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Preface

Navigation ol visualization process involves large, complex, unclassified data sets
and multidimensional, nonlinear, discontinuous mapping functions. Thus, getting a
desirable data from those data sets is usually a painful process. It is then important to
know what is the best technique to do the navigation process. Many algorithms have
been developed to improve the navigation process. But since each of those algorithms
has its own approach and test data sets, a system that can compare the performance
of those algorithms is needed.

This thesis is about a modular system that is designed especially for testing
and comparing those algorithms with various data sets. Tlie systemn is divided into
six components. FEach component can have scveral different types and can be easily
taken off from the system and substituted with other components. The syslem uses
network so that many users can access the system and giving feedback at the same
time. This can help speeding up the navigation process. XML template is used to
assign values to test data sets instead of having several test data set fites. We wil}
compare the system proposed with scvera) test data sets: OpenGL standard objects,

real world objects, and scientific data sets.
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Chapter 1

INTRODUCTION

Navigation in visualization is a process of exploring complex, large, unclassified-data
sets, to get a desirable output irnage via visualization. In order to get insight from

large data sets, two things are needed [12]:

L. Efficient algorithins. Efficient algorithms are designed so that given input pa-
rameters, a desirable output image will be generated in a minimum amount of

CPU time, user interaction, and feature space.

2 Intuitive user interfaces (Uls). Efficient algorithms will be useless unless there
are intuitive vser interfaces (Uls) that can help presenting and storing the vi-

sualization exploration process.

Many papers and projects have been made in developing efficient algorithms.
Those papers and projects try to improve navigation in visualization process by devel-

oping algorithms that can yield a desirable output inage accuratelv and economically.



Some vser interfaces (Uls) have also been designed to support the algorithms in dis-
playing and storing the navigation process, so that the resulting images throughout,
the process can be reused and percepted more easily.

User Interfaces (Uls) is also essential in navigation process. Without an in-
tuilive user interface (Ul), it will be hard to retrieve the parameters of an image, or
to which direction will the exploration process have to be continued. It will also be
hard to decide which generator is best for Jarge or small set of data, etc.

Generator, a component where the algorithm is lacated, is the main part in
navigation system, since given a set of random input vector, it is trying to find
input paramelter vectors which output vectors resulting a dispersed set of images.
Qenerators will then wait for the feedback from the_user about the first generated
images, anc make auother set of images based on the feedback, and so on. Therefore,
the successful of navigation system is highly depending on the generators (algorithms)

and the intuitive user interface to guide the user in percepting resulting images.

1.1 Navigation Algorithm Problem

Many algorithms and user interfaces (UJs) have been designed to improve the naviga-
tion of visualization process. Many generators have been developed; each is developed
to make the navigation pracess more accnrate and economical, and sorne are developerd
to optimize the previous ones. Some algorithms that are used to do the navigation

process are algorithms that originally implemented for content-based image retrieval.



Those tyses of algorithm are used for classifying images that are in the database. To
do navigation process using these types of algorithms, new set of images then has to
be computed based on the classification.

With so many algorithms available, it is then hard to decide which algorithms
have the overall best performance for which type of datasets tested. Each algorithm
18 tested with its own test datasets and with its own measurement of performance.
Bach of those algorithms has its advantages and disadvantages, depends on many
factor, such as the type of test dataset used, or the size of the dataset. Thus, to test
each dataset efficiently and optimally, it is essential to know which algorithm that.
should be used.

The problem is, there is no specific system has been especially designed to test
and compare the performmance of the generators in several measurement aspects. A
systemn that can test and compare the performance of those algorithing is then need

to be implemented.

1.2 Contribution to the Work

Since it is essential to know each algorithm’s advantages and disadvantages, a modular
system that is able to test and compare between the generators is then implemented.
Thus, we know what each generator best used for.

This thesis is about a modular system that is especially designed for testing

and comparing generators. The interface of the systern itself is designed similar to



Design-Galleries [29]. The svstem is able to test many generators and define each
generators advantages and disadvantages. It can measure the performance of each
generator in generating input parameter vector; it can measure the time needed to
give the user the image that he wants.

The system built is measuring the user interaction (how much time needed
to find the desired image and number of deadends), CPU time, and the similarity
measures between the current set of images and the desired image. There are four
similarity measures used, which are Gabor, Color Histogram, Haralick, and Correla-
tion. And seven types of generator are used for this comparison process, which are
Random, Peng [35. PFRL [11, 34|, SVM Light [4}, SVM-Peng (4, 35], Transductive

SVM (21, 31, 43, and BSVM [18].



Chapter 2

DEVELOPMENT IN NAVIGATION IN

VISUALIZATION

Navigation of visualization techniques are now devcloping rapidly. Researchers are
intensively developing better and better visualization algorithms and user interfaces.
The developments in user interface part are mainly to support the devclopment in

algorithins, so that the user can interpret and retrieve the data more easily.

2.1 Development in User Interface

There used to be no specific system was designed to support the navigation process.
There was not even any specific algorithm used to select the rendering pararneters at
that time. All things were done manually. The process of data exploration was more
like a process of trial and error (turn-key). The user kept trying various combinations

of rendering parameters until he found the output image that he was looking for.
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Turn-key method seemed to exhaust the user. Therefore, algorithms started
-0 be used to navigate the selection of input parameters. An actual system with
the algorithm in it then started to be designed too to help improving the process of
navigation. Data-flow model [IO] was widely used for commercial used. This model
allows the user to construct directed graphs representing the flow of data through the
system. An image graph stores information about data cxploration, and is unique
because of its intuitive edge representation and dynamic features.

The problem with data-flow model is that there is no way to retrieve the
visualization process. The input parameter vectors that generate images between the
beginnings until the end of flow nodes are not saved. Therefore, there is no way to
retrifave those images back.

As large multidimensional data set is used, navigation of visualization process
necds a system that can support visibility so that the whole system can be displayed
in one screen, and reusability, which means a user interface that can keep track of
the previous images generated (history). Many papers and projects have been done
to develop techniques that can solve this visibility and reusability probleni.

Some simple techniques used to solve visibility problem are: zoom techniques,
graph compression, or focus+context techniques [26], or fisheye lense |10|. Herman et
al. [12] has done a survey of visualization and navigation techniques. Keim [23] classi-
fied visualization techniques based on the data type to be visualized, the visualization

techniques, and the interaction and distortion techniques,



Some other papers developed new techniques, especially visualization tech-
niques where all data can be seen in one screen. Fna el al. [&' developed structure-
based brushes that allow users to navigate hierarchies of graph by specifying the
specific part and the level-of-detail. Keim |22] developed pixel-oriented visualization
technique to help exploring and analyzing large amount of multidimensional data. 1t
maps each dimension of multidimensional data to color in a subwindow, and decide
the arrangement, shape, and ordering of subwindows. Abello and Korn [1]| developed
MGV, a navigation technique for massive multigraphs that combines interactive pixel-
oriented 2D and 3D map, statistical displays, color maps, rnultilinked views, and a
zoomable label based interface. Kreuseler and Schumann [25] developed another new
visualization technique to gain more insight_ from the information space, including
an intuitive focus+context technique. Some of the techniques will make the graph
hard to be visualized. [t is hard to ind out where we are, and which direction should
we search what we want. Each of those techniques will make the resulting images
sometimes distorted and hard to be percept and compared.

Parameter-based representation systemn is then made. This type of representa-
tion does not intend to display the whole data in one screen. It displays only a portion
of data, and let the user interactively steer the system to display the image that he
wants using several techniques, for example: machine learning, artificial intelligence,
image graph, or sprcadsheet. This way, the data shown on the screen at one time is

visible, and so 1t is easier to be percepted. The systems that fall into this category



are Image Graphs [2§,, Spreadshect-like Interface [20], and Design Galleries [29}.

Image Graph |28) is a system with a unique nodes-and-edges represcentation.
Each edge counects two different nodes, and represents one of six Jifferent rendering
parameters: color map, opacity map, rotation, zoom factor, shading, and resampling.
It symbolizes the connection between two nodes, noted what parameter changed
between the two nodes. Only one parameter can be changed from one node to another.
Each mode simply represents the image itself, and it also keeps with it the input
parameter vector that is used to generate the image.

Figure 2.1 is taken from paper by K. L. Ma j28], shows us a portion of Image
Graph representing the exploration of a foot dataset. The numbers added to the
graph to show the order of nodes generated. Each edge notates what parameter _
changes each time. From Node 1, the user changes the color parameter, opacity, and
direction of the image to get Node 2 as the resulting image. Node 3 is the result of
rotation that is applied to Node 1.

As more images added, Image Graph needs more and morc space to display
the entive visualization process. Becauvse of the limitation of screen space, and also
for visibility aspect, linage Graph is not efficient for large data set with mutidimen-
sional rendering parameters. Therefore, when large data set inputs are used, special
techniques similar to visualization techniques then have to be applied to maintain the
visibility of the systern.

Spreadsheet-like systermn |20] has rows and columns, where each row and column



defines what parameter used and what is the value of it With this interface, the
comiparison process can easily be seen, and the history of images can easily be traced

back.

viTw position original image

| OPﬂfl\ifY map colir map T
i 1

Figure 2.1: A portion of Image Graph representing the exploration of a foot dataset.

This figure is taken from paper by K. L. Ma (28] page 83 Figure 3.

Figure 2.2 is taken from paper by K. L. Ma and T. J. Kelly |20,, shows the
effectiveness of Spreadshcet-like Interface for comparing skin and hone surface. With

this interface, the difference between iinages can be seen more clearly by comparing



hetween rows and columns. Oun the first row, the opacity of the foot 1s dletermined,
then the view position, color, and finally zoom factor.

Sometimes not all kind of data can be explored by using spreadshect-like in-
terface. Design Galleries |29] uses dispersion algorithm which given a set of light,
finding a set of input vector that resulting output vector can optimally yield disperse
images. Those images are expected to have the broadest selection of perceptually dif-
ferent graphics that are produced {rom broadest selection of ‘nput-parameter vector.
Arrangement technique in Design Galleries will then represent the resulting images
in a way so that those results can e percept more easily. The arrangement depends
on the w {width) and h (height) value, where w defines the number of images per
level. anpl h defines the number of level.

Figure 2.3 is taken from a paper by Andalman ¢t al. [28), shows us the interface
of Design Galleries with varying light selection and placement. In this picture, the
weight (w) of the interface is 8, and the height (h) of the interface is 3. The user

defines these values.

2.2 Development in Generator

Dispersion algorithm is important in finding input parameter vectors that can yield
output vectors with disperse resulting images. Nowadays, dispersion algorithm is
included in a part of a system called generator (Figure 4.4). In generator, dispersion

algorithm based its next sampling on the feedback from the previous sampling process
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that inputeed to it. It will tearn interactively which direction it will sample based ov
the feedback.

There are inany kinds of technigues used to make sampling based on the
previous feedback to be effective. Active learning and adaptive resampling are used
for this relevance feedback technique. What the advantages and disadvantages of
each technique are still questionable, Therefore, a modular system that is able to test
and compare the performance of generators nceds to be made.

Random Generator is a generator where the dispersion algorithim accepts no
feedback from the user. It randomly samples images ¢ach time. This generator
has randorm amount of time to find the desired image; the overall performance is
predictably not really good.

There are already several projects made to develop more dispersion algorithm
that take feedback from the user, and can learn fast from the feedback given. They
have to be able to sample images that are closer and closer to the desired image in a
smallest armount of time.

One of the generator with relevance fecdback technique is Peng Gencrator
[35], which gjven previous images feedback, makes new samples around the positive
samples of the previous images. Given labeled data, it inds the mean value of each
featurc among the relevant data. It also finds the mean distance from each of the
relevant data to the mean data. And from that mean values and mean distance

values, new samples are computed by finding data around those mean values, with a

11



maximum distance of mean distance values from the mean valucs.

The other technique is based on paper by Peng et al. [34] and Heisterkamp
et al. |11]). Given previous images’ feedback, it uses Probabilistic Feature Relevance
Learning and its combination with Query Shifting to retrieve similar 1mages. It
extracts images features and calculates their distances compare to other images, and
return images with minimum distances.

This technique optimizes K-ncarest neighbor kind of algorithms. K-nearest
neighbor kinds of algorithms vse the same weights for measuring each feature impo1-
tance. Given similarity metric, the weights remain fixed in the computation. PFRL
technique optimize this by assigning different weights for different features, depends
of their importance in deciding the »relevancy of data. This is important, since sirni-
larity does not vary with equal strength or in the same proportion in all directions in
the feature space emanating from the query image. PFRL uses probabilistic method
that enables image retrieval procedures to autornatically capture feature relevance
based on user’s feedback and that 1s highly adaptive to query location. The weights

can be calculated by first estimating the relevancy of each feature. If we have:
(25, us))
"7s Y3l
with: z; denotes the featurc vector representing jth retrieved image, and y; represents

the label (relevant or irrelevant), then the estimation of relevance, which uses the data

from the vicintéy of x, at z is:

o Ehay ey - 2 <= )
Elylz: - 2] = S 1ty ~— 2 < - Q)
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From this estimation, we can define a measure of feature relevance for query 7 as:
T = E[flI, = Zl
And the weights is then:

w.(z) . BIP(TTz(Z)]
: >l exp(Tri(2))

with T is a parameter that represent the influence of 7, on w,. If T = 0, we have
w; = 1/q, which means the weights are considered equal as in conventional K-near

neighbor algorithn. Thus, the distance between two images is then:

D@w:dimm-m2
=1

I then developed two new techniques that also consider the importance of
certain feature in decid‘;ng the relevancy of an image. These techniques also ;:onsicler
that one feature of an image may not have the same importance as other (catures in
deciding an 1mage’s relevancy.

The first technique (MyGeneratorl) finds the feature that has the smallest
cdistance to the mean of relevant samples. The smaller the distance to the mean of
relevant sample means the bigger distance to the mean of irrelevant samples. That,
feature will be the most important feature that decides the relevance of an image.

Consider images A and B (relevant), C and D (irrelevant), with n features

each: A: Ay, Az, Ay, B: By, By, ..., By, C:C1, 0, .,Cr, D2 Dy, Dy, .., Dy The

H ‘A 1o - A B Axt+H N .
mean of relevant images is: ABY = &t Al AalBy  The mean of irrele-
vant images is: CD™ = GEr Q’Jg—ul, oy €282 The distance between each of the n
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features of relevant samples to mean of relevant images and mean of irrelevant images:

[Ar — AB| +15, - ABil

oy =
n
__{A—-CD||+]B) - CD|
ol = _— 1
n
(]+—' :A2 1482|+'BQ—ABQ|
2 n
Ay —CDy| + |By — CD,)
02 = n

+ |A71 - ABnl + (Bn - ABnl
ot =
n

|An — CD,| + | By = CDy|
n

g, =

From above, the smaller o is, and the larger o is, the more relevant a feature is.
Thus, to find new samples, the more relevant a feature is, the smaller we alter that
feature.

The second technique (MyGenerator2) is also implemented based on the im-
portance of image’s features. MyGenerator2 {inds the range of values where the
features are relevant and irrelevant, and sorts them in ascending order. For exam-
ple, consider six images A through F, each contains of n features. Images A, B,
C, and D are rclevant, and image F and F are irrclevant. The kth feature will be:
AV B! C¥ D E; F7, with 1 < k < n. After cach feature in the image is sorted,
the result of first feature could be: A Eg Bf CF F,° D, with 1 < k < n. Based

on these range, the new samples will then be a randorm number with three ranges of

14



value. The first range is Ay, the second range is mhnmum value of By and maximum
value of Cx, and the third range is Dj.

Other generators use active learning and adaptive resampling [19] in its dis-
persion algorithm. Active learning is a technique of picking a subset of data, and
classifying them by giving them labels of relevance, irrelevance or unknown. Based
on this classification, we generate classification model that can .abel the entire data
set. Adaptive resampling is a technique that optimizes the process of classification,
so that the classification model is more accurate and precise, and so have a smaller
number of possibly misclassify instances.

Support Vector Machine [4 is also one type of powerful generator. [t has
. already been widely used for data classification process, such as speech recognition
[32,, high-dimensional (eature space image classification (5], or text classification [13].
To do the classification, Support Vector Machine Arst inputs a set of labeled data,
and based on those labeled data, it makes a data model. Based on that data model,
Support Vector Machine predicts and labels a new set of data [9). In making a data
model, SVM uses hyperplanes to separate the training data, so that cach hyperplane
marks the limit between classes of data; for binary classification, one side of the
hyperplane is of class 1, and the other side of the hyperplane is of class 0. For
separable data, Linear Support Vector Machine is used, while for non-separable data,
Nonlinear Support Vector Machine is used.

Support Vector Machine maps X dimension original training data into a higher



ditnension feature space F via a Mercer kernel operator K that satisiics Mercer’s
condition:
n
f(z) = DK (2, 2) = w &(2)
=1
with:

w = Z Q’iq?(l'x)

f(x) then determine the classification process: if f(x) > 0 then x = 1, otherwise x =
0.

The two common kernels used are polynomial kernel and radial basis function
kerncl. Polyuomial kernel, K(u,v) = (u.v + 1)?, induces polynomial boundarics
of degree p in the original space X. And radial basis function kernel, K (u,v) -
(e "-v.(u—)) induces boundaries by placing weighted Gaussians upon key training
instances.

Bounded-Constraint Support Vector Machine [18] is a type of Support Vector
Machine that extends the solution of Support Vector Machine for large classificalion
and regression problems. It consists of two technigues, which are using hounded-
constraint formulation for multi-class classification and regression, and also using
Craminer and Singer’s formulation (6] for multi-class classification.

Support Vector Machine Active Learning [13, 39] is one of the generators using
active learning for retrieving images. It combines Support Vector Machines, which

already proven to be successful in real-world learning tasks. and active learning. It is

16



developed as a refinement technique of relevance feedback technique. It grasps users
guery more quickly by using a usually high-dimensional hyperplanes to differentiate
which data arc relevant or irrelevant. The active learning part then trains the SVM
classifier to classify data from the feedback given to it, and returns the resulting
images.

Transductive Support Vector Machine is one of the techniques in optimizing
Support Vector Machine technique. This technique |31, 43] is considering unlabeled
data in classification process, in addition to relying on labeled training data, to im-
prove the classification accuracy. In Transductive Support Vector Machines, the hy-
perplane is placed based on both labeled and unlabeled data. Joachims {21] in his
paper shows that this can tmprove the classification process.

Statistical Learning Machine (30, 38] is implemented based on a well-developed
statistical decision theory framework. This generator uses learning algorithms that
will converge Lo optlimal Jearning states as the number of learning trials increases.

This algorithm will converge faster as the number of trials increascs.

17
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Figure 2.2: A sequence of spreadsheets displaying the visualization of a foot data

set. This figure is taken from paper by K. L. Ma and T. 1. Kelly |20] page 279 Figurc |.



w (width) = 8

h (height)
=3
List images: to display Exit: o exit the system

images of certain ) ]
| gl Clear: to clear the images displayed
eve

Figure 2.3: A Design (Galleries for light selection and placement. This figure is taken

from paper by Andalman el ol. [29] page 397 Figure 9.
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Chapter 3

COMPARING AND TESTING THE
NAVIGATION ALGORITHMS IN VISUAL

DATA EXPLORATION

Many questions arise regarding what are each gencrators advantages and disadvan-
tage, aud in which part are they better or worse than the others. For that, we need a
system that can test and compare those generators. It will be difficult for us to test
those generators themselves. What we can do 15 testing and comparing the effects of
using “hose generators in the system, for example: using this particular algorithm in
the generator in the system will lower the CPU time of that generator, etc.

When a particular set of data is applied to the system with a particular gen-
erator, the Statistic component of the system should 1ecord the result of the testing
throughout the running of the system, and make a statistic from those results. If we

apply that particular set of data to other types of generator, we will have statistic

20



for each of those generators. We can make a table that comparces cach generators
statistic when that particular set of data is applied. By testing the generators with
several sets of data, we will have several tables, and also graph if necessary.

There are two methods that we can use (o do the testing to the system. The
first method is by having the desired image known before the testing is done. Based
on that image, the user then has to label the set of images displayed on the screen as
rclevant, irrelevant, or unknown, until he finds the desired image. The second method
is by letting the user directly labels the images on the screen as relevant, irrelevant,
or unknown, without having the desired image known beforehand.

We are focusing on the first method in doing our testing to the system, since by
having the desired image to be known, it is easier for the user to do the comparison.
The user can directly compare the desired image and images on the screen, without
possibly being confused by other factors. If we use the second method, there are more
human factors that we have to consider, since there is a bigger chance that the usexr
15 not consistcot in labeling the images. Beny, inconsistent in labeling the images
will confuse the generator in grasping the users query concept, and thus lower the
performance of the generator.

The questions that arise in measuring the perforimance of the generators are:

~- How much user interaction needed for each generator?

There are two things that can measute user interaction in the exploration process:

21



1. Number of time the user needs to find the desired image. By countig the
number of set of irnages have *o he displayed to find the desired image, we can
determine how much user interaction needed to find the desired image. The

bigger the number of time means the worse the generator is.

2. Number of deadends that user has to go through during the exploration pro-
cess. Deadend means the number of times the user feels that the previous set of
images is better than the current set of images. 1T'he user then has to click the
back button Lo ignore the current set of images, and continue the exploration
process from the previous set of images. This means that the bigger the num-
ber of deadends is, the more often a vser got confused during the exploration

process. Thus, the bigger the number of deadends, the worse the generator is.

— How much CPU time needed from the starting of the system until the image desired

is found?
There are three CPU times that we can measure:

1. CPU time of the Generator component of the system, which is the CPU time
needed for the algorichm in the generator to compute a new set of input vectors,

given feedback that it got from the user.

2. CPU time of the Renderer component of the system, which is the CPU time

needed for the Rendercr to render images, given an input vector parameters.

22



3. CPU time of the User Interface component of the system, which is the CPU

time needed for the uger to label and send feedback to the system, given a set

of images.

The CPU time of Renderer and User Interface may not vary for all generators tested,
but those values will be useful for comparison. By knowing the CPU tune of Gen-
erator, Renderer, and User Interface for each generator, we can compare which of

those component. takes most time to finish, and by how much.

What is the similarity measure between the resulting images so far with the desired

image?

The similarity between the images on the screen and the desired image can be mea-
sured using several techniques. In this system, four types of feature are nsed to
measure images’ similarity, which are Gabor, Color Histogram, Haralick, arad Corre-
lation. Al of those features try to measure how similar the current images displayed
on the screen compare to the desired image, but they use different techniques to do

that:

1. Gabor Similarity Measure
This technique is defined in these papers [14, 42). Gabor is originally im-
plemented as a frequency filter, but then also developed for face and character

recoguition. Nowadays it is already applied to recognize muitivariate laser range
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data {36] and it also applies recursively as recursive Ganssian [15]. It measures
the similarity of two images by localizing the direction of spatial frequency at
certain angle, and outputting maximallly at those particular edges with that

angle orientation. Thus, we can detect the edges at all orientations of an image.

Gabor filter is used to extract local image features. Consider an input image
I{z,y),(z,y) € Q, with Q is the set of image points and 2-D Gabor function

9(z,y). (z,y) €, the Gabor feature image r(x,y) is:
r(z,y) = //QI(CJ?)Q(I - Gy - n)dldn
With Gabor function:
9ro0(zy) = e—((1‘2+72u‘2)/20'2)(:os(2n% + )

where &' — rcosf + ysinf, y' = —xsind - yeosh, o - 0.56\, v = 0.5

[n this thesis, Gabor technique is used to extract the teatures of images. The
similarity between two images is measured by comparing the dot product and

the Euclidean distance of two images.

Color Histogram Similarity Measure
This technique is defined in these two papers (16, 37). It measures the simi-
larity of two images by using color histogram for color image indexing. At a
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given color space, each local color range is represented by onc histogram bin.
[hus, color histogram represents the coarse color distribntion in an imagc. Two
colors are considered identical if and only if they are allocated into the same
histogram bin. Thus, no matter how similar two colors look like, if they are

alocated into different histogram bin, then they are considered totally different.

Histogram Intersection is a technique that can efficiently match model and
image histograms. It overcomes some problems that hinder recogunition, which
are distractions in the background of the object, viewing object from a variety
of viewpoints, and occlusion. Histograrn [ntersection matches the image color
bistograrns of each of the models. The higher the match value the better the
fit to the model. With n buckets each, the normalized Histogram Intersection
value of two histograms (two images: [ as image and M as madel), is:

" man(l,, M)
M) = L=l TV mZT‘( ZARNSEES
H(I, M) N

=1
And the distance metric (a scaled city-block metric) of the Histogram Intersec-

tion, which defines by function 1-H, assuming thc histograms are scaled to be

Lhe same size, is:

where



Similar to Gabor, Color Histogram is used to cxtract the features of images.
The dot product and Eucliclean distance of the images is then compared to

measurc the similarity.

Haralick Similarity Measure

This technique is based on paper by Prof. Robert Haralick [17]. It neasures the
similarity of two images by using probabilistic measures, which used likelihood
that were derived from Bayesian classifier that measures the relevancy of two
images. If the likelihoodness between those two images are high, then the two
images are similar, and vice versa, if the Jikelihoodness are low, then the two

Images are not similar.

The similarity is not computed in a common way by calculating the distance
of feature spaces, nstead it is computed using juiot posterior probability ratios
and then taking their weighted combinations. Haralick Similarity Mcasure uses
Bayesian framework that combine multiple measurements on images. In binary
classification, if there are n classifiers with measurement vectors x1, ..., xn, then

the equation for Bayesian classifier is:

assign((i, §)to arg maz o, pp(ciLy, ..., Tn)
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and assuming equal priors and conditional independence, the Bayesian classifier
1s:

e Product rule: assign{(, (5} to arg maz 4 p5 1T, plc|z:)

e Sum rule: assign((. () to arg maz ., p &%, plelT,)

e Max rule: assign((,, ;) to arg maz . 4 5 mazi p(c)s;)

e Min rule: assign((,, () to arg Az, 4 g ming_,p(c ;)

e Median rule: assegn(G,, ;) to arg maz 4 g median]_ p(c|z,)

e Majority rule: assign((;,(;) to arg maz ¢, g tip(clz,) > 0.5,1=1,...,n
with p(c—=xi) is the posterior probability given by the classifier i under class c.
In this thesis, Haralick technique is used to extract the features of images. After
the features are extracted, the similarity between the two images is calculated

by both dot product and Euclidean distance.

. Correlation Sinilarity Mecasure

This technique uses correlation to measire the similarity between two images.
To measure the similarity between image A and B, where both images A and B
have r rows and c columns, with pixels of A: a\1, ¢,2, ..., 41¢, ..., arc, and pix-

cls of B: b1, 4,2, ..., bic, ..., byc, then the Correlation sjmilarity measure will be:

Ae B =

1l xbilta2+h2 + . tacxbec+ ... | aexbo
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with g,y is a normalized pixel-

the RGB value of pizel a
total RG B walue

a-y —

As the two images compared are getting more similar to cach other, the simi-

larity values should be getting bigger.

For each of those measurements of performance, we have a table and a corre-
sponding graph associated to it. The complete table and graph resulls are attached

in the Appendix B, C, and D.
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Chapter 4

EXPERIMENT

A modular and reliable system is built to test and compare the generators. The
architecture of the system has to be arranged so that the testing procedure can be
done-as flexible as possible. The system has to be made as independent as possible
from any parameter, so that we can compare the results accurately. In this section,
we will first describe the architecture of the system and definie how we are going to use
this system to do the testing and comparison (4.1), and then discuss the experimental

results (4.2).

4.1 The Architecture of the System

Figure 4.1 shows us the screenshot of the systern. The interface displays twenty
Images at a time. Those images can be clicked; not clicking the image makes the

status of the irnage unknown (signify by the green border around the image). Right
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clicking makes the status of the image relevant (signify by the blue border around the
image). and left clicking makes the status of the image irrelevant (signify by the red

border around the image).

Figure 4.1: The screenshot. of the system

The Timestamp on the bottom of the screen shows which set of images set
that has been displayed so far; the first set of images is of timestamp 0, the next one
i1s 1, and so on. There are two buttons on the upper side of the Timestamp, which
are the Next and Back buttons. When the Next button is clicked, depending on the
type of generator used, another set of twenty images is generated. Those images can
be clicked again: once, twice, or not clicking at all. The process continues until the
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desired image is found, and the “Zser quit the systemn.

Network is used for this system, so that future experiments on distributed,
collaborative visnalization js possible. Therefore the interface has to differentiate
when the system isdn the idle state when it is waiting for a feedback from the current
set, of images, which is when the Next or Back button is not yet clicked, or when it is
at a waitting state, which is when one of the button is already clicked and the system

is trying to display a set of images.

ldle State

[dle State

Figure 4.2: The transition between the displays of images
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On the idle state, the color of the background of the screen g grav. Ot herwise,
on the waiting state, the color of the background turns black, and turns hack Lo gray
again after the waiting state is finished. On the walting state, no button should be
chicked, since th& set of images that will be displayed will be skipped. The next set of
images is then calculated based on the skipped set of images insteacl, and be displayed
next. Figure 4.2 shows this state change.

‘The systew: consists of six main components, which are Generator, Renderer,
Control, History, Statistic, and User Interface. Each of those parts has an independent
individual task.

From Figure 4.3, we can see that Control organizes the components of the
system. Cantrol conpect.s other parts of the system and controls the run of the systemn.
Control gives input parameters to other parts in the system, and they reports the
results back to Control, waiting for Control to pass another input paramcters. Tor
example, Control gives Generator {Figure 4.4) a training data, in the form of inpul
parameter vectors. and also previous set of images labels, which is a feedback of the
previous set of images from the user. Generatoy is then outputting a certain number
of input paraweter vectors based on the two inputs that are given toit. The output of
this generator is reported back to Control. The number of training data inputted and
outputted depends on the generators setting. Different generators are using different
algorithms.

When the system is run for the first time, generator generates a set of random
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Figure 4.4: Diagram of the Generator

input parameters. Reunderer part consists of threc other parts, which are Functional
Object Mapping, Keyword Substitution, and XML Renderer, as shown in Figure 4.5.

Functional Object Mapping consists of many canversion functions. Functional
Object Mapping maps input vector from valne range of 0.0 to 1.0 to other value
ranges, based on what the conversions are. All of the information of what the input
vectors are (object sizes, cameras distance, of¢) and what conversions tu be used for
each of thern are kept in server input file, scrver.re, under keyvword paramecter list
(Figure 4.5). By reading from the input file, Functional Object Mapping knows what
the input vectors are and what conversion to use. After converting the inpul vector
ranges, it passes the result to Keyword Substitution.

Keyword Substitution substitutes the keyword used in XML template with
actual values passed by Functional Object Mapping (Figure 4.6 and 4.7). Keyword

Substitution knows what the input vectors are from the input file. It then reads from
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Figure 4.5: Diagram of the Renderer

XML template and match the keyword used for each iuvput parameter, and snbstitute
it with the actual value.

XML Renderer is the last part of Renderer, XML Rencerer is the one who
actually generates images using XML Parser. XML Parser maps the vatues in XMDL
template to actual OpenGL codes and creates the image, and pass the iniage back to
Control.

User Interface is connected to Control through network. With this network,

imany Users can access this system at the same time, A fast machine may render
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< Thesis>
<View>
< Camera cameraV = "80.0 1 0.2 800.0” >
< /Cancra>
< fView>
< Scene>
< Desiredlinage desiredIm = ”desuwedlm.ppm” />
< Material face = "front” type = “diffuse” values = "1 1 1 1"/>
< FogColor fogColorV = > %(FogColor)s” />
<Foy fogV = "%(Foglnfo)s” />
< LightSource name = 0" >
<Light pname = "ambient” value = "% (Light AmbiX¥YZA)s" />
<Light pname = "diffuse” value = ”%(LightDif XYZA)s" />
<Light pname = "specular” value = "%(LightSpecXYZA)s" />
<Lizht ppame = "position” value = *%(LightPosXYZA)s" />
< /LightSource>
<LightModel pname = "modelTwoSide” value = "true” />
< PlaceObject>
<Translate traosV = "0.0 0.0 -350.0" />
<Raotate rotateV = "% (RotateAXYZ1)s” />
<Translate transV : »-120.0 .0 30.0” />
<Cuolor colorV = "%(ColorTeapotRGB)s” />
<GraphiesObject>
<Teapot size = "150" />
< /GraphicsOhject>
< Translate transV = "180.0 0.0 130.0"/>
<Color colorV = "%(ColorCubeRGB)<" />
<GraphicsObject>
<Cube size — "120” />
< /GraphicsObject>
<Translate transV = "50.0 0.0 -300"/>
<Colort colorV = "%(ColorSphereRGB)s" />
<GraphicsOhject >
<Sphere spherelnfo = ?120 100 100” />
</GraphicsObject>
< /PlaccQbject >
</Scene>
</ Thesis>

I

Figure 4.6: XML template before substitution
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< Thesis>
<View>
<Camera cameraV = "80.0 t 0.2 800.0" >
< /Camera>
< /View>
<Scene >
<Desiredlmage desiredIm — "desiredlm.ppm” />
<Material face - “front” type = "diffuse® values - "1-11 1"/>
<FogColor fogColorV = "(.270674 0.560238 }.92013¢-308 0" />
<Fog fogV : 7126854 4.54831 " />
< LightSource name = "0” >
<Light ppame = “ambient” value = "0 00 0"/>
<Light pname - "diffuse” value =700 007 />
<Light pname = “specular” value = »1.92039¢-308 0007/ >
< Light pname = “position” value = 7-100 -100 -100 - 100"/ >
< /LightSource>
<LightModel pname = "modelTwoSide” value = "true” />
<PlaceObject>
<Translate transV - 0.0 0.0 -350.0” / >
<Rotate rotateV = "-18000 0" />
<Translate transV = »-120.0 0.0 30.0" / >
<Color colorV ="000"/>
<GraphicsObject>
<Teapot size = 150" />
< /GraphicsObject>
<Translate transV = "180.0 0.0 130.0” />
<Color colorV = "0 00"/>
< GraphicsObject >
<Cube size = V120" />
< /GraphicsObject>
<Translate transV = "50.0 0.0 -300” />
<Color colorV = "1 00" />
<GraphicsObject>
<Sphere spherelnfo - "120 100 100" />
< /GraphicsObject>
</PlaceQbject>
< /Scene>
</Thesis>

Figure 4.7: XML template after substitution
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images, for display anywhere, A simple extension wordd allow multiple machines to
he used for rendering. This ¢can make the exploration process much faster, because
feedbacks from images arrive more frequently.

Control passes the images that it received from Renderer to User Interface.
At the same time, those images parametcer arce also passed to History. User Interface
is then labeling the 1mages to be relevant, irrelevant. and unknown, and then cick
Next or Back button. When the User clicks Back or Next button, control is given
back to Control.

If Next button is clicked, Control passes those images parameter and label to
Generator, and passes some data to Statistic. Generator then makes a new set of
input parameters based on the input given. These are then be passed to Control and
Renderer. New set of images is generated from Renderer to be passed by Control to
User Interface. User Interface then repeats the samne procedure: marks the images
to be relevant, irrelevant, and unknown, and pass it back to Control, etc. If Back
button is clicked, Control calls History and tell it (o return the input paramcters that
correspond to a sel of images before the current images.

The History component encapsulates a data structure that holds the entire
sel. of images and their associated information. History keeps track of the input
parameter used Lo generate cach image. It also keeps track which images are relevaut,
irrelevant, and unknown. 1f Next button is clicked, History is adding one more set

of input parameters Lo the list. 1{ Back button is clicked, History moves its current
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position one back and return the set of input parametevs correspond 1o the previous
sel of images.

The Statistic cornponent will store all the testing results that are measured
while the system is running. The system will be run scveral times, each time using
a d'fferent generator. And in each run, that particular generator will be tested with
several different lest data sets. Statistic component will record all of those testing
results and make a statistic from those results. These statistics will be used for
comparing those generators. We will discuss what and how the testing will be done
in the next section.

Figure 4.8 shows us the diagram of the system from file structure point of view.
As we can see from the diagram, visclient and visserver has their own resource file,
which are client.re (Figurc 4.9) and server.rc (Figure 4.10. client.rc defines the servers
name and port number, and also the window width and height, while server.re defines
the clients port number, xml template used, parameter list, and mapping functions
used for each parameter name.

The words on the bottom right. of the boxes are the name of the namcespaces
under which the files (folders) are belong. visclient aud visserver is where the con-
nected ports defined. Then it goes through ServerFacade and ClientFacade, which do
not provide the actual services. They are only the interfaces that pass the informa-
tion to the backend renderer. Net is the actual implementation of the network, while

control controls the backend parts and sencls back the result through Net, o at the
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end displaved through visclient.

Visserver, visclient, history, and control are an independent file, while Server-
Facade, Net, KeywordSubstitution, Generator, XMLRendercr, GUIClient, and ImagelU-
Lils are foldexs.

ServerFacade folder contains ServerFacade and ClientFacade files. They are
interfaces that pass information to backend renderer. Net contains netclient, net-
server, and communicationSpecs files. They are the actual implementation of the
network from client to server and vice versa.

KeywordSubstitution contains KeywordExpander file. It changes the keywords
used in XML template to the actual values that are generated by the Generator.
Generator contains all types _ofgenerator& that are tested and cormpared by the system.
Each of the generators generates input parameter vectors in its own wav.

XMLRenderer contains camera, ElementFunctions, FuncOhjMap, VectorTolm-
age, XMLParser, and all other files needed for parsing a.od generating images. GUTClient
contains display, keyboard, mouse, reshape, GUIutil, guiDataStructures, and all other
files needed for establishing connection for user interaction with the system. fmagell-
tils contains simpleppm and imageutils files, which convert images to certain formadt
of file (ppm or snmething else), and also coutains image tools such as resizing and so

on.
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Figure 4.8: Diagrain of the Systems File Structure

*  # Cdnﬁgura.t-ion file for visuali.z—;tiag_navigation client, *
*  # visclient *
*  server host name = localhost .
*  server port = 7171 o)
*  initial window width = 600 *
*  initial window height = 600 .
R __#*

Figure 4 9: Resource file from client side: client re
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# configuration file for visnalization navigation server,
# visserver
server port = 7171

# configuration for XMLRenderer

#configuration file for parameter name list and its accociated

#functional object and input vector indices

xml template file = template2

generator = RandomGenerator

parameter list = dPan dTilt dZocom dMove dMouse CameraOrtho Foginfo FogColor
MatDiffXYZA LightSrcName Light AmbiXYZA LightDiff X YZA LightSpecXYZA
LightPosXYZA RotateAXYZ1 ColorTeapotRGB TeapotSize RotateAXYZ2
ColorCubeRGB CubeSize ColorSphereRGB

dPan FnObj = DeltaMoveOneOne

dTilt FnOb) = DeltaMoveOneOne

dZoom FnObj = DeltaMoveOneOne

dMove FnObj = DeltaMoveOneOne

dMouse FnOb) = TdentityOneOne

CameraOrtho FnObj = Linear6Param

¥oglnfo FnObj = Fog2Param

FogColor FnObj = Identity4Param

MatDiff XYZA FnObj = Identity4Param

LightSreName FnObj = IdentityOneOne

Light AmbiXYZA FnObj = IdentitydParam

LightDiffXYZA FnObj = ldentitydParam

LightSpecXYZA FnObj = Identity4Param

LightPosXYZA FnObj = LineardParam

RotateAXYZ1 FnObj = Rotate4Param

ColorTeapotRGB FnQbj = [dentity3Param

TeapotSize FnObj = ObjectSize

RotateAXYZ2 FnObj = Rotate4Param

ColorCubeRGB FnObj = Identitv3Param

CubeSize FnObj = ObjectSize

ColorSphereRGB FnObj = Identity3Param

Figure 4.10: Resource file from server side: server.rc
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4.2 The Result and Discussion of the Experiments

As what we have been discussed in Chapter II1, Comparinp_ and Testing Navigation
Algorithms in Visual Data Exploration, there are 5 couple of experiments that we
had perforined to compare the generators. The system implemented is a modular
systern that especially designed to do these experiments. In this section. we will
discuss how to do those experiments using the systern, and then discuss the result of
the experiment.

As we have discussed before, there are two methods that we can use to do the
measurcment. The first one is by knowing the desired irmage before the system starts.
The second one is by trusting the user to guide the systern until the desired image is
found. In this experiment, we did only the first method for our measurements. It is
more trustable, because hunian factor is not as big as the second method. For future
work, the second muethod can be done (0o, (o sec how humau factor influence the
experimental results.

The experiment is doue using seven geonerators, which are: Random gener-
ator, Peng generator, PFRL, SVMl.ight, SVM-Peng gencrator, Transductive SVM
(TransSVM), and BSVM. In the experiment, Random gencrator geverates new sam-
ple set by randomly picking values from range 0.0 tO 1.0. Peng generator, based on
the user feedback, generates a number of samples 2round the positive samples. L
then picks the most disperse samples among the saimples to be the new sample set.

PEFRL generates a aumber of input vectors and gent€Tates images from those veclors.
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[t then picks images with closest Gabor distance as the new sample set. SVMLight
generates a nurnber of samples by applying MyGeneratorl, and generates a new sel
of images from those samples by using SVM Light. Tt picks the most disperse sam-
ples to get the new sample set. SVM-Peng generataor combines Peng gencrator with
BSVM in generating new sample set. TransSVIM generates a mimber of samples by
applying MyGeneratorl, and generates a new set of images from those samples using
Transductive SVM. BSVM generates new sample set by applying MyGenerator2 and
BSVM.

Each of those generators is tested with several datasets, which are: OpenGL
Object (3 Object: Teapot, Cube, and Sphere), Real Object [ Al, Dolphin, F16, Flower,
Porsche, Soccer Ball. and Vasc), and Scientific Data (electron density of Natrium).

In this section, we will discuss the result of the experiment based on how much

user interaction needed. immber of deadends, CPU time, and siinilarity features.

4.2.1 User Interaction

There are two things culculated to measure user interaction needed by cacl penieraton,
which are the average time necded to find the desired image and the number of

deacdends.
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Table 4.1: Average time (number of set of images) needed for Real Object, OpenGL

Object, and Scientific data set to find the desired image.
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Table 4.2: Average number of deadends of Real Object. Open(Gl Object, and

Scientific data set as tiiue increases for all of the generators tested.

Time needed to find desired image

From Table 4.1 we c¢an see that when testing Real object, Random generitor needs
the most time to find the desired image, while PFRI,, S\"MLight, and TransSVM
needs (he least tiine. When QOpenGL Object data set is tested. Random generator
needs the most time to find the desired image. while PFRL, SVMLight, and BSVM
nceds the least time. When Scientific data set is tested, Random generator ueeds the
most tine to find the desired image. while PFRL, TransSVM, and BSVM peeds the
Jeast tiae. Thus, we can conclude that Random and BSVM generators need the most

and least time 1o find the desired image no matter what the test data set type is.



Deadends

Tables and graphs in Appendix B show the number of deadends of each generator
when tested with different test data sets, and in which timestamp it happens. From
Table 4.2, the average number of deadends/time between generators can be compared.
The bigger the number of deadends/time, the more the user had to back to previous
set, of images and started over from there. That means the bigger the number of
deadends/time, the worse the generator is. Table 4.2 shows that for all Real Object,
OpenGL: Object, and Scientific data object, Peng has the smallest average number of
image clicks/time. For Real Object and Scientific data, Peng has the biggest average
number of deadends/time. For OpenGI Ohject,Peng and TransSVM have the biggest

average number of deadends/time.

4.2.2 CPU Time

To measnre the CPU time of the Generator, Renderer, and User Interface components,
we use the wall system clock to time them. The system clock resides in the Statistic
component, where all the measurements and the results also reside. To measure CPU
time of a Generator, the clock system records the time when Control passes training
data and labels to the Generator. And when the Generator passes back the resulting
input parameter vector to Control, the clock system records the time again. The

CPU time of the Generator is then the difference between those two times recorded.
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Table 4.3: Generator, Renderer. and UI's CPU time of all Real Object, OpenGL

Object, and Scientific Data sets for generators tested

The CPU time of Renderer and User Interface components are measured in the same
way.

Table 4.3 shows us the CPU time of all génerators when tested with three data
set types. When all Real Object, OpenGL Object, and Scientific test data sets are
measured, generators with the largest and smallest generator CPU time are PFRL
and Random. PFRL has much bigger generator CPU time because each time the
generator has to generate a lot of output unages, extract the features, and calculate
new set. of images based on the extracted features. Random basically just randomly
generate new input vectors. It does not have to calculate anvthing else. That is why
it takes a very small amount of time to finish.

When Real Object is measured, generators with the largest and smallest,

renderer CPU time are SVMLight and Random. When OpenGL Object is mea-
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suted, they are PFRL and SVNV-PPeng. When Scientifie Data is measured, rheyv are
TransSV'M and Random.

The bigger the UL CP U tiyne meaus ¢he more users have ta think when labehng
the images. This means the gencrator is not very informative or confusing. When
Real Object is measured, gencrators with the largest and smallest UL CPU timne are
SVMLight and Peng. When OpenGL Object is measured, they are both TransSVAI
and BSVM, and PFRL. When Scientific Data is measured, they are BSVM and SVM-

Peng.

4.2.3 Similarity measure

Similarity measure is calculated using two methods. The first method is by calculating
the Buclidean distance bLetween the two images. The smaller the distance between
the two tmages, the more similac the two images are, and vice versa. Thus, as tinme
increases, the distance of the two images should be getting simaller and sinaller. The
seccond method is by calculating the dot produet between the two images. This
method calculates the sionlarity value between {wa images. Thus, the higgey the dot
product value between two images, the mmore simila the two images are.

To define cach generator’s performance, for cach similarity measure techniegoe
used, maximmn, average, and minimum simdlacity  measure values are caleulated.
Maximum, average, and minimum similarity measure values are the wpaximnam, av-

evage, and minimom similarity valies antong a set. Of inages compare to the image
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that we want to gencrate.

The discussion of the result. will consider tawg factors. The first. one is the
performance of each generator as the time increases. This is examined by the tables
and graphs on Appendix C. Appendix C has the complete tables and graphs of all
maximum, average, and minimuin distance and similarity valuce of all test data sets
when measured using all four features as time increases. As the time increases. the set
of images generated should have smaller and smaller distance to the desired image.

The second factor is the robustuess of the generators, which examined by the
tables and graphs on Appendix D. Appendix D has the complete tables and graphs
of all maximuin, average, and minimum distance and similarity value of all test data
sets when mieasured using all four features. Since 1t is always possible to construct
situations that favor a particular generator over ali the others. the issne becones one
of robustness. For cach feature of a saunple file of a particulayr data st types, the
average of the first three timestamps of maximum, average, and minimwun distance
tables of each generator are calculated. The distance rate o, and the distribution
(upper and Jower quartiles) of each gencrator's maximnim, average, aud minimum
Euclidean distance can then be calculated froin the samaple files™ maximun, average.
and rninimum average values calenlated above. The simularity rate of cach generator
is calculated using similar method.

The robustness issue [7, 33] can he captured by computing distance and sim-

ilarity ratin. The ratio r,, of its distance rate d,, and the srnallest distance rate in
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a particular example: r,, = ;7_1'1';._(!::;41-" T'he ratio r, of its similarity rate s, and

the biggest similarity rate i a particular example: 7, = Fm—ufigm Thus, the best
generator m” for that example will have d,, = 1, and all other generators have larger
values d,,, > 1,,2,-. Equivalently, it will have s, = 1, and all other generators have
smaller values sp, < 1,,.4,,-. The larger the value of d,, (the smaller s,,) the worse
performance of the mth generator is for that example. The distribution of d,,, values
for each gencrator over all the problems Lherefore seems to be a good indicator of
robustness. The graphs gencrated plot a distribution of the distance and similavity
rate for cach generator. Each has maximum and minimum value, and box that marks
the range between upper and Jower ¢uartiles, and horizontal line between themn that
marks the median.

Ax mentioned above, three test data sel. types are used in measuring the sim-
ilarity measure, which are Real Object, OpeunGL Object, and Scientific Data. Below

we will discuss each of them, with different similarity measure Lechniques used.

Real Object

Tables and graphs on Appendix C show the generators® perfonnance as the time
increases. When all Gabor, Color Histogram, Haralick, and Correlation are used,
both PFRL and BSVM are mostly able to generate image with the smaller and
smaller winimum distance to the desired image. Ouly PERL that, is able to generate

sct of iinages that have constantly smaller and smaller average and maximum distance
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than the previous sct of images.

Figure 4.11(a) examines the robnstness of the maximum distance distribution
ol a particular generator over all other generators when all Gabor, Color Histogram,
Haralick, and Correlation features are used. Among all generators, TransSVM is
the most robust generator. I¢ has the best median performance (1.33), and also the
narrowest interquartile range. In half of the problern, its distance rate is no more than
22% than the best case. In 3/4 of the problemn it is mo more than 33% . And it is 46%
in the worst case. PFRL has similar but slightly worse median and interquartile range
performance compare to TransSVM. Peng, SVMLight, and TransSVM have average
median performance and interquartile range. SVM-Peng has also similar performance
to those three generators, but it bas the widest inw:rquartile range. Random has the
worst distribution, where the corresponding wumbers are 1.55, 43%, 50%, and 66%.

Froin Figure 4.11(b), we can examine how well a particolar gencrator pet-
forms on average over all other generators when Gabor, Color Histogram, liaralick,
and Correlation features are used. In this particular problem, hoth TransSVM and
PERL are the mmost robust generators. TiansSVA has among the hest isterquartile
range, but average median performance (1.30). On the other hand, PIFRL has the
best median performance (1.28), but slightly worse interquartile range compare to
TransSVM. In half of the problem, TransSVM has 29% worse distance rate compare
to the best case. In 3/4 of the problem and the worst case, they are 51% and 73%.

The corresponding numbers for PFRL are 27%. 52%, and 74%. Other generators

ol
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Figure 4.11: (a)-(¢) Maximum, average, and minimum FEuclidean distance ratio
(rm) distribution for Real Object data set with Gabor, Color Histogram, Haralick,
and Correlation features combined. (d) Combination of Maximum, Average. and
Minimum similarity value distribution for Real Object data set with Gabor, Color

Histogram, Haralick, and Correlation features combined.



have much higher median value and average interquartile ranges. Generator with the
widest interquartile range is SVM-Peng. Random is the generator with the worst
distribution, where the corresponding numbers are 1.58, 57%, 75%, and 92%.

From Figure 4.11(¢), the robustness of the minimum distance distribution of a
particular generator over all other generators when all Gabor, Color Histogram, Har-
alick. and Correlation features can be determined. For this particular problem, both
TransSVM and SVMLight are considerably the most robust generators. TransSVM
has the best median performance {3.67), and among the best interquartile range.
SV MLight has the narrowest interquartile range, but slightly worse median perfor-
mance {3.84). In half of the problem, TransSVM has 252% higher distance rate than
the best case. In 3/4 of I;h_t‘f problem and the worst case, they are 691% and ]2‘94%.
The corresponding numbers for SVMLight are 268%., 678%, and 922%. BSVM has
the widest interquartile range, while Peng has the worst median value. All other
generators have average median performance and interquartile range. Among all gen-
erators, ‘IransSVM has average interquartile range, the best in median, half, 3/4 of
the problem and worst case performance.

Figure 4.11(d) examined the robustness of the similarity distribution of a par-
ticular generator over all other generators when all Gabor, Color Histogram, Har-
alick, and Correlation features are used. In this case, it seems like the generators
with best median performance have among the worst interquartile range, and vice

versa. PFRL and TransSVM have among the best median performance, but their
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ipterquartile ranges are among the worst. On the other hand. Peng and SVM-Peng
have among the worst median performance, but their interquartile ranges are among
the best. SVMLight and BSVM have average median performance and interquartile
range, while Random has the worst distribution of all, with 0.45 median, 117%, 160%,
and 253% higher similarity rate in half, 3/4, and wotst case of the problem. If we
look at the graph, the interquartile ranges of most generators are almost the same.
The difference between the best and the worst interquartile range in this particular
problem is not extreme. Thus, if interquartile range performance is ignored, PFRL is
the most robust generator, with corresponding numbers 0.38, 69%, 121%, and 231%.
If interquartile range performance is essential, then SVMLight is the most robust
generator, with corresponding numbers 0.52, 87%, 128%, and 250%. SVMlLight is
the generator with the most consistent performance, even though its performance is

not. the best one.

OpenGL Object

Tables and graphs on Appendix C show the generators’ performance as the time
increases. When all Gabor, Color Histogram, Haralick, and Correlation are used,
Lo generator 1s able to generate image with the smaller and smaller minimum and
average distance to the desired image. Only SVM-Peng that is able to generate set of
images that have constantly smaller and smaller maximum distance than the previous

set, of images.
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From Figure 4.12(a). we can determing the robustness of the maximum dis-
tance distribution of a particular generator over all other generators when att Gaborv,
Color Histogram, Haralick. and Correlation features are used. It is clear from the fig-
ure that TransSVM is the most robust generator. It has the best median performance
(1.58) and the narrowest interquartile range. In half of the problem, it has 58% higher
distance rate compare to the best case. In 3/4 of the problemn and the worst case,
they are 58% and 166%. Peng has the widest interquartile range, while Random has
the worst median performance. Other generators have average mterguartile range
and median performance. Random has the worst distribittion, will corresponding
numbers 2.81, 180%, 185%, and 230%. Its distance rates are high in all cases, which
means it is at all time performs badly.

Figure 4.12() shows us that TransSV'M is clearly t.he most robust generator
on average over all other generators when Gabor, Color Histogram, Haralick, aud
Correlation features are used. 1t has the best median performance (1.23) and the
narrowest interquartile range. In half of the problem, it has only 15% higher dis-
tance rale than the hest case. In 3/4 of the problent and the best case. they are
19% and 121%. SVM-Peng is the most robust generator after TransSVM. PFRL.
SVMLight, and BSVM have similar performance, with average median performance
and interquartile range. Randoin and Peng’s distance rates are far above other gen-
erators. This means that both Random and Peng performs worst compare to othel

generators most of the tirwe. Random has the woxst distribution with corresponding,



numbers 2.29, 115%, 125%.. and 135%.

From Figure 4.12(c), we can determine the robustness aof the minimum dis-
tance distribution of a particular generator over all other generators when all Gabor,
Color Histogram, Haralick, and Correlation features are used. For this particular
case, TransSVIM has considerably consistent performance. It has best median per-
formance {1.34) and among the narrowest interquartile range. It has 19% higher
distance rate in half of the problem, and 31% and 45% in 3/4 of the problem and
the worst case. SVMLight has narrower interquartile range compare to TransSV M,
but TransSVM’s range has better performance with lower distance rate. SVMLight
interquartile range is 1.38-1.51, while TransSVM’s is 1.23-1.19. Peng has the widest
interquartile range, while PFRL has the worst median performance. Other generators
have average median performance and interquartile range.

Figure 4. 12(d) examined the robustness of the similarity distribution of & par-
ticnlar generator over all other generators when all Gabor, Color Histogram, Haralick,
and Correlation features are used.  As we can see [rom the Figure, the mnterqguar-
tile ranges of most generators tested are almost the same. Anong all generators,
TransSVM has considerably consistent performance It has the best median perfor-
mance ((0.84) and average interquartile performanee. Tt has 15%, 33%, and 57% higher
similarity rate in half, 3/4, and worst case of the problem. SVMLight has narrowey
performance compare to TransSV M, but its median performance is worse. SVM-Peng

has the widest interquartile range. while Peng has the worst median performanee. All

{uh |
=~



other generators have average median and interquartile range. Random has the worst
distribution with similarity distances far below other generators, which means most
of the time it performs worse than other generators. Its corresponding numbers are

0.63, 52%, 60%, 68%.

Scientific Data

Tables and graphs on Appendix C show the generators’ performance as the time
increases. When all Gabor, Color Histogram, Haralick, and Clorrelation are used, no
generator is able to generate image with the smaller and smaller minimum, average,
and maximum distance to the desired image.

Figure 4.13(a) examines the robustness of the maximnin distance distributinn
of a particular generator over all other generators when all Gabor, Color Histogram,
Haralick. and Correlation features are used. It this case, TransSVM, the generator
with best median performance (1.98), seems to have the widest interquartile range.
It has 98%,, 107%., and 117% higher distance rate compare Lo the best case in half,
374 and worst case of the problem. SVM-Peng hias the second hest median perfor-
mance after TransSVM (2.03), and it has cousiderably narrow interquartile range. Its
corresponding numbers are 103%, 110%, 117%. As we can see from the figure, the
interquartile range difference is not much. But. if interquartile range is essential, we
can say that SVM-Peng has among the best median perforimance, and considerably

consistent performance i general. If interquartile range is ignored, then TransSV M is
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Figure 4.13: (a)-(c) Maximum, average, and minimum FPFuclidean distance ratio
(rrr) distribution for Scientific data set with Gabor, Color Histogram. Haralick.
and Correlation features combined. (d} Combination of Maximum, Average, and
Minimum similarity value distribution for Scientific data set with Gabor, Color

Histogram, Haralick, aud Correlation features combined.



the most robust generator. PFRL and Random have the worst median performance.
All other generators have average median performance and interquartile range. Ran-
dom has the worst distribution with corresponding numbers 2.12. 112%. 120%, 129Y% .

From Figure 4.13(b). we can determine how well a particular generator per-
forms on average over all other genevators when Gabor. Color Histogram, Haral-
ick, and Corrclation featurcs are used.  As we can see clearly from the Figure, all
PFRIL. SVM-Peng, TransSVM, and BSVM have the same (lowest) median valuce
(1.51). Among those four generators, BSVM has the narrowest interquartile range,
but its distance rate distribution is worse than TransSVM. Even though TransSVM
has wider interquartile range, it has better performance. Thus, we can conclude that
TransSVM is the most robust generator in this case. In half of the problem, it has
46% higher distance rate compare to the best case. In 3/4 of the problem and the
worst case, they are 50% and 73%. SVM-Peng has the widest interquartile range,
while Random has the worst median performance.  All ofher generators have aver-
age median performance and interquartile range. Random is the generator with the
worst distribution, with cortesponding numbers 160, 50%, G614, 67% . ISven though
Random has the narrowest interquartile range, but its distance rate is [ar above othey
generators, which means it perforims bhadly most of the thne,

From Figure 4.13(¢), the robustness of the minimum distance distribution of
a patticular generator over all other generators when all Gabor, Color Histogram.

Haralick. and Correlation leatnres are nscd can be determined. SVM-PPeng has the
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best median performance {1.33), but among t he widest mterquartile range. SV iILight
has shightly worse median performance (1.44) but among Lhe lowest interquartile
range. Thus. we can say that SVMLight has among the best median performance.
and considerably consistent performance in general. In half of the problem, it has
44% higher distance rate compare Lo the best case, In 3/4 of the problem and worst
case, they are 104% and 165%. Random has the worst median performance and the
widest interquartile range. 1ts distance rates are far above other generators. [t also
has the worst distribution, with corresponding numbers 2.39. 159%, 239%. and 317%4.

Figure 4.13(d) examined the robustness of the similarity distribution of a par-
ticular generator over all other generators when all Gabor, Color Histogram, Haralick.
and Correlation features are used. In this case, Peng is the most robust generator. It
has the best median performance (0.84) and narrowest interquartile range among all
generators but Random. In half of the problem, it has 512% higher similarity rate
compare to the hest case. In 3/4 of the problem and worst case, they are B78% and
G18% . Random has the narrowest interguartile range, bt among the worst median
petfonmance  In general, it performs worse than other genevators most of the tinme

Its corresponding distribution numbers are 0.83, 554%, 579%., and 606% .
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Chapter 5

SUMMARY

Data recognition and classification process is one of the most difficult parts in com-
puter graphics. Many papers and projects have been done to improve the navigation
of visualizations process. Many algorithmms and intuitive user interfaces have been
designed, but no specific system has been developed to test and compare them. The
system is a modular system that tests and compares the effects of using cach of the
generators. Using the system that we developed, we are able to dehne the advantages
and  disadvantages of each generator compare to others. The systen is built espe-
cially to compare all the existing generators in a couple of important. aspects. The
system is made to be as compatible as possible to do the comparison and testing, All
mput parameters are inputted from a file (input vector file and XML template file),
s0 that they can be changed easily without changing the system. The system also

allows many users to access the system at the same time, to speed up the exploration

Process,
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The system has been used to compare the performance of seven genera-
tors. which arc Random generator, Peng generator, PFRL, SVMLight, SVM-Peng,
TransSVM, and BSVM. Three types of data set are used to test each of these gener-
atots, which are Real object, OpenGL object, and Scientific data set.

Two measurements are calculated to measure how much uscr interactions are
needed during the navigation process. They are the time needed to find the desired
image and the number of deadends. The experimental result shows that no matter
what the data type tested, Random needs the rnost time to iind the desired image,
while PFRL needs the least time. The result also shows that generators that contain
Peng algorithm io them have the largest number of deadends, while SVMLight has
the Smallfest number. When CPU time is measured, for all d.a,ta types, PFRL have
the largest Generator CPU time, while Random generator has the Jeast.

This thesis discusses in detail the experimental cesults when all Gabor, Color
Histogram, Haralick, and Correlation features are combined. When all features are
cornbined, for Real Object data set, the most robust generators for maximuni, aver-
age. and mininum Euclidean distance distributions are TransSVM, both TransSVM
and PFRL, and both TransSVM and SVMLight. For OpenGL Object data set,
the most robust generator for maximum, average, and minimum BEuclidean distance
distributions is TransSVM. For Scientific data set, the most robust generator for max-
Intum and average Euclidean distance distributions is TransSVM. The most robust

generator for minimum Euclidean distance distribution is SVMLight.

63



For Real Object data set, the most robust generators for maximum, average,
and minimum similarity distributions are both TransSVYM and PFRL. For OpenGL
Object data set, it is TransSVM. For Scientific data set, it is Peng.

The complete experimental results are attached on Appendix B, C, and D.
Appendix BB contains the tables and figures of user interaction (iime needed to find
desired image and number of deadends) and CPU time of all generators. Appendix
C contains the tables and figures of Euclidean distancc and similarity value of all
generators as time increases. Appendix D contains the tables and figures of Euclidean

distance and similarity value distributions of all generators tested.
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Chapter 6

FUTURE WORKS

As we can see from above, the performance of each generator is greatly influenced
by the type of data set tested and which similarity measure used. Besides data set
type and similarity measure used, there are several factors that can infiuence the
performance of each generator. The system that is built for this thesis has several
areas that can be improved in the future.

PFRL has the worst generator and renderer CPU time. This is because PFRL
generates a new set of images based on the output features of images. Thus, each
time PFRL has to generate a new set of images, it has to generate a number of input
vectors, and generate images from those imput vectors. Finally it has to extract each
image’s features, and pick a new set of images based on those features. Instead of
generating full size images, thumbnail of images can be generated in the future to
reduce the generator CPU time of PFRL.

In BSVM, MyGenerator2 is used to generate new samples that BSVM used
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to generate a new set of images. In MyGenerator2, for each feature of an image,
there are several ranges of value that are used to generate new samples. For example,
f there are n features in an image, then feature 1| has k; ranges of value, [eature
9 has ko ranges of value, .... feature n has &, ranges of value. Thus, to generate a
dispersed new samples, each feature’s range of value has to be the combination of
all other features’ range ol values, with possible number of new samples generaced:
ky * Ko * ... x k,. MyGenerator2 does not apply this. Thus, new samples generated
by MyGenerator2 may not give the samples that user wanted. This can significantly
influenced the performance of the generator tested, which is BSVM. In the future, in
order to get a dispersed sample, new samples have to be generated by considering all
possible features’ ranges as described above.

The system butlt already calculated the wumber of mouse clicks/timestamp
and image clicks/timestamp of the exploration process. These munbers can also be
tised to measure generators’ performance in the future. For example to examine
whether as time increases the user clicks more relevant or irrelevant images. Also
whether the user often clicking and unclicking images, which can measure whether
the user is often confused by the generator.

There also exist several directions for future research in expanding this com-
parison system. The system can be designed and put in the web, so that exploration
PIOCess can take place instant places at the same time. Bender et al. [3] gives us a

good reference of the framework of wel-based visualization system. The intermediate
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testing and comparison of dispersion algorithms ¢an 4150 Le done in the fut1Fé: SO
that we will not only have the final result of the algopichms. but also the resulting
images in-between the starting point and the ending point of the algorithms. Kim et
al. [24] gives us good reference for this. We can also try to reduce the preprocessing
titne of the system in displaying images on the screen. Lum ot al. 27 do rescarch

that can be continued in the future.
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Appendix A

GLOSSARY

Graphical User Interface

Multidimensional Data

Scientific Visualjzalion

A computer program designed to allow a computer user
to interact easily with the computer typically by using a

mouse to make choices from inenus or groups of icons.

Data that relates to or has morce than three dimensions,
ot data that has several different aims, gualitics, or as-

pects.

A visualization that concerns with exploring data and
informacion in such a way as to gain understanding and
insight into the data. The goal is to promote a deeper
level of understanding of the data under investigation and
to foster new insight into the underlying process, relying

on the humans' powertu) ability to visualize.



Timestamp A device for recording the sct of images’ numbers that
sent out by the navigation algorithm throughout the ex-

ploration process.

OpenGL Library A trademark of Silicon Graphics Inc and is a cross-
platform standard for 3D rendering and 3D hardware ac
celeration fitst developed in 1992. It is required in some

cornputer games.
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Appendix D

EUCLIDEAN DISTANCE AND SIMILARITY
VALUE DISTRIBUTION TABLES AND

FIGURES
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