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Chapter 1 

Literature Review 

1. Cucurbits 

1.1. Cucurbits Taxonomy 

The term "cucurbit" was originally coined for only the cultivated species 

within the family Cucurbitaceae (49), but it denotes all species within the 

Cucurbitaceae. Most species of this family are frost intolerant, predominantly 

tendril-bearing vines found throughout the tropics and sub-tropics of Africa, 

southeastern Asia and the Americas. Most species cannot survive year-round in 

temperate climates, so they are cultivated as seed-producing annuals (60). 

The family Cucurbitaceae is taxonomically isolated from other plant 

families. It can be divided in two subfamilies: the Cucurbitoideae, with one style 

in the female flowers, and the Zanonioideae, with three styles (there are no 

species of Zanonioideae of economic importance). The subfamily Zanonioideae 

includes cucurbits that are grown throughout Asia for medicinal purposes. There 

are about 118 genera and over 825 species in the Cucurbitaceae family (35). 

Among these are four genera of economic importance, watermelon, cucumber, 

muskmelon and squash (60). 

The seedlings of most cucurbits are epigean, germinating with the tips of 

the cotyledons initially inverted but later erect. Cucurbits generally have a strong 

taproot that can extend 1-2 m into the soil. Often, many secondary roots occur 

near the soil surface. The sieve tubes in the secondary phloem are the largest 

found in angiosperms. The stem of the usual cucurbit is herbaceous, centrally 



hollow, sap-filled, and branched. Cucurbit leaves are simple, palmately veined 

and shallowly to deeply three to seven lobed. There is typically one leaf per stem 

node. The fruits of cucurbits are extremely diverse in many characteristics 

including size, shape, color, and ornamentation (60). 

1.2. Economic Importance of Cucurbits 

Nine genera of cucurbits including thirty species are produced as food 

crops (49). Food and Agriculture Organization (FAO) statistics (22) show that the 

most widely cultivated cucurbit in the world is watermelon, with a total production 

of about 63 million tons, followed by cucumber (29 million tons), muskmelons and 

other melons (1 9 million tons) and Cucurbita spp. including squash, pumpkins, 

and gourds (1 5 million tons). The country with the highest cucurbit production of 

all four is China, which produces 60% of the world's watermelons, 55% of the 

cucumbers, 31 % of muskmelons and other melons and 20% of the squashes, 

pumpkins and gourds (22). 

The United States Department of Agriculture reported that Oklahoma and 

Texas yield an annual value of cucurbits greater than $100 million and occupying 

approximately 40,000 hectares. The watermelon area harvested in 1999 for fresh 

market in Oklahoma was 3,035.25 hectares, of which 675,000 CWT (hundred 

weight, which equals 100 pounds or about 45.4 kilograms) were produced at a 

value of 7.30 dollars per CWT. In Texas, 15,054.84 hectares were harvested, 

producing 7,440,000 CWT with a value of 3.98 dollars per CWT (1). 



1.3. Diseases of Cucurbits 

There are more than 200 known cucurbit diseases of diverse etiologies 

(75). Among the bacterial diseases are those caused by species of Erwinia, such 

as bacterial wilt, caused by E. tracheiphila, which affects mainly muskmelon but 

also cucumber and squash. E. carnegieana causes bacterial rind necrosis in 

muskmelons and watermelons. E. carotovora causes soft rot of cucurbit fruits, 

particularly cucumbers and muskmelons. E. ananas causes brown spot in 

muskmelons. Other bacterial diseases are leaf spot caused by Xanthomonas 

campestris pv. cucurbitae, angular leaf spot caused by Pseudomonas syringae 

pv. lachrymans and bacterial fruit blotch caused by Acidovorax avenae sp. citrulli 

(60). 

Fungal diseases include damping off caused by Pythium spp., 

Phytophthora spp., Rhizoctonia solani, and other fungi. Other fungal diseases 

include target leaf spot, alternaria leaf blight, anthracnose, Cercospora leaf spot, 

powdery and downy mildew, charcoal rot, scab, different types of rots, Fusarium 

and Verticillium wilt (37,75). 

Important viral diseases of cucurbits include cucumber mosaic, cucumber 

green mottle mosaic, squash mosaic, and watermelon mosaic (37,60). Another 

viral disease, cucurbit latent, is transmitted by the aphid Myzus persicae in a non 

persistent manner. This virus is restricted to California, where it infects 

muskmelon, watermelon, cucumber, and squash. Cucumber wild mosaic virus is 



transmitted by the western striped cucumber beetle (Acalymma triviffata) and 

cucumber vein yellowing virus is transmitted by the sweet potato whitefly, 

Bemisia tabaci (I 9,20). 

1.4. Insect Vectors of Cucurbit Pathogens 

The most important insect pests are those that primarily cause feeding 

damage on the plant but may also cause secondary damage by transmitting 

pathogens (60). Among those are aphids, the most important insect vectors on 

cucurbits. The melon aphid, Aphis gossypii (Glover), which attacks watermelon, 

muskmelon, cucumber, squash and other cucurbits, is a serious direct pest of 

melon and an important vector of non-persistent viruses such as cucumber 

mosaic virus (CMV), watermelon mosaic virus 2 (WMV-2) and zucchini yellow 

mosaic virus (ZYMV) (43). The green peach aphid, M. persicae, attacks cucurbits 

also, but prefers other host plants; these aphids migrate from one plant to 

another seeking a more preferred host, thus spreading viruses such WMV-2 and 

CMV (9). 

Cucumber beetles are another important group of insect vectors on 

cucurbits. Three species are known to transmit pathogens: the striped cucumber 

beetle, Acalymma viffatum (Fabricius), the banded cucumber beetle, Diabrotica 

balteata (Le Conte) and the spotted cucumber beetle, D. undecimpunctata 

howardi (Barber). A. viffatum attacks the young seedlings by consuming the 

stems and cotyledons. Adults later feed on the leaves, vines and fruits and larvae 

feed on the roots. A. vittatum and D. undecimpunctata howardi transmit E. 



tracheiphila, the causal agent of bacterial wilt (60). Feeding by these beetles 

makes deep wounds in the plant and bacteria that over-winter in the digestive 

tract of the beetles emerge within insect feces and enter the wounds. The 

bacteria multiply within the xylem vessels of the plant until water movement is 

blocked. Bacteria can survive for one to two months after host plant death but 

cannot survive the winter in any location other than the cucumber beetle's 

digestive tract (68). Adults of D. balteata and D. undecimpunctata howardi feed 

on leaves and transmit bean mild mosaic carmovirus, bean chlorotic mottle 

bromovirus, bean pod mottle and cowpea severe mosaic comovirus. A. triviftata, 

A. thiemei thiemei and D. undecimpunctata undecimpunctata transmit squash 

mosaic virus (9). 

The squash bug, Anasa tristis, is considered a serious insect pest on 

cucurbits. It feeds by penetrating its stylets intra-cellularly in the vascular tissues 

(3,50). Squash is the preferred host for squash bugs but in the absence of 

squash they may feed on cucumber, melon, watermelon, or other cucurbits. 

Cucurbit seedlings are the targets for A. tristis because of the voracious feeding 

of over-wintered adults and newly hatched nymphs (3). Squash bugs induce 

Anasa wilt of cucurbits (59). The damage begins on a single leaf and progresses 

throughout the entire plant. Neal (50) showed that wilting is not due to toxin but is 

a result of localized feeding of A. tristis. Members of the Cucurbitaceae family 

have bicollateral vascular bundles distributed in a ring around the stem, and 

because each of the vascular bundles is independent, destruction of all the 



bundles is necessary for complete loss of water transport (50). The insect usually 

has two generations per season but favorable environmental conditions in 

Oklahoma result in the development of a partial or complete third generation 

(23). 

Thrips, including Frankliniella occidenfalis, He l i o t h~s  femoralis, and other 

species are destructive to melon and cucumber and are important vectors of 

tospoviruses (60), such as those causing watermelon silver mottle and zucchini 

lethal cholorosis (47). 

Leafhoppers are important vectors of cucurbit pathogens. These insects, 

which are capable of long distance movement, may migrate 400 miles or more 

from the winter breeding areas to cultivated fields (24). The beet leafhopper, 

Circulifer fenellus, may transmit curly top virus when it feeds on cucurbits, 

although it prefers other host plants (60). 

Other major insect vectors on cucurbits are the whiteflies. Three distinct 

cucurbit viruses have been reported to be transmitted by whiteflies: beet pseudo 

yellows (BPY), lettuce infectious yellows (LIY), and cucurbit yellow stunting 

disorder (CYSD). BPY virus causes severe losses in greenhouse-grown cucurbit 

crops throughout North America, Europe, and Asia. It has been reported from 

France, the Netherlands, Japan, Italy, Spain, England, Australia, and Bulgaria. 

Since 1982, the incidence in melon crops under protected environments and 

outdoors on the Mediterranean coast of Spain has continually increased, 

inducing considerable economic losses. The virus has a wide host range of 

important crop, weed, and ornamental hosts. BPYV is transmitted by 
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Trialeurodes vaporanorurn in a semi-persistent manner. A different whitefly 

transmitted virus, LIW, was reported from the desert regions of California and 

Arizona in 1981. The virus, transmitted specifically by the A biotype of 5. tabaci, 

has a wide range of important crop hosts. The virus has been also found in 

Texas and Mexico. In the early 1980s, a yellowing and stunting disorder of 

cucurbits was noticed in the Middle East (Jordan, United Arab Emirates and 

Turkey) (20). 

The CYSD has a narrow host range, mainly in the Cucurbitaceae. CYSD 

is transmitted specifically by the B biotype of B. tabaci and is retained by the 

vector for 10 days (20). T. vaporanorurn can transmit muskmelon yellows virus to 

melon and cucumber and 5. tabaci can transmit squash leaf curl virus and 

lettuce infectious yellows virus (60). 

II. Cucurbit Yellow Vine Disease (CYVD) 

A disease of unknown etiology was first observed in 1988 on squash 

(Cucurbita pep0 var. melopepo) and pumpkin (Cucurbita pep0 var. pepo) in 

Oklahoma ( I  I ) .  The disease, known as cucurbit yellow vine disease (CWD), has 

been associated with a rod-shaped plant phloem-resident bacterium. 



11.1. Host Range and Geographic Distribution 

CYVD was first observed in squash and pumpkin and was observed in 

other cucurbits only in 1991, when it destroyed early planted watermelon 

(Citnrllus lanatus (Thunb.) and muskmelon (Cucumis melo L.) in central Texas 

and Oklahoma (12). The susceptibility level among cucurbits is in the following 

descending order: squash, pumpkin, watermelon, and muskmelon. Other wild 

cucurbits and various gourds have not been found affected by C W D  (53,54). 

Initially, the geographical range of the disease appeared to be generally 

confined to the Cross Timbers region of central and northeastern Oklahoma and 

north central Texas. In 1997-98, CWD was diagnosed in commercial fields of 

watermelon and muskmelon from east Texas (Post Oak Savannah) and all 

cucurbit-growing areas of Oklahoma. In summer of 1998, symptoms of CWD 

were recorded in one watermelon (Hardeman County) and three pumpkin fields 

(Rhea and Morgan Counties) in Tennessee, where the leaves turned yellow and 

affected plants exhibited phloem discoloration (7). The disease has recently been 

reported in Arkansas (58), Kansas (unpublished data) and Colorado 

(unpublished data). In addition, the disease was found in Massachusetts, which 

extends the known geographical range of C W D  significantly to include the New 

England area (74). 



11.2. Symptoms of CYDV 

Symptoms of CYVD generally appear about two weeks before the harvest. 

General and rapid yellowing of the leaves are the main symptoms, followed by 

decline, which occurs gradually and ultimately leads to the death of the vines. 

However, some infected plants showed no chlorosis, but wilted and collapsed 

within a day. There are no symptoms associated with the fruit or flowers of 

squash and pumpkin. In the early stages, a golden to honey brown discoloration 

of the phloem in the primary root and in the crown is usually observed (1 1). 

Similar symptoms occur in watermelon; however, the watermelon fruits become 

distinctly chlorotic and are difficult to sell (1 2). 

11.3. Etiology of the CYVD Bacterium 

Since CYVD was first observed in central Texas and Oklahoma in 1988, a 

concerted effort was made to isolate and identify its causal agent and to 

determine the means by which it is disseminated to host plants. A number of 

disease-causing organisms and abiotic conditions were investigated as the 

possible cause of CYVD. Among these were herbicide damage, nutrient 

imbalance, Fusarium wilt, charcoal rot, Monosporascus vine decline, and various 

common seed-borne pathogens. An exhaustive study by Bruton et al. (12) 

included attempts to isolate fungal and prokaryotic organisms from surface 

sterilized sections of infected muskmelon and watermelon and to specifically 

detect various candidate pathogens using serological and molecular methods. A 



large number of fungi, mostly of the genus Fusarium, and 22 species of bacteria, 

most in the genera Enterobacter and Erwinia, were isolated. However, there was 

no consistent correlation between the presence of any fungus or bacterium and 

the occurrence of symptoms in plants. A suggestion that mollicutes might be the 

causal agent was supported by circumstantial evidence of insect transmission, 

the necrosis of host plant phloem tissues, and the inability to isolate any 

organism consistently associated with CWD symptomology. Moreover, Dienes' 

staining of cross sections of infected plant tissues was consistent with the 

presence of spiroplasma or an uncultivable phytoplasma (12). 

The new disease was later consistently associated with the presence of a 

phloem-resident walled bacterium, originally designated a bacterium-like 

organism (BLO) because the organism had not yet been cultured (12). Electron 

microscopy of phloem tissue of CWD-diseased plants revealed rod-shaped 

forms of 0.25-0.5 urn in width and 1 .O-3.0 um in length surrounded by a triple- 

layered cell envelope ( I  1,12). 

The polymerase chain reaction (PCR) was used for DNA amplification 

from bacterium-like organisms (2). An initial primer pair designed based on 

sequences of the citrus-greening BLO amplified a 0.15-kilobase (kb) fragment 

from the DNA of symptomatic plants and not from asymptomatic plants, 

suggesting that the amplified DNA was of prokaryotic origin. A primer pair 

designed to amplify nonspecific prokaryotic 16s rDNA amplified a 1.5 kb DNA 

fragment in both symptomatic and asymptomatic plants. The fragment of I .5-kb 

from asymptomatic plants corresponded to chloroplast 16s rDNA, while the 



isolates fell within the species S. marcescens (58). Later DNA-DNA hybridization 

tests confirmed it as S. marcescens (Fletcher, unpublished). 

11.4. Serratia marcescens; C W D  Pathogen 

S. marcescens is a Gram negative, coliforrn bacterial species of the family 

Enterobacteriaceae. A non spore-forming facultative anaerobe with peritrichous 

flagella, S. marcescens is distinguished from other enterobacteria by the 

production of some interesting compounds such as the surfactant sarawettin, 

different marcescins, extracellular proteases and chitinases that have been the 

focus of intensive research (36). S. marcescens was long considered to be an 

innocuous saprophytic microorganism of soil and water habitats, and its plant 

growth-promoting features made it a focus of research for potential biocontrol 

applications (67). In addition, however, it is an opportunistic pathogen of humans 

and has been responsible for many deaths (33). S. marcescens also is 

pathogenic to over 70 insect species, in which it causes reduced longevity, which 

is of concern for beneficial insects such as honeybees (21) and silkworms, 

Bombyx mori (66). Lethal doses of S. marcescens strains are variable; strain 

RH3 is highly lethal with a LD50 of 0.43 cells for the greater wax moth Galleria 

mellonella, whereas strain BR4 had a LD50 of 300,000 cells (13). 

Although its association with plants has been mostly beneficial, two cases 

of plant pathogenicity for S. marcescens have been described in crown rots of 

both sainfoin (64) and alfalfa (42). In these instances, S. marcescens was 

reported to be part of a pathogen complex. 



11.5. Vascular-Restricted Bacteria similar to CYVD 

11.5.1. Phloem-Restricted Bacteria 

Phloem-limited bacteria have been identified as the causal organisms of 

diseases of several crops. Some examples of phloem restricted walled bacteria 

are those causing citrus greening, clover club leaf, papaya bunchy top and 

marginal chlorosis of strawberry. 

Citrus greening disease (CGD) is a major cause of crop loss in many parts 

of Asia and Africa. The disease is caused by Liberobacter asiaticum and L. 

africanum. Symptoms include yellowing of normal sized leaves along veins, 

small, lopsided, and bitter fruit, and poorly developed roots. Transmission of 

CGD from sweet orange to periwinkle was accomplished by dodder and grafting 

and the inoculated test plants developed yellowing symptoms within 3 months 

(26). The disease organism was originally thought to be a mycoplasma-like 

organism (now referred to as phytoplasma) (34), but after further investigation, 

the causal agent was identified as a bacteria-like organism (BLO) that was 

restricted to the phloem sieve tubes. Several strains of the BLO have been 

identified using DNA analysis (73). The CGD causal organisms from Africa and 

Asia had slight genome differences, but Jagouiex et al. (34), placed the BLOs of 

both strains in the Proteobacteria. The phloem-restricted citrus greening 

bacterium is transmitted in a persistent manner by the psyllids Trioza erytreae 

(Del Guercio) and Diaphorina citri (Kuwayama) ( I  5). 



Clover club leaf (CCL) disease affects the leaves of crimson clover, 

Trifolium incarnatum (L.), and other plants such as periwinkle (6). The disease 

delayed the opening of young leaflets and caused a yellowing of the leaves. 

Evidence suggested that the pathogen was not a virus, as originally supposed, 

but rather a rickettsia-like organism (RLO). The CCL bacterium has not been 

successfully grown on artificial media. The RLO was collected first in Agalliopsis 

novella (Say), captured near woods, and by using A. novella, the pathogen was 

transmitted into healthy plants. The CCL bacterium also was transmitted to 99% 

of the leafhopper progeny (41), through as many as 21 generations. 

Papaya bunchy top (PBT) disease, an important disease in the Antilles 

and in Trinidad, was originally thought to be caused by phytoplasma (1 7). This 

disease organism, which causes diffuse chlorosis in young leaves and reduction 

of normal leaf blade expansion, was restricted to the periphery of the papaya 

phloem. The causal organism was later identified as a phloem-limited bacterium, 

but to date it has not been cultured. Using DNA sequence analysis, a 

Proteobacterium of the genus Rickettsia was identified as the causal agent of 

PBT (18). Recently, electron microscopy of tissues infected with the papaya 

bunchy top bacterium has shown that it is not the phloem but the lactifers that 

harbor rickettsia1 colonies (1 8). PCR was used successfully to detect the 

pathogen in symptomatic plants. Two leafhopper species, Empoasca papayae 

(Oman), found in the Antilles, and E. stevensi (Young), found in Trinidad, were 

consistently associated with the disease, and later were identified in transmission 

tests as vectors of the pathogen (1 7). 



Marginal chlorosis of strawberries was first seen in Spain in 1984 and in 

France in 1988 (52,76). The disease affected all strawberry cultivars tested. An 

un-culturable BLO, observed in diseased plants by electron microscopy, was 

phloem-limited and consistently associated with the disease. Sequencing of 

PCR-generated rDNA allowed for comparisons with other phloem-limited 

bacteria. Because of significant differences with other organisms, the bacterium 

was designated a new organism and assigned the name Candidatus 

Phlomobacter fragariae. The new bacterium was placed phylogenetically in the 

group 3 of the gamma subclass of Proteobacteria. Research at OSU (2) and in 

France (76) has shown that the bacterium causing marginal chlorosis of 

strawberry and the bacterium associated with CYVD of cucurbits are different, 

although they are the only known plant pathogenic gamma-proteobacteria. 

Different leafhoppers and psyllids collected during several years in and around 

infected strawberry fields were not found to carry C. P. fragariae. However, the C. 

P. fragariae spoT sequence is easily detected in whiteflies proliferating on P. 

fragariae -infected strawberry plants under confined greenhouse conditions but 

not on control whiteflies, indicating that these insects can become contaminated 

with the bacterium (76). 



11.5.2. Xylem-Restricted Bacteria 

Xylem limited bacteria are often referred to as rickettsia - like bacteria. The 

identity of the pathogen causing Pierce's disease (PD) of grapes as the 

bacterium Xylella fastidiosa was not revealed until the 1970's. The bacterium 

blocks the xylem vessels of the plant, causing dryness, or scorch to the leaves. 

X. fastidiosa also causes almond leaf scorch, alfalfa dwarf, oleander leaf scorch, 

and citrus variegated chlorosis. The pathogen is transmitted by 23 species of 

leafhoppers, but the blue-green sharpshooter, Graphocephala atropunctata, and 

the glassy winged sharpshooter, Homalodisca coagulata, are major vectors of 

the pathogen. The pathogen is transmitted also by three species of xylem 

feeding spittlebugs (Family Cercopidae) (56,69). X. fastidiosa is non-circulative in 

the insect vectors, but is retained in the foregut region for several weeks to life 

(8)- 

Cucurbit lethal yellowing (CLY) disease is one of the major plant diseases 

of muskmelon, squash, and pumpkin in the mid-west and eastern United States 

(10). The disease, which is also referred to as bacterial wilt, is characterized by 

sudden wilt, yellowing or necrotic foliage, curled leaves at the growing tip, and 

often plant death (10). The causal agent is E. tracheiphila, a Gram-negative, rod 

shaped, and motile bacterium with peritrichous flagella. The striped cucumber 

beetle, A. vittatum, and the spotted cucumber beetle, D. undecimpunctata 

howardi, transmit the bacterium either through their fecal matter or mouthparts 

when they feed and cause wounds in plants (39). The beetles over-winter as 

adults and move into cucurbit fields in late April or early May (10). The pathogen 



multiplies at the wound site, enters the xylem vessels, and then moves down the 

petiole becoming systemic (37). 

Another xylem-limited pathogen causes phony disease of peach (PP). The 

bacterium is also transmitted by xylem feeding leafhoppers (70,71). 

Ill. Insect Vector Phytopathogen Relationships 

lnsect vector-bacterial interactions have been described (section 11-5). Of 

over 200 pathogens characterized as insect-transmitted, about three-fourths are 

viruses. Mollicutes, bacteria, and fungi make up the other one-fourth. Ten orders 

of insects are phytophagous, but two (Hemiptera and Coleoptera) are dominant 

with respect to the number of vector insect species contained within the order 

and the number of plant viruses transmitted by them (48). 

111.1. Hemiptera: The order Hemiptera is divided into two suborders, 

Homoptera and Heteroptera. 

III.1 .I. Homoptera: 

Homoptera members have piercing-sucking mouthparts and cause limited 

damage when they feed on plants. Many Homopterans are tissue-specific 

feeders, favoring the plant phloem as their feeding site (48). The Homoptera 

include two insect taxa, Auchenorrhyncha and Sternorrhyncha (formerly 

suborders). The Auchenorrhyncha include the tree hoppers (Membracidae), the 

plant hoppers (Fulgoroidea), the leafhoppers (Cicadellidae) and the spittlebugs 

(Cercopidae). The Sternorrhyncha include the psyllids (Psyllidae), the whiteflies 

(Aleyrodidae), the aphids (Aphididae) and the mealybugs (Pseudococcidae). 



111.1.2. Heteroptera: 

The suborder Heteroptera includes members who have much larger 

stylets than those of aphids and leafhoppers, and probably cause more damage 

to plant tissues during stylet penetration (3). Six Heteropteran families are 

reported to transmit plant diseases. Members of the Pentatomidae transmit the 

fungus Nematospoa coryli (Pelglion), which causes yeast-spot of soybean (1 6, 

25). Another Pentatomid, Oebalus pungnax, transmits Fusarium oxysporum, 

causing kernal discoloration on rice (40). In the family Miridae, Lygus lineolaris 

(pratensis) transmits the spinach blight virus (45), the bacteria causing fire blight 

(Enlvinia amylovora) (38,65) and celery heart rot (E. carotovora) (38), and the 

seed and pollen associated (62) potato spindle tuber viroid (63). The fifth agent, 

velvet tobacco mottle sobemovirus, is transmitted by Cyrfopeltis nicotianae 

(28,29,30,57). In the family Piesmatidae, Piesma quadraturn transmits beet leaf 

curl rhabdovirus (61) and the rickettsia-like organism that causes sugar beet 

latent rosette (51,61). Both pathogens are propagative in Piesma. A similar 

disease of sugar beets, called "savoy" in United States, is transmitted by P. 

cinerea (14). In the family Tingidae, Stephanitis typica transmits the coconut root 

phytoplasma (44). In the family Lygaeidae, Nysius spp. transmits centrosema 

mosaic virus (72) and in the family Coreidae, A.tristis transmits the CYVD 

pathogen (4,5). 



111.2. Coleoptera: Among mandibulate insects, only beetles are 

important as vectors because their adults retain the chewing mouthparts of their 

larval stages and continue to feed on plants. This is important because 

transmission of plant pathogens is achieved by dispersal of winged adults (48). 

Some important vector beetle families are Chrysomelidae, Coccinellidae, 

Cucrculionidae and Meloidae (48), Scolytidae, and Cerambycidae. The ability of 

beetles to transmit viruses is accomplished by the regurgitation of infective virus 

from the foregut, as they do not have typical salivary glands. Beetle transmissible 

viruses are translocated in the xylem of plants and can infect unwounded plant 

cells (27). One of the virus diseases commonly transmitted by a number of 

coleopterans, A. triviffata, A. thiemei thiemei, D. undecimpunctata 

undecimpunctata; D. biviffula; Epilachna chrysomelina; and E. paenulata; is 

squash mosaic virus (9). Another example is solanum nodiflorum mottle virus, 

which is transmitted by the coccinellids: Epilachna vigintioctopunctata paradalis, 

E. vigintioctopunctata vigintioctopunctata, and E. guffatopustulata (32). 

VI. Mechanisms of Insect Transmission of Plant Pathogens 

Most of the information available about vector phytopathogen relationships 

is from vector-virus studies. Mechanisms of insect transmission of plant 

pathogens are different in Homopterans than in Hemipterans, but generally, five 

mechanisms are described (48). Non-persistent transmission, which describes 

the relationship of many aphid transmitted viruses, is also referred to as stylet 

borne. The pathogen is confined to the inner stylets of the insect mouthparts and 



is not transmissible by its vector after approximately 48 hours. In semi persistent 

transmission, the pathogen is attached in the precibarium or cibarium of the 

foregut, is transmissible by its vector up to 48 hours, and there is a retention time 

of up to 48 hours. This mechanism is referred to as foregut borne. In non- 

circulative transmission, the pathogen colonizes the foregut and is transmissible 

for the life of the insect. In the circulative mode, the pathogen enters the body 

through ingestion and migrates from the gut lumen through the hemocoel to the 

salivary glands. Finally, in propagative transmission, the pathogen multiplies in 

the body of the insect, which serves as an alternate host for the pathogen (48). 

Recently, Gray and Banerjee, (31) proposed new terminology for 

describing the non-circulative and circulative modes of transmission. In non- 

circulative, the pathogen does not cross vector cell barriers and is carried 

externally either on the vector surface or on the cuticle lining of the vector's 

mouthparts or foreguts (31). Circulative pathogens are transported across the 

alimentary canal epithelium and are carried internally within the vector hemocoel 

(31 1- 

Non-circulative viruses may be subdivided into semi-persistent and non- 

persistent. Semi-persistent viruses are associated with the foregut and are 

retained for up to 48 hrs (31). Transmission efficiency is directly proportional to 

the acquisition access period (AAP), which suggests that the virus is bound 

stably and accumulates until binding sites are saturated (31). The non-persistent 

viruses, associated with the stylets of the vector, are retained for only a few 

hours and are easily lost during feeding probes (31). The relationship between 



the transmission efficiency and the acquisition feeding period is inversely 

proportional (31). Examples of non-circulative viruses are potyviruses and 

caulimoviruses (31). Aphids, whiteflies and leafhoppers, as well as nematode 

vectors, transmit some plant viruses in a non-circulative manner (31 ). 

Circulative viruses can be subdivided into two groups. Propagative viruses 

replicate in their arthropod vectors, while non-propagative viruses, including 

luteoviruses and the single membrane enamovirus, do not (31). The circulative 

pathway involves ingestion into the gut lumen followed by uptake by midgut or 

hindgut epithelial cells. Virus eventually is released into the hemocoel, and later 

becomes associated with the salivary glands (31 ). 

Insect transmission of pathogens requires three stages. The acquisition 

access period (AAP) is the time required for an insect to ingest and begin 

harboring a pathogen. The latent period (LP) is the period after a pathogen has 

been acquired, when the pathogen is present within the insect but is not 

transmissible. The inoculation access period (IAP) is the time required for the 

inoculative insect to feed on the healthy host plant and to introduce the pathogen. 



V. Research 0 bjectives 

Several types of circumstantial evidence supported the possibility that the 

CYVD bacterium is transmitted in nature by an insect vector. Early work on 

C W D  showed that the pathogen was neither soil borne (1 1) nor seed borne (54). 

In the field, a fringe pattern of disease distribution was noted; symptoms 

appeared first in plants at the edge of the field, and then moved progressively 

toward the center of the field. In severe epidemics, the entire crop may be lost. 

The possible role of insects as vectors was first recognized in research 

conducted at the Wes Watkins Agricultural Research and Extension Center in 

Lane, Oklahoma. Soil fumigation with methyl bromide at 67g/m3 soil did not lower 

the incidence of CWD. A plastic mulch experiment was conducted to determine 

if squash bug and aphid populations and ground cover, alone or in combination, 

affected the incidence of CYVD. Regardless of the mulch treatment used, foliar 

insecticide treatments reduced the incidence of C W D  (1 1). These data are 

consistent with the interpretation that the CYVD pathogen is transmitted by an 

insect vector and is not soil-borne. However, in early transmission tests, a 

number of different cucurbit insect pests failed to pass on the pathogen (54,lZ). 

A field experiment was designed to test the hypothesis that insects are 

involved in the epidemiology of the disease (5). The occurrence of the CYVD 

bacterium in uncovered squash plants was compared to that in plants covered 

with mesh. Three percent of uncovered plants and 0% of covered plants 

developed foliar symptoms. Using PCR, 25% of uncovered plants and 0% of 



covered plants were positive (5). These data suggest that insects are involved in 

the disease, and possibly in the transmission of the bacterium. 

Recently, transmission of S. marcescens was achieved using A. tristis as 

an experimental vector. Transmission rates up to 60% were obtained using 

single inoculative insects by modifying the artificial acquisition source or feeding 

bugs on plants naturally infected with S. marcescens as acquisition source. 

Transmission required little or no latent period, and insects were able to transmit 

within 48 hours of acquisition. Moreover, transmission persisted for at least three 

weeks (5). The absence of S. marcescens in the hemolymph of 20% of the 

transmitting squash bugs suggested that S. marcescens is not circulative. 

However, its presence in 40% of the insects hemolymph may reflect a circulative 

route for transmission by the insects, or may instead result from bacterial 

infection of the insect (5). 

Although the squash bug is a confirmed vector of S marcescens, other 

insects such as leafhoppers were considered candidates as vectors of CWD for 

several reasons. Several species of leafhoppers, especially Exitianus exitiosus 

(Uhler), were common in fields where CYVD was found. Furthermore, many 

leafhoppers feed in the phloem, where the C W D  pathogen is located. When the 

original yellow vine PCR primer pair, W 1  and YV2, was used to screen field 

collected insects for the presence of the CWD pathogen a band of the expected 

size was amplified in numerous samples of E. exitiosus collected from grassy 

plots in Stephenville, Texas. This species was found to be a carrier of a 

bacterium reacting with the Wl  and YV2 primers (Mitchell, unpublished), with 



6% of field collected E. exitiosus testing positive by PCR (5). Sequencing of the 

amplified DNA fragment, however, revealed that it was significantly different from 

that of the C W D  bacterium and, in fact, was homologous to a region of the 16s 

rRNA gene of an enteric bacterium (Bacillus Euscelidius vanegatus (Kirshbaum) 

(2), which occurs in many leafhoppers (55). Positive PCR results were obtained 

also with a small number of field-collected painted leafhoppers (Endria inimica), 

and the green sharpshooter, Draeculacephala minerva (Lori Green, 

unpublished). However, bacteria were not identified from these samples, leaving 

open the possibility that they, too, were insect symbionts. 

Other phloem-feeding insects such aphids and other heteropterans were 

also considered as possible vector candidates. 

Leafhoppers and aphids have the potential ability to probe the phloem and 

have a history of transmitting other vascular limited phytopathogens, particularly 

phloem-limited pathogens. The way these pathogens are transmitted led us to 

the hypothesis that leafhoppers and aphids may be involved in C W D  

transmission. We included the western tarnished plant bug, Lygus hesperus 

(Knight), in our studies because of the close similarity of its feeding behavior to 

that of A. tristis, lacerating the leaf tissue with sickle-like mandibles to suck the 

plant sap, and because of the involvement of other Miridae members in 

transmission of other phytopathogens. 



The research objective of this study was to test three groups of 

hemipterans; aphids, leafhoppers and the western tarnished plant bug; for their 

ability to transmit S. marcescens under artificial conditions using a feeding 

medium detection assay. 
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Abstract 

Cucurbit yellow vine disease (CWD) causes yellowing, rapid wilting and 

death of susceptible cucurbit plant hosts. The causal agent of CWD, Serratia 

marcescens, colonizes the host plant phloem, suggesting possible transmission 

by phloem-feeding insects. The squash bug, Anasa tristis, was previously 

identified as a field vector of S. marcescens. Various hemipteran insects, five 

aphid species, five leafhopper species and one true bug were tested for their 

ability to transmit S. marcescens using artificial feeding systems. Aphids and 

leafhoppers were fed on feeding sachets containing S. marcescens ZOlA at 1.0 x 

10 CFUsIml. For the true bug, Lygus hesperus, ZO1 A-amended artificial diet 

was placed in un-stretched parafilm feeding pouches for acquisition and 

inoculation. Insects were given a 24-48 hr acquisition access period (AAP) and, 

immediately following, a 24-48 hr inoculation access period (IAP). Thirty seven 

percent of the sachets exposed to S. marcescens-fed Circulifer tenellus, 32.6% 

of the sachets exposed to bacteria-fed Exitianus exitiosus and 66.6% of the 



sachets exposed to bacteria-fed Endria inimica were positive by PCR. Thirty 

three percent of the pouches exposed to S. marcescens-fed L. hesperus were 

positive by PCR. The aphids Acyrthosiphon pisum, Myzus persicae, Aphis 

gossypii, A. nerii and Diaurapis noxia and the leafhoppers, Dalbulus maidis and 

Macrosteles quadrilineatus did not transmit S. marcescens to artificial sachets 

under these conditions. These results suggest possible transmission specificity of 

S. marcescens and demonstrate that E. exitiosus, C. tenellus, E. inimica, and L. 

hesperus are experimental vectors. 



Introduction 

Cucurbit yellow vine disease (CWD), a relatively new disease of squash, 

melons and pumpkins, has been associated with the presence of phloem- 

inhabiting bacteria that were recently identified as Serratia marcescens (43). 

Symptoms include yellowing of foliar tissue, especially at the crown, rapid 

collapse of the plants and discoloration of phloem tissue. 

The disease was first observed in 1988 in squash and pumpkin, and was 

observed in other cucurbits only 1991, when it destroyed early planted 

watermelon (Citrullus lanatus (Thunb.) and muskmelon (Cucumis melo (L.)) in 

central Texas and Oklahoma (9). Susceptibility among cucurbits is highest in 

squash, followed by pumpkin, watermelon, and muskmelon. Other cucurbits, 

such as cucumber and various gourds, are not affected by C W D  in nature (36). 

The geographical range of the disease includes the Cross Timbers region 

of central and northeastern Oklahoma and north central Texas, east Texas (Post 

Oak Savannah), all cucurbit-growing areas of Oklahoma, Tennessee, (5), 

Arkansas (43), Kansas (unpublished data), Colorado (unpublished data) and 

Massachusetts (58). 

S. marcescens is a cosmoplitan pathogen inhabiting a number of 

ecological niches, including soil and water (43). It has been documented as a 

plant endophyte (20), opportunistic human and animal pathogen (12) and insect 

pathogen (14,49,50) 



Although its association with plants has been mostly beneficial, two cases 

of plant pathogenicity for S. marcescens have been described in crown rots of 

sainfoin (48) and alfalfa (25). In both of these cases S. marcescens was reported 

to be part of a pathogen complex. 

Several types of circumstantial evidence support the possibility that the 

C W D  bacterium is transmitted in nature by an insect vector. Early work on 

C W D  showed that the pathogen was neither soil borne (8) nor seed borne (36). 

A fringe pattern of disease distribution was noted; symptoms appear first in 

plants at the edge of the field, then more progressively toward the center of the 

field. In severe epiphytotics the entire crop may be lost. The possible role of 

insects as vectors was first recognized in research conducted at the Wes 

Watkins Agricultural Research and Extension Center in Lane, Oklahoma. Soil 

fumigation with methyl bromide at 67glm3 soil did not lower the incidence of 

CWD. A plastic mulch experiment was conducted to determine if squash bug 

(Anasa tristis, Heteroptera, Coreidae), aphid populations and ground cover, 

alone or in combination, affected the incidence of CWD. Regardless of the 

mulch treatment used, foliar insecticide treatments reduced the incidence of 

C W D  (8). These data are consistent with the interpretation that the CYVD 

pathogen is transmitted by an insect vector and is not soil-borne (8). Results of a 

recent A. tristis exclusion experiment were consistent with the interpretation that 

the CYVD pathogen is transmitted by an insect (4). 



Relatively high populations of squash bugs, A. tristis, were observed in 

areas of high C W D  incidence. Recently, insect transmission of S. marcescens 

was achieved experimentally using A. tristis as the vector (3,4,36). Transmission 

rates up to 60% were achieved using single inoculative insects by modifying the 

artificial acquisition source or feeding insects on plants naturally infected with S. 

marcescens. Transmission requires little or no latent period, and insects were 

able to transmit within 48 hrs of acquisition. Moreover, transmission capability 

persisted for at least three weeks (4). 

However, although the squash bug is a confirmed vector of S. 

marcescens, other insects such as leafhoppers were considered candidates as 

vectors of C W D  because many phloem-associated pathogens are transmitted 

by leafhoppers (Cicadellidae) and about 130 species of leafhoppers are known to 

be vectors. Furthermore, leafhoppers of certain families feed in the phloem, 

where the C W D  pathogen is located. When the original yellow vine PCR primer 

pair, Wl  and W2,  was used to screen field-collected insects for the presence of 

the C W D  pathogen a band of the expected size was amplified in numerous 

samples of the gray lawn leafhopper, Exitianus exitiosus (Uhler), collected from 

grassy plots in Stephenville, Texas. Sequencing of the amplified DNA fragment, 

however, revealed that it was significantly different from that of the C W D  

bacterium and, in fact, was homologous to a region of the 16s rRNA gene of an 

enteric bacterium (Bacillus Euscelidius variegatus (Kirshbaum)) (2), which occurs 

in many leafhoppers (39). Positive PCR results were obtained also with a small 

number of field-collected specimens of the painted leafhopper, Endria inimica 



(Say), and of the green sharpshooter, Draeculacephala minerva (Ball) (Lori 

Green, unpublished data). However, confirmation of bacterial identity was not 

obtained from these samples, leaving open the possibility that they, too, were 

enteric bacteria. However, in a different field experiment conducted later to 

identify leafhoppers naturally carrying S. marcescens, leafhoppers collected 

during 1998 and 1999 from three locations in central Oklahoma were screened 

by PCR using a re-designed and S. marcescens specific primer pair, W l N V 4  

(4). E. exitiosus was collected in the highest numbers but less than 1 % of this 

species was carrying S. marcescens. 

Aphids are also well-documneted plant pathogen vectors. Several species 

transmit phloem-restricted luteoviruses, though none are known to transmit plant 

pathogenic bacteria. 

As vectors of plant pathogens, heteropterans (true bugs) are not 

considered to be important. Heteropteran stylets are much larger than those of 

homopterans (aphids and leafhoppers) and can cause significant damage to the 

plant tissues (54). Only a few heteropterans have been reported to transmit plant 

pathogens ( I  3,15,16,17,24,27,28,35,42,45,46,47,52) and the causal agent of 

sugerbeet latent rosette is the only phloem-restricted bacterium known to be 

transmitted by a heteropteran (35,45). 



Lygus hesperus has a very a wide host range and is an important pest of 

many economically important crops including members of the Cucurbitaceae 

(cucumber, squash and watermelon), Solanaceae (potato, tomato, eggplant and 

pepper), Umbelliferae (carrot, celery, fennel, parsley, coriander (Italian parsley) 

and parsnip), Asteraceae (endive, artichoke, lettuce, escarole and salisfy), 

Brassicaceae (cabbage, chinese cabbage, broccoli, mustard, radish, horseradish 

and turnip), and Amaranthaceae (spinach, sugar beet) (55) and Swiss chard), 

Fabaceae (pea, faba bean and lima bean), Asparagaceae (asparagus), Alliaceae 

(onion), Convolvulaceae (sweet potato), Poaceae (corn) and Leguminoceae 

(cowpea). Field crop hosts include alfalfa, cotton and safflower. Strawberries and 

other fruit and flower seeds are also attacked by Lygus bugs (10). 

These phloem-feeding insects, such as aphids, leafhoppers (57) and true 

bugs, might be natural or experimental vectors of S. marcescens. Therefore, the 

research objective of this study was to test three groups of hemipterans; aphids, 

leafhoppers and the western tarnished plant bug; for their ability to transmit S. 

marcescens under artificial conditions using a feeding medium detection assay. 

By characterizing the S. marcescens vector range, we will be able to 

better understand the relationships of the bacteria with their insect vectors. This 

work will provide a basis for understanding the specificity between S. 

marcescens and its putative insect vectors, which may in turn contribute to the 

development of control strategies for the pathogen. 



Materials and Methods 

Insect sources and maintenance. Five aphid species (family Aphidae, 

subfamily Aphidinae) were tested for their ability to transmit S. marcescens. The 

melon aphid, Aphis gossypii (Glover), and the oleander aphid, A. nerii (Bayer de 

Fonscolombe), are of the tribe Aphidini, whereas the pea aphid, Acyrthosiphon 

pisum (Harris), the Russian wheat aphid, Diuraphis noxia (Mordvilko), and the 

green peach aphid, Myzus persicae (Sulzer), are of the tribe Macrosiphini. 

A. pisum, obtained from J. Dillwith (Oklahoma State University), was 

reared on 7-10 day old faba bean seedlings (Vicia faba (L.) Windsor cv.) and D. 

noxia, obtained from C. Baker (USDA-ARS, Stillwater, OK), was reared on 10-15 

day-old wheat seedlings, Triticum durum (Desf.). Both colonies were maintained 

in mesh-screened cages (50 x 25 x 45 cm) in a growth room at 27OC, 12L:12D 

and 50% RH. M. persicae, A. gossypii and A. nerii were collected in the summer 

of 2001 from natural populations in vegetables, field crops and weeds at the 

Oklahoma State University farm, Stillwater, OK and used immediately. 

Five leafhopper species were selected from the group Cicadomorpha, 

series Auchenorrhyncha, family Cicadellidae, subfamily Deltocephalinae: the 

beet leafhopper, Circulifer tenellus (Baker), the corn leafhopper, Dalbulus maidis 

(Delong and Wolcott), the aster leafhopper, Macrosteles quadrilineatus (Forbes), 

the gray lawn leafhopper, Exitianus exitiosus (Uhler), and the painted leafhopper, 

Endria inimica (Say). 



D. maidis and C. tenellus were maintained in colonies on 10-1 5 day-old 

corn plants, Zea mays (L.), and 7-10 day-old sugar beet plants, Beta vulgaris, 

respectively, as described above. Natural populations of M. quadrilineatus, E. 

exitiosus and E. inimica were collected in spring and summer 2001 using sweep 

nets (BioQuip, Gardena, California), from Bermuda grass in field borders and on 

the OSU campus. Insects were maintained in cages on 10-15 day old corn, 

barley, Hordeum vulgare (L.) and wheat in mesh-screened cages as described 

above. 

L. hesperus was provided by E. Backus, University of Missouri, where the 

insects were reared on a soybean based liquid diet (Bioserv, Lygus diet, 

Philadelphia, PA). At OSU, the insects were maintained at 27OC, constant light 

and 45-50% RH in round plastic tubs (diameter 20.5 cm and length 13 cm) 

covered at the top with a muslin cloth and provided with the same soybean 

based liquid diet. To prepare one liter of liquid diet, 15.63% of the dry diet was 

homogenized with 520 ml water in a blender for 10 sec. Four chicken eggs were 

added and blended 35 sec. The liquid diet was made fresh every 7-1 0 days to 

maximize insect feeding, and was provided in 10-1 5 cm rectangular pouches of 

un-stretched parafilm sealed by an Impulse heat sealer (Research Product 

International Corp., Mount Prospect, IL). Each pouch contained 40 ml liquid. 

Filled pouches were stored at 8OC before being warmed to room temperature for 

use. 



Bacterial cultures and maintenance. S. marcescens strain ZO1 -A was 

isolated originally on purple agar (Difco, Detroit, MI) from a C W D  affected 

zucchini plant collected in Oklahoma (2). The strain was triply cloned for 

population homogeneity and frozen in aliquots at -80°F in 30% glycerol. Bacteria 

were grown to log phase at 28OC in LB broth (Fisher Biotech, Fair Lawn, NJ) and 

diluted to l o 5  cells I ml for use in all tests. 

Optimization of diets. Most leafhoppers were fed D l  0 feeding solution 

(100 mM sucrose, I I mM fructose, 164 mM potassium phosphate (K2HP04) and 

0.29 mM magnesium chloride (MgCI*) (1). However, an experiment was done to 

evaluate survival of one of the leafhoppers tested, E. exitiosus, on two 

concentrations (6 and 12%) of sucrose supplemented with I % fetal bovine serum 

(FBS) (Invitrogen Corp.) and at different pH (6.5, 6.87, 7.0, and 7.5). The insects 

were confined in 29.5 ml clear plastic medicine cups (4.5 cm diameter, 3.5 cm 

length) (Baxter Heathcare Corp., Deerfield, IL). The cup was corked at one side 

and the bottom of the cup was removed and covered with mesh fabric for 

ventilation. A square of parafilm (American National Can, Greenwich, CTI) was 

stretched four times its original size over the rim of the plastic cup and sterilized 

by rinsing with 70% ethanol. A volume of 700-900 ul of the artificial diet was 

introduced and covered with a second layer of stretched parafilm (26,30,37,56). 



Optimization of L. hesperus artificial feeding system. Although L. hesperus 

was reared on a soybean based liquid diet as mentioned above, this diet was 

inconvenient for transmission experiments because its density made DNA 

extraction difficult. Therefore, L. hesperus survival on other diet formulations 

containing varying sucrose and agarose concentrations was evaluated. Six 

treatments were used: 5% sucrose + 0.5 % agarose, 5% sucrose + 1 .O% 

agarose, 5% sucrose + 1.5% agarose, 5 % sucrose + 2 % agarose, deionized 

water alone and no diet. Thirty insects, divided into three replications (ten insects 

in each replication), were used for each treatment. Insects were maintained at 

27OC, constant light and 45-50% RH. The number of surviving insects was 

recorded after 24,48,72, and 96 hrs. The 5% sucrose + 1.5% agarose 

combination yielded the highest survival, but the agarose density hampered DNA 

extraction. When sucrose was used alone at concentrations of 5% or lo%, 5% 

sucrose provided optimal balance of insect survival and ease of DNA extraction 

and subsequently was used for all subsequent transmission experiments. 

Feeding activity. Among the leafhopper species, E. exitiosus was selected 

to test whether the insects were feeding from the medium in the membrane. E. 

exitiosus adults (sex undetermined) were confined in feeding sachets described 

above, except that the sachet contained no feeding solution. Four sachets, each 
It 

containing 10 leafhoppers,'were maintained at 27OC, constant light and 45-50% 

RH. The number of living and dead insects was assessed after 18 hrs. 



To test whether L. hesperus was feeding from the medium in the 

membrane, five to ten insects were introduced into cylindrical plastic cup cages 

(diameter 4 cm, length 6 cm), the open ends of which were covered with muslin 

cloth and sealed with rubber bands over the cup rim. Some insects were 

provided deionized water-filled pouches and others received no food or water for 

24 hrs. 

Pathogenicity of S. marcescens on the insects. The effect of S. 

marcescens on longevity of several aphid and leafhopper species and of the 

western tarnished plant bug was checked by assessing mortality of those insects 

fed in an artificial membrane system on either 20-30% sucrose (aphids) or 5-1 0% 

sucrose (leafhoppers and L. hesperus) (controls), or on sucrose amended with 

l o 5  bacteria 1 ml of S. marcescens. The number of dead insects was recorded 

after a 24 hr acquisition access period (AAP) and a 24 hr inoculation access 

period (IAP). 

Insect acquisition of S. marcescens. Feeding medium detection assays 

were used for correlation of the ability of several insect species to transmit S. 

marcescens under controlled conditions (26,37,56). For aphids and leafhoppers, 

artificial feeding sachets were constructed as described above. For aphids, the 

sachets were filled with 20-30% sucrose supplemented with I % FBS and 

containing S. marcescens at a concentration of l o 5  bacteria I ml. Twenty to fifty 

adult aphids were introduced into each sachet cup and allowed to feed for a 24 

hr AAP. Control insects fed upon sucrose solution without bacteria. The insects 

were maintained at 27OC, constant light and 45-50% RH. 



The leafhoppers were fed on D l 0  medium or on 6% sucrose 

supplemented with 1% FBS and containing S. marcescens l o5  bacterialml. Five 

to fifteen leafhoppers were introduced into each sachet and allowed to feed for a 

24 hr AAP (Fig. 1). Control insects fed upon D l 0  or sucrose solution without 

bacteria. The insects were maintained at 27OC, constant light and 45-50% RH. 

Fig. 1. Macrosteles quadrilineafus feeding from artificial membrane feeding 
sachet. 

Un-stretched parafilm feeding pouches used for L. hesperus contained 5% 

sucrose supplemented with I % fetal bovine serum (FBS) (Invitrogen Corp.) for 

support of S. marcescens. Treatment pouches also contained S. marcescens at 

1 o5 bacteria I ml. Insects were confined in cylindrical plastic cages (diameter 4 

cm, length 6 cm), sterilized overnight in 10% Clorox. Pouches (as described 

above) were filled with two ml (five insects) to three ml (10 insects) of liquid diet, 

with or without S. marcescens, and placed on top of the muslin cloth cage cover. 

Five to ten insects were introduced into each cage as described above and 



allowed to feed through the muslin and parafilm for a 24-48 hr AAP at 27OC, 

constant light and 45-50% RH (Fig. 2). 

Fig. 2. Lygus hesperus feeding from un-stretched parafilm feeding 
pouches. 

Insect inoculation. Afler the AAP, aphids and leafhoppers were transferred 

to new sachets containing D l0  ( I  ) or 6-1 0% sucrose supplemented with 1 % FBS 

for a 24 hr inoculation access period (IAP) and L. hesperus were transferred to 

new pouches containing 5% sucrose. Solutions were then collected with a sterile 

micro pipette, placed into 5 ml LB broth, and incubated, in a shaking incubator 

(Queue, Lorton, VA) at 28OC + 220 rpm. Bacterial growth was assessed visually 

by turbidity 2-3 days afler inoculation. 



The identity of bacteria growing in the sachet-inoculated LB broth was 

tested by PCR as described below, using the S. marcescens specific primer pair, 

YVIlYV4. In some cases bacteria were streaked onto purple agar plates and 

single colonies picked and re-streaked to achieve pure cultures, which were 

subjected to PCR. 

DNA extraction, DNA was extracted from the cultured feeding solution 

samples using the CTAB (hexadecyltrimethylammonium bromide) (Sigma 

Chemicals Pty Ltd., St. Louis) extraction method. The sample was centrifuged 

(27,000 x g, 20 min, 4OC) and the pellet re-suspended in 3 ml of 2.5% CTAB (1.4 

M NaCI, 1% PVP, 0.02 M EDTA, 0.1 M Tris-HCI, pH=8.0) (Doyle buffer), followed 

by incubation (55-60°C, 30 min). The suspension was extracted with one volume 

of chloroform: isoamyl alcohol (24:1, vlv), mixed thoroughly for 2-3 min, and 

centrifuged (9,500 x g, 10 min, 20°C). The upper phase was placed into a clean 

15 ml Corex tube, and isopropanol was added at one-half the original volume to 

precipitate the DNA. The suspension was incubated at -20°C for 1 hr then 

centrifuged (31,000 x g, 20 min, 4OC). The supernatant was discarded, 70% 

ethanol was added to pellet the DNA, and the liquid was centrifuged (8,800 x g, 

10 min, 4OC) and the supernatant discarded. The DNA was dried by inverting the 

tubes for I hr, then re-suspended with I00 ul of either Tris EDTA (TE) (10mM 

Tris-Hcl, pH:8.0, I mM EDTA) buffer or DNase-RNase free 0.2 uM filtered water. 



DNA amplification. PCR reactions were carried out in 25-ul reaction 

mixtures containing 10-50 ng of genomic DNA template and 0.2 mM of each 

deoxynucleoside triphosphate, one Unit of Taq DNA polymerase (Promega, 

Madison, WI), 0.2 uM forward primer YVI (5'-GGGAGCTTGCTCCCCGG-3') (2) 

and 0.2 uM reverse primer W 4  (5'-AACGTCAATTGATGAACGTA TTAAGT-3") 

(29), in a PCR buffer (10mM Tris-HCI, pH 8.3; 5 nM EDTA; 25 mM KCI; 4mM 

MgCI2). A PTC-100 thermocycler (MJ Research Inc., Watertown, MA) was 

programmed for 1 min at 95OC, and 34 cycles of 30 s at 94OC, 1 min at 54OC, and 

1 min at 72OC, with a final extension at 72OC for 5 min. A 10-ul aliquot of each 

PCR sample was separated on a 1.2% horizontal agarose gel and stained with 

(0.5 uglml) ethidium bromide. A 100-bp DNA ladder (Sigma Chemicals Pty Ltd., 

St. Louis) was used as a size marker. A sample was considered positive for S. 

marcescens if a 308 bp DNA band was visualized with UV light (29). 

Detection of &. marcescens in insect bodies. The presence of S. 

marcescens in the insect bodies was assessed after the IAP by grinding 10 aphid 

bodies (averaging 65 uglinsect), one leafhopper body (averaging 3 mglinsect), or 

one to three L. hesperus (approximately 5 mg per insect) per sample in a 1.5 ml 

micro-centrifuge tube. The DNA extraction method of Goodwin et al. (18) was 

used with small modifications. A volume of 125 ul of 2% CTAB (pH 8.0) and 2 ul 

mercaptoethanol was added for every 1 ml CTAB. The suspension was briefly 

vortexed and incubated 5 min at 65 OC, then extracted with one volume of 

chloroform: isoamyl alcohol (24:l, vlv). The nucleic acids were precipitated with 

10 ul 5 M sodium acetate (pH 5.2) and 250 ul of 100% ethanol. DNA 



preparations were stored in 50 ul aliquots in TE or DNase-RNase free 0.2 uM 

filtered water at 4OC. 

PCR, using primer pair YVIPnl4, was carried out as described for the 

bacterial samples. Eight ul aliquots of each PCR sample were separated on 1.2% 

horizontal agarose gels at 100 volts for one hour and stained with (0.5 uglml) 

ethidium bromide to detect 308 bp bands indicating the presence of S. 

marcescens. 

Statistical analysis: The data on transmission of S. marcescens by 

leafhoppers and L. hesperus in treatments and controls, as well as the 

pathogenicity data of S. marcescens on aphids, leafhoppers and L. hesperus, 

were analyzed using Chi-square at a confidence level of 0.05 (44). 



Results 

Optimization of diets. E. exitiosus average mortality was zero after 24 hrs 

and 20% after 48 hrs when insects were offered 12 % sucrose at a pH of either 

6.5 or 7.0 (Table 1). However, average mortality was somewhat higher (30% 

after 24 hrs and 50% after 48 hrs) when E. exitiosus was fed on 12% sucrose at 

pH 7.5, and highest (40% after 24 hrs and 85% after 48 hrs) on 6% sucrose at 

pH 6.87. Twelve % sucrose at pH 6.5-7.0 was used as the standard diet for E. 

exitiosus. 

Survival rates of L. hesperus on liquid diets containing varying 

concentrations of sucrose and agarose are shown in Table 2. L. hesperus that 

were fed as long as 48 hrs on 5% sucrose + 0.5% agarose or 5% sucrose + 

1.5% agarose had mortality rates of zero, but after 72 hrs mortality was 6.6% on 

5% sucrose + 0.5% agarose. On 5% sucrose + 2% agarose, the mortality was 

10% after 24 hrs and 16.6% after 48 hrs. Mortality was highest on deionized 

water alone, at 10% after 24 hrs, 20% after 48 hrs and 70% after 72 hrs. On 5% 

and 10% sucrose, the average mortality rate was 3.3% (Table 3). 

Feeding activity. The feeding activity test confirmed that E. exitiosus were 

feeding from the sucrose solutions, whether amended or not amended with 

bacteria, since all insects denied any feeding diet within 24 hrs (the normal AAP 

and IAP duration used in the experiments), and 90% of the insects in three of the 

four sachets died after 18 hrs. The L. hesperus feeding activity test showed that 

insects were feeding from un-stretched parafilm feeding pouches, since 100% of 



the insects given no food or water, 20% of the insects fed on water only died 

within 48 hrs and 70% within 72 hrs (Table 2). 

Pathogenicity of S. marcescens on the insects. Mortality of the aphids, 

leafhoppers and L. hesperus was almost always higher when they fed on diets 

amended with S. marcescens than on unamended diets (Fig. 3,4 and 5). The 

average mortality for A. pisum was not significantly different (x2=2.5, P=0.05) in 

bacteria treatments than in controls (84% vs. 79%) (Fig. 4). However, mortality 

was significantly higher in treatments than in controls for A. nerii (x2=10.3, 

P=0.05) (31.2% vs. 21 -4%). A. gossypii (x2=9.3, P=0.05), (37.5% vs. 23%) and 

D. noxia (x2=4.9, P=0.05) (41.9% vs. 36%) (Table 4). 

The mortality of bacteria-exposed leafhoppers was significantly higher 

than that of controls (x2=5.5, P=0.05) with only one leafhopper species, D. 

maidis (20% in treatments vs. 6.3% in the controls) (Fig. 5). Chi-square at P=0.05 

was not significant for C. tenellus (x2=1 .O, P=0.05) (13.3% vs. 8.5%), E. exfiosus 

(x2=0.06, P=0.05) (29.4% vs. 28.5%), E. inimica (x2=0.03, P=0.05) (27.5% vs. 

24.2%). or M. quadrilineatus (x2=0.97, P=0.05) (21.4% ~ ~ 1 4 . 6 % )  (Table 5). 

The average mortality of bacteria-fed western tarnished plant bug also 

was not significantly different from that of controls (x2=0.7, P=0.05) (19.6% 

vs.17.7%) (Fig. 5; Table 6). 



Insect transmission of S. marcescens. Aphids were allowed a 24 hr AAP - 

and 24 hr IAP for 66 sachets, and a 48 hr AAP and 48 hr IAP for 7 sachets 

(Table 7). Solutions were considered positive if a band of 308 bp was visualized 

(Fig. 6). All five species tested failed to transmit S. marcescens to feeding 

sachets. However, three of the body samples of A. gossypii and two of A. nerii 

tested positive for S. marcescens by PCR. All control sachets and insect bodies 

were PCR-negative. The detailed transmission data of each replication is 

available in Appendix A (Table 10). Three of the five leafhopper species tested, 

C. tenellus, E. exitiosus and E. inimica, acquired and transmitted S. marcescens 

from and to artificial sachets. 

Fig. 6. Agarose gel of Polymerase chain reaction (PCR) products from Serratia 
marcescens-exposed Exitianus exitiosus feeding solutions. M= 1 -kb ladder 
(Sigma); (1-4) feeding solution treatment; (-)I = negative control from a 
healthy source; (-)2 = PCR negative control; (+)= positive control. 
Expected band size= 308 bp. 



Fourteen of 38 (37%) C. tenellus sachets, I 5  of 46 (32.6%) E. exitiosus 

sachets and four of six (66.6%) E. inimica sachets tested were positive by PCR 

(Table 8). The data were significant when subjected to Chi-square analysis, for 

C. tenellus (x2=1 1.8, P=0.05), for E. exitiosus (x2=1 0.7, P=0.05) and for E. 

inimica (x2=6, Pz0.05). S. marcescens was detected also in the bodies of all 

three species at 77.8% (49163), 89.1% (41146) and 100% (4/4), respectively. The 

other two leafhoppers, D. maidis and M. quadrilineatus, failed to transmit S. 

marcescens to feeding sachets under these experimental conditions, although 

78.3% of the D. maidis bodies tested positive for S. marcescens. All control 

sachets and insect bodies were PCR-negative. The detailed transmission data of 

each replication is available in Appendix A (Table 11). 

L. hesperus adults were capable of transmitting S. marcescens pouch to 

pouch. None of the control pouches and the insect bodies tested positive by 

PCR. Combined data from all experiments show that 33.3% ( I8 of 54) of the test 

pouches fed on by S. marcescens exposed L. hesperus contained the pathogen 

when tested by PCR (Table 9). The data were significant when subjected to Chi- 

square at 0.05 (x2=21 .9, P=0.05). The detailed transmission data of each 

replication is available in Appendix A (Table 12). 

The S. marcescens transmission rate for Lygus was proportional to the 

length of the IAP, with the percent of positive pouches 10% at 24 hrs IAP, 39.1 Oh 

at 48 hrs IAP, 66.7% at 72 hrs IAP, and 100% at 96 and 120 hrs IAP (Table 9). 

Twenty six percent of the S. marcescens - fed Lygus bodies, but none of the 

control insects, tested positive by PCR. 



Discussion 

Prior to this study, many of the insect species used had not previously 

been assessed for feeding activity on artificial diets. Therefore, it was essential to 

confirm their feeding by demonstrating mortality in the absence of feeding 

activity. Thus if insects survived, feeding activity could be inferred. From the 

feeding test, the death of the insects after 18 hrs without food confirmed that 

aphids and leafhoppers were feeding from the sachets and L. hesperus from the 

pouches. This result is similar to those observed for the other leafhopper species 

when given nothing in the sachets, adults died within 24 hours wayadande, 

unpublished). The new diet formulation for L. hesperus greatly facilitated DNA 

extraction without compromising feeding activity. 

Although S. marcescens is a known insect pathogen (14,23,49,50,51,53), 

we did not know whether CYVD strains were entomopathogenic. S. marcescens 

had a negative effect on the longevity of 3 species of aphids (A. nerii, A. gossypii 

and D. noxia) and one leafhopper species (D. maidis). The higher mortality rates 

of insects fed S. marcescens may result from a number of bacterial virulence 

factors among which are enzymes such as protease, gelatinase, lectinase and 

chitinase, which can adversely affect the insect hosts. These enzymes may 

inactivate the immune system, allowing the bacteria to reproduce efficiently and 

leading to septicemia (50,51). 



All five aphid species tested failed to transmit the C W D  bacterium sachet- 

to-sachet, providing no evidence that aphids are a factor in C W D  epidemiology. 

Previous work (8,9), in which C W D  incidence was unrelated to aphid 

populations, supports the same conclusion. Aphids are the largest taxon of plant 

pathogen vectors, transmitting 275 viruses in 19 genera (33). Aphids transmit five 

virus groups in a non-persistent manner (caulimoviruses, potyviruses, 

carlaviruses, cucumoviruses and potexviruses), one group (closteroviruses) in a 

semipersistent manner, two groups (luteoviruses and umbraviruses) in a 

circulative manner, and one group (rhabdoviruses) in a propagative manner. 

All the aphid species selected in this study except for D. noxia are insect 

vectors of important plant pathogens. For example, A. gossypii is the vector of 

many viruses including cucumber mosaic virus (CMV), watermelon mosaic virus 

2 (WMV-2), zucchini yellow mosaic virus (ZYMV) and citrus tristeza virus (21). 

Cucumber mosaic virus, watermelon mosaic virus 2 (WMV-2) and lettuce mosaic 

virus are transmitted by M. persicae (21). A. pisum is the vector of pea enation 

mosaic and yellow bean mosaic viruses (21). A. nerii is the vector of araujia 

mosaic, chili mosaic, papaya ring spot, (types P and W) and sugarcane mosaic 

viruses (7). However, there are no reports of aphids transmitting bacterial 

pathogens, and our data are consistent with this conclusion. 

In contrast, the C W D  bacterium, S. marcescens, was transmitted in the 

artificial system by three leafhopper species; E. exitiosus, C. tenellus and E. 

inimica. E. exitiosus is also an experimental vector of Spiroplasma kunkelii and of 

the maize bushy stunt phytoplasma (31), and is a prevalent leafhopper 
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inimica. E. exitiosus is also an experimental vector of Spiroplasma kunkelii and of 

the maize bushy stunt phytoplasma (31), and is a prevalent leafhopper 



throughout the central United States during the summer months. It was found to 

be a carrier of S. marcescens (Mitchell, unpublished), with 6% of E. exitiosus 

collected from the field-testing positive for S. marcescens by PCR (4). C. tenellus 

is a vector of Spiroplasma citri and beet curly top virus, both of which are phloem 

limited in cucurbits. E. inimica, a vector of wheat striate mosaic virus and an 

experimental vector of the celery-infecting strain of aster yellows (I I ), is found 

somewhat frequently throughout the growing season in Oklahoma. 

The ability of these three leafhoppers to transmit S. marcescens may be 

explained by the fact that they have highly modified mouthparts suitable for 

piercing and sucking sap from their host plants, and that they insert their stylets 

intracellulary into the vascular tissues. However, neither D. maidis, the vector of 

S. kunkelii, the maize bushy stunt phytoplasma (MBSP) and the maize rayado 

fino marafivirus (MRFV) (32), nor M. quadrilineatus, the vector of aster yellows 

phytoplasma, were capable of transmitting the bacterium in this artificial system. 

These results suggest that there is a degree of specificity between S. 

marcescens and its insect vectors. Although C. tenellus, E. exitiosus and E. 

inimica all feed on cucurbits, and this study demonstrates they are all 

experimental vectors of S, marcescens under the conditions tested, their role in 

transmitting S. marcescens in the field or in natural spread of CWD has yet to be 

assessed. The presence of S. marcescens in the test feeding solution is 

presumably due to the extravasation of the pathogen from the food canal during 

feeding. The PCR screening of the artificial diets provides an easy and reliable 

method to test insect inoculativity and enable large-scale screening. 



It was demonstrated that L. hesperus is an experimental vector of S. 

marcescens under the conditions of these experiments. Detection of S. 

marcescens in liquid diet fed on by bacteria-exposed insects indicates that the 

pathogen was extravasated from the food canal into the solution during feeding. 

The transmitted bacteria must have been acquired during the AAP. The 

percentage of test pouches positive for S. marcescens ranged from 10-1 00%, 

depending on the length of the IAP. Because each test pouch was exposed to 

multiple (5 or 10) insects, the rate of transmission of individual insects given a 96 

or 120 hr IAP could have been as low as 10% or as high as 100%. 

To our knowledge, this is only the sixth report of phytopathogen 

transmission by an insect in the family Miridae, possibly because the Miridae are 

not significant vectors or because few studies have been done (1 5,16,17,42). 

The spinach blight virus (tomato fern leaf virus) is transmitted mechanically by 

the tarnished plant bug, Lygus lineolaris (pratensis) (28). The fire blight 

bacterium, Ewinia amylovora, is transmitted to pear fruits by Lygus spp. (24,52). 

E. carotovora, the causal agent of celery heart rot, is transmitted by L. lineolaris, 

which carries the bacteria externally on its legs (24). The seed and pollen borne 

potato spindle tuber viroid is also transmitted by L. lineolaris (45,46), and the 

velvet tobacco mottle sobemovirus is transmitted by Cyrfopeltis nicotianae in 

Australia. The latter report is the only one of natural transmission, and in this 

case the pathogen is transmitted circulatively (1 5,16,17,42). C. nicotiana was 

found to also transmit solanum nodiflorum mottle virus (1 9). 



In this work, S. marcescens was detected in some but not all, of the 

bodies of insects that fed on bacteria. Detection of S. marcescens in insect 

bodies is not a reliable indicator of the ability of the insects to transmit the CYVD 

pathogen. The presence of the bacterium in the whole body samples of D. 

maidis, despite this species' failure to transmit, indicates that this species did 

acquire the pathogen but was not able to extravasate (expel) the bacteria from 

food canal. However, this is not surprising since ingestion of the pathogen very 

likely occurs during feeding. Testing the insect's bodies by PCR showed that 10 - 

44.4% carried S. marcescens. These percentages are conservative, and 

optimization of the extraction procedure could reveal higher inoculation rates. 

The fact that three leafhoppers (C. tenellus, E. exitiosus and E. inimica) 

and L. hesperus transmit S. marcescens, while two leafhoppers (D. maidis and 

M. quadrilineatus) and five species of aphids do not may be due to one or more 

of several factors. One parameter may be the attachment and detachment of S. 

marcescens to and from the foregut lining of the insects during the feeding. 

Another insect-transmitted vascular pathogen, X. fastidiosa, attaches to the 

surface of the cibarial pump, in the food meatus and in the groove of the cibarium 

floor connecting the food meatus with the esophagus (6,22,38,40). The 

bacterium was also seen attached to the pump diaphragm. 



There are other interesting similarities between S. marcescens and X. 

fastidiosa and their respective insect vectors, A. tristis and several 

sharpshooters. Both lack a latent period required for transmission; S. 

marcescens was transmitted within 24 hrs and X. fastidiosa in as little as 2 hrs by 

Graphocephala atropunctata (Say) (37), indicating that even small numbers of 

bacteria that are attached in the food canal distal to the cibarial valve are 

sufficient for transmission. The mode of transmission is non circulative for X. 

fastidiosa and may be the same for S. marcescens. Sharpshooter vectors of X. 

fastidiosa transmit for life, while squash bugs transmit S. marcescens for at least 

21 days and L. hesperus transmit S. marcescens for at least 5 days. This is 

consistent with pathogen retention in the vector, suggesting a non-circulative 

pathway. X. fastidiosa cells secrete a polysaccharide matrix that helps in 

extraction of nutrients from the xylem sap and protect on of the bacteria from 

being flushed out by the rapidly moving solute stream during feeding 

(6,22,38,40,41). A similar matrix may be produced by S. marcescens. 

The fact that L. hesperus transmits in a manner similar to that used by the 

squash bug, A. tristis, at least in an artificial system, opens the possibility that the 

Lygus-S. marcescens system could be used as a model for A. tristis and S. 

marcescens. Working with L. hesperus is more convenient than working with A. 

tristis because an artificial liquid diet has been developed for the former. At 

present, the only artificial feeding system known for A. tristis is vacuum infiltrated 

cubes of excised squash fruits (3). DNA extraction is also easier from a liquid diet 



than from squash cubes. However, the transmission of L. hesperus to plants 

should be assessed. 
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Table 1 : Mortality of Exitianus exitiosus on sucrose solutions at different 
concentrations and pH. 

% Sucrose 
PH 

6 %  
pH 6.87 

Average 

Number of 
leafhoppers per 

sachet 
10 

10 

Average 

I I I I I 
Average I 10 30 50 90 100 

10 

Average 

Cumulative % Mortality 

I 0  

24-48 hr 

40 

40 

40 

10 

0 

48-96 hr 

70 

100 

85 

0 

20 

96-144 hr 

80 

- 

90 

20 

After 
144 hr 

100 

- 

100 

90 100 

80 100 



Table 2: Mortality of Lygus hesperus on liquid diets with different sucrose 
and agarose concentrations. 

* Data from three replications (ten insects each) were pooled. 

Diet contents 

5 % sucrose + 
0.5% agarose 

5 % sucrose + 
1.0 % agarose 

5 % sucrose + 
1.5 % agarose 

5 % sucrose + 
2 % agarose 

Water 

No pouch 

Table 3: Mortality of Lygus hesperus on two sucrose concentrations. 

* Data from three replications (ten insects each) were pooled. 

Average 
% mortality 

for 24 hr 
1.7 

2.5 

0.8 

4.2 

21.3 

25 

No. of 
insects 
tested* 

30 

30 

30 

30 

30 

10 

. 

24 
hrs 
0 

0 

0 

10 

10 

40 

% 
48-72 

hrs 
6.6 

6.6 

0 

16.6 

70 

Cumulative 
24-48 

hrs 
0 

6.6 

0 

16.6 

20 

100 

Mortality 
72-96 
h rs 
6.6 

9.9 

3.3 

16.6 

85 



Table 4: Mortality of aphids after feeding on Serratia marcescens. 

Species 

Acyrfhosiphon 
pisum 

Average 

Aphis nerii 

Average 

Aphis gossypii 

Average 

Diuraphis noxia 

Average 

Rep.' 

b 
a AAP was on sachets containing sucrose. 

AAP was on sachets containing sucrose supplemented with S. marcescens ZOI-A at l o 5  bacterialml. IAP 
sachet solutions were added to culture medium. 

Mortality. 
Not done. 

* Significantly different (P=0.05) 

1 

1 
2 

1 
2 

I 
2 

Controla ~reatment~  

MC % 
after AAP 

N D~ 

ND 

ND 
3.3 

3.3 

32.7 
22 

27.4 

27.2 
28 

27.6 

MC %after 
AAP 

ND 

ND 

ND 
10 

1 0* 

46 
40 

43* 

41.8 
73.8 

57.8* 

M' % 
after 
IAP 
79 

79 

59 
19.8 

39.4 

27.3 
10 

18.7 

65.5 
23 

44.3 

Average 
M %  

79 

59 
11.5 

21.4 

30 
16 

23 

46.4 
25.5 

36 

MC % 
after IAP 

84 

84 

79 
25.9 

52.5" 

34 
30 

32* 

40 
12 

26* 

Average 
M %  

84 

79 
18 

31.2* 

40 
35 

37.5* 

40.9 
42.9 

41.9* 



I Fig. 3. Mortality of aphids after 
Mortality feeding on S. marcescerB- T ' l l - A  

Yo 
100 

5 0 

0 

Bl Control 

Treatment 37.5 

EBl Control ~ r e a t m e n t  I 



Table 5: Mortality of leafhoppers after feeding on Serratia marcescens. 

TreatmentD Species 

Macrosteles 
quadrilineatus 

Average 

Rep. 

a AAP was on sachets containing D l0  or sucrose. 
b 

AAP was on sachets containing sucrose supplemented with S. marcescens ZOI-A at 10' bacterialml. IAP 
sachet solutions were added to culture medium. 

Mortality. 
* Significantly different (P=0.05) 

Controla 

I 

7.5 

23.4 

15.5 

1 

2 

8 

19.4 

13.7 

I 

17.5 

0 

8.8 

7.8 

21.4 

14.6 

13.8 

28.9 

21.4 

10 

57.7 

33.9 





Table 6: Mortality of Lygus hesperus after feeding on Serratia 
marcescens. 

a AAP was on un-stretched parafilm feeding pouches containing sucrose. 
b 

AAP was on un-stretched parafilm feeding pouches containing sucrose supplemented with S. marcescens 
ZOI-A at lo5  bacterialml. IAP pouch solutions were added to culture medium. 

Mortality. 
* Not done. 

- 

Rep. Controla ~reatment~  





Table 7: Aphid acquisition and inoculation of Serratia marcescens using 
artificial feeding sachets. 

Species 

Acyrfhosiphon 
pisum 

a AAP was on sachets containing sucrose. 
b 

AAP was on sachets containing sucrose supplemented with S. marcescens ZOI-A at lo5  bacterialml. IAP 
sachet solutions were added to culture medium and bacteria were identified by PCR. Solutions in which 
bacteria did not grow were not tested by PCR. 

Insect bodies tested. 
Each sample contained 10 individuals. 

Rep 

3 

Treatment No. 
of PCR (+) 

of insects 

Length 
of 

AAP-IAP 
(hr) 

24-24 

Controla TreatmentD 

NO- of 
insects1 
sachet 

20-30 

No. of IAP 
sachets (+) 
by PCR 

/No. tested 
PA) 

0121 

No. of 
insects1 
sachet 

20-30 

Total no. 
of 

insects 

520 

Total no. 
of 

insects 

520 

No. of 
IAP 

sachets 
(+) by 
PCR 
/No. 

tested 
(""'I 
0121 



Table 8. Leafhopper acquisition and inoculation of Serratia marcescens 
using artificial feeding sachets. 

Species 7 Length I Controla TreatmentD I Treatment 
No. of PCR 

(+I 
/No. of 

insects (%) 

of 
AAP-IAP 

Dalbulus maidis 

No. of 
s e t  
sachet 

Total 

Exitianus exitiosus 

9 
1 

I 

No. of IAP 
sachets (+) 

by PCR mo. 
tested (%) 

No. of 
insects/ 
sachet 

Total 
no. of 

insects 

4 

2 
I 

Endria inimica 

Total 

Macrosteles 

Total 
no. of 

insects 

No. of IAP 
sachets (+) 

by PCR /No. 
tested (%) 

24-24 
48-72 

Total I 1 222 1 0126 1 1 321 1 15146 141146(89.1) 

quadrilineatus 

Total 

24-24 

48-48 

2 

1 

2-1 1 
8 

" AAP was on sachets containing Dl0  or sucrose. 
b 

AAP was on sachets containing sucrose supplemented with S. marcescens ZOI-A at lo5 bacterialml. IAP 
sachet solutions were added to culture medium and bacteria were identified by PCR. Solutions in which 
bacteria did not grow were not tested by PCR. 

Insect bodies tested. 

2 

5-8 

10 

24-24 

48-48 

200 
8 

24-24 

143 

52 

170 

2-5 

5 

0128 
011 

2-8 

012 5 

019 

011 7 

25 

25 

40 

2-1 1 
8 

16 

56 

5-8 

10 

014 

014 

018 

226 
8 

013 

011 1 

2-5 

5 

0130 (0) 
011 (0) 

49/63 (77.8) 

26/29 (90) 

1 511 7 (88.2) 

234 

151 

1 70 

3-5 

1311 8 (72.2) 
515 (1 00) 

14138 (37) 

1 3129 
(44.8) 

211 7 (1 2) 

27 

27 

40 

I 

11 

51 

416 (66.6) 

416 (66.6) 

018 (0) 

414 (1 00) 

414 (1 00) 

018 

013 

011 I (0) 018 



Table 9. Lygus hesperus acquisition and inoculation of Serratia 
marcescens using un-stretched parafilm feeding pouches. 

Treatment 
No. of PCR 

(+) 
/No. of 

insects (%) 

a 

b 
AAP was on un-stretched parafilm feeding pouches containing sucrose supplemented with S. marcescens 

ZO1-A at lo5  bacterialmi. IAP pouch solutions were added to culture medium and bacteria were identified by 
PCR. Solutions in which bacteria did not grow were not tested by PCR. 

Insect bodies tested. 
Not done. 

No. of 
Reps. 

2 

1 
3 

1 

I 

1 

Total 

AAP was on 

Length of 
AAP-IAP 

(hr) 

24-24 

48-24 
48-48 

48-72 

48-96 

48-120 

un-stretched 

No. of 
insects/ 
pouch 

10-30 

I 0  
10 

10 

10 

I 0  

parafilm 

No. of IAP 
pouches 

(+) by PCR 
/No. tested 

(%) 

2120 
(1 0) 

013 (0) 
9123 

(39. I ) 
213 

(66.7) 
313 

(1 00) 
212 

( I  00) 
I 8/54 
(33.3) 

No. of 
insects/ 
pouch 

10-30 

I 0  
10 

10 

10 

10 

sucrose. 

Controla 
Total 
no. of 

insects 

300 

30 
230 

30 

30 

30 

650 

feeding 

~reatment' 
Total no. 
of insects 

300 

30 
230 

30 

30 

30 

650 

NO. of 
1 ~ p  

pouches 
(+) by 
PCR 
/No. 

tested 
(Yo) 

0120 

013 
0123 

013 

013 

013 

0/55 

pouches containing 



Summary 

In 1988, the cucurbit yellow vine disease (CWD) devastated squash and 

pumpkins in Texas and Oklahoma. In 1991 it was found also infecting melons 

(Bruton et al. 1995, 1998). The disease has been associated with the presence 

of phloem-inhabiting bacteria that were identified as Serratia marcescens 

(Rascoe et al., 2000). The natural vector was determined to be the squash bug, 

Anasa tristis (Bextine et. Al. 2000, Bextine 2001). 

Since CYVD is a phloem-associated bacterium (Rascoe et al., 2000), it 

was logical to test other hempiterans, particularly homopterans, for their ability to 

transmit S. marcescens. Homopterans, which have a long history in transmitting 

phloem limited pathogens, have small stylets that do not disturb the phloem 

during ingestion of fluids (57), hence are capable of transmitting pathogens. 

This research project was conducted to test several homopteran insects, 

and one heteropteran, for transmission under laboratory conditions. Ten 

homopterans were selected. The five aphid species were Aphis gossypii, A. 

neriii, Acyrthosiphon pisum, Myzus persicae and Diuraphis noxia, and the five 

leafhopper species were Circulifer tenellus, Exitianus. exitiosus, Endria inimica, 

Dalbulus maidis and Macrosteles quadrilineatus. In addition, I chose to test a 

heteropteran insect, Lygus hesperus, whose feeding mode is similar to that of A. 

tristis. An artificial feeding system assay was selected because it is easy to use 

and most of the insects used in this study do not feed on cucurbits. 



b n e  of the five species of aphids tested were able to transmit S. 

~arcescens from the feeding sources under the conditions tested. In contrast, 

three of the five leafhopper species tested (C. tenellus, E. exitiosus and E. 

inimica) transmitted S. marcescens from the feeding sachets. Two leafhopper 

species (0. maidis and M. quadrilineatus) did not transmit the bacterium under 

these conditions. L. hesperus adults were capable of transmitting S. marcescens 

pouch to pouch. The transmission rate of L. hesperus was proportional to the 

length of the IAP: the greater the length of time post acquisition, the higher the 

percent of PCR positive pouches. These data suggest some degree of 

transmission specificity as all of the five aphid species and two out of five 

leafhopper species failed to transmit. 

Currently, A. tristis is the only identified competent vector of S. 

marcescens. The fact that none of the five aphid species tested were able to 

transmit S. marcescens from sachet to sachet suggests that aphids do not have 

a role in the spread of the pathogen. There is a possibility that the three 

leafhoppers shown capable of transmission, or L. hespenrs, play a role in the 

field in spreading the disease, particularly since they feed on cucurbits. However, 

this must be assessed in future research. 

The fact that L. hespews transmits in a manner similar to that used by the 

squash bug, A. tristis, at least in an artificial system, opens the possibility that 

~ygus-s. marcescens system could be used as a model for A. tristis and S. 

marcescens. Working with L. hesperus is more convenient than working with A. 

tristis because an artificial liquid diet has been developed for the former. At 



present. the only artificial feeding system known for A. tristis is vacuum infiltrated 

cubes of excised squash fruits (Bextine 2001). DNA extraction is also easier from 

a liquid diet than from squash cubes. 

Five aphid species and the leafhoppers D. maidis and M. quadfineatus 

were unable to inoculate S. marcescens to artificial sachets. It is useful to 

consider possible explanations for the pathogen-vector specificity observed in 

these experiments. 

The Pierce's disease bacterium, Xylella fastidiosa, has been reported to 

attach to the lining of the cibarial pump, in the food meatus and in the groove of 

the cibarium floor connecting the food meatus with the esophagus of its vector, 

the sharpshooter Homalodisca coagulata (Brlansky et al. 1983, Hill and Purcell, 

1995, Purcell et al. 1979). It is possible that S. marcescens also attaches to the 

foregut lining of vector species, but not of aphids or other insects. This 

hypothesis must be further tested. 

There are interesting similarities between S. marcescens and X. fastidiosa 

and their respective insect vectors, A. tristis and several sharpshooters. Both lack 

a long latent period during transmission; S. marcescens was transmitted within 

24 hrs and X. fastidiosa in as little as three hrs, indicating that even small 

numbers of bacteria that are attached in the food canal distal to the cibarial valve 

are sufficient for transmission. The mode of transmission is non circulative in 

both cases, Sharpshooter vectors of X. fastidiosa transmit for life. The data from 

this study indicate that squash bugs transmit S. marcescens for at least 21 days 

and L. hesperus transmits for at least 5 days; in both these cases it is possible 



that transmission capability persists for life, since these experiments were not 

designed to reveal this information. 

X. fastidiosa cells secrete a polysaccharide matrix that helps in extraction 

of nutrients from the xylem sap and protecting the bacteria from being flushed out 

by the rapidly moving solute stream during feeding (Brlansky et al. 1983, Hill and 

Purcell, 1995, Purcell et al. 1979). A similar matrix may be produced by S. 

marcescens. 

S. marcescens is known to be an insect pathogen. For example, in 

Heliothis virescens adults, bacterial infection caused 90.1 % mortality (Sikorowski 

and Lawrence 1998). However, it was not known whether CYVD strains had this 

property. Pathogenicity tests of S. marcescens on the three different insect 

groups revealed that S. marcescens does have a negative impact on the 

longevity of aphids, leafhoppers and L. hesperus. 

The higher mortality rates of insects fed S. marcescens may be due to one 

or more of a number of bacterial virulence factors, among which are enzymes 

such as protease, gelatinase, lectinase and chitinase, which can adversely affect 

the insect hosts. These enzymes may inactivate the immune system allowing the 

bacteria to reproduce efficiently and leading to septicemia (Sikorowski et al, 1998 

and 2001 ). 



Appendix A 

Aphids, leafhoppers and Lygus hesperus acquisition and inoculation of 

Serratia marcescens 

The following tables are expanded data of aphid, leafhopper species and 

L. hesperus corresponding to Tables'7, 8 and 9 in Chapter 2. 

Table 10. Aphid acquisition and inoculation of S. marcescens using 
artificial feeding sachets. 

a AAP was on sachets containing sucrose. 
b 

AAP was on sachets containing sucrose supplemented with S. marcescens ZO1-A at lo5 bacteriatml. IAP 
sachet solutions were added to culture medium and bacteria were identified by PCR. Solutions in which 
bacteria did not grow were not tested by PCR. 

Insect bodies tested. 
d Each sample contained 10 individuals. 



Table 11. Leafhopper acquisition and inoculation of S. marcescens using 
artificial feeding sachets. 

a AAP was on sachets containing D l 0  or sucrose. 
b 

AAP was on sachets containing sucrose supplemented with S. marcescens 201-A at l o 5  bacterialml. IAP sachet 
solutions were added to culture medium and bacteria were identified by PCR. Solutions in which bacteria did not grow 
were not tested by PCR. 

Insect bodies tested. 
Not done 



Table 12. Lygus hesperus acquisition and inoculation of Serrafia 
marcescens using un-stretched parafilm feeding pouches. 

I I I I I 
Total I I 1 650 1 0155 1 650 1 18154 (33.3) 1 21/79 (26.6) 
a AAP was on un-stretched parafilm feeding pouches containing sucrose. 
b 

AAP was on un-stretched parafilm feeding pouches containing sucrose supplemented with S. marcescens 
ZOI-A at lo5  bacterialml. IAP pouch solutions were added to culture medium and bacteria were identified by 
PCR. Solutions in which bacteria did not grow were not tested by PCR. 

Insect bodies tested. 
Not done 



Appendix B 

Transmission of other strains of Serratia marcescens 

by Circulifer tenellus 

The fact that no differences were detected among cucurbit strains of 

Serratia marcescens means they probably evolved from one ancestor. However, 

other S. marcescens strains do differ from cucurbit strains in a number of 

important ways. For example, strain HOI-A, isolated from a human subject, 

possesses several metabolic enzymes lacking in cucurbit strains, and has a fatty 

acid profile quite different from that of CYVD strains as well (Rascoae et al, 

2001). Therefore, in addition to testing strain ZOI-A of S. marcescens, strain 

HOI-A was also tested for transmission by Circulifer tenellus (Baker). Another 

issue of concern in our research program was whether experimental 

manipulation of cucurbit strains to facilitate tracking would affect their ability to be 

transmitted. To address this issue, we also tested a strain that incorporated the 

gene for green fluorescent protein (GFP)(ZOl-A-GFP), and a rifampicin-resistant 

strain (ZOI -A-rif.). 

C. tenellus adults were reared and maintained as described in Chapter 2. 

S. marcescens modified with GFP was produced by Michael Berg. Cultures 

were frozen at -80°F in LB broth until use. Rifampicin resistant cultures, selected 

on rif-amended agar medium by John Rascoe, were maintained on LB plates 

containing 25 uglml rifampicin and frozen until use. The human strain, HOI-A, 

was obtained from D. Adamson, Medical Arts Laboratory, Oklahoma City, OK, 



cultured on LB agar, and stored at -80°F until use. Acquisition and inoculation 

access periods and detection were as described in Chapter 2. GFP was also 

detected by fluorescence microscopy by placing samples on a glass slide and 

examining with a Nikon camera with a fluorescence attachment at a wavelength 

of 488. All three strains were identified as S. marcescens by PCR as described in 

Chapter 2. 

Table 13. Circulifer tenellus acquisition and inoculation using other 
strains of Serratia marcescens. 

Treatment 
No. of PCR 

(+) 
/No. of 

insects (%) 

919 (1 00) 

1011 0 (1 00) 

10110 (1 00) 

a AAP was on sachets containing D l0  or sucrose. 
b 

AAP was on sachets containing sucrose supplemented with S. marcescens at 10' bacterialml. IAP sachet 
solutions were added to culture medium and bacteria were identified by PCR. Solutions in which bacteria did 
not grow were not tested by PCR. 

Insect bodies tested. 

Species 

Circulifer 
tenellus 

Bacterial 
Strain 

ZO 1 -A- 
GFP 

ZO1 -A- 
RIP 

HOlA 

controla Length 
of 

AAP-IAP 
(hr) 

24-24 

24-24 

24-24 

TreatmentD 
No. of 
u p  

Sachets 
(+I by 
PCR 
/No. 

tested 
(%) 
01 1 

011 

011 

No. of 
insects! 
sachet 

5 

5 

5 

No. of 
1 ~ p  

sachets 
(+) by 
PCR 
/No. 

tested 
(Yo) 
1 I3 

(33.3) 
113 

(33.3) 
113 

(33.3) 

No. of 
insects! 
sachet 

5 

5 

5 

Total 
no. of 

insects 

3 

3 

3 

Total 
no. of 
insects 

15 

15 

15 



Table 14: Mortality of Circulifer tenellus after feeding on three strains of 
Serratia marcescens. 

Species Bacterial 
Strain 

MC % 
after 

Circulifer 
tenellus 

a AAP was on sachets containing sucrose. 
b 

AAP was on sachets containing sucrose supplemented with S. marcescens at lo5  bacterialml. IAP sachet 
solutions were added to culture medium. 

I 

The culture of ZOIA-GFP glowed under fluorescence microscopy, 

Controla 

M. % 
after 

Average 
M. % 

M. % after 
AAP 

ZO1-A- GFP 

I , I I I I 

HOlA 20 0 10 6.6 21.4 I 14 1 

whereas untransformed ZOlA did not fluoresce. C. tenellus was able to transmit 

~reatment~  

Average 
M. % 

M. % after 
IAP 

all three different strains after 24 hrs from sachet to sachet under the controlled 

AAP 

20 

conditions. All strains were detected in the C. tenellus bodies when tested by 

PCR, indicating that the insect fed on the inoculum and acquired the bacterium. 

I AP 

0 

These results suggest that the mechanism of S. marcescens transmission is the 

same for these three strains of the bacterium. This finding is important for two 

10 

reasons: differential transmission among these three strains might reflect S. 

marcescens adaptation to the cucurbit ecosystem, thus providing clues as to the 

6.6 

origin of the cucurbit strains. Second, the knowledge that GFP and rif- marked 

strains retain transmissibility will allow their use in experiments designed to 

13.3 

identify factors such as adhesins and the genes involved in transmission of 

10 

cucurbit strains. 



Appendix C 

Transmission of Serratia marcescens by Circulifer tenellus nymphs 

Pathogens acquired by immature stages of many vector insect species 

are transmitted by adults following a molt. Circulifer tenellus nymphs were tested 

for their ability to transmit Serratia marcescens. Four sachets were prepared, 

with 5 nymphs of the 4th or 5th instar stage in each sachet. Two sachets 

contained S. marcescens - amended feeding solution, and the other two 

contained only feeding solution, as controls. The insects were allowed 24-24 hrs 

each for AAP and IAP. 

Table 15. Circulifer tenellus nymph acquisition and inoculation of Serratia 
marcescens using artificial feeding sachets. 

The nymphs of C. tenellus were able to transmit S. marcescens from 

sachet to sachet after 24 hrs IAP. One of two sachets was positive by PCR. S. 

marcescens was detected by PCR in the bodies of all the insects tested. 

a AAP was on sachets containing sucrose. 
b 

AAP was on sachets containing sucrose supplemented with S. marcescens ZOI-A at 10' bacterialml. IAP 
sachet solutions were added to culture medium and bacteria were identified by PCR. Solutions in which 
bacteria did not grow were not tested by PCR. 

Insect bodies tested. 

Species 

Circulifer 
tenellus 

Treatment 
No. of PCR 

(+I 
/No. of 

insects (%) 

818 (1 00) 

Length 
of 

AAP-IAP 
(hr) 

24-24 

Rep 

1 

~reatment' 

No. of 
insects/ 
sachet 

5 

Controla 

Total 
no. of 
insects 

10 

No. of 
insects/ 
sachet 

5 

No. of IAP 
sachets (+) 

by PCR 
/No. tested 

(Yo) 
% (50) 

Total 
no. of 

insects 

10 

No. of TAP 
sachets (+) 
by PCR 

/No. tested 
(Yo) 
012 
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