments resulted in a moderate mortality levels at 15OC and 

25"C, at 10-DAT and the activity was not significantly different from that of 

esfenvalarate, spinosad, diflubenzuron and azadirachtin. Beauveria bassiana treatments 

resulted in a temperature-mortality relationship with increasing mortality, from 15OC and 

25°C. At 25"C, B. bassiana resulted in a high mortality of 83%. At 35"C, B. bassiana 

was completely inactivated. This relationship is supported by the work of Inglis et al. 

(1 999) who showed that the migratory grasshopper Melanoplus sanguinipes treated with 

B. bassiana had the greatest number of fungal colony forming units at 25OC. At 

temperature above 25"C, populations of B. bassiana decreased (Inglis et al. 1999). It was 

determined that the upper thermal limit for conidial germination of B. bassiana is 

approximately 3538°C and mycosis in grasshoppers treated with B. bassiana was 

inhibited by constant exposure to high temperature above 25°C (Inglis et a1.1999). The 

arrest of conidial germination and disease development is likely the reason for low 

mortality from B. bassiana at 35OC. The slow activity of B. bassiana is due to the time 

required for conidia to germinate, penetrate through the cuticle, and cause disease. 

Diflubenzuron and azadirachtin treatment results did not differ from each other at 

10 DAT at all 4-treatment temperatures. Both diflubenzuron and azadirachtin are insect 

growth regulators and their activity is increases over with time. This probably explains 



the low activity during the first few days of the experiment, which increased at latter 

stages of the experiments. 

Mortality of diflubenzuron-treated grasshoppers increased with increasing 

temperature and time. Mortality was significant P=O. 1 at 35°C compared to 1 O°C, 15OC 

and 25°C. The mortality was associated with molting deformities. The effect of 

temperature on the activity of diflubenzuron has not been noted previously. In storage, at 

50°C for one week and 100°C for one day it was found that there was no significant 

decomposition of diflubenzuron and it is stable to sunlight (Environmental Health 

Criteria 1996). During the experiment, the third instar M differentialis were observed to 

feed more and molt quickly at 35°C than in the 3 lower treatment temperatures 

irrespective of the treatment insecticide. This observation supports the maximum feeding 

rates recorded for M sanguinipes nymphs at 35°C (Lactin et al. 1995). Diflubenzuron is 

an insect growth regulator, affecting chitin synthesis and translocation and thus the effect 

is more pronounced during molting (Ware 2000). This can be the cause for molting 

deformities observed in these experiments. The fast growth and early molting of the third 

instar A4 differentialis at 35°C facilitated the increased mortality caused by 

diflubenzuron. Results suggest that its use for grasshopper control may be warranted 

during periods when temperatures are high. 

Mortality of azadirachtin-treated grasshoppers increased with temperature 

although it was not statistically significant. Azadirachtin acts as an insect growth 

regulator which inhibits biosynthesis and metabolism of ecdysone hormone during 

molting (Isman 1999). In addition it acts as a behavior-modifying substance, deterring 

feeding (Isman 1999). Third instar grasshoppers tend to eat more, grow rapidly and molt 



quickly at higher temperatures. Since azadirachtin is active at several sites the exact 

mode of action has not been determined. It may be a combination of all its activities 

causes the increase of mortality with increasing temperature. 

To summarize, the pyrethroid insecticide esfenvalarate provided excellent 

efficacy in controlling third instar M differentialis and its activity at labeled use rates is 

not temperature dependent. The microbial-derived insecticide spinosad has equally good 

efficacy as esfenvalarate for Mdifferentialis but efficacy increases with time after 

application and at increasing temperature. The activity of B. bassiana is greatest at 25OC 

and is negatively affected by high and low temperatures. The insecticide diflubenzuron 

provided good activity at high temperatures. The activity of azadirachtin is moderate in 

regard to mortality of M I  differentialis and its activity is temperature dependent. 
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Chapter IV 

Efficacy and residual effect of insecticides for managing the differential grasshopper 

in leafy green vegetable crops 

Abstract 

This study was conducted to determine activity of possible alternative insecticides 

for replacing the use of organophosphate and carbamate insecticides for controlling 

grasshoppers in leafy green vegetables. Data on efficacy and residual activity of different 

classes of insecticides such as: an insect growth regulator, diflubenzuron [Dimilin]; a 

botanically derived insect growth regulator, azadirachtin peemix 4.51; a microbial 

insecticide, Beauveria bassiana GHA [Mycotrol]; a microbial-derived insecticide, 

spinosad [Spintor] were collected and compared to similar data on currently 

recommended insecticides including endosulfan (cyclodiene, [Thiodan]; esfenvalarate 

pyrethroid, [Asana]; and organophosphate, naled [Dibrom]) to control the third instar 

differential grasshopper Melanoplus differentialis (Thomas). 

Spinosad, diflubenzuron, endosulfan and esfenvalrate provided significant levels 

of control of third instar M differentialis (Thomas). Activity of diflubenzuron was 

increased with time relative to the other three insecticides. The activity of these 

insecticides decreased with increasing time of exposure to the high summer 

environmental temperatures. The activity of naled was more contact oriented and had a 

short residual period. Beauveria bassiana was susceptible to inactivation under high 



temperature and intense sunlight as occurs in the summer. The activity of azadirachtin 

was more pronounced when it made direct contact with the nymphs. 

Introduction 

Leafy green crops including kale, collards, mustard, turnip, and spinach are grown 

throughout temperate North America for the fresh and processing markets. Those crops 

grown for the processing market are typically harvested mechanically using cutter bars 

mounted in front of conveyer belts that transfer cut leaves to a holding container for 

transfer to the processing plant. Cut leaves are delivered to the processing plant in bulk 

and are processed into whole or cut leaf products that are canned or frozen. Processed 

raw ingredients are subject to stringent regulatory standards set by the United States Food 

and Drug Administration (FDA). The FDA has stringent standards that limit 

contaminants including insects, insect parts and fecal material. 

Key pests of leafy green crops in the south central region of the United States 

include aphids, cucumber beetles, seed maggots, and larvae of several lepidopteran 

species. These pests are generally attracted to the crops and feed and reproduce on plants 

in production fields. Grasshoppers can be a significant contaminant of leafy greens 

(Gecan et a1.1990). Generally, grasshoppers do not reproduce within fields of leafy 

greens but rather move into them from adjacent rangeland, pastures, or other crops 

(Sweeden, 1996). The grasshoppers do feed on leafy greens and may reduce 

productivity. However the main problem is that due to their large size, they serve as 

significant sources of contamination in the harvested product. 



Grasshoppers are often difficult to control due to their large size and mobility 

(Sweeden, 1996). Populations may be less susceptible to insecticides in comparison to 

smaller insects such as aphids or lepidopteran larvae simply due to their larger body 

mass. Due to their mobility, they can leave a treated field quickly, then return quickly 

and/or re-infest a treated area several days when residual activity has decreased due to 

exposure to rain or sunlight. 

Due to the strict standards limiting insect parts and feeding contamination of 

processed vegetable crops, grasshoppers thresholds in fields of leafy greens destined for 

the processing market are practically zero. Therefore, management and control of insect 

pests and especially of grasshoppers is a critical issue (Gecan et al. 1990). Insecticides are 

the main tool used for managing grasshopper populations and considerable research has 

been conducted to determine insecticide efficacy and residual activity for controlling 

grasshoppers on various crops. However, due to implementation of the Food Quality 

Protection Act in1 996, several organophosphate, carbamate and pyrethroid insecticides 

are under regulatory review and may lose their registration. Registered insecticides that 

are currently under review by EPA for possible de-registration include diazinon, 

dimethoate, chlorpyriphos, malathion, methomyl, permethrin, carbaryl, and dibrom. 

Diazinon, dimethoate, methomyl, dibrom, and permethrin are effective, commonly used 

insecticides for controlling insect pests on lea@ green crops (Extension Agents' 

Handbook, 2002). Possible replacements include spinosad, esfenvalerate, diflubenzuron, 

neem extracts, and biological insecticides based on the h g u s  Beauveria bassiana. 

The following research was conducted to determine activity of possible 

alternative insecticides for replacing the use of organophosphate and carbarnate 



insecticides for controlling grasshoppers. The research focussed on developing efficacy 

data including residual activity. 

Materials and Methods 

Insecticides. The following insecticides were obtained as formulated materials as noted 

and used at the rates as stated: diflubenzuron (Dimilin 2L, Uniroyal Chemical Comp., 

INC, Middleburg, CT 06749) 0.07kg a.i.ka, appl. rate, 0.28 kgha; azadirachtin (Neemix 

4.5, Certis USA, Columbia, MD 21046) 0.048 kg a.i./ha, appl. rate,l.l21 kgha; 

Beauveria bassiana GHA (Mycotrol, Mycotech Corp. Butte, MT 597022) 0.179 kg a.i. 

/ha. appl. rate, 1.592 kg/ha; esfenvalerate (Asana XL, E. I. Du Pont de Nemours & 

Comp., INC, Wilmington, DE 19898) 0.055 kg a.i./ha, appl. rate 0.673kgha; spinosad 

(Spintor 2SC, Dow Agro Sciences LLC, Indianapolis, IN 46268) 0.175 kg a.i./ha, appl. 

rate, 0.7 kg/ha; endosulfan (Thiodan 3EC FMC Corp., Philadelphia, PA 191 03) 1.1 18 

kg a.i./ha, appl. rate,2.98 1 kgha; and naled (Dibrom8, Arnvac Chemical Corp. Los 

Angeles, CA 90023) 2.102 kg a.i./ha, appl. rate, 2.242 kgha. 

Third instar Melanoplus differentialis nymphs were collected from a pasture in 

southeast Oklahoma using a 38cm diameter sweep net (BioquipB). The third instars 

were identified by the general color of pale yellow to tan, with body length in the range 

of 9.4 to 12.4 mm and a black stripe on the hind femur occupying the center of the medial 

area (Pfadt, 1994). The Systematic Entomology Laboratory, USDA, Beltsville, MD 

identified and verified the samples of the nymphs and nymphs reared to adults as Ad 



dzflerntialis nigricans (Lot No.0 10778 1). The collected grasshoppers were immediately 

transported to the entomology laboratory at the Wes Watkins Agricultural Research and 

Extension Center (WWAREC), Lane, Oklahoma and kept in aluminum wire meshed 

mosquito cages of 45x45x45cm (BioquipB). A 3cm layer of sand was placed on the 

bottom of the cages. Fresh collard leaves and water were provided each day. Insects 

were maintained at a 14-hour photo-period and room temperature of 26.7 + 0.5"C. 

The experimental site was a research field at the Wes Watkins Agricultural 

Research and Extension Center (WWAREC), Lane, Oklahoma. Before planting, 

fertilizer was applied to the soil at the rate of 1 12.08 kglha of 17: 17: 17 NPK. Collards 

(Brassica oleraceae L. var. acephala, cultivar "Champion7') seeds were direct seeded into 

raised beds, 1.8m wide with 2 rows with row spacing of 0.9m on 16 May 2001 using a 

tractor-mounted planter at the rate of 1 inch between seeds within rows. A pre-emergent 

herbicide, Treflan, was applied to the soil 3 days before planting at the rate of 0.84 kgha. 

Irrigation was provided through an overhead sprinkler system. The experimental design 

was a randomized complete block with 5 blocks. Each plot was 1 bed wide and 6m long, 

bordered on each side by an untreated bed and on each end by a 4.5m - long fallow area. 

Forty, third instar M differentialis nymphs were selected from the rearing cages. 

Nymphs of similar size were isolated in groups and starved for 24 hours in the laboratory 

at a temperature of 26.7k0.5OC. Each was placed in an aluminum wire meshed cage 

30cm in length and 45cm in perimeter. Cloth sleeves were glued to each end to facilitate 

access to the cage fiom both ends. The sleeves were secured with a tie-on strip of 

material. 



After the 24-hour starvation period, the cages with third instars were sealed from 

both sides and transferred to the experiment site. A plant was selected from each plot and 

one leaf from the upper plant canopy with a mean leaf area of 265.1 k 8.5 cm2 was 

carefully inserted in to each cage by opening one end of the cloth sleeve and tied closed. 

Cages were placed as one per each plot. Each insecticide treatment except B. bassiana 

was sprayed using a tractor-mounted sprayer with 6 hollow cone nozzles per bed 

applying 332 Literfha solution on July 6,2001 (Experiment 1). B. bassiana was sprayed 

on the evening of July 5,2001 to avoid exposure to high environment temperature soon 

after the treatment. 

After 24 hours, each cage was checked for insect mortality for a ten-day period. 

Mortality of grasshoppers was determined by monitoring for lack of movement, insects 

lying on their sides, or inability to have a coordinated response to a slight shaking of the 

cage. The cadavers of the nymphs in B. bassiana treatments were kept in a temperature 

chamber at 25OC for 14 days for mycelium growth. Mortality from B. bassiana, was 

counted only when mycelium was visible on the integument through microscopic 

examination. To assess residual activity, another set of 40 cages, each containing one 24- 

hour starved third instar M. differentialis were placed in each plot 24 hours after the 

initial treatment. Grasshopper mortality in this study was recorded at 24 hours intervals 

over a ten-day period. This experiment was repeated on July 19,200 1 (Experiment 2), 

and the cages were placed in the field at one hour and 24 hours after spraying. The 

mortality was recorded as described above. 

This experiment was repeated in the summer of 2002 (Experiment 3). The plots 

were direct seeded on April 26,2002 and insecticide treatments applied on June 20,2002. 



The experimental design was a completely randomized with 5 replications. Cages were 

placed in plots before treatment, 1 hour after treatment and 24 hours after treatment. 

Mortality of grasshoppers was recorded as indicated previously. 

Leaf Bio-assays. A fully expanded leaf with mean leaf area of 262.1 f 8.5 cm2 was 

collected from the top of the plant canopy after 24 hours, on the 4'h and 7'h day after 

spraying, from each plot. Leaves were taken to the laboratory and separately placed into 

plastic cages. The cut end of the leaf petioles were plugged with moistened cotton balls in 

order to delay drying. A single leaf was placed in a cage containing a third instar M. 

differentialis nymphs that had been starved for 24 hours. Grasshopper mortality was 

determined at 24-hour intervals over a 10-day period as described above. Leaf bioassays 

were performed for all 3 experiments as previously described. 

SAS (SAS Institute 1999) software was used for the data analysis. The 

CATMOD procedure was used to find the experiment and treatment effects at the Px0.1 

significance level. The data for all three experiments were pooled and Proc Freq in SAS 

with Fisher's Exact Test was used to determine the treatment effect for the caged 

grasshoppers as well as for the leaf bioassays. In these experiments we determined the 

efficacy of insecticides as insect mortality and used a 0.1 significance level. 

Results 

Treatment effect for cages placed before treatment. There was no mortality of nymphs 

for the water- treated control (Table 4. 01). One hundred percent mortality of nymphs 



resulted fiom treatment with naled at 1-DAT and it was significantly greater than the 

water-treated control (Table 4.01). Endosulfan treatment resulted in 80% mortality and 

the treatment with esfenvalarate and spinosad resulted in 70% mortality and were 

significantly greater than the water-treated control. Mortality increased over time with 

spinosad, diflubenzuron, azadirachtin, esfenvalarate and B. bassiana. At 10-DAT 

mortality ranged from 100% with naled to 20% with B. bassiana which were not 

significantly different fiom the water-treated control (Table 4.01). Results indicate that 

spinosad, endosulfan,, naled, and esfenvalarate applications resulted in greater mortality 

than the water-treated control at 1-DAT and that and azadirachtin and diflubenzuron 

resulted in greater mortality at 10-DAT. 

Treatment effect for cages placed 1 hour after treatment. There was no mortality of 

the nymphs with the water-treated control (Table 4.02). At 1-DAT, 40% of the nymphs 

died after being treated with spinosad and 30% with naled. These mortality rates were 

significantly greater than the water-treated control. Twenty percent of the nymphs died 

after exposure to treatments with endosulfan and esfenvalarate and these were not 

significantly different from the water-treated control. Mortality increased over time for 

each treatment. At 10-DAT, mortality ranged from 80% with spinosad to 20% with B. 

bassiana but were not significantly different from the water-treated control. Results 

indicate that the 1 -hour old residues of esfenvalarate, naled and endosulfan resulted in 

low mortality 1 -DAT. However, 1 -hour old residues of spinosad and esfenvalarate did 

qrovide significant levels of mortality 10-DAT. 



Treatment effect for cages placed 24 hours after treatment. Esfenvalarate was the 

only treatment that resulted in grasshopper mortality when cages were placed on plants 

24 hours after treatment (Table 4.03). At 2-DAT, 13% mortality was noted for spinosad 

and 7% mortality for azadirachtin, diflubenzuron, endosulfan and esfenvalarate. They 

were not significantly different from the water-treated control. Mortality increased over 

time for spinosad, diflubenzuron and azadirachtin treatments. At 1 0-DAT, 47% of the 

nymphs died from treatment with spinosad and 60 percent died from treatment with 

diflubenzuron and 27% mortality was noted for azadirachtin treatment. These were 

significantly greater than the water-treated control. Results indicate that only treatments 

with spinosad, diflubenzuron and azadiractin resulted in mortality when grasshoppers 

were exposed to 24-hour-old residues. 

Bioassay of leaves removed 1 hour after treatment. AT 1 -DAT, 10 percent of the 

nymphs died from treatment with naled and 20 % mortality was noted for treatments with 

spinosad and endosulfan and these were not significantly different than the water-treated 

control (Table 4.04). Esfenvalarate treatment resulted in 30 % mortality and was 

significantly more toxic than the water-treated control. Mortality gradually increased 

with time for each treatment. At 10-DAT, mortality ranged from 70 % with esfenvalarate 

to 20 percent with diflubenzuron and naled but were not significantly different from the 

water-treated control. Results show that esfenvalarate, endosulfan and spinosad 

treatments resulted in better residual effect after exposure to the environment for 1 hour. 



Bioassay of leaves removed 24 hours after treatment. At 1 -DAT, (Table 4.05) 20% of 

the nymphs were dead resulting from treatment with B. bassiana, and 7% were dead fiom 

the treatment with spinosad, endosulfan and esfenvalarate and were not significantly 

different from the water-treated control. Mortality increased with time for spinosad, 

azadirachtin, and esfenvalarate treatments. At 10-DAT, 27% mortality resulted from 

treatment with esfenvalarate and was significantly greater than the water-treated control. 

Results show that the residual activity of insecticides decreases with time and exposure to 

the environment, and that esfenvalarate may be the only insecticide that provide 

significant levels of mortality with 24 hour old residues. 

Bioassay for leaves removed 4 days and 7 days after treatment. None of the 

treatments resulted in any mortality when leaves were removed 4 days and 7 days after 

treatment. 



Table 4.01 Percent mortality over time with each treatment for M differentialis 
(Thomas) for the cages placed on plants before treatment. 

Percent Mortality 
Treatment Days After Treatments (DAT) 

Control 
spinosad 
diflubenzuron 
azadirac htin 
endosulfan 
naled 
esfenvalarate 
B. bassiana 

Percent mortality followed by the same letter in a column for each date (DAT) are not 
significantly different (P > 0.1, Fisher's Exact Test) 



Table 4.02 Percent mortality over time with each treatment for M differentialis 
(Thomas) for the cages placed on plants 1 hour after treatment. 

Percent Mortality 
Treatment Days After Treatments (DAT) 

1 2 4 6 8 10 

Control 
spinosad 
diflubenzuron 
azadirachtin 
endosulfan 
naled 
esfenvalarate 
B. bassiana 

Percent mortality followed by the same letter in a column for each date (DAT) are not 
significantly different (P > 0.1, Fisher's Exact Test) 



Table 4.03 Percent mortality over time with each treatment for M. differentialis 
(Thomas) for the cages placed on plants 24 hours afier treatments. 

Percent Mortality 
Treatment Days After Treatments (DAT) 

Control 
spinosad 
diflubenzuron 
azadirachtin 
endosulfan 
naled 
esfenvalarate 
B. bassiana 

Percent mortality followed by the same letter in a column for each date (DAT) are not 
significantly different (P > 0.1, Fisher's Exact Test) 



Table 4.04 Percent mortality over time with each treatment for M differentialis 
(Thomas) using a leaf bioassay of tissue removed 1 hour after treatment. 

Percent Mortalitv 
Treatment Days After Treatments (DAT) 

control 
spinosad 
diflubenzuron 
azadirachtin 
endosulfan 
naled 
esfenvalarate 
B. bassiana 

Percent mortality followed by the same letter in a column for each date (DAT) are not 
significantly different (P > 0.1, Fisher's Exact Test) 



Table 4.05 Percent mortality over time with each treatment for M differentialis 
(Thomas) using a leaf bioassay of tissue removed 24 hours afier treatment. 

- -- 

Percent Mortality 
Treatment Days After Treatments (DAT) 

control 
spinosad 
diflubenzuron 
azadirachtin 
endosulfan 
naled 
esfenvalarate 
B. bassiana 

Percent mortality followed by the same letter in a column for each date (DAT) are not 
significantly different (P >O. 1, Fisher's Exact Test) 



Discussion 

None of the nymphs treated with water died in any of the experiments. Therefore, 

nymph mortality was caused only by insecticides and not by the environmental factors 

common to all treatments. 

Except for 3. bassiana, all the other insecticide treatments resulted in control of 

the third instars of M differentialis (Thomas) at 10-DAT for the cages placed before the 

treatments so that insects were directly exposed to insecticides. High mortality of 

nymphs resulted from both insect growth regulators, diflubenzuron and azadirachtin with 

time. Mortality was greater with spinosad, endosulfan, naled and esfenvalarate treatment 

at 1-DAT. These insecticides are nerve toxins with quick killing action compared to the 

microbial insecticides and insect growth regulators (Ware 2000). The activity of 

insecticides decreased with time of exposure to the environment for endosulfan, naled 

and esfenvalarate. None of these insecticide treatments resulted in significant activity 

when grasshoppers were exposed to residues at 24 hours or greater time after treatment. 

In contrast to the activity of the nerve toxins, only the treatment with spinosad 

resulted in significant activity over time. This efficient and rapid activity of spinosad 

may be due to its unique mode of action, affecting nicotinic acetylcholine and GABA 

receptors in insect nervous system (Sparks et al. 1999). 

The insect growth regulators, diflubenzuron and azadirachtin did not result in 

mortality at 24 hours for the cages placed before treatment, or in cages placed one and 24 

hours after treatment. Insect growth regulators result in mortality over time, 

Diflubenzuron must be ingested by the nymphs to initiate its activity on chitin synthesis 



and translocation in the insect cuticle (Ware 2000). These activities are initiated at the 

time of molting and insects need to molt in order to exhibit the effects of diflubenzuron 

such as molting deformities (Environmental health Criteria 184 1996). Thus, the 

significant mortality resulting from treatment with diflubenzuron at 1 0-DAT was 

expected. Diflubenzuron resulted in high mortality for grasshoppers in cages placed 

before treatment, and 1 and 24 hours after treatment. This indicates its stability under 

ambient temperature and sunlight compared to the other treatments. This supports the 

long photo stability previously reported for diflubenzuron Environmental health Criteria 

184 1996). 

Azadirachtin is a stomach and contact active insecticide with a complex mode of 

action (Ware 2000). In addition to its activity as an insect growth regulator which 

affects biosynthesis and metabolism of ecdysone hormone, azadirachtin also acts as a 

behavior modifying substance deterring feeding in some insects (Isman 1999). Thus, the 

low mortality noted may be due to the low consumption of treated leaves by the nymphs 

observed during the experimental period. 

In the leaf bioassay experiments, esfenvalarate and endosulfan resulted in 

increased effect compared to naled for both assays of leaf tissues removed 1 and 24 hours 

after treatment. This may be due to exposure to a constant temperature of 26°C 

maintained inside the laboratory compared to the insecticides being exposed to high 

temperature (Appendix A), radiation, and sunlight under field conditions. Spinosad 

treatment resulted in similar mortality for both cages under field condition and for the 

leaf bioassay of 1 hour. But its activity in the field after 24 hours was greater than the 



activity indicated with leaf bioassays of 24 hours. This indicates that spinosad may be 

more active at higher temperatures than under the moderate laboratory temperature. 

In general, the treatment with B. bassiana resulted in slightly better activity using 

leaf bioassays than indicated in the field cages. From the leaf bioassays its activity was 

more pronounced for the leaf tissue removed I -hour after the treatment application 

compared with tissue removed 24 hours after, B. bassiana is sensitive to high 

temperatures and intense sunlight and the literature indicates that more colony forming 

units occur around 25°C (Inglis et al. 1999). This may be a cause for its inactivity under 

the field conditions with exposure to the high summer temperatures (Appendix A). 

In summary, spinosad, diflubenzuron, endosulfan and esfenvalrate provided 

significant levels of control of third instar M differentialis. The effect of diflubenzwon 

was more pronounced with time than the other three insecticides. The activity of these 

insecticides decreased with increasing time of exposure to the summer environment. The 

activity of naled was contact oriented with a short residual period. Indications are that B. 

bassiana is susceptible to inactivation under high temperature and intense sunlight as 

occurs in the summer. The activity of azadirachtin was more pronounced when it made 

direct contact with the nymphs. 
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Conclusions 

The pyrethroid insecticide esfenvalarate provided excellent efficacy in controlling 

third instar M. differentialis (Thomas) and its activity at labeled use rates is not 

temperature dependent. The microbial-derived insecticide spinosad has equally good 

efficacy as esfenvalarate for M differentialis but efficacy increases with time after 

application and at different temperatures. The activity of B. bassiana is more pronounced 

at 25°C and is affected by high and low temperatures and susceptible to inactivation 

under high temperature and intense sunlight as occurs in the summer. The insecticide 

diflubenzuron provided good activity at high temperatures and its effect is more 

pronounced with time. The activity of azadirachtin is moderate in regard to mortality of 

M differentialis and its activity is temperature dependent. Endosulfan provided 

significant level of control of third instars. The activity of naled was more contact 

oriented. 



APPENDIX A. Maximum daily temperature recorded at Lane, Oklahoma for the months 
of June and July 2001 and June 2002 (Mesonet climatological data summary-Oklahoma 
Climatological survey). 

Day Maximum Temperature O C  
June 200 1 July 200 1 June 2002 
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