
PROTOCOL FOR REDUCING COMMUNICATION

DELAY IN MOBILE AD HOC NETWORKS BY PRE-

FETCHING LOCATION INFORMATION

BY

MUHAMMAD TANVIR ALAM

Bachelor of Science

North South University

Dhaka, Bangladesh

1999

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 2002

PROTOCOL FOR REDUCING COMMUNICATION

DELAY IN MOBILE AD HOC NETWORKS BY PRE-

FETCHING LOCATION INFORMATION

Thesis Approved:

Thesis Advisor

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major advisor, Dr. Johnson

Thomas for his careful supervision, constructive guidance, inspiration and friendship. My

sincere appreciation extends to Dr. J. P. Chandler and Dr. N. Park whose guidance,

assistance, encouragement, and friendship are also invaluable.

I would also like to give my special appreciation to my father Eng. Mukarrmaul

Bari and my mother Umme Fatema for their precious suggestions to my research, their

strong encouragement at times of difficulty, love, and understanding throughout my

research endeavor. Their blessings and strong eagerness to attend my convocation from

far distance encouraged me to finish this paper soon.

Finally, I would like to thank the members of the Department of Computer

Science for their support during the two years of my study.

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major advisor, Dr. Johnson

Thomas for his careful supervision, constructive guidance, inspiration and friendship. My

sincere appreciation extends to Dr. J. P. Chandler and Dr. N. Park whose guidance,

assistance, encouragement, and friendship are also invaluable.

I would also like to give my special appreciation to my father Eng. Mukarrmaul

Bari and my mother Umme Fatema for their precious suggestions to my research, their

strong encouragement at times of difficulty, love, and understanding throughout my

research endeavor. Their blessings and strong eagerness to attend my convocation from

far distance encouraged me to finish this paper soon.

Finally, I would like to thank the members of the Department of Computer

Science for their support during the two years of my study.

TABLE OF CONTENTS

Chapter Page

... I . INTRODUCTION 1

Motivation .. 2

.. I1 . REVIEW OF LITERATURE 4

DSDV protocol .. -4
... DSR protocol 5

... AOVD protocol 8
Zone Routing protocol .. 10
LAR protocol ... 12

.. I11 . THESIS OBJECTIVES 15

... IV . DESIGN APPROACH 16

... Assumption 16
Restrictions and suggested solutions .. 17

V . IMPLEMENTATION APROACH .. 22

VI . SIMULATION RESULTS AND AANALYSIS 30

VII . CONCLUSIONS ... 40

.. REFERENCES 41

APPENDICES .. 42

... . APPENDIX A GLOSSARY 42

APPENDIX B . IMPLEMENTATION 46

LIST OF TABLES

Table Page

I . Current Routing table of A at time tl ... 24

I1 . Current Routing table of D at time t~ .. 25

111 . Current Routing table of C at time tl ... 25

.. IV . Current Routing table of X at time tl 26

... V . Pre-fetch routing table of X at time tl 27

VI . Routing table of D At time t2 .. 27

... VII . Current routing table of X at time t2 28

LIST OF FIGURES

Figure Page

1 . Route Discovery Example with node A as the initiator and node E as the target ... 6

2 . Route Maintenance Example Node C is unable to forward a packet from A to E

. . .. over its link to the next hop. D 7

3 . An example of route discovery operation .. 12

4 . Examples of expected zone ... 13

5 . Request zone for source S and destination D ... 14

... 6 . An example of the protocol 22

7 . Message format of DSR, (a) Request (b) Reply .. 31

....................................... 8 . Message format of PFP, (a) Request (b) Reply 31

9 . Comparison of pre-fetch, communication and advertise time 35

10 . Comparison of messages sent by PFP, DSR and DSDV 36

11 . Comparison of bits transmitted by PFP, DSR and DSDV 36

................ 12 . Comparison of processing overhead among PFP, DSR and DSDV 37

13 . Comparison of messages sent if pre-fetching nodes move away 38

..................... 14 . Comparison bits transmitted if pre-fetching nodes move away 38

15 . Comparison of processing overheads when pre-fetched nodes move away 39

. 16 Time required to pre-fetch for 50 pre-fetching nodes 40

... 17 . Overhead in terms for messages sent 41

vi

NOMENCLATURE

PFP Pre-fetching Protocol

DSR Dynamic Source Routing

DSDV Distance-Sequenced Distance-Vector

MACT Multicast Activation

LAR Location Aided Routing

ZRP Zone Routing Protocol

vii

CHAPTER I

INTRODUCTION

Mobile and Ad hoc networks consist of mobile hosts that communicate with each

other, in the absence of a fixed infrastructure. Route between two hosts in a Mobile Ad

hoc Network (MANET) may consists of hops through other hosts in the network. In other

words, a MANET is defined as a collection of mobile platforms or nodes where each

node is free to move about arbitrarily. Each node logically consists of a router that may

have multiple hosts and that also may have multiple wireless communications devices.

Host mobility can cause frequent unpredictable topology changes. Therefore, the task of

finding and maintaining routes in MANET is nontrivial. Many protocols have been

proposed for mobile Ad hoe networks, with the goal of achieving efficient routing.

However, none of the existing protocols reduces the communication delay among

nodes to zero. There is a trade off between delay and information overhead for those so

far proposed protocols. In this research, we suggest an approach to decrease delay of

route discovery almost to zero by utilizing pre fetching of location information for mobile

hosts and deriving route tables for nodes in advance. We demonstrate how location

information may be used for route generation in expense of overhead and memory. Our

protocol allows the network to be completely self-organizing and self-configuring.

CHAPTER I1

REVIEW OF LITERATURE

Packets are transmitted between the nodes of the network using route tables stored

at each node. Each route table, at each of the nodes, lists all available destinations and the

number of hops required. Each route table entry is tagged with a sequence

number/installation time that is originated by the destination node. We may take a look at

the different protocols and routing methods that have been proposed to perform this type

of packet transmission.

2.1 Distance-Sequenced Distance-Vector protocol

The Distance-sequenced distance-vector (DSDV) protocol was first proposed in 1996

by Perkins and Bhagwat. The DSDV protocol requires each mobile node to advertise, to

each of its current neighbors, its own route table (for instance, by broadcasting its

entries). The entries in this list may change fairly dynamically over time, so the

advertisement must be made often enough to ensure that every mobile computer can

almost always locate every other mobile computer in the collection. In addition, each

mobile computer agrees to relay data packets to other computers upon request. "The data

broadcast by each mobile computer will contain its new sequence number and the

following information for each new route:

The destination's address

The number of hops required to reach the destination

CHAPTER I1

REVIEW OF LITERATURE

Packets are transmitted between the nodes of the network using route tables stored

at each node. Each route table, at each of the nodes, lists all available destinations and the

number of hops required. Each route table entry is tagged with a sequence

number/installation time that is originated by the destination node. We may take a look at

the different protocols and routing methods that have been proposed to perform this type

of packet transmission.

2.1 Distance-Sequenced Distance-Vector protocol

The Distance-sequenced distance-vector (DSDV) protocol was first proposed in 1996

by Perkins and Bhagwat. The DSDV protocol requires each mobile node to advertise, to

each of its current neighbors, its own route table (for instance, by broadcasting its

entries). The entries in this list may change fairly dynamically over time, so the

advertisement must be made often enough to ensure that every mobile computer can

almost always locate every other mobile computer in the collection. In addition, each

mobile computer agrees to relay data packets to other computers upon request. "The data

broadcast by each mobile computer will contain its new sequence number and the

following information for each new route:

The destination's address

The number of hops required to reach the destination

The sequence number of the information received regarding that destination, as

originally stamped by the destination." (Perkins and Bhagwat, 1996).

The addresses stored in the route tables will correspond to the layer at which the DSDV

Ad hoc networking protocol is operated. That is, operation at layer 3 will use network

layer addresses for the next hop and destination addresses; operation at layer-2 medium

access control (MAC) addresses.

However, the delay is found because of the advertisement of each node to its

neighboring nodes. Also, the nodes have to wait for a settling time before they

communicate in order to take care of the damping fluctuations. A faster routing method is

possible to come up with the help of the pre fetched route tables.

2.2 The Dynamic Source Routing Protocol

In 1998 Johnson, Broch and Maltz proposed the Dynamic Source Routing (DSR)

protocol for multi hop wireless Ad hoc Networks. The protocol is composed of the two

mechanisms of Route Discovery and Route Maintenance, which work together to allow

nodes to discover and maintain source routes to arbitrary destinations in the Ad hoc

Networks. The use of source routing allows packet routing to be trivially loop free,

avoids the need for up-to-date routing information in the intermediate nodes through

which packets are forwarded, and allows nodes that are forwarding or overhearing

packets to cache the route information in them for their own future use. All aspects of the

protocol operate entirely on demand, allowing the routing packet overhead of DSR to

scale automatically to only that needed to react to changes in the routes currently in use.

Thus, DSR has very low routing overhead and is able to correctly deliver almost all

originated data packets, even with continuous, rapid motion of all nodes in the network.

2.2.1 Route discovery

Figure 1 illustrates an example of Route Discovery, in which node A is attempting

to discover a route to node E. To initiate the Route Discovery, A transmits a Route

Request message as a single local broadcast packet, which is received by (approximately)

all nodes currently within wireless transmission range of A. Each Route Request message

identifies the initiator and target of the Route Discovery and also contains a unique

request ID, determined by the initiator of the Request. Each Route Request also contains

a record listing the address of each intermediate node through which this particular copy

of the Route Request message has been forwarded. This route record is initialized to an

empty list by the initiator of the Route Discovery.

Figure 1 : Route Discovery Example with node A as the initiator and node E as the target

When another node receives a Route Request, if it is the target of the Route Discovery it

returns a Route Reply message to the Route Discovery initiator, giving a copy of the

accumulated route record from the Route Request; when the initiator receives this Route

Reply, it catches this route in its Route Cache for use in sending subsequent packets to

this destination. Otherwise, if the node receiving the Route Request recently saw another

Route Request message from this initiator bearing this same request ID, or if it finds that

its own address is already listed in the route record in the Route Request message, it

discards the Request. If not, this node appends its own address to the route record in the

Route Request message and propagates it by transmitting it as a local broadcast packet

(with the same request ID).

2.2.1 Route Maintenance

Figure 2: Route Maintenance Example Node C is unable to forward a packet from

A to E over its link to the next hop, D

In case of route Maintenance, if C in Figure 2 is unable to deliver the packet to the

next hop D, C returns a Route Error to A, stating that the link from C to D is currently

"broken." Node A then removes this broken link from its cache, and any retransmission

of the original packet is a function for upper-layer protocols such as TCP. For sending

such a retransmission or other packets to this same destination E, if A has in its Route

Cache another route to E, it can send the packet using the new route immediately.

Otherwise, it may perform a new Route Discovery for this target.

So, we may observe that the Route discovery is on demand and the overhead is

reduced almost to zero. Still, a node should delay sending its own Route Reply for a short

period and listen to see if the initiating node begins using a shorter route first. Moreover,

the Route Request and Reply process of DSR may give birth to a significant amount of

routing delay.

2.3 The Ad Hoc On-Demand Distance-Vector Protocol

The Ad Hoc On-Demand Distance-Vector (AOVD) routing protocol discovered

by Perkins and Royer in 1998, provides quick and efficient route establishment between

mobile nodes desiring communication with minimal control overhead. The initial design

of AODV was undertaken after the experience with the Destination-Sequenced Distance-

Vector (DSDV) routing algorithm. Its goal is to reduce the need for system-wide

broadcasts to the furthest extent possible. DSDV issues broadcasts to announce every

change in the overall connectivity of the Ad hoc Network. Whenever two nodes enter

communication range of each other, they become neighbors and change the network

topology. This triggers a broadcast of the new connectivity information to the rest of the

nodes in the Ad hoc Network. Similarly when two neighboring nodes drift out of direct

communication range, the link break causes a broadcast-triggered update. With AODV it

is no longer required that such changes initiate system wide broadcasts. In fact, if the link

status does not affect ongoing communication or multicast tree maintenance, no

broadcast occurs. This localizes the effects caused by local movements. In DSDV, local

movements have global effects. In AODV, the only non-local effects result from a distant

source trying to use a broken link. The triggered broadcast in DSDV is replaced by more

careful bookkeeping that identifies the one or more nodes that had been using the broken

link. Only those nodes have to be informed of the link's changed status. In the frequent

case that a link was idle, no such indication is sent.

Another feature distinguishing AODV from DSDV and other Ad hoc protocols is

its integrated handling of multicast routing. By modeling the multicast routing problem as

an extension of AODV's distance-vector algorithm, protocol improvement may be

applied to both unicast and multicast at the same time.

2.3.1 Route discovery

"The basic outline of the route discovery process of AODV for unicast routing is as

follows:

When a node needs a route to a destination, it broadcasts a Route Request.

Any node with a current route to that destination can unicast a Route Reply back

to the source node.

Route information is maintained by each node in its route table.

Information obtained through Route Request and Route Reply messages is kept

with other information in the route table.

Sequence numbers are used to eliminate stale routes.

Routes with old sequence numbers are aged out of the system." (Perkins and

Royer, 1 998).

2.3.2 Route maintenance

When either the destination or some intermediate node moves, a Route Error

message is sent to the affected source nodes. This Route Error is initiated by the node

upstream of the break. It lists each of the destinations that are now unreachable because

of the loss of the link. When the neighbors receive the Route Error, they mark their route

to the destination as invalid by setting the distance to the destination equal to infinity and,

when a source node receives the Route Error, is can reinitiate route discovery if the route

is still needed.

Multicast route discovery follows directly from the unicast route discovery in that

it utilizes the same two messages types (Route Request and Route Reply) for the route

requestheply discovery cycle. Multicast group membership is dynamic; nodes are able to

join and leave the group at any time.

Multicast Route activatioddeactivation i.e. node joininglleaving a network is

taken care by the Prune flag and multicast activation (MACT) message propagation

among nodes. If a node wishes to revoke its member status or leave a particular network,

unicasts a MACT message with the Prune flag set to its next hop. It then deletes the

multicast group information from its multicast route table. When the next hop receives

the prune message, it deletes the next hop information for the sending node and so on.

However, the flag setting and reconfiguring the table may slightly slow down the routing

method as the nodes move.

2.4 Zone Routing Protocol

The Zone Routing Protocol (ZRP) was introduced by Haas and Pearlman in 1998

for routing in re-configurable Ad hoc Networks (RWNs). ZRP dynamically adjusts itself

to operational conditions by sizing a single network parameter - the zone radius. More

specifically, ZRP reduces the cost of frequent updates to the constantly changing network

topology by limiting the scope of the updates to the immediate neighborhood of the

change. ZRP works between proactive and reactive routing methods. Routing protocols

can be classified as either proactive or reactive. Proactive protocols attempt to

continuously evaluate the routes within the network so that when a packet needs to be

forwarded the route is already known and can be immediately used. In reactive protocols

(that work opposite of proactive protocols), because route information may not be

available at that time a Route Request is received, the delay before a route is determined

can be quite significant. Furthermore, the reactive global search procedure requires

significant control traffic.

ZRP limits the scope of the proactive procedure to the node's local neighborhood,

but the search throughout the network, although global, is done by querying only a subset

of the network nodes.

An example of the route discovery of ZRP is shown in Figure 3. Source node S

sends a packet to destination D. To find a route within the network, S first checks

whether D is within its routing zone. Because D does not lie within S's routing zone, S

bordercasts a route request to all of its peripheral nodes - that is to nodes C, Ci and H.

Nodes C, G and H then determine that D is not in their routing zones and therefore

bordercast the request to their peripheral nodes. One of the H's peripheral nodes, B,

recognizes D as being in its routing zone and responds to the Route Request, indicating

the forwarding path S+H+B+D.

Thus, this protocol allows a node to recognize all its neighboring nodes within a

fixed a radius. This process may reduce the communication delay compared to the DSR

protocol since it operates at the peripheral nodes immediately when the destination does

not lie within the sub-network. However, the Route Request and Reply process may still

hold the delay period.

2.5 Location-Aided Routing

Vaidya and KO came up with Location-Aided Routing (LAR) protocol to decrease

overhead of the flooding algorithm for MANET. Flooding, basically is the forwarding of

the Route Request for destination by a node to its neighbors. In LAR method, it is

assumed that the average speed and position at a particular time of each node is known.

With this information, the method utilizes the Expected zone and Request zone to find a

destination node and reduce overhead.

2.5.1 Expected zone

Let us consider a node S that needs to find a route to node D. S knows that node D

was at location L at time to, and the current time is at t ~ . Then, the "expected zone" of D,

from the viewpoint of node S at time tl, is the region that node S expects to contain D at

time tl. Node S can determine the expected zone based on the knowledge that node D

was at Location L at time to. For instance, if node S knows that node D travels with

average speed v, then S may assume that the expected zone is the circular region of

radius v(tl-to), centered at location L (refer to Figure 4a). If node S does not know a

previous location of node D, then node S cannot determine expected zone and the entire

region occupied by the MANET is assumed to be the expected zone. In this case, the

algorithm reduces to the basic flooding algorithm. In general, having more information

regarding mobility of a destination node, can result in a smaller expected zone. For

example, if S knows that destination D is moving northkouth, then the circular zone in

Figure 4a can be reduced to a semi-circle (upperllower), as in Figure 4b.

(a) (b)

Figure 4: Examples of expected zone

2.5.2 Request Zone

The request zone is the smallest area that includes current location of source S,

and the expected zone. The size of the request zone is proportional to average speed of

movement v, and time elapsed since the last known location of the destination was

recorded. The sender comes to know location of the destination only at the end of a route

discovery. A source node forwards a route request to the neighboring node only if this

neighboring node belongs to the request zone. In Figure 5, S will not send route request

to A for destination D since A is outside the request zone.

Request zone

Figure 5: Request zone for source S and destination D

CHAPTER I11

THESIS OBJECTIVES

Objectives of the thesis are:

1. To propose a new self-configuring protocol for MANET

2. To reduce the communication delay among nodes by pre-fetching of routing tables

3. To compare the protocol with other protocols

CHAPTER IV

DESIGN APPROACH

Our goal is to provide a protocol that would drop the delay sharply. We propose a

scenario where our protocol would work smooth.

4.1 Assumption

The following are the assumptions for our protocol:

1. The average speed and location of each node are known.

2. The traveling direction of each node movement is known

3. Each node has cache memory to hold the table structure (similar to DSDV protocol).

The table structure of a node would consist of the following columns:

a) The destination node,

b) Number of hopslmetric required to reach the destination,

c) Next hoplnode,

d) Location of the destination,

e) Installation time of the table structure,

f) The shortest distance from the source to the destination and the

g) Sequence number of each message.

We use the fixed radius process of ZRP to calculate the number of hops for a

destination node. If a destination node is far away from the source node and whose path

is not known would be marked as oc for that particular destination node. Since we know

the path and average speed of each node, we may calculate the position of a node, for

instance X after every unit interval and check whether any node belongs to its radius. If

such node(s) exist(s) and if the locationlrouting table of that node(s) can be pre-fetched

by X, then it can enjoy zero latency in the next interval or near future to communicate

them. The derivation of the tables of the probable pre-fetched nodes would follow the

table of the nearer nodes of X that could communicate with the probable pre-fetching

nodes.

4.2 Restrictions and suggested solutions

Our proposed pre-fetching protocol (PFP) may have several limitations. It can be

observed that the protocol would work best if the distribution of the nodes is uniform

over the network. The requirement of high call per mobility (CMR) ratio is also a

disadvantage for the protocol. There is a lot of calculation involved that are to be carried

out after each interval as X travels, producing high overhead. Thus, each node has to have

a huge cache available. If a node does not have any fixed moving pattern and it takes the

shape of loops after every while or if it moves back wards, the pre-fetched table structure

may be repeated and the overhead would increase sharply. In this case, we would switch

from our protocol to any of the above-mentioned protocols of the "Review of Literature"

section. Moreover, if the node mobility rate is fairly high and a node leaves the area in a

very short period, the usage of the derived table would not be a good choice. We may

In this system, the total cost of requesting a node for table is the sum of the

system resource cost and the delay cost of waiting for the table to arrive. Therefore, if a

node tries to pre-fetches a route table, the total cost of retrieving this table is

C1= a~ * S + a~ * (f + to) = a~ * S + a ~ * (~ / b f to)

where s is the table size in bytes, t is the transmission time, to is the start-up time, and b is

the capacity of the path to the server (packetsltime unit). Assuming the cost of using a

table on the local node is negligible, if the requested table had previously been pre-

fetched and saved on the local cache of a node, then the cost associated with this request

equals the system resource cost, i.e.

c 2 = a B * s

because the delay cost is zero.

We now investigate the situation in which a node has just started using a new

table, and currently there are L distinct nodes in the network (whose route tables need to

be pre-fetched) with accesslpre-fetching probability (defined later) greater than zero. The

average cost C of satisfying all nodes requests stemming from this new route table being

used without any pre-fetching is the summation of the costs to retrieve each of the tables

of L nodes times the access probability of the corresponding node, i.e.

L C = Ci=I Pi* [aB * Si + CXT * (~ i h i f to)]

where pi (defined later) is the access probability of node i, toi is the start-up time for

retrieving the routing table of ith node, and bi is the capacity of the path to the server

which contains the ith node.

If instead, m node-tables among all of the L candidate nodes are pre-fetched, say

i l , i2,. ..., im, this average cost becomes

L
C=lm Cta * Sij + xj=m+l pij *[CXB * S, + XT *(ti, + toij)]

,ere ij E (1 ,..., L), j = 1..L, and for any jl f j2, ijI # ij2.

omparing the above two equations, we conclude that the average cost is minimized if

nd only if we pre-fetch all and only those route tables of nodes which satis@

Pi > 1 /((1 + solsi) * CXT/(CXB * bi) + 1)

where soi = bi * toi and bi is the capacity of the path to server i. Thus, we define the pre-

fetch threshold

H = 1 /((1 + solsi) *aTl(aB * bi) + 1).

We came up with a prediction module that can be compared to the threshold

probability to determine whether the information of the probable nodes would be pre-

fetched. Each node would be pre-fetching the information of those nodes, whose access

probably is greater than H. In this way, we may optimize cost and each node may enjoy

zero latency to communicate among nodes that lie ahead of it.

Let the access probability of each probable node (whose locationlrouting table is a

candidate to be pre-fetchedlderived) is as follows:

Probability (of a probable pre-fetching node) = min (1, ZIY), where Y is the

number of nodes that lie in the probable pre-fetching range and not in the previous range

where the moving node lies. Z is the number of those nodes that lie in the same range as

the moving node lies and that are in the range of the particular probable pre-fetching

node.

This algorithm may exceed the value, one often because, there may be more

nodes in the current range of a moving node, than in the predicted range at near future.

The more nodes from previous range of a moving node can communicate to any

ir node of the predicted range, the higher the possibility of the moving node to

nicate with that particular probable pre-fetching node in near futurelnext time

il. We are varying Z in terms of nodes that have access to the probable pre-fetching

;. If ZIY exceeds one, we take the minimum of 1 and Z/X, which simply implies that

cular node-information would be pre-fetched. Thus a node would pre-fetch those

.es' information whose access probability is greater than H. This scenario is best

,ted if we know the moving direction and average speed of all nodes in the MANET.

owever, a node may change its direction all of a sudden, take a turn and it might not be

n the place where we would expect it to be in the next time interval. The probable pre-

fetching nodes would loose significance to be pre-fetched in such cases. In order to

overcome this, we introduce a prediction probability Pd that would be multiplied with the

access probability. Thus the actual accesslpre-fetching probability is (P d * ZIY) where Pd

is the predicted probability of changing direction of a moving node. If a moving node

never changes speed and direction, the predicted probability of this node Pd is 100%. This

ensures that it would be exactly at the position where it is expected to be in the near

future. If each node in the MANET uses this technique, they may enjoy zero latency with

optimized cost. The "Implementation approach" section describes a complete situation

with an example.

CHAPTER V

IMPLEMENTATION APPROACH

We consider only one moving node, say X and other nodes to be stagnant for the

[pose of implementation. We also assume that the traveling path of X is a straight line

~r the simplicity of the implementation. The initial position of the nodes is taken from

he user. However, our pre-fetching strategy works for any MANET where all nodes are

moving and even the nodes do not have any specific traveling pattern. A concrete

example of seven nodes implementation is illustrated next. Each node needs to apply the

same strategy to achieve the maximum outcome.

________+

Figure 6: An example of the protocol

In Figure 6, let node X is traveling in a straight line from left to right. Let r be the

communication radius range of X. At time tl, X can communicate with nodes A, B and C.

CHAPTER V

IMPLEMENTATION APPROACH

We consider only one moving node, say X and other nodes to be stagnant for the

[pose of implementation. We also assume that the traveling path of X is a straight line

~r the simplicity of the implementation. The initial position of the nodes is taken from

he user. However, our pre-fetching strategy works for any MANET where all nodes are

moving and even the nodes do not have any specific traveling pattern. A concrete

example of seven nodes implementation is illustrated next. Each node needs to apply the

same strategy to achieve the maximum outcome.

________+

Figure 6: An example of the protocol

In Figure 6, let node X is traveling in a straight line from left to right. Let r be the

communication radius range of X. At time tl, X can communicate with nodes A, B and C.

[raveling in a straight line, at time t2, X can communicate with nodes C, D and E.

t3, X can communicate with nodes D, E and F. let the location of node A is (xl,

is (x2, y2), C is (x3, y3), D is (x4, y4), E is (x5, y5), F is (x6, y6), M is (x7, y7)

ode X at time tl is (x8, y8) and at time t2 is (x9, y9). When X is at position (x8, y8),

robable pre-fetching range is the circle C2. Similarly, when X is at position (x9,y9),

probable pre-fetching range is the circle C3.

In the normal protocols, X needs to have enough information at time tl to route

lckets through nodes A, B and C. This involves communications (for example, Route

tequest and Reply) with A, B and C, to derive a routing table for X, thereby incurring

delay. Similarly, at time t2, X needs to have enough information to route packets through

nodes C, D and E. Again this involves communications (for instance, Route Request and

Reply) with C, D and E, to derive a routing table for X, and thereby incurring delay.

However, in our pre-fetching protocol (PFP), X needs the following at time t l :

X needs to have enough information to route packets through nodes A, B and C.

X pre-fetches addresses used by D and E so that when X gets to time t2, X has

enough information to route packets through nodes C, D and E immediately.

Similarly, X needs the following at time t2:

X needs to route packets through nodes D, E and F.

X pre-fetches addresses used by F so that when X gets to time t3, X has enough

information to route packets through nodes D, E and F immediately.

As mentioned in the assumptions, we need to know which direction X is traveling.

'r example, if X was heading North-East at time tl, pre-fetching the addresses of M and

1 would make more sense (rather than E). The routing cache may be divided into two

,arts, current routing table and pre-fetch routing table. Some possible tables of different

nodes at different times are hrnished below:

Table 1: Current Routing table of A at time t l

Destination

B

C

D

E

F

M

X

We assume that previously. node A communicated with node F via node D, hrtt it did
not communicate with node E.

Metric

1

1

1

oc

2

1

1

Destination

A

C

Next hop

B

C

D

D

M

X

Metric

1

1

Location

x2, ~2

x3, Y3

x4, Y4

x5, Y5

x6, Y6

x7, ~7

x8, Y8

Next hop

A

C

Distance

AB<r

AC<r

AD<r

AE>r

AF>r

AM<r

AX<r

Location

XI, Y I

x3, ~3

Distance

DA<r

DC<r

As mentioned in the assumptions, we need to know which direction X is traveling.

'r example, if X was heading North-East at time tl, pre-fetching the addresses of M and

1 would make more sense (rather than E). The routing cache may be divided into two

,arts, current routing table and pre-fetch routing table. Some possible tables of different

nodes at different times are hrnished below:

Table 1: Current Routing table of A at time t l

Destination

B

C

D

E

F

M

X

We assume that previously. node A communicated with node F via node D, hrtt it did
not communicate with node E.

Metric

1

1

1

oc

2

1

1

Destination

A

C

Next hop

B

C

D

D

M

X

Metric

1

1

Location

x2, ~2

x3, Y3

x4, Y4

x5, Y5

x6, Y6

x7, ~7

x8, Y8

Next hop

A

C

Distance

AB<r

AC<r

AD<r

AE>r

AF>r

AM<r

AX<r

Location

XI, Y I

x3, ~3

Distance

DA<r

DC<r

A and D, but it did not communicate with node E.

Table 4: Current routing table of X at time tl

C

D

E

F

M

From the direction and location information, X can derive that it needs to pre-

fetch the tables of D and E. However X cannot directly get the tables from E because at tl

X cannot communicate directly with E. It can however derive at least part (if not the

whole) of the table of D and E. For example, from A's table X knows that a packet to D

is routed directly, and a packet to F is routed via node D. Similarly, from C's table X

knows that a packet to E is routed directly. Therefore the pre-fetched table for X at tl

would look like this:

We assume that node Xpreviously communicated with node F via node

1

'x

'x

3

'x

--

C

A, D

Distance

XA>r

XB>r

XC<r

XD<r

XE<r

Destination

A

B

C

D

E
-

x3 ,Y 3

x4,y

~ 5 ~ ~ 5

x6,y 6

~ 7 ~ ~ 7

Next hop

D

C

C

D

E

Metric

2

2

1

1

1

XC<r

XD>r

XE>r

XF>r

XM>r

Location

xl,yl

~ 2 ~ ~ 2

~ 3 ~ ~ 3

x4,y

~ 5 ~ ~ 5

Table 5: Pre-fetch routing table of X at time tl

Therefore when X gets to t2, it can immediately route a message to A, B7 C, D and

E - even though it has not got any tables or information from D or E. When X gets to t2, a

merging of the current and pre-fetch table stake place - this is the table updating process.

Table 6: Routing table of D At time t2 -

Destination

A

C

E

F

M

B

X

Updated rows are italic

Next hop

A

C

E

F

M

X

Metric

1

1

1

1

1

o~

1

Location

x l , y l

x3, ~3

x5, ~5

x6, ~6

x7, ~7

x2, ~2

x8, ~8

Location

X I , yl

Next hop

D

Destination

A

Distance

DA<r

DC<r

DE<r

DE<r

DM<r

DB>r

DX<r

Distance

X4>r

Metric

2

Table 7: Current routing table of X at time t;!

C

E

F

M

B

D

The other nodes except node C need to be updated in the similar fashion since X

has moved to circle C2. The pre-fetching table of node E by X and updating the table of

node E would work in a similar fashion. Thus, now X can route packets through C, D and

E without Route Request and Reply processes at time t2. The pre-fetch routing table will

now contain data related to node F (pre-fetched to be used at time t3). However, we can

see that the address of node F is already been pre-fetched in this case because of the

previous communication. Each node in the network will have a current routing table and

a pre-fetch routing table. Each node of the MANET may use the same strategy as X to

justifl the protocol.

We may now find the access probability of each of the probable pre-fetching

nodes and compare them to the threshold probability H. Node D and E are the probable

pre-fetching nodes when X is in circle C1 at time tl. Node C can communicate with both

D and E and A can only communicate with D and not E (i.e. D lies in the range of both A

and C while E lies in the radius of C only).

Therefore, Probability (of pre-fetching E) = Pd * Z/Y = ?4

Updated rows are italic

1

1

2

2

2

1

C

E

D

D

C

D

x3, ~3

~ 5 , y-5

x6, y6

x7, y7

~ 2 , y2

x4, y4

XC<r

XE<r

XDr

XM>r

XB>r

XD<r

Here, Y is the number of nodes that lie in circle C2 and not in C1, i.e. 2. Z is 1

because only C from circle C1 can communicate with E.

Similarly, the Probability (of pre-fetching D) = Pd * ZlY= 212 = 1.

Two nodes from circle C1 i.e. A and C can communicate with node D. Thus Z is

2 here while (Y=2) is fixed for a particular pre-fetching range.

The node D has more chance to be pre-fetched than node E and rightly so because

more nodes in circle C1 can communicate with D than E. It is highly likely that X would

need to communicate with D when X moves in circle C2. Moreover, D has less chance to

move out of C2 than E. Thus, X may enjoy zero latency with optimized network cost in

circle C2 to communicate D and E (if both them are pre-fetched). All the other nodes

may use the same strategy as X this way.

As mentioned earlier, Pd is the predicted probability of changing direction of a

moving node. Since, we know the speed and traveling direction of node X, Pd is one for

both the pre-fetching probabilities above. Nevertheless, if X does not maintain a specific

traveling direction and it moves backward, then the value of Pd would drop sharply, i.e.

close to zero. Alternatively, X may slow down rapidly indicating a possible change of

direction. The value of Pd would therefore decrease. In this situation, X would not pre-

fetch any node-tables of D or E since it would not reside in circle C2 at time t2. If X takes

the path of South-East after time tl, Pd of node E would be much higher than that of node

D.

The request message of DSR consists of 75 bits that includes the fields for source

address, destination address, request ID number and type of message. On the other hand,

the reply message of DSR consists of 115 bits that includes the fields for source address,

destination address, request ID number and type of message, next hop address and the

number of hops requiredlmetric.

Figure 7: Message format of DSR, (a) Request (b) Reply

Message type
3 bits

Source address
32 bits

The request message of PFP consists of 83 bits that includes the fields for

destination address, source address (moving node X), sequence number, installation time

and type of message. On the other hand, the reply message of PFP consists of 123 bits

Destination address
32 bits

(b)

Next hop
32 bits

Metric
8 bits

Source
32 bits

that includes the fields for return address (moving node X), destination address, sequence

Request ID
8 bits

Message type
3 bits

number, installation time, type of message, next hop address and the number of hops

Destination
32 bits

Request ID
8 bits

Figure 8: Message format of PFP, (a) Request (b) Reply

(a)

Sequence no
8 bits

Installation time
8 bits

Destination address
32 bits

Message type
3 bits

Source address
32 bits

Co)

Message type
3 bits

Installation time
8 bits

Seq. no
8 bits

Destination
32 bits

Next hop
32 bits

Return
32 bits

Metric
8 bits

Each advertisement of DSDV would contain a number of records. The number of

bits transmitted in an advertisement can be expressed as:

Source address + (n - 1) * (Destination address + Next hop address + Metric + Sequence

number + Installation time) = 32+(n- 1)*(32+32+8+8+8) = 32+(n- 1)*88, where 32 is the

source address of a particular advertisement, n is the number nodes that advertise each

other in a particular region at a particular time and 88 is the size of each record in an

advertisement. Thus the bits transmitted in each advertisement would vary with n.

The total number of messages need to be sent to communicate with a probable

pre-fetching node in DSR may be considered with the equation: (n-i)*2+i = 2n - i, where

n is the number of necessary nodes required to communicate (both request and reply)

with the destination and i is the number of extra nodes that receive the request messages

only. The total number of messages need to be sent to pre-fetch a probable pre-fetching

node in PFP is considered to be (n+l), where n is the number of nodes in the current

circle of the moving node X. X needs to send n request messages in total for the

information of one probable pre-fetching node. And there would be 1 reply message only

containing the information, fkom a node among the requested nodes to X. The number of

messages need to be advertised at a particular time in DSDV is considered to be n*(n-1),

where n is the number of nodes that advertise each other in a region.

Therefore, the total number bits transmitted to communicate, pre-fetch or to

advertise for a probable pre-fetching node would be: (size of a request message * number

of request messages + size of a reply message * number of reply messages), for DSR and

PFP; and (size of an advertisement * number of advertisements), for DSDV.
b

The processing overhead combines (a) the generation of extra messages, (b)

moving data in cache and (c) number of records scanned in the cache of a node. The

generation of extra messages for DSR would be the number of extra nodes that receive

request messages i.e. i fiom the equation above. The generation of extra messages for

PFP would be two less than the total number of messages sent to pre-fetch i.e. (n+l)-2.

Here, 2 is number of necessary messages (one request and one reply) needed to pre-fetch

information. However, DSDV does not generate any extra messages because every

advertisement is used to generate a route. There is no cache adjustment for DSR and

DSDV. On the other hand, each node needs to adjust the fields for destination address (32

bits), metric required (8bits) and the next hope address (32 bits) in PFP. Thus 72 bits of

information is required to be adjusted in terms of moving data in the cache. It is

considered that the number of records that need to be searched in the cache of a node is n

on the average where n is the number of records in a table for DSDV and PFP. However,

n is considered to be zero for DSR because n increases dynamically and it is zero if a

node has not communicated with any node.

We also compare the overhead with the same parameters when the pre-fetching

nodes leave the MANET. The number of messages sent for DSR and DSDV would be

zero in this case because if there is no need, no messages would be generated by DSR,

neither that node would be sent any advertisement table by other nodes in DSDV. But

PFP still pre-fetches a probable pre-fetching node's information if it were in the range of

being pre-fetched before leaving. Thus the overhead would be the number of messages

sent to pre-fetch as before i.e. (n+l).

We now see the simulation comparison of pre-fetching time, communication time

and advertisement time in Figure 9. The nodes are input as the order of non-decreasing x

co-ordinates. The X-axis of the graph indicates the probable pre-fetching nodes in the

order of non-decreasing x co-ordinates while Y-axis indicates the time required to pre-

fetch, communicate or advertise for each probable node.

1 2 3 4 5 6

pre-fetched nodes

Figure 9. Comparison of pre-fetch, communication and advertise time

The graph shows that DSR takes maximum time to communicate. It takes more

time to communicate with the far away nodes for DSR. The curve falls at the middle

because X moves closer at time t2 to the 4th probable pre-fetching node. The

advertisement and pre-fetching take constant time for DSDV and PFP because the node

distribution is uniform and equal for both the pre-fetching circle. We observe a notch for

the third node because this node may not be accessed by any of the current circle nodes.

The notch reaches DSR for PFP because PFP switches to DSR for such nodes to be

communicated. In general, pre-fetching time is efficient than need based communication

or advertisement.

Figure 10 illustrates the comparison of messages generated by the three protocols

for each of the pre-fetching nodes. DSR generates more messages for far away nodes.

1 2 3 4 5 6

pre-fetched nodes

-

Figure 10. Comparison of messages sent by PFP, DSR and DSDV

PFP generates constant number of messages and switches to DSR if a probable pre-

fetching node cannot be pre-fetched. DSDV advertises at time tl and t2. Thus there is a

sharp rise for the first and fourth node. The curve stays at the base line for the other nodes

because no messages are generated in between time tl and t2.

1 2 3 4 5 6

pre-fetched nodes

Figure 1 1. Comparison of bits transmitted by PFP, DSR and DSDV

The comparison of number of bits transmitted (Figure 11) follows the previous

comparison. Because transmission of bits reflects the size of messages and the number of

different messages sent i.e. request and reply. The DSDV curve takes a very high rise for

node 1 and 4 because the size of single advertisement is much larger than the size of the

request and reply messages of PFP and DSR.

The next graph (Figure 12) depicts the processing overhead. As mentioned earlier,

it is the combination of extra messages generated, adjustment of cache and searching of

records in cache. Since there is no adjustment of cache in DSDV and DSR, they

outperform PFP. For DSR, the processing overhead is only the extra messages generated

because average searching is considered to be zero. For DSDV, the processing overhead

is only the scanning of average number of records that is equal here at both time tl and t2.

Thus the curve for DSDV forrns a line here. PFP drops to DSR for the 3rd node because it

switches to DSR for that node.

.-
m
3 100
C

80
>
0 60
m
.5 40
U)

g 20
0
2 0 -
P. 1 2 3 4 5 6

pre-fetched nodes

Figure 12. Comparison of processing overhead among PFP, DSR and DSDV

We now take a look at the overhead if the probable pre-fetching nodes move out

of the region after they have been pre-fetched. The first comparison is the number of

messages generated by the three protocols. In Figure 13, we can see that DSR does not

generate any messages since it generates on the need basis. The DSDV advertisement

may contain the record of a node that have quit, but that does not make the whole

advertisement table invalid because an advertisement table contains information of other

nodes. Moreover, DSDV waits a certain period of time before advertisement to see

whether a node has 1eWjoined and whether a short path has been established. Thus we

consider number of messages generated for the leaving node to be zero for DSDV.

Whatever messages are generated to pre-fetch a probable pre-fetching node (in Figure 10)

is considered to be overhead for PFP.

I 1

TEq
+ DSDV

1 2 3 4 5 6

pre-fetched nodes

Figure 13. Comparison of messages sent if pre-fetching nodes move away

r- 7

+ PFP
DSR

-+ DSDV

1 2 3 4 5 6

pre-fetched nodes

Figure 14. Comparison of bits transmitted if pre-fetching nodes move away

Figure 14 shows the overhead in terms of bits transmitted when the pre-fetching

nodes move out of the communication range. There is no bit transferred for DSR. The

bits transmitted for PFP is exactly the same as in Figure 11 except the notch is downward

this time because DSR curve stays with the X-axis. As said earlier, the extra bits

transmitted for DSDV is n*(n-1)*88 even though the extra messages generated is zero.

Here, n is the number of nodes advertising in a region and n*(n-1) is the number of times

(of advertisement) a record size (information of the node that quits) of 88 bits transferred.

Since n is equal i.e. 3 in both the pre-fetching range the curve behaves a line for DSDV.

Thus in terms of number of bits transferred, PFP works in between DSR and DSDV.

The processing overhead when the nodes move away is always zero for DSR.

Since, DSR is a need based communication protocol, there is no extra message generated,

no bits are adjusted in cache, neither any record is scanned in cache. This processing

overhead is the same as in Figure 12 for DSDV. However, it is slightly higher this time

than in Figure 12 for PFP, because whatever messages have been generated for the node

that has quit would be extra.

40

0
1 2 3 4 5 6

pre-fetched nodes

Figure 15. Comparison of processing overheads when pre-fetched nodes move

The graphs suggest that it is worth pre-fetching when the nodes are not highly

mobile and the various overheads in such case are reasonably low except the processing

overhead. However, if the predictions are wrong PFP suffers tremendously. So, nodes

should be pre-fetched only when they exceed the pre-fetch threshold.

Next, we looked at the behavior of the PFP in terms of time required and

messages sent to pre-fetch 4300 sets of randomly generated 100 nodes. 50 nodes were

generated in the current range of the moving node X and the other 50 were generated in

the pre-fetching range. The nodes were sorted according to their x-co ordinates after they

were randomly generated.

Pre-fetching nodes

Figure 16. Time required to pre-fetch for 50 pre-fetching nodes

We see that the graph is pretty consistent for the nearer pre-fetching nodes. Since

the nodes were sorted according to their x coordinates, time required to pre-fetch goes up

very slowly for the later nodes. If the nodes are pre-fetched from the nodes that are

within the current range of X, then the time required to pre-fetch is constant for all such

nodes. Therefore, we see the curve to be a straight line for the first few nodes. At node

11, it goes slightly up and stays there because the pre-fetching nodes now fall little far

away and the nodes information are pre-fetched via some other intermediate nodes' table

by X. Thus, the time required to pre-fetch is somewhat higher there. The curve goes

slightly up again at node 20 for the same reason. We see a skew for the node 30, which

implies that this node information was not pre-fetched and the protocol needs to switch to

other protocol to pre-fetch its information. The graph goes little higher for the later few

nodes and forms a line again. And then for the further nodes, we see that curve goes up

sharply which implies that there were some sets, among the 4300 sets whose node's

information could not be pre-fetched in that range.

We now look at the behavior of the protocol in terms of messages sent to pre-

fetch information. The same set of data was used as above to measure the number of

messages sent. Though the behavior may seem similar, the shifts are much higher

I
- - - -- - - - .- ---- - - --

-- --1

1 11 21 31 41

Pre-fetching nodes

Figure 17. Overhead in terms for messages sent

here. The number of messages goes up as the range increases. It takes shifts after some

nodes, because those nodes are located in such places where more messages need to be

generated to pre-fetch their information. The number of messages sent goes down after

the shift, because some nodes are located in the crowded area where their information

could be pre-fetched with the generation of few messages. The spike at node 30 means

that it could not be pre-fetched and PFP needs to shift to other protocols to pre-fetch the

information of that node. The graph goes up sharply for the later nodes, because there

were some sets among the 4300 sets whose information could not be pre-fetched in that

range. Again the curve falls down because of the nodes residence in the crowded area.

Thus we see that both time and number of messages sent are low for the nodes

that lie nearer to the moving node and high for the further nodes.

CHAPTER VII

CONCLUSIONS

In this paper, we have presented a pre-fetching scheme to reduce the

communication delay in a MANET. To achieve high efficiency with pre-fetching, in the

prediction module, we must devise an algorithm to predict the access probability of each

probable pre-fetching node as accurately as possible. Nodes with access probability

greater than its server's pre-fetch threshold are pre-fetched and if the pre-fetched nodes

do not move out of bound, the protocol works faster than others. We also studied the

performance of our protocol in terms of various overheads.

This work may be extended to see how PFP works when it is combined with

Location Aided routing. Better result is expected if PFP switches to LAR when needed.

The threshold with access probability needs to be applied to measure the improvement of

performance. The test may also be performed when a node moves in a very irregular

fashion. A real system is more desired to carry on the tests. Also, experiments should

involve as many nodes as possible.

However, in summary we believe that pre-fetch is a good approach to reduce

latency for Mobile Network applications.

REFERENCES

1. Stojmenovic, I. (Jul2002). Position-based routing in ad hoc networks. lEEE
Communications Magazine , Volume: 40 Issue: 7, Page(s): 128 - 134

2. Rarnanathan, R.; Redi, J. (May 2002). A brief overview of ad hoc networks: challenges
and directions. IEEE Communications Magazine , Volume: 40 Issue: 5 Part:
Anniversary , Page(s): 20 -22

3. Perkins, Charles E. (200 1). A d Hoc Networking. Addision- Wesley

4. Vaidya, Nitin H.; KO, Young-Bae (2001). Location-Aided Routing (LAR). IEEE
Communications Magazine, Volume: 35 Issue: 5, Page(s): 66 - 75

5. Johnson, D.; Maltz D.; Broch Josh (Mar 1998). The Dynamic Source Routing Protocol
for Mobile Ad Hoc Networks. IEEE Journal on Selected Areas in
Communications, Volume: 30, Issue: 5, Page(s): 139 - 168

6. Kleinrock, L.; Jiang, Z (Apr 1998). An adaptive network prefetch scheme. IEEE
Journal on Selected Areas in Communications, Volume: 16, No. 3, Page(s): 358 -
368

7. Perkins, C. E.; Royer, E. M. (Aug 1998). Ad hoc on demand distance vector (AODV)
Routing. IEEE Journal on Selected Areas in Communications, Volume: 24, No. 4,
Page(s): 173 - 207

8. Haas, Z. J.; Pearlman, M. R. (Aug 1998). The Zone Routing Protocol (ZRP) for Ad
Hoc Networks. IEEE Transactions on Networking, Vol. 5, Page(s): 221 - 249

9. Akyildiz, I. F.; Ho, J. S. M.; Lin, Yi-Bing (Aug 1996). Movement-based location
update and selective paging for PCS networks. IEEE Transactions on Networking,
Vol. 4, Page(s): 629 - 638

10. Perkins, C. E.; Bhagwat, P. (1996). Highly dynamic destination-sequenced distance-
vector routing (DSDV) for mobile computers. ACM SIGCOMM Symposium on
Communication, Architectures and Protocols, Addison - Wesley

APPENDIX A

GLOSSARY

Damping Fluctuation - The settling time that is used to prevent fluctuations of route table

entry advertisements. This delay period allows a node to wait for

the shortest path to the destination.

Route Discovery - Used only when a node attempts to send a packet to a destination

node and does not already know a route to it.

Route Maintenance - Used to help detect a source node if the network topology has

changed or whether a link to a destination node is broken. In such

cases, Route Maintenance indicates the source node to use any

other route it happens to know, or it can invoke Route Discovery

again to find a new route.

- Multicast Activation message is used to send to a selected next

hop to activate or deactivate a multicast route by setting the

appropriate flag. MACT is also used when a node wishes to

revoke its member status and leave the multicast group.

MACT

APPENDIX B

IMPLEMENTATION

..

//package Applications;
import java.awt.*;
import javax.swing. *;
import java.io.*;
import j ava.lang. * ;
/*
* Application-2.java
*
* Created on September 21,2002,4:40 PM
* /

/* *
*
* @author Muhammad T Alam
*/

public class Application-2 extends javax.swing.JFrame {

public class nodes{
private int x;
private int y;
/*public nodes() {

x=o;
y o ;

> */
public nodes(int a, int b){

x=a;
Y=b;

1
int getnodex() {

return x;
I
int getnode Y() (

return y;
1
void setnodeX(int a) {

x = a;
1
void setnodeY(int b) {

y = b;
1

1

//moving X;
nodes totalnodes[] = new nodes[lO];
nodes currentnodes[] = new nodes[5 11;
nodes prefetchnodes[] = new nodes15 11;
nodes mergedarray [I = new nodes[l 0 11;

int t l [I = new int[l 1 1;

int t2[] = new int[l 11;

int y=O ,r=O;
public class moving{

private int x;
private int y;

public moving(int a, int b) {
x = a;
y = b;

1
int getnodex() (

return x;
1
int getnode Y() {

return y;
I
void print() {

System.out.println("The location of moving node X At time t l is (O,"+y+")");
System.out.println("The location of moving node X At time t2 is ("+r+","+y+")");
System.out.println("The location of moving node X At time t3 is

(Ir+2*r+'l ll+ +!I I1 .
9 Y)) 7

1
I

moving X;
// public class distance(

public double dist(int xl , int y l , int x2, int y2)f
double a,b,c,d;

return c;
1

1

public boolean prefetch(int x[], int size)(
for (int i= 1 ; i<=size;i++) (
if (x[i]!=O)(

return false;
// break;

1
1
return true;

1

public int firstnode(int x[], int size)(
int t first=O;
for (int a= 1 ;a<l O;a++) (

if (x[a]!=O)(
t first = a;
break;
1

//return t-first;
}return t - first;

I

public int lastnode(int x[], int size)(
int t - last = 0;
for (int a=l O;a>= 1 ;a--) (

if (x[a]!=O)(
t last = a;
break;
1

//return t-first;
)return t-last;

)

public void result-t 1 (int x[]) (
int holdl=O, hold2=0;
hold 1 = firstnode(x, 1 0);
hold2 = lastnode(x, 1 0);

System.out,println("***
* * * * * * * * * * * * *n 1;
System.out.p~ntln("***
*************n.

1 7

System.out.println("PF PROTOCOL: ");
System.out.println("Request message size: 83 bits.");
System.out.println("Rep1y message size: 123 bits.");

/lint check=O;
for (int o = holdl; o <=hold2; o+){

int check=O;
for (int n=hold 1 - 1 ; n>= 1 ;n--)

if ((dist(totalnodes[n].x, totalnodes[n].y, totalnodes[o].x, totalnodes[o].y)<=r)
&& (dist(0 , y, totalnodes[n].x, totalnodes[n].y)<=r)){

SyStem.~ut.p~ntln(W***
*************If 1;

//System.out.println("OUR PROTOCOL: ");
System.out.print("X can get location information of node

("+totalnodes[o].x+" , "+totalnodes[o].y+") from node (");
System.out.println(totalnodes[n].x+" , "+totalnodes[n].y+") which means

this node can be pre-fetched");
System.out.println("and X can enjoy zero latency to communicate at time

t2");

System.out.println("Number of Request messages: "+(hold1 - 1));
System.out.println("Number of Reply messages: 1 ");
System.out.println("Tota1 messages sent to communicate is "+holdl);
System.out.println("Tota1 number of bits transmitted: "+((holdl-

1)*83+123));
System.out.println("Time required to pre-fetch is 4");
System.out.println("Generation of extra messages: "+(hold1 -2));
System.out.println("Number of bits adjusted in chache: 72");
System.out.println("Average number of records scanned in cache: "+hold2);

SyStem.OUt.println("**
*************");

System.out.println();

System.out.println("If this node moves out of range:");
System.out.println("Overhead - ");
System.out.println("In terms of total number of messages: "+holdl);
System.out.println("In terms of number of bits transmitted: "+((hold1 -

1)*83+123));
System.out.println("Processing Overhead - ");
System.out.println("1n terms of generation of extra messages: "+holdl);
System.out.println("1n terms of number of bits adjusted in cache: 72");
System.out.println("In terms of average number of records scanned in cache:

"+hold2);

check= 1 ;
break;

I
if (check -- 0) (

Sy~tem.out.println(~~Cannot pre-fetch the information of node
("+totalnodes[o] .x+" , "+totalnodes[o]. y+"). ");

System.out.println("Switch to DSR.");
System.out.println("Time required will be same as DSR.");
System.out.println("Messages sent will be same as DSR.");
System.out.println("Bits transmitted will be same as DSR.");
System.out.println("Generation of extra messages will be same as DSR.");
System.out.println("No bits adjusted in cache.");
System.out.println("No records been scanned in cache.");

System.out.println("If this node moves out of range, there would be no
overhead ");

public void result-t2(int x[], int t 1 first) (
int holdl=O, hold2=0;
hold 1 = firstnode(x, 1 0);
hold2 = lastnode(x, 10);

System.out.println("PF PROTOCOL: ");

System.out.println("Request message size: 83 bits.");
System.o~t.println(~'Reply message size: 123 bits.");

if (t 1 firs-0)
System.out.println(I'Cannot Pre-fetch any of the nodes.");

for (int o = hold1 ; o <=hold2; o++)(
int check =O;
for (int n=holdl - 1 ; n>=t 1 first; n--)

if ((dist(totalnodes[n] .x, totalnodes[n]. y, totalnodes[o] .x,
totalnodes[o]. y)<=r)&& (dist(r , y, totalnodes[n] .x, totalnodes[n]. y)<=r)) (

// System.out.println("OUR PROTOCOL: ");
System.out.print("X can get location information of node

("+totalnodes[o].x+" , "+totalnodes[o].y+") from node (");
System.out.println(totalnodes[n].x+" , "+totalnodes[n].y+") which means

this node can be pre-fetched");
System.out.println("and X can enjoy zero latency at time t3");

System.out.println("Number of Request messages: "+(hold 1 -t 1 first));
System.out.println("Number of Reply messages: 1 ");
System.out.println("Tota1 messages sent to communicate is "+(holdl-

t 1 first+l));
System.out.println("Tota1 number of bits transmitted: "+((hold 1 -

tlfirst)*83+123));
System.out.println("Time required to pre-fetch is 4");
System.out.println("Generation of extra messages: "+((hold1 -t 1 first+l)-2));
System.out.println("Number of bits adjusted in chache: 72");
System.out.println("Average number of records scanned in cache: "+(hold2-

t 1 first+l));

System.out.println("1f this node moves out of range:");
System.out.println("0verhead - ");
System.out.println("1n terms of total number of messages: "+(holdl-

t 1 first+ 1));
System.out.println("1n terms of number of bits transmitted: "+((holdl-

tlfirst)*83+123));
System.out.println("Processing Overhead - ");
System.out.println("1n terms of generation of extra messages: "+(holdl-

t 1 first+l));
System.out.println("1n terms of number of bits adjusted in cache: 72");
System.out.println("1n terms of average number of records scanned in cache:

"+(hold2-t 1 first+l));

check = 1 ;
break;

1
if (check -- 0) (

System.out.println();

System.out.println("Cannot pre-fetch the information of node
("+totalnodes[o].x+)' , "+totalnodes[o].y+").");

System.out.println("Switch to DSR.");
System.out.println("Time required will be same as DSR.");
System.out.println("Messages sent will be same as DSR.");
System.out.println("Bits transmitted will be same as DSR.");
System.out.println("Generation of extra messages will be same as DSR.");
System.out.println("No bits adjusted in cache.");
System.out.println("No records been scanned in cache.");

System.out.println("1f this node moves out of range, there would be no
overhead ");

I

public void DSR-t 1 (int x[]) {
int hold 1 =0, hold2=0;
hold 1 = firstnode(x, 1 0);
hold2 = lastnode(x, 10);

System.out.println("DSR PROTOCOL: ");
System.out.println("Request message size: 75 bits.");
System.out.println("Rep1y message size: 1 15 bits. ");

int count, flag = 0;
/lint check=O;
for (int o = hold1 ; o <=hold2; o++)(

/I System.out.println("DSR PROTOCOL: ");
System.out.println("At time t l , X can communicate with node

("+totalnodes[o].x+" , "+totalnodes[o].y+") ");
count = 0;
for(int i=l ; i<= (0- 1); i++)(

if (totalnodes[i].x==totalnodes[i+ 11.x) (
count =count + 1 ;
flag = 1;

1

if (flag=O) (
System.out.println("Number of Request messages: "+o);
Sy~tem.out.println('~Number of Reply messages: "+o);
System.out.println("Total messages sent to communicate is "+0*2);
System.out.println("Total number of bits transmitted: "+(0*75+0* 1 15));
System.out.println("Time required to commucate is "+0*2);
System.out.println("Generation of extra messages: 0");
System.out.println("No bits adjusted in cache.");
System.out.println("Average number of records scanned in cache: 0");

System.out.println("1f this node moves out of range, there would be nc
overhead ");

llSystem.out.println("Time required to cornmucate is "+0*2);

else
{

System.out.println("Number of Request messages: "+o);
System.~ut.println(~'Number of Reply messages: "+(o-count));
System.out.println("Tota1 messages sent to communicate is "+(0*2-

count));
System.out.println("Total number of bits transmitted: "+(0*75+(0-

count)* 1 15));

System.out.println("Time required to cornrnucate is "+((o-count)*2));
System.out.println("Generation of extra messages: "+count);
System.out.println("No bits adjusted in cache.");
System.out.println("Average number of records scanned in cache: 0");

System.out.println("1f this node moves out of range, there would be no
overhead ");

public void DSR t2(int x[], int t l first){
int hold 1-0, hold2=0;
hold 1 = firstnode(x, 10);
hold2 = lastnode(x, 10);

System.out.println("DSR PROTOCOL: ");
System.out.println("Request message size: 75 bits.");
System.out.println("Reply message size: 1 15 bits. ");

int count = 0, flag = 0;

if (t 1 first-0) (
int e l ;
for (int d=hold 1 ; d<=hold2; d++) (

System.out.println("At time t2, X can communicate with node
("+totalnodes[d].x+" , "+total~odes[d].y+") ");

System.out.println("Messages sent to communicate is "+f*2);
System.out.println("Time required to communicate is "+f*2);
+f+ 1 ;

I
I
else (

for (int o = holdl; o <=hold2; o++)(

11 System.out.println("DSR PROTOCOL: ");
System.out.println("At time t2, X can communicate with node

("+totalnodes[o].x+" , "+totalnodes[o]. y+") ");
count = 0;

for(int i=t 1 first; i<= (0-1); i++)(
if (totalnodes[i] .x==totalnodes[i+ l1.x) (

count =count + 1 ;
flag = 1 ;

}

if (flag=O) (
System.out.println("Number of Request messages: "+(o-t 1 first+l));
System.out.println("Number of Reply messages: "+(o-t 1 first+ 1));
System.out.println("Total messages sent to communicate is "+(o-

t 1 first+l)*2);
System.out.println("Total number of bits transmitted: "+((o-

t 1 first+l)*75+(0-t 1 first+ 1)* 1 15));

System.out.println("No bits adjusted in cache.");
System.out.println("Average number of records scanned in cache: 0");

System.out.println("1f this node moves out of range, there would be no
overhead ");

1
else

System.out.println("Number of Request messages: "+(o-t 1 first+ 1));
System.out.println("Number of Reply messages: "+(o-t 1 first+l -count));
System.out.println("Tota1 messages sent to communicate is "+((o-

t 1 first+l)*2-count));
System.out.println("Tota1 number of bits transmitted: "+((o-

t 1 first+l)*75+(0-t 1 first+l -count)* 1 15));
System.out.println("Time required to cornrnucate is "+((o-tlfirst+l-

count)* 2));
System.out.println("Generation of extra messages: "+count);
System.out.println("No bits adjusted in cache. ");
System.out.println("Average number of records scanned in cache: 0");

System.out.println("If this node moves out of range, there would be no
overhead ");

public void DSDV-t 1 (int x[]) {
int hold l=0, hold2=0;
hold 1 = firstnode(x, 1 0);
hold2 = lastnode(x, 1 0);

System.out.println("Time required to commucate is "+(o-tlfirst+l)*2);
System.out.println("Generation of extra messages: 0");

1

-

?

System.~ut.println(~~DSDV PROTOCOL: ");
System.out.println("Advertisement will include source address and records of

information of all reachable destinations");
System.out.println("Single record size: 88 bits.");

/lint count, flag = 0;
/lint check=O;
for (int o = hold1 ; o <=hold2; o++)(
int check = 0;
for (int n=hold 1 - 1 ; n>= 1 ;n--)

if ((dist(totalnodes[n].x, totalnodes[n].y, totalnodes[o].x, totalnodes[o].y)<=r)
&& (dist(0 , y, totalnodes[n].x, totalnodes[n].y)<=r))(

System.out.println("At time t l , X can communicate with node
("+totalnodes[o].x+" , "+totalnodes[o].y+") If);

S ystem.out.println("Time required to advertise is "+(hold 1 + 1));
System.out.println("Average number of records scanned in cache: "+hold2);

System.out.println("1f this node moves out of range:");
System.out.println("Overhead - ");
System.out.println("In terms of total number of messages: 0");
System.out.println("1n terms of number of bits transmitted: "+((hold1 -

l)*holdl*88));
System.out.println("Processing Overhead - ");
System.out.println("In terms of generation of extra messages: 0");
System.out.println("1n terms of number of bits adjusted in cache: 0");
System.out.println("In terms of average number of records scanned in cache:

"+hold2);

check =l;
break;

1
if (check==O) (

System.out.println("At time t l , X can communicate with node
(ll+totalnodes[o].x+ll , "+totalnodes[o].y+") ");

System.out.println("Time required to advertise is "+(holdl+3));
System.out.println("Average number of records scanned in cache:

"+hold2);

System.out.println("If this node moves out of range:");
System.out.println("Overhead - ");
System.out.println("1n terms of total number of messages: 0");
System.out.println("In terms of number of bits transmitted: "+((hold1 -

l)*hold1*88));
System.out.println("Processing Overhead - ");
System.out.println("In terms of generation of extra messages: 0");
System.out.println("1n terms of number of bits adjusted in cache: 0");
System.out.println("1n terms of average number of records scanned in

:ache: "+hold2);

System.out.println("Tota1 advertisement messages sent at time t l is "+((holdl-
l)*holdl));

System.out.println("Total number of bits transmitted: "+ (((hold1 -
.)*hold1 *hold2)*88+32*(hold2+1)));

System.out.println("Generation of extra messages: 0");
System.out.println("No bits adjusted in cache.");

public void DSDV t2(int x[], int t l first)(
int hold 1 =0, holci2G;
hold 1 = firstnode(x, 1 0);
hold2 = lastnode(x, 10);

System.~ut.println(~~DSDV PROTOCOL: ");
System.out.println("Advertisement will include source address and records of

information of all reachable destinations");
S ystem.out.println(" Single record size: 88 bits.");

/lint count, flag = 0;
I/ int check=O;

for (int o = hold1 ; o <=hold2; o w) (
int check =O;

for (int n=hold 1 - 1 ; n>=t 1 first; n--)
if ((dist(totalnodes[n].x, totalnodes[n]. y, totalnodes[o] .x,

totalnodes[o]. y)<=r)&& (dist(r , y, totalnodes[n].x, totalnodes[n] .y)<=r)) (

System.out.println("At time t2, X can communicate with node
(tl+totalnodes[o].x+ll , "+totalnodes[o].y+") It);

System.out.println("Time required to advertise is "+(hold 1 -t 1 first+2));
System.out.println("Average number of records scanned in cache: "+(hold2-

t 1 first+ 1));

System.out.println("If this node moves out of range:");
System.out.println("Overhead - ");
System.out.println("1n terms of total number of messages: 0");
System.out.println("In terms of number of bits transmitted: "+((holdl-

t 1 first+l)*(holdl -tlfirst)*88));
System.out.println("Processing Overhead - It);

System.out.println("1n terms of generation of extra messages: 0");
System.out.println("1n terms of number of bits adjusted in cache: 0");
System.out.println("In terms of average number of records scanned in cache:

"+(hold2-t 1 first+ 1));

check =l;
break;

1
if (check=O) {

System.out.println("At time t2, X can communicate with node
("+totalnodes[o] .x+" , "+totalnodes[o]. y+") ");

System.out.println("Time required to advertise is "+(hold1 -t 1 first+4));
System.out.println("Average number of records scanned in cache:

"+(hold2-t 1 first+l));
System.out.println0;
System.out.println();

System.out.println("If this node moves out of range:");
System.out.println("Overhead - ");
System.out.println("1n terms of total number of messages: 0");
System.out.println("1n terms of number of bits transmitted: "+((hold 1 -

t 1 first+l)*(holdl -t 1 first)*88));
System.out.println("Processing Overhead - ");
System.out.println("1n terms of generation of extra messages: 0");
System.out.println("1n terms of number of bits adjusted in cache: 0");
System.out.println("1n terms of average number of records scanned in

cache: "+(hold2-t 1 first+l));

System.out.println("Tota1 advertisement messages sent at time t2 is "+((holdl-
t 1 first+l)*(holdl-t 1 first)));

System.out.println("Total number of bits transmitted: "+ ((hold1 -t 1 first+l)*(holdl -
t 1 first)*(hold2-t 1 first+l)*88+32*(hold2-t 1 first+2)));

System.out.println("Generation of extra messages: 0");
System.out.println("No bits adjusted in cache.");

1

//distance temp;

/* * Creates new form Application - 2 */
public Application-20 (

initComponents();
1

I** This method is called fiom within the constructor to
* initialize the form.
* WARNING: Do NOT modify this code. The content of this method is
* always regenerated by the Form Editor.
*I

private void initComponents() (JIGEN-BEG1N:initComponents
menuBar = new javax.swing.JMenuBar();
fileMenu = new javax.swing.JMenu();
openMenuItem = new javax.swing.JMenuItem();
saveMenuItem = new javax.swing.JMenuItem();
saveAsMenuItem = new javax.swing.JMenuItem();
exitMenuItem = new javax.swing.JMenuItem();
editMenu = new javax.swingJMenu();
cutMenuItem = new javax.swing.JMenuItem0;
copyMenuItem = new javaxswing .JMenuItem();
pasteMenuItem = new j avax-swing . JMenuItemO;
deleteMenuItem = new javax.swing.JMenuItem();
helpMenu = new javax.swing.JMenu();
contentsMenuItem = new javax.swing.JMenuItem();
aboutMenuItem = new javax.swing. JMenuItemO;
jLabel 1 = new javax.swing. JLabel0;
jButton1 = new javax.swing. JButton();
jButton6 = new javax.swing. JButton();
j Separator2 = new javax.swing.JSeparator();
jLabel2 = new javax.swing.JLabel();
jLabel3 = new javax.swing. JLabel();
jLabel6 = new javax.swing.JLabel();
jLabel7 = new javax.swing.JLabel0;
j Label8 = new j avaxswing. JLabelO;
jLabel9 = new javax.swing.JLabel();
jButton7 = new javax.swing.JButton();
jTextField1 = new javax.swing.JTextField();
jTextField2 = new javax.swing.JTextField();
jLabel4 = new javax.swing.JLabe10;

jLabel5 = new javax.swing.JLabel();
jLabell0 = new javax.swing.JLabel0;
jLabell 1 = new javax.swing.JLabel();
jButton2 = new javax.swing.JButton();

exitMenuItem.addActionListener(new java.awt.event. Actionlistener() (
public void actionPerfonned~ava.awt.event.ActionEvent evt) (
exitMenuItemActionPerformed(evt);

1
1);

setFont(new java.awt.Font("Arial", 0, 14));
addWindowListener(new java.awt.event. WindowAdapterO (

public void windowClosing(java.awt.event. WindowEvent evt) (
exitForm(evt);

1

j Label1 .setFont(new java.awt.Font("AriaI", 2,24));
jLabel 1 .setForeground(new java.awt.Color(l02,0, 102));
jLabel 1 .setText("Protocol For Reducing Delay");
getContentPane().add(iLabell);
jLabell .setBounds(240,0,340, 50);

jButtonl .setBackgroundCjava.awt.Color.blue);
jButtonl .setText("ExitW);
jButtonl .addActionListener(new java.awt.event.ActionListener() (

public void actionPerformed(java.awt.event.ActionEvent evt) (
jButton 1 ActionPerformed(evt);

1
>I;

jButton6.setBackground(java.awt.Color.cyan);
j Button6.setText(" 1 0 Nodes Simulation");
jButton6.addActionListener(new java.awt.event.ActionListener() (

public void actionPerformed(java.awt.event.ActionEvent evt) (
jButtonGActionPerformed(evt);

1
1);

jLabel2.setFont(new java.awt.Font("Ariall', 1, 14));
jLabel2.~etForeground(new java.awt. Color(255,0, 5 1));
jLabel2.~etText("Equation format: Y = C, Slope = 0");
getContentPane().add(iLabel2);
jLabe12.setBounds(2907 470,3 50,30);

jLabel3.setText("tl and t2, calculates the coordinates of X at t l and t2, finds the
time and overhead incurred by our protocol to prefetch each node ");

getContentPane().add(jLabel3);
jLabe13.setBounds(207 160,750, 16);

jLabel6.setText("and finds time and overhead incurred by DSR and DSDV to
communicate/advertise the pre-fetching nodes at time t 1 and t2.");

getContentPane().add(j Label6);

jLabel7.setText("This software compares PFP with DSR and DSDV in terms of time
required and overhead. The moving node X is assumed to move in a ");

getContentPane().add(jLabel7);
jLabel7.setBounds(20,70,760,30);

jLabel8.setText("straight line with slope zero and the starting co-ordinate of x as
zero. Please enter node co-ordinates in non decreasing order of their");

getContentPane().add(jLabel8);
jLabel8,setBounds(20, 100, 750,20);

jLabel9.setText("x co-ordinates when you click the nodes button below. The
program calculates the probable pre-fetching nodes at two future times; ");

getContentPane().add(jLabel9);
jLabel9.setBounds(20, 130, 750, 16);

jButton7.setBackground(java.awt.Color.white);
jButton7.~etText("Enter the starting y co-ordinate of moving node X and the

~ornrnunication range of each node first");
jButton7.addActionListener(new java.awt.event.ActionListener() {

public void actionPerforrned(java.awt.event.ActionEvent evt) (
jButton7ActionPerformed(evt);

jTextField1 .addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed~ava.awt.event.ActionEvent evt) (

jTextField1 ActionPerforrned(evt);
1

1);

jTextField2.addActionListener(new java.awt.event.ActionListener() {
public void actionPerformed(java.awt.event.ActionEvent evt) {
jTextField2ActionPerformed(evt);

1
1);

jLabel 1 1 .setText("Communication radius =");
getContentPane().add(jLabel 1 1);
jLabell1 .setBounds(390,270, 140, 16);

jButton2.setBackground(java.awt.Color.cyan);
j Button2.setText(" 100 Nodes Simulation");
jButton2.addActionListener(new java.awt.event. ActionListenerO {

public void actionPerformed(java.awt.event.ActionEvent evt) {
jButton2ActionPerformed(evt);

I
1);

private void jButton2ActionPerfonned(java.awt.event.ActionEvent evt) (//GEN-
FIRST:eventjButton2ActionPerformed

double time[] = new double[lOl];
double message[] = new double[l 0 11;

for (int run = 1; run <=200;run++)

//current range generation of random 50 nodes
int hold-x, holdy;
for (int i=l ;i<=50;i++)
{

hold-x = 1 + (int)(Math.random() * 50);
holdy = (int)(Math.random() * 10 1);
//System.out.println(hold - x+" "+hold 2);

currentnodes[i] = new nodes(ho1d-x, hold y);
1

//sorting according to x co ordinates
/IS ystem.out.println(" * * * 'I);

N System.out.println("** * ");
int tmpx, trnpy;
for (int i= 1 ; i<5 1 ; i++) (
for (int j=l; $514; j++)

if (currentnodesfi+l].x < currentnodesfi1.x) (/* compare the two neighbors */
tmpx = currentnodesu] .getnodex();
tmpy = currentnodesfi].getnodeY();

I* swap aCj] and ab+l] */
currentnodeslj].setnodeX(currentnodeslj+ 11 .getnodex());
currentn~de~lj].~etn~deY(currentnodes~+l].getnodeY());

/*
for (int j=l;j<=50;j++)
(

*/
//System.out.println(" * * * ");

N System.out.println("* * * ");
//random generation of 50 nodes of pre fecth range

for (int i=l ;i<=50;i++)
{

hold x = 5 1 + (int)(Math.random() * 100);
hold) = (int)(Math.random() * 1 0 1);
//System.out.println(hold x+" "+holdj);
/ /~~stem.out.~rintln(hold~);
prefetchnodes[i] = new nodes(ho1d - x, holdj) ;

1

/I System.out.println(""* * *I1);
/lint tmpx, trnpy;

C

I

-

Nsorting
for (int i=l ; i<5 1 ; i++) (
for (int j=l; $514; j++)

if @refetchnodeslj+ 1] .x < prefetchnodes lj] .x) (I* compare the two neighbors *I
tmpx = prefetchnodesD].getnodeX();
tmpy = prefetchnodeslj].getnodeY();

I* swap au] and alj+l] */
prefetchnodeslj].setnodeX(prefetchnodes~odeX());
prefetchnodeslj] .setnodeY(prefetchnodes/+ 11 .getnodeY 0);

/*
for (int j=l ;j<=5O;j++)
{

System.out.println(prefetchnodeslj].x+lt "+prefetchnodeslj].y);
l
*/

//merging both current and prefetch nodes
for (int i= 1 $<=SO$++)
{

mergedarray [i] - - new nodes(currentnodes [i] .getnodex(),
:urrentnodes [i] .getnode YO);

1
int p=l ;
for (int i=5 1 ;i<=lOO;i++)
{

mergedarrayri] - - new nodes(prefetchnodes[p].getnodeX(),
xefetchnodes Ep] .getnode YO);

p=P+l;
}

for (int j=l ;j<=l OO;j++)

S ystem.out.println("* * * ");
System.out.println("Time required and messages sent to pre-fetch:");

for (int i = 5 1 ; i <=60; itt-) (
int flag = 0;
for (int 1140; n>=l ;n--) (

if ((dist(mergedarray[n] .x, mergedarray [n] . y, mergedarray [i] .x,
mergedarray[i].y)<=50) && (dist(0 , 50, mergedarray[n].x, mergedarray[n].y)<=50))

{
System.out.println(i+". 3 5 1 ");
time[i] = time[i] + 3;
message[i] = message[i] + 5 1;
flag = 1;
break;

1
1
if (flag - 0)

System.out.println(i+". 5 7 1 It);
time[i] = time[i] + 5;
messageri] = message[i] + 7 1 ;

for (int i = 6 1 ; i <=70; i++) {
int flag = 0;
for (int n=50; n>=l ;n--){

if ((dist(mergedarray [n] . x, mergedarray [n]. y, mergedarray [i] .x,
mergedarray[i] .y)<=50) && (dist(0 ,50, mergedarray [n] .x, mergedarray [n] .y)<=50))

1
System.out.println(i+". 3 5 1 ");
time[i] = time[i] + 3;
message[i] = messageri] + 5 1 ;

flag = 1;
break;

1
1
if (flag = 0)

S ystem.out.println(i+". 7 9 1 ");
time[i] = time[i] + 7;
message[i] = message[i] + 9 1 ;

for (int i = 71 ; i <=80; i++)(
int flag = 0;
for (int n=50; n>=l ;n--) (

if ((dist(mergedarray[n].x, mergedarray [n] . y, mergedarray [i] .x,
mergedarray[i] .y)<=50) && (dist(0 ,50, mergedarray [n] .x, mergedarray[n].y)<=50))

flag = 1;
break;

I
I
if (flag - 0)

System.out.println(i+". 9 1 1 1 ");
time[i] = time[i] + 9;
message[i] = message[i] + 1 1 1 ;

for (int i = 81; i <=81; i++)(
int flag = 0;
for (int 1-140; n>=l ;n--)(

if ((dist(mergedarray[n].x, mergedarray [n] . y, mergedarray [i] .x,
mergedarray[i].y)<=50) && (dist(0 , 50, mergedarray[n].x, mergedarray[n].y)<=50))

{
System.out.println(i+". 3 7 1 ");
time[i] = time[i] + 3;
messageti] = messageri] + 7 1 ;

flag = 1;
break;

I
I
if (flag = 0)

System.out.println(i+". 50 200");
time[i] = time[i] + 50;
message[i] = message[i] + 200;

for (int i = 82; i <=86; i-t+){
int flag = 0;
for (int n=50; n>=l ;n--) (

if ((dist(mergedarray [n] .x, mergedarray [n] . y, mergedmay [i].x,
mergedmay[i].y)<=50) && (dist(0 ,50, mergedarray[n].x, mergedarray[n].y)<=50))

(

flag = 1;
break;

1
1
if (flag = 0)

System.out.println(i+". 1 1 13 1 ");
time[i] = time[i] + 11;
message[i] = message[i] + 13 1 ;

for (int i = 87; i <=loo; i++){
int flag = 0; int check = 0;
for (int n=60; n>=5 1 ;n--) (

if (dist(mergedarray [n] .x, mergedmay [n]. y, mergedarray [i] .x,
mergedarray [i] . y)<=5 0)

(
System.out.println(i+". 7 1 1 1 'I);
time[i] = time[i] + 7;

flag = 1;
break,

1
1
if (flag = 0)
for (int n=70; n>=6 1 ;n--) (

if (dist(mergedarray [n] .x, mergedarray [n] . y, mergedarray [i] .x,
mergedarray [i]. y)<=50)

f

check = 1 ;
break;

1

//average of 100 runs
for (int i=5 1 ;i<= 1 00;iU) {

time[i]=time[i]/200;
message[i]=message[i]/200;

1

for (int i=l ;i<= 100;i++)
System.out.print(i+". "+time[i]+" ");

for (int i=l ;i<=lOO;i++) f

I/ Add your handling code here:
)//GEN-LAST:eventjButton2ActionPerformed

private void jButton6ActionPerforrned(java.awt.event.ActionEvent evt) f //GEN-
FIRST:eventjButton6ActionPerfo~ed

try(
y = Integer.parseInt('TextField1 .getText());// Add your handling code here:*/
r = Integer.parseInt(jTextField2.getText());N Add your handling code here:*/

JOptionPane.show~essage~ialo~(null,"~ode residence square->(O, "+(y-
r)+"),(0,1'+(y+r)+1t),(tt+3*r+tt,ft +(y-r)-tn),("+3 *r+", "+(y+r)+"). ");N Add your handling
code here:*/

X = new moving(0,y);
//X.print();

int x-co, y-co;
try(
for (int i=l; i<=9; i++)

JOptionPane.showMessageDialog(nu11,"Node"+i);
x co = Integer.parseInt(JOptionPane.showInputDial~g(~~Enter X co-ordinatew));//

Add yourhandling code here: */
y-co = Integer.parseInt(JOptionPane.showInputDialog("Enter Y co-ordinateH));//

Add your handling code here:*/

1 totalnodes[i] = new nodes(x - co 9 - y co);

System.out.println("Nodes in the MANET are: ");

I for (int i=l ; i<=9; i++) I

System.out.println("The probable pre-fetching nodes at time t 1 are: ");
try (
for (int j= 1 ; j <=9;j++) (

else(
result - t 1 (t 1);
DSR-t 1 (t 1);
DSDV - tl(t1);

1

System.out.println("The probable pre-fetching nodes at time t2 are: If);
for (int k=l ; k<=9;ktt-)(

result t2(t2, q);
DSR <2(t2, q);
/lint i l = lastnode(t 1 , 10);
NSystem.out.println(q);

I

I DSDV-t2(t2, q);

if ((dist(r, y, totalnodes[k].x, totalnodes[k].y)>r) && (totalnodesF].x> (2*r)) &&
(totalnodes[k].x<= (3*r)) I*&& (dist(8,4, totalnodes[k].x, totalnodes[k].y)<=4.0)*I)(

System.out.println("("+totalnodes~.x+" , "+totalnodes[k].y+")");
t2[k] = k;

1
1
if (prefetch(t2,l O)==true)

System.out.println("None. ");
else(

int q=O;
//System.out.println("iiiiiiiiiiiiiiiiiiiiiiiii");
q = firstnode(t 1,lO);
//System.out.println(q);

for (int 1=1; 1<=10;1++)(

for (int m=l ; m<=l O;m++)(

)catch (NullPointerException e) (
/IS ystem.out.println(" hiiiii");
1

) catch (NumberFormatException f) (
JOptionPane. showMessageDialog(null, "Input Error, Missing Y or r or node co-

~rdinate");
1

// Add your handling code here:
)//GEN-LAST:eventjButton6ActionPerformed

private void jTextField2ActionPerformed~ava.awt.event.ActionEvent evt) (//GEN-
~IRST:eventjTextField2ActionPerformed

/I Add your handling code here:
)//GEN-LAST:eventjTextField2ActionPerformed

private void jTextField 1 ActionPerformed(j ava.awt.event.ActionEvent evt) (NGEN-
7IRST:eventjTextFieldl ActionPerformed

/I Add your handling code here:
)//GEN-LAST:eventjTextField 1 ActionPerformed

private void jButton7ActionPerformed(java.awt.event.ActionEvent evt) (//GEN-
~IRST:eventjButton7ActionPerfomed
/ y = Integer.parseInt(JOptionPane.showInputDia10g(~Enter starting y co-ordinate
~f Xu));// Add your handling code here:*/
I/ r = Integer.parseInt(JOptionPane.showInputDialog("Enter communication
0adius"));N Add your handling code here: */

I/ JOptionPane.showMessageDialog(nu11,"Node residence square->(O,"+(y-
.)+"),(O,"+(y+r)+."),("+3 *1-+~~,"+(y-r)+),(+3 * r + , + (+ r) +) . ");/I Add your handling
:ode here:*/

N Add your handling code here:
)//GEN-LAST:eventjButton7ActionPerformed

private void jButtonlActionPerformed(iava.awt.event.ActionEvent evt) (IIGEN-
F1RST:eventj Button 1 ActionPerformed
System.exit(0); 11 Add your handling code here:

) IIGEN-LAST:eventj Button 1 ActionPerformed

private void exitMenuItemActionPerfomed~ava.awt.event.ActionEvent evt) (IIGEN-
F1RST:event-exitMenuIternActionPerformed

System.exit(0);
)//GEN-LAST:event - exitMenuItemActionPerformed

I** Exit the Application *I
private void exitForm(java.awt.event. WindowEvent evt) (IIGEN-

F1RST:event exitForm
~~stem.ixit(0);

)//GEN-LAST:event-exitForm

I* *
* @param args the command line arguments
*/
public static void main(String args[]) (

new Application - 2().show();
1

11 Variables declaration - do not modifil1GEN-BEG1N:variables
private javax.swing.JMenuBar menuBar;
private javax.swing.JMenu fileMenu;
private javax.swing. JMenuItem openMenuItem;
private javax.swing.JMenuItem saveMenuItem;
private javax.swing.JMenuItem saveAsMenuItem;
private javax.swing.JMenuItem exitMenuItem;
private javax.swing.JMenu editMenu;
private javax.swing.JMenuItem cutMenuItem;
private javax.swing.JMenu1tem copyMenuItem;
private javax.swing.JMenu1tem pasteMenuItem;
private javax.swing.JMenuItem deleteMenuItem;
private javax.swing.JMenu helpMenu;
private javax.swing.JMenu1tem contentsMenuItem;
private javax.swing.JMenuItem aboutMenuItem;
private javax.swing. JLabel jLabell ;
private javax.swing.JButton jButtonl ;
private javax.swing.JButton jButton6;
private javax.swing. JSeparator j Separator2;

private javax.swing. JLabel jLabel2;
private j avax.swing. JLabel j Label3;
private javax.swing.JLabe1 jLabel6;
private javax.swing . JLabel jLabel7;
private j avax.swing . JLabel j Labels;
private javax.swing. JLabel jLabel9;
private javax-swing. JButton jButton7;
private javax.swing. JTextField jTextField 1 ;
private j avax.swing. JTextField jTextField2;
private javax.swing. JLabel jLabel4;
private javax.swing.JLabe1 jLabel5;
private javax. swing. JLabel j Label 1 0;
private javax.swing . JLabel j Label 1 1 ;
private javaxswing. JButton jButton2;
11 End of variables declaratiod1GEN-END:variables

VITA a
Muhammad Tanvir Alam

Candidate for the Degree of

Master of Science

Thesis: PROTOCOL FOR REDUCING COMMUNICATION DELAY IN MOBILE AD

HOC NETWORKS BY PRE-FETCHING LOCATION INFORMATION

Major Field: Computer Science

Biographical:

Personal Data: Born in Dhaka, Bangladesh on December 3 1, 1977, the
eldest son of Umme Fatema and Mukarramul Bari.

Education: Graduated from Computer Science Department, North
South University, Dhaka, Bangladesh in May, 1999; received
Bachelor of Science degree in Computer Science. Completed
the requirements for the Master of Science degree at Oklahoma
State University in December 2002.

Professional Experience: May 1999 - May 2000: Teaching Assistant
North South University, Dhaka, Bangladesh
August 2001 - Present: Research Assistant (Web Application
Developer), Department of Political Science, Oklahoma State
University, Stillwater

	Thesis-1.pdf
	Thesis-2.pdf
	Thesis-3.pdf
	Thesis-4.pdf
	Thesis-5.pdf
	Thesis-6.pdf
	Thesis-7.pdf
	Thesis-8.pdf
	Thesis-9.pdf
	Thesis-10.pdf
	Thesis-11.pdf
	Thesis-12.pdf
	Thesis-13.pdf
	Thesis-14.pdf
	Thesis-15.pdf
	Thesis-16.pdf
	Thesis-17.pdf
	Thesis-18.pdf
	Thesis-19.pdf
	Thesis-20.pdf
	Thesis-21.pdf
	Thesis-22.pdf
	Thesis-23.pdf
	Thesis-24.pdf
	Thesis-25.pdf
	Thesis-26.pdf
	Thesis-27.pdf
	Thesis-28.pdf
	Thesis-29.pdf
	Thesis-30.pdf
	Thesis-31.pdf
	Thesis-32.pdf
	Thesis-33.pdf
	Thesis-34.pdf
	Thesis-35.pdf
	Thesis-36.pdf
	Thesis-37.pdf
	Thesis-38.pdf
	Thesis-39.pdf
	Thesis-41.pdf
	Thesis-42.pdf
	Thesis-43.pdf
	Thesis-44.pdf
	Thesis-45.pdf
	Thesis-46.pdf
	Thesis-47.pdf
	Thesis-48.pdf
	Thesis-49.pdf
	Thesis-50.pdf
	Thesis-51.pdf
	Thesis-52.pdf
	Thesis-53.pdf
	Thesis-54.pdf
	Thesis-55.pdf
	Thesis-56.pdf
	Thesis-57.pdf
	Thesis-58.pdf
	Thesis-59.pdf
	Thesis-60.pdf
	Thesis-61.pdf
	Thesis-62.pdf
	Thesis-63.pdf
	Thesis-64.pdf
	Thesis-65.pdf
	Thesis-66.pdf
	Thesis-67.pdf
	Thesis-68.pdf
	Thesis-69.pdf
	Thesis-70.pdf
	Thesis-71.pdf
	Thesis-72.pdf
	Thesis-73.pdf
	Thesis-74.pdf
	Thesis-75.pdf
	Thesis-76.pdf
	Thesis-77.pdf
	Thesis-78.pdf
	Thesis-79.pdf
	Thesis-80.pdf
	Thesis-81.pdf
	Thesis-82.pdf
	Thesis-83.pdf

