A MODULAR SYSTEM FOR COMPARISON OF NAVIGATION ALGORITHMS IN VISUAL DATA EXPLORATION

 $\mathbf{B}\mathbf{y}$

PATRICIA JUSUF

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

2001

Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE August 2003

A MODULAR SYSTEM FOR COMPARISON OF NAVIGATION ALGORITHMS IN VISUAL DATA EXPLORATION

Thesis Approved:

Thesis Adviser

Preface

Navigation of visualization process involves large, complex, unclassified data sets and multidimensional, nonlinear, discontinuous mapping functions. Thus, getting a desirable data from those data sets is usually a painful process. It is then important to know what is the best technique to do the navigation process. Many algorithms have been developed to improve the navigation process. But since each of those algorithms has its own approach and test data sets, a system that can compare the performance of those algorithms is needed.

This thesis is about a modular system that is designed especially for testing and comparing those algorithms with various data sets. The system is divided into six components. Each component can have several different types and can be easily taken off from the system and substituted with other components. The system uses network so that many users can access the system and giving feedback at the same time. This can help speeding up the navigation process. XML template is used to assign values to test data sets instead of having several test data set files. We will compare the system proposed with several test data sets: OpenGL standard objects, real world objects, and scientific data sets.

Acknowledgment

I would like to express my sincere appreciation to Dr. Douglas Heisterkamp, the Chairman of the Advisory Committee, for his assistance, patience, and guidance throughout my study at Oklahoma State University. I would also like to thank my committee members, Dr. Nohpill Park and Dr. Blayne E. Mayfield, for their advice and instructions.

I would like to extend my appreciation and gratitude to my parents and my brothers for their continous love, support, and encouragement. I am also grateful to my friends and collegues for their valuable suggestions and support.

Table of Contents

1	INT	TRODUCTION	1
	1.1	Navigation Algorithm Problem	2
	1.2	Contribution to the Work	3
2	DE	VELOPMENT IN NAVIGATION IN VISUALIZATION	5
	2.1	Development in User Interface	5
	2.2	Development in Generator	10
3	COMPARING AND TESTING THE NAVIGATION ALGORITHM		IS
	IN	VISUAL DATA EXPLORATION	20
4	EX	PERIMENT	29
	4.1	The Architecture of the System	29
	4.2	The Result and Discussion of the Experiments	43
		4.2.1 User Interaction	44
		4.2.2 CPU Time	46

	4.2 3	Similarity measure	48
5	SUMMAI	RY	62
6	FUTURE	WORKS	65
\mathbf{A}	PPENDIC	ES	72
	А	GLOSSARY	73
	В	USER INTERACTION AND CPU TIME TABLES AND FIG-	
		URES	75
	С	EUCLIDEAN DISTANCE AND SIMILARITY VALUE TA-	
		BLES AND FIGURES	77
	D	EUCLIDEAN DISTANCE AND SIMILARITY VALUE DIS-	
		TRIBUTION TABLES AND FIGURES	107

List of Tables

4.1	Average time needed to find the desired image	45
4.2	Average number of deadends for all data sets tested	45
4.3	CPU time of all data sets for all generators tested	47

vii

List of Figures

2.1	A portion of Image Graph representing the exploration of a foot dataset.	(
2.2	A sequence of spreadsheets displaying the visualization of a foot data	
	set	18
2.3	A Design Galleries for light selection and placement.	19
4.1	The screenshot of the system	30
4.2	The transition between the displays of images	31
4.3	Diagram of the system	3.
4.4	Diagram of the Generator	34
4.5	Diagram of the Renderer	35
4.6	XML template before substitution	36
4.7	XML template after substitution	37
4.8	Diagram of the Systems File Structure	43
4.9	Resource file from client side: client.rc	4)
4.10	Resource file from server side: server.rc	42
4.11	Real Object's maximum Euclidean distance value distribution	52

4.12	OpenGL Object's maximum Euclidean distance value distribution	55
4.13	Scientific Data's Euclidean distance and similarity value distributions	59

Chapter 1

INTRODUCTION

Navigation in visualization is a process of exploring complex, large, unclassified-data sets, to get a desirable output image via visualization. In order to get insight from large data sets, two things are needed [12]:

- Efficient algorithms. Efficient algorithms are designed so that given input parameters, a desirable output image will be generated in a minimum amount of CPU time, user interaction, and feature space.
- 2 Intuitive user interfaces (UIs). Efficient algorithms will be useless unless there are intuitive user interfaces (UIs) that can help presenting and storing the visualization exploration process.

Many papers and projects have been made in developing efficient algorithms. Those papers and projects try to improve navigation in visualization process by developing algorithms that can yield a desirable output image accurately and economically.

Some user interfaces (UIs) have also been designed to support the algorithms in displaying and storing the navigation process, so that the resulting images throughout the process can be reused and percepted more easily.

User Interfaces (UIs) is also essential in navigation process. Without an intuitive user interface (UI), it will be hard to retrieve the parameters of an image, or to which direction will the exploration process have to be continued. It will also be hard to decide which generator is best for large or small set of data, etc.

Generator, a component where the algorithm is located, is the main part in navigation system, since given a set of random input vector, it is trying to find input parameter vectors which output vectors resulting a dispersed set of images. Generators will then wait for the feedback from the user about the first generated images, and make another set of images based on the feedback, and so on. Therefore, the successful of navigation system is highly depending on the generators (algorithms) and the intuitive user interface to guide the user in percepting resulting images.

1.1 Navigation Algorithm Problem

Many algorithms and user interfaces (UIs) have been designed to improve the navigation of visualization process. Many generators have been developed; each is developed to make the navigation process more accurate and economical, and some are developed to optimize the previous ones. Some algorithms that are used to do the navigation process are algorithms that originally implemented for content-based image retrieval.

Those types of algorithm are used for classifying images that are in the database. To do navigation process using these types of algorithms, new set of images then has to be computed based on the classification.

With so many algorithms available, it is then hard to decide which algorithms have the overall best performance for which type of datasets tested. Each algorithm is tested with its own test datasets and with its own measurement of performance. Each of those algorithms has its advantages and disadvantages, depends on many factor, such as the type of test dataset used, or the size of the dataset. Thus, to test each dataset efficiently and optimally, it is essential to know which algorithm that should be used.

The problem is, there is no specific system has been especially designed to test and compare the performance of the generators in several measurement aspects. A system that can test and compare the performance of those algorithms is then need to be implemented.

1.2 Contribution to the Work

Since it is essential to know each algorithm's advantages and disadvantages, a modular system that is able to test and compare between the generators is then implemented. Thus, we know what each generator best used for.

This thesis is about a modular system that is especially designed for testing and comparing generators. The interface of the system itself is designed similar to

Design-Galleries [29]. The system is able to test many generators and define each generators advantages and disadvantages. It can measure the performance of each generator in generating input parameter vector; it can measure the time needed to give the user the image that he wants.

The system built is measuring the user interaction (how much time needed to find the desired image and number of deadends), CPU time, and the similarity measures between the current set of images and the desired image. There are four similarity measures used, which are Gabor, Color Histogram, Haralick, and Correlation. And seven types of generator are used for this comparison process, which are Random, Peng [35]. PFRL [11, 34], SVM Light [4], SVM-Peng [4, 35], Transductive SVM [21, 31, 43], and BSVM [18].

Chapter 2

DEVELOPMENT IN NAVIGATION IN

VISUALIZATION

Navigation of visualization techniques are now developing rapidly. Researchers are intensively developing better and better visualization algorithms and user interfaces. The developments in user interface part are mainly to support the development in algorithms, so that the user can interpret and retrieve the data more easily.

2.1 Development in User Interface

There used to be no specific system was designed to support the navigation process. There was not even any specific algorithm used to select the rendering parameters at that time. All things were done manually. The process of data exploration was more like a process of trial and error (turn-key). The user kept trying various combinations of rendering parameters until he found the output image that he was looking for.

Turn-key method seemed to exhaust the user. Therefore, algorithms started to be used to navigate the selection of input parameters. An actual system with the algorithm in it then started to be designed too to help improving the process of navigation. Data-flow model [10] was widely used for commercial used. This model allows the user to construct directed graphs representing the flow of data through the system. An image graph stores information about data exploration, and is unique because of its intuitive edge representation and dynamic features.

The problem with data-flow model is that there is no way to retrieve the visualization process. The input parameter vectors that generate images between the beginnings until the end of flow nodes are not saved. Therefore, there is no way to retrieve those images back.

As large multidimensional data set is used, navigation of visualization process needs a system that can support visibility so that the whole system can be displayed in one screen, and reusability, which means a user interface that can keep track of the previous images generated (history). Many papers and projects have been done to develop techniques that can solve this visibility and reusability problem.

Some simple techniques used to solve visibility problem are: zoom techniques, graph compression, or focus+context techniques [26], or fisheye lense [10]. Herman et al. [12] has done a survey of visualization and navigation techniques. Keim [23] classified visualization techniques based on the data type to be visualized, the visualization techniques, and the interaction and distortion techniques.

Some other papers developed new techniques, especially visualization techniques where all data can be seen in one screen. Fina et al. [8] developed structurebased brushes that allow users to navigate hierarchies of graph by specifying the specific part and the level-of-detail. Keim [22] developed pixel-oriented visualization technique to help exploring and analyzing large amount of multidimensional data. It maps each dimension of multidimensional data to color in a subwindow, and decide the arrangement, shape, and ordering of subwindows. Abello and Korn [1] developed MGV, a navigation technique for massive multigraphs that combines interactive pixeloriented 2D and 3D map, statistical displays, color maps, multilinked views, and a zoomable label based interface. Kreuseler and Schumann [25] developed another new visualization technique to gain more insight from the information space, including an intuitive focus+context technique. Some of the techniques will make the graph hard to be visualized. It is hard to find out where we are, and which direction should we search what we want. Each of those techniques will make the resulting images sometimes distorted and hard to be percept and compared.

Parameter-based representation system is then made. This type of representation does not intend to display the whole data in one screen. It displays only a portion of data, and let the user interactively steer the system to display the image that he wants using several techniques, for example: machine learning, artificial intelligence, image graph, or spreadsheet. This way, the data shown on the screen at one time is visible, and so it is easier to be percepted. The systems that fall into this category

are Image Graphs [28], Spreadsheet-like Interface [20], and Design Galleries [29].

Image Graph [28] is a system with a unique nodes-and-edges representation. Each edge connects two different nodes, and represents one of six different rendering parameters: color map, opacity map, rotation, zoom factor, shading, and resampling. It symbolizes the connection between two nodes, noted what parameter changed between the two nodes. Only one parameter can be changed from one node to another. Each mode simply represents the image itself, and it also keeps with it the input parameter vector that is used to generate the image.

Figure 2.1 is taken from paper by K. L. Ma [28], shows us a portion of Image Graph representing the exploration of a foot dataset. The numbers added to the graph to show the order of nodes generated. Each edge notates what parameter changes each time. From Node 1, the user changes the color parameter, opacity, and direction of the image to get Node 2 as the resulting image. Node 3 is the result of rotation that is applied to Node 1.

As more images added, Image Graph needs more and more space to display the entire visualization process. Because of the limitation of screen space, and also for visibility aspect, Image Graph is not efficient for large data set with multidimensional rendering parameters. Therefore, when large data set inputs are used, special techniques similar to visualization techniques then have to be applied to maintain the visibility of the system.

Spreadsheet-like system [20] has rows and columns, where each row and column

defines what parameter used and what is the value of it. With this interface, the comparison process can easily be seen, and the history of images can easily be traced back.

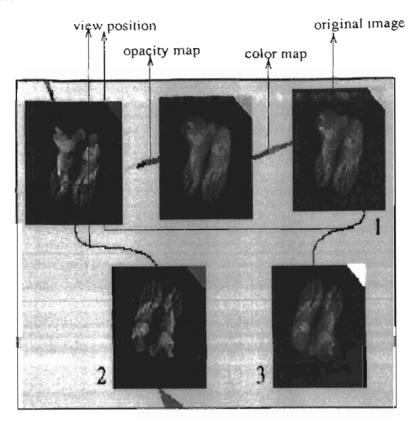


Figure 2.1: A portion of Image Graph representing the exploration of a foot dataset. This figure is taken from paper by K. L. Ma [28] page 83 Figure 3.

Figure 2.2 is taken from paper by K. L. Ma and T. J. Kelly [20], shows the effectiveness of Spreadsheet-like Interface for comparing skin and bone surface. With this interface, the difference between images can be seen more clearly by comparing

between rows and columns. On the first row, the opacity of the foot is determined, then the view position, color, and finally zoom factor.

Sometimes not all kind of data can be explored by using spreadsheet-like interface. Design Galleries [29] uses dispersion algorithm which given a set of light, finding a set of input vector that resulting output vector can optimally yield disperse images. Those images are expected to have the broadest selection of perceptually different graphics that are produced from broadest selection of input-parameter vector. Arrangement technique in Design Galleries will then represent the resulting images in a way so that those results can be percept more easily. The arrangement depends on the w (width) and h (height) value, where w defines the number of images per level, and h defines the number of level.

Figure 2.3 is taken from a paper by Andalman et al. [29], shows us the interface of Design Galleries with varying light selection and placement. In this picture, the weight (w) of the interface is 8, and the height (h) of the interface is 3. The user defines these values.

2.2 Development in Generator

Dispersion algorithm is important in finding input parameter vectors that can yield output vectors with disperse resulting images. Nowadays, dispersion algorithm is included in a part of a system called generator (Figure 4.4). In generator, dispersion algorithm based its next sampling on the feedback from the previous sampling process

that inputted to it. It will learn interactively which direction it will sample based on the feedback.

There are many kinds of techniques used to make sampling based on the previous feedback to be effective. Active learning and adaptive resampling are used for this relevance feedback technique. What the advantages and disadvantages of each technique are still questionable. Therefore, a modular system that is able to test and compare the performance of generators needs to be made.

Random Generator is a generator where the dispersion algorithm accepts no feedback from the user. It randomly samples images each time. This generator has random amount of time to find the desired image; the overall performance is predictably not really good.

There are already several projects made to develop more dispersion algorithm that take feedback from the user, and can learn fast from the feedback given. They have to be able to sample images that are closer and closer to the desired image in a smallest amount of time.

One of the generator with relevance feedback technique is Peng Generator [35], which given previous images feedback, makes new samples around the positive samples of the previous images. Given labeled data, it finds the mean value of each feature among the relevant data. It also finds the mean distance from each of the relevant data to the mean data. And from that mean values and mean distance values, new samples are computed by finding data around those mean values, with a

maximum distance of mean distance values from the mean values.

The other technique is based on paper by Peng et al. [34] and Heisterkamp et al. [11]. Given previous images' feedback, it uses Probabilistic Feature Relevance Learning and its combination with Query Shifting to retrieve similar images. It extracts images features and calculates their distances compare to other images, and return images with minimum distances.

This technique optimizes K-nearest neighbor kind of algorithms. K-nearest neighbor kinds of algorithms use the same weights for measuring each feature importance. Given similarity metric, the weights remain fixed in the computation. PFRL technique optimize this by assigning different weights for different features, depends of their importance in deciding the relevancy of data. This is important, since similarity does not vary with equal strength or in the same proportion in all directions in the feature space emanating from the query image. PFRL uses probabilistic method that enables image retrieval procedures to automatically capture feature relevance based on user's feedback and that is highly adaptive to query location. The weights can be calculated by first estimating the relevancy of each feature. If we have:

$$(x_j, y_j)_1^K$$

with: x_j denotes the feature vector representing jth retrieved image, and y_j represents the label (relevant or irrelevant), then the estimation of relevance, which uses the data from the vicinity of x_i at z is:

$$E[y|x_{i}-z] = \frac{\sum_{j=1}^{K} y_{j} 1(|x_{j}-z| < = \Omega)}{\sum_{j=1}^{K} 1(|x_{j}-z| < = \Omega)}$$

From this estimation, we can define a measure of feature relevance for query z as:

$$r_i = E[f|x_i = z|$$

And the weights is then:

$$w_i(z) = \frac{exp(Tr_i(z))}{\sum_{l=1}^{q} exp(Tr_l(z))}$$

with T is a parameter that represent the influence of r_i on w_i . If T = 0, we have $w_i = 1/q$, which means the weights are considered equal as in conventional K-near neighbor algorithm. Thus, the distance between two images is then:

$$D(x,y) = \sqrt[2]{\sum_{i=1}^{q} w_i (x_i - y_i)^2}$$

I then developed two new techniques that also consider the importance of certain feature in deciding the relevancy of an image. These techniques also consider that one feature of an image may not have the same importance as other features in deciding an image's relevancy.

The first technique (MyGenerator1) finds the feature that has the smallest distance to the mean of relevant samples. The smaller the distance to the mean of relevant sample means the bigger distance to the mean of irrelevant samples. That feature will be the most important feature that decides the relevance of an image.

Consider images A and B (relevant), C and D (irrelevant), with n features each: $A:A_1,A_2,...,A_n,B:B_1,B_2,...,B_n,C:C_1,C_2,...,C_n,D:D_1,D_2,...,D_n$. The mean of relevant images is: $AB^+=\frac{A_1+B_1}{2},\frac{A_2+B_2}{2},...,\frac{A_n+B_n}{2}$. The mean of irrelevant images is: $CD^-=\frac{C_1+D_1}{2},\frac{C_2+D_2}{2},...,\frac{C_n+D_n}{2}$. The distance between each of the n

features of relevant samples to mean of relevant images and mean of irrelevant images:

$$\sigma_{1}^{+} = \frac{|A_{1} - AB_{1}| + |B_{1}|}{n} \frac{|AB_{1}|}{n}$$

$$\sigma_{1}^{-} = \frac{|A_{1} - CD_{1}| + |B_{1} - CD_{1}|}{n}$$

$$\sigma_{2}^{+} = \frac{|A_{2} - AB_{2}| + |B_{2} - AB_{2}|}{n}$$

$$\sigma_{2}^{-} = \frac{|A_{2} - CD_{2}| + |B_{2} - CD_{2}|}{n}$$
....
$$\sigma_{n}^{+} = \frac{|A_{n} - AB_{n}| + |B_{n} - AB_{n}|}{n}$$

$$\sigma_{n}^{-} = \frac{|A_{n} - CD_{n}| + |B_{n} - CD_{n}|}{n}$$

From above, the smaller σ_i^+ is, and the larger σ_i^- is, the more relevant a feature is. Thus, to find new samples, the more relevant a feature is, the smaller we alter that feature.

The second technique (MyGenerator2) is also implemented based on the importance of image's features. MyGenerator2 finds the range of values where the features are relevant and irrelevant, and sorts them in ascending order. For example, consider six images A through F, each contains of n features. Images A, B, C, and D are relevant, and image E and F are irrelevant. The kth feature will be: $A_k^+ B_k^+ C_k^+ D_k^+ E_k^- F_k^-$, with $1 \le k \le n$. After each feature in the image is sorted, the result of first feature could be: $A_k^+ E_k^- B_k^+ C_k^+ F_k^- D_k^+$, with $1 \le k \le n$. Based on these range, the new samples will then be a random number with three ranges of

value. The first range is A_k , the second range is minimum value of B_k and maximum value of C_k , and the third range is D_k .

Other generators use active learning and adaptive resampling [19] in its dispersion algorithm. Active learning is a technique of picking a subset of data, and classifying them by giving them labels of relevance, irrelevance or unknown. Based on this classification, we generate classification model that can label the entire data set. Adaptive resampling is a technique that optimizes the process of classification, so that the classification model is more accurate and precise, and so have a smaller number of possibly misclassify instances.

Support Vector Machine [4] is also one type of powerful generator. It has already been widely used for data classification process, such as speech recognition [32], high-dimensional feature space image classification [5], or text classification [13]. To do the classification, Support Vector Machine first inputs a set of labeled data, and based on those labeled data, it makes a data model. Based on that data model, Support Vector Machine predicts and labels a new set of data [9]. In making a data model, SVM uses hyperplanes to separate the training data, so that each hyperplane marks the limit between classes of data; for binary classification, one side of the hyperplane is of class I, and the other side of the hyperplane is of class 0. For separable data, Linear Support Vector Machine is used, while for non-separable data, Nonlinear Support Vector Machine is used.

Support Vector Machine maps X dimension original training data into a higher

dimension feature space F via a Mercer kernel operator K that satisfies Mercer's condition:

$$f(x) = \sum_{i=1}^{n} \alpha_i K(x_i, x) = w \Phi(x)$$

with:

$$w = \sum_{i=1}^{n} \alpha_i \Phi(x_i)$$

f(x) then determine the classification process: if $f(x) \ge 0$ then x = 1, otherwise x = 0.

The two common kernels used are polynomial kernel and radial basis function kernel. Polynomial kernel, $K(u,v) = (u.v+1)^p$, induces polynomial boundaries of degree p in the original space X. And radial basis function kernel, $K(u,v) = (e^{-\gamma(u-v).(u-v)})$, induces boundaries by placing weighted Gaussians upon key training instances.

Bounded-Constraint Support Vector Machine [18] is a type of Support Vector Machine that extends the solution of Support Vector Machine for large classification and regression problems. It consists of two techniques, which are using bounded-constraint formulation for multi-class classification and regression, and also using Crammer and Singer's formulation [6] for multi-class classification.

Support Vector Machine Active Learning [13, 39] is one of the generators using active learning for retrieving images. It combines Support Vector Machines, which already proven to be successful in real-world learning tasks, and active learning. It is

developed as a refinement technique of relevance feedback technique. It grasps users query more quickly by using a usually high-dimensional hyperplanes to differentiate which data are relevant or irrelevant. The active learning part then trains the SVM classifier to classify data from the feedback given to it, and returns the resulting images.

Transductive Support Vector Machine is one of the techniques in optimizing Support Vector Machine technique. This technique [31, 43] is considering unlabeled data in classification process, in addition to relying on labeled training data, to improve the classification accuracy. In Transductive Support Vector Machines, the hyperplane is placed based on both labeled and unlabeled data. Joachims [21] in his paper shows that this can improve the classification process.

Statistical Learning Machine [30, 38] is implemented based on a well-developed statistical decision theory framework. This generator uses learning algorithms that will converge to optimal learning states as the number of learning trials increases. This algorithm will converge faster as the number of trials increases.

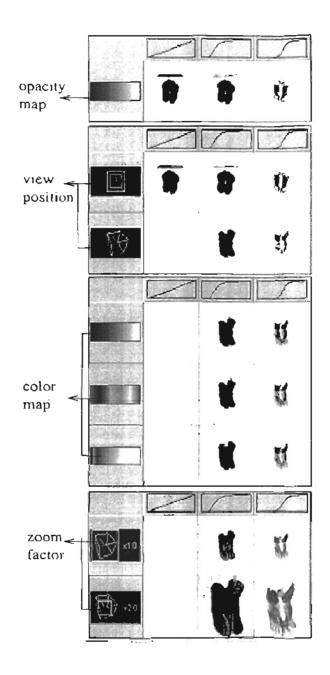


Figure 2.2: A sequence of spreadsheets displaying the visualization of a foot data set. This figure is taken from paper by K. L. Ma and T. J. Kelly [20] page 279 Figure 4.

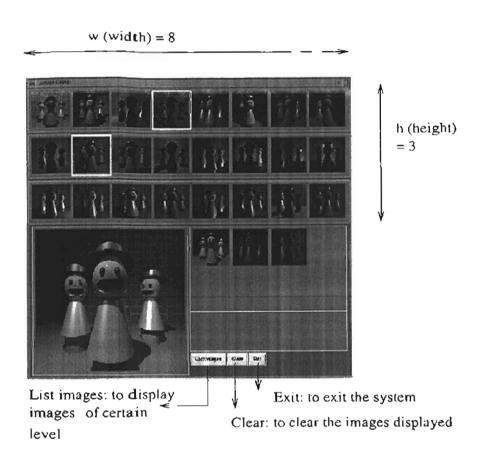


Figure 2.3: A Design Galleries for light selection and placement. This figure is taken from paper by Andalman et al. [29] page 397 Figure 9.

Chapter 3

COMPARING AND TESTING THE NAVIGATION ALGORITHMS IN VISUAL DATA EXPLORATION

Many questions arise regarding what are each generators advantages and disadvantage, and in which part are they better or worse than the others. For that, we need a system that can test and compare those generators. It will be difficult for us to test those generators themselves. What we can do is testing and comparing the effects of using those generators in the system, for example: using this particular algorithm in the generator in the system will lower the CPU time of that generator, etc.

When a particular set of data is applied to the system with a particular generator, the Statistic component of the system should record the result of the testing throughout the running of the system, and make a statistic from those results. If we apply that particular set of data to other types of generator, we will have statistic

for each of those generators. We can make a table that compares each generators statistic when that particular set of data is applied. By testing the generators with several sets of data, we will have several tables, and also graph if necessary.

There are two methods that we can use to do the testing to the system. The first method is by having the desired image known before the testing is done. Based on that image, the user then has to label the set of images displayed on the screen as relevant, irrelevant, or unknown, until he finds the desired image. The second method is by letting the user directly labels the images on the screen as relevant, irrelevant, or unknown, without having the desired image known beforehand.

We are focusing on the first method in doing our testing to the system, since by having the desired image to be known, it is easier for the user to do the comparison. The user can directly compare the desired image and images on the screen, without possibly being confused by other factors. If we use the second method, there are more human factors that we have to consider, since there is a bigger chance that the user is not consistent in labeling the images. Being inconsistent in labeling the images will confuse the generator in grasping the users query concept, and thus lower the performance of the generator.

The questions that arise in measuring the performance of the generators are:

How much user interaction needed for each generator?

There are two things that can measure user interaction in the exploration process:

- 1. Number of time the user needs to find the desired image. By counting the number of set of images have to be displayed to find the desired image, we can determine how much user interaction needed to find the desired image. The bigger the number of time means the worse the generator is.
- 2. Number of deadends that user has to go through during the exploration process. Deadend means the number of times the user feels that the previous set of images is better than the current set of images. The user then has to click the back button to ignore the current set of images, and continue the exploration process from the previous set of images. This means that the bigger the number of deadends is, the more often a user got confused during the exploration process. Thus, the bigger the number of deadends, the worse the generator is.
- -- How much CPU time needed from the starting of the system until the image desired is found?

There are three CPU times that we can measure:

- CPU time of the Generator component of the system, which is the CPU time
 needed for the algorithm in the generator to compute a new set of input vectors,
 given feedback that it got from the user.
- 2. CPU time of the Renderer component of the system, which is the CPU time needed for the Renderer to render images, given an input vector parameters.

CPU time of the User Interface component of the system, which is the CPU
time needed for the user to label and send feedback to the system, given a set
of images.

The CPU time of Renderer and User Interface may not vary for all generators tested, but those values will be useful for comparison. By knowing the CPU time of Generator, Renderer, and User Interface for each generator, we can compare which of those component takes most time to finish, and by how much.

What is the similarity measure between the resulting images so far with the desired image?

The similarity between the images on the screen and the desired image can be measured using several techniques. In this system, four types of feature are used to measure images' similarity, which are Gabor, Color Histogram, Haralick, and Correlation. All of those features try to measure how similar the current images displayed on the screen compare to the desired image, but they use different techniques to do that:

1. Gabor Similarity Measure

This technique is defined in these papers [14, 42]. Gabor is originally implemented as a frequency filter, but then also developed for face and character recognition. Nowadays it is already applied to recognize multivariate laser range

data [36] and it also applies recursively as recursive Gaussian [15]. It measures the similarity of two images by localizing the direction of spatial frequency at certain angle, and outputting maximally at those particular edges with that angle orientation. Thus, we can detect the edges at all orientations of an image.

Gabor filter is used to extract local image features. Consider an input image $I(x,y), (x,y) \in \Omega$, with Ω is the set of image points and 2-D Gabor function $g(x,y), (x,y) \in \Omega$, the Gabor feature image r(x,y) is:

$$r(x,y) = \int \int_{\Omega} I(\zeta,\eta)g(x-\zeta,y-\eta)d\zeta d\eta$$

With Gabor function:

$$g_{\lambda,\theta,\varphi}(x,y) = e^{-((x^2+\gamma^2y^2)/2\sigma^2)}\cos(2\Pi\frac{x^2}{\lambda} + \varphi)$$

where $x' = x\cos\theta + y\sin\theta$, $y' = -x\sin\theta + y\cos\theta$, $\sigma = 0.56\lambda$, $\gamma = 0.5$

In this thesis, Gabor technique is used to extract the features of images. The similarity between two images is measured by comparing the dot product and the Euclidean distance of two images.

2. Color Histogram Similarity Measure

This technique is defined in these two papers [16, 37]. It measures the similarity of two images by using color histogram for color image indexing. At a

given color space, each local color range is represented by one histogram bin. Thus, color histogram represents the coarse color distribution in an image. Two colors are considered identical if and only if they are allocated into the same histogram bin. Thus, no matter how similar two colors look like, if they are allocated into different histogram bin, then they are considered totally different.

Histogram Intersection is a technique that can efficiently match model and image histograms. It overcomes some problems that hinder recognition, which are distractions in the background of the object, viewing object from a variety of viewpoints, and occlusion. Histogram Intersection matches the image color histograms of each of the models. The higher the match value the better the fit to the model. With n buckets each, the normalized Histogram Intersection value of two histograms (two images: I as image and M as model), is:

$$H(I, M) = \frac{\sum_{j=1}^{n} min(I_j, M_j)}{\sum_{j=1}^{n} M_j}$$

And the distance metric (a scaled city-block metric) of the Histogram Intersection, which defines by function 1-H, assuming the histograms are scaled to be the same size, is:

$$1 - H(I, M) = \frac{1}{2T} \sum_{i=1}^{n} |I_i - M_{i}|$$

where

$$T = \sum_{i=1}^n M_i = \sum_{i=1}^n I_i$$

Similar to Gabor, Color Histogram is used to extract the features of images.

The dot product and Euclidean distance of the images is then compared to measure the similarity.

3. Haralick Similarity Measure

This technique is based on paper by Prof. Robert Haralick [17]. It measures the similarity of two images by using probabilistic measures, which used likelihood that were derived from Bayesian classifier that measures the relevancy of two images. If the likelihoodness between those two images are high, then the two images are similar, and vice versa, if the likelihoodness are low, then the two images are not similar.

The similarity is not computed in a common way by calculating the distance of feature spaces, instead it is computed using joint posterior probability ratios and then taking their weighted combinations. Haralick Similarity Measure uses Bayesian framework that combine multiple measurements on images. In binary classification, if there are n classifiers with measurement vectors x1, ..., xn, then the equation for Bayesian classifier is:

$$assign(\zeta_i, \zeta_i)$$
 to arg $max_{c \in A, B} p(c|x_1, ..., x_n)$

and assuming equal priors and conclitional independence, the Bayesian classifier is:

- Product rule: $assign(\zeta_i, \zeta_j)$ to arg $max_{c \in A,B} \prod_{i=1}^n p(c|x_i)$
- Sum rule: $assign(\zeta_1, \zeta_2)$ to arg $max_{c \in A,B} \sum_{i=1}^{n} p(c|x_i)$
- Max rule: $assign(\zeta_i, \zeta_j)$ to arg $max_{c \in A,B}$ $max_{i=1}^n p(c|x_i)$
- Min rule: $assign(\zeta_i, \zeta_j)$ to arg $max_{c \in A,B}$ $min_{i=1}^n p(\epsilon_i x_i)$
- Median rule: $assign(\zeta_i, \zeta_j)$ to $arg\ max_{c \in A,B}\ median^n_{i=1}p(c|x_i)$
- Majority rule: $assign(\zeta_i, \zeta_j)$ to arg $max_{e \in A,B} \sharp i_l p(e|x_i) > 0.5, i = 1, ..., n$ with p(e-xi) is the posterior probability given by the classifier i under class c. In this thesis, Haralick technique is used to extract the features of images. After the features are extracted, the similarity between the two images is calculated by both dot product and Euclidean distance.

4. Correlation Similarity Measure

This technique uses correlation to measure the similarity between two images. To measure the similarity between image A and B, where both images A and B have r rows and c columns, with pixels of A: a_11 , a_12 , ..., a_1c , ..., a_rc , and pixels of B: b_11 , b_12 , ..., b_1c , ..., b_rc , then the Correlation similarity measure will be:

$$A \bullet B =$$

$$a_1 1 * b_1 1 + a_1 2 * b_1 2 + \dots + a_1 c * b_1 c + \dots + a_r c * b_r c$$

with a_xy is a normalized pixel-

$$a_x y = rac{the \ RGB \ value \ of \ pixel \ a}{total \ RGB \ value}$$

As the two images compared are getting more similar to each other, the similarity values should be getting bigger.

For each of those measurements of performance, we have a table and a corresponding graph associated to it. The complete table and graph results are attached in the Appendix B, C, and D.

Chapter 4

EXPERIMENT

A modular and reliable system is built to test and compare the generators. The architecture of the system has to be arranged so that the testing procedure can be done as flexible as possible. The system has to be made as independent as possible from any parameter, so that we can compare the results accurately. In this section, we will first describe the architecture of the system and define how we are going to use this system to do the testing and comparison (4.1), and then discuss the experimental results (4.2).

4.1 The Architecture of the System

Figure 4.1 shows us the screenshot of the system. The interface displays twenty images at a time. Those images can be clicked; not clicking the image makes the status of the image unknown (signify by the green border around the image). Right

clicking makes the status of the image relevant (signify by the blue border around the image), and left clicking makes the status of the image irrelevant (signify by the red border around the image).

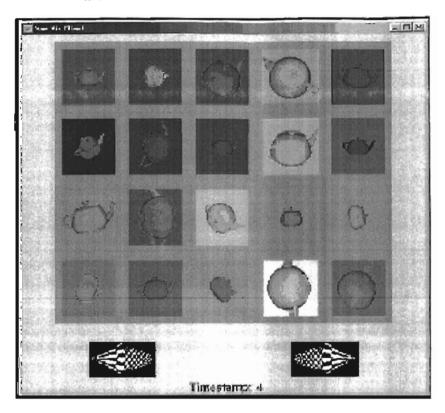


Figure 4.1: The screenshot of the system

The Timestamp on the bottom of the screen shows which set of images set that has been displayed so far; the first set of images is of timestamp 0, the next one is 1, and so on. There are two buttons on the upper side of the Timestamp, which are the Next and Back buttons. When the Next button is clicked, depending on the type of generator used, another set of twenty images is generated. Those images can be clicked again: once, twice, or not clicking at all. The process continues until the

desired image is found, and the user quit the system.

Network is used for this system, so that future experiments on distributed, collaborative visualization is possible. Therefore the interface has to differentiate when the system is in the idle state when it is waiting for a feedback from the current set of images, which is when the Next or Back button is not yet clicked, or when it is at a waiting state, which is when one of the button is already clicked and the system is trying to display a set of images.

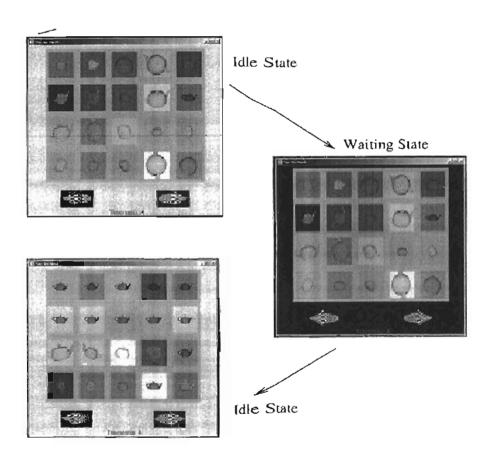


Figure 4.2: The transition between the displays of images

On the idle state, the color of the background of the screen is gray. Otherwise, on the waiting state, the color of the background turns black, and turns back to gray again after the waiting state is finished. On the waiting state, no button should be clicked, since the set of images that will be displayed will be skipped. The next set of images is then calculated based on the skipped set of images instead, and be displayed next. Figure 4.2 shows this state change.

The system consists of six main components, which are Generator, Renderer, Control, History, Statistic, and User Interface. Each of those parts has an independent individual task.

From Figure 4.3, we can see that Control organizes the components of the system. Control connects other parts of the system and controls the run of the system. Control gives input parameters to other parts in the system, and they reports the results back to Control, waiting for Control to pass another input parameters. For example, Control gives Generator (Figure 4.4) a training data, in the form of input parameter vectors, and also previous set of images Tabels, which is a feedback of the previous set of images from the user. Generator is then outputting a certain number of input parameter vectors based on the two inputs that are given to it. The output of this generator is reported back to Control. The number of training data inputted and outputted depends on the generators setting. Different generators are using different algorithms.

When the system is run for the first time, generator generates a set of random

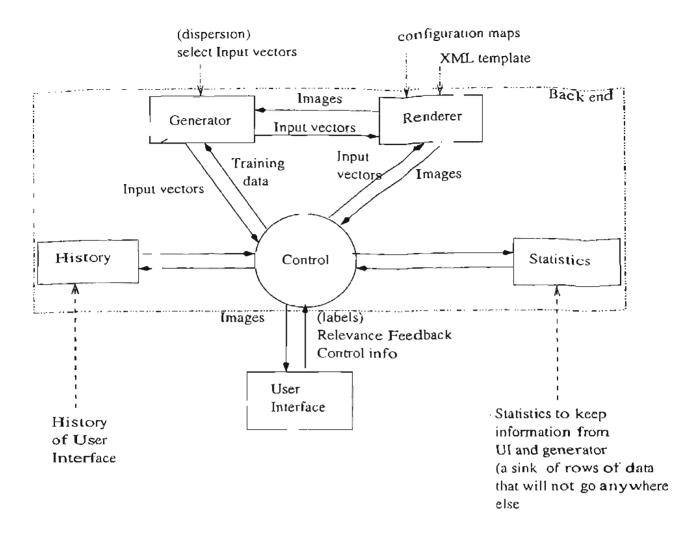


Figure 4.3: Diagram of the system

input parameter vectors. Those first input parameter vectors outputted by the generator are to be generated as dispersed as possible, so that choices of lights are vary. After that, Generator receives input vector from Control, and generate a set a light based on the input vector given.

Control and Generator gives Renderer input vector. Input vector given are of the range 0.0 to 1.0, so that the images compared are not distorted by one of the

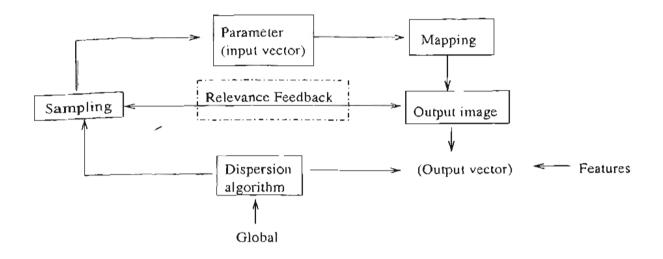


Figure 4.4: Diagram of the Generator

input parameters. Renderer part consists of three other parts, which are Functional Object Mapping, Keyword Substitution, and XML Renderer, as shown in Figure 4.5.

Functional Object Mapping consists of many conversion functions. Functional Object Mapping maps input vector from value range of 0.0 to 1.0 to other value ranges, based on what the conversions are. All of the information of what the input vectors are (object sizes, cameras distance, ctc) and what conversions to be used for each of them are kept in server input file, server.rc, under keyword parameter list (Figure 4.5). By reading from the input file, Functional Object Mapping knows what the input vectors are and what conversion to use. After converting the input vector ranges, it passes the result to Keyword Substitution.

Keyword Substitution substitutes the keyword used in XML template with actual values passed by Functional Object Mapping (Figure 4.6 and 4.7). Keyword Substitution knows what the input vectors are from the input file. It then reads from

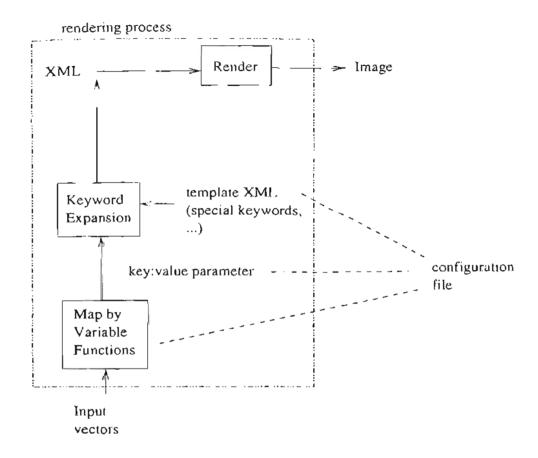


Figure 4.5: Diagram of the Renderer

XML template and match the keyword used for each input parameter, and substitute it with the actual value.

XML Renderer is the last part of Renderer. XML Renderer is the one who actually generates images using XML Parser. XML Parser maps the values in XML template to actual OpenGL codes and creates the image, and pass the image back to Control.

User Interface is connected to Control through network. With this network, many Users can access this system at the same time. A fast machine may render

```
< Thesis>
<View>
   < Camera camera V = "80.0 1 0.2 800.0" >
   </Camera>
</View>
<Scene>
   <DesiredImage desiredIm = "desiredIm.ppm" />

<Material face = "front" type = "diffuse" values = "1 1 1 1"/>
<FogColor fogColorV = "%(FogColor)s"/>
<Fog fogV = "%(FogInfo)s"/>
<LightSource name = "0">
       <Light pname = "ambient" value = "%(LightAmbiXYZA)s"/>
      <Light pname = "diffuse" value = "%(LightDiffXYZA)s"/>
<Light pname = "specular" value = "%(LightSpecXYZA)s"/>
       <Light pname = "position" value = "%(LightPosXYZA)s"/>
   </LightSource>
   <LightModel pname = "modelTwoSide" value = "true"/>
   <PlaceObject>
      <Translate transV = "0.0 0.0 -350.0"/>
      <Rotate rotateV = "%(RotateAXYZ1)s"/>
<Translate transV : "-120.0 0.0 30.0"/>
      <Color color V = "%(Color Teapot RGB)s"/>
      <GraphicsObject>

<Teapot size = "150"/>
      </GraphicsObject>
<Translate transV = "180.0 0.0 130.0"/>
<Color colorV = "%(ColorCubeRGB)s"/>
      <GraphicsObject>
<Cube size = "120"/>
      </GraphicsObject>
      <Translate transV = "50.0 0.0 -300"/>
<Color colorV = "%(ColorSphereRGB)s"/>
      <GraphicsObject>
         Sphere sphereInfo = "120 100 100"/>
       </GraphicsObject>
   </PlaceObject>
</Scene>
</Thesis>
```

Figure 4.6: XML template before substitution

```
<Thesis>
<View>
  <Camera cameraV = "80.0 1 0.2 800.0" >
  </Camera>
</View>
<Ścene>
  <DesiredImage desiredIm = "desiredIm.ppm" />
<Material face "front" type = "diffuse" values "1 1 1 1"/>
<FogColor fogColorV = "0.270674 0.560238 1.92013e-308 0"/>
  <Fog fogV: "1.26854 4.54831"/>
  <LightSource name = "0">
     clight pname = "ambient" value = "0 0 0 0"/>
< Light pname = "diffuse" value = "0 0 0 0"/>
< Light pname = "specular" value = "1.92039e-308 0 0 0 "/>
     <Light pname = "position" value = "-100 -100 -100"/>
  </LightSource>
  <LightModel pname = "modelTwoSide" value = "true"/>
  <PlaceObject>
     <Translate transV * "0.0 0.0 -350.0"/>
     <Rotate rotateV = "-180 0 0 0"/>
     <Translate transV = "-120.0 0.0 30.0" />
     <Color colorV = "0 0 0"/>
     <GraphicsObject>
        <Teapot size = "150"/>
     </GraphicsObject>
     <Translate transV = "180.0 0.0 130.0" />
     <Color colorV = "0 0 0"/>
     <GraphicsObject>
        <Cube size = "120"/>
     </GraphicsObject>
     <Translate transV = "50.0 0.0 -300"/>
<Color colorV = "1 0 0"/>
     <GraphicsObject>
        <Sphere sphereInfo = "120 100 100" />
     </GraphicsObject>
  </PilaceObject>
</Scene>
</Thesis>
```

Figure 4.7: XML template after substitution

images, for display anywhere. A simple extension would allow multiple machines to be used for rendering. This can make the exploration process much faster, because feedbacks from images arrive more frequently.

Control passes the images that it received from Renderer to User Interface. At the same time, those images parameter are also passed to History. User Interface is then labeling the images to be relevant, irrelevant, and unknown, and then click Next or Back button. When the User clicks Back or Next button, control is given back to Control.

If Next button is clicked, Control passes those images parameter and label to Generator, and passes some data to Statistic. Generator then makes a new set of input parameters based on the input given. These are then be passed to Control and Renderer. New set of images is generated from Renderer to be passed by Control to User Interface. User Interface then repeats the same procedure: marks the images to be relevant, irrelevant, and unknown, and pass it back to Control, etc. If Back button is clicked, Control calls History and tell it to return the input parameters that correspond to a set of images before the current images.

The History component encapsulates a data structure that holds the entire set of images and their associated information. History keeps track of the input parameter used to generate each image. It also keeps track which images are relevant, irrelevant, and unknown. If Next button is clicked, History is adding one more set of input parameters to the list. If Back button is clicked, History moves its current

position one back and return the set of input parameters correspond to the previous set of images.

The Statistic component will store all the testing results that are measured while the system is running. The system will be run several times, each time using a different generator. And in each run, that particular generator will be tested with several different test data sets. Statistic component will record all of those testing results and make a statistic from those results. These statistics will be used for comparing those generators. We will discuss what and how the testing will be done in the next section.

Figure 4.8 shows us the diagram of the system from file structure point of view. As we can see from the diagram, visclient and visserver has their own resource file, which are client.rc (Figure 4.9) and server.rc (Figure 4.10). client.rc defines the servers name and port number, and also the window width and height, while server.rc defines the clients port number, xml template used, parameter list, and mapping functions used for each parameter name.

The words on the bottom right of the boxes are the name of the namespaces under which the files (folders) are belong, visclient and visserver is where the connected ports defined. Then it goes through ServerFacade and ClientFacade, which do not provide the actual services. They are only the interfaces that pass the information to the backend renderer. Net is the actual implementation of the network, while control controls the backend parts and sends back the result through Net, to at the

end displayed through visclient.

Visserver, visclient, history, and control are an independent file, while Server-Facade, Net, KeywordSubstitution, Generator, XMLRenderer, GUIClient, and ImageUtils are folders.

ServerFacade folder contains ServerFacade and ClientFacade files. They are interfaces that pass information to backend renderer. Net contains netclient, net-server, and communicationSpecs files. They are the actual implementation of the network from client to server and vice versa.

KeywordSubstitution contains KeywordExpander file. It changes the keywords used in XML template to the actual values that are generated by the Generator. Generator contains all types of generators that are tested and compared by the system. Each of the generators generates input parameter vectors in its own way.

XMLRenderer contains camera, ElementFunctions, FuncObjMap, VectorToImage, XMLParser, and all other files needed for parsing and generating images. GUIClient contains display, keyboard, mouse, reshape, GUIutil, guiDataStructures, and all other files needed for establishing connection for user interaction with the system. ImageUtils contains simpleppm and imageutils files, which convert images to certain format of file (ppm or something else), and also contains image tools such as resizing and so on.

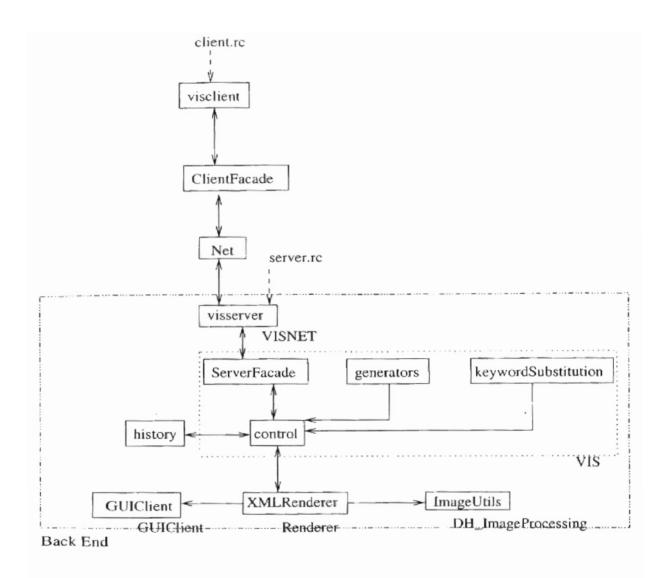


Figure 4.8: Diagram of the Systems File Structure

```
# configuration file for visualization navigation client,

* # visclient

* server host name = localhost

* server port = 7171

* initial window width = 600

* initial window height = 600

* * * **
```

Figure 4.9: Resource file from client side: client.rc

```
# configuration file for visualization navigation server,
# visserver
server port = 7171
# configuration for XMLRenderer
#configuration file for parameter name list and its accordated
#functional object and input vector indices
xml template file = template2
generator = RandomGenerator
parameter list = dPan dTilt dZoom dMove dMouse CameraOrtho FogInfo FogColor
MatDiffXYZA LightSrcName LightAmbiXYZA LightDiffXYZA LightSpecXYZA
LightPosXYZA RotateAXYZ1 ColorTeapotRGB TeapotSize RotateAXYZ2
ColorCubeRGB CubeSize ColorSphereRGB
dPan FnObj = DeltaMoveOneOne
dTilt FnObj = DeltaMoveOneOne
dZoom FnObj = DeltaMoveOneOne
dMove FnObj = DeltaMoveOneOne
dMouse FnObj = IdentityOneOne
CameraOrtho FnObj = Linear6Param
FogInfo FnObj = Fog2Param
FogColor FnObj = Identity4Param
FogColor FnObj = Identity4Param
MatDiffXYZA FnObj = Identity4Param
LightSrcName FnObj = IdentityOneOne
LightAmbiXYZA FnObj = Identity4Param
LightDiffXYZA FnObj = Identity4Param
LightSpecXYZA FnObj = Identity4Param
LightPosXYZA FnObj = Identity4Param
RotateAXYZ1 FnObj = Rotate4Param
RotateAXYZ1 FnObj = Rotate4Param
ColorTeapotRGB FnObj = Identity3Param
TeapotSize EnObj = ObjectSize
TeapotSize FnObj = ObjectSize
RotateAXYZ2 FnObj = Rotate4Param
ColorCubeRGB FnObj = Identity3Param
CubeSize FnObj = ObjectSize
ColorSphereRGB FnObj = Identity3Param
```

Figure 4.10: Resource file from server side: server.rc

4.2 The Result and Discussion of the Experiments

As what we have been discussed in Chapter III, Comparing and Testing Navigation Algorithms in Visual Data Exploration, there are a couple of experiments that we had performed to compare the generators. The system implemented is a modular system that especially designed to do these experiments. In this section, we will discuss how to do those experiments using the system, and then discuss the result of the experiment.

As we have discussed before, there are two methods that we can use to do the measurement. The first one is by knowing the desired image before the system starts. The second one is by trusting the user to guide the system until the desired image is found. In this experiment, we did only the first method for our measurements. It is more trustable, because human factor is not as big as the second method. For future work, the second method can be done too, to see how human factor influence the experimental results.

The experiment is done using seven generators, which are: Random generator, Peng generator, PFRL, SVMLight, SVM-Peng generator, Transductive SVM (TransSVM), and BSVM. In the experiment, Random generator generates new sample set by randomly picking values from range 0.0 to 1.0. Peng generator, based on the user feedback, generates a number of samples around the positive samples. It then picks the most disperse samples among the samples to be the new sample set. PFRL generates a number of input vectors and generates images from those vectors.

It then picks images with closest Gabor distance as the new sample set. SVMLight generates a number of samples by applying MyGenerator1, and generates a new set of images from those samples by using SVM Light. It picks the most disperse samples to get the new sample set. SVM-Peng generator combines Peng generator with BSVM in generating new sample set. TransSVM generates a number of samples by applying MyGenerator1, and generates a new set of images from those samples using Transductive SVM. BSVM generates new sample set by applying MyGenerator2 and BSVM.

Each of those generators is tested with several datasets, which are: OpenGL Object (3 Object: Teapot, Cube, and Sphere), Real Object (Al, Dolphin, F16, Flower, Porsche, Soccer Ball, and Vasc), and Scientific Data (electron density of Natrium).

In this section, we will discuss the result of the experiment based on how much user interaction needed, number of deadends, CPU time, and similarity features.

4.2.1 User Interaction

There are two things calculated to measure user interaction needed by each generator, which are the average time needed to find the desired image and the number of deadends.

Data Sci	Generator								
	Random	Peng	PFRL	SVMLight	SVM Ping	TransS VM	HAVAL		
Real Obj	13	7	4	- 4	5	1	5		
OpenGL Ohr	12	5	3	3	6	5	,1		
Scientific	16	7	4	5	5	41	-1		

Table 4.1: Average time (number of set of images) needed for Real Object, OpenGL Object, and Scientific data set to find the desired image.

Dota Sel	Generator							
	Random	Peng	PFRL	SVM Cight	SVM-Peng	TransSVA4	B,SVA!	
Real Obj	0 09	0.25	0.03	0 02	0 12	0 03	0.12	
OpenGL Obj	0.03	0 20	0.00	0 00	0.50	0.20	0.00	
Scientific Data	0.06	0 29	0.00	0.00	9.00	0,00	υ.00	

Table 4.2: Average number of deadends of Real Object, OpenGl Object, and Scientific data set as time increases for all of the generators tested.

Time needed to find desired image

From Table 4.1 we can see that when testing Real object, Random generator needs the most time to find the desired image, while PFRL, SVMLight, and TransSVM needs the least time. When OpenGL Object data set is tested. Random generator needs the most time to find the desired image, while PFRL, SVMLight, and BSVM needs the least time. When Scientific data set is tested, Random generator needs the most time to find the desired image, while PFRL, TransSVM, and BSVM needs the least time. Thus, we can conclude that Random and BSVM generators need the most and least time to find the desired image no matter what the test data set type is.

Deadends

Tables and graphs in Appendix B show the number of deadends of each generator when tested with different test data sets, and in which timestamp it happens. From Table 4.2, the average number of deadends/time between generators can be compared. The bigger the number of deadends/time, the more the user had to back to previous set of images and started over from there. That means the bigger the number of deadends/time, the worse the generator is. Table 4.2 shows that for all Real Object, OpenGL Object, and Scientific data object, Peng has the smallest average number of image clicks/time. For Real Object and Scientific data, Peng has the biggest average number of deadends/time. For OpenGL Object,Peng and TransSVM have the biggest average number of deadends/time.

4.2.2 CPU Time

To measure the CPU time of the Generator, Renderer, and User Interface components, we use the wall system clock to time them. The system clock resides in the Statistic component, where all the measurements and the results also reside. To measure CPU time of a Generator, the clock system records the time when Control passes training data and labels to the Generator. And when the Generator passes back the resulting input parameter vector to Control, the clock system records the time again. The CPU time of the Generator is then the difference between those two times recorded.

Data Set	Generator (miliserond)									
		Random	Peng	PFRI.	SVMLight	SVM-Prng	TransSVM	BSVM		
Real Obj	Generator	0 0789	1 0073	493.3000	10.6905	11-2441	9 1556	75 9091		
	Renderer	145.2071	153.5455	214.2179	214.6727	194 7584	200 3657	175 7211		
	ชา	0.3953	0.3852	0.4679	0.5476	0 5143	0 4957	0.4544		
OpenGL Obj	Generator	0 0001	1.4000	491 6670	12.5000	8.2500	11 8000	16.1667		
	Renderer	107.6670	114.2000	143.5000	141.8330	94 5000	114 0000	141.6670		
	υı	0 4167	0.4000	0.3333	0 5000	0.4167	0.5000	0.5000		
Scientific	Generator	0 1250	0.9286	421.8750	11.8000	13 3000	9 6250	16.2500		
	Renderer	109 6560	142 7860	203.5000	202.2000	204 5000	204.6250	202.5000		
	UI	0 4375	0.5714	0.6250	0.5000	0 4000	0 6250	0.7500		

Table 4.3: Generator, Renderer, and UI's CPU time of all Real Object, OpenGL Object, and Scientific Data sets for generators tested

The CPU time of Renderer and User Interface components are measured in the same way.

Table 4.3 shows us the CPU time of all generators when tested with three data set types. When all Real Object, OpenGL Object, and Scientific test data sets are measured, generators with the largest and smallest generator CPU time are PFRL and Random. PFRL has much bigger generator CPU time because each time the generator has to generate a lot of output images, extract the features, and calculate new set of images based on the extracted features. Random basically just randomly generate new input vectors. It does not have to calculate anything else. That is why it takes a very small amount of time to finish.

When Real Object is measured, generators with the largest and smallest renderer CPU time are SVMLight and Random. When OpenGL Object is measured, they are PFRL and SVM-Peng. When Scientific Data is measured, they are TransSVM and Random.

The bigger the UI CPU time means the more users have to think when labeling the images. This means the generator is not very informative or confusing. When Real Object is measured, generators with the largest and smallest UI CPU time are SVMLight and Peng. When OpenGL Object is measured, they are both TransSVM and BSVM, and PFRL. When Scientific Data is measured, they are BSVM and SVM-Peng.

4.2.3 Similarity measure

Similarity measure is calculated using two methods. The first method is by calculating the Euclidean distance between the two images. The smaller the distance between the two images, the more similar the two images are, and vice versa. Thus, as time increases, the distance of the two images should be getting smaller and smaller. The second method is by calculating the dot product between the two images. This method calculates the similarity value between two images. Thus, the bigger the dot product value between two images, the more similar the two images are.

To define each generator's performance, for each similarity measure technique used, maximum, average, and minimum similarity measure values are calculated. Maximum, average, and minimum similarity measure values are the maximum, average, and minimum similarity values arrong a set of images compare to the image

that we want to generate.

The discussion of the result will consider two factors. The first one is the performance of each generator as the time increases. This is examined by the tables and graphs on Appendix C. Appendix C has the complete tables and graphs of all maximum, average, and minimum distance and similarity value of all test data sets when measured using all four features as time increases. As the time increases, the set of images generated should have smaller and smaller distance to the desired image.

The second factor is the robustness of the generators, which examined by the tables and graphs on Appendix D. Appendix D has the complete tables and graphs of all maximum, average, and minimum distance and similarity value of all test data sets when measured using all four features. Since it is always possible to construct situations that favor a particular generator over all the others, the issue becomes one of robustness. For each feature of a sample file of a particular data set types, the average of the first three timestamps of maximum, average, and minimum distance tables of each generator are calculated. The distance rate d_m and the distribution (upper and lower quartiles) of each generator's maximum, average, and minimum Euclidean distance can then be calculated from the sample files' maximum, average, and minimum average values calculated above. The similarity rate of each generator is calculated using similar method.

The robustness issue [7, 33] can be captured by computing distance and similarity ratio. The ratio r_m of its distance rate d_m and the smallest distance rate in

a particular example: $r_m = \frac{d_m}{\min_{1 \le k \le 7} d_k}$. The ratio r_m of its similarity rate s_m and the biggest similarity rate in a particular example: $r_m = \frac{s_m}{\max_{1 \le k \le 7} s_k}$. Thus, the best generator m^* for that example will have $d_m = 1$, and all other generators have larger values $d_m \ge 1_{m \ne m}$. Equivalently, it will have $s_m = 1$, and all other generators have smaller values $s_m \le 1_{m \ne m}$. The larger the value of d_m (the smaller s_m) the worse performance of the mth generator is for that example. The distribution of d_m values for each generator over all the problems therefore seems to be a good indicator of robustness. The graphs generated plot a distribution of the distance and similarity rate for each generator. Each has maximum and minimum value, and box that marks the range between upper and lower quartiles, and horizontal line between them that marks the median.

As mentioned above, three test data set types are used in measuring the similarity measure, which are Real Object, OpenGL Object, and Scientific Data. Below we will discuss each of them, with different similarity measure techniques used.

Real Object

Tables and graphs on Appendix C show the generators' performance as the time increases. When all Gabor, Color Histogram, Haralick, and Correlation are used, both PFRL and BSVM are mostly able to generate image with the smaller and smaller minimum distance to the desired image. Only PFRL that is able to generate set of images that have constantly smaller and smaller average and maximum distance

than the previous set of images.

Figure 4.11(a) examines the robustness of the maximum distance distribution of a particular generator over all other generators when all Gabor, Color Histogram, Haralick, and Correlation features are used. Among all generators, TransSVM is the most robust generator. It has the best median performance (1.33), and also the narrowest interquartile range. In half of the problem, its distance rate is no more than 22% than the best case. In 3/4 of the problem it is mo more than 33%. And it is 46% in the worst case. PFRL has similar but slightly worse median and interquartile range performance compare to TransSVM. Peng, SVMLight, and TransSVM have average median performance and interquartile range. SVM-Peng has also similar performance to those three generators, but it has the widest interquartile range. Random has the worst distribution, where the corresponding numbers are 1.55, 43%, 50%, and 66%.

From Figure 4.11(b), we can examine how well a particular generator performs on average over all other generators when Gabor, Color Histogram, Haralick, and Correlation features are used. In this particular problem, both TransSVM and PFRL are the most robust generators. TransSVM has among the best interquartile range, but average median performance (1.30). On the other hand, PFRL has the best median performance (1.28), but slightly worse interquartile range compare to TransSVM. In half of the problem, TransSVM has 29% worse distance rate compare to the best case. In 3/4 of the problem and the worst case, they are 51% and 73%. The corresponding numbers for PFRL are 27%, 52%, and 74%. Other generators

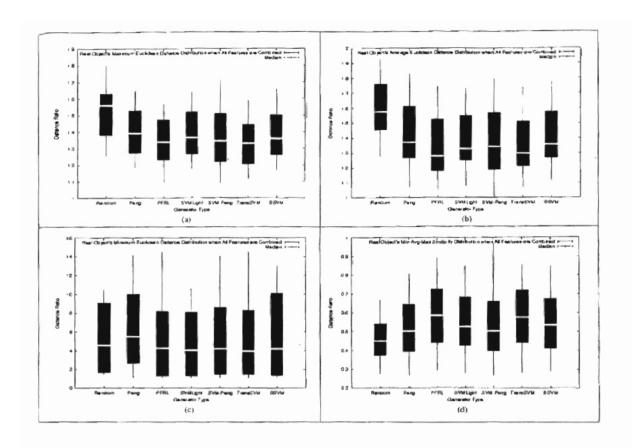


Figure 4.11: (a)-(c) Maximum, average, and minimum Euclidean distance ratio (r_m) distribution for Real Object data set with Gabor, Color Histogram, Haralick, and Correlation features combined. (d) Combination of Maximum, Average, and Minimum similarity value distribution for Real Object data set with Gabor, Color Histogram, Haralick, and Correlation features combined.

have much higher median value and average interquartile ranges. Generator with the widest interquartile range is SVM-Peng. Random is the generator with the worst distribution, where the corresponding numbers are 1.58, 57%, 75%, and 92%.

From Figure 4.11(c), the robustness of the minimum distance distribution of a particular generator over all other generators when all Gabor, Color Histogram, Haralick, and Correlation features can be determined. For this particular problem, both TransSVM and SVMLight are considerably the most robust generators. TransSVM has the best median performance (3.67), and among the best interquartile range. SVMLight has the narrowest interquartile range, but slightly worse median performance (3.84). In half of the problem, TransSVM has 252% higher distance rate than the best case. In 3/4 of the problem and the worst case, they are 694% and 1294%. The corresponding numbers for SVMLight are 268%, 678%, and 922%. BSVM has the widest interquartile range, while Peng has the worst median value. All other generators have average median performance and interquartile range. Among all generators, TransSVM has average interquartile range, the best in median, half, 3/4 of the problem and worst case performance.

Figure 4.11(d) examined the robustness of the similarity distribution of a particular generator over all other generators when all Gabor, Color Histogram, Haralick, and Correlation features are used. In this case, it seems like the generators with best median performance have among the worst interquartile range, and vice versa. PFRL and TransSVM have among the best median performance, but their interquartile ranges are among the worst. On the other hand, Peng and SVM-Peng have among the worst median performance, but their interquartile ranges are among the best. SVMLight and BSVM have average median performance and interquartile range, while Random has the worst distribution of all, with 0.45 median, 117%, 160%, and 253% higher similarity rate in half, 3/4, and worst case of the problem. If we look at the graph, the interquartile ranges of most generators are almost the same. The difference between the best and the worst interquartile range in this particular problem is not extreme. Thus, if interquartile range performance is ignored, PFRL is the most robust generator, with corresponding numbers 0.58, 69%, 121%, and 231%. If interquartile range performance is essential, then SVMLight is the most robust generator, with corresponding numbers 0.52, 87%, 128%, and 250%. SVMLight is the generator with the most consistent performance, even though its performance is not the best one.

OpenGL Object

Tables and graphs on Appendix C show the generators' performance as the time increases. When all Gabor, Color Histogram, Haralick, and Correlation are used, no generator is able to generate image with the smaller and smaller minimum and average distance to the desired image. Only SVM-Peng that is able to generate set of images that have constantly smaller and smaller maximum distance than the previous set of images.

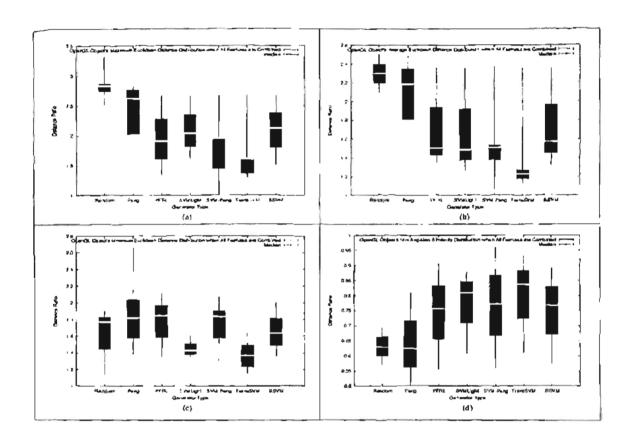


Figure 4.12: (a)-(c) Maximum, average, and minimum Euclidean distance ratio (r_m) distribution for OpenGL Object data set with Gabor, Color Histogram, Haralick, and Correlation features combined. (d) Combination of Maximum, Average, and Minimum similarity value distribution for OpenGL Object data set with Gabor. Color Histogram, Haralick, and Correlation features combined.

From Figure 4.12(a), we can determine the robustness of the maximum distance distribution of a particular generator over all other generators when all Gabor, Color Histogram, Haralick, and Correlation features are used. It is clear from the figure that TransSVM is the most robust generator. It has the best median performance (1.58) and the narrowest interquartile range. In half of the problem, it has 58% higher distance rate compare to the best case. In 3/4 of the problem and the worst case, they are 59% and 166%. Peng has the widest interquartile range, while Random has the worst median performance. Other generators have average interquartile range and median performance. Random has the worst distribution, with corresponding numbers 2.81, 180%, 185%, and 230%. Its distance rates are high in all cases, which means it is at all time performs badly.

Figure 4.12(b) shows us that TransSVM is clearly the most robust generator on average over all other generators when Gabor, Color Histogram, Haralick, and Correlation features are used. It has the best median performance (1.23) and the narrowest interquartile range. In half of the problem, it has only 15% higher distance rate than the best case. In 3/4 of the problem and the best case, they are 19% and 121%. SVM-Peng is the most robust generator after TransSVM. PFRL. SVMLight, and BSVM have similar performance, with average median performance and interquartile range. Random and Peng's distance rates are far above other generators. This means that both Random and Peng performs worst compare to other generators most of the time. Random has the worst distribution with corresponding

numbers 2.29, 115%, 125%, and 135%.

From Figure 4.12(c), we can determine the robustness of the minimum distance distribution of a particular generator over all other generators when all Gabor, Color Histogram, Haralick, and Correlation features are used. For this particular case, TransSVM has considerably consistent performance. It has best median performance (1.34) and among the narrowest interquartile range. It has 19% higher distance rate in half of the problem, and 31% and 45% in 3/4 of the problem and the worst case. SVMLight has narrower interquartile range compare to TransSVM, but TransSVM's range has better performance with lower distance rate. SVMLight interquartile range is 1.38-1.51, while TransSVM's is 1.23-1.49. Peng has the widest interquartile range, while PFRL has the worst median performance. Other generators have average median performance and interquartile range.

Figure 4.12(d) examined the robustness of the similarity distribution of a particular generator over all other generators when all Gabor, Color Histogram, Haralick, and Correlation features are used. As we can see from the Figure, the interquartile ranges of most generators tested are almost the same. Among all generators. TransSVM has considerably consistent performance It has the best median performance (0.84) and average interquartile performance. It has 15%, 33%, and 57% higher similarity rate in half, 3/4, and worst case of the problem. SVMLight has narrower performance compare to TransSVM, but its median performance is worse. SVM-Peng has the widest interquartile range, while Peng has the worst median performance. All

other generators have average median and interquartile range. Random has the worst distribution with similarity distances far below other generators, which means most of the time it performs worse than other generators. Its corresponding numbers are 0.63, 52%, 60%, 68%.

Scientific Data

Tables and graphs on Appendix C show the generators' performance as the time increases. When all Gabor, Color Histogram, Haralick, and Correlation are used, no generator is able to generate image with the smaller and smaller minimum, average, and maximum distance to the desired image.

Figure 4.13(a) examines the robustness of the maximum distance distribution of a particular generator over all other generators when all Gabor, Color Histogram, Haralick, and Correlation features are used. It this case, TransSVM, the generator with best median performance (1.98), seems to have the widest interquartile range. It has 98%, 107%, and 117% higher distance rate compare to the best case in half, 3/4, and worst case of the problem. SVM-Peng has the second best median performance after TransSVM (2.03), and it has considerably narrow interquartile range. Its corresponding numbers are 103%, 110%, 117%. As we can see from the figure, the interquartile range difference is not much. But, if interquartile range is essential, we can say that SVM-Peng has among the best median performance, and considerably consistent performance in general. If interquartile range is ignored, then TransSVM is

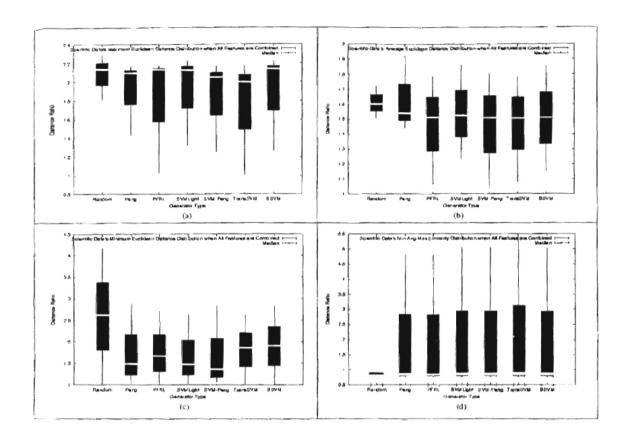


Figure 4.13: (a)-(c) Maximum, average, and minimum Euclidean distance ratio (r_m) distribution for Scientific data set with Gabor, Color Histogram, Haralick, and Correlation features combined. (d) Combination of Maximum, Average, and Minimum similarity value distribution for Scientific data set with Gabor, Color Histogram, Haralick, and Correlation features combined.

the most robust generator. PFRL and Random have the worst median performance.

All other generators have average median performance and interquartile range. Random has the worst distribution with corresponding numbers 2.12, 112%, 120%, 129%.

From Figure 4.13(b), we can determine how well a particular generator performs on average over all other generators when Gabor, Color Histogram, Haralick, and Correlation features are used. As we can see clearly from the Figure, all PFRL. SVM-Peng, TransSVM, and BSVM have the same (lowest) median value (1.51). Among those four generators, BSVM has the narrowest interquartile range, but its distance rate distribution is worse than TransSVM. Even though TransSVM has wider interquartile range, it has better performance. Thus, we can conclude that TransSVM is the most robust generator in this case. In half of the problem, it has 46% higher distance rate compare to the best case. In 3/4 of the problem and the worst case, they are 59% and 73%. SVM-Peng has the widest interquartile range, while Random has the worst median performance. All other generators have average median performance and interquartile range. Random is the generator with the worst distribution, with corresponding numbers 1.60, 55%, 61%, 67%. Even though Random has the narrowest interquartile range, but its distance rate is far above other generators, which means it performs badly most of the time.

From Figure 4.13(c), the robustness of the minimum distance distribution of a particular generator over all other generators when all Gabor, Color Histogram, Haralick, and Correlation features are used can be determined. SVM-Peng has the

best median performance (1.33), but among the widest interquartile range. SVMLight has slightly worse median performance (1.44) but among the lowest interquartile range. Thus, we can say that SVMLight has among the best median performance, and considerably consistent performance in general. In half of the problem, it has 44% higher distance rate compare to the best case. In 3/4 of the problem and worst case, they are 104% and 165%. Random has the worst median performance and the widest interquartile range. Its distance rates are far above other generators. It also has the worst distribution, with corresponding numbers 2.59, 159%, 239%, and 317%.

Figure 4.13(d) examined the robustness of the similarity distribution of a particular generator over all other generators when all Gabor, Color Histogram, Haralick, and Correlation features are used. In this case, Peng is the most robust generator. It has the best median performance (0.84) and narrowest interquartile range among all generators but Random. In half of the problem, it has 542% higher similarity rate compare to the best case. In 3/4 of the problem and worst case, they are 578% and 618%. Random has the narrowest interquartile range, but among the worst median performance. In general, it performs worse than other generators most of the time. Its corresponding distribution numbers are 0.83, 554%, 579%, and 606%.

Chapter 5

SUMMARY

Data recognition and classification process is one of the most difficult parts in computer graphics. Many papers and projects have been done to improve the navigation of visualizations process. Many algorithms and intuitive user interfaces have been designed, but no specific system has been developed to test and compare them. The system is a modular system that tests and compares the effects of using each of the generators. Using the system that we developed, we are able to define the advantages and disadvantages of each generator compare to others. The system is built especially to compare all the existing generators in a couple of important aspects. The system is made to be as compatible as possible to do the comparison and testing. All input parameters are inputted from a file (input vector file and XML template file), so that they can be changed easily without changing the system. The system also allows many users to access the system at the same time, to speed up the exploration process.

The system has been used to compare the performance of seven generators, which are Random generator, Peng generator, PFRL, SVMLight, SVM-Peng, TransSVM, and BSVM. Three types of data set are used to test each of these generators, which are Real object, OpenGL object, and Scientific data set.

Two measurements are calculated to measure how much user interactions are needed during the navigation process. They are the time needed to find the desired image and the number of deadends. The experimental result shows that no matter what the data type tested, Random needs the most time to find the desired image, while PFRL needs the least time. The result also shows that generators that contain Peng algorithm in them have the largest number of deadends, while SVMLight has the smallest number. When CPU time is measured, for all data types, PFRL have the largest Generator CPU time, while Random generator has the least.

This thesis discusses in detail the experimental results when all Gabor, Color Histogram, Haralick, and Correlation features are combined. When all features are combined, for Real Object data set, the most robust generators for maximum, average, and minimum Euclidean distance distributions are TransSVM, both TransSVM and PFRL, and both TransSVM and SVMLight. For OpenGL Object data set, the most robust generator for maximum, average, and minimum Euclidean distance distributions is TransSVM. For Scientific data set, the most robust generator for maximum and average Euclidean distance distributions is TransSVM. The most robust generator for minimum Euclidean distance distribution is SVMLight.

For Real Object data set, the most robust generators for maximum, average, and minimum similarity distributions are both TransSVM and PFRL. For OpenGL Object data set, it is TransSVM. For Scientific data set, it is Peng.

The complete experimental results are attached on Appendix B, C, and D. Appendix B contains the tables and figures of user interaction (time needed to find desired image and number of deadends) and CPU time of all generators. Appendix C contains the tables and figures of Euclidean distance and similarity value of all generators as time increases. Appendix D contains the tables and figures of Euclidean distance and similarity value distributions of all generators tested.

Chapter 6

FUTURE WORKS

As we can see from above, the performance of each generator is greatly influenced by the type of data set tested and which similarity measure used. Besides data set type and similarity measure used, there are several factors that can influence the performance of each generator. The system that is built for this thesis has several areas that can be improved in the future.

PFRL has the worst generator and renderer CPU time. This is because PFRL generates a new set of images based on the output features of images. Thus, each time PFRL has to generate a new set of images, it has to generate a number of input vectors, and generate images from those input vectors. Finally it has to extract each image's features, and pick a new set of images based on those features. Instead of generating full size images, thumbnail of images can be generated in the future to reduce the generator CPU time of PFRL.

In BSVM, MyGenerator2 is used to generate new samples that BSVM used

to generate a new set of images. In MyGenerator2, for each feature of an image, there are several ranges of value that are used to generate new samples. For example, if there are n features in an image, then feature 1 has k_1 ranges of value, feature 2 has k_2 ranges of value, feature n has k_n ranges of value. Thus, to generate a dispersed new samples, each feature's range of value has to be the combination of all other features' range of values, with possible number of new samples generated: $k_1 * k_2 * ... * k_n$. MyGenerator2 does not apply this. Thus, new samples generated by MyGenerator2 may not give the samples that user wanted. This can significantly influenced the performance of the generator tested, which is BSVM. In the future, in order to get a dispersed sample, new samples have to be generated by considering all possible features' ranges as described above.

The system built already calculated the number of mouse clicks/timestamp and image clicks/timestamp of the exploration process. These numbers can also be used to measure generators' performance in the future. For example to examine whether as time increases the user clicks more relevant or irrelevant images. Also whether the user often clicking and unclicking images, which can measure whether the user is often confused by the generator.

There also exist several directions for future research in expanding this comparison system. The system can be designed and put in the web, so that exploration process can take place instant places at the same time. Bender et al. [3] gives us a good reference of the framework of web-based visualization system. The intermediate

testing and comparison of dispersion algorithms can also be done in the future, so that we will not only have the final result of the algorithms, but also the resulting images in-between the starting point and the ending point of the algorithms. Kim et al. [24] gives us good reference for this. We can also try to reduce the preprocessing time of the system in displaying images on the screen. Lum et al. [27] do research that can be continued in the future.

References

- [1] J. Abello and J. Korn. MGV: A System for Visualizing Massive Multigraphs. In IEEE Transactions on Visualization and Computer Graphics, Vol. 8, No. 1, January March 2002.
- [2] E. Angel. Interactive Computer Graphics: A Top-Down Approach with OpenGL, Second Edition, Addison Wesley, 2000.
- [3] M. Bender, R. Klein, A. Disch, and A. Ebert. A Functional Framework for Web-Based Information Visualization Systems. In IEEE Transactions on Visualization and Computer Graphics, Vol. 6, No. 1, January-March 2000.
- [4] C. J. C. Burges. A Tutorial on Support Vector Machines for Pattern Recognition. In Data mining and Knowledge Discovery, Vol. 2, No. 2, pages 121-167, 1998.
- [5] O. Chapelle, P. Haffner, and V. N. Vapnik. Support Vector Machines for Histogram-Based Image Classification. In IEEE Transactions on Neural Networks, Vol. 10, No. 5, September 1999.
- [6] K. Crammer and Y. Singer. Algorithmic Implementation of Multiclass Kernel-Based ector Machines, Technical Report, School of Computer Science and Engineering, Hebrew University, 2001.
- [7] J. H. Friedman. Flexible Metric Nearest Neighbor Classification, Techical Report, Department of Statistics, Stanford University, 1994.
- [8] Y. H. Fua, M. O. Ward, and E. A. Rundensteiner. Structure-Based Brushes: A Mechanism for Navigating Hierarchically Organized Data and Information Spaces. In IEEE Transactions on Visualization and Computer Graphics, Vol. 6, No. 2, April-June 2000.
- [9] G. Fung and O. L. Mangasarian. Data Selection for Support Vector Machine Classifiers. In Proceeding of Third International Workshop on Web Information and Data Management, pages 1-8, November 2001.
- [10] G. W. Furnas. Generalized Fisheye Views. In Proceeding of CHI Human Factors in Computing Systems, pages 16-23, April 1986.
- [11] D. R. Heisterkamp, J. Peng, and H. K. Dai. Feature Relevance Learning with Query Shifting for Content-Based Image. In Proceeding International Conference on Pattern Recognition, Barcelona, Spain, pages 250-253, September 3-7, 2000.

- [12] I. Herman, G. Melancon, and M. S. Marshall. Graph Visualization and Navigation in Information Visualization: A Survey. In IEEE Transactions on Visualization and Computer Graphics, Vol. 6, No. 1, January-March 2000.
- [13] K. S. Goh, E. Chang, and K. T. Cheng. Classification: SVM Binary Classifier Ensembles for Image Classification. In Proceeding of the Tenth International Conference on Information and Knowledge Management, pages 395-402, October 2001.
- [14] S. E. Grigorescu, N. Petkov, and P. Kruizinga. Comparison of Texture Features Based on Gabor Filters. In IEEE Transactions on Image Processing, Volume 11, Number 10, pages 1160-1167, October 2002.
- [15] M. H. Gross and R. Koch. Visualization of Multidimensional Shape and Texture Features in Laser Range Data Using Complex-Valued Gabor Wavelets. In IEEE Transactions on Visualization and Computer Graphics, Volume 1, Number 1, pages 44-59, March 1995.
- [16] J. Han and K. K. Ma. Fuzzy Color Histogram and Its Use in Color Image Retrieval. In IEEE Transactions on Image Processing, Volume 11, Number 8, pages 944-952, August 2002.
- [17] S. Aksoy and R. M. Haralick. A Classification Framework for Content-Based Image Retrieval. In Proceeding of 16th International Conference on Pattern Recognition, Vol. 2, No. 3, 2002.
- [18] C. W. Hsu and C. J. Lin. A Comparison of Methods for Multi-Class Support Vector Machines. In IEEE Transactions on Neural Networks, pages 415-425, 2002.
- [19] V. S. Iyengar, C. Apte, and T. Zhang. Active Learning using Adaptive Resampling. In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 91-98, August 2000.
- [20] T.J. Jankun-Kelly and K.L. Ma. Visualization Exploration and Encapsulation via a Spreadsheet-Like Interface. In IEEE Transactions on Visualization and Computer Graphics, Vol. 7, No. 3, July-September 2001.
- [21] T. Joachims. Transductive Inference for Text Classification Using Support Vector Machines. In International Conference on Machine Learning, 1999.
- [22] D. A. Keim. Designing Pixel-Oriented Visualization Techniques: Theory and Applications. In IEEE Transactions on Visualization and Computer Graphics, Vol. 6, No. 1, January-March 2002.
- [23] D. A. Keim. Information Visualization and Visual Data Mining. In IEEE Transactions on Visualization and Computer Graphics, Vol. 8, No. 1, January-March 2002.

- [24] K. Kim, M. Wittenbrink, and A. Pang. Extended Specifications and Test Data Sets for Data Level Comparisons of Direct Volume Rendering Algorithms. In IEEE Transactions on Visualization and Computer Graphics, Vol. 7, No. 4, October-December 2001.
- [25] M. Kreuseler and H. Schumann. A Flexible Approach for Visual Data Mining. In IEEE Transactions on Visualization and Computer Graphics, Vol. 8, No. 1, January-March 2002.
- [26] J. Lamping, R. Rao, and P. Pirolli. A Focus+Context Technique Based On Hyperbolic Geometry for Visualizing Large Hierarchies. In Conference Proceeding on Human Factors in Computing Systems, pages 401-408, May 1995.
- [27] E. B. Lum, K. L. Ma. and J. Clyne. A Hardware-Assited Scalable Solution for Interactive Volume Rendering of Time-Varying Data. In IEEE Transactions on Visualization and Computer Graphics, Vol. 8, No. 3, July-September 2002.
- [28] K.L Ma. Image-Graphs A Novel Approach to Visual Data Exploration. In Proceeding IEEE Visualization 1999, pages 81-88, October 1999.
- [29] J. Marks, B.Andalman, P.A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, and S. Shieber. Design Galleries: A General Approach to Setting Parameters for Computer Graphics and Animation. In Proceedings of SIGGRAPH 97, Los Angeles, pages 389-400, August 1997.
- [30] Z. Nie, S. Kambhampati, U. Nambiar, and S. Vaddi. Mining Source Coverage Statistics for Data Integration. In Proceeding of the Third International Workshop on Web Information and Data Management, pages 1-8, 2001.
- [31] K. Nigam and R. Ghani. Analyzing the Effectiveness and Applicability of Co-training. In Proceeding of the Ninth International Conference on Information and Knowledge Management, pages 86-93, November 2000.
- [32] P. Niyogi, C. Burges, and P. Ramesh. Distinctive Feature Detection Using Support Vector Machines. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing, Phoenix, Arizona, pages 425-428, 1999.
- [33] J. Peng, D. R. Heisterkamp, and H. K. Dai. LDA/SVM Driven Nearest Neighbor Classification. In Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, Kanai, Hawaii, Vol. 1, pages 58-63, December 9-14, 2001.
- [34] J. Peng, B. Bhanu, and S. Qing. Probabilistic Feature Relevance Learning for Content-Based Image Retrieval. In Computer Vision and Image Understanding, Special Issue on Content-Based Access of Image and Video Libraries, pages 150-164, July-August 1999.
- [35] X. Peng. Local Feature Relevance for Efficient Navigation and Visualization of Large Data Sets, Computer Science Thesis, 2002.

- [36] M. Porat and Y. Y. Zeevi. Pattern Analysis and Texture Discrimination in the Gabor Space. In Proceedings of International Conference on Pattern Recognition, Vol. 88, pages 700-702, 1998.
- [37] M. J. Swain and D. H. Ballard. Indexing via Color Histogram. In Proceedings of the Third International Conference on Computer Vision, pages 390-393, 1990.
- [38] Y. Takefuji, R. Jannarone, Y. B. Cho, and T. Chen. Multinomial Conjunctoid Statistical Learning Machines. In Proceedings of the Fifteenth IEEE International Symposium on Computer Architecture, pages 12-17, 1998.
- [39] S. Tong and E. Chang. Support Vector Machine Active Learning for Image Retrieval. In Proceedings of the Ninth ACM International Conference on Multimedia, pages 102-118, October 2001.
- [40] OpenGL Architecture Review Board, M. Woo, J. Neider, and T. Davis. OpenGL Programming Guide: The Official Guide to Learning OpenGL, Version 1.2, 1999.
- [41] R. S. Wright, Jr and M. Sweet. OpenGL Superbible, Second Edition, Corte Madera, CA: Waite Group Press, 2000.
- [42] I. T. Young, L. J. van Vliet, and M. van Ginkel. Recursive Gabor Filtering. In IEEE Transactions on Signal Processing, Volume 50, Number 11, pages 2798-2805, November 2002.
- [43] S. Zelikovitz and H. Hirsh. Text Extraction and Summarization: Using LSI for text Classification in the Precence of Background text. In Proceeding of the Tenth International Conference on Information and Knowledge Management, pages 113-118, November 2001.

APPENDICES

72

Appendix A

GLOSSARY

Graphical User Interface

A computer program designed to allow a computer user to interact easily with the computer typically by using a mouse to make choices from menus or groups of icons.

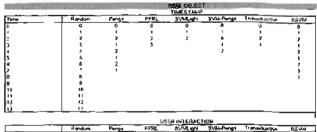
Multidimensional Data

Data that relates to or has more than three dimensions, ot data that has several different aims, qualities, or aspects.

Scientific Visualization

A visualization that concerns with exploring data and information in such a way as to gain understanding and insight into the data. The goal is to promote a deeper level of understanding of the data under investigation and to foster new insight into the underlying process, relying on the humans' powerful ability to visualize.

Timestamp

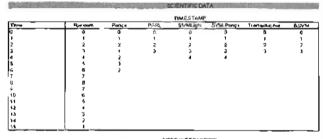

A device for recording the set of images' numbers that sent out by the navigation algorithm throughout the exploration process.

OpenGL Library

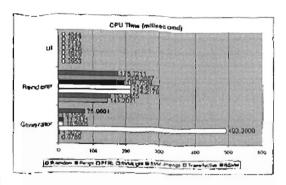
A trademark of Silicon Graphics Inc and is a crossplatform standard for 3D rendering and 3D hardware acceleration first developed in 1992. It is required in some computer games.

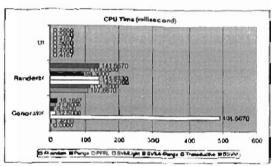
Appendix B

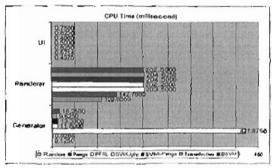
USER INTERACTION AND CPU TIME
TABLES AND FIGURES


17 (Carlotte	USER INTERACTION									
	Amdon	Pango	PFRL	SVALIGN	S/ATT-Pangs	Translactive	£.VM			
FortONT-4	128571	7251	A 4256	/ (0000	5,0000	4 285.1	5 4740			
RinerOtteDoodsend s	Q DESCRI	3 2454	< 0.286-	0.0736	0.1167	a attra	D 1238			

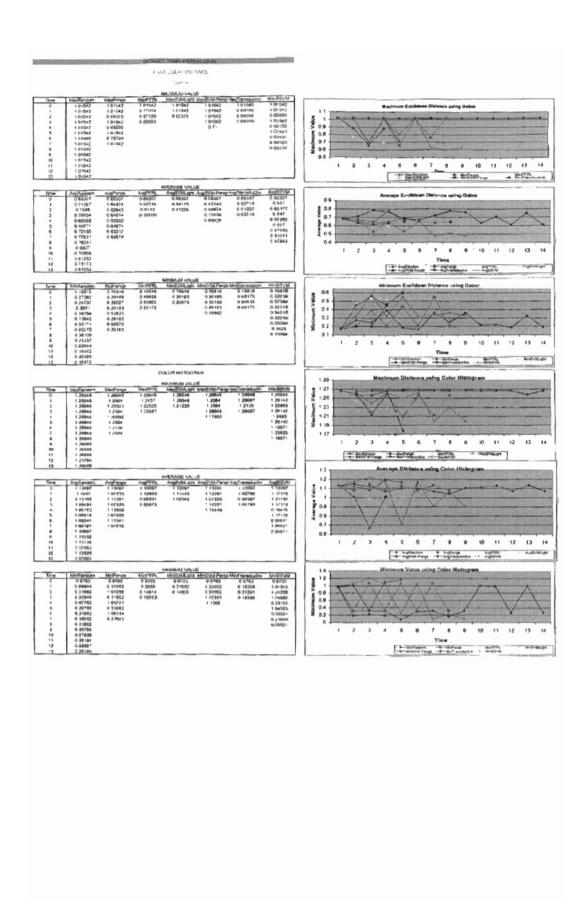
_		CPU IIME									
	Randon	Pergi	PERM	SUMAL OPPORT	SVM-Peng*	I PARTILICAN	BSVM				
Core da	0.0789	10073	490.000	IQ 600K	11 2441	9 16%	P5 500 h				
Co-temp	145.2071	153 5455	214 2179	214 6773	160 7560	200 37,5	175 7211				
v	تكغر ہ	0 7475	0.4579	0.547%	05143	♦ 4957	0 / 544				

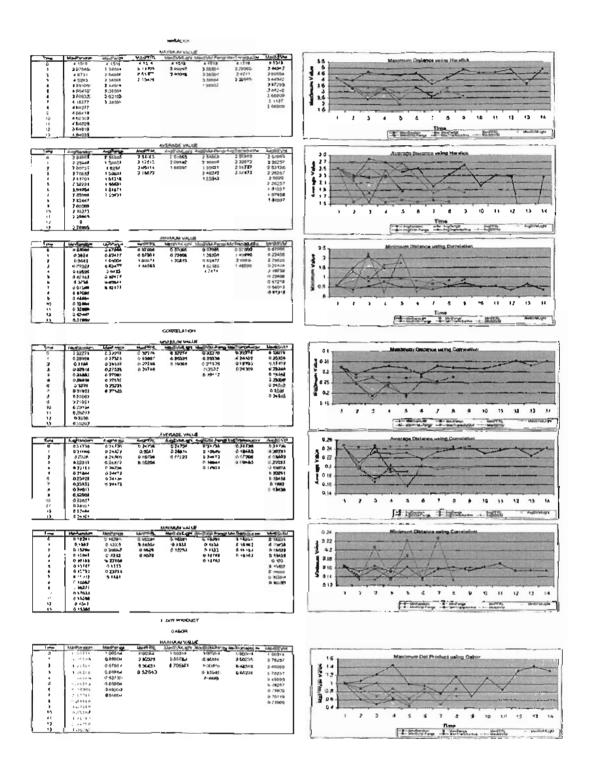

NO. OF TAXABLE PARTY.	THE RESERVE AND ADDRESS OF THE PARTY OF	E-V2C/E-28-U-28-U	E E SE STATISTICS	DATE BY AND PARTY	NO. LEWIS CO., LANSING	- Company of the Parket	100000
				LMESTAVE			
Toma	R probes	Planya	PFRE	5VMLlger	ULL Diese	Transdictor	BEA
6	0	0	- 8 -	- 0	٥	•	-
1		1	1	:	1	4	
7	2	2	2	2	2	2	1
)	3	١			4	1	-
4		2			7	2	
:	i 5				4		
6							
7	7						
	۵						
9	7						
10	4						
1							

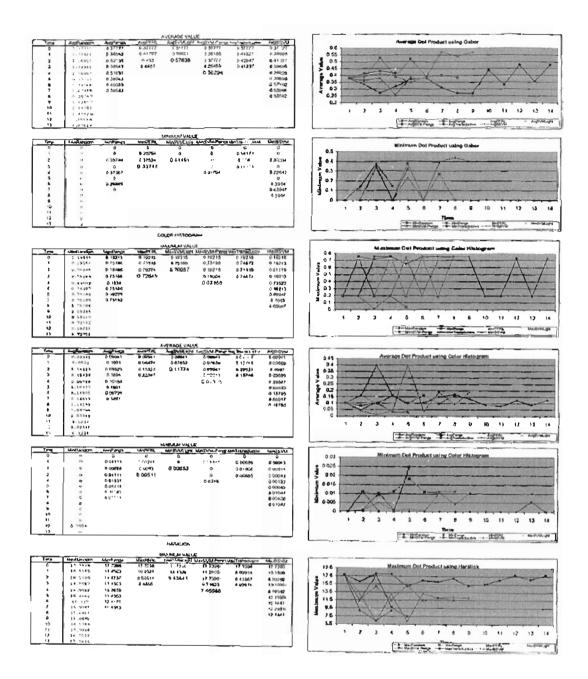

			11	OVER INTERVO	TON		
	Flandon	Pongi	P) HL	BVMLI	ANTI-PARK	Your Andress Burn	BSWH
Jan II, Time	12 0000	5 NOOS	3.5000	3,0000	E 0000	5.0000	3 0000
Terminal Sections	0.000	0.2000	0.00000	Q auton	0.5000	0-2000	9 Deco
	Random	Penga	PERL	SVMLIght	EVALPER-OR	Yemredugtes	DEVM

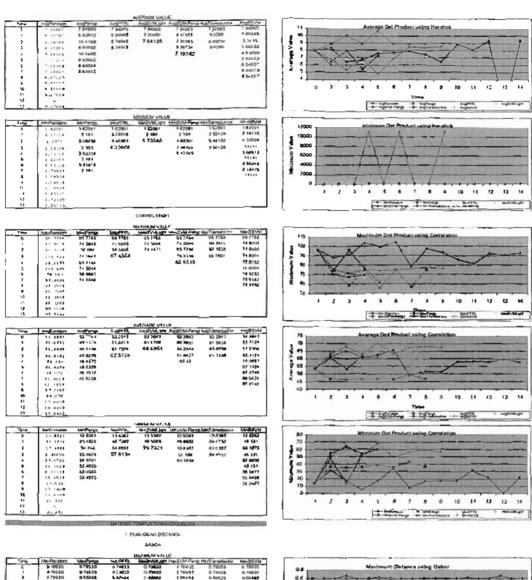

	Random	Penga	PFRL _		EVALPENDE	Yemreductive	DEVM
0	9 5000	1 4100	491 6870	12 5006	0 . YZO	1 (6500	16.1667
Parties	137 6670	114 2940	183 2000	141.5330	94 5000	114 0000	141 6610
UI	0.4167	41 4000	0.3333	0 5000	8 4167	0.7000	5 5000

	_		520	MINITERSO!	Circulation of the Control of the Co		
	Ядпосня	Prenale	PERL	5VUL INM	3VM-Parge	Fremeduc'Am	BK≤∨M
SaTirr	16 0000U	7 0000	4 0000	5 0000	6 3000	4 0000	4 0000
Service	ı 6 9676	0.2657	O DIDNA	\$ 60,060	t poto	D COMU	0.0000
				CPU TIME			
	A.T-St.PT	Ponge	PYYL	SVALUM	MVU.Pargi	Transaction	自立くは
Control and	0.1250	0 5386	421 8751	11.6006	13.3669	9 6250	16 2660
Rayle (c	NAS 6500	142 7860	200 6000	707 7000	204 5660	201 6750	302 5000
Lit	3,4372	0 87 14	0 4250	0.5000	3_4000	CI (SAM)	o reco

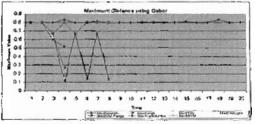







Appendix C

EUCLIDEAN DISTANCE AND SIMILARITY
VALUE TABLES AND FIGURES

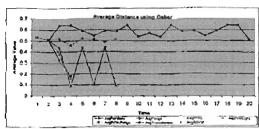


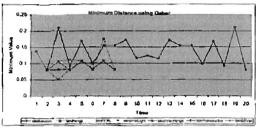
				TO ME CONT			
Tather.	Ma-Random	Verteron	~ A A	Mandred A. ppr	Manage VAN Plentille	MLCEranductive	MedbSvk
6	> 1983∆	D79635	0.74933	0 93433	P PROGE	D 79055	0 70035
	★79935	D 70035	0.1923	01 FP425	1.79201	0.7mm(s).	0.71035
•	6 79635	D-5-58-6-8	A RANGE	0.00468	100,444	to demical	0.60448
3	0.92045	or Protected	C 1555M	I SALDS	a sint.77	0.5146	0.7041
a	41C00E	D 80586			1 0000.5		
	A Teritory	10 / Will 10			1 13391		
	b garge	O PRIVIS			4-56268		
,	Q 199054	076935			E 44564		
	0.77903%						
	0.79925						
	0.79035						
11	979936						
1.7	649005						
10	B 20003						
14	D18 907						
18	D-79908						
16	D-79035						
17	0.82943						
40	y 1000ti						
144	(4.19.0.00)						

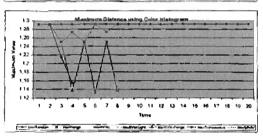
				ANTHAGE VAL			
line.	Arghanston	lurg/reggt	AMPTEL	Assyston	AUDITMENT	Treason (com	AvgBBV
٥	0.5393.7	Ø 53037	6 53037	D 53037	7 53037	0.53037	0.53037
	0.51003	0.51003	0.51003	P \$1983	0.01003	b 54003	6 51000
2	0.5402	0.51621	0:35953	7 39397	£ 43603	W 3251	0.37090
3	0.64133	0.45957	T 10541	P 26647	0.09/16	D 18192	ci 11644
4	0.5015	0.41621			8 43503		
3	0 54642	0.51003			40200		
4	p smag4	0.46927			0.43802		
1	0.58583	0 \$1003			3 DE IL		
	D 54038						
	0.53784						
lu	0.57053						
	0.53761						
)	4 54036						
13	2.54603						
14	a 5692+						
15	Q 34647						
ld:	0.59187						
17	0.64152						
4.34	4.5000						
19	4.3 100.5						

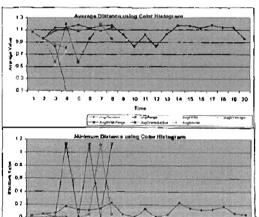
				ويقوا يومحوه	4	523	
Tipper	Mr/Fancers	hard which	were.	MINGVAL	POVIA Perce	Min Warrenbetzler	Medicina
- 4	⊕ 137E1	# CH2# 1	d 13761	613781	0.11761	0 13751	0 13761
•	e 68952	0.00052	Q 08053i	0.06033	O mm(x)32	POLICE	o neosci
•	0.20097	A street	0 11053	0.6343	6.1004	Great 25	g appart
	0.09149	& VIIId	Gont of	0.62914	D-07662-	P (041)71	0.06271
*	Ø 16612	p 1005			0.7065		
	6-69761	0.03092			Ø 105 137		
	D 15213	9 17347			0-1091		
,	4 16313	6 mm2 5 2			p 07 es 2		
	6 17177						
•	DIVEN						
W	21205						
1	Ir 41579						
10	B 1/ 1/7						
13	0.12343						
14	9 15.M3						
15	0 D0784						
1.0	0.16812						
47	0.09149						
14	0.20000						
10	C swipting		_				

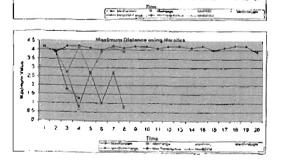
COLUMN STOC RAW

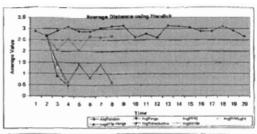

				COLUMN VALL			
Verya	Madianara	Unit lance	- Verily	Marifyld add	SALTINED BY	Martinette (III	Plant (IVI)
- 6	28176	* 30 PM	1 72174	1 231 PG	1 23/178	1 201 PA	1317e
1 1	29 (56	1 20 175	1 24174	1 20 FFE	1.29170	1 291,74	1 25 114
2	1 20174	1 1 4 758	13-134	1.7686	1 24934	7 31466	124984
	1 29/176	I yi yaJ	1 14531	17010	1.13703	h 15406	1 (5u) m
f 4	1 20176	1.24 0.55			4.24958		
	1 29474	1.39178			(112)		
	1.25414	1 27747			1.34654		
1	1.25n PE	1 20176			1 13 730		
	1 2017E						
	1 3m178						
140	1 29174						
15	1.29-75						
n n	1.20176						
l N	1,26176						
14	V 20176						
10	100116						
4	1 20174						
13	1 79179						
10	1 2014						
10	1 75178						

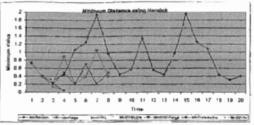

				AYERAGE YALL	4	526.0	
Times	A STANDED	Alog area	AND FEEL	A45TACION	Aug 5 VALPena	for the last	A-pBeVU
	1 04021	I DATE:	1 1/9021	4.06671	100901	1 006/21	1,05021
1	0.00002	0 955t7	0.01522	0.95590	D British	0.55562	8 99092
3	4 1327Z	0.57004	8 50014	U 55417	5 00-420	et account	D-809 52
3.	1 1971)	1 VE) 7-1	073301	£ 62°50#	12256	O.GETRO	P 863(2)
•	1.18115	5 1100×			1 Cheffs		
3	1 12453	a wital			1 12001		
,) + U.18	1 10-22			5 DE-176		
¥	147717	O wisher?			1 1375		
	1 DUYLO						
,	0.00.472						
10	1 (11 (2))						
11	0.85499						
12	1.02708						
15	+ 17707						
14	1 10F1B						
16.	1 42003						
16	1 10135						
17	1 13711						
11	4 13777						
	0.00542						


				MINIMUM WAI			
Farmer	MinRandom	MinPenga	RUBANT	MINSYN_ CYC	Charles Sant	PantiduCha	Mrd5yM
- 3	0.0275×	0.00784	0.02764	0 02744	D 02784	1 02764	0.02764
1	0.00004	0.09964	D-05504	u biscoe	0.065cm	6-01064	D-0600-
>	0.67750	D:00V54	ii 662 79	or tog have	0.00764	0.00974	0.01291
	0.17462	1 1207	III OO I NA	0 PSP64	1 12917	0.60133	0.02591
	A (7>1)	0 007 8A			0 D0 FM4		
3	0 (115)	0.09774			1 /1056		
•	O SAME!	1,005/00			a project		
,	÷ 2352	P REASON			1 12417		
	0.0544						
	6.01669						
10	0.19349						
5.6	6.01509						
12	0.0544						
12	6 (155)						
14	0.14491						
16	0 12155						
15	0.17943						
12	0.1146						
14	0.07722						
14	0.05504						


HWENCH


				HARMALIN WALL	A		
1~~	Marif senior	PART PART	-	UNITYME BY	MANEYAFFERM	40/1 TITLESON	Language von
•	4 17054	4 1706A	v 15099	4 17068	4 17089	1 17 84	4 17564
1	1 4 1 50 1	1 47401	3 7500	3.87501	2 87301	3 6/601	1 17201
7	4 20093	274457	2 11 450	3.04904	274482	1.77294	371423
•	4 12016	4 43623	<i>2 143 - i</i>	7.7047	O Poster	12:001	0.6764
4	4,1095	2 71440			Z 11432	17,00	0.0704
•	1 99973	3:07501			9 91343		
4	4 32010	1 1564.5			2.714A3		
,	4 10086	: A7M/1			4 75069		
,	4 30201				4 Laxinia		
	4 1053						
En.	4 07993						
11	4 (05.5						
12	4 29(03						
13	10366						
14	4.22010						
13	1 99900						
16	4 105.5						
17	4.22018						
10							
	# 20 N/3						
24	24461	-					

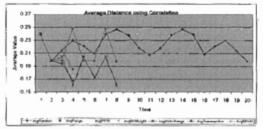




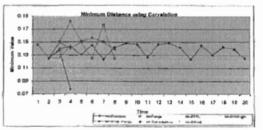
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 15 10 26

				AVERAGE WALL		_	_
Terre .	augRandoth	Aughergs	duspPFBL			AgTrittebuch	Avgestvt
0	2.6748	7.6748	2 8740	2 8749	2.8749	2 5749	3 9.74
	2.65009	2:55669	2 66889	2 86819	2 55880-	2 65889	3 66044
7	7.91221	2195455	1 201.34	1 46639	144573	0 663/46	1.49964
3	3 10050	2 Spokes	± 33545	0.4942	Q 50555	0 47 423	0.31324
4	2.88183	2.05453			41573		
	200178	2 96869			D 8256		
	204232	2.6212			3 41573		
,	3. 10565	2 46559			p modés		
	3 132301						
	7 10011						
WG-	2 17 1001						
1.1	2 10/11						
47	3 12738						
15	3 (0505						
	3 04 23 2						
15	2.58176						
16-	7.58153						
17	2.10659						
19	161774						
19	2 66450						

				MERCHANN VALU			
Tome	My/Rampom	MrsPengs	May PETEL	MinistriMusers	MnGVM Pengs	88in Triantochactive	MINDSYA
D	0.73621	0 77921	0.72921	0 72971	p [7921	0.72121	6.1585+
4	0.3683	0.3633	0.1933	0.3903	17 29:33	0 9933	+ 1032
7	\$-3401Z	021448	0.12235	to \$5000	D 21448	0 0 1334	÷ +3522
3	2.43425	0.693	9 16873	U 15085	D 4BEDE	0.04689	9.05684
	1 000994	D 71445			D 21 868		
•	1 75423	0.3533			o Fedeb		
f.	194638	11/05/94			D [1448		
r	697731	0.7933			D MESSA		
p.	0.43527						
10.	0.98627						
10-	1 74191						
11	0.95437						
1.7	0.43527						
13	0.67731						
14	1 94636						
15	1 75423						
16	1 (100004						
1.7	0.43625						
16	0.78012						
19	0.3833						



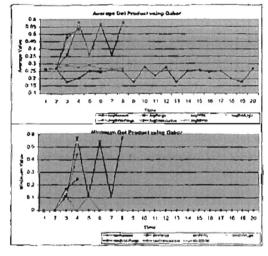
				MAXIBILINEVALU			
Time	Marken	Madrenga	Health,	MariSVAC, kg/s.	Mit-SVM-Pimo	View Transductive	Med85V1
	0.34721	0.34721	0.34724	0.34791	0.34721	0.34731	÷34771
1	4.34288	÷ 30254	b 30294	0.30266	0.30288	9.30284	0.30268
2	4 34442	9 17909	0.26136	0.29661	0.27600	-0.280 PG	0.29452
3	0.35552	0.31234	0.22606	0 2234#	0 18213	9 2 100Z	971453
	0.34245	9.27506			0.27909		
8	0.29801	4.30268			0 18762		
*	9.33564	0.54788			0.27900		
1	0.3489	0.50258			0.16213		
	9.34598						
	2 34096						
0.0	0.29465						
11	0.34096						
12	0.34608						
13	0.3459						
10	0.36674						
16	0.29801						
18	0.34245						
1.2	0.35647						
18	0.34242						
19	0.30288						

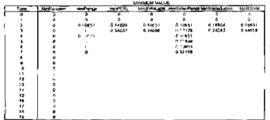

3 8 6 1 8	0.34642 0.35557 0.34245 0.29801 6.31574 0.34608 0.34608 0.34608 0.34608	9 17909 9 3+234 9 37506 9 30268 9 34788 9 30268	0 25436 0 22606	0 22348 0 22348	0 27600 0 18213 0 27909 0 18762 0 27909 0 16213	-0 2 1002	0.29462 9 7 1653
8 6	0.34245 0.29801 6.31574 0.3469 2.34698 2.34698	9.3780G 9.3026E 9.3678E	0 22406	0 22348	6.27909 6.18762 6.27909	0 2 1002	971653
	0.29801 6.31574 6.3489 2.34668 2.34668	4.30268 4.34788			0 18762		
1	6.33574 0.3489 9.34698 9.34698	0.34788			0.27909		
:	0.34608 0.34608 0.34608						
	9.34598 9.34098	0.50288			0 16213		
	2 34096						
80							
10	d-25-655						
	0.34096						
10	0.34608						
13	0.3459						
10	0.36674						
16	0.29801						
	d 34245						
12	0.35647						
	0.34242						
19	0.30288						

0.35 0.35 0.20 0.15 1 2 3 4 5 6 7 5 9 10 11 12 13 14 15 16 17 18 18 2							-	-	lander		#	in the	nqui	-		adri.	t.		We	ave.	ψı
03											Tu										
0.75		7	1	,	-	5		٠,	В	9	10	11	12	13	34	15	16	17	18	19	2
0.75	0.16	137					799		153							369					
.,	92	200		50	13/		Y		+	-	210	750	000		457		300	883	200		
.,	n 26	168	988	3	1	1	1		1	888	200	90	193	100	193	3/4	991	19	100	200	Ħ
0.35				X		X		A													
0.35	n)		X		4		V		3	500	77	V	60	100	96	9	V		884	90	S
	0.35	*	URS	7	ŝ	7		1			7	1933	7	100	0.0	1	e i	1		7	ř
		#25																	90		

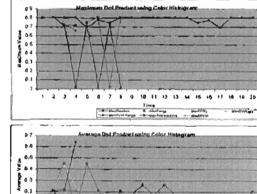
				A	NAME SACRES				
Average Distance using (0.27	Avg89VM		Aug/IVM-Parget		AvgPY RA	Angline has	AvgPanoon	e in
	12/500	0.23941	0.23861	0.23961	0.23001	0.23881	0.23961	·0.23961	ð
	0.25	0 19765	d 16760	0.19786	0 19760	0.14768	0.16755	0.19750	
STREET, STREET	0.29	9.24562	0 16402	0.20435	D-20236	0.2022	 19818 	9.21409	7
The state of the s	. 19000	0.18512	0 167	0 16015	D sTT33	◆ 17%24	0.24824	0.22974	3
- A - A - A - A - A - A - A - A - A - A	3 0.23			0.20436			0.10815	0.22093	
1101	2 10000	1 1		0 17159			0.10766	6.20856	5
	2 0 21	1 1		0.20430			0.34847	0.23916	
LX X X	2 10000	1 1		0.16015			4 16766	0.24664	1
A Land	3 100000							0.25766	
111111111111111111111111111111111111111	£ 0 19							0.21796	
	. 10000							0.20477	10
Was You have a second	0 17							0.21799	1
CONTROL OF THE PERSON NAMED IN COLUMN TWO IS NOT THE OWNER.	10000							0.23764	12
	0.15	- 1						C 24584	Q-
		1						0.33510	
2 3 4 5 6 7 8 9 10 1	1 2	1 1						0.20055	+5
								0 22063	16
Time		1 1						0.22974	17
at the same of the								0.21460	16
# Aufforga Augistiti 1 Augistations -	Poplanie	1 1						9 19760	19

				MINEMUM VALE	4		
Turne	MINFLANCISM	Marrier 192	ARREST FOR	MINSVMAN	MNSVMPeno	MinTransductive	MAMBELL
4	6 14575	0.14575	0 14071	0 14574	0.1+675	0 14575	0 14875
*	0 12462	0.13462	0 12462	0.12482	0.17462	0 12452	0112402
	9 (3912	0.15009	6-12050	0.16008	0.15009	0 53741	Di (\$tone
3	9 14252	0.16198	0.1942	0 10707	0 13635	0.07721	Brond I
	0.13041	0.15009			0 35500		
5-	0.14504	0 12462			b 45604		
6	0 12324	Ø 1703A			0.15009		
	0.18492	0 12442			E 13905		
	0 14852						
	0 1467						
10	0-12711						
11	0 1467						
17	0.14852						
13	0.14192						
14	0.12324						
15	9.14994						
*4.	0.13041						
15	0.14262						
1,80	0.19912						
15	D 12462						

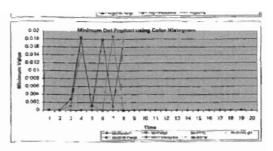



2 GOVERNOOUST GARGE

				MANUGUMVALU			
7.~	Managlacidade	Unit-Person	AltoPirRs		Ministra Pro		MindsVo
$\overline{}$	074322	0.74222	@14222	G 7+32Z	0 71 201	6 Fa 797	674372
	0 00,229	11 65227	¢ 65227	0.65227	0.65222	0.49777	6-85022
2	475761	0.73/726	C 00081	Ø 9660 4	0.75024	1 0727	4 54731
,	2 80, 51	6-65621	ŭ 54 ∞13	0 4777	0.56,194	0.59602	0.57945
	367161	A 7307€			9.73074		
5	P FG204	0.63222			4 16000		
ī	0.0050h	D 53128			4 13024		
\$ 7 8	5 16 167	0.65729			0.50164		
	Ø163625	200					
•	0:57:330						
1	4.67905						
	9 57730						
·	4 63636						
u	9.7m183						
м	# 4560y						
11	♦ 76397y						
16	D 67 181						
15	\$ 6078 3						
1.6	3 19/61						
100	0 60277						


0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0																			
0.0			3	+	6	*	7	X	-	9	 72	0	14	15	16	17	16	19	21
	0.0 -	1	水区	1	\ <u>\</u>		N.	_	-				_	_	1	1	_	1	+

				AVERAGE VAL			
Yes	- Lighterian	Avgillenge	Lagren.	AvadiviA.ght	AugSV4-Vergo		PHISSNA
•	4.25915	0.25915	6.75011	0.25915	O 25045	D 25lint	9.25916
	0.36695	0.26095	0.76495	0.75895	ió þánas	9 20600	8-31005
3	0.17500	0.2611	0.43003	0.4432	0.30332	4 4 7 10 7 9	L NIGGE
1	0 1990t	D 2744	アかり位	6 54003	0 57 0× 2	0 3343	B- \$2496
	O besid	 ■ 26 F.M. 			6 56 137		
	93410	4 20002			0.1629		
•	P377754	A 2000M			0.76123		
,	6 14664	6 20093			C B) G SI		
	U 1740+						
	077447						
14	0 22007						
100	E 22453						
	116074						
17	5 74.00						
14	0 2575						
• •	0 74 10						
4	9.2496						
.,	D 10063						
1.8	0.17500						
10	4:29/95						

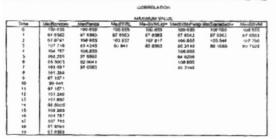


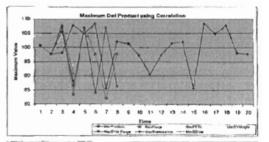
7 8 0 10 14 12 13 14 16 10 17 16 19 76

Jr-40	Awgelatedan	E-Green	ANTERIL	Augsviduges	Augistra.	ها:مرها آيم	₹09×
B	0.1810	Q #20mg	D.10502	A 12502	0.03243	44711.0	443 871
*	B JOHNS	0.30791	0.20714	45 207 15	FI (2074)	5 30115	5 perit 15.
2	R / hassing	4 Sec. 255	4 1364	49 2156d	43 BEF CM	L)TIM	C Prints
,	\$ 00mm	0.021464	6 54364	1)s, it entired	CATA	6.54734	0.29594
•	40.00	i merms			Q-19 F FFLE		
>	6 (4801)	4 74715			601434		
	POTEST	4 12195			timetrial		
,	A-06201	O PER IS			0.0473		
	4 14673						
•	0.34490						
10	0.14610						
41	C 20405						
41	0 taes1						
••	0.56391						
14	0.05452						
15	0.06517						
18	0.43+9-58						
17	F-C0554						
14:	6.00466						
19	0.20P1St						

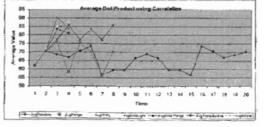
Bone	blysitigration	Michiga	MnFFR.	MinSVMLight	tan@MeFenur	Meligratiche	Mn85VN
0	0	p	4	0	ć	0	0
	0		-0	40			9
2	0	0.05*04	4400174	0.0001	C DOTOR	n ongry	g ac 106
a.	u	0.0435	6/04/82	D 00413	0.61750	d o ride	0.01463
4	1 0	(2-001-0-b)			9 DO HOR		
3	0	4			0.0179-		
4	0	0.01854			0.00304		
7	á	(2)			0.0~762		
8.	à						
10.							
10-							
18	0						
12							
45							
94							
12 64 65 16							
16							
17	0						
18	6						
781	- 2						

ine	ModFernion	AsadTengs.	MINIPPEL		MedVM-Peng	Valiforera Trady	MaxB5V4
ò	20 5667	20.5567	20 556 *	29 9667	20 5842	20 tinez	26.5567
,	17 5602	17 6602	17.6502	47 8002	17 \$603	17 6602	17-66/2
2	20 7335	19 9551	21.2594	21 6847	18 9051	21 4246	71 1635
3	20:470:	16 2255	21.2544	20 5354	18 6276	29 2554	200423
	14.9085	19: 96%			19 9651		
5	16 5663	17 6602			16 2687		
6	13 0153	16 0585			16 9954		
7	16 940	17 Souž			18 0778		
	20 1746						
9	10:25						
10	17 5798						
2.2	19 25						
12	20 1245						
13'	10 963						
14	13 @163						
15	16 5653						
15	14 9085						
17	29 4701						
48	29 7335						
19	17,6592						

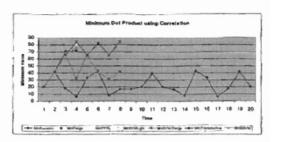

21 (8	A					
20		1	1	1	BUILD	1
18	M	* - 7		-	BERNELLENS	
17		4 1	2000	STATE PROPERTY.	A	
15	V	1/				V
13		V		090,000	V	02/01/02/02
12	NAME OF TAXABLE PARTY.	Sea Section	SOUTH SEASON	Service Contract	Part Street	Section 1
1 2	3 4 5	8 7 8	9 10 51 Time	12 13 1	4 15 16	17 18 19 25


Average Dot Product using Haralick

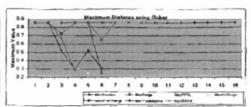
				WASHINGTON HATE			
Time	hvgRandom	AvgPense	ResPERL	ANSENSA.INS	AngSVN-Panip	4-gThristudir	AvgBSVA
n	8 98575	3.26575	6 99575	H 96575	A 95575.	6 94579	# 96575
	\$ 54776	0.54275	9 54275	0 54275	3.54275	9 54275	9 54275
7	4 9938	F1 805	17.0049	15 62 13	14 10 11	17 1805	16.675+
3	1 97502	16/0101	W 7345	10.3457	17 8447	17-6753	19 2465
4	1 90594	11 655			14.4619		
9	0.00000	6.56375			17 678d		
1	7 28671	9 99114			14.4818		
,	1 66743	9-54275			17 9447		
	1 64841						
.0	9 4 5 1 2 1						
10	6 297						
4.5	+45121						
-2	1 54641						
13	1.66741						
14	1.28521						
13	0.09493						
16	d 9905w						
1.5	7 67502						
146	8 5938						
1.9	6.54276						


			14 15 18 1	7 18 19 2
		- 0- tupings		Negerialars
	Minimum Dat Pr	polyst valen Hara	(let	
10 1748	Million Coll. P. St. P.	Out the light of		
-6	A			
7/				
100	V			20000000
16	6300 F2 50 50 50 M	OF SUPERIORS	APRIL 70 ASS 26	
		-t- systems	-t-spiriting -t-sqlmasses	

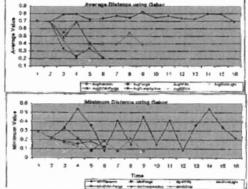
Time	Minifardin	MinFores	MANPETOL.	TANKS ON	Mr-SVM-Pengi	LEOTmont ettie	MinBIVA
rene	1 62959	1,62000	1 52969	1.62969	1,12069	1.82969	1 82949
	1.2105	3.2195	3.2195	3.3-91	3.2195	3.2199	3 2195
	1 60294	9.34000	10.0575	6.49653	9 =9453	13 024	0 40953
	1 01491	2:00564	17 8095	15/0076	17 7844	Rd.end2	18 5464
4	3 11101	6.34006			2 49333		
4	1 41000	3.2195			17 6997		
4	1.01491	T-85085			P-49053		
1	2 13213	3,2195			17 7864		
	1 69284						
9	1.76591						
IID	2 24217						
11	178591						
12	1 89784						
13	2 13213						
14	1 (6)491						
15	2 51656						
16	2 11101						
17	1 8149-						
1.0	1 69284						
15	3 2195						



				AVERAGE WALL			
Terran.	AntiPlandom	AugPencs	ANDPERL.	Anglivid.igN	AvgSVN Pang	4-glanetudi-	Auditor.
	91.9566	51.9505	61 9506	81 9505	119506	61 150E	67 9595
1	79 1312	10.1312	70 1317	70 1317	76 1312	791312	-6 13 2
2	46 1099	25 2601	86 937 1	83 4731	77 1912	83 443.3	56 123
3.	86.8647	58 2101	87 6895	86.8954	45 4752	80 8405	n.3 75 rp
	70-6598	79 2401			27 1642		
9	73.4658	20 1317			83 3055		
4	56 5574	55 9744			77 19 12		
1	59-1441	76 1317			65-4762		
	10 4745						
P	50 6516						
10	84 8749						
43	46 9135						
17	10-1215						
13	394441						
24	56 4614						
19	F2 4436						
40	76-4328						
-7	66 6647						
18	55.3999						
-6-	20 1212						

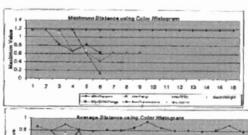

Syring	Markanggan	MiniFerror	Medicine.	MinSVAAlgre	McGVM:Perox	MinTramphatise	MMSSY
D	20 1800	\$6 1899	36-1899	26 1600	20 400	20 1999	20 YES
1	41 25/20	41 2079	11 2579	41.2579	412075	41.2479	41.2870
	18 1966	85 5177	94 5245	615177	65 5:77	70-62+	45 4504
i.	8 89447	52 955.	60:5052	75.2+57	P4 2501	71-0011	75-9121
	33 6063	65 5117			65 5177		
	#Z 28911	41 2571			F2 2554		
4	7 08291	30 979			85 517,		
1	10 7377	41. 2079			84 2921		
	17 2753						
	36 2547						
10	36 753-1						
9 10 11 12 13	26 2547						
12	16 7377						
1.5	7.56264						
14	42 7891						
13.	33 4063						
15	6 00m47						
12	18 1906						
16	41 7876						
111-	20 1809						

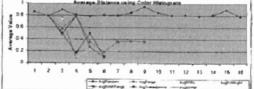
1 EUC. IDEAN DISTANCE



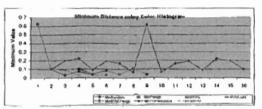
				MACKING MICHIGALU			
Tome	Mai/Randoni	Madferon	UmPFRL		UasSVM-Fence	Wastingraductly	Mad SVA
6	0.68562	0 65502	0.85562	P 95042	0.85563	0.85563	8 61552
	0.8556-5	0.83362	0.95597	0.45797	0.85662	1 65552	0 85562
	0.85592	0.77990	B 52016	0.85567	p typed	0.5229	17 67359
	0.85562	D ESTING	ย วาลสร์	0.31736	D Brodd's	0.257	0.27569
4	D-85562	D 85562	B 2555		b 85562	6.5228	
5	0.85562	C 84822			9.24917	0.30631	
4	tr.86562	0.85552					
1	b 85562	p 85562					
	b-65562	0.65562					
3	0-80442						
10	0.05567						
11	0.05562						
12	b-68642						
13	0.45567						
14	0.85562						
15	0.85562						

				AVERAGE VAL	UR		
Time	Argiflandon	Supporting a	ANDREEL		AvgSVM-Pengs	logTransdutthn	AVSBINN
6	0.704	B 704	60 (104	0.704	0.704	0 104	8.704
	0.68675	0 68975	0.68975	-0 68975	1-44975	4 68675	4 55976
2	0.76115	0.55089	0.35496	0.46733	P 45205	4 33294	0.4456
7	0.79102	0.58975	B 73156	0.22723	0.08975	C-22994	0.20371
4	4.77197	0.3904	0.17642		0.40718	0.30296	
5	0.7336	0.3941			0.79753	4 21015	
6	n 14eas	3 3904					
,	0 74465	D SAUSE					
	0.8217	D 3804					
7	b heest						
Mi	to FeBIOS						
1.	5 F334.						
12	-0.12107						
12	0.79162						
14	0.79116						
15	0.68676						

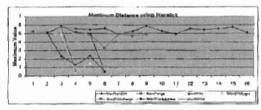

7	11 74450						
Mi	0 F6805						
1.	5 F334.						
12	-0.72197						
13	0.79162						
14	0.79116						
15	≎ 68676						-
				Hillholmulai viAu.u			
Free	MinRandon	64nPengs	MoPFR.			Wei Eranaduczu	West
0	0.28649	C 26942	0.26941	0.28949	0.28949	0.78949	0.28546
	9.21517	0.2 fenz	0.21817	0.21817	0.71817	4.21617	0.21847
	6.33494	0.32623	0.00003	0 10034	0.37623	D 17841	0 16590
3	9.53799	0.24617	5 13475	2 setific	4:21617	6 10366	0 17799
4	9.3595	0.07742	5 (3007		9.07752	S ITEMS	
5	0.07882	D 1633*			€ 16356	0.12009	
4	1-4093	0-03743					
7	0.14537	◆ 14699-					
4	0.44697	4:47T82					
:	0 14527						
10	0.4053						
17	0-97582						
12	0.3595						
13	0.53799						
34	6.33455						
19	3.21617						

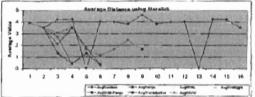


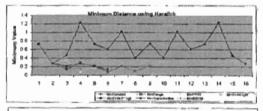
COLOR HISTOGRAM


Time	MarRandoni	MadPeegs	ARMOF PL	MexSVMUkg/4	Na-SVM Pency	Max Transdistry	No-figure
D-	1 17360	1 17369	1 17369	1 17366	1 17369	1 17300	1.173mm
2	1 17300	1 17369	1 17369	1 17369	1.87369	117300	1.17089
2	1 17386	1 17104	1 09668	1 17165	1 17101	0 91.603	1 19333
3.	1 17309	117369	0-65881	0-62760	1 17269	9 55355	1165272
4	1 17365	0.62214	447578		9.62719	0.61403	
	1 12266	0.42275			4 (332*	0.63284	
	1 17209	0.62219					
1	1 17369	0.62219					
	1 17369	0.62219					
P.	1 17365-						
10	1 -7519						
5.1	1 17369						
17	1 17369						
13	1 17369						
14	1 17300						
10	1.17389						

-				AVERAGE VAL			
Terre:	4xcFlandor+	Aver engs	Aug/FRL	AvgSVMLcn	Avgsyll4Peng	Avgirinstuceu	AvgBdVA
	6.854	0.634	0.854	G 854	0.854	D 854	0.854
	0.78561	G-F8581	d 76561	6.78585	0.78554	0.79501	6.78ser
7	0.65493	Q.56985	G P4335	0.45137	P.4.796	0 49944	à Jessey
3	0.60824	4 785e -	0.09716	0 15/36	9.78551	0 12419	976662
	0.78695	0.35812	0.22850		P 2793	D 499-49	
	19 66382	0 19446			n 10251	0.11324	
	Q-79835	C 358+1				2 - 7 885	
1	0.84377	0.36777					
	E 94300	0.35811					
+	0.84322						
16	n facas						
4.5	0.60562						
1.2	0.76695						
10	d pu624						
14	0.89153						
15.	0.7050.1						

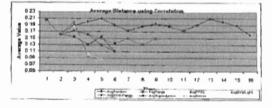



Ferre	ARTIFICATION	Minhenge	Marger PL		Mrsjivht-Perso		MHBSVX
	4 02:19	362219	6 522 19	0 622 14	0 02219	0.62219	0.622.49
i	4.10.41	0.10141	Q NOME	ID SQUAR	a 10 5/F1	0.10841	0.80141
1	3 19615	0.09144	0 (1734	d seaso	0.00444	D-03943	to conside
,	0.22004	0.10344	0.01809	n eduction	0.10145	0.01421	e dairel
	0.08039	0.03283	6-00+69		W 02761	1-02112	
5	0 16055	6.05239			0.0867	1-03-67 9	
4	0.164.87	0:40781					
,	0.06420	0.10533					
	0.61801	0.03781					
î	Ø 06426						
10	4 166+7						
11	0.10295						
12	G-00936						
11	0.22084						
11	0 19615						
15	0.16441		_		_		


	WASTERN VALUE											
Title	Ma-Random	MarPence	MadPFFE.			MacTitarted will be	Meditiv					
-	6.22979	5.223TP	5 22579	5 22374	6.773/9	6 (2)/7	4 27975					
1	5.08616	Separati	5-09614	5.00916	p.commd	5 085 14	3.05016					
2	5.74491	5-41095	4 Supons	5.41000	5 BYCUIE	2.5102	1 75/519					
,	5 57 194	5 080 16	0.5944	0.94045	0.090-0	1 25159	4 46227					
	5-41422	4 86907 1	1.00706		# ESB1 F	2.3401						
	5.57074	5.2700			0.49555	0.48430						
4	4 90563	4.69911										
	5.24659	4.68943										
	1 6005	4 89851										
	1.24899											
10	4 90560											
1.0	3 52-074											
12	5.41422											
10	5-57 HM											
14	B 74481											
15	5.08414											

	AVERAGE WALLE										
"me	#upPandom	AvoPenso	AUGPFUL	AvgDvM.cps	Aug SW Pares	4-offerential-er-	H-ORSYV				
- 0	1 93732	1 93/27	3 93772	3 33727	5.49727	3.93727	3 93777				
	3 0 9 9 4 9	3 49945	3 49946	3.49940	3.40040	3.49946	3.49985				
2	4 18796	3.696977	2.30539	2 1.53	8 00006	1.254.16	27102				
	4 21097	1 49946	0.24174	0.40776	3-460-46	0.41123	4 26×02				
	- 4	1 54059	0.27534		1 8234	1 20419					
5	4 01073	1 0985			0.3357	0.79793					
6	3 99505	1 84050									
,	3 82349	2 11 1 / 2 4									
•	1 54296	1 64059									
	182349										
10	3 89 995										
11	4 0 1627										
1.0											
1.3	4 21497										
14	4 16799										
15	3 epper										

	MINNELLY YALUS										
Time	MnRandom.	ManaPerson	MINDFIL	Marie VAAL ages	MINST/M-Pange	MnTransduttra	MnB5VM				
Ć.	0.72703	0 72763	0.72703	D 77703	0.72703	5 72703	6.77760				
1	0.2736	4 affab	0.2734	D: 270ds	0.2738	9.2*38	0.2738				
1	0.49871	0.14450	0.3595	a 1445a	0 14150	3-2090H	dimendid.				
3	1 234 99	0.9738	0.07609	9.29010	D 2738	0.29714	40 HARRY				
4	0.72635	0.2415	0 10101		0.2111	0.20904					
4	D 50547	B 07745			0.18613	€ 14025					
4	1 0156	0.2111									
7	0.49263	4 +072									
	0.74129	6 2333									
	0 60383										
wd	* DK36										
14	0.00567										
12	0.72436										
13	1 234 16										
14	0.45071										
125	m m2 64										



				MAY BALAF VAL	6		
Time	Material William	ModPengs	AnasidP# PRL	MendSVML-g/s	MaxIIVE-Pens	MkyTranactisctry	Madisviv
0	0.21843	0.77843	0.27843	0.27843	0.57843	6.27843	0.27843
	0.25400	0.20495	P-26-405	6.25405	0.25403	6.25x65	w princip
2	0.31467	0.20006	B 20086	0.25094	0.25994	÷ 229+6	0.25254
3	0.34711	0.26405	0.17576	DIBUST	0.26405	0.18021	0 -165
	0.32287	0.23742	0.16975		0 23743	5.22048	
5	0.35210	9 16586			0 11/92	0.87779	
	0.04726	C 23742					
*	h 29001	0 15:23					
	0.25404	0.73742					
	D 2808+						
146	III 24 776						
11	0.35219						
17	0.30287						
13	0.3471						
Total .	0.21467						
15	0.25476						

100	2000	800	-		+	00000		(X)(1)		1000	1		-		
		K	ave.	Dr.AD		-	-		-	1	_			-	ŝ
450	93103	4	5000	3	503	X	200	-	1000	1	700		7	200	H
	5210		1	-	54		212	×.	100 to 10	10/01	1200		2000		H
					X200		200	2000	0000	200	500,000				
100	2000	0072	SIX OF	088.00											
	200	000	200	1000	N	1200		9650	(HODE)	9500	Diet.	NONE P	22		Į
	2	1		*		,	*		N	1+	12	10	14	16	P
-	7	,		*		,	*		N	1+	12	10	14	16	P

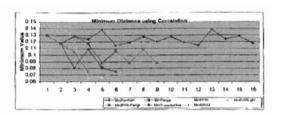
-	-			AVERAGE VALU	JE		
Time.	AugRandon	AutoPensor	Avegitt Ry	http://da.idk	Avisit/Ar Pangi	SupTransplactive	Aughtiva
	0.50410	0.20415	0.20415	0.20416	0.704 45	0.20410	0.20415
1	0.19142	0.18147	0.16142	+ 19142	0.14142	0.18142	0.70162
3	0.1484	0.1729	0.16004	0.17543	0.17258	0 15400	0 10672
	0 1467	0.16110	B 18035	6.13	D 16147	0.13049	0.66402
	0.5083	C HETT	0:0473sv		0.17955	0 19438	
	D RESIST	0.13489			0.11073	U IGHES.	
	0:17250	D 16827					
2	0.16623	0 13179					
	0.19434	0-4611					
	4 18833						
101	0 17266						
41	G rétires						
77	0.2493						
3.3	0.1967						
1.0	D 1884						
16	D 15142						

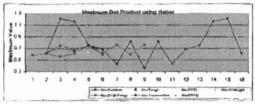
				MINIMUM VALO			
Tutted	Ministandam	Mesinga	Medical		MrS/M-Pena	MrtTranpilos(NA	MrdSyk
0	0 17977	D ¥2972	6 121/72	0 12972	0.12973	0 121172	0 12072
1	6 11755	DESTEN	0 11766	0 11789	0.11758	D 11750-	0 11755
2	0.12539	o speak	n raund	b *1960	0.12882	91000091	0.1004
3	0 12413	0 11775	0.00614	p:ch957	0.11760	0 106666	0.07467
4	4 11816	0.08882	0.06574		0.08867	O VECOUS	
4	4 11446	0 40734			€ 10-55b	911 F5088	
	£ 11909	0.06862					
		0.40001					
d	0.12023	0.08862					
de	0.12754						
HO:	0 11100						
11	# 13+46						
17	4 13619						
113	0 12413						
14	0 12639						
15	g r1266						

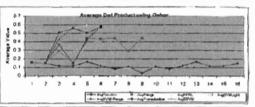
n mail debugge on the

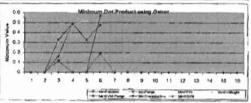
DABOFF

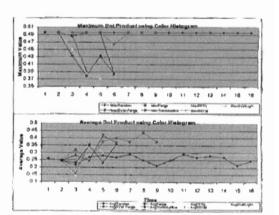
				MAKINGHI WALK			
Firms	ManRancom	Marifrenge	MaxiPFRL	MaxSVMLion/	MedSVM-Pwg	Mark World Core	MARKEY VM
- 4	0.57944	0.57944	0.57944	D 57/844	6.571wire	2:67044	0.97344
1	6-61173	miğri nitra	0 61173	D 01-417	6 61173	041177	-0.61173
1	1.71006	n 59736	0 73546	c 7676	0.55736	0.75003	6 [1343
1	1 10438	0.64427	D 11 1859	0.54301	d 61173	9.66764	0.60845
4	0.74859	0.75016	0.6357		d 7:5548	0.75003	
	0.68102	0.61913			a musica	145889	
4	0.47777	D 75516					
,	4.84341	0.59652					
4	0.35799	O 72514					
4	4.81341						
10	0.42777						
	0.66162						
12	0-74859						
13	1 16428						
14	1 2 1000						
14	0.64173						

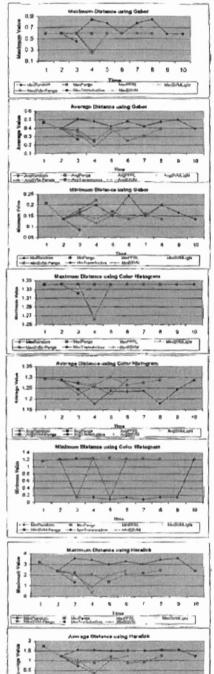

				AVERAGE VALL	/6j		
Time	AugRandom	AvaPengs	AugPFFIL	ANGSVALIGIN	Avgth/m-Pengs	Vog Transifuctor	Aveiltoviv
6	0.15616	0.15619	0.10010	D 19819	0.15(01)	0 15015	0.15615
1 1	0.1492	Q-1492	0.1492	0 1492	0.1492	0.1402	0.1467
	0 17416	0.29592	D 50146	or 20336	0.34543	0.50611	D 42918
, ,	41 11 3477	0 1492	0.05039	0.56652	0.1492	6.65261	0.96342
	D 16404	0.44639	0.59141		0.42208	C 20611	
1 1	6 11709	0-43138			0.58134	6.57712	
1	9.08078	0.44934					
,	0.10812	0.29173					
4	4 83018	0.44036					
	0.10812						
10	0.98078						
1.1	0 11709						
12	0.16450						
13	0.11307						
12	0.11418						
16	0.1492						


				MINDALM VALL			
Time	Mrstandom	MinPenga	Marself Rt.	MINSVINLIGHT	Mr/SVM-Pengs	Min Transmitueline	MinBSVM
0	0	0		- 0	0	0	0
	0	p		0		0	
2	1 0	0.1177	0.30584	0	G 1177	0.32604	0 15253
a	1 0	D.	8 47627	0.4697		0.46752	0.49658
4	0	0	0 52 102		· ·	G 32504	
4		0.14336			0 57105	0.47412	
4		p.					
7	0	6					
	0	0					
	0						
10	1 0						
7.1	0						
12	0						
1.3							
14	1 6						
16							


COLOR HISTOGRAM


				MADRIAN VALU	Æ		
Figure	Madbridge	Mard ² éngs	MaxPFRL	MaxSVhillagra	MissiavM-Peng	May Transductor	Martitivi
0	0.49521	0.46/32 (0.40521	0.49571	0.49521	6.49521	0.49521
	0 +952	0.49521	to erorogra	E-48\$21	0.49571	6.49521	0.49521
2	0.4952+	ci emboré	0.65143	0.46521	0.48599	0.43204	0.48555
3	0.49521	0.49621	o sesim	0.38072	0.49521	0.37581	0.3918
	0.4952 v	0.48521	0.07161		0.49571	0.43200	
4	0.49521	ió artitis			0.36402	0.38522	
	d 49521	0.49521					
7	9.40521	0.40521					
an .	0.4050*	0.49621					
	D 69521						
10	0.49521						
11	0.49521						
12	ti ancipa						
13	0.49521						
18	0.49521						
19	0.49521						


Ferm	Avg/Lendoni	Aver/Person	AMPERL	Avg0VMA.NN	AvailVit-Prote	4upTransciuctvi	AvgB-8Vt
0	0.99693	0.25663	0.25583	0-25083	0 25663	0.75683	0.25645
	0 24494	0.24494	0.24454	0.24484	b beaut	D 28894	0.74494
2	0.21241	0.31504	0.14554	6.23953	1 26129	0.73048	0 15114
2	0.75903	0 24494	9.35911	4.35504	0.24464	0.36907	0 35935
	0.7700	0.37367	6 25464		9.41712	0.23045	V 200 A
0 0	0.746703.	8.39979			5 3672	C 3561	
	a beats	4 37357			, ,,,,,	C 8041	
>	to Seators	0.43554					
	0.27239	0.37357					
	0.24602						
10	0.29076						
1.7	0.25703						
12	0.7786						
10	0 20905						
24	0.21341						
.19	-0.24494						



		steroskuld VALLE				
Tonin MoPanison 6	Infrings Maffill	March Muser	0 0	9	Pr-912/AW	Ministern Ool Product using Color Histogram
	0.60114 0:02233 6 H213	4.00414	5-001-14	0 10754	o onsed u natiki	
	0.31635 0.12473 0.30499		0.35897	0.00006		0.5
1 0	0.31435 0.35921					
	Q 316.55					1 0 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1						0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -
13 0						1 2 3 4 5 6 7 6 9 10 11 12 13 14 15 16 Thomas
15 0		-WEAL CH				The Made of Manager of
		MARIALIM VINCE			17 500 50	Maximum Dot Product using Haralick
20 300 9	AppParejs. 1AppP99 29.3001 29.3001 24.4367 24.4367	MacEVM light & 90 30int 24 4397	35 300 F 24 4367	29 500° 24 4367	ModSVM 20 3001 24 4567	27 RESIDENCE AND ASSESSED FOR A SECOND PROPERTY OF
23 7407	72 778 25 8657 14-6367 23 6355 25-0325 24 6463	25 21 51	32 779 24 4367	25 45-47	13 ments	200
5 24 2060	23 3465		24 3746 24 7093	29.8306 24.20(or		21 / 10 / 10 / 10 / 10 / 10 / 10 / 10 /
7 20 0399	25 0125 20 1688 25 6325					
9 24 0319 10 19,2556 11 04 2063						1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
12 19 6259						Time Tendence - Verlage special, institute ope
13 17 7126 44 25 1497 15 25 4367						oh-magiculang - 4- inphantaja
	Aug Person Aug Person	AVERAGE VALUE	Light VM Partit	lus Transduction	Arabasis	
9 6 51145	6 51141 6 54 -21 8 25503 3 25503	4 \$4545 4 20500	8 11141 6 75503	6.51 MT 9.20503	8.51141 1.25500	Average Dot Product using Haralick
3 511240	10 9861 17 51 8 36503 23 1407 19 1591 23 7935	13 6268 22 4357	15 KB21 5.25560 15-4460	20 3824 22 5077 20 3324	15 -418 27 0/25	
0 6 45438	18,245 18,251		21 HEDD	20 2183		20 15 15 15 15 15 15 15 15 15 15 15 15 15
L 3 63919	וט מבט פו דעל ז פי					60 10 A
90 8 28022 501714 11 1 25436						
12 511245					i	1 2 3 4 5 6 7 5 9 10 11 12 13 14 15 18
9.456.22 8.25560						Time - Continue
Tata Mc-Patakas 6 0 1 2577)	Reform Marris	MINITURN VALUE MINISTRATION I 1 25273		Net caredictive	MinistryM	
1 53356	1 25773 1 25773 1 58304 1 59374 6 08061 6 99721	1 553168	1 35773 1 55356 5.06061	1 25773 1 56356 1 3.2261	1.25775 1.65366 6.08081	25 Minimum Dei Product using Herelick
3 1 23494 F 1 43567	1 55256 21 25ec 2 9 178 23 1051	20.8943	1.55350 2.917#	15.2261	20 6264	à ac
F 17549a	7 80595 2 9178 1 84587		20-6972	73.6950		> 15 V
	2 9174					Na 15
10 123454						2
12 1 43907 13 7 23894 14 1 26959						1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 10
-6 .553199		COPRELATION				
		MAXIMUM VIII LE				100 Maximum Dat Product uning Correlation
Firm Madianidem is 0 82 172 1 60 656 v	And Proces And PR 87 872 AS 172 80 8541 40 8541	82 172 81 8561	42.178 80.5541	MixTransductiv B2 172 BD 8541	MediSVM 82 172 99 494 1	
2 76,7388	71.3081 87.0004 89.884 40.079	71 3651 54 1075	60.8541	54 8574 56 8545	71 5051 80 7478	N
4 85 023A 29 0548	18 794 84 0759 80 7973		76 234 01 7669	54 53.74 56 523		
6 52 hnav 6 65 3002 8 69 6002	78 234 59 9440 *5 234					2 en
9 83-3602 10 63-3664						1 2 3 4 0 0 1 8 9 10 11 12 13 14 15 18
12 99 0548. 12 96 625+ 13 56 649+						Tirrie
76 7568 15 90,8561						4. Saddis Sing - Am No for carries
Time Argitation. J	hugifaniga ingliffig ascors 45,005	AVERAGE VALUE	houghout areas	ivelorsout.	Awaktiviu	
50:007	balou/ solon?	53 907	\$3.607	95.085 53.097	55.007	Average Dut Product using Correspos
5 58 7 46 51 782 4	51 4668 - 60 8287 53 207 - 57 1638 54 2568 - 58 8814	57 3218 51 5656	52 (778A) 53 (607 56 1874)	50 6195 52 9105 58 8195	58 0487 64 9027	1 00 00 00 00 00 00 00 00 00 00 00 00 00
5 35 48 ES	51 5424 54 2568		57 4775	de 31 44		
2 43.6910 6 45.0341	tic 86mm 64 2598					46
9 43 64 in 41 44 in 55 64 64 in						3 46
12 51 782-						1 2 3 4 5 8 7 E 9 10 11 12 13 H 15 16
75 51 4168 75 52 669						These Little Control Little Control Co
Free 600*50ndom 9 0 9 20312	UnPengs UnityPs # 2001) # 39013	MINDREM VALUE MindVER light 1	WeSVMPaner	9 79017	problem.	
27 5518	77 5313 27 5312 42 6393 48 5771	27 53 -3 47 6310	47 650a	97 5565 47 5752	9 19317 27 5313 41 1254	Minimum Col Product using Cerrelation
9 24758 9 25 500	31 5313 50 usas 45 6667 56 0625 41 6569	49.7301	97 (3+3 64 (343)	47 1792	53. 62 79	1 May 10
6 1043 6 450+-	65.885.7 12.4371		10 2077	50 192		5 20
9 15-6175 9 8-65014 10 8-8018	45.86d P					5 10
2 343758						
13 £ 70234 14 14 5885						1 2 3 4 6 6 7 8 9 16 11 12 13 14 18 18 Time
25 1 1/ 50/5						Machine S Machines SHIFTS Microsoph SHIFTS SHIFTS Microsoph Shifts SHIFTS Microsoph Shifts Mi

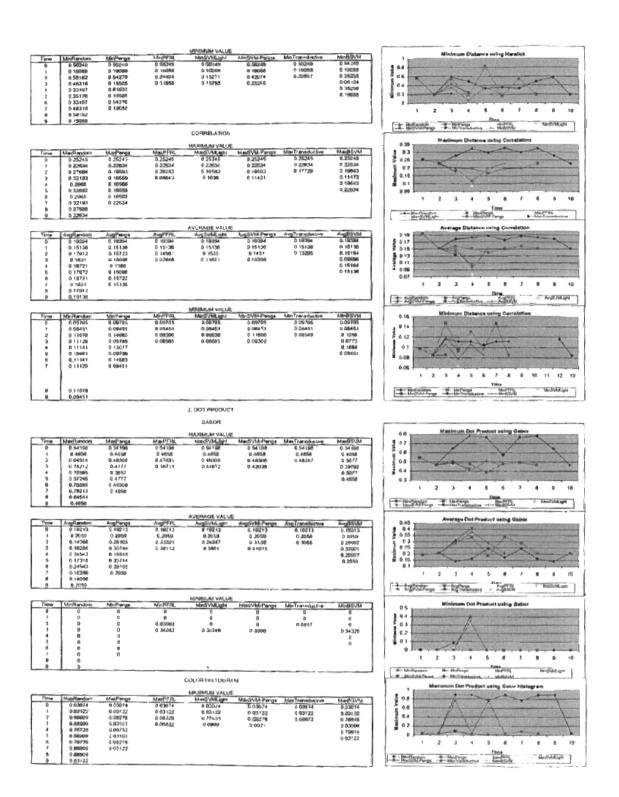
DATASET, TEMPLATERCALCRIFE OW I EUCLIDEAN DISTANCE D 50506 0 50506 0 50506 0 83248 0 77201 0 50506 0 77301 0 83249 0 50506 0 58596 0 58596 0 58596 0 58596 0 58596 0 58596 0 58596 0.58566 0.58566 0.53472 0.21404 Aug/FR 0 46547 0 3917 0 27566 9,1704 0 48547 0.3917 0.59111 0.4742 0.4174 0.41742 0.47742 AugPongs 0 45547 0 3917 0 38298 0 24918 0 38601 0 39208 0 39208 0.46547 Q.46547 Q.3917 Q.34586 B.17463 G.34654 Q.3917 0.46547 0.3517 0.3527 0.24045 0.3947 0.50111 0.20688 0.13427 0.15852 0.13331 6 20688 6 134,77 6 06243 C 13259 68781008 0 20688 0 13427 0 16360 3 19690 5 16915 0 2476 0 19898 0 16368 0 13427 6 13427 6 15006 6 11574 6 15008 9 15427 0.13427 8 16582 6 13231 6 15652 9 13479 CO OR HIS TOO BAN MAXIMUM VALUE MadFVMEschi 1.3409 1.3409 1.3409 1.2693 MacSvM Pargs 1,3409 1,3409 1,3409 1,26349 1,3409 1,3409 1,3409 1,3409 1,3400 1,3409 1,3409 1,3409 1.3409 1.3409 1.3409 1.3509 1.26741 1,3409 1,3409 1,3409 1,3409 1,3409 1,3409 1,3409 1,3409 1,3409 1,3409 1,3409 1,2647 1,3406 1,3406 13409 1.29251 1.29251 1.2858 1.21914 1.25842 1.21914 (.2858 AugSVM-Pengs AugTransdactive 1 29251 1 29251 AygRandor 1.29251 1.29251 1.2958 1.24177 1.7829 1.2362 1.2362 1.2382 1.7829 1.78177 1.2968 1 7856 1 22639 1 75068 1 2666 1 27421 1 26364 1 26364 1 27421 1 2666 MnPFRL 1.16619 1.21171 1.22606 1.25643 MinTransduct L 10639 1 15618 1 21 (71 0 14087 0 14087 0 14087 0 14087 0 14087 6 14087 1 21171 1 23396 1 2268 1 2268 1 23396 1 23396 1 21171 1 21171 0.11826 1.21171 1.25395 1.24616 0 12063

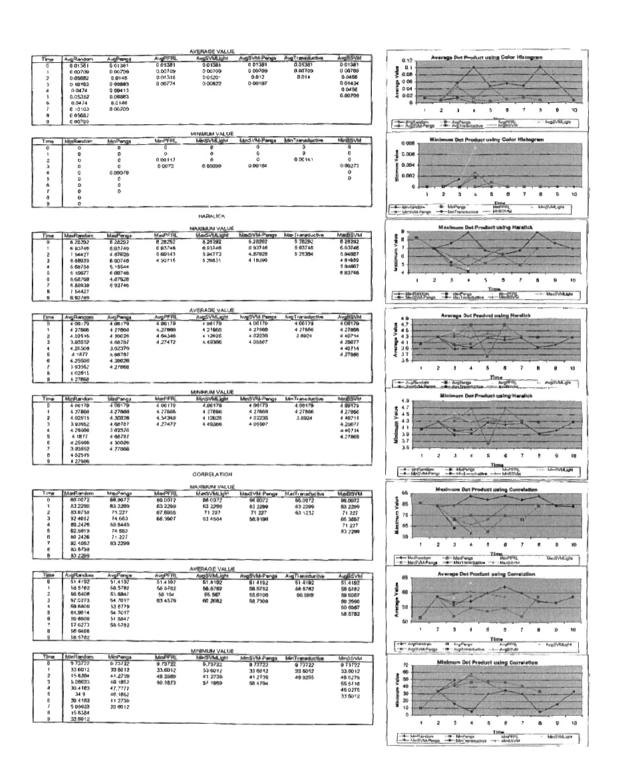
4

4 7 4

9

Aug/Might


HARALICK


3 19468 2.39442 2.18577 1.03027

2.19465 2.39442 2.18577 q.3728m

1,21171

1.25nbs 0.12353 1.21171

SET: TEMPLATEREALORUPORSCHE

EUCLIDEAN DISTANCE

GABOR

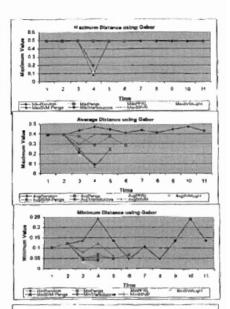
				MAXIMUM VALUE			
Time	NipdRandom	MarPangs	MarcPFRL	MesSVMLight	MaxSVM-Pengs	MaxTransduction	MadSVM
0	0.48978	G.4697h	0.48975	D 48976	0.48978	0.48978	G 48978
1	0.48978	0.48978	0.48975	0.48978	0.48978	0 ABOTS	0.48976
2	D 48978	9.48978	0.46978	0.48978	9 48978	4.48978	0.48978
3	D 48978	0.48978	0 10685	0.22655	0.08441	0.19426	C-45978
a	0.46978	0.48978			0.46978		0-4697#
5	0 48078	0.48978					
6	0.48978						
7	0.48978						
6	0.46978						
9	0.48978						
400	0.00070						

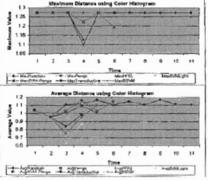
				AVERAGE VALUE			
Time	AvgRendom	AvgPangs	AugPFRL	AvgSVMLlight	AvgSvM-Pengs	AvgTransductive	AvgBSVN
9	0.38963	0.38963	0.38963	9.38963	0.38963	0.38953	0.38963
	0.39:57	0.39157	0.39157	0.39157	0.39167	0.30157	0.39167
2	0 4 3 3 3	0.37294	0.19377	0.26245	0.24334	0.21048	0.29498
3	0.47104	0.28262	0.05927	9.09564	0.06939	0.09138	6 39157
4	0.44686	9.37294			G 24334		9 39584
5	0.40957	0.26275					
6	0.43695						
,	0.40957						
8	0.44586						
9	0.47104						
10	0.4333						

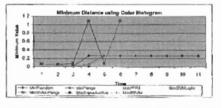
				MINIMUM VALUE			
Toma	MusRandom.	MnPenga	MerPFBL	MnSVMLight	MinSVM-Ponga	MinTransductive	MinBSVM
Ó	0 10044	0 10044	6 10044	0 10044	D 10044	D 10644	G 10044
1	6.12061	0.12051	0.12051	0.12057	0.12061	B 12961	0 12051
2	0.13452	0.04648	0.0314	0.04848	0.04848	0 D4234	0.07903
3	0.23981	0.06589	0.00405	0:02775	0.65787	0.041-12	0.12051
4	0.13448	0 04848			0.04848		0.05169
5	0.04618	0.06645					
6	0 10411						
7	0.04616						
8	0 13448						
9	0.23961						
10	0.13452						

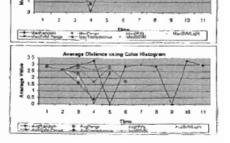
COLOR HIS TOGRAM

				MAXIMUM VALUE			
Time	MaxRandom	MmPengs	Mex/PFRL	MaxSVMLight	MacSVM Pengs	MaxTr winductive	MixBSVM
0	1.2717E	1.27126	1 27 126	1.27126	1.27129	1.27126	1.27126
1	1.27126	1.27126	1 27126	1.27126	1.27126	1 27126	1 27126
2	1.27126	1.27126	1,27126	1 27126	1 27126	1.27126	1.27120
3	1 37126	1.22176	1.09526	1 18635	1 09625	1 12526	1 27128
6	1.27126	1.27126			1.271.26		1.27128
5	1 27125	1 19324					
6	1 27126						
7	1 27 126						
8	1.27126						
9	1.27126						
10	1,27126						


				AVERAGE VALUE			
Time	AvgRandom	AvgPengs	AvgPFRL	AvgSVML/ght	AvgSVM-Pengs	AvgTransductive	AvgBSVM
0	1 04004	1 04004	1.04084	1.04004	1.04004	1 04004	1 04004
1	0.95301	0.9530	0.95301	0.95301	3 95301	0.95301	0.95301
2	1.1072	1,02461	0.63233	0.7614	1.00338	0 03902	0.74195
3	1 11676	1 15827	0.67358	Q 72986	1 09376	0.96273	0.95301
4	1.16747	1.02481			1.00338		1.18207
5	1 10377	1 14432					
9	1 14586						
ī	1 10377						
В.	1 16747						
D	1.11676						
10	1.1072						


	MINIMUM VALUE										
Time	MinRangiom	MinPenga	MinPFRL	MinSVMLight	MinSVM-Penga	hein fransductive	MINESVM				
0	9 00648	0.06546	0.06616	0.06648	0.00046	0.06648	0.06640				
7	0.00053	0.08053	0.08053	0.06053	0.06053	0.06053	0.06053				
2	0,01651	6-07754	0,00633	0.01403	0.07754	0.0105	0.01139				
3	0.26276	1-09333	0.0053	0.00794	1 69245	0.00544	0.06053				
4	0 26276	0.07754			0.07764		0.26276				
5	0.26276	1 09352									
6	0.26276										
1	0 28276										
8	0.26276										
9	D 28276										
10	0 29276										


HARALICK


jone	Mandom	MaxPengs	MexPERL	Mixed VMLight	WarSVM-Perge	MarTransductive	MadBSVH
0	3 57018	3 570 IB	J.\$7018	3 57018	3.57016	3 5/016	3 57018
1	3 46105	3 45108	3.46106	3.48108	3.48108	3 48108	3.48105
2	4 11953	1 92849	4.22321	3 92839	1 02539	3 19583	4 22321
3	3.67492	3.33361	0.65348	1 71245	0.0971	0.80129	3 48108
4	3.82366	3.92839			1.92839		3 9633
5	3,92614	3.41291					
6	3 54307						
7	3.92814						
8	3 62366						
9	3 67492						
10	4.11953						

Temp	AvgRandon	AvgPangs	AUGPFRL	AvgSVMLight	AvgSVM Penge	AvgTransductive	AvgBSVM
0	2.86874	2 86674	2.85874	2 66674	2.86574	2 86874	2.86074
1	2 61097	2 61097	2.51097	2.61097	2 4 1007	2 0 1097	2 61097
2	2 95937	2 76769	2,0068	2.2549	2.37218	181832	2.88510
J	3.27526	1 70575	0.35712	0.32534	0.08514	0.35999	2 61097
4		276789			2 37218	0.00000	2 5 1 5 4 9
á	2 B613	1 74097					
6	2.99017						
,	2 6013						
8	0						
F	3.27526						
10	2.95937						

Time	H modern	Lib. Pargs	Morre	Manager Manager	Harstyn-Parge	Min.Transactive	MALIDAYAN
41	1.250.02	1 26633	129633	1 20000	1,74527	1 26633	(,4630)
	0.05074	0 00=23	0.86322	0 ABO73	6 · ** >3	D ESIS 23	D 88673
,	0.73661	d 06734	0.72430	0.00735	C+ '73G	0 0 f1 tip	4 346
2	3 42551	0 06401	0.00622	0.007567	O MEAL!	O. O-F41071	0. 151
4	0.92112	0 067 M			0 04730		0.000
5	6 256/8	B 06091					
6	0 04 254						
,	0.75918						
	0 92112						
۵	2 07:51						
:0	07.Ve :						

CORRELATION

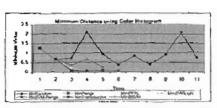
				ULTRACTOR OF THE	i		
1-7-	Mad Anton	Man Porge	MadPFR).	MINIST NAME OF STREET	MacSYM Panga	No limesour	N=05VH
-	0 25624	0.26534	0.25424	0.76824	0.20624	0.25624	0.26524
i	0 31727	0 21727	0.21711	621727	021127	0.21227	02112)
3	D 25/192	D 21586	0 73617	0.737941	0.21580	0 77:59	C . 1000
3	0.30595	0 H423K	D 15505	0.12112	6.1004	0.11543	621727
4	0.25493	0.21586			0 21540		0.20417
	0.31081	0 (8026					
6	0.2596						
,	4 31451						
	♦ 78-63 0						
7	A 206,99						
10	0.23798						

		_		AVE434 114 LO			
Time	Aughanger	AvgPongs	MOPF HIL	Avg5YMLight	AvcoVM-Pangs	Avery Treats and use titues	AvgUSVX
0	6 (8337	0.16327	0.16007	0 1400)	0 18337	0 (633)7	11(41.0
	0 1 MZ	D 1345	0,1346	8 1345	§ 1346	0 134A	5 4 Taris
>	0.15050	F 10004	B 1522	6 1.764	7 L 9449ml	D 11414	0.14527
د	6. 100.2	C 17327	0.09556	4 CT31	0.092299	0 03469	0.1344
4	0 11445	0.10914			11490		0.16603
3.	9 (# IBI	4 17850					
	0 11741						
r	0.18991						
	0.17645						
	0 1785.7						
10	6.10069						

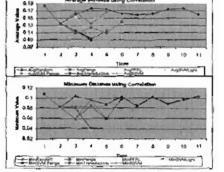
				MINIMUM VALUE			
Three	Min/t,#ndom	MinParkga	MONEY AL	HENSVALLEN	No SVIL Pers	Manth anduction	MUBSVM
,	0,10812	0 10012	D 1C013	. 17812	0 (301)	\$10013	4.14417
٠,	0 044753	ሶ (ተጀታሪ	064250	·574.]	0.00253	0.0625.2	6 00233
2	4 10311	C C 1621	G 06249	30/01.	0 05024	0.04024	0 0503M
1	A 09-595	० ८९ छ।	G 000178	0.65779	0.08511	4 04037	0.68253
	6 0878	0.02021			Ø 050/2 I		D DEDO4
5	C 10157	0 09715					
6	ŭ (⊿4.3 2						
,	0 10107						
8	6 0076						
₽	J 09465						
10	0 10311						

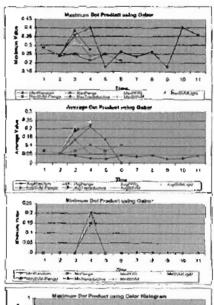
a. DOT PRODUCT

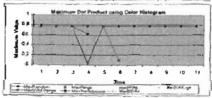
GARDA


				MANAGEMENT VALUE	t		
Пгтт	Maril andom	N expends	MaxPFFA	MassVMLight	Marchard	I Am Tramaschia	U sel SVV
-	B 21.153	0.36377	0.26363	تواسخة و	0,527,71	0 76LS	0 257477
1	9.7766	C 2388	0,2360	arva	g 2364	2 2364	O. ZOAN
2	6.37.11.3	OMOI	0 31 78 1	رَدِد ا مكانِي ن	0.2441	4 36437	0.35339
>	B 40019	0.21539	■ 7775 ¢	6.21804	0.218/8	0 27916	D 2368
4	3 17805	0,7481			U 2481		D 23-2153
3	\$ 28136	0 21 32					
В.	0.52240						
1	0.39(36						
Δ	0.17626						
3	Ø 160 HS						
40	2352/3						


				AVERAGE VALUE	Ē		
15re	Aug Pandon	AwaPango	AMODERIL	AVY BY WY LOND	Aug\$VM+12mgs	Avg7: MINUTER	Augtt y la
0	0.070 19	0.00/12/10	0.07019	E E *E 10	D CZGTy	0.07616	O STERN
	005431	W W5431	C 05431	C (M31	4054)1	0.05431	0.05431
2	0 04341	0 07 503	6 216M	0 147AB	5 13767	0 18/50	0.13735
a	0 6 77 4 2	0 1054	074118	0.203	0.21238	0 2216	0 05431
4	0 021496	U C-7 163			D 132787		DARKE
ь	0.04517	0 40504					
	0.00001						
,	0.04512						
В	0.03428						
•	1 -02762						
₩0	0,04942						


		_		MIMMAN			
1,44	kt iii melon	M - France	MO-) LET	MANY VIALEN	Land YALP may	Mail range com	Month's Wild
٥	0	3	٥	0		٠ -	o o
	0	۵	٥	٥	5	٥	à
2	4	4	3	٥	0	ò	ŏ
1	6		0 2 1473	C. 133	0 22518	0 11063	3
4	٥	0			0		à
	٥	٥			•		
đ	0						
7	0						
	ه						
9 .	٠						
1.0	6						


DOLO PISTOSRALI


				MAXIMUM VALUE	ž.		
[Ima	V to B + v loom	H might als	Ump (RL	PART HALLINGTON	Was Classes	Mary-mediche	Maga: 14
•	31. (1	0 71352	01733	O FORES	0.77353	D 777333	D 77,13
, ,	0 77353	Q 15:223	4 773K3	D FORES	0.77363	8 77363	0.77330
,	0 77353	0 77333	3 7471 9	D 27363	0.77363	0 17550	0 77353
ا د ا	01)352	2 0017	661637	D 64684	0 0 1776	0.61467	6 77313
4	0 777953	077353			6)7344		(',242
	0 77353	O (106 14					
	0 77252						
,	6 27:364						
٥	4 // 133						
9	0 77153						
to	677353						

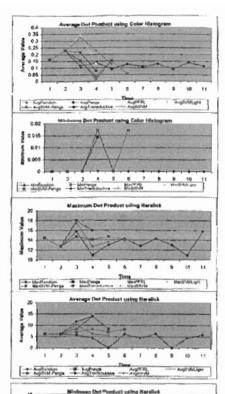
				AVÉRAGE VALUE	E		
Terre	AvgRandom	AvgPengs	AvgPFRL	AvgSVMLight	AugSVM-Penga	AigTransouctive	AvgBSVM
6	0 15041	0.15041	0.16041	0.16041	0 16041	0.16041	0.16041
	6 22756	0.22755	0.22766	0 22755	0 22755	0.22765	0.22755
	0 11302	0.15441	0.34364	0.29989	0 15376	0.2141	6.72748
3	0 1395	0.03950	0.13958	0 22969	0.01753	0.07765	0.22755
4	0.091	G 15141			0.15375		0 12914
5	0 12752	0.05675					
6	0.10548						
6 7	0.12752						
8	0.091						
9	D 1355						
10	0.11302						

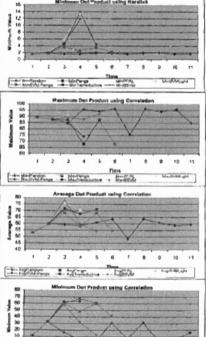
				ARNIMUM VALUE			
Time	MinRandom	MinPengs	MinPFRIL	MinSVM-light	MinSVM-Pengs	Min'Transductive	MinBSVM
0.	0	0	0	0	0	0	0
•	0	D	0	0	0		
2	0	0	0	0	0	0	e
3	0	0.01726	D 01738	0.00896	0.01726	0.01436	0
4	0	b			0		0
5	0	0.01712					
6							
7	0						
e	0						
9	. 0						
10	0						

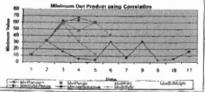
HARALICK

				MAXIMUM YALUI			
Time	MacRandom	MacPengs .	MaxPFRL	MarSVMLight	MaxSVM-Penga	Max1ransductive	MaddVM
0	14 4304	14 4304	14.4304	14.4304	14.4304	14.4304	14.4304
1	12 7254	12,7254	12,7254	12 7254	12.7264	12 7254	12.7254
2	15.7361	14 6989	16.3366	15 2504	14 5959	18 0124	17 5453
3	10.9216	14 0274	16.8642	14 5845	14.0274	15 8855	12 7254
4	12 9923	14.6989			14.6909		13 6148
5	14.2729	14,8401					
6	12.7887						
7	14.2729						
₿.	12.9923						
P	10 9216						
10	15,7361						

_	AVERAGE VALUE										
Time	AvgRandom	AvgPange	AVEPFRIL	AvgSVMLight	AvgSVM-Penge	AvgTransductive	AvgBSVM				
0	6.13205	6.13205	6.13205	5 1320-6	6 13205	0 13205	6 13205				
9	6.11829	6.11529	6.11629	5 11829	6.11629	6.11829	6 11829				
2	6.7521	0.63236	12:5399	9 757 16	£ 35393	11 6086	10 195				
3	4,33158	8.22366	14 542	13.3217	13.9443	13,7877	5.11629				
4	0	6.83238			0.36393		547213				
5	6.0863	8 02703									
6	4 25453										
7	6.0863										
	0										
9	4 33168										
10	5.7521										


Time	MinRangom	MinPengs	MintPFRL	MinSVMLkghi	MinSVM-Penge	MnTransductive	MARSYM
0	161837	1 61637	1.61837	1 61837	1.6 (837	1.61837	1.61837
1	1 91904	1.81904	1.81904	1 81904	1.01904	181904	1.51994
2	1.63689	3,49485	5.97632	4.21332	4 21332	4 57964	4.21332
3	1 58317	3 41729	15.4932	9.04053	13 654	11 7369	1.01904
4	1 9069	3 49486			4 21332		1 63669
5	1 5071	2,10513					
6	1 58317						
7	1.6071						
8	1.9069						
9	1 58317						
80	1 63689						


CORRELATION


Time	MaxRandon	MexPerigit	MaxPFRL	MesSVMLight	MedSVM-Penge	MaxTrameductive	MapB3VM
0	89.1515	89 1515	89.1515	89,1515	89 (515	69,1516	99 (616
	87 563	67.683	67.583	87.583	87 583	97.583	57.683
3	84.8533	87 2455	90 87E1	89 6252	#7.2465	64.4213	80 2176
7	95 +855	67.8197	76.2208	70 1211	67,6197	74 05#5	57 583
4	93.9614	87.2466			67 2455		91,9377
5	1886-9681	67 8467					2
ď	76.2721						
7	99,9861						
6	93.9614						
9	95.4856						
10	64 5533						

Time .	AvgRandon	AvgPeoge	AVGPFRL	AvgSVMUght	AugSVM-Pengs	AugTransductive	AvgBSVM
0	62 7692	52.7692	52,7692	52,7992	52 7662	52 7692	52.7692
1	59 7916	56 7916	59 /910	69 7918	59 7916	59 79 16	59.7916
3	59.2368	68 3772	76.8631	73 6522	70 7966	71 7821	77,0958
3	58.6292	\$7,053	70 4945	67 64:8	87 5675	67.3069	59.7916
4	80.8544	68-5772			70 7966		54 1049
5	63.6303	54.5e42					34 1049
6	45 4987						
7	63 6303						
е .	60 8544						
9	58 6292						
10	59 2368						

MINIMUM VALUE										
Time	MinRandper	MinPanga	MinPFRL.	MinSVMLight	MisSYM-Pengs	My Transductive	MinBSVM			
φ.	10.7169	10-7189	10.7189	10.7169	10 7189	10.7159	10 7 169			
1	31 7011	31 7011	21.7011	31 7011	31 7011	31 7011	31 7011			
2	16 2455	60:1335	60 00 19	60 1336	60 1336	62 5856	57 63/2			
3	5 37432	48 1567	65 2459	53 1125	87 4147	63 3653	31 7011			
4	3.81062	60 1335			60 1335	49 3034				
5	51.1129	41 1439			00 12.15		12 3632			
6	7.17654									
r	31 1129									
ā	3 8+962									
9	5 37433									
10	15 2455									

DATASET, TEMPLITEREN CAUSCOCIR

FERCE IDEAN DISTANCE

G-SCO

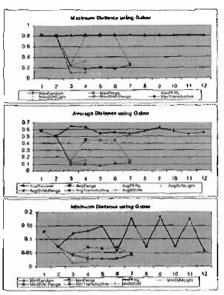
				HAXIMUM VALU			
Time	Medianon	Manifernite	Mad + FR	Marshalland	MasvMPage	H#TIMMORNE	MackSVI4
_	0.80787	D.00757	0.50783	0.867637	0 20151	0.56787	D 80787
	0.40757	0.60787	2 ACC 14	G.60 FeJ	5 MO: 1-1	توجروه ن	0 < 187
,	Q.8078F	0.28556	0 1434	0.34353	01419	6 34252	625.18
	0 83/67	0.06797	0.000-L4	G 2480 i	6 I 0173-0	Ø ₹/24d	0 75297
4	0.80747	0 60757	ALVEO O	0 170		Ø 200 19	
5	G 80/7 K7	0.60187		0 20031		0.17916	
€	0.307a7	0.25558				0 34575	- 1
,	\$ 40787						
- 6	0 M7E/						
- 1	0 50767						
10	0,80707						
- 0	G N0787						

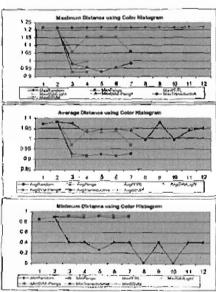
AVERA : VALLE Time AugRandom AugParte AugPARL AugSVARDohl AugSVARDongs AugTIMEDICTURE AugBS										
1,500	AugRandon	y Albande	AVEFFRE							
0	0 57616	0 5/010	0.57510	0.61010	0 57016	05%18	0 6740 0			
k.	0.50377	B 50373	0 50373	0 50 57 3	0 54073	c 53373	0 50323			
,	C CHALL	0 14763	0.07811	0 (2702)	0.09249	7.17202	012721			
1	0.80366	0 (40)	0.06507	D 14148	0.06273	(±0324	0, YS.200			
i i	3 54007	0.44517	0.04592	በ የኢትዮጵያ በ		0.07441				
6	0.50698	D.646Z		D.14148		0.10324				
6	A 53378	0 14783				0.12202				
j	0 57607									
	0.60389									
9	0 57507									
10	o Miry									
11	0 5// 00									

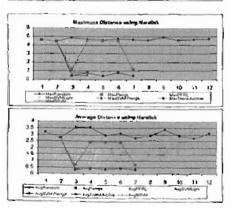
				UPPENDEN VALU			
1	MAR AND AT	Linkage	MAPT RO.	MINSYMUGH	Mr.SVM Porp	Man "You projectives	MARIEVA
۰	5 12466	A 17684	0.12606	O 45GMR	0.12666	D 12666	P 12406
	D 07745	0.07718	041715	0.07241	0.DF245	2 PS TO 8	0,67248
>	0 12056	0.04297	0.4287	0.04244	5.2≤ ≥≤.6	D 84039	161221
4	6 1290n	3,070.76	0 0274	0.04394	6.03137	() & 25±2%	0 ti 1 56
i	0 14625	8,06512	0 02139	G (41511		0 C2S27	
3	Q 016095	4 07079		0.04394		0.62689	
6	0 17306	0.04597				0.04069	
,	0.07736						
	0 18171						
•	0.07736						
40	6 17308						
10	0.0517/5						

COLDA HISTOGRAM

				KATALIN YALU			
7-	Medianam	Plub Bed	MoPFRL	Mana VVIII gra	March Unit Penga	Mer Transport	MDMB2VM
۰	1.21473	131433	4.21973	1,21473	(21413	13/473	EKNIK!
•	134473	1 21473	1 21473	121677	1.27(7)	1_21479	1 21473
2	13:173	100,705	0.52809	© 3 637	O N/774	Q 3000 P	0 5)300
3	1200	11.729	0 97745	d Seems	G SATES	0 25632	2 24127
•	1 27173	11,396	0 97764	0.42744		0 92219	
8.	12117)	1 16379		D,999603		0.85037	
4	1,21475	1 45/85				0 9541	
1	121173						
٨	131473						
9	1,34477						
13	1,314.72						
11	1,71473						


	4VERAGE VALUE										
11~	Angel (arrange	A-gPanga	AMPTEL	AmpSUM Frie	Aug State area	Ang Transactions	A-pas-//				
0	1,0/107	1 57167	167107	1,07107	1 57167	147182	10/16/				
	103477	1 67 233	107933	1.47833	1.07833	1 67033	4 6793)				
3	107357	033042	CAGIGO	D 07731	Q D 1434	0 0000011	0 02344				
1	100200	1 03845	عدرده ه	0.65337	B B14	0.5H 7.12	52225				
4	1,04803	4 044 00	D 92455	2,000 GB		0.90434					
7	1 0197	143675		0 66>)/		0 0 1 732					
٥	1 007956	0.97342				0 027731					
y	0.00216										
l #	BIGTOIL										
b	72215										
10	. Calledon										
15	1 (46)										


				HIMMLEY WALL	E		
Three	Maltangers.	AlejParaga	PFP	MANSVALIDA	ManaSVA Parage	Un famewiche	· ANDERSON
0	0 64443	D 6+1J:	1 61437	BMUD	1 84800	l since	# 84532
,	4 65948	31 30594 €	C-82646	0.12.340	2 80045	0.56440	U.48048
>	0.40449	0 62444	6 63448	D 2001146	0.00000	0.00110	g (à 16a
3	0 40440	0 p7G1	0 97704	0.01818	0.00002	P 84.207	0 68187
4	-0 2003B4	0 37766	00100	BUT THE F		b 91200	
	2 90940	9 254		○ 後年の日本		0.88297	
L	3 40446	0.57744				0.00110	
>	0.01045						
В	0 10149						
b	0.0106						
La	0.46449						
.,	04744						


HARALICK

	MAXIMUM VALUE										
Times	ManRangiore	Management	Mari - NE	Neg/LLV4	MadyALPage	Ideal Parymeter Toron	44#B5V7/				
В	I 5077€7	4,46791	4.00797	1 64797	(topre)	4 00797	4,50797				
,	4 64064	4 41094	4.44064	4.44064	4 44064	4 44064	4 44064				
. ≥	4.510+3	(.14554	0.70070	0.47202	0 30053	D 47202	2 76435				
د	4 60775	4.46747	D.43Q76	2.22154	D #3744	0 18547	PARK!				
4	4 6015	4 44.19	D 200533	667112		6 42559	- 1				
3	4 72662	4 42747		7 221 14		0.78743	- 1				
6	4 64043	(14574				0.47202	- 1				
,	4 5607						- 1				
	4 Bu 177						- 1				
9	4 5507						- 1				
10	467						- 1				
13	4.739						i				

Flores	_ Aughtedon	Arg Pengs	ANDPIFEE.	PHOSPINITED AND	Avel WATER	Avg Transductive	4mB\$VX
0	3 71794	2 11764	3.2/7/24	3.25284	7.517.84	3 21254	72.79
1	7, 725004	27204	7 72000-1	2 Yalkini	27.704	2 7 2994	7 72 294
,	3 53 157	o rouge	0.720(1	a miles	041327	0.24956	0.2541\$
3	1 46000	247174	Ø 28608	0.43457	0 41700	0.43783	841411
4	263716	7 (14)6	0.3550	0 410I1		0 34730	•
4	211018	クリア・カ		4 4746		0 43783	
6	77118	D . J . M				0.3466	
,	291510					5.2-100	
ø	341702						
9	2,31916						
16	2 744 28						
11	3 11063						

				MINIMUM VALU	E		
Time	MinRandom	MinPengs	MerPFRL	MrsSVMLight	MinSVM-Penga	MinTraneduction	MinBSVM
0	0.70954	9.70954	0.70954	0 70954	0.70954	6.70954	0.70954
	0.14216	0 14210	D 14216	0 14216	0.14216	0.14216	0 14216
2	0.27143	0.34919	0.31056	0.16143	0.34919	0.35143	0.06905
3	0 65401	0.35489	0.32703	0.16567	0.2979	0 33733	0.14699
4	0 53916	0.35327	0.32183	0.1399		0.31341	
5	0.23276	0.35459		0.16587		0.35753	
6	0 25927	0.34919				0.15143	
7	0.38654						
8	0.75595						
9	0.38654						
10	0.25927						
11	p 23278						

CORRELATION			

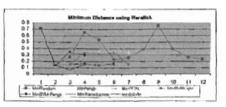
				MAXIMUM VALU	Ε		
Time	MaxRandom	MacPangs	MaxPFRL	MarcSVMLight	MaxSVM-Penga	MexTransductive	MedSVM
C	0.3626	0.3526	0.3826	0.3620	0.3626	0.3436	p 3626
,	0.32084	0.32084	9.32084	D 32684	0.02064	D 3208A	9 32094
2	0.35432	0.22616	0 2252	0.20273	0 19938	0.26273	0.21415
3	0.36608	0.25602	0.15176	0.21256	0.19678	0.21023	9 24 368
4	0.33688	0.25618	0.14866	0.21709		0.18095	
6	0.31471	0.25602		0.21260		0.21923	
6	0.36565	0.22616				0.20273	
7	0.35697						
8	0.35574						
9	0.35897						
10	0 36555						
11	0.31471						

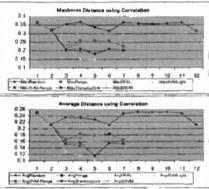
Tirre	AvgRandom	AvgPenge	AMBREEL	AvgSVMLight	AugSVM-Prings	Aug Trenadur zve	AvgBSVN
0	0.24961	D 24961	0.24361	0.24961	0.24961	0.24961	0.24961
1	0.21214	0.21214	0.21214	0.21.214	0.21214	0.21214	0.21214
2	0.23431	0.16411	0.12761	0 15313	0 15055	0 16313	0 16762
1	0.23405	0.18315	0.11621	0 (6193	0 14605	0 16667	0.17098
4	0.22819	D 1793	0.10262	0.15894		0 11578	
5	0.21176	0.18315		0.19993		0.95557	
4	0.24648	0.15411				0.15313	
,	0.25128						
6	0.2503.3						
9	0.25128						
10	0.24648						
11	0.21176						

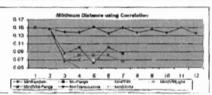
				MINIMUM VALU			
Time	MnRandom	MinPengs	MinPFRL,	NitrSVMLight	MinSVM-Pengs	MnTransductive	MinBSVM
0	0.15037	9 15037°	0 15037	0 15037	0 15037	0.19037	0.15037
1	0.14647	0.14647	0 14647	D 14687	0.14642	D 14847	0.14847
2	0 13931	0.0671	0.07832	0.08534	0.0671	0.00534	0.07142
3	0.13841	0.08127	0.07216	D 10312	0.06924	D 1006	C 04967
4	0.15174	0.08132	0.06921	0 11750		0.06137	
5	D 1358	0.06127		0.1031.2		0 1006	
6	0,15016	0.0671				0.08534	
7	0.13734						
6	0 14592						
	0.13734						
10	0.15016						
FT	0.1356						

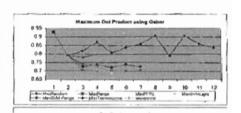
2. DOT PRODUCT

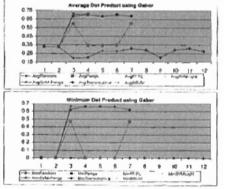
GABOR

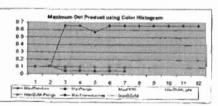

Time	MedRandon	MadPenga	MexPFRL	MacSVMLight	MadVM-Penga	Max.Transductive	MindSVM
0	0.92654	0 92854	0.92854	0.92864	0 92854	0.92854	0.92854
1	0.79147	0.79147	0.79147	0.79147	0.79147	0.79147	0.79147
2	0.8173	0.70379	0.13133	B 72587	0.74006	0 72567	0.77987
3	0.86981	0.69643	D 7098	B 72462	0 73374	B 73944	0.75626
4	0.80749	9001 0	0 69054	0.73212		0 72029	
	0.63633	0.69643		0.72+52		D 73944	
6	0.65873	0.70379				0 72687	
7	0.90639						
8	0.76967						
9	0.90639						
10	0.65673						
11	0.63833						


Time	AvgRandom	AvgPenge	AvgPFRIL	AvgSVMLight	AvgSvM-Penga	AvgTrenoductive	AveBSVN
0	0.33109	0.33109	0.33109	0.33109	0.33109	0.30109	0.33109
1	0.32764	0.32794	9.1278¥	0 32764	0 32764	0.32784	0.32784
2	0.19645	0 59825	0.69375	0.68638	0.70626	0.58638	0.69652
3	0.20913	0.34387	0.67778	0.68945	0.70177	0.70118	0.71079
4	0.26244	D 34109	9 66952	0.70629		0 6626	
5	0.2794	0.34362		0.58945		Ø 701 18	
4	0.30864	9.59525				0.68636	
7	0.29245						
8	0.20476						
9	0.29245						
10	0 30864						
11	0.2794						


				MINIMUM VALU	E		
Time	Min(Random	MorFenge	WAPFRE	MinSVMLIght	MinGVM Pengs	MinTransqueave	MinBiSVM
- 0	0		0	-0	3	0	0
	0	0	0	۵	0	0	0
- 2	0	0.46850	0.64973	D 61907	0.66181	0.61907	6.62827
3	0	-0	0.85181	0.63367	0.66106	0.6611	0.65406
4		0	0.64947	0.65333		0 65931	
5	0	0		0.63367		0 651 5	
6	0	4 46059				0.61507	
7	0						
1 .	0						
9	0						
16	ú						
11	0						


COLOR HISTOGRAM


				MAXIMUM VALU	É		
Firms	MaxRandom	MaxiPangs	ModP/FRL	MadSVM ight	MacSVM-Penga	MaxTraneductive	ModSYM
0	0.0968	O 0948.	0.0066	0.0968	0.0958	0.0068	0.0063
1	0.10871	0.10671	0.10671	0.10871	0 10871	0.10871	0.10071
7	0.65598	0.09492	0.05178	5-05037	0.04923	9.05037	0.10877
3	0.66598	0.0966	0-04691	0.46762	0.0491	0.0521	0.10871
4	0.5721	0.0968	0.04616	0.46248		0.04724	0.10011
5	C 65568	D 019468		0.46762		0.0921	
- 6	0.65596	0.09492				0.05037	
I	0.5556m					0.0000	
9	0.95596						
9	9.65598						
10	0.65598						
13	0.95594						



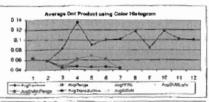
ime	AvgRandom	AvgFengs	AvgPFRL.	AvgSVI//Light	AvgSVM-Pang I	Avg Trensductive	AvgBSVM
5	6.06274	0.05274	6.06274	0.06274	0-06274	0.06274	0.05274
1	0.05785	0.05785	0.06785	0.05785	0.05785	0.05785	0.05/85
2	0.06229	0.04164	0.04625	0.04407	0.047	0.04407	0.04742
2	0 (3514	0.06107	Q 0457#	0.0681	0.04708	9 0464	0.05834
4	0.09002	0.05854	0 D4547	0.06778		0.04647	
6	0.10058	0.06107		0.0681		0.0464	
-6	0 10145	0.04164				0 84407	
6 7	0 11735						
8	0.0837						
9	0.11739						
10	0.10148						
11	0.10058						

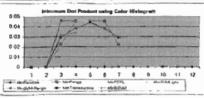
				NewsHilber VALUE	£		
Time	MinRandon-	MinProce	MedPFRs.	Mar/SVM/Light	MnSVW-Pengs	MinTreneductive	MeBSW
0	0	0	-0	ð	0		а
1	0	0	0	0	D	0	O.
2	0	0.02204	0.04616	0 02909	0.04517	0.02909	0.03137
3	0	0.04513	0.04616	0.02696	0.04507	0.03601	0 03365
4	-0	0.04514	0.04507	0.04293		0.04395	
5		0.04513		0.02586		9.03801	
6	D	0.02204				6.02909	
7	0						
8	0						
9							
10	0						
11	0						

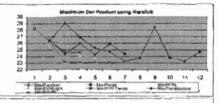
нά		

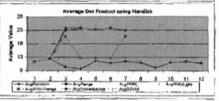
NAXMAM VALUE									
Tire	Medianton.	MacPenga	MarPFRL	MacSVNLight	MaxSVM-Penge	MacTanabiche	Medisva		
0	28.2376	28 2376	28 2376	26 2376	28.2376	28 2376	28,2376		
1	26 3981	26 3965	26 3661	26 3981	26 3084	26.3981	25 3981		
2	29:0125	23 1501	25 8603	24.3616	74.6064	24 3616	25 8004		
3	26 8723	23 0933	24 1206	24 4179	24 594	25.0119	25 8156		
4	26-2607	23 0719	23.7299	25:03.22		24.2719			
4	24 6885	23.0533		26 4179		25.9119			
4	23.2374	23.1501				24.3616			
,	23.7730								
e	20.5958								
	23,7739								
10	23.2374								
11	24.6885								

ime	AvgRandom	AvgPenge	AVOPERL	AvcSVM_light	AvgSVM-Penge	AugTransductive	AvgBSVA
6	11 34 15	11.3415	11.3415	11.3415	11 34 15	11 M15	11 3415
1	12 4321	12.4321	12.4321	12:4321	12 4321	12.4321	17 4321
2	6.30227	20.6101	23,1253	22 6836	23 7166	22 5536	23 2145
3	8.70519	12,6141	23.3582	22 6898	23 7727	23,6374	23 9806
•	11.5699	12 6335	23.2014	23.6138		23 1982	
5	10 7914	12.6141		32.6998		23.6374	
6	11.0138	20,6104				22 8836	
r	10 9865						
	6/07737						
è	10.9895						
10	11 4138						
11	10 7914						

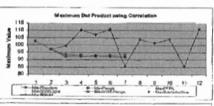

MINAUM VALUE								
Time	MinF.andoen	MisPenga	MINPERL	MinSVMLight	MinSVAL Penge	MaTransductive	MinBSVM	
0	1 58076	1.58076	1.58075	1 58076	1.58075	1.58075	1 58075	
1	2 53734	2.53734	2.53734	2.53734	2 53734	2.53734	2.53734	
2	1.4807	17.7262	22 8633	20 4854	22 8505	20 4654	71 0338	
3.	1.42226	2.24423	22.9269	19.8249	22 7918	21.983	20.5161	
4	1 76054	2.29397	22.852	21 9159		22 54(4)		
5	2 12962	2.24423		19.8249		21.563		
- 6	1.42225	17 7282				20.4654		
2	1 79533							
8	1 53445							
	1 79633							
10	1 42226							
11	2 12962							

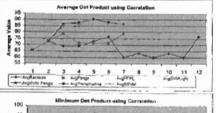

CORRELATION

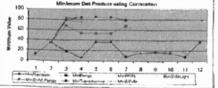

Time	MadRandom	MedPanga	Mariff RL	MedSVALIght	MeiGVM-Penge	MedTransductive	MmBBVV
ė	102,550	102 554	102 559	102 559	102 559	102.580	102.559
1	96 9715	96.9715	96.9715	96.9715	95.9715	99.9715	90.9716
2	99 4273	03 367	91.8829	91.856	93.367	91.856	92 3365
5	11034	02.894	92,7205	99 0208	92 057	92:3477	93 1712
4	107 116	50,4911	93.695	90:9402		92 7774	
5	110.896	92.894		99-0208		92 3477	
6	85.3621	93 367				e1 856	
7	104.02					4.550	
8	101 336						
9	104.02						
10	85 55/1						
12	110,596						

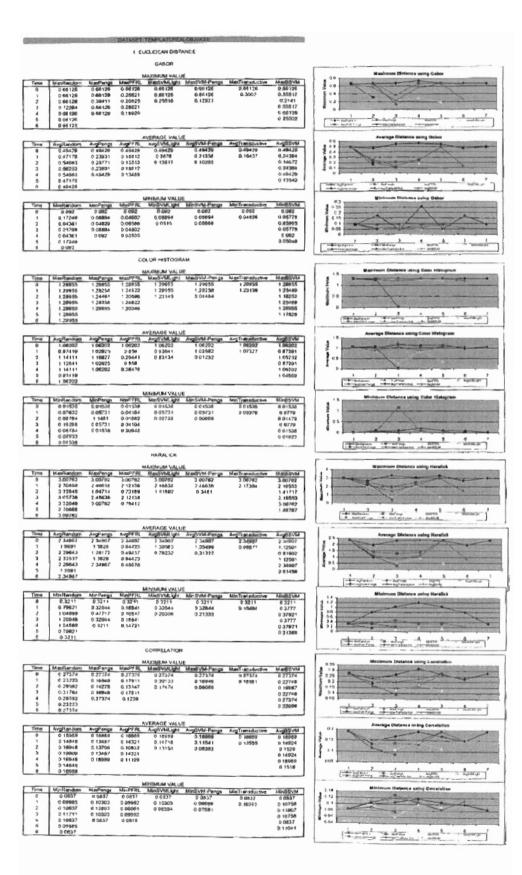

	AVERAGE VALUE									
Time	AvgRandom	AvgPenge	AvgPFRL	AvgSVMLigni	A-gSVM-Panga	AvgTransductive	Avge 5VM			
D	65 4077	65 4077	65.4077	65.4077	65 40 77	85 4577	85 4517			
1	72.7341	72 7341	72,7341	12.7341	72 7341	72 7341	72,7341			
2	68 7284	76.0964	88.7415	56.7166	66 7939	66 7166	96 97 15			
3	68 8294	71.2505	89.2309	86 8362	87 1001	65 9361	84 6483			
4	72.5986	71.6297	90 TMF0	82 036		90 1284	D- 0400			
5	26/03/81	71.2505		88 8342		68 0361				
-6	59 9156	78.0964				66 7105				
>	63 1791					44				
	59.9761									
p	63 1791									
10	59 9158									
11	76.5056									

Tirtle	MinRandom	MinPenga	MerPFRI.	MinSVMLight	MinSVM Penge	MoTranspuring	MinisSVM
ta .	11 8574	11 8974	11.9974	11 5974	≥1 8974	11 6974	11.8974
	34 7796	34.7799	34.7799	34 7799	34 7799	34 7799	34 7799
2	18.5121	67.3354	82 096	76.9129	82 413	78.9129	78.4239
3	5.99515	52 9059	66 2456	74 5855	63-2241	84.1776	75.35
4	36 2507	52 888	85-8987	79 6834		84-8982	7 2 2 2
5	36 8019	52.9059		74 5855		84.1776	
6 7	8 38395	67 3354				78 9129	
7	15 15BT					.0 1125	
8	17 5145						
9	15.1567						
10	9 38395						
-1	36 60 19						

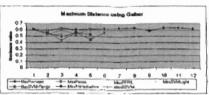




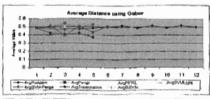




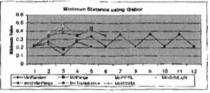
GABON


	GABON		
Time MaxSunder MaxFirst MaxFirst	AXINUTE VALUE MacSVIII (pt MacSVIII Pings 0.61982 - 61998 0.50030 - 40006 0.44237 - 6.42173	Mai/Teneductive Mai/ESVM 0-8996 0-4995 0-55944 0-5594 0-5594 0-5594 0-5594 0-502	Wedness Del Frederic using drates
Time AugRandom AugPengs AugPERS	IVERACE VALUE ANGEVIALIGN ANGEVIA-FERICA 0.14317	Aug/rensische Aug/87VM 8 12517 0 12317 0 38301 0 12317 0 38301 0 12607 0 38466 0 16517 0 36596	Ageings Del Frester using disloce
	estyllectes year UE	No Transducive 440/05VM	Minimum Bel Brothed until Behan
Time MacRandon MacRango MacRango 0 0 0 0 0 0 0 277708 2 0 0 199602 0 13500 3 0 0 0 0.72708 4 0 0 0 0.3225 5 U 0 0.3225	0 0 0.27319 0.39446	Mr Transduction Graph Gr	The second secon
co	NOR HISTOGRAM		
	SULAY MUNIKA		Machinum that Product using Good restrigion
Time MacResion MacPings MacPings Control	Medition and Medition Prings 0 \$2074 0.82074 0.82074 0.82071 0.71426 0.49176	0 62074 0 93074 0 79911 0 7916 0 70910 0 7916 0 7008 0 7016 0 7016 0 80339	
Time kygRandom kygPenga kygPFRI,	AvgSVM get AvgSVM-Penge	AvgTransductive Avg85VM	Average Out Product oning Golor relatogram
0 9-1739 0-1739 5-1736 0 9-2394 8-18597 0-2297 2 0-1624 0-0739 0-0245 3 0-05400 0-0739 0-0255 4 0-18400 0-1739 0-05349 5 0-02599 6 0-17385	D 17305 D 17305 D 190024 D 17371 D 22299 D 88830	6.17365 0.17965 0.09277 0.29123 0.0866u 0.24123 0.17565 0.68647	The Market St. April 10 Mark 1
Time MinRandom MinPengs MnPFR	MINIMUM VALUE MISVMENNI VINSVM-Penge	MinTransouctive MinttSvM	0.4 Ministrum Dat Product Uning Gater Histogram
0 8 8 8 80565 1 0 00000 8.0005 2 0 00027 0.0001 3 0 00027 0.0007 4 0 0 00000 5 0 0 00000 6 0	6 0 0 0 00236 0.00645 0.665w2	0 000 000 0.	
	HARALICK.		- invalue where there are relate
	ADVINUM VALUE		Magrimum Col Product valing NewYork
Wheel	MadSVM (gH) MadSVM Pengs 12 3695 12 5084 12 5084 12 5084 12 5043 8 55365	Meditemahalive HedistM 12 3655 12 3855 19 5197 114285 19 771 114285 12 3955 12 3955 11 8305	
	WERNON VALUE		
Time Angliandrom Angliance Angliance	AvgSVMLign: RegSVM-Pargs 5-5394- 5-5294- 7-7198- 5-5294- 9-74975 8-71411- 9-74975 8-71411-	Avgitemeticilis Avgititiva 5.45294 5.45294 6.48757 0.20094 6.46757 0.0000 0.20094 0.45294 0.45294 0.45557	Amongo (bel Product) ording sharples
Time MinRandom MinPengs MinPFRI	Min8VMLIght Min8VM-Pengs		Abstracts that the part of the first the
Yers Mod Crisidom Minimenga Minimenga Minimenga 0 1 (1649) 7 (17104)	MinSVM-Ight MinSVM-Pengs i 7 Iuliali I 7 Iulia 4 676:h 5-621cb 7 23059 8-47242	MinBlum 17040 17049 4 14175 6 17049 4 14175 6 17079 1 1049 1 1049 1 1049	The state of the s
	CORRELATION		
Time Maufardon MasPengs MarPFR	MadVMLight MedVM-Perga	Mariforniductive MmBSVM	100 Mig-firem Den Product using Correlation
D dh.Bafri 65 5471 65 5471 1 db.Bafri 76 5420 64 1594 2 db.Safri 77 85 920 60 1594 3 55 0200 77 8670 60,1994 4 b f 54,1 5 50,047 6 48,047	06.9471 DE 94.71 76.0628 70.6626 77.643 66.739	55.9471 56.9471 77.5726 63.4782 71.0921 93.4782 88.9471 Jz.8899	ent and
	AVERAGE VALUE		Francisco, and in labour or finish
Time A-gillanouro Augilença Augilença 0 51-5335 12-52-52-52-52-52-52-52-52-52-52-52-52-52	AvgCVIII. (10) AvgCVIII. Fings 52 6176 52 9775 01 7997 65 160 66 7427 57 556 1	hog51-mids, 3:4 hog52-vM 52 5175 92 5175 64 5105 87 6967 85 878-8 82 6566 62 5375 64 6225	Andreas Dis Product valley Considers
Firms MinRawdom MinPengs MinPF-Rs.	MINSVM-Pengs	MinTi anaductive MinBSVM	Minimum bot Product using Constation
Type MoNiferiology MiniPergy MiniP	50 8712 10 6712 50 8712 10 6712 55 4213 55 4213 61 0889 67 16	9 61 81 9712 60 8111 54 8-10 61 815 54 8-10 61 816 745 50 8772	The state of the s
			the same of the sa

DATASET: TEMPLATESON

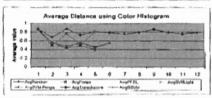

1 EUCLIDEAN DISTANCE

GABOR

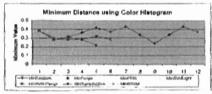

				MAJUMUM VALU	6		
Dirwn	MayRandom .	MauPengs	MorPF RL	MaxSVMLight	MarSVM-Pangs	MaxTransductive	MadBSVM
0	0.60706	0.60705	0.60706	0 50706	0.60705	0.60705	0.60705
1	0.58851	0.52148	0.5755	0.52123	0 9578	0.66433	0.53056
2	0.61623	0 59527	0.51479	0.51984	0.42797	0.48831	6 52509
3	0.59783	0.52148			0.6578	0.55433	
	0.60673	0.64341			0.44943	0.52931	
5	0.61962				0.5578		
5	0.63164						
7	9 63222						
	0 589						
9	0.63222						
10	0.63164						
11	0.84962						

				AVERAGE VALU	E		
Time	AvgRandom	AvgPengs	AvgPFRL	AvgSVMLight	AvgSVM-Pengs	AugTransductive	AvgBSVM
0	0.46565	0 48566	0.48565	0.48565	0.48565	0.48565	D 48565
1	0.49331	0.48883	0-4727	0.42766	0.507	0.42168	0.47017
2	0 47617	0.64376	0 A9696	0.42545	0.39487	0.40576	0 46145
3	0 47317	0.46863			D 507	0.42108	
4	0.48327	0.52976			0.43452	0.37101	
5	0.49882				0.507		
6	0 51686						
7	0.48832						
8	0.51595						
9	0.48832						
10	0.51686						
1.5	0,49882						

			_	MUNIMUM VALUE	£		
Time	MinRandern	MinPeriga	MHPFRL	MinSVMLight	MinSVM-Penge	Min-Transductive	MiniBSVM
0	0 22263	0.22263	0.22263	0.22263	0.22263	0.22263	0 22263
1	0.23620	0.34534	0.38693	0.25609	0.34534	0.2695	0.32431
2	0.10872	0 48497	0.47466	0:24073	0.37626	0.17541	0.42926
3	0.28223	0.34534			0.34534	0.2096	
4	0 33627	0.44253			0.41207	0.21083	
á	0.21722				0.34534		
6	0.36184						
7	0.21583						
8	0.36516						
9	0.21583						
10	0.36164						
11	0.21722						

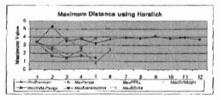


COLOR HISTOGRAM

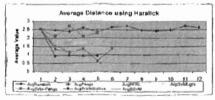

				MAXIMUM VALU	Ε		
Time	MadRandom	ModPenge	MaxPFRI.	MaxSVMLight	MarSVM-Periga	MacTi moductive	MadB9VM
0	116483	1 16483	1.15483	1 96483	1.16483	1 16483	1 19483
1	1,15483	0.97992	D 84546	1 14842	0.97992	0.01026	1.08402
7	1 15463	1,76152	0 47843	0.71598	0.48734	0 5437	0.61651
3	1 16483	0.97992			0.97992	0.81028	
4	1 16483	1.16152			0.50616	3 49977	
5	1.16483				0.97992		
-6	1 16152						
,	1.16483						
8	1 16483						
9	1 164.83						
10	1 16152						
11	1 16483						

14 -	Ma	xim	im l	Dista	nce	using	Col	ar Hi	slog	ramı		
and and		V		×		<i>:</i>						-
04 d								STATE				
	1	2	3	4	*	a	7	в	9	10	41	12

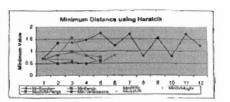
				AVERAGE VALU			
Time	AvgRandom	AvoPengs	AVGPFRL	AvgSVMLignt	AvgSVM-Pengs	AvgTransductive	Avg85VM
0	0.66432	0.66422	9.86422	0 86427	0.86422	D 86422	0.86422
1	0.68188	0.49142	0.52152	0.58099	0.55013	0 49173	0 55556
2	0 67367	0.76401	f 29068	0.4418	0.46696	0.43313	0.41573
3	0.72752	0.49142			0.65013	0.49173	
4	0.81309	0.80454			0.44890	0.39509	
5	0.78721				0 15013		
6	0.75394						
7	0.79238						
8	0.89161						
Đ	0 79238						
10	0.75394						
11	0.78721						



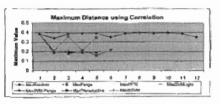
		_		MINIMUM YAUU	G		
Time	MinRandom	MinPenge	MoPFRL	MinSVMLkghl	Minds/M-Panga	MmTranacuctive	MiniBlyM
0	0.38445	D 38445	0.38445	0.38445	0.36445	0.38446	0.38445
1	0.29623	0 28233	0.20962	0 28233	D 25233	0.28939	0.38475
2	0.30694	0.25872	0.28447	0.28485	0.31199	0.28288	0.28432
3	0.36172	0.38233			0.28233	0.25630	
4	0.41645	0.34704			0.31701	0.21178	
5	0 37004				0.28237		
6	0.4287						
1	0.33811						
В	0.23967						
9	0.33811						
10	0.4287						
11	0.37004						



HARALICK


				MA KİMUMI VALU	€		
Time	http://kgmdom	MarPengs	MarPPRL	MacSVMLight	MaGVM-Pengs	Marti anaductive	MadSVM
0	3.38894	7 76884	3.36896	3 18894	3.38896	3.38496	3 38896
	5 30071	2 69133	2 33861	2 30946	2 39949	1.66613	2.71376
z.	3 51544	3.64616	1 52967	1,93435	1 43121	1 47405	1.68923
3	3 7827	269133			2.39949	1.66817	
4	3 18157	3.51687			0.77446	1.42161	
5	3.70914				2 39949		
6	3 93524						
7	3 81394						
8	4.10768						
9	3 61394						
10	3.93524						
11	3.70814						

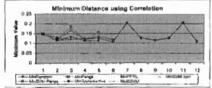
				AVERAGE VALU			
Tare	AvgRandon	AvgPongs	AugPFRL	AvgSVMLight	AvgSVM-Pangs	Avg Fransductive	AvgBSVI
ø	2 52009	2 52009	2 53009	2 52009	2.52009	2.52009	2,52009
1	2 40212	2 11314	1.44064	1.39736	1 356	0.93645	1 52741
2	2 3775	2-71128	1.27946	1.10126	1 *4509	0.97333	1.21776
3	2 60478	2.11314			1 259	D 93546	
4	2 351/2	2.29122			0 62754	0.93456	
5	2 63666				1.350	0.95-47	
6	2 71 132						
,	2 47151						
8	2 42507						
9	2 47151						
10	2,71132						
1.1	2,63666						



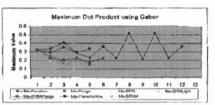
				BIBNIMUM VALUE			
Time	MinRandom	MinPenga	MnPFRL	MinSVMLight	MinSVM-Pengs	Min Transductive	MinBSVM
0	0.69235	0 09235	0.69235	0 69/235	0:69235	6.69235	0.451235
1	1 33206	6 82713	0.55653	0.65551	0.82713	4 4665 T	0.99106
2	1 3505	4 55619-	0.67793	0.67088	0.97172	g \$566 I	0.65903
3	1 46501	0.82713			0.82713	6.4865 T	
4	1 74047	0 74288			0,54136	0.8495	
5	1.23165				0 82713		
- 6	1 69496						
1	9.79493						
8	1 52922						
9	0.79893						
10	1.69496						
13	1.23166						

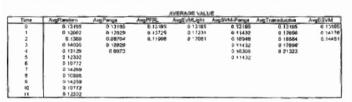


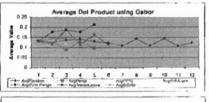
CORRELATION

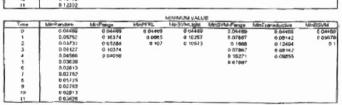

				MAXIMUM VALU	E		
Yene	Mexicandom	MacPengs	MaxPFRL.	MwSVMLight	MacSVM-Penge	MarTransductive	MacBSvkr
3	0.3842	0.3642	0.3842	0.3842	0.3842	0.3842	0.3842
1	0 33863	0.20976	0 22116	0.20975	0.20975	0 16592	0.2003
2	0.38707	0.35795	0 16396	0.10196	0 17968	0 19049	0.20715
3	0.38789	0.20976			0.20975	0 16992	
4	0.36859	0.36s27			0 15676	0 18573	
5	0.3501				0.70975		
6	0.38692						
7	0.39544						
e	0.38772						
9	0.39544						
18	0.38692						
11	0.3561						

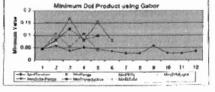
AVERAGE VALUE											
Time	AvgRandom	Aug Pangs	AugPFRs.	AvgSvM-ignt	AvgSVN-Penge	AugTransductive	4,498577				
0	0.26273	0.26273	0.26273	0.26273	0.26273	0-26273	0.26273				
1	0.23	0 17819	D 14994	0.15311	0 15929	0.14267	0.14668				
2	0.25216	G 27061	0 15242	0 14403	0 17039	0.16724	0 15616				
3	0.24199	0.17819			0.15929	D 14267					
4	0.22742	6 25197			0.14301	0.13867					
5	0.22201				0 15929						
6	0 28576										
7	0.26566										
6	0.27044										
9	0.26660										
10	0.28526										
11	0.22201										

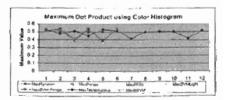

	MINIMUM VALUE										
Time	MinRandom	MinPengs	MinPFRL	MisSVMLight	MinSVM-Pengs	MinTranspuctive	MinBSVM				
0	0.14727	0 14727	0.14727	0 14727	0 14727	0.14727	9 s4727				
1	0.12886	Ø 11845	0.114	0.11845	0.11845	0.11469	9.11842				
2	0 12115	0 18366	0.14444	0 11382	D 16654	0 1329	0.11946				
3	0.12339	0.11845			D 11645	0.11469					
4	0 1265	9 1543			D.4346	0.11491					
5	0.10873				B 11846						
ó	0.20444										
7	0 126										
a	0 +1605										
9	9 126										
10	0.20444										
1.9	6.10873										

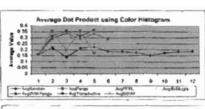


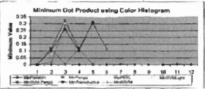

2 DOT PRODUCT


GABOR


	MAJONUM VALUE										
Time	MascRandom	MacPengs	MaxPFRL	MissSVMLight	MaxSVM-Penge	MaxTransductive	MedSVM				
D	0.32412	0 32412	0.32412	0 32412	0.32412	0.32412	0.32412				
1.	0.33531	0.22+11	6.19687	0.30971	B 22411	0.29321	0.25690				
2	0.40976	0.12732	6.13413	0.302	0.20277	0.35244	0 15714				
3	0.26482	0.22411			0.22411	0.29321					
4	0.22926	0.15622			0.17775	0.33419					
5	0.3668				0.22411						
6	0,22403										
7	0.51921										
8	0.21036										
9	0.51921										
10	0.22403										
11	0.3608										

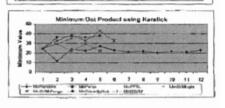



COLOR HISTOGRAM


				MAXIMUM VALL	差		
Time	MaxRandom	MaxPengs .	Mader RL	MaxSVMLight	Mass VM-Penga	MaxT-enade: tire	MadeSVM
-0	0.52291	0.62291	0 52291	0.52291	0 52291	6 52291	0.52291
1	0.47324	D 53111	0.52646	6 53111	0 53111	0.49477	0 52502
2	0 50824	@ 41481	0.41515	G 43579	0.39259	0.50526	0.41621
3	0 44962	0.53111			0.53111	0.49477	
4	0.53005	0.38743			0.3917	0.50018	
9	0.51135				9 53111		
6	0.41724						
7	0.50052						
a	0.5039A						
9	0 50052						
13	0.41774						
11	0.51135						

	AVERAGE VALUE										
Time	AvgRæidem	AvgPangs	AvgPFRL	AvgSVMLight	AvgSvM-Pangs	Avg Transductive	AvgSSVM				
0	0.15934	0 15934	0 15934	0.15934	0.15934	0 15934	0.1593				
1	4.21671	0.35424	0.30827	0.30462	0.29069	0.31297	0.2995				
2	0 13583	0 19549	0.35496	6 34 292	0.334	0.35537	0.3356				
3	0.2123	0.35424			0.29098	0.31297					
4	0 22104	0 17278			9.33061	6.36403					
5	0 1656				C 29069						
6	0 18337										
2	0 17378										
8	0 15024										
9	0 17378										
10	0 16337										
11	0 1858										

	MINIMUM VALUE										
Time	MinRandem	MinPengs	MINPFRIL	MinSVMLight	Mr.SVM-Pengs	Min Yı amsducsive	NexBSVM				
0	0	0	Ü	0	0	0					
i	0	0:11465	0.07942	0.00663	0.11465	9 10024	0.0158				
2	0	0.00385	9.30658	0 1435	0.32629	0.25919	0.297				
3	0	0 11465			0 11465	0 10024					
4	1 0	6.00385			0.30619	0.3121					
5	1 0				0 11465						
6	0.00385										
7	0										
8	e e										
9	0										
10	0.00585										
11	0										

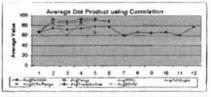

HARAGICK

				MAJCHELIN VALL				1		Maxim				- 14			
Title	Maditandom	MacPenga .	MaxPFRL	Mard/MLxgns	MarSVM-Penge	MaxTreneductive	MedSVU	500	Total Control	maximo	JM DOL	Predu	ot using	gnar	BIICK	and the last	one-many
0	46 3872	45.3872	45.3872	45 3872	45 3872	45 3872	AS 3872	#	E568			****************					580965
1	42.2242	43.9826	45 1859	45,2296	4.1 9825	45 7754	PS 3907	\$ 400	600,000	0.664233		1000010	Contractor of	THE R. P. LEWIS CO., LANSING	1000	THE OWNER OF THE OWNER OWNER OF THE OWNER OW	ACC 10-1
2	44.4293	37 2246	44.0192	45 7149	43 3259	45.5524	64 3284	> 300	21103-80	(02)55333	(200 M)	252 FEB.	100000	200	ALC: U	10000	5755500
3	41.9049	43 9821			43 9626	45,7764		6	1000								550,519
1 4	40 6268	440 564			45.5259	46.5423	- 1	₩ 200	-	-	manife,	-	_	-			-
- 6	41 1136				43 9825		- 1	100	1000		10 F35						200
- 6	97,00G9							3 100	BANKS	PRODUCTO		AUUDO	ALC: UNKNOWN	1	120.00	1	ALC: UNKNOWN
1	45 1179							i o	PROPERTY		Section 2	A STREET, SQ			-	_	100000
	40.7568						- 1	1	,	2 3			,			10 1	1 12
9	46,1179							1000	-		MouPopper	9 7	12 000	_	-	MadVA	
10	17.0069						1	- B - 144	CONTRACT.		May remen	ero -	Mad PF 9		-	Messayer	Tida
4.1	41,1135									-						_	and the same
													_	_	-	-	

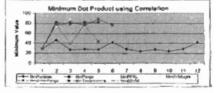
		,,,,,,	auci	high	g Ha	willek			
-		-	933	400		368			
4	>==	-	-	-	-		-	300	
Daniel .	1000	331		Hills	(dilli	80	200	92	63
353650	2000	2000	2000	000	HE	200	916	88.66	255
A TRAIN	PER PE	Hen	1903			250		289	9799

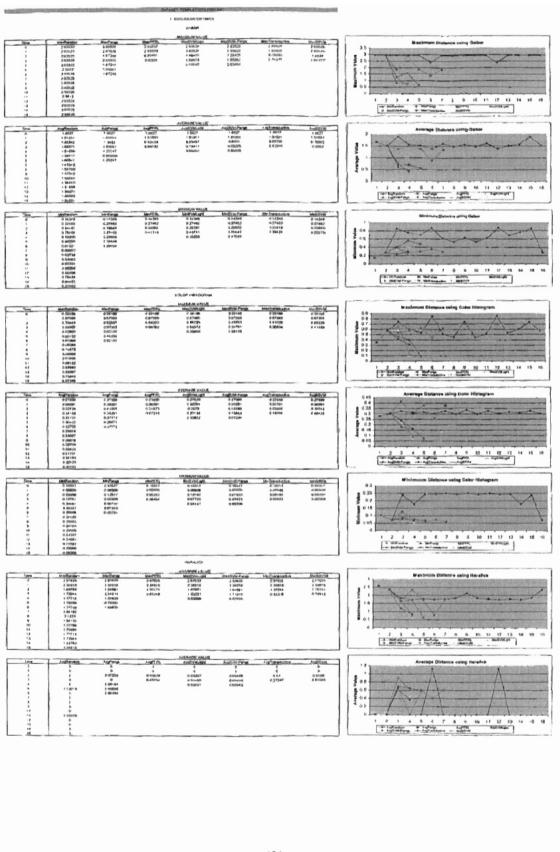
Time-	- AvgRandom	AugPenge	AvgPFRL	AvgSVML5ght	AvgSVM-Peng e	Avg Trensductive	AvgBSVM
0	32 4061	32 4061	32.4061	32 4061	32.4061	32 4661	32 406
1	32.2251	33 89 13	38.5337	39.4271	39 5455	42 4021	36 34 6
2	32.8257	29 5949	39 091	41 4502	41 3922	42 3609	41 05
3	31 5666	33 89 13			38.5455	42 4027	
4	33 9495	32,7196			44 4005	42 2806	
5	30.7689				39 54 55		
6	30 4613						
	32 656						
8	33 0696						
9-	32,655						
10	30,4613						
11	30.7689						
				MINIMUMVALU	E		
Time	MinRandom	MenPence	MinPFRI.	ACMS VAIL John	MinS Wil-Pernas	MerTrensductive	MinBSvM

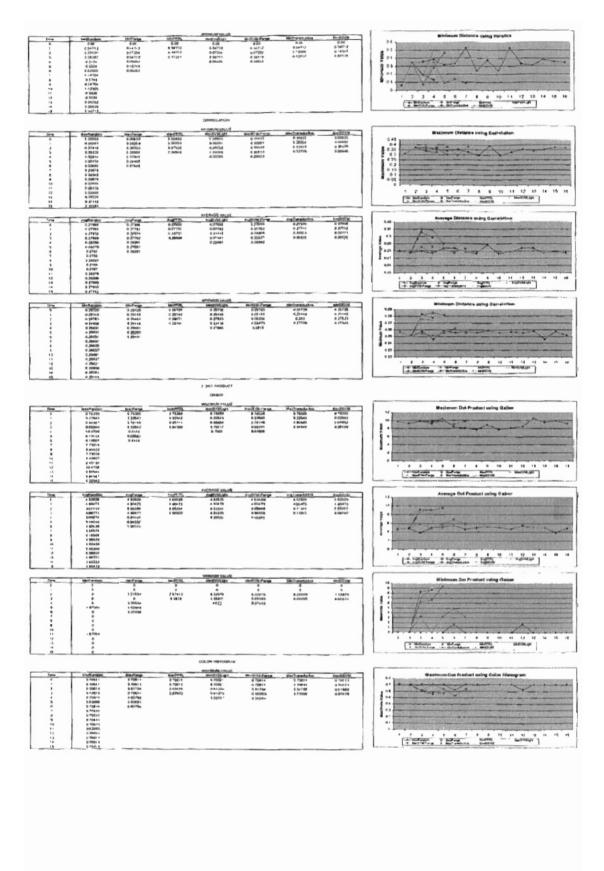
	MINIMONIVALUE										
Time	MinRandom	MenPengs	MUTPERS.	AcadSVMLight.	MinSVNi-Pengs	MirTreneductive	MinBSvM				
0	24 4566	24 4566	24 4555	24.4966	24.4566	24 4566	24 4506				
1	14.5455	29.4386	31.8249	32 68 %	32.6875	38 1878	29 5402				
2	23.859	22 0827	38 6038	34 6891	34 5038	37 5603	35 1029				
2	22,1745	29.4366			32.6875	36,1878					
4	26.9729	22.2269			42,5263	27 894					
6	22.863				32 6675						
6	20 8917										
7	21 7691										
8	20 0026										
9	21 7801										
10	20 69:17										
11	22 883										

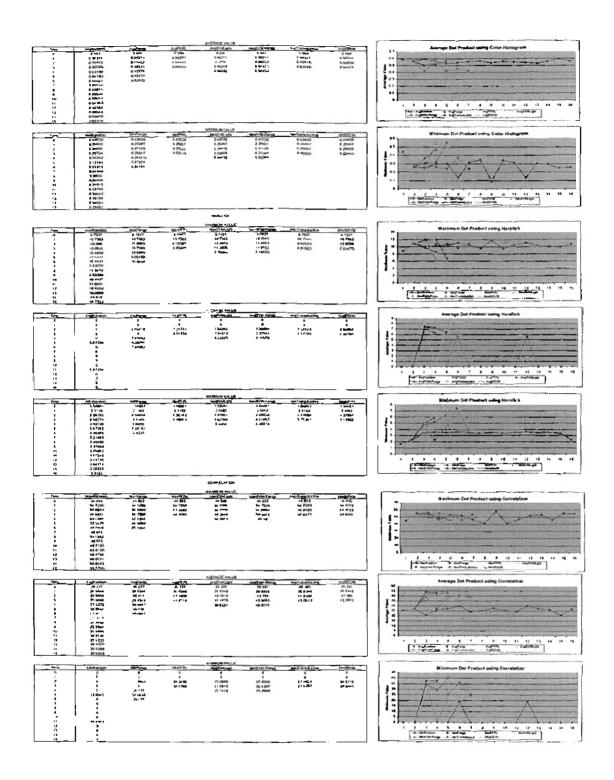

					COMMEDITION			
					MAXIMUM VALO	Æ		
	Time	MadRandon	MedPenge	MmcPFRL	MexSVMLight	MaxSVM-Peogs	MaxTransductive	MedisVM
г	0	90 7346	99 2346	99.2345	99.2346	99.2345	99.2345	99.2340
ı	1	107.887	104.393	104 322	106 463	184.393	101.62	106.663
ı	2	106 001	81 6357	69.6461	111979	86.8363	93.341	98 4343
ŀ	2	114,278	104.393			104.393	101 62	
l	4	911.977	83.5011			93.4799	101,434	
	4.	109.359				104 393		
	6	80 7811						
	7	105.695						
	a	103.956						
	9	405.805						
1	10	50.7811						
	11	109 359						

_				MAXIMUM VALO			
ime	MedRandom	MedPenga	MmcPFRL	MexSVMLight	MaxSVM-Penga	MaxTranaductive	Med35VM
0	90 7346	99 2346	99.2348	99,2346	99.2346	99.2346	90.234
1	107.887	104.393	104 322	106 463	164.393	101.62	106.66
2	106 001	81 6357	69.6461	111979	86.8363	93.341	98 434
2	114,278	104.393			104,393	101 62	
4	911.977	83.5011			95,4799	101.434	
4.	109.359				104 393		
6	80 7811						
7	105.695						
ð	103:956						
9	405.805						
10	50.7811						
11	109 359						


ŝ	20 -	323	elorp elorp	3150 3150	9 83					28	ANY X	1923	io Si
_		,	2	3	4	6	a	7		ŵ	10	11	
=	- Mari	State De		+	enditures or Verse	,		March March	HIL.		Max	SMAL	ps

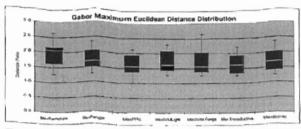

Maximum Dat Product using Correlation


				AVERAGE VALU	Æ		
Time	AvgRandor	AvgPengs	AvgPF QL	AvgSVMLlght.	AugSVM-Pangs	AygTimeductive	AvgBSVM
	66.7011	66 7011	66.701 >	68.7011	68.7011	66.7011	66,701
1	74 5416	84 8231	90 6013	91.9637	68 3696	92:3769	92 731
2	71 4417	60.814	84 1604	93.4171	85 0256	87.8617	56.925
3	75.6212	84 8231			58 3565	92 3700	
	77 1708	65.5881			90 5849	92 584	
9	77 9687				88-3666		
6	60 3743						
y	66,3138						
b	64.6307						
9	66.3138						
10	60 3743						
1.1	77 0687						

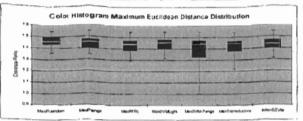


				REPIBLIM VALU	ę.		
Firms	MinRandom	MiniPange	MAPER)	MinSVMLight	MinSVM- ²⁸ engs	MinTrensductive	MinBSVM
0	26 6772	28 8772	28 8772	28.8772	28.4772	28.8772	28 877
1	46 4382	76 5.29	74 622	26 529	76 429	61 7322	78 266
,	27.2541	39.1051	87 2476	79-9559	82 6148	79.9391	77 063
3	26.3144	PG 529			76 529	81 7322	
	27 3387	43.6197			87 6635	81 7535	
5	41 5049				76.529		
6	28.4059						
,	24 1716						
	27 2805						
	24 1718						
10	28 4069						
1.1	41 8049						

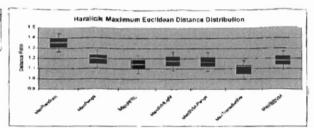
Appendix D

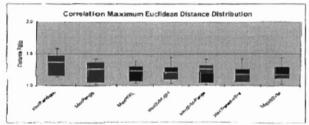

EUCLIDEAN DISTANCE AND SIMILARITY

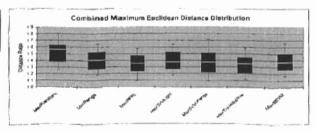
VALUE DISTRIBUTION TABLES AND

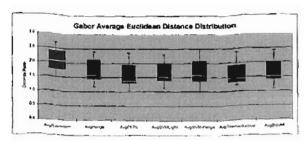

FIGURES

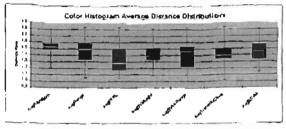
EVOTIDEM GISTMACC

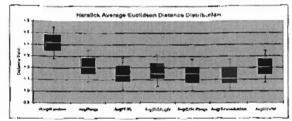

	High	SAME.	William	Larry	Mad	f-2Prot-	Valleya	Worklines
Markhardon	2 HMC	210354	12714	1 6180	2.0749	107 4940	415 B031	160-0011
Martena	1:4054	2°3468	* 27 ***	1-4402	1 1192	44 BATE	103 5429	154 5507
WAST'S.	19397	3: radi?	1,000C	1.3740	1 1213	62 1251	BES DITTE	(42 5731
Mandayas Lista	2.0013	7 2909	1 2714	1 4431	1 6079	no hear	109 1527	rgm 89/23
MINISTAN PRICES	2 0354	2.6350	1 2563	1.3541	1 52 10	52 1029	103 5428	198 56 11
Max Francisco	1 9797	2.2116	1 2479	1 3340	1.6079	80 700 1	die bei all	121 1500
MedidivM	2.01.25	3, 3626	1 2374	1 3992	1 6224	52 2400	10.1 277e	156 2795

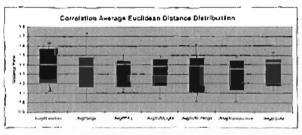

	efigg*s	Max	Min	Law	tifed	1/2Frob	3 439-04-	AuretG-res
MarFilhdory	1 8966	2 589.5	1 3859	1.4032	1 8657	46 8053	45 6849	54 91 17
Madfillion	1 0749	1 549.5	3420	1 364.2	5 4602	46 mbt2	47 48 59	SA SPERT
MadWill,	4 4771	1 54.85	1 2130	1 3029	h wave	44 F705	e7 207 t	50 TG-11
Manfrontain	1 6831	* bedra	1 3152	1 1955	1.9657	46 8550	48.5122	M G-1-17
kumdivki Persa	1.4724	1 5491	1 0000	1 3239	1 4554	45 4377	17.2563	\$4.07.17
Ray Transductive	1 1650	+ 5413	1 2978	1 2758	1-4525	48 1957	16 5640	64 12100
WardSDAN	1.4724	1.5491	1 3105	1 39/50	1.4505	45.0467	17.7353	54 99 17

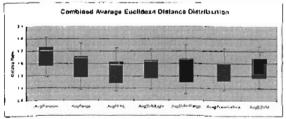

	hor	N/Agen.	Marx	Life.	Mind	A Signature	5/457040	WorstCase
ModPlandom	1 3969	1 4138	1 264-	1 5050	4.8940	FI 1864	39 5890	44 3829
Minof Perrope	1.2391	2500	1 8000	1 1452	1 1902	19:0:75	25.5112	26 DOM
Mar-PFTE.	1 1867	1 23*7	1 (5 19)	1 DSKS	E 141 B	14 1011	10.6717	23 1683
Mand/Millorde	1 2 158	1.2893.7	Ceram	1.1289	1 1736	17.3815	21.8751	245 2667
Martin Person	1 7177	1 2575	1 0777	1.1257	1 1576	15 1605	21 2542	25.7478
Max visual club	1 1342	1 1794	1 0600	* Defende	1 0099	5:4672	13, 4600	- F 19745
Normal Style	1.2227	+ 2676	1.0679	1.1526	1.1277	12 7737	22.7674	26.7610


	1-tigh.	8464	1801	Laire	Med	1/25Pens.	5.11Pmpb	Waterbillase
WardFendom	1.6677	1 50 18	5 1302	F 15/13	1 3063	30-53-79	46 7710	GA KTSS
Majaffpriop	1-2626	1-2193	1-0194	1 0472	1 2231	27 3065	36 3177	41 696
MARKEL	5. (9807)	1 3856	1 0354	1 05094	1.2229	27 7950	20 04060	34. 4053
Marchine, Ven	1 2009	1-6415	00204	1 0944	1 (50)	16 9246	Jib NISS	64 1655
Managhysts.Person	1 3216	1.4163	1-01134	10112	1 2231	22.3063	32 1645	* 1 5050
inus/francoscotore	1 2566	1 4 155	1 8000	1 0599	1 1488	14.6639	25 6760	41 8806
Hand Shibi	1,2972	1.4398	10292	1 1167	1 1456	14 6043	29 T-02	43 B776


	1105	Bilgs	Mire	1.00	1407	1/25 100	Zinjing	Warmin
Audionism.	1.6306	1 8025	2554	1.3788	1 2210	62 7046	55 5332	45.6 \$501
Manfrone	15271	16476	a nemi	1 2760	1.3253	at 5000	48 5127	Sin book
Mary Printer.	*=123	1 5 525	1 9951	1.2308	13327	22 4267	35 4005	44 6651
Man Siddly option	4 5204	1 5376	h 1742	1 2652	1 25/9	24 5544	39 8519	56 5534
MACRISTON	1 5 8 9 5	1 7147	1.0908	1 21-95	1 3418	23-4994	38 HECK	57 7663
May Traveductive	V 8633	1.5679	1.1863	1 2033	1.3271	22 1090	32 80113	4/0 0584
MAYODYM.	* 5013	1 1/542	1 1963	1 2509	1.3461	24 1340	ab 1302	5-2 2000

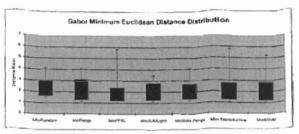

_				OMEN OMEN	at .			
	~	<u> </u>	Nien.	1.0-	4Pm2	5-767mag	140	Program was
Aug Pour	7464	71.7	1 4908	1 71800	25324	107 5071	1-01-00/7	No 1778
43000	7 1 tod	3 4043	1023	1 4200	13560	34 Std-C	217 GD44	TAIR TORKE
A PARTY	1 MOA	2 10714	14941	1.0091	1 14250	10009	De Stoed	236 7012
مجور مالتكور م	1 bont	7727	1 1354	1 2462	1 100	45 04407	99-4672	150 7913
	3 D70d	7 1747	1 4000	1 3657	1 5178	21 76/20	102.0766	117 4713
Ave 7 man distribut	1.0094	3 3735	1253	1 (836)	1 6540	40 4025	167 90.78	UAF Month
- MOVU	2 104	3 / 323	1 16-9	3 4677	1 4004	4010431	601-0567	112 2024

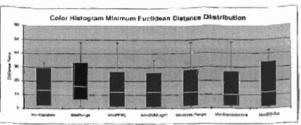

	100/4	44-	444	100	1000	1,257~40	3-27-00	Wagnes Park
-	1 1779	1421	7504	1.000-1	1,5750	51 200	52 7905	C1 \$1000
/ Vincent	1 3443	1.004	14627	1 2041	1 1000	40.0419	50 1929	414 4055
Appendix No.	1 344 ;	1 5754	· Gentle	1 1/3/	1.25/32	25. dom2	50 3604	ALC DODGE
Amellold, saw	13134	14114	16411	1 20-	1 34 25	34 Fred	51 1745	A1 17:00
Aug Street Comment	1501	1 8221	1 8000	1 3104	1 4701	44 9514	53 1606	A3 2155
Authorized has	1 4/r56	1 43.754	1000	4 3416	13/10	22 ceres	49 5555	455.42
~~geDA	1.5770	6007	€ 1452	104	1 4724	4 2021	67 m330	80 ex

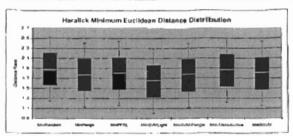

				HALLMAKEN				
) 4g ^	// 200	Ми	· ·	C.A.J	No. was	3 4	New York M. P.
Sections None	1 4530	1 6515	1 1664	Time	PIMA	41 14.1	ri 11.00	43 7.29
to the same of the	12424	1 3202	1 0734	11477	1 3407	71	27 XD	31 610
Supplied L	1 2139	1364	4 0 424	10.45	1 1 1 1 1	M. 18771	71 100 1	Z 1-1
Aug ST VALLED	17-34	1314	A CHARLE	1 44	1 1730	17 min	M NOW?	31 (3.17)
Automatic Persons	9.20ml	1 Mas	1 (00.00)	10m'	1 Indian	120457	20 67 47	27 1200
Arek Washington	4475	1 77 12	1010	0676	1 1514	:2 25.00	\$0.7.A0	27 1040
to mediation the	1 7 1/24	1 344 1	1 3731	1 1406) 1/2km²	27 AGR 4	77 6\$46	W 1740

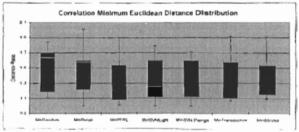
	ZORRELATION .											
	MEN	500	U.	Low	Tribut.	1 34-40	31500	4-FPCM4				
-	15708	1 6497	1 1204	17541	1,7975	JCI /0.70	17 Di 44	81 PC)				
A-g/mos	1 4"06.	4 1379	4 \$0000	1 1606	7 (Aur 17	26 07474	47 000	13 287s				
AND THE L	1 4342	4 435.3	WILL	1 1600	1 211-4	70 1366	47 574	40 metro				
CHECKNI, MICHIEL	140.00	1.4978	D-40-	h FTSe	1 200	× 444	₩ XXI.	46 1577				
And the Party of t	1-8679	1000	1 0113.5	1.7075	4 3860	73 THE	AN (SA)	At Post				
ANTHORNES OF	1 4360	1.4791	A CITED P	1413	1 3m/m	2 7 1700	N 2334	47 6066				
- Company	I d Staris	4 9-3366	6 15298	1 1997	1 5217	TO UTIL	45 85 40	37 80=4				

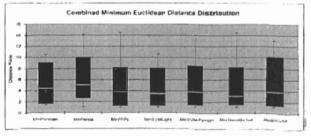
	279/1	Mac	W-	Mary Maria	(Alex)	Nation	James	Worlden
hadfaric ase	3.7617	1 0.245	1 8765	1 4534	1 5753	14 07/6	75, 4460	21 65A3
March Street	14123	1 9,797	1 0794	1.20.71	1 2059	16 5769	4960%	6.2 2+00
AvaPEFEL.	1 (23)	1 7440	10471	1 APRIL	1 27734	20 40945	\$1.4297	72 7966
ProdUNIA PR	7 5504	1 7750	4 (1794)	1 7911	1 33554	DO SHATE	58.6174	72.250%
bendide Amer	1 568 1	1 F367	¥ 0004 I		1 34 43	33 Aust 1	14 2530	79 08 11
Aug Tremestusine	1 54 1.0	4 P96G	4 9877	1 7 / 13	> passed	26 3077	DC WAS	72 1184
6	A 1784	A 1755	1 (70.1	1 2054	J. Steine P.	22:602.01	3.7 :11006	74.4-634

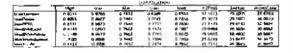

ortenstar saksali. GARCIA									
	1500	Way	Mari	Liber	Mitel	125109	Sales	Works: Test	
Montgon	2 9294	4 1300	1.5012	1 9560	2 1007	\$10:07a6	892 Sh79	3+3 20+9	
Montherape	3 (900)	4 0901	1 1243	1.2244	1 8937	ER STREET	20s 497W	209 0102	
Mary PRINTS.	8 3686	4 6165	1 0000	1 1 779	4.6130	gs knoe	120 4911	-48 4 singq	
Mary Miller agent	2 7817	3.4095	1 1401	1.2486	1.6373	45 "pgr	ATE MEDIC	746 5547	
MindVM-Pens	2 117707	4 0621	1 10 74	1 3344	1 5997	10.3732	101 1239	209 0102	
sont-washing	2 7236	6.7683	1 23 16	1.2335	1 4034	46: 136 r	877 156D	中中国設定下級	
MudSB/M	2 8564	1.2188	10273	1 1772	1.6714	47 1356	185,0004	127 5805	



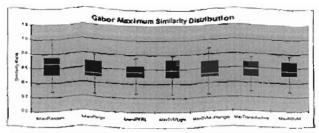

	HARALICE										
	High	Magn	Win	Conv	Miso	1.257104	3:46100	W/ praiCinta			
MinRandom	2.2060	2,5266	1 2465	: 5446	1.6805	66 5546	128 8573	152 6509			
MicrOurse	2 0854	2.405+	1 1258	1 4453	1.7554	75 5374	108 NOO	140 5490			
MARKET PU.	2 1101	3 4361	* 1866	1 4760	1.7966	79-mones	111 0072	143 9099			
savdybri, are:	1 66671	Z 2801	1 0000	1 2200	1 6401	64.0053	99.0079	1.28 -01-08			
stinDNs dwnes	2 0 F50	2.3950	1 1949	1 4349	17949	75 4805	107 4961	159 4967			
MinTereductive	2 1764	2 4964	1 3463	1 5363	1.8364	60 9354	147 5382	149-6406			
MARKIN	21117	2 (377	1.524	1 4778	1.7923	19.7056	115,7985	143 7512			

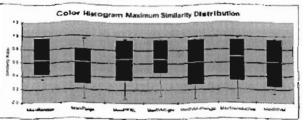

			CHALLSBROS	н		_	
Hegh.	Blips	Men	Liber	Wed	1-2Frob	2 is Fruit	WorlfCee
1-8622	1,5814	1 1016	1 -857	1 5035	66 3482	60 223A	84 1431
1 5948	2,2136	1 9000	1 21 79	1 4566	46-0576	50 3993	101 2647
1.5330	1.9013	1 0121	1 0827	1 41176	46 7877	53.3016	99 1266
1 5062	1 7952	1 (3)(00	1 7222	 4687 	46 8902	60-0-56	79 to 104
1 5049	~ 3 190	1 0000	1 -246	4566	49 0576	ED 2554	7 ± \$4908
1.5608	1 5145	1 0588	1 1053	1 3126	31 2575	58 0801	65 4477
1 5258	1 0034	1.0926	1.1494	1 4103	410270	52 6100	BC 2786
	1 9922 1 9948 1 5336 1 5063 1 5049 1 8608	1 8922 1 5414 1 9948 2 0126 1 5330 1 9013 1 9083 1 7952 1 5049 1 190 1 8803 1 6145	16gg, May No. 1 18g22 1 5814 1 1995 18968 2 2185 1 6000 1 5300 1 9013 1 6121 1 5043 1 7952 1 6000 1 5049 1 190 1 5045 1 6000 1 5045 1 6000	Hugh Male Mee 5,000 1-8622 1 581-6 1 1996 1-363 1-8648 2 24755 1 6000 1 2177 1-528 1 18943 1 67421 1 6847 1-5068 1 7-7952 1 6000 1 -227 1-5049 -1160 1 6000 1 -246 1-5049 -1160 1 6000 1 -246 1-5049 -1160 1 6000	Tags; Max Men Sam Mod	Tags	1882 1944 1 1996 1 AM 1 1999 6 AM 1 1993 60 AM 2 80 2288 1 1998 1 AM 1 1998 1

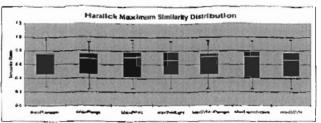

	ringh:	Edgo	Men	100	Head	1/20/194	3:487190	Wpre-"
Minflandism	9/06/4	10 4964	1 4817	16569	4.4289	32+1-222	150 6544	906 6675
Mapping	180316	18 1261	§ 4 670b	2 6792	9.2501	404 6655	957 48t I	1255 50304
MARKET.	2 7979	14 5208	10423	1 2961	4 9134	285-0406	DBS 4976	1293 1770
MHShruan	6 1130	10 6539	s prisot	1 923/2	3.5300	JNh 3252	678 SEUC	H27 1711
Atmitistic Person	0.0135	10 0521	1 05/03	1 4015	3 Byles	276 0421	*24 0 FEE	1,846 2093
Min Transductors	8 2741	14 5350	1.1201	1.4890	3 6583	2619514	593 5436	1295-5876
MinBSWM	10 13413	13 08-91	1 1396	1 3605	7-1/104	872 217B	M72 3214	1165 2406

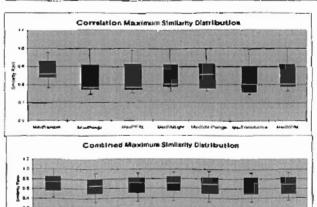


DOT PRODUCT MANAGE VILLE


	High	P, hg. e	More	Libra	Nei	1 3Frobs	3 467109	Worldese.
	D 7640	1 0000	0.26936	© 506 f	al settora	69 4222	gn ec/3	871 5707
	06044	D-27 0.2	0.22527	in 48.2%	£ 53000	MY 2005	107 2287	325 0634
Hand'S Rig	04373	C-Property	UF 20100	40 4045	0.000	49 3044	102 Z2va	209-8134
United	6 Files	C: 20.03	0.2495	C-9053	el denn s	67 (S6.3)	106 0063	100 7500
~~2 ~~~	D-1040	C. m7/88	4 2012	Q 462K	6 5330	Air goods	107 20 67	ST-GEV
the Property and	9666	C: Pessi	A Fruis	6 9576	6 5927	no room	NOT 48NO	3847 FWG
and the same of th	0.50027	0.340	4.267m	F5003	0.0819	21,9909	10 41 46	C73.25%
	-				-			_

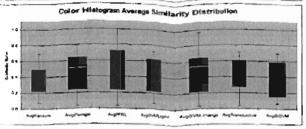

		CGLOF HISTOGRAA										
$\overline{}$	ie-yn	Milita	4	1 P-	N/e/	777700	3 c//mil	PER PER CASE				
VedTeraba.	8.66.24	1 630s	83441	0.4257	011.04	55.73()	125 6913	139 BORS				
V LOWOUT	m.Arbs	0.19580	0.000	0.7003	O SOOK	96 T744	244.5110	P601 1321				
MAJERIE.	0.0423	2-9575	D-07444	0 2021	04633	50 TTVS	76th 81545	1900 91 16				
HARDAGE HOLE	Dr. Services	2:54554	6 1039	0.4745	- Company	49 4000	4+ 2 Growth	203 2447				
V 1-704-71-4-	0.9451	t-9543	4 (254)	0.2524	0.4064	66 774 H	254 0470	MIGH 1531				
U: Personaline	0 0=1.1	3.0065	0.0576	9.3499	6718	46 7618	163 4044	1625 6009				
The State	ti galita	5.9648	6129	D 2485	4 500K	66 774"	30.2.4516	683,4479				

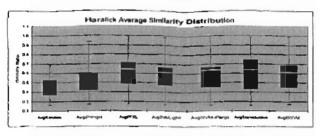

	HALVAN CA								
	displa	Max	No.	Copy	Presi.	In Print	1400	(were the same in	
Used Priso	G.YEA7	1.0004	0.2524	SATE	0.0511	60 5691	117 4734	が 日 可 福	
Marketon	4 7510	0.0289	B-2400	E #533	D SAME	69 6093	115 4443	31-5 FIRM	
Marie M.	D-TTRN	D-8623	N 25CG	O APPA	D 5439	40.0492	1227	NOO SEMAN	
-	G FIG	Distant	6 2531	D 4614	D-METPO	97.2549	-	990 P654	
Mary JAPanes	6.7655	B 3477	A: 2400	2 4652	0.8694	25 hood	120 -000	york inties	
March 11 September	B FFES	(3 D-944	Authorit	C 4600	9.5490	45 1987	TAL 1983	Seed Blog	
U-7.40	8 7661	to not 16.	0-7530	0.4524	D 5-3-6s	87 - 276	122 1477	P94 14- 3	

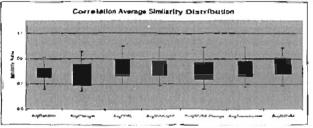


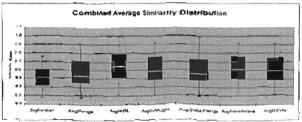
	H4C'h	14.64	ga historian Ma	LOw	The said	KOP YOU	3 distribution	Worse, as a
Name of Street	E 85.54.	2.959	0 4165	0.5575	C595F	AR THE	71 374	127 e785
Married Control	D Jacks	D PYTE	3 33B4	IS 5027	E 817 105	601 503R	B1 7546	2919 5720
MANAGE .	COST	10.014	D 3399	# NOSF	COMB	w 729 T	91 hours	20n 1750
CONTRACTOR I	0 84.86	the and	D 3~30	0.0019	CONTRACT	44 54.62	AL STATE	469-5014
Manager Person	01794	2-5434	◆ 3250	p 9003	CHOOM	40 6400	947065	2105 9990
Na o-Promoduction	0.52min	10:0477	A 33 63	D 4063	0.6502	60:40-70	100.2574	1100 365a
Non-constants.	DATE:	0.540	A 500 W	N 4 858	0.4.577	56 5747	107.0 167.0	181 2783

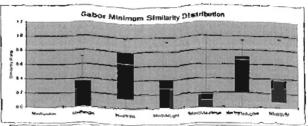

ANDROID VALLE										
	High	VA	P.O.	Lifes	leas	123 100	24700	Worth, see		
Audiendon	0.54980	£1100	6 1223	5 3120	6 3541	153.7525	270 5520	714 0727		
Aug Wille	0.7588	E 19644	D read	0.4722	G 2041	16, 37940	455 7041	106 9016		
A-PEAL	0.7964	0.0554	0.2904	0.5633	Q 1010	M 905 F	77 5231	258 7734		
ALCOYOL ION	0.5465	d 666.7	6 hpidel	0.4691	4 5120	No decap	113 1900	AKUT BBURU		
AND DESCRIPTION	0.7333	1.0001	0.1918	0 5005	0 5345	19 37575	90' 420'	EFF-01 [6]		
Malamacine	0.613.2	9.5500	0.2282	9 5355	Ø 5001	ER 046-9	DO 17/81	330 4711		
muph@WW	G 5071	40 light a	0.1079	O 54942	O 5505	15 5957	93 5643	432 1904		

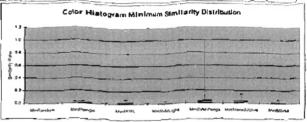

	High	869-	Men	100	luci	F2 Trade	2 4F 136	MontChin
AMP (V	0.4921	6 602P	50753	0.7140	6 4052	NAME OF THE PARTY OF	354 5224	1,327 506 1
110	0.6365	Ø 792%	540344	D 2090	\$ 3mt.1	164 4.7-16.	Total State	2005 5070
A PRINCE	0 F347	1 0000	04339	D-2544	B 1373	to sept	774 250	2527 5115
Marie Marie	84235	0.7100	0.0200	0.2219	0.5330	87 M:37	294 LAN-4	1319 1931
- Carlotte	0.6420	0.9635	6-G39F	012126	D 2075	101 903 9	252 T246	3034 2004
A-GT-DA-GOVA	6.5054	0.7954	9.0004	0.8734	47.531.5	84.7164	FA 1979	2000 4754
A-SECHAL	0.0861	4.4634	2 0544	0 (517	Ø 46mp	with p p to the	466 Jn25	1451 500

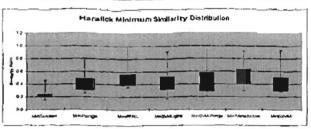

			HAMILE, INC.											
	High	1.42	- No			NOTHING.	7 00-24	WorstCone						
4 /pl p	₫ 5294	0.6164	B Miles	\$ MC)}	6174	154 03006	172 2504	264 0506						
4.4	B 5030	0.9546	0 364.3	P4 147	4 24 25	56 (00)	139 9193	275 5005						
	8 71 M	b. 4566	0.2743		0 22.00	WY 09/5 1	465 3000	THE PERSON						
And the last	E 5600	4 Pegs	0 25475	E 4714	0 WZ	107 1579	HILL ETTS	200 (4004)						
AND PARKS THE	E SESA	1 FERON	D JOSEPH	0.1346	0 43 13	102 5711	120 > 17	264 135V						
	2.70%	C DEC-1	0 17 19	E 4302	0.503**	M CK 37	112 1107	Mad 3 Head						
Aveglid year	3 MR53	0 105	A 2584	12 tog 3	0.4521	111 34 53	122 4540	271 4400						

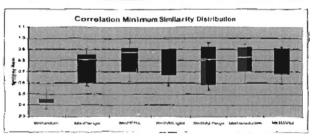

	~01	L/Up	144	197	Nied	\$/2F*ruit	7-4-64	Without the
Lexpon	6402	B 5/36	BASES	U Person	9 10/20	31.4398	34 27.0	5977998
	C MAG	P 9470	24-02	-9467	1670	77 DATE	42,300	85 SM64
ALCOHOL:	0.4568	1 00000	B 1400m	1 804	C BOOM	20 41 4 2	21.1117	42.7801
WHAT	P tedd	D-0011	E not 5	h had/	C.ExCV	F 3285	AC 0854	46 0043
MARKET COMM	P Mico	II 1994 s	0 641B	o rue	5 8083	Z CHO	30 -4-6	31 1040
of the same	U 2011	G 1481	D 6 274	I' MO!	B 7521	N XXWS	31 4526	44 6025
Meliday.	0 60254	0.400	O CALLED	1 PO	0.670%	21:0017	ক কাৰ	45 3256

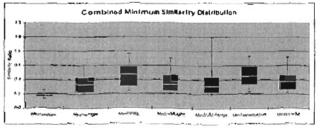

HE SHIRE COLOR HISTOSITIAN HAR IN IC. 4 COMMENTS COMBINED											
	High	Uju	4	-		Pit on	3.46790	To Care			
Artiflyngist.	0.60/97	D Hale	Q 3 TRM	34111	9 (1953)	100 GRES-0	145 3706	25A 16AA			
Artifestia.	D FLOR	E BOT 2	0.7715	0.7536	0.16733	#2 #05O	119 0034	20E #005			
A-SITTER.	0.7688	d med	5-5136	6.510*	å botte	de ratho r	93 1065	217 9049			
Award Ave. sales.	6 Mari	0.920*	0.3543	9 42	8 1.11.9	44 4732	164 7703	224 6-77			
Contract Pro-	C 19277	9 uter?	G Jack	\$ 17th	0 ***	77 C4 FD	107 3220	AND STORY			
Avg.Promot.che	6 5651	9.0168	0 1763	0.0004	4 6662	\$1.67ma	AD 35%	2011 0334			
Avgistvos	B held	0.9145	6 2011	0 1743	0.5504	87 (E30-1	02 8654	3012 6046 F			

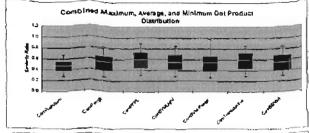

ு மா க்கிரிய கேட்டிர் மேற்றிற்றுள்											
	>=41	NA	i,ba	Les	Mad	1 25 vot	3470	WATER			
ATTENNESS.	a mao	4 0000	8 (IDO)	9 0000	0.0000	NAN	Patrice	NAW			
altr-Passes	49-26902	G 7986	0.0000	0.0000	B 1006	1521 3595	Sept. Ser	49801			
skyltin.	p mea	O MOT	0.60002	0.1007	04621	1175 3006	440 144	Public			
March 1994	6 1007	€ ==±	6 10000	-3 00000	6.4005	PARTY	PM905	North			
Name and Address of	th saint	CADO	9.0000	-3 CO000	D 0000g	NAN	PANE	Park!*			
Mrs Presentantes	in toe?	الخدد ٥	1.0002	0.1925	6 480%	102 1845	419 416	29504			
March Street	0.57%	لعب ٥	6-60000	F 000%	a WM	\$110 7560	HAND BAND	NAME			

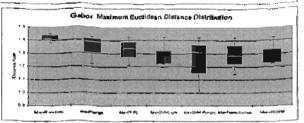

	10/5	Mark.	Mes	LOn	N-m	10000	A16/7-19	-
-	64090	D 00000	0.0000	0.0000	é moon	0.0003	\$1800b	B-0000
	0/3344	◆ 0036	0.0000	E CIQUA	0.00*7	4023 1 50 mg	127204 DUC!	Pohja-
MATE.	D CENTER	D 0657	9:0000	© popos	0-0-22	8076 1213	199002 2007	~~
-	n mou	E 0420	9:0009	0.0001	0.0047	198731 6710	***********	
ANGEL PARK	b DO:	1 0000	0.6600	O OCKUS	9-9917	90231 6789	127265 9667	KAN
Maril Commented and	D 6/28/7	3 130	2.6000	O 00000	0.0159	\$160 03F3	#8280 1256	100,74
-waby	0.0164	0000	3 4000	0.0008	9 (7039		127268 8667	may


	Mission	N.		Luma	Men	1.25 rate	LAPA	Mary Time
-	0.2051	0.584	D 1513	0 1827	0.3076	Jet 7361	415 0134	360 970
-	G ASSO	6.0100	D 27779	0310	0.6250	74 YJOH	D11 3477	
	0 587h	4 DESERT	O 34987	D M22	0.4771	XIII DOLL	100 (546	194 37 12
W.Maha	0 5221	2 mess	E 1785	0 3 mm	O ministra	112 3073	Pak rate	466 1407
man and species	6 W. LJ	0.000	0.20.84	3 7tm	0 4344	114 1057	JATE COLDA	354 4139
MAT David Albert	6 6330	95115	0.2414	Ø 4013	9 4704	112 500	146 1134	D6:470
U-BONG	0.6075	0 4304	D 29.8 F	D 2747	4177	een Sami	137 GSe+	THE SAME

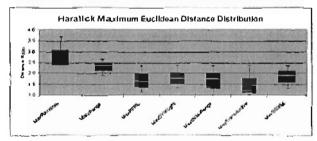

	GS: 41 CLATION										
	14gh		-	Lo-	Marie	brythaute	1 a Droph	With the Call A			
	@457\	03157	0.366.3	0 (2)	PANS	1241787	105 5048	121 5024			
	0.444	D INJUS	0.5694	Oliver	3 1341	34 1175	45.5307	740			
	0 4-7	! odos	0.6514	D 50-50	2 8544	(met	45 6914	60 54 34			
MrSV4Leps	9.4046	□ ▶< ¾	0.9550	0 6704	J 10014	14 20211	46 1584	73 44 55			
MPSVIII-	0.0173	0 5444	O GARGIN	O 6677	3 Del	34 1113	70 1540	47 7704			
4-1	0.9130	d Seek	0 4011	0 1070	P MED2	363 (10) 536	41 8475	46 3/700			
THE PARTY	63064	0 8524	0 Y73#	D 4/48	D (Ex.34	400	At 3431	ON REPUT			

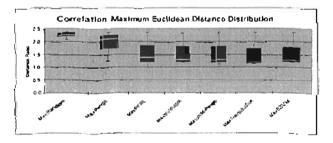




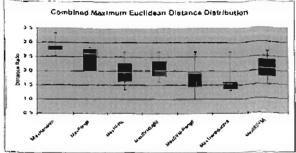


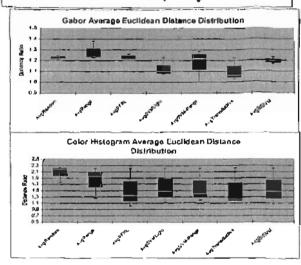
	Hab	NAME:	Mich	E (m)	Und	1/25/100	7-45-44	MontiCere
The same of the sa	0 (433	0.465%	6 E340	03741	0.4490	\$17 37b?	€€0.3753	252 8568
Contraction of the last of the	0.6448	0.8427	@ 2062	C State +	9.4979	PS 1578	M46 4579	265 8060
Company of the	0.7064	Q MINESO	V Lines	0.0912	0.67100	490 1051	4 PO 7160	239 1144
CurdVAC.mm	0.0051	DANNA	@ 1270	O 4272	0.8206	d7 0056	427 936°	290 3834
Colon Bright - Parent	g-empe	D 191734	0.2506	6 Seems	0.4986	SHS DOTTS	M4 (817	267 4801
Crise-Trensductive	9.7931	F 1143	0.0049	0410	0.0047	72 9007	120 6022	241 7553
Comitte VM	O.E.T.S.	0.0491	G-20-16	0 4000	O BOXED	453.4537	187 S396	230 SHI2

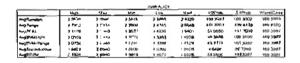

	8400#									
	100	u.	1,844	Liny	MAG	5.2Pmb	3-41	VP-0797/C0994		
	1004	1 4407	13774	4,30%1	142/8	ALC DIFFE	13 Va1	46 6621		
	1 -570	F-4200	1 2201	4 3064	1,3500	20.3104	4007	* E DP64		
POPPING.	. 27.15	1 4/94	1 2045	1,2759	1.3469	34 60(2)	pa Jam	45 (1764		
MEDICAL MADE	, 7E-C1	1.4206	2467	1.2163	1.2100+	21 00000	ATTO CE	47 5764		
Wangiki Para	120	1.4304	1 0000	1 1527	1.3050	49-849M.	90 341	42 0704		
Maria Active	13:51	1 4254	1 1428	C 220 F	1.7974	20 FT 76	35 3020	42 9764		
MARINA	1224	1 4756	1 2250	4.2007	4.2424	24.2548	10 :305	42 0794		

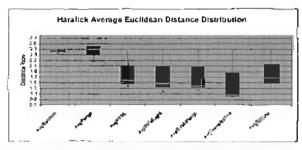


19 mass	Color HF		sidbution	LIOLAN C	JISIAI RG	
R 15	A STATE OF THE PARTY OF THE PAR	- 1				
100						
10					1	
0.5	2 1 2 2 2 2 3			NO STATE OF THE PARTY OF THE PA		
, -	- 4	400	. 47		, a	N. Service
Na Areca	*****	Sec. A	National National	SIMBLE .	N. O. C. S.	Ar. R.

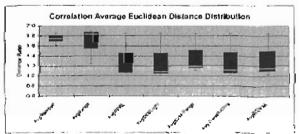

				· HAME	-MARC-					
	75	H-	34m	: b-	N-4	3178746	3.811-0	NOTE: 4		
) L800	1 COX K	2 10 70	11(2)	1,49%	いたながり	707 9904	770 × 34		
and was	1 1200	167	· Mng:	1 (5(1	2.3075	136,7300	150 7675	169 7345		
ية الالمدود	2 F00H4	7.3675	1 1 2777	1 345	1 63-60	GJ 477k	100 mys	130 7698		
DESCRIPTION AND STREET	1.022	2 30.9	> 94.18	7 1 140	1 6753	67AM	K(1,733)	136 7rad		
WEIGHT PARKET	ورزوه) 5679	I Ornato	* 25 6 2	1 67404	87 6546	AN HELD	134 개념		
Ma-Tre-adiative	1744/	3 20/3	i buige) Clarks	1 147	10 1550	76 9111	THE PERMI		


				COMPLIANCE				
	Pringer		Creat .	Len	diameter.	(128hm))	S.whou	Personal Comme
Hardler House	3350	5 2700n	Educa	2 26-10	7 3×13	124 3554	AND LOCAL	-×04
Herry.	2 7537.	7 3433	1.2744	t ford	2 163a	1188-5154	166 5204	15-25-
market this	k post	7 M 21	4 9000	1.0744	£ 3460F	24 8866	BF FORD	(> EP
يخورنه فالإلهواما	F \$613	23.00	4.1206	1200	1.7703	11 1977	B1 1506	· • 279
Marathell Carpe	1,6110	1 7-33	1.0956	1.168	1,1701	31 3274	\$17,1250	134 275
Martingary	17965	2 2427	1 1200	1 1540	11340	114906	15 2020	1)- 1/5-
na marketinian			44 40 44	1 8-10	4 1000	we have	Att 25.30	48

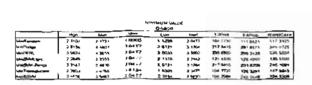

	.55	Mar	Min		Ideal	1-27%	3 minutes	7070
The second lines) RUBU	29161	2144	4.4164	190 1107	785, 5254	200 4968
Al and Principles	2 121	3 EL) 179	2 0005	2 0/05	£ 5005	156.6254	175 2320	100 0029
MANPINE.	21.64	20.0	1.3084	1.51%	· SMC	17 103	124,7627	145 4222
PardVMDqN:	35474	21.75	1 2005	1 8113	1 SHE	NO +430	133 4531	Per 9422
Manager of Street	4 Cm 75	2 - 1	1.0047	1 4401	16478	NO 6407	90 8497	145 4222
Assimous des	4 2002	Y m. / way	1 3034	* 346.8	1 5626	9.7 Sec.20	Se seso	165,4222
Discourage and	7 N. P. (C.	1.000	4 WHO	7 794 7	3/84	MAT THAT	CHE BOUR	455.4334

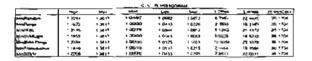


ANT PAGE VALUE									
	77	14.30	Mark.	<u> </u>	Lateral Control	_#ZProb	3.00	-	
Augs Andrew	1750	1 2003	1,000	1 2574) /200	72 miles	73 Drivit	34 BOW)	
AugPlange	1,304	1.3771	1.2250	- 23.86	1.25	13 7965	30.7500	>7 Am (
Aught Sty	1 244	2505	1.1671	1 3194	1,2200	EL 94045	Pt 4229	73 8944	
Aug (DAR), type	1 1595	× 2(29%	1 0274	1 0000	+ acaa	4,3040	15 0409	Z MD-	
Avgstride-Parige	. 54	* 20mm	 cooks 	1 1199	i Zani	D 1000	29 495.7	26 3047	
Ang hamptooing	1	1,2294	1 (276	1.0450	1.5064	4 5-32	14 0 190	22 6804	
A GOODA	13:63	13700	4 1000	11796	1 MO7	19-0696	In surer?	20 6554	

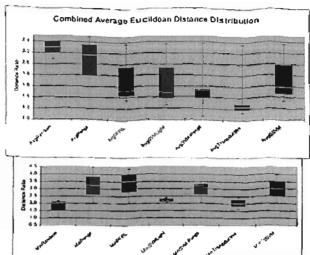


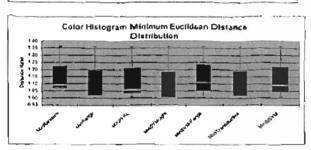
	ACTS CART HISTOCOCK									
	L Magn	V.	No.	Lew			SHEET	Water Charle		
Aug Marian	154	3.7269	1 Frink	1 9792	3 7411	11174	122 4756	132-6650		
And the same of	7 2644	2 11/1	1390	1 4071	URSU	61 6001	HOS. (407)	195 2000		
ALCOHOL:	177A)	2 2 UT	4 (0000)	n with	1 33/51	77 6744	NAME OF	127 2000		
Apple we	1 5501	22127	41 994	1 2085	1 4815	48 7504	44 62.00	31 3656		
سيحمم	1.61905	3212	11.568	1 3020	1.486.3	10 144	M 1375	111 2050		
41194.446116	1 7756	>2127	1 1500	1 1549	1 7900	21 6424	73 9014	121 2550		
AND DOWN	1 8714	22121	I DIDAY	1101	1.0001	4) M) 16	U DM	11:36		

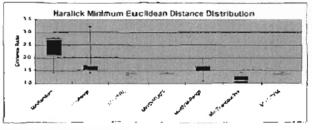


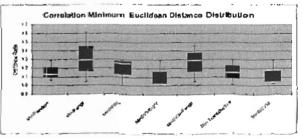


ODBRIANUTY										
	190	Har	Min	Corr	New	41.79~00	.Buffron	Was Con-		
2 girurum	1 0044	16/13	11/21	1.0097	1 78734	P 1064	Museus	PA 4927		
Auginops.	1.0491	2.0=EE 4	1 7490	IMU	10-15	De 1522	M SIN	89 4766		
A ADMINI	1.0546	1.8415	10410	1 (1500)	1/143	6 7540	- es. #400 F	64 1527		
MODEL OF	1457	1 44 75	1 GORS	10414	4 (77.53	13176	#5 F349	84 (523)		
Aug/Sith Panja	1.0178	* B415	. 1945	1 19-1	A TORE	447	\$1 Note:	01 (572)		
Andirectorist	1.47.70	1 6415	100/4	· M:	4.6624	17.70	47 1945	64 1527		
A-6559/A	1 5000	10434	1 (423)	4 (440)	244	Va. 0570	3613049	84 1522		

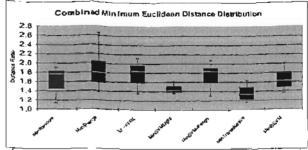

-	400	Ma-	Mer	5.0hr	Med	12910	3-4000	A DEK
>-, 1 100 −	13005	2 More	1 0020	2 1007	2.341	115 esse	129 349	136 (346)
AND THE REAL PROPERTY.	I Tape	2.4670	FROMS	1. 200s.	2 1049	165 2362	100 648	133 6101
ALPHANIC .	* 7577	2 265 1	2003	1 4 ma	1 2095	41 7981	55 with	122 1604
A-ggradit.gb	V Rose	2 9475	20.72	4.57mm	1.005	90 1904	BO 4 ID	191 4645
Aughted From	1 8370	2.3719	y sweet.	1.3781	1 3 145	45 5884	44 3133	188 7999
Jong Transaction was	4 Fring	2.3676	1.50%	\$ 1802	+ 22106	15 4094	10 2244	121 4445
Manager Manage	1,5660	2 2576	13263	5.4542	1 54.24	48 6037	E5 0243	131

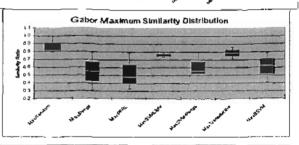


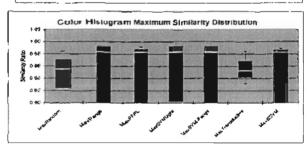


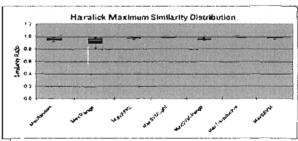

	1 SANA CR										
		Retu.	Aubryl.	LEW	16ec	1.20	harries.	Morercan			
مستدين الربعة) P.46	2 *****	1-9220	2 8963	2 7377	173 7654	171 0523	177 5550			
Mad Parket	1.2301) w63	4.4226	1 1268	+ 6009	BR 99370	49 9923	\$ 198 A25M			
HOPE THE	WE!	1 1228	< 349D	9.3713	1 3630	20 925A	40 B 109	42 2920			
Hardy Mayor	1 A708	1 4225	1.3674	9733	+ Year	3P 675m	45-06SF	45 29 35			
April March Programme	phone .	1 469Ft	1 17 26	· Anney	1 0300	69 4530	GD (100)	70 7043			
Un franazione	1 2726	1 1226	10000	 60000 	1 1427	14 3741	29 MAZ	42 70 80			
M-DOWN	· 350	1 4779	1,25,44	1.3060	1.3006	20 cours	39 0754	42,3920			

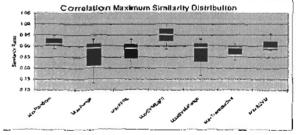
	COMMITATOR										
	Fegin	·	Atan	Lim.	Hed	1-3F106	3.00	Westland			
Mrittyridom,	12169	4.25.11	1.0035	1:4973	3 1314	13 1 140	JV 1767	70 7740			
Marinanga.	1.4525	14-12	1 (2)(0)	1 199.1	3 3937	265.37mg	42 3457	81,2164			
Mark AL	1,350	1 3921	1.000T	* 1243	P. Modile	35 TWO P.	4370	29 2749			
ModSUML spe	1 1460	1,7531	1 0000	A Name.	1000	30711	46 625 7	79 3149			
Maritim Programmer	13.773	1 = 4 + 2	1 (03)54	5 1863	4.35.37	20 17-0	317320	e0 1993			
Brown Director Control	1,725/7	127	P (MORE)	* (NM)*	1 Wilds	≈ 5 6608	12 3075	19 3 540			
Habbar.	1 1707	1 000	1 D2 14	1 0,3 53	*buse	4,6521	17.0660	25 F746			

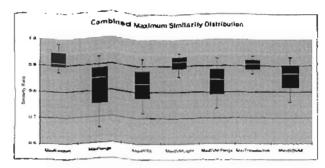


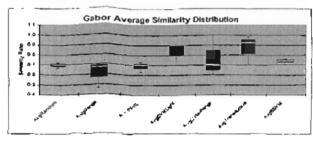


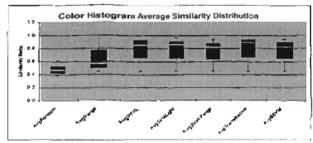

	1198	Nu.	No.		2449	129-	>~Pyrus	
Madkanan	1 6259	1 1004	11350	1	17100	\$4.0163	61 D256	F67 62) 1/2
U-phonos	1,0406	3 650Z	13176	1 5701	1.7979	MI SNOW	79 0°12	134 454I
UPFAL	9554	211.	13517	1 tena	1.500	40 1360	77 3463	64.1947
ValVM Lev	5003	140:2	1 2070	* 1422	£4104	34 36ET	12 4/464	47.6504
ALCOHOLD PROPERTY.	משו	20.04	1 3000	1 Shoe	4 < 3.5	60 3763	Att 2093	E 3
4 al 1000000	1 4063	16021	1 1554	, 237	1 5446	18 6064	91 3412	446
Market	1.0134	7.0064	1 31.76	1,4476	1 4114	47 FA 78	No Net 2	74 to 75.

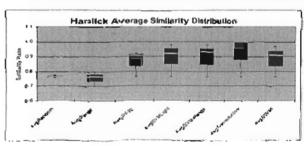

				DT PRODUC				
				ATTMICT ON I	⊔ ¢			
				CAAAA	_			
	Han	Man .	Nen		MAC	129100	3.4Pmph	War .
Madamoon	0.0001	A DANKER	0.7640	D 8044	C 6185	27.7560	M.KM	76 4J 65
WA PROM	8000	D 79/10	B 3107	O 4254	0 5465	N DET!	123 8772	224 65
MOPER	\$ 635)	D 7916	0 11/3	D-4639	6 4000	IOM SHITS	ער שנו	7U% 500 A
M-SVAC-024	97734	D 33-10	0 M 70	D 3464	0739	37, 3309	22 1772	92.088)
Managara Aurora	8 06 KB	0 781¢	B 4047	O 1200	O Section	60 6-17	62 OF (0	102 1436
Me I amount	C 8295	a MGD)	0 7155	0 1423	0 2000	20 4763	58 7560	35 7565
NAMES AND DESCRIPTION OF THE PERSON OF THE P	6 7023	D 22-10	D 407D	9 3174	26170	Y2 4400	83 250%	145 1711

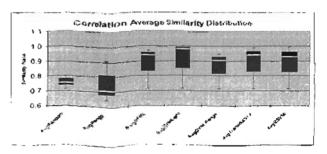

CC, DAT HURT COGRADA										
	High	444	Man	ייםו	brang	1/25*04	λ 4PH OE	WaryK-bee		
Mydf Diagri	০ খালা	0 6840	∆ №5 (D	0 6240	D 9969	# 48C/A	A JESTA	19 2763		
UNDER	0.4923	1 3000	9 7840	التران ن	CEL	1 346 1	12 7150	2F 00999		
MAPERS.	2 9679	4 99 12	07617	0.6631	منحده	1564	924	27 9281		
MDSVX; oN	0 990073	1,0000	D 8206	© 3023	D 0646	1 566 7	16 7080	३१ का का		
IN SVIEWS	േക്കുമ	\ 2000s	a 75/22	0 5014	2 9648	1 3687	14 0.709	3/5 22024		
MacStarentelle	4 6084	a cons	P LQ 16	0 3414	0.05373	10,52	0 1657	7 2000		
MA SEVIM	G MENU.	0 (40)	O TOTA	ID ::460	0 6646	1557	17.00>0	M MINU		

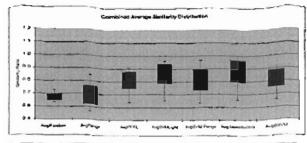

		Har	*~	HARALIC.	νes	177	3-mil hoppy	Wanter
Maria de la constante de la co	U 96.1 V	5/9731 ts	0 9111	0.0+05	0.6100	7 DEN	5 h418	11 4543
N sucheque	0.53,62	41015	44137	O SETO	0.000	4 0142	בזבל נו	22 670%
N PD	d sess	0 0013	0.94116	0 3744	0.4471	* X2+6	2 E70G	7 (464
الجود بالمالانسطا	assis:	0 (Ca)	D 96481	ه معند	0 00 D	0.0563	1007	£ 20a7
DAIOW PAROS	0 +3eq	40018	(* 2403	0.0537	0.000	± 2767	4 8500	8 0337
¥u!manma	0 (46/17)	1 0000	6 92 15	C VAM	0.6053	D 4415	4600	C2 18 d
Medical	0.4644	CIDA IA	O Personal	0.660	C III III	D BLAN	3 0456	3 55-03

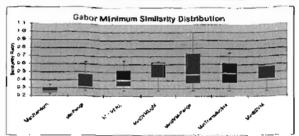

	147	V.ay	Ster.	(200	Vod	Y Jense	3 =	W/1000C 1000
100m	0.615.	Distance Co	0.4862	O HOPS	09164	9 8589	10 6075	47 1.007
ASSESSED TO SERVICE AND ADDRESSED TO SERVICE A	E 9067	0 (2) (2)	0.7806	Q 8051	Ø 8807	12.0427	22 6657	36 1300
PLANGE-INT	05060	258:6	o auca	O BASA	E 684)	12 6477	10.5711	74 14 73
Mars Male of V	40777	1 0000	0 4850	D HOOL	0 9945	4 7634	20664	12 6077
HendW-Perge	0.9062	0.0034	67625	E BACK	0000	-1 5477	110127	34 4 2003
hard soud rock	0.8968	0 en9 5	0.6304	CI ASCO	a 764.7	12 5427	15 2501	10 14 74
でるからま	0.99900	ogne	C 8.750	G 4626	E ever)	コント	13 Seed	13 751


	Angh	Mad	669	LOW	Med	L'SProp	N-Physics N-Physics	*Drait.
Stand Switzer	4 depte	9 9007	0.6725	0.5944	ð trota	7 0427	3 1432	12 3755
-	U mot?	0.0257	0.4589	9.7516	B 9445	16.1000	DOMEST'S	M Gizz
May PERK	6 5805	0.00	67174	6 1782	0 4344	57 505s	250452	MI 6234
Part Nichtle	4450 3	\$ 047e	0 = 70	Q Store	0 M274	8.4109	10.2100	4 101
Andrew Property	4 8047	D 92M 7	47267	4 7507	C. Steam	16 1000	24 0000	0 112
Mary Transporter and	1.0201	T POSS	0.8600	9 60 11	B-30942	9.2192	10.6450	12 974
MARINA	A MOIN	0.0315	o (160)	0.6150	D-11723	12 4218	20 1000	28 Hack

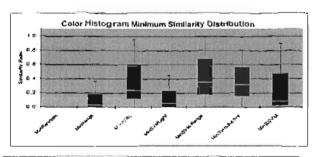

AVERAGE VALUE										
	High.	Man	Lik /	3.000	Armst	V/Week	2-47790	Warrie		
Ang/Egrapion	втон	Ø 73:25	9-3/950	\$ 4970	0.6964	43.369b	JHS 9309	45 distre		
n ophrage	2-6067	\$ THREAT	· B +625	4.5000	9.6771	17 166-5	75 904	FRE 2006		
MONTHS.	D 7 194	0.7344	94006	0 5524	0.6964	<3 500a	Sen bead	99 1199		
Aug STAR agent	D tebers	Q 409 41	0.0054	G 7964	3 1000	11 0000	(15 PM)	K1 5998		
ReplicAl Pargn	0.0452	A-based	12 603h	2 5499	3-8064	43, #30%	(1.2 0796	Q51 7456		
Avg transpose	2 5663	41 965-b	19:4064	E 81-41	d mile	7 5= 74	the bases	4) ting		
AND DESCRIPTION OF THE PERSON	2-1052	6.2423	1015559	± 7223	41141	D 103.8	36.4585	43 505		

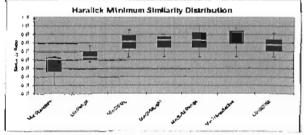

			200					
	Indge.	Max	24	Low Low	land	Varnos	Litreas	WORKON
Participation of the Property	11291	18, 50000	9 3AZI	04113	0 644	UZ ONED	1,600 (1851	Ide datab
Amplifumpe 1	a rmé	4400A	DHO	0 4654	0 \$405	92 OC 56	100 4750	163-5543
	2 6725	OCCU	0-	0 64 70	o bith	45. 9764	\$1 Mar 2	VESTIGATE
P-cdSV4cen	04114	تحرجه تا	04464	0 5025	미없다	~ COD!	N3: V 556	, 43 mm
August Augus	0.8)19	6 KG86	O MARA	0-6357	5 B102	22 254 E	97 6737	111 9291
and make the	2 12	1-00000	0 4184	D 60x 3	0 8447	:1 54 76	ba 451)	43) Q363
Augitorial.	3.53ml	*****	-	0.5400	0 MJ1	M UPUL	M. 7480	134 0341

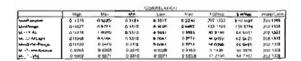

	CORPILATE:									
	1 ~~~	Wide.	Mini	See.	194g	1.25*100	Yelfror.	Wester		
ALIGN EVERSON.	0.7654	2 1979	85.7 Hapt	0.7304	d free	39 7509	36 24rg	45-04-31		
Freshange	0.0110	2-9040	(house)	3 6644	01-49	49-2533	15, 2460	54 118		
Augine His	0.6440	5 5400	(0.7140)	D 19304-	0 >00	5.5954	20 541 9	46-65-5		
mysters, gm	0 9632	1 2000	97***	province)	(2.000)	10004	47 7990	eq (%3)		
Road McZevil	0.0044	0.9-68	3-7149	0.941+	49-96	0.00	1"5 1366	•0.0534		
Sugar aprecia	0.564.2	Q 1650	40 F5-807	04777	A SHIP.	5 437	19/1997	140,000,00		
Aug S. S. At	0 to A6.	0.002*	4) 714g.	o un	Ø 2005	1 ASAS	ET Sect	44 0588		

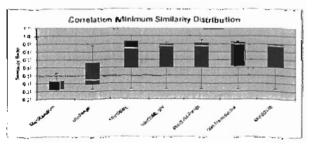


	Hage	36.81	Man	5,den	Mag	£ Specials	3-457140	-
Nyfaraori	0.6974	0.7704	0.0918	6 640€	0.6654	48 4500	57 7781	P 2475
AugPenge	0.7%3*	0 6501	9.9644	4 6313	0 8201	AS FTSE	40 9058	27 4041
Aug/Mills	0 F759	4 M87	9.6394	0 febr	0.0543	16 1944	\$2 1637	\$\$ 36.25
Avg(IVAL)grs	0.0405	6 9530	0.9994	A 7869	0 9100	4 4054	\$6,1100	54 53mg
Nagotival Phones	0 9024	0.6005	0.6325	in force	Ø 8393	UMM	24 6592	56 9050
AugTranaduCtive	0.0093	9.9924	0.6958	to Towar	Ø skanio	6 1997	\$4.5500	11 hand
A-uthili-M	C MAN	0.9170	-C middle	G 7562	9 6000	Phind of	11,2294	11 3393


	2-height	***	May	Lore	West	1 January	2400	WWWCo
Miniff proports	0.3054	- made	9.223	# 2-59	3 28m2	2-3 23/7	304 P391	5rd 625a
Mary Plants	6 H000	D 0219	0.3679	0.7903	O MINO	416 6915	701 9984	פלול ולק
ModTita	Ø 1.20+	0.0415	0.257%	9 300.5	0 x347	*SO #22	PO OFFO	773 2379
March Control	0.4364	0.4339	0 10%		D BMB	85 (679)	1349 9549	773 85%
MANDAN Penge	C / 138	1 0000	0,500	in head	O with	SINGLE CITY	DE COM	771 2770
Mini Renadulative	Q 1 48E	0-7+50	0.26.7	4 1.763	0 -641	400 PHIL!	PEN SEILO	774 2024
MARRAN	G MINT	0.3999	0.7679	0 474	0 West	7 44	154 7230	277,2579



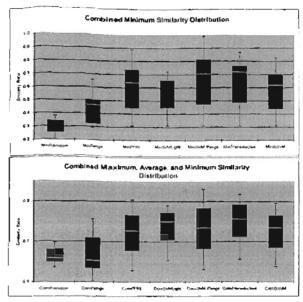


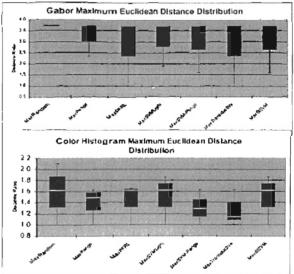

			6.0	OCTEPL NO.	-			
	-60%	h/jan	ija.	Low	Mari	1/20	X4Pas	element Cana
Limitary .	0 00001	13 (1000)	0.0000	4 (997)6	0.8380	D-SAN(XII	S (MOR)	H 6000
الهجية المبالة	0 1654	0.1742	AL DECEMBER 1	0.0000	OWNER	THE SEA	753 3A 644 E	MAN
Married Wilde	Q HIGH	0.0152	0.0000	EL 12460.	21 SAMS	JOS TON	105 EP/7	LAN
tendivision.	0.2344	6440	0.0000	60405	C- DISSE	1720 2011	MOST BACK	SCHOOL
market the same of	6-\$790	1 (100a)	OCCUPATION IN	9 1799	0.3580	I'M MAN	450 7700	-
Malamateria.	0.901*	0 9002	0.0000	4 1965	0.3130	1173225	130 (909)	SAN

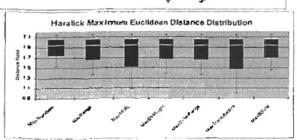
	Hegh.	Near	British	-	è-in.	1-28 Years	3/47/50	White/Con-
Margine Property	9 637=	0.4352	0.2094	0.4990	Q.4 16 7	51 3000	F 87 99%	233.498
- Name of	O Staye	0 1440	0 6736	G GOAG	0.635	STATE	43 (10)	14 1274
WWW PPL	0 6660	SOCU D	0.6343	4 7700	0 9365	20 decis	M W'M	L7 (37)
A HATTA PARTY	0445	y ourse.	0.654.8	0 1421	O PAGE	PER PROPERTY.	34 7504	17170
MACHINE PRODUCE	C USes	I PEROD.	O KIND	BI 7'621	O PRICE	rl. Nine	34 (7Ds	371271
Chapter signature (forte	-0.947F	497 th	0.0002	4 78/5	G1:000	4.30(9)	20 14/1	47 4 373
MANUFACTURE IN COLUMN 1	URNO	9.90CF	0.6012	S425 ID	9.900	80 MIN	41,771	21.130

	righ	Alay .	Min	Lin	High	127129	3 65/00
-	6.3414	0.3781	6:3096	0.2564	0 XX44	275 8991	204 3003
and and	0.90+2	0.6554	4 7524	0 3221	D 265.1	979 sec7	205 MW
Mrs4110	0 TM1	0.5073	9.3065	OMB	D MAIN	69 3060	481 577 c
of a Children and a Children	0.45/8	0.7346	41 Julies	0 4424	@ 500m	67 1199	119 5256
CATION DO	0.6120	6 9057	@ 30ed	04/17	Ø 5350	\$4.4009	106 2ligh.
-	& 166G	9.9676	9 3088	P-444-F	D 0045	46.5377	192 8500
-	P C=64	OLEJ	D 3000	0.4301	B 5701	Th comes	12n.41.3m

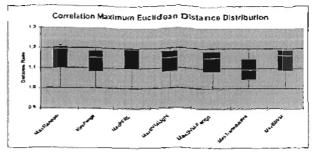
		ALL OPENOL DOT PRODUCT MAY NOT AND CONDINGO									
	helv	Man	Mo	Low	West	14 Minney	3 44-50	MANUAL CASE			
Conductor	2.0534	0.6950	0 1700	Ø Books	0 1241	73 1406	. 1	64 2007			
Confinge	à7197	93114	D 9054	9.9491	0 1344	44 740-	. · C+ 1991	G- 1700			
CONTRACTOR.	D RE14	D borns	0-1994	△ fursion	4.780	AT ACTAL	48 ጋም ያ	710179			
Campung par	S bank	0 93-54.	4 9074	Q PERF	3 8 100	14.5536	300 ADOR	54.0047			
ستمدي	0.6673	O MAGE	0 1103	0.0068	37743	34 62 W	- 0.24	71.7752			
Contractor	0.0044	0 1027	0.0104	o P295	O BONGS	14 5557	M 274	\$7.27cm			
Ca-6744	0.40300	0.8215	D X FBQ	0-ener	2 7663	25.55.80	41 WH4	41075			

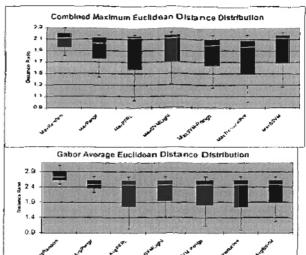


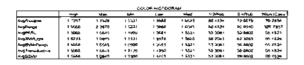

SCIENTIFIC SAIA EUREODAN DISTANCE MARINERI VA. JE

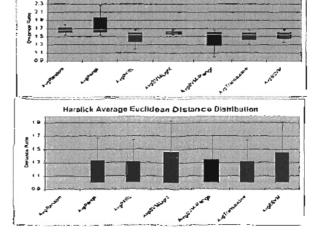

	125:	4-	Film.	Live	Literal	1/25/40	7	~
MIGENMA	3 7018	3.7016	1 7018	3 7018	> /Diff	370 (611	750 18V4	270 4815
Li mal Paragra	J 7918	3 70 16	A peris	3.09+6	3.7016	290 1611	270 1014	\$70 MIN
WART ME	3.70%	2 7040	1 0203	2 54 10	3 POIR	200 5615	200 H13	270 (01)
HAROLINE, EN	1.7544	d opins	I Street	A page 5	3 7000	BIND RETS	25(2.161)	275 (6)
MINSON APPROPRIES	1,71740	3 70 95	14:01	2 5507	3 7018	JPP tets	200 1014	\$10 ter
Man T- Table	3,7518	JE 17046	7-0000	\$ 150E	3.7046	gop sers	F40 of 15	₹₹9 IØ*3
4.05.34	1.70 (8	2,1016	1 bocas	2 to 14	1 7045	700 6515	395 5414	720 1611

	COLON MOTOOMAN										
	rtigA	Mar	Man	Law	Med	12000	3.41	W 1000 000			
-	1 8639	2.000b	1 00000	13149	1 4,797	-53 91744	60 355A	ALM PARTS			
Marrie Married	1 17/54	1.5297	' amo	1 31625	1 5316	12 1045	57 1105	42 /34			
Harris M. Phys.	1,0423	1.6570	· extens	1.3146	+ 4299	92 9734	24 TeV)	430			
N F-S/4H APA	1.7614	1 6554	10000	1.3149	1 6297	42 1734	14 44 3	41714			
Mary Control of the C	· 1027	1 10007	' sgood	1.16.5.6	1 9897	שלודן לא	1^ 6 TE	«WID			
Markeystone	1 3925	1 5267	Court 4	1.6920	1 1400	8 1344	3 - 2	CJ MS			


		MAPPE CL									
1	1100	Mar	<u></u>	10 -	14get	1.3P/50	Pallega	Worldsee			
Marchandore	2 Dm 24	2.5634	# 5.2m0	1.740*	13007	91 107/0	124 F40)	\$14.31pt			
May Parage	3 01/74	2 1431	1.3699	1 6006	9 9697	85 1079	104 7403	1 64 31 11			
May'V St.	20-74	2.5601	+ 54 pm	1.8472	1 2517	99 1970	194 Nett	1 44 3196			
Martin Maria	2 for Fe	7 ***	Pages	1.0702	. 2517	96 1570	194 7400	4443194			
March M. Percer	5 De 24	2 1451	1 3699	4 8608	19547	95 1670	164 THO	117 3195			
Maringoucher	7 to 10	2 5431	* 6000	1 4754	1.9907	bs 1979	104 7 Feb.	111 \$195			
Medicin/A	2 to 7.4	2 1451	4567	1 30m2	1.6627	05 1670	IN THE	111.5/10			

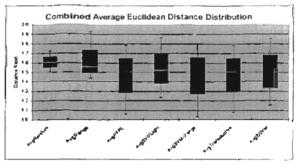



	SCHARLATION								
	4.00	_ ku	124	Low T	Vad	1.09 1150	3.4Pmb	Section Cons	
ME-A Proof	7.2063	1.2136	1 0030	4 (99)2	1 1501	14 3434	70 201	71)510	
U	1 -825	1 1981	4 3000	* 0843	1 1505	40 8612	4.1524	45 M/M	
U LOCK KL	7 (3/76	* 2009	r 0000	10997	1.1954	14 0424	18 0040	20.0525	
Uz.SWLON	1 1855	r i liste	10000	1 094 2	1 1886	14 0510	11 1271	10 54	
4 markey by the	4 (52)	1 1958	I opos	11243	1 1606	16 00 IL	15 1524	I MA	
Undirected to	1 1660	1 1964	1 20025	> 0=35	را ∞۰	\$ 120e	144615	Pr 8424	
							40.000		

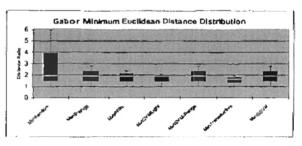


) Lgr	Map	Lies.	L-	bi ad	1.2P106	A STANCES	WONLE
Na of Specifical	2 204£	2 34301	1 6370	1 5640	2 :30=	111 0410	900 م	125 B 141
موسطويوا	1 391	2 1583	1 1260	1.7994	2 0eG8	102 300	1177131	116 827/
Muc/MAL	2 · 48b	2 175)	تدر 1 1 025	13794	21,54	(IN DATE	F34 8050	127 3509
Market Market Tolk	> '503	23241	13100	1 718c	1193	114 2020	LIB 8545	15,16
مومح الكاتينويو	7.099/1	2 440	17173	1 5040	103/1	108 1195	אבודפ עב י	194 8277
uminus on	20729	2 1933	1 0000	1444	1 5776	B7 75 74	101 2025	116 (1277
Mar D/7/6/	2 V709	23301	1867	1 8234	2 1447	187 5335	217 (115)	122.4121

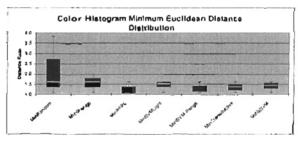
AMERAGE VALUE TLANGA										
	<u>~~</u>	Max	***	to-	l- ad	1/200-0	3 4,100	₩		
الجونية الويد	2-9160	3 4311	2.4390	£ \$149	: 7344	17) 4%	UH PICO	2101127		
Augi terge	J 0149	1134	2 2177	2 3565	7 4450	145 3000	151 4567	113 A7 La		
ANDERS.	2 6149	S 32HS	I CDAN	7060	7 4720	146 5000	134 4007	172 470e		
MARKAGEN .	2 6123	2714	1 4400	1 0403	2.43%	149 3000	151 4521	117 4784		
AND MARKET STATES	26141	a Yau	11334	1 8 152) APM	144 5000	121 4517	173 A784		
Avg Trens durante	2 6149	2724	1 0000	1 7415	2 4000	144 6200	101 4327	175 allie		
Angelijyss	> 2742	2.7546	1.2546	1 5796	2 1960	144 2000	151 46)7	17) 1794		

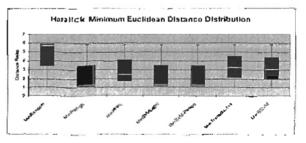

Color Histogram Average Euclidean Distance
Distribution

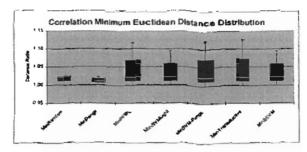
	maller icv									
		Mg/	K%=	Low	lea-1	1.79	SYPHIA	hank.		
7.gA e∕resici	1 077/1	1 COURT	1000	1 00/21	1 3000	0.0000	o (Frod	0.000		
J-grange	1 7747	1 5/37	1 0000	1 60003	1 00001	3 6000	22 42/20	E3 9596		
ArdFEL	1 2101	1 6243	1 (20%)	120%	1 (600)	7 0000	21 2145	(1:15)		
ANSWELDER	1 4685	1 9330	1000	1000	1 ome	0.0000	4 645	91 (524		
4-25/44-5	سهده ا	1 curs	10000	1 0000	1 0000	0.000	M MJN	(2 AbV)		
A glowest to	/ 3700	1 6400	I Eggs.	1 0000	# bood	5 4000	12000	64 00M		
N GENTALI	> 1553	1.31.06	1 (600	1.0000	2000	2 6000	41 1372	\$1.0K(s)		

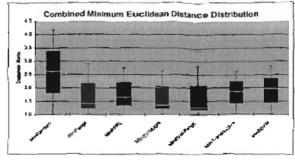

CLEAR TANK											
	high	- feliage	Mar	u-	F 40	1-199eas	3 error	20090			
Suprancers	1 0071	1.0004	4 0000	1 4001	1505.2	0.6232	07234	E: 553*			
Sanger Springs	7 0189	1.00%	1 000	1 600-01	D085	0.0037	I birkg	£ 934			
rug/FRL	7 0579	1 1059	C OTTOR	* 0040	- (1085	D 9555	9.7946	143 7 154			
Aughter.get	1 (770)	1 1314		100	1,0000	0.0532	7 0096	4.5.1664			
Augilian Pariet	1 0027	1 (199	V 1.000	· 00m3	1 (1084)	0.6537	6.76W	141 6855			
Fugites/Dation	1 0549	1 190	160	1000	1 CD0015-	p near	9.4915	112 1.7%			
IngleState	1.0965	4 106K	Libring	· Was	1 ron5	0.9507	\$ 545 F	N2 6364			

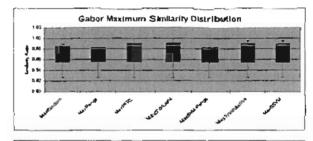
112				10000000000000000000000000000000000000		
1 10	THE R. P. LEW. T.	11 (20 12 S.C.)	CONTRACTOR OF	15255 ES		
3 100	STATE OF THE PARTY		2000	1000000	No. of the last	DESIGNATION.
1 1 1 1 1 1 1 1 1		MATERIAL PROPERTY.	100000	#3553	THE REAL PROPERTY.	HERES R
- 104	1031 102 1030	SECURIO	160000	100000	SCHOOL STATE	DOMESTIC N
1.62		15500	- Marian		1000	
100					- 4	
2.500	· September	2500	APPE.	. 800	a.g.ir.	Ext. Car
L. Spring	C-7-8	₩28	No.	514°	MILLER	***

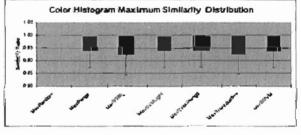

	e-gg/h	441	Um.	· COM	L/ eq	1/25	3167100	Workline.
r-dig minim	1901	1 7256	1 3070	1 254	1601	54 \$1955	40 9045	Ø19174
SugPangs.	* 7340	1 9260	1 43.77	4.00	A SHOPE	49 1527	67 1240	Dri 2550
Augist No.	* 6457	1.7852	1 09/25	1.284>	1 3062	** O742	\$6 3 T24	7.5 TTOO
A political in spirit	1.4988	1 Magaza	1 2347	1 3700		47 1163	AN AUT	MI AND
AugState (Forge	> 8985	# Mouth	1.000	1.7715	1 MOVED	15 0 142	40 2000	No will?
trug Empreyagement	1.6477	1 Phot	10'43	14.00	2.92	44.074	60 5223	25 42.00
349894a	- 5619	4 65-4	1.754	1241	1294	54 97 KJ	62.5798	79 3039

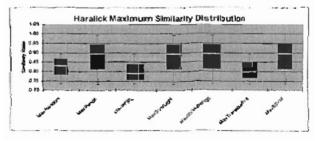

		CANON DIM VALUE									
		1244	~ ^	Low	Hond	\$125°450	2.+Prob	WORLS, see			
Share shapen	2 h3/ i	L Adi A	1 ACOURT	1 4521	19113	91 4262	140 1077	446 FB+ 7			
-	2 3474	2 7/10%	4 8000	14371	13443	DI NUMB	IM FIRE	154.0696			
MACON ME	2140	z itap	1 0046	1261	1 2143	P4 4/74	114 3070	1316277			
	1 025-1	20150	1 0000	1400	13413	LN - 14	IN 1604	107 9614			
hand Milder Street	7 1414	1 164	4 4000	14571	EMI	A 4343	IN TIME) Ad CHINE			
BACTRING DECIMAL TO A ST	1.74%	. 4145	1 (0000)	I ZWZ	1 44623	des Books	14 F2014	DI 4297			
Petropolytei	2 3474	7 700%	1 0000	F #577	· M43	01.4252	134 73.70	170 Q4 bb			

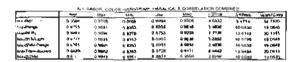

	Pigit	Vec	Adding	(~		1/27190	Principal Party	PROPERTY
MANAGEMENT	1 7184	3 8144	1 6993	7 3)05	18:00	6A 20755	eut à figure	281 4439
Mendanga	18171	· 2902	1.0092	1-7-60	15490	A 7000	4 1 2120	ERS 136V
Married Mr.	1 1/06	1.5430	4 00000	1-0496	1,000	9 0 666	KIT DRIVER	GA POSIG
untracipe	1 6307	1 41.35	V D993*	1 3501	14214	1.2 1310	Carrier	64 3010
Mr-SVM Person	1.4125	1 6420	1 00%	3 1455	1.163/5	16 3054	47 2541	BK 2096
Mr. Friging, rime	1.4179	1 64.75	1 0997	1 2018	13030	20 9047	UF YOUR	We agnir
Meditivis	1 1414	1.6420	A 00002	1 3900	14608	48-5821	16 18/00	Mr. 2059

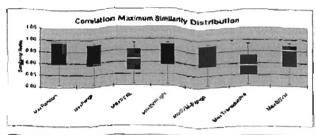

				MARKET CA				
	15gb	ten:	Fide:	(30.	<u> </u>	100	J. 147100	N 2426
Markenigm	\$ 4,190	1 more	U Shept.	3 3937	1,100	(75 5500)	ANT WILES	437,760*
santangs.	1 1093	4 1950	· (.000)	+ M85/P	1000	27 - 120	per than	476 5583
MHTG.	4 (204	1 1005	1 STREET	1.7376	10345	\$44 BS(\$)	342 0412	GAR KARA
Mary Charles	3 4953	1.725%	4 110000	1.1007	120	PO 1 989	749 1339	49 FTD
strests/arthyre	2 4993	5 7856	* 9094	4 6 995		20 1003	746 A584	4 FR 6.135
North American	4 5343	1 1998	1 6098	3 64 16	: 53	J26 346T	393 4290	4 FE \$339
terettiste	4 1216	5.7655	1.0000	2 0949-	3.7574	au 5 7400 h	MD 1569	470 53.61

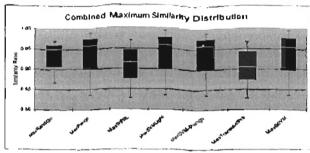

	COMMENTON								
	1997	- un	Sphips.	100	7**9-0	1,21700	3 45-16	PERCHA	
Hir Rayson	V-02277	1004	P.0000	1.0114	1 02.79	12944	2.3660	1 4376	
Mariforga	1.0>#1	10279	Faccal	1 (2004	10433	13243	1.6099	1 2944	
MARKET I	I provi	1144	10000	1.4411	1:0279	2.35-44	1 2507	110252	
March March	1 (44)	0944	I LECEN	4 03 15	18229	1.20***	p. notig	* ***	
MerSVM Puege	0726	1 1275	1 SCOOL	1.0115	15270	1 20-44	7 2829	13 2714	
Months and the	1.0743	1 (45	Vicen	1 0140	Non-20	2 Posts	7 4 149	(3 4779	
-C-ACAN	10007	1114	Lanet?	5.0111	f db m	7.20/44	6, 66002	4 441	


	Hart	-	-	Lan	-	a OPInos	3747106	West
-WY-WEA	3 1630	11110	1 6442	4 (0)(0)	2 Ber 1	150 1547	\$3A 2961	317 4600
	2 5000	2 4353	1 Billion	1 2306	1.4427	4772	THE BOOKS	100 Abea
(wall to	2 1782	7 (385	. 0000	1.2443	1.Acce	NO COMA	THE STAD	175.8473
-	2000	7 440	. 0	2334	* ***	48 3975	170 /	₩
March Press	2.06+6	3 642	- 0	k 11279	1 5304	27 43/63	108 1541	181 2005
-	22175	3427	A CLEAN	14711	14174	5.1 Y.300	121 7411	9841:44
LONE DAV	_LXQ_	7.84%	(01♥	1 4466	4 MOO	No metro	134 7717	18. 0

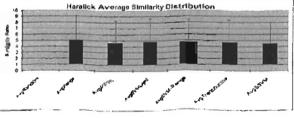

DAY PRODUCT HANDRIN VIL 10E CARCOE											
	1999	NA.	MA	Low	Men	1. Jenne	141000	W COLL CASE			
Hart water	D Belod	a ald?	0.004	6 Ched	0.5404	1 7566	1 1776	7 64 M			
17-	D MAED	# (40)-4		0000	0.0028	1 01 105	 Jáce 	01 1			
ME OF IV.	D 9411	4 MAGE	0 1.304	0 1	0.9824	1 /644	4 77 / 8	7 64 73			
HEC-WOOM	0 804	A BOOD	0.4084	4 0544	0.7624		· FF	16473			
March Comm	D India	2 1034	0 76.064	C PHI	P3437	1440	4 7064	~ ₽ D			
Mal manage	B 1447	2 1000	0 9254	0 -	D 3634	I PARK	1777	7 24 FE			
-	C-995	3 Inquisit.	6 938m	0.87	0 =< >=	P384	4	F 1476			


	High	Mad	WA.	Low	Med	T-Depton	D WANTED	WEST CHAR
Madhadan	1 (61303)	1 6390	7 000 E	4 00000	9 (BIDD)	h Biolou	o nude	6 0000
манРанда	1 1000	D366	4 073.8	d 9049	1.9860	P-9000	9.7319	14-4370
Us-PERL	1 0000	1 (07%)	6 044 4	0.9227	1.0009	0.0000	6.4589	49.433
Mark Market	* 0000	1 0000	4 6730	& scorife	1 DRIGO	10 0 0 0 0 0 0	4 7313	* # # # # # # # # # # # # # # # # # # #
and Mr. Proge	1 0000	1 lina	4 6130	0.9059	1 0000	6 5500	47317	14 4 390
-	1.600	4 botte	# AART	A 10713	L Obbbs	IN COLUMN	4 3034	N 5083
AMP DECEM	0220	1 0000	8 4133	£19087	1,0000	Ø-00000	6 75U2	14 5018



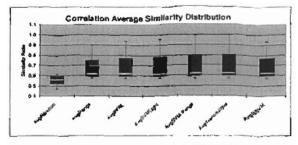

	-4MBALICX								
	Philip	0 L	IM's	Litrer	Uad	1 March	3'45'50	Varar	
Marketon	0.0045	0 L347	£ 7325	E 78.54	0.8544	ID: 0447	27 6407	25 5701	
W. Married Street, Str.	£ 9+20×	U 44 1D	5 10 2 5	& Broks	g street	11 7040	22 600%	35 520*	
AL DANSE STATE OF THE PARTY AND ADDRESS OF THE	0 M30/0	G 1344	5 F3.3 %	-0 :TE:EA	0 1426	27 7669	71 0065	24 529	
Supplied Co.	0.94288	D Marina	5 73.25	of above 6	0.0046	D.S. TRANS	12 9000	26.5297	
U-SILE PARTY	0.9429	0 0040	5 7329	0.000	0.6949	73 Total	22 1901	55 5av*	
	000		to beautiful	0.7661	G-79989	25-0366	10 5252	26.5203	
March St. Au	0 M 75	1 6000	3-1349-	0.6134	O district	Fit Zans	#2 selecti	34 5001	

	The same	Mar	U.n	Low	Wed	1/09/1000	3: eFrena	William Colors
#LP-000	0.00140	1.0090	0.0063	0.5957	0.3032	4.700m	11.639+	20 7704
ALL PARTY IN COLUMN TWO IS NOT THE PARTY IN COLUMN TWO IS NOT	0 4262	0.0034	6 5069	0.5690	04P02	1 0400	12 4544	23 7304
Mondy Rt.	8427	0.0052	o post	0.6672	D 20994	1 9804	16 2100-	13 >304
HARTIMA ON	0.6343	0 1433	D-0004	A. AARIO	0.2702	\$ 0649	15 etc.	44 1704
ULENA Pero	0 = 747	0.9534	b 8088	4-8692	0.9702	1 (50)	12 4544	D 7204
Mar Travelle Mary	0 65-0	0.940.8	El acodà	A SATE	0.8960	13 8548	10 0434	13 1704
Up 404°74	0 6113	9 Dda2	0.6003	6.6637	O stinz	4 2543	12 1569	13 7904

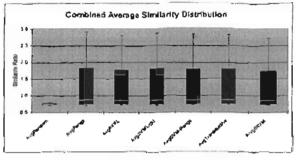


	MORAL VALUE OABOR								
-	length.	N se	Man	L		MANUE	300 martinals	(VPINE HAR	
Aught moon:	0 5474	0.1112	Q N/RM	G-MAN	9 20 M	\$1 02HS	114 6704	13/ 1201	
-	0 1864	0.64%	0 6075	GMM	فروج و	B 476g	व्य ग्राम	#31 (H2R)	
AVETEL	0 7490	OSTEC	U 5075	G2474	なるな	\$0×4.0%	NA ENVE	#3 G025	
MCCUARTERA	e rate.	G #364	O 50 II	45 Set 74	5 M2772	03-6702	NO STATE	£5 G284	
Application of the Person	a min	O: URANO	5 sens	E Cora	1,575	85 6702	TO STAN	41 0050	
Ave Transport Town	o Nos	1,0000	6 5011	DVN	G 3-77;	89-6102	93 27 9A	97-0255	
	~ T3 15	rs ferman	do more	2000	1.1311	49.4700	me trans	mer events	

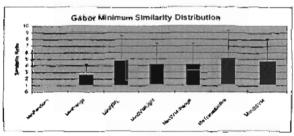
	-cm	Minc	Minh.	Low	Vied	1/29-04	Livingo	PERICAN
h-plante-	0.00	1.0000	ĝi pate	0.065%	o series	17:15	3 5656	1 4909
Children Ind	D DR.SA	0 0034	D-0970	DALE	O SHIFTS	5 446'0	AT Grow	42.3747
Lament.	△ britis	4431	E)-846F	O MINOR	6 MIT	T 40.0	11,3061	el ma
MORE PLANS	0 - 155	0.4494	P 5043	4 25 23	0 M -	: 4 🕶	H 474 F	M Gall
well-to-Person	D-945%	8 54E	S Selic	0.4887		1 A CO	11 365	14 0003
And streamen	O PERS	0 3434	DI BUILDING	G-BBYN.	0 24/8	3 4D	12 34544	19 9/173
		A state of		PE LANCE N			AT REAL PROPERTY.	A STATE

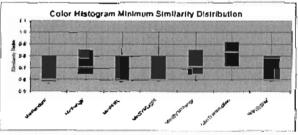

hayl retreatment light	O PERS	0 1434	DI BUILDING	G-BBYM	0 94/8	5 4D	N2 38544	19 9/17
78-2~	D political	1000	A 464X	Q-MCF	a mile	な機能が	40 65YN	44 5994
70				4 1	0.5172	p - p / ·		

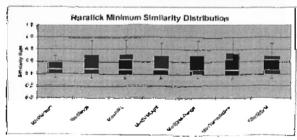
10		Gabo	gerayA	e Similarity	Diatrib	utlon	7
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0							
0.4 II	age.	, ga a a	Legge St.	Land of the Land	Sirk & Self	und's and the	. Alected
185		Color His	togram A	verage Simi	wity Dist	ribution	
000 000 000 000 000 000 000							
265	Service .	No. of	- Narae	L. Contractor	Rouge of	k Grander a	(constraint)

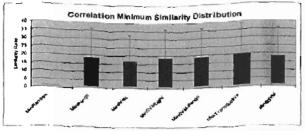


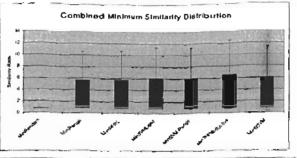
		NATAL CS										
	Pregio		Mac	KIRT.	XIII.	1/20/100	A Afferda	PERCENT.				
4Q*****	10006	1 0000	1 00000	10000	F CHOOSE	£ 6000	ti nera	0.0000				
Augiferça	Balan	6-0362	10000	A. pone	1 0000	00000	p-00000	4-enorg				
	* 4121	8.24)5	1 (8:00)	A 16000	1 0000	6-M000	9 00000	a Coron				
Aughvirlages	4 7000	8-3860	1 00000	 boot 	1 4000	010KM96	60330	0.0000				
PARTICIAL PROPERTY	4 40/2	6.3600	1 0000	4 8644	1.761.6	6-0000	64000	6-0000				
Angeliana Antonio	4 648	8.33 (6	1,0000	4 poor	1 (88.0)	0.9000	0.000	0 topog				
Aught Fall	. +44	7 0645	1 0000	N DOUG	1 1000	S boxes	4000	b 0000				

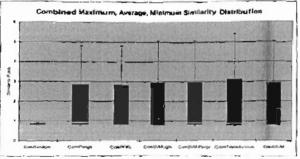

	CONTRIATION									
	Men	щ.	Va	Low	Med	1.2Pto6	2 The	170711,484		
~A man	& Male	0 4115	OMER	p 620s	0 5730	74 5209	14 part	11,13093		
Jugarus .	[amo⊲	0 EQ 11	4177	Ø 5924	0.0414	53.4670	63 (· · ·)	N 5000		
MONTH.	0.7737	011):	5 FTD.	0.5924	8776.0	83 4629	B 4	A 0209		
A-959AR-1078	0.7545	0.0674	OSTED	D MENA		63 4429	6.7.41	74 52109		
AVOIDANT PARKE	64690	0.00	0.5730	O MILES	96114	83,4529	461111	N 5289- J		
Aug Transductors	0.0050	4 PG00	4 5730	0.5024	0 8116	43,44279	47 641	74 5289-		
A-ymol-Ai	6 77:23	0 8325	0 P.DC	G 5924	GRAN	45 4629	E PATE	N 6209		


	Heads.	Mar	marker.	1 mm	Med	1125 mob	24700	Warm Con
Aughancon	01761	D 76MT	Q 70M3	(7.7376	a 7650	FF F 3-260	291 8350	22) 1114
Aligh mags	1 1303	3 4400	4 -1	2731	9 7711	FT4 4387	2017 2017	376 "Z76
AUGPYRL	11711	2 7000	023	0.7530	0 ****	2744797	264 2639	254 6131
A-45VARAW	4 10700	2 1007	07713	2.7463	0 1111	224 4197	267 1415	piùn neues
Aug/WA/Way	1 0060	2442	9.7750	0 151B	97716	224 4 107	704 5909	294 8190
Austrandicou	1 62-10	743:	41.6	a :00'	2011	278 4 797	285 2674	296 (See
A-gooya.	1246	A TPS1	0.53=1	0.730	0.71**	274 4290	26.2 mg+1	179 640


				MUUL WILL					
	الأنوانين								
	PROP.	N.m.	Mar-	Libe:	Fried	(QPTR)	3-APRIL	MACIE BA	
Mintheaters	1 0000	1 (20)7	4 4700	* DMOET	, paga	er macus	0.0070	£ 8000	
Marriage	3 C20	4.7119	4 9000	► Decid	, D0:00	o 2000	0.002200	0.0000	
www.Ht.	4 7021	1 544	(6000	i puno	1 0000	e ercco	£ 00295	d 5000c	
MINISTER LIGHT	(1000)	7 7L)25rd	1000	1 00000	I DOLO	0 600	0 04400	0.40000	
SHEETING AMORE	4 -549	7 3296	1 0000	I bidos	LIUDO	***	F, 00000	a ecced	
Na Comment	Liabs	1201	1 0000	1 1/2007	I (mago	6 mags	a 00000	8 0000	
Mark Sales	4 1644	8 1274	I Russ	4 0000F	1 0000	Q-09000	3 0004	9 10000	


	,gr	Wa -	gallery.	-	Med	(Parties	فيتحنز	Name and
MmByoppe.	r ; Me	1000	075	6 S637	0.0946	BIF-CIDA	NU TERM	34 fects
Manifrança	C 1704	· crco	Q Name	D-REEN	G 71M2	40 7944	ALI MATER	14 1239
MARKET.	B P534	trne	2 364F	P MON	60 TOM	M 904	e 400	in west
Mar/JVMI, aghi	2328	 6000 	1-1412	P 5000	Chief	7.5 1.504	₩ ₩□	3 ⊊ 43⊊}
sendido de desegra	J 7 160K	1 0000	PROFIL	D-Bigget	p.htm.	1 7/24	EZ >VD	40(1) BB
VINT PRINCIPA	∆ (r t 7	1 0000	Discoula	D 7461	O BATT	LD ADM	多色的	₩ 1,70¢
AL-TERNAL	0.79~4	T COLD	0.40	0.5600	0.5546	(A) (76)	41 444	PD 67.87


	H444.C1							
	Page	u_	Mar	W-	VM	. >~	2444	With Care
SPACES.	0.3450	o sees	611-1	D matte	8 47.34	। भन्ने अंश्रीम	45 FU	206 1336
tind large	8/79M6	3 10.00	G SMI	D ARE	0.00	19 355	14 144	204 1335
MinaPRES.	0.7852	3 -4	9374	0	04.30	146.555	saff Iron	20F 1385
Seculation of the	0.440	\$ 1201	Clar.	6 400	40.00	HACTOR	46 053	201 1005
Gint State Compre.	AST O	5 2034	4 37-4	C CENT	0.4154	A 100 C/Card	149 953	204 1235
bir farmhame	g TRE	1 2000	63342	C 4TH	A. P. Bal	105 2-25	MIT DEST	Res 13.09
terribust.	946	C ESST	0 25.4	D #130H	0.45	160.221	140 950	278 1339


	COMME CHI-04							
	~	, u		3.04	Elect.	F 25716	3 error	Workschip.
مروسوده	1.0000	1 (1500)	1 3350	10000	14000	0.0000	9.0000	0.0000
THE PARTY	16 5295	X Roop	7 00000	# COUNT	1-000N	O ENDING	4 8000	0 AND
1.484.481	16 6220	W J#55	< coppe	r orgens	1 4008	9 9000	4 6000	0 4000
حريمت	18 5075	34 mae	1 0000	* uninted	1 00000	G-0000	0.0000	0.0000
Under State Property	10 329/9	25 0669	1 1000	 6000 	10000	< 00 00	P 60000	4 0400
Mark Samuelander	14.00 11	Z 434	1 2003	< 000A	1 1000	0 0/01	fr purces	2 0000
Canada Cara	14 7934	25 1118	1.0000	4 00008	1 0000	0.0000	2-0003	Ø p000

	Lings.	Me.	جفا	Low	-	1 11 -30	3-9704	MONITORS.
Agente	Osera	9 6621	O TEST	07421	0 1974	120 5505	1660 \$166	MAT LANE
-	3 1753	10 PLM	D 7766	o Jugo	3 1674	MG 907+	1579 3454	1604 4241
LEAVE TIL	5.7086	O COM	6 7779	@ 2429	D 7975	1930 5545	1964 (657)	1616 2045
-5MAP	6.644	H 419	E 7274	● 3475	G 7676	1020 1505	1564 4000	1615-0107
- Diffe allega	60641	*1 2011	3 7748	D 7634	5 767	HOD SON	4379 3431	1604 (219
and considerable	n. 6539	2 4325	0 7794	C 779d	4 6362	1401 \$150	40 THE	1004 4344
-68.4d	5 (194)	14 Monte	BITH	& Pars	D NINS	1330 5565	1000	1410-0462

	H4b	Titiga	e de la company	1,04	- Veg	1,2000	3.00	Mark Care
-confirmation	a New	S COLE	E 1443	D 7599	D 40.14	512 5216	Life (Ma)	105 4005
Conferm	>4/1	4 3 - 06	6 1533	6 786	0 8434	34 E 2673	117 0000	\$16.5250
المجالة الل	3 4154	6 81 65	STREET,	074	6800	544 5134	563 T480	100 4302
Condition	J 546 1	3 00 12	Q 1613	AMO	1231	20 mg	STAL CESTAS	610 M21
Congress Page	1 1000	9536	C 7791	0 00-6	DSAM	×1472	177 7040	904 9002
Continuenting) thi	4417	0 7630	0-8/20M	9 8350	MI KKZ	SYS SHORE	850 000m
COMBSMI.	E 8334	S HORST &	D 1690	å 7992	SEN	int gafe	177 270a	CON HOS

\TTA

Patricia Jusuf

Candidate for the Degree of

Master of Science

Thesis: A M

A MODULAR SYSTEM FOR COMPARISON OF NAVIGATION ALGORITHMS IN VISUAL DATA EXPLORATION

Major Field: Computer Science

Biographical:

Personal Data: Born in Bandung, Indonesia, On March 18, 1978, daughter of Jusuf Sutrisno and Emmi Lombri.

Education: Graduated from Saint Aloysius High School, Bandung, Indonesia in August 1996; received Bachelor of Science degree in Computer Science from Oklahoma State University, Oklahoma, USA in August 2001. Completed the requirements for the Master of Science degree at the Computer Science Department at Oklahoma State University in May 2003.

Experience: Employed as a graduate feaching assistant at Computer Science Department, Oklahoma State University in 2001.