
PETRI NET MODELING OF

WEB SERVICES

B\'

MUHAMMADA IF JAVED�

Master ofScieoce�

Punjab University�

Lahore, Paki tan�

1990�

Submitted to the Faculty of the�
Graduate College of he�

Oklahoma tate University�
in partial fulfillment of�
the requirements for�

the Degree of�
MA TER OF SCIE CE�

August 2003�

Oklahoma State University Library

PETRI NET MODELING OF�

WEB SERVICES�

Thesis Approved:

~SiS:dViSOr

---~-~----'~a~f't~-e-C-ol-le-ge--­

II

ACKNOWLEDGEME TS

I feel rughJy privileged in taking the opportwlity to thank my worthy advi or

Dr. Johnson P. Thomas, under whose auspices I took a stride in th completion of this

work. I can never forget his incessant meticulous criticism, affectionate supervision,

distinguished inspiring behavior and valuable knowledge, which he contributed to this

work in a multitude ofways.

My heartiest thanks to committee members Dr. Marcin Paprzycki and Dr. Debao hen

for their valuable criticism and suggestions that helped me to cover the gaps. I love to

thank Dr. Adjith Abraham for accepting my r quest to be a committee memb r while the

time was very short.

I am in deep dept of gratitude to Mr. Khalique Rehman for his cooperation throughout the

course of my study.

I acknowledge from the core of my heart the haudhary family for their kind help in all

ways and loving behavior. And especially words are inadequate to thank Mr. Zahir

Chaudhary and Mr. Nasir Chaudhary.

I would like to say special thank to my wife Saima Waheed who stood beside me all the

time with her unfailing and indispensable support.

A heart-felt thanks goes to my parents and brother for their encouragement and emotional

support throughout my life.

III

TABLE OF CONTENTS

Chapter Page

1- Introduction , , 01

1.1 Web Services 0 I

1.2 Visual Studio. Net. · 04

1.3 WebSphere SDK for Web S rvices (WSDK) 05

1.4 Java Web Services Developer Pack 1.001 (Java WSDP) 05

1.5 HP Web Services Platfonn 2.0 05

1.6 Petri Net. 05

2- Objectives 07

3- Literature Review 08

3.1 Web Services 08

3.1.1 Idea Behind Web Servic 10

3.1.2 Goal 10

3.1.3 Difference B tween W b Services and Traditional web 11

3.1.4 Security 12

3.2 Analysis of Web Services 12

3.3 Anatomy of Web Services 15

3.31 Types 17

3.3.2 Messages 18

3.3.3 Port Types 18

3.3.4 Bindings 19

3.3.5 Services 19

IV

4- P tri ets , 24

4.1 Introduction , 24

4.2 Reachability ·.· .25

4.3 Petri Net Model of Web services 26

4.3.1 Properties ofWSP 27

4.3.2 Modeling of Method 30

4.3.3 Petri net Merging 31

4.3.3.1 Merging Procedure 32

4.3.3.2 Merging Structure Constraint. 33

4.3.4 Petri Net Modeling of Methods 36

4.4 Limitation to this approach 38

5- Methodology and Implementation 39

5.1 Petri et model. 39

5.2 Modeling Tool for Web ervices .49

5.3 Reachability 53

6- Conclusion , , 56

6.1 Future work '" 57

7- References , 59

7.1 Bibliography , 59

7.2 Appendix 62

(A) A Carlot program 62

(B) WSDL file ofa bank. 65

(C) Software 69

v

L ST OF TABLES

Table Pag

1. Formal definition of Petri net 25

II. Mapping ofWSDL. 26

III. Mapping for methods 26

VI

LIST OF FIGURES

Figure Page

1. General Architecture of W b Service , , 02

2. Two Interacting Business Processes 03

3. Generic Web Service Architecture 09

4. A scenario of Interaction among Carlot, Bank and Credit Rating Co 13

5. Abstract Definition of WSDL. , 17

6. A client invoking a Web Service 21

7. A scenario showing the usage ofUDDI and Web Services 22

8. WSDL model for Carlot transaction 23

9. Structure of Petri et. 24

10. WSDL flow model of Carlot.. 29

II. Petri et model of Carlot. 29

12. Joining Model of Petri .et. , 30

13. Split Mod I ofPetri Net. 31

14. Iteration Model of Petri Net , , .31

15. Unsafe Merging " " , 32

16. Petri et Model of Carlor Method .36

17. Petri el Model of Bank Method 37

18. After merging of both Carlot and Bank methods .37

19. bstract diagram ofexample 41

20 Petri net modeling of Web ervices

(a) arlot, MyBank and abcBank .42

Vll

.43 (b) MyCreditRatingsWScreditRating, and abcCreditRatrng

21. Merged global iew of the entire system 43

22. Petri et models of Web site and Web services Methods

(a) Carlot Web site method .44

(b) MyBank Web Service method .45

(c) abcBank Web Service method .45

(d) abcCreditR Web Service method 45

(e) abcCreditR Web Service method .45

(f) MyCreditRatings Web Service method .46

23. Graphical Petri net representation of Carlot and invoked Web Services .48

24. Abstract Diagram of Software 50

25. An output of Reachability analysis 55

VIJI

d

HTTP

IDE

M

MIME

P

PKI

PN

Pout

R

RPC

T

treset

SAML

SMTP

SOAP

W

WSDL

OME CLAT RE

Destination

Hyper Text Transfer Protocol

Integrated De elopment En ironrn nt

Marking

Final Marking

Multipurpose Internet Mail Exten ions

Initial Marking

Place

Input Place

Public Key Infrastructure

Petri Net

Output Place

Reachability

Remote Procedure Call

Transition

Time Stamp

Reset Transition

Security Assertion Markup Language

Simple Mail Transfer Protocol

Simple Object Access Protocol

Weight

Web Services Description Language

IX

WSP Web Service Petri et

XACML Extensible Access Control Markup Language

XML Extensible Markup Language

XSD XML Schema Definition

UDDI Universal Description Discovery and Integration

x

1.1

Chapter 1

Introduction to Web Services

Web services

In today's e-commerce environment, various commercial and other organizations provide

their services through the web. These services range from educational services, which

provide distance learning to commercial services such as credit rating services. For

example, a car purchase transaction requires accessing a number ofweb services. Car

dealer uses bank's web service to get financing for their customers while bank uses credit

bureau's web service to check customer's credit history to decide for approval. A single

business transaction therefore invokes a number of web services.

Web services are defined as "internet-bas d applications fulfilling a specific task or a set

of tasks, that can be combined with other web services to maintain workflow or business

transactions" [13].

Web Services, which is a djstributed computing environment, is based on Extensible

Markup Language (XML) technology. The cone pt of business communication is

certainly not new, but web services bring a new perspective to the cross-domain

interaction [11]. Web services [10] provide a conceptual foundation and a technology

infrastnlcture for service-oriented computing. In web services interoperability is at

highest priority. It allows program written in different languages on different platfonns to

communicate with each other in standard-based way. Web services are considered as

reusable software components [14] over the Internet by wrapping the interface with XML

and publishing it over the Int m t. Web servi sarin fact a standardized int gration

approach. They are not limited to one environm nt but can be integrated into every

software-system that is web service-aware [9]. Web rvIC have diffi r nt layers. XML

Sch rna (XSD)-used to defme the message fonnat which d scribes the type and structure

ofXML document, Simple Object Access Protocol (OAP)-m ag nvelope also

defines a standard representation for errors and binding to HTTP or other open protocols

and RPC, Web Services Description Language (WSDL)-explains how operations can be

invoked using particular transport protocol bindings and Universal Description,

Discovery and Integration (UDDI)- to get the technical details.

Service
Requester

(Using WSDL)

ind

Transport Protocol
(. OAPI HTIPGETI HTIPP ST)

Service Provider ervice Directory
(Web Service) (UDDI)

Publish

Fig. 1 General Architecture of Web Service

The scope of web services applications goes beyond organizational boundaries, such as e-

Business. Web-based e-commerce began with stand-alone Web servers, but these Web

servers soon began to be inter-connected with other systems [15]. Web services are

2

rapidlye 01 ing and are e pected to change the paradigms of both oftwar d lopment

and use [12].

Service Provider/ Service Pro ider/

S rvice Requester Service R qu st r

Fig.2 Two interacting business process

As shown in Fig. 2, to make the business process work the requesting operation of one

process (A, C, and T) is associated with matching performing operations (0, R, and E) in

the other process [20].

Microsoft, S Microsystems, IBM, HP and some others have recently developed tools

for building th W b Services.

3

Microsoft Visual Studio. t ha made it very easy to create, d ploy and acce san XML

Web service. Visual Studio. et have friendly interface and i ery powerful tool to

develop Web Services. So we used Microsoft's Visual Studio. et to develop Web

Services and to test our developed software.

1.2 Visual Studio.NET is a powerful set oftools for building web applications. [t

simplifies the development ofXML Web Services and generat s required codes.

Different web references can be added to access those sites automatically and it g nerates

WSDL which have the information that how operations will be completed. The Visual

Basic, C++, C#, Jscript and XML languages create a mixed language solution by using

same Integrated Development Environment (IDE) and leverage the functionality of .NET

Framework.

Web services involve interaction between different distributed sites on the Internet. New

web services are continuously being added and linked to existing web services. In such a

dynamic distributed environment, there is enormous potential for deadlock and other

problems. It is therefore essential to model web services and reason about them to verify

the correctness of the services. Although tools exist for developing web services, tools for

the abstract modeling of these web services do not exist. In this thesis we model Web

services using Petri Nets.

Other companies besides Microsoft have developed their Web Services and are offering

their web services development tools in the market.

1.3	 WebSphere SDK for Web Services (WSDK): IBM has built Web

Services support in WSDK. It offers tools in WSDK to build Web Services for Java

4

4

programmers. Web phere offers wide int roperability with other software and

systems.

1.4	 Java Web Services Developer Pack 1.001 (Java WSDP): Sun

Microsystems is suppOiting Web Services in "iPlanet" and develop d (Java W DP),

which in conjunction with Java platform allows to built, test and d ploy Web

Services. Sun ONE Studio 4 provides the latest tools for Java to d elop Web

Services.

1.5	 HP Web ServicesPlatforrn 2.0: developed by lIP, which provides a

standard based architecture and toolset for creating and deploying Web Services.

Oracle is moving to support Web Services standards in its 9i database management

software, application service and development tools.

Microsoft have developed Visual Studio.Net, which is very easy to use, have friendly

interface and is very powerful tool to develop Web Service. So we us d Microsoft'

Visual Studio.Net to develop Web Services and to test our developed software.

1.6 Petri net is a graphical and mathematical tool [17] used for modeling and

analyzing systems with concurrency. The mathematical framework behind Petri Nets

facilitates reasoning about the model generated. For example, Petri net analysis of the

model will detect deadlock in the model. Petri net consist of Places, Transitions and Arcs.

Transitions are acti ve components and on firing change the state of the system. Places

can have tokens, which represent the current state of the system. Both (places and

5

transitions) are connected with input (from places to transition) and output (from

transition to places Arcs. It can be u ed for ariety of purposes.

Software is developed for Petri net modeling ofWSDL and Methods, being used during

and after the development of Web Services by the Visual studio. We use reachability

analysis to detect deadlock. This thesis also proposes a Petri Net merging method to

model the integration of distributed web services. The software development process

begins by XML'S parsing of the generated WSDL. It gets input and output data from

types elements, operation name from portType element, network protocol from binding

element, and operation address from service element. Having these information Petri net

will be drawn and to detect deadlock reachability is analyzed by using C/C++. The

reachability analysis ends in fmal states if there is no deadlock otherwise there is

deadlock.

6

-

Chapter 2

Objectives

The main objective of this thesis is to verify the correctness of message flows in web

services. This is achieved by generating a model of the w b services. Thjs model is then

analyzed to determine if the web services contain deadlocks, will terminate correctly and

will function as desired. To realize this main objective we aim to:

1.	 Generate a Petri Net model of web services. This is achieved by parsing the

WSDL and collecting all required information about input/output data, network

protocol, operation name and destination.

2.	 Propose a mechanism for linking different distributed web services. As stated

earlier, a single business transaction invokes a number of web services.

3.	 Reason about the generated Petri Net model. Software will be written to generate

the reachability tree of the P tri Net model. This will allow us to detect deadlock,

check for correct termination of the bu iness transaction and detect other such

potential problems

We will be using the Visual Studio.NET, Visual Basic, C and C++.

7

«

Chapter 3

.NET AND WEB SERVICES

3.1. Web Services

The emergence of Web Services represents the next evolution of e-business [1].

Kreger [2] defines a web service as an interface that describes a collection of operations

that are network accessible through standardized XML messaging.

A formal definition of a web service may be borrowed from IBM [3].

Web services are a new breed of Web application. They are self­

contained. self-describing, modular applications that can be published,

located, and invoked acros' th Web. W; b s rvic . p Iform functions.

which can be anything from simple requests to complicClt d business

processes... Once a Web servi e is deployed; other appli alion (and other

Web services) can discover and invoke lhe deployed service.

Viewed from an n-tier application architecture perspective, the web ervice is a veneer

for programmatic access to a service, which is then implemented by other kinds of

midd1eware. Access consists of service-agnostic request handling (a listener) and a facade

that exposes the operations support d by the business logic. Th logic itself is

implemented by a traditional middleware platfoml. Lambros et al [7] state the

8

interactions between the service registry, service requ tor and s rvice provider in the

context of the establishment and commencement ofa web s rvice relationship.

XML Request
L

B
U

I S

XML Response
....

S
T
N
E

....
I
N
E
S

....
....

l\Jf ..• ...1.. , Bu iness
logic

R
'I SFacad

Fig. 3 Generic Web Service Architecture

Extensible Markup Language (XML) provides a metalanguage in which you can write

specialized languages to express complex interactions between clients and services or

between components of a composite service. Behind the facade of a w b server, the XML

message gets converted to a middleware request and the results converted back to XML.

The full-function web services platfonn can be thought of as XML plus Hyper Text

Transfer Protocol (HTTP)plus Simple Object Access Protocol (SOAP) [4] plus Web

Services Definition Language (WSDL) [5] plus Universal Discovery Description and

Integration (UDDl) [6].

-

The ability of Web Services to r ach b yond th ftrewall th loos coupling b tw n

applications encouraged by Web Service interfaces, and the wide support for cor Web

Service standards by major enterprise software ndors are the k y rea ons why W b

Services technology promises to make integration of application both ithin the

enterprise and between different enterprises significantly asier and ch ap r than before.

Web Services are in essence a collection of standards and protocols that allow us to make

processing requests to remote systems by speaking a common, non-proprietary languag

and using common transport protocols (HTTP, SMTP).

The introduction of the web services approach has increased efficiency however;

business knowledge regarding relationships with suppliers and custom rs is now buried

within the internal processing of the web services [8].

3.1.1 Idea behind Web services:

The basic idea behind Web s rvices is to adapt the 100 ely coupled Web programming

model for use in applications that are not browser-based.

3.1.2 Web Services Goal:

The goal is to provide a platform for building distributed application using software

running on different operating syst ms and devices, written using different programming

languages and tools from multiple vendors, all potentially developed and deployed

independently.

10

1

3.1.3 Major differences between Web services and traditional Web

applications:

There are three major differences. Web services use SOAP messages instead of MIME

messages, Web services are not HTTP-specific and Web services pro ide metadata

describing the messages they produce and consume.

Browsers usually just render HTML pages (or other MIME-typed data like images) and

leave interpretation of the infonnation they display up to the user. Web service clients, on

the other hand, typically need to interpret the data they receive and do something

meaningful with it they may not even have a user interface.

The second major difference between Web services and traditional Web applications is

that Web services are not transport protocol specific. While the SOAP specification only

defines how to send SOAP messages over HTTP and that's what the vast majority of

today's Web services do, other transport protocols can also be used. SOAP messages can

be sent using SMTP, raw Tep, an instant messaging protocol like Jabber, or any other

protocol you like.

The SOAP specification defines the notion of intermediaries, nodes that a message passes

through on its way to its final destination. Using intermediaries, you can "virtualize"

physical network topology so that messages can be sent to Web services using whatever

path and whatever combination of transport protocols is most appropriate.

The third major difference between Web services and traditional Web applications is that

Web services are self-describing; they provide metadata describing the messages they

produce and consume, the message exchange patterns they use to expose behaviors, the

II

-

physical transport protocols they use, and logical addressing infonnation requir d to

invoke them. A Web service's message fonnat are defined using xML Schema (XSD).

3.1.4 Securit.y

Without doubt, the main problem facing Web Services is security. This is true with all

software, but since the rapidly growing technology area that is Web Services doesn't yet

have dedicated security protocols and standards, it is a more glaring hole. It is, though, a

hole that is being filled, with proposals to secure all levels of the communication being

presented and submitted; Security Assertion Markup Language (SAML,

..	 http://www.saml.org/, or http://www.oasis-open.on::/committees/secu rityl), for

transferring the security level (authorization and authentication), along with XML

encryption and Public Key Infrastructure (PKI), which can be managed by XML Key

Management Specification; the security of storage of documents in repositories such as

UDDI registries is targeted by Extensible Access Control Markup Language (XACML,

bttp://www.oasis-open.org/committees/xacml/).

3.2 Analysis Of Web Services

Web services enable the exchange of data and the remote invocation of application logic

llsing XML messaging to move data through firewalls and between heterogeneous

systems. The programs written in any language, using any component model, and

running on any operating system can access XML Web services.

]2

-

It can be explained with the help of a Car Sale example, in which three different web sites

are communicating automatically with each other. Graphically their communication can

be shown as:

Method Method Method
Calling Bank's Method aIling redit 0 Method

... ~ ... , For Credit report ...

... For Financing

.. .
.... Result is coming back

., .

....
ApprovaVDecline

I
Carlot Bank Credit Ranting Co.

Fig. 4 A scenario oflnteraction among Carlot, Bank and Credit Rating Co.

If a customer at Car Dealer needs a bank financing, then customer's data is needed by the

bank to decide about loan approval or rejection. To send customer's data from Car 0 aler

to Bank, we need to invoke bank's method over lnternet To invoke bank's method,

required parameters and its data type are encoded which are checked from the WSDL

file, published by the bank.

When Bank receives customer's data, it checks if that is its active customer. If so then it

approves otherwise Bank sends data to Credit Rating Co to check customer's credit

history. Here bank is invoking another website's method through rntemet, after meeting

the requirements given in WSDL file published by the Credit Rating Co.

Through Internet bank invokes the method of Credit Rating Co. This method is

calculating credit score, and after calculations it returns the result to bank.

13

-

When bank receives credit rating of the custom. r th n it calculates intere t rate and sends

its decision back to car dealer. This whole flow is automatic which is aving labor cost

and avoiding delay due to unavailability of any concerned person at any point.

During building or consuming Web Services there are few key sp cifications and

technologies that need to be encountered.

1­ Extensible Markup Language (XML) - A standard way to r present data. It

provides a significant advance in how data is described and exchanged by

Web-based applications using SOAP. The Hypertext markup language

(HTML) enables universal methods for viewing data while XML provides

universal methods for working directly with data. XML facilitates the transfer

of structured data between servers themselves.

2­ Simple Object Access Protocol (SOAP) - A common, extensible, message

format. SOAP is a lightweight XML based protocol for xchange of

information in a decentralized, distributed environm nt. OAP ha three parts,

i.e. envelope, header and body. SOAP codifies th use ofXML as an

encoding scheme for request and r sponse parameters using HT P as a

transport.

3­ Web Services Description Language (WSOL) - A common, extensible,

service description language. It is explained in d tail later.

4- Universal Discovery Description and Integration (UDDI) - To discover

service providers. UDOI provides a mechanism for clients to dynamically find

other web services. Using a UDD} interface, businesses can dynamically

14

-

connect to s rvices provided by e t mal business partners. UUDI registry is

similar to a COREA trader, or it can be thought of as a D service for

business applications. A UDDI registry has t 0 kinds of eli nts: businesses

that want to publish a service (and its usage interfac s), and clients who want

to obtain services of a certain kind and bind programmatically to them.

..

3.3 Anatomy Of WSDL

WSDL is an XML document. WSDL is used to describe what a web service can do,

lvhere it resides, and how to invoke it. It provides critical information about the Web

Service that both the developers and programming tools need. In a compact, concrete

way, this document describes everything, including:

• Messages that the Web Service understands and the [onnat of its responses to

those messages

• Protocols that the service supports

• Where to send messages

WSDL focuses on describing wire formats, not on describing implementation details of

an endpoint.

A WSDL document always has a <definitions> element as its root.

Here we declare the WSDL narnespace as the default narnespace for the document so all

elements belong to this namespace unless they have another namespace prefix.

The WSDL-specific elements are:

1­ types: Describes the types used by messages

15

•

2- message: Defines the data passed from one point to another in a call

3- portType: Defines a collection of operations.

operation: Defines a combination of input, output, and fau It messages

input: A message that is sent to the server

output: A message that is sent to the client

fa.ult: An error value returned as a result of a problem processing a message

There are two main classes of faults: client faults and s rver faults. If a

client fault occurs, the client should not resend the r quest until it fixes the

input data in some fashion. A server fault indicat s there was a failure at

the server that was no fault of the client. Clients mjght wait a short time

and try resending the request.

4- binding: Describes the protocol being used to carry the Web Service

communication; bindings currently exist for SOAP, HTTP GET, HTTP PO T, and

MIME.

5- Service: Defines a collection of ports (end points); port specifies an address for a

binding, thus defining a single communication endpoint. Each service should map

to one portType and represent different ways of accessing the operations in that

portType.

16

Service

The Services section rc~ rs ro the Bindings s tion

Binding
Portstransport (ervices section contain port elementS}

Bindings section refers to rhe P rlT pes seclion

OperationsPortTypes
(Binding ections contain operation elements

Input, Output, fault

POl1Types section uses dclinltions
in the Messages section

Message Operations
Parts (PortTypes sections contain operation name)

(parameters)

Message uses definition in the types

Types
(data types)

Fig. 5 Abstract Definition ofWSDL

By using Bank and Credit Rating CO's example, the WSDL's each e1em.ent can be

explained.

3.3.1 TYPES

It defines the data types used by the messages. It has the information about both

messages- input and output. Output message name ends with Response. The

17

<complexType> can express more than just the equivalent of a struct in C. For xample,

a data type for bank will contain strings.

3.3.2 MESSAGE

Messages consist of one or more logical parts. Each part is associated with a type from

some type system using a message-typing attribute. The part name attribute provides a

unique name among all the parts of the enclosing message.

In message each part defines the input and output parameters. There incoming and

outgoing both messages are described along with their protocol of transfer. In our

example all three ways SOAP, HTTPGET, and HTTPPOST for input and output

messages are described.

3.3.3 PORT TYPES

It is collection of operations. The name of operation is name of the method that is being

called. The operation specifies two messages, input message (sent to the web services)

and output message (from web services to the client). PortType have in formation for

operations, which can use anyone out of three network protocols, i.e. SOAP, HTTPG T

or HTTPPOST. Input and output message of one operation use one type of protocol.

WSDL has four transmission primitives that an endpoint can support:

•	 One-way. The endpoint receives a message.

•	 Request-response. The endpoint receives a message, and sends a correlated

message.

•	 Solicit-response. The endpoint sends a message, and receives a correlated

message.

18

-

• Notification. The endpoint sends a message.

WSDL refers to these primitives as operations.

3.3.4 BINDINGS

A binding defines message fOffilat and protocol details [or operations and messages

defined by a particular portType. There may be any number of bindings for a given

portType. The binding element can be used to define how each operation within the

portType maps to a particular protocol. A binding MUST specify exactly one protocol.

The binding element states that the operations can travel using SOAP over HTTP,

HTTPGET, or HTTPPOST. So it binds the operation and transfer protocols. In input and

output use is equal to literal. "Literal" means that the resulting SOAP message contains

data formatted exactly as specified in the abstract definitions (Types, Messages, and

PortTypes sections). Message the each parts define the concrete schema of the message.

The <binding> element is given a name (in this case" reditl alings oap ") so that the

<port> element in the Services section can refer to it. It has a "type" attribute that reti rs

to a <portType>, which in this case is tI redilRatings oap ".

3.3.5 SERVICES

A service is a set of <port> elements. A port defines an individual endpoint by

specifying a single address for a binding.

Each <port> element associates a location with a <binding> in a one-to-one fashion.

Location has the address of the file, that file have the method need to be invoked.

There can be more than one <servic elem nt in a WSDL document. Within one WSDL

document, the service> "name" attribute distinguishes one service from another. The

19

binding attribute refers to the binding using the linking rules defin d by W DL. Because

there can be several ports in a service. Client can search for the <service> that matches

the Protocol that it can deal with. A port MUST OT specifies mor than one address.

Ports within a service have the foHowing relationship:

one of the ports communicate with each other (e.g. the output of one port is not

the input of another).

If a service has several ports that share a port type, but employ different bindings

\	
or addresses, the ports are alternatives. Each port provides semantically equivalent

behavior (within the transport and message format limitations imposed by each

binding). This allows a consumer of a WSDL document to choose particular

port(s) to communicate with based on some criteria (protocol, distance, etc.).

By examining it's ports, we can determine a service's port types. This allows a

consumer of a WSDL document to deternline if it wishes to communicate to a

particular service based whether or not it supports several port typ s. This is

useful ifthere is some implied relationship between the op rations of the port

types, and that the entire set of port types must b pr sent in order to accomplish a

particular task.

20

port

WEB
CUE T SERVICE

SOAP/HTTP (reque t-response) OR
HTTPGET OR
HTTPPOST

Fig. 6 A client invoking a Web Service

UDDI have all infomlation about the Web services providers. Using UDDl the Web

services provider(s) is selected which meet the required criteria. After choosing Web

Services and having it's WSDL the method is developed accordingly. More than one

Web services requiring different transfer protocol can be selected. Different clients can

use the same Web service. One Web service also can use another web service to fulfill it

requirements. In this way a big web like structure is developed. A small part of that is

shown in Fig 7.

21

UDDI

(Have information

about Web service)

Web Service users
Consulting UDDI

Client 1 Client 2
(using diff< rent WS needed (using different W needed
different protocals)

transfer
different protocals)

protocols

Port

Bank 1 Bank 2

(Web service provider) (Web service provider)

Banks using

UDDI

port r ron,

Credit Rating Co. Credit Rating Co.
(Web service provider) (Web service provider)

Fig. 7 A scenario showing the usage of unor and Web Services

22

-

l

After establishing contact with UDDI, a WSDL of a Carlot can be model d as:

UA K CREDIT RAT' ,. co.
IClient-

Method porL-
Binding I

Meth
r-"--­

port
lBindinltT

Method

operation
(input.
output) - SOAP

"I

I
LL

SOAP
I

I
I

I I - ,

Service Service
Client-2

Method
port~

T.~"l' I
~ ,...-­

port

operation 'I I
"

I..

(input,
output)

.... HTTPGET J

output 1

I
L­

I
I

I '-­

Service

Client-3
port ,...-- ,...-- port Method

innu t I I innut Ioperation ~I"I
(input,

tl'ITPI'OST In'PPOSToutput) I I
r r

I I outpu L- output '- ­I
I I / ~'

Bindings service

Method has operations (input, output messages)-portTypes

Fig. 8 WSDL model for carport transaction

23

Chapter 4

Petri Nets

Carl Adam Petri originally gave the concept of Petri et in his dissertation [16] in 1962. ,

Petri nets are graphical and mathematical modeling tool applicable to many system.

They are very useful tool for describing and studying infonnation processing syst ms,

which are characterized as being concunent, asynchronous, distributed, parallel,

nondetemlinistic, and/or stochastic [17]. They can be used both by practitioners and

theoreticians. PetTi nets representation can also be used to analyze the perfonnance and

throughput [18].

4.1 Introduction

Petri nets are directed graphs. They include Places, Transition, Token, and Arcs.

Token Tran ition Weight

//
(output

Arc

Fig. 9 Structure of Petri Net

Places may represent states, before transition represents pre-firing state and right of the

transition represents post-firing state. Places contain tokens. Token could be data or tnlth

of condition. Transitions are active components, transitions are allowed to fire only when

they are enabled. Enabled means that pre-firing conditions are met successfully. Arcs

24

represent the flow of system and carry weight here k-w ight represents the k parallel

arcs.

The formal definition of Petri net [17]is as:

A Petri net is a 5-tuple, PN = (P, T, F, W, M) where:

P = {PI, P2, Pm} is a finite set of places,

T= {tl, t2, tn} is a finite set of transitions,

F ~ (P x 1) U (Tx P) is a finite set of arcs,

W: F -7 {l,2,3, } is a weight function,
M: P -7 {O,1,2,3, } is the initial marking,

P n T = 0 and PuT * 0.

A Petri net stmcture N = {P, T, F, W} without any speci fie initial marking is

denoted by N.

A Petri net with given initial marking is denoted by (N, M).

Table -I

The complete absence of deadlock is closely related to the liveness. So a transition t in a

Petri net N with initial marking M is said to be live if and only if for any M' in R(N. M),

there exists a marking reachable from Nt in which l is enabled. A Petri ntis live ifaH its

transitions are live. Petri net is safe if and only if all its places are afe, while place is safe

ifit is one-bounded (M(P) s I). A path in a Petri net i a finite alternating s quence of

transitions and places. A circuit in a Petri net is a path that begins and ends at the same

transition such that no transition or place appears more than once in the circuit. A l.ive

and save path is a path in a Petri net such that all the transitions in the path are live and

the places in the path are safe, given an appropriate initial marking of the n t [18].

4.2 Reachability

A fundamental basis for studying the dynamic properties of any system is reachability. In

a net the token distribution (marking) is changed on firing the enabled transition. A

25

sequence of firings will result in a s quence ofmarkings. A marking M' is said to be

reachable from a marking M if there exists as qu nce of firings that lranSfonns Mto M.

A firing or occurrence sequence of is d noted by cr =Ml M, t] M]Mn or simply cr = i,

[] ... til' Here Mil is reachable from M by cr and we write MIcr>Mn. The set of all possible

markings reachable from M in a net (N, M) is denoted by R(N, M) or simply L(M). The

reachability problem for Petri nets is the problem of finding if Mn f; (R(N, M) for a given

marking Mil in a net (N, M) [17].

4.3 Petri Net model of Web Services

In our model the mapping of WSDL's parts is as below:

Place ~ PortType (Operations - input, output messages)

Transition ~ Service - Port (Name, Binding name, Location)

Token ~ Message (Data)

Arc ~ Binding (PortType, Protocol)

Table-II

The mapping for methods is defined as:

Place ~ data storage

Transition ~ computational primitives

Token ~ Message (Data)

Table-Ill

The Web Services Petri Net (WSPN) representation of web service flows or WSDL is an

ordinary Timed Petri net N:

N = (P, T, F, W, M, l"" d)

Where the following applies.

26

- p = {PI. Pl. ... , Pm} is a finite set ofplac s repr senting the set of ass mbly

objects.

- T = { I,. 12, tn} U { tresetl is a finite set of transitions; { I,. t2....• In}

Transitions represent Service-Port in the WSDL and operations or

computation in the methods of the web service. The transition treset nlodels the

resetting of the web service for the next transaction.

- F and Ware same as mentioned above.

- There exists a set of places PiJl~ P where Pip represents the initial state of the

Web service transaction

- There exists a set of places POP ~ P where Pop represents the final state of the

Web service transaction

-Pip rI Pop = 0.

- Ifp E P,p, M(p) =] else O. This is the initial marking.

- tm: P ~ time is the time stamp associated with a token at a place.

- d: T ~ time is the time duration associated with a tran ition.

[n the initial marking of the net, there wilJ be a token in each of the places Pi,)

representing the initial state of the web service transaction Attached to each place with a

token is a time value specifying the time of data initialization for the transaction This is

given by the function tm . It can be seen that the WSPN modeling Web Servic s are live

and safe.

4.3.1 Properties of WSPN

The formal basis of Petri nets allows the derivation and deduction of properties of the

WSP . Properties of the WSP are listed below:

27

Property 1: Given the WSP N representing web servic s, a subn t representing one

plan in N is conflict-free and persistent.

It is not sufficient to show that the WSP is live and safe. The unjque initial and

terminating conditions of the transaction must be satisfied. Thj leads to the next two

properties.

Property 2: The property of clean termination. This property states that the web services

transaction terminates only when the transaction has been completed. A web services

transaction should not tem1inate with a partial transaction.

Theorem 1- Property of Clean Termination: Given an WSP

N = (P, T, F, W, M, till. d) with initial marldng M, there exists a final marki.ng

Mfm such that

Mfm E R(N, M) and Mfm = Mop(that is, M(Pop) = 1).

Property 3: The property ofcomplete injtialization. This prop rty states that a web

services transaction an assembly cannot terminate cleanly (Theorem 1) if all the data or

information required for the transaction are not received from the external environment.

Theorem 2 - Property of Complete lnitialization. Given an WSPN N = (P, T, F, W, M,

tm , d) with initial marking M, where only a subset oCthe input places are marked, that is,

if 3Mc M, then the marking M where M(Pop) = I cannot be reached.

Proofs for these properties are simple and therefore omitted. The liveness property of the

net guarantees that the plan will not deadlock and the safeness property ensure that each

stage in the transaction is unique. The WSP representation therefore provides for a

precise and accurate framework for the description of web services, and furthermore,

captures desirable properties of web services.

28

Chent-l port Bank: Credit CO.

- r--­Method
~ ,... .. Method

... 1

..... PortTvne -~
- '-­

1

,--­

~

....- -
'I

Client-2

Fig. 10 WSDL flow model of Carlot

The Petri net model ofWSDLs is below Fig. 10:

Client-l Bank: needs credit r porl

f---.u,'-----+~D1~ Cr dit Co
OR

Credit Co sends
OR Bank senas bank: decides report to bank

Decision on the base of
report

Client-2

Fig. 11 Petri Net model of Carlot

29

4.3.2 Modeling of ethods

It is beyond the scope of this work to mod I ev ry kind of computation found in a

method. The bank decides whether to appro e the loan r quest from the arlot or to us

the credit company's web services to obtain a cr dit history score for the customer.

Decisions based on input conditions are modeled. It is also n cessary to model the

merging of two or more WSPNs. For example, the bank web service is modeled as two

WSPNs. One net will model the situation where the bank. makes the decision on th

customer without recourse to the credit card company's services (the customer is along­

standing customer of the bank. for example). Another net will model the situation wh re

the credit card company's services are needed. The merging of thes two nets represents

the bank's web services.

The Joining construction, which could be "OR" or" AND" form, is used for merging. In

the OR form, the transition will fire ifther is a token in anyone of its input places and in

the AND form there me be tokens in all of the input places before the tran ition can fire.

Fig. 12 Joining Model of Petri Net

30

P splitting construction which could be "OR" or "AND".]t is called conflict, choice or

decision structure. In our case only "OR" model is us d.

o
Fig. 13 Split Model of Petri Net

Methods may also contain loops. Looping (iteration) and merging construction is shown

below:

o ~

Fig.14 Iteration Model of Petri Net

4.3.3 Petri Net Merging

Models of each individual web service are merged to obtain a system-wide view of a web

business transaction. Although the individual models may display the desired properties

31

of liveness, safeness and complete termination, the merged n t may not display such

properties. See the below example

o A

c E E

Merged net

OD
Fig. 15 Unsafe Merging

Both nets may be safe before merging, but after merging place C is not safe.

Merging Procedure

The WSPNs of each web service are merged to form a singl c ntrol model of the entire

transaction Ne. The WSPNs of each web service are merged such that the following

applies.

For each WSPN of a web service /I ,with set of output places pIDC = m(O(['»

U P'OR = plout U pIOR' there exits a net HI with set of input places pll, =

11) II II 1\ h t h· . ~ \m(f,(t) uP IR = P inp U p JR, such tat ere IS a mappmg trom P oul to a

place p E pl\np of net /I'e, unless plout c: m(POA) or pllil1P ~ m(PJA) of the plan

net Np . That is, there is a function

32

.. S I' hLor each W P subnet c, with a set of output place P OR repr sentmg t e

final state of the transaction, there may be conesponding input production

pacesI P"·IR m net Ie to which they are mapped.

Given a net N with initial marking M(P) = I, for all p E P'J where pI, :=: P\np u P'.R and

~,.\\ . h' . . I k' M(P) \I \I II pl\ Ia net LV c WIt 1I11tla mar. mg = 1, for all pEP 1C where P 1(' = P inp U JR, t le

initial marking Mini of the merged net such that plout is merged with a place p E P'\np is

defined as:

~"(P) {pi pi' (pi \ \I ,JV1ini = inp U inp - Z out) uP IR U P IR - p OR}'

The initial marking of the Nc component of the merged net is as if e were isolated.. The

initial marking of rl l
c component of the merged net is partly derived from the output

marking of net Nc .

Lemma 1: The merging of two live and safe refined WSPN's does not always result in a

net, which is also safe and live.

Proof: If a loop is introduced in the merged net, this net may not be safe and live. In the

simple example in Fig. 15 place C is not safe.

The types of nets that can be merged are therefore restricted so that the merg d net is safe

and live.

Merging Structure Constraint: Any circuit introduced into a net as a result of merging,

must be a live and sage circuit, given and initial marking Mini for the merged net.

33

-

To determine if a ci.rcuit is Ii e and safe, it is necessary to extract the subnet associated

with all transitions and places in the circuit. The subnet Nsub = (Psub Tsub, Fsub , Wsub , Msub)

associated with the circuit can be detennjned recursively as follows.

For transition t in the circuit, letpsub be an input place of the transition:

a) ifPsub E O(t), then Psub = P sub U l(t), Tsub = r~ub u t;

b) if a place P E P sub such that p E O(ti) and ti :t: t, then Psub = Psub U l(ti),

Tsllb = T. ub Uti, M sub = Mini for p E Psub.

If O(t) c Psub, this implies that the circuit is a live and safe circuit. In Fig.12 For

transition ty, Psub + {A, B}, Tsub = tx, O(ty) = {B, C}, and therefore, O(ty) c;;; P sub is not

true. This circuit therefore does not satisfy the merging structur constraint given above.

Theorem 3: An WSPN Ne representing individual web services formed by merging two

live and safe control WSPN's Neand N'e such that the merging structure constraint is

satisfied in the merged net, will be a safe and live WSPN given that the initial marking of

the merged net is Mini.

Proof Outline: Each net N'e and N'e is live by definition. Moreover, given the initial

marking of the merged net and by the appropriate introduction of transiti.on ire ct, it can be

deduced that the merged net is live. The N'e component of the merged net Necan be

made unsafe only if the He component provides net Nemore that one token at the merged

places. Show that this is not possible and therefore the merged net is safe.

Theorem 3 is now extended to cover a complete web service transaction that includes all

the individual web services. A complete transaction is a sequence with commences in the

initial state of the transaction and terminates in the final state of the transaction with the

34

Initiator of the transaction getting the requested web services. By a recursive application

of Theorem 3 we get Lemma 2.

Lemma 2: A merged complete web services transaction is a live and safe net.

Proof Outline: Follows from Theorem 3.

This leads to the following conclusion.

Theorem 4: given an WSPN Nc composed of merged nets that represent a complete

transaction such that Theorem 3 is satisfied, then given an initial marking Minil where

Minit(P) = 1 for all p E P rc where PIC = P inp U PI~ there exists a final marking M rmol such

that Mrmal(P) = 1 for all p E Poe where Poe = Pout U P IR . The merged net obeys the

properties of complete initialization and clean tennination with respect to assembly parts

and the production system.

Proof Outline: First we prove the propel1y of clean termination. From Lemma 2,

transition treset is live in the merged net N c. Therefore, we deduce that M(P) = 1 for all p E

Pout. Next we show that in the final marking there does not exist a place py such lhat fJy is

some place excluding places { Pinp U Pout U P IR }. From this result that fJy cannot also b

one of places P inp. We can therefore conclude that there exists M E R(N , Minil) such that

M(P) = 1 for all p E {Pout u P"d and M(P) = 0 for all p ~ { POllt U P IR }. How ver, a

situation may arise whereby transition tre et could fire before the net has reach d marking

M(P1R)' In other words, there could exist a marking M(px) where Px = { P OUI U Px} and Px

:t:- P ir . We next show that there exists a marking Pout U PIR that is reachable from Pout U

Px . A similar approach is used to prove the property of complete initialization.

35

The use of computer-aided tools is necessary for practical application of Petri nets. Safely�

modifying workflow logic in real-time requires validation of system changes before�

actual system deployment [19].�

Petri net modeling of the WSDL gives very d scriptive infonnation of the web service.�

With the help of Petri nets possible deadlocks and safeness in the system can be checked.�

Moreover, the WSPN models both WSDL and the methods in a web service. The detailed�

picture of the entire system can therefore be analyzed.�

4.3.4 Petri Net Modeling of Methods:�

At Carlot we have choice that if payment is cash then done otherwise send to Bank for�

financing.�

The Carlot transaction is modeled with OR model to represent two choices. One arc�

shows that payment is made by cash and if this is not the case then customer's data will�

go to Bank for loan approval and this is modeled with second arc of OR model.�

Me s:Jge is sent from
arlot t the b:Jnk Web

service 10 apply for the
10:Jn

____.~(!}.nCi"g ""dod1}~__~{!)_--..

Carlot side�

Fig. 16 Petri Net Model of Carlot Method Sold�

Bank can send two kinds of replies i.e. approved or declined. Similar to Carlot these both

replies are modeled with the help of OR model. As is shown below:

36

J�

Approv d
From bank

Sold

Declined

Bank side

Fig. 17 Petri Net Model of Bank Method

To model the complete set of transactions at the carlot, the outgoing and incoming

messages are merged. After merging of both we get following model:

If financing needed

Approved

Sold

Declined

Not sold

Fig. 18 After merging of both CarJot and Bank methods

Similarly the methods in Bank and in Credit o. can also be modeled.

37

However, these only represent the individual web ervices. To g t a vi w of the entire

transactions requires a model of the web transactions at all thr e site. This model will b

generated and presented as part of the implementation.

4.4 Limitation to this approach

A major problem with formal modeling is scalability. As the number of sites increases,

the modeling does not scale well. The usual approach to this problem is to hierarchical

modeling of systems. In our case as shown above, we refine transition for scalability.

38�

Chapter 5�

Methodology and Implementation�

5.1 Petri Net model

The Petri net modeling captures Web sites, which use Web Service, slIch as the Carlot

website in our example. The Web Services provide services to the Carlot and W DL is

the description of the Web Services. Reachability analysis of the Petri Net yields

properties of the Petri Net such as deadlocks and safeness.

One web site's method may use many Web Services. Before and after the calling of Web

Services there is a computational work to complete the initiated business process. The

called Web Service, ifneeded can also invoke another Web Service to get required

infonnation and so on. Tn this way the whole process of Web Services is like a big

complicated web.

Methods are written to implement the company's business process computation. They

include conditional statements, and calls for other Web Services methods. The

conditional statements may include "if-else" statements. One "if-else" statement can

have some other "if-else" statements nested in it. Although not consider d in this thesis,

other programming constructs such as loops may also be included.

To draw the Petri net of Web Services, global infonnation of the web services is required.

Each web site is only aware of its own methods and other web services it calls. The entire

web service transaction can therefore be modeled by merging the models of individual

transactions. Each line of a method file is scanned. The sequence of all Web Services

calls is saved. All the possible paths from th beginning of the web s rvices transaction

are traced. As conditional statem nls increases the number of possible paths increas and

Petri net becomes complex.

When a method of a Web Service needs to be invoked its respective WSDL file is traced.

A WSDL file has all the infoffi1ation required to comrnWlicate with Web Services. For

example, the list of sending parameters, detail of returning response, allowed Internet

protocol, name of Web Service and its method along with its address are all contained in

a WSDL file. Like a method, each WSDL file is scanned. WSDL's information is

enclosed in different fixed elements. It includes input and output messages which arc

collected from <types> element, method's name from <binding> element, transport

protocols (SOAP, HTTPGET, HTTPPOST), Web Services name, and its address from

<service> element. WSDL's format is fixed; the detail of WSDL is given in chapter 3.

The complete Petri net represents all the possible execution paths of the whole system. in

which a web site's method is followed by the WSDL and then th Web rvice's method.

In a correct web transaction, the path will COlne back to the calling m thod in the same

sequence.

A high level global view o[all participating Web site, Web services and WSDL file i

sketched in fig 19.

As each web site is aware only of its local computation, the Petri Net mOdel of the web

service at an individual site is first constructed fig 20.

The generated Petri Nets of individual web services are merged to create the Petri Net

model of the entire web transaction fig 21. Our approach also allows for the hierarchical

modeling of web transaction.

40�

Carlot

WSDL WSDL

MyBank abcBank

WSDL WSDL WSDL WSDL

My redit MyCredit WSCredit abc redit
Rating Rating Rating Rafing

Fig. 19 Abstract diagra m of example

The results from the remote web site are turned to the arlot method and finally to the

user.

In Web Services a Carlot invokes the web services of two Banks to get finance for its

customers and on the basis of the cheapest interest rate retumed it selects on of them.

Out of these two banks one calls one Credit o's Web Services and the other bank calls

three Credit Co's W b Services to check th credit history ofthe customers. fier g tting

a credit score from the credit companies, the bank decides whether to approve the loan

4]�

and the interest rate to be charged. The result from th banks are returned to the Carlot.

This scenario is depicted in fig 23 .

Each Web Service is accessed through its particular WSDL file. The code for this Web

services application is shown in the appendix A. Our modeling software reads all the

Web Service's methods and their WSDL files, and den es the Petri net model of the

entire business transaction.

In the example below, the individual higher level Petri net diagram of Carlot, Banks and

Credit Rating Companies are shown fig 20. In the Carlot transaction, place P j represents

the user who is applying for a loan. The transition represents the methods at the Carlot

website. This method calls two web services, .MyBank and abcBank whose ports are

represented by place P2 and P3 . The Two banks, the abcBank is invoking three credit

companies while the MyBank Web Service is communicating with only one Credit

Company. But the Credit companies are not invoking any further Web Services.

Fig.20(a) Petri net modeling of Web Services

MyBaok abcBankCarlot

P3�

42�

WSCreditR abcCreditRMyCreditR

Fig.20(b) Petri net modeling of Web Services

An abstract global view of the entire system is obtained by merging these Petri Nets as

shown in figure 21.

Carlot

P1merge P4

abcBank
MyBank

P4 P6P5 merge PlO
P7 merge Pl 0

MyCreditR MyCreditR

Fig. 21 Merged global view of the entire system

4 ...
•1

The detailed method of each site is then constructed. This is modeled as a Petri Net

refinement. For example, the detailed model of the Carlot method and others are shown

below. In Theorem 3 in chapter 4 we showed that Petri N ts can be m rged to fonn a

composite Petri et that is safe and deadlock free. Based on this theorem these nests are

then merged to create the model of the entire web transaction.

The Petri net of Web Services methods can also be sketched. In a method If-else

statements provide a number of execution paths, and these are modeled in the Petri net.

The Carlot's first if-else statement decided whether to invoke web services on the basis of

payment mode. This is shown by transition II below in fig 22(a). If the Web service is

used then on the returned results, declining or approving shown by tl, from banks it

accepts the lowest interest rate offering bank mention by 13. Similarly, the Petri net of the

methods of Web Services are sketched. These Petri net models are shown in fig 22 ..

3

Cash

Dec

Interest rate (lowest)

(a) Carlot Web site method

44�

P,�

Approved
P3

Declined
t~

Dec

Interest rate

(b) MyBank
Web Service method

P IO P 14

Interest rat Interest rate
(c) abcBank Web Service method

if Score<140

if Score< 150

l3

ifScore<150 else(>=170)
P6 P 7 P 6 P 7

else(>=160)
(d) abcCreditR Web Service method (e) abcCreditR Web Service method

45�

lfScore<IO

else

else(>=140)

if from

abcBank

(1) MyCreditRatiogs Web Service method�

Fig. 22 Petri Net models of Web site and Web services Methods�

The Petri Net derived by the tool is described as:�

{PO,TO,P1}, {PI ,TI ,P2}, {P2,T2,P3}, {P3,T3,P4}, {P4,T4,P5}, {P5,T5,P6}, {P6,T6,P7},�

{P7,T7,P8}, {P8,T8,P9}, {PI ,Tl,Pl O}, {PI 0,T9,P 11 },{P 11 ,Tl O,P12}, {P 12,T 11 ,P13},�

{P13,TI2,P14J, {P 14,T13,P 15}, {Pll ,T1 0,P16}, {P 16,T14,PI71, {P17,TI5,P18}.�

{P 18,T16,PI9}, {P11 ,Tl O,P20}, {P20,TI7,P21}, {P21 ,T18,P221, {P22,T 19,P23},�

{P23,T20,P24}, {P24,T21 ,P25}, {P25,T22,P26}, {PO,TO,P27}.�

OUf tool does not generate a graphical representation of the Petri et model. The Petri net�

can also be shown graphically in which different abbreviations are used to represent the�

46�

different states of methods and WSDL. A P is for Places, which is representing message

data for methods and PorlTypes for WSDL. T is for Transitions, which shoWS

computational work in methods and Service (ports) in WSDL, and Arcs (~) ar

representing bindings (protocols) for WSDL while in methods incoming Arc to transition

is incoming data for computation and outgoing Arc from transition is outgoing data after

computational work to the next state. Tokens in both cases are data. Transition can have

one or more input Arcs and simi lady one or more than one output Arcs. In methods

varying number of input and output Arcs depends upon the implementation of business

strategy. Starting and final places are observed to implement the Reachability analysis.

The graphical Petri net representation of above given example is shown in fig 23.

47�

MyB:mk

L Protocol
Service
(port)

MyCredilR
Method

I.Protocol

MyBank

Fig. 23

abcBank' ervi (port)

PortTypcs for mycarlut

I.Prol 01

'crvlcc (port)

mycar)ot

mycarlot's mcthod

Loan pproved / Declined

Graphical Petri net representation of Carlot and invoked Web Services

48�

A dynamic approach to sketch the Petri net is also impl m nt d. In this approach on each

step of program execution a token is passed to the next state of program and respective

transition (T) number along with place (P) number is updated. As the program executes a

token moves representing a new state of the system. At the nd of program we get whole

execution path, from beginning to end, in the fonn of a Petri net.

5.2 Modeling Tool for Web Services

To capture this whole scenario a software-modeling tool is developed. Its first input in

the "main()" is method's file name, which is invoking Web Services. This software

checks each line of method, finds the "if-else" statements and calls for Web Services.

Prior to access the Web Service's method it needs WSDL file name as another input to

have communications information of that Web Services as mentioned above. To read

WSDL file "main()" calls "WSDL()" function. "W OL()" read a W DL fil lin by

line and saves the infonnation of the lnternet Protocol being used by that Web erVlce,

name of Web Service and method, which is going to be invoked. Then it requires the

respective Web Services method file. To read Web Service's method file "WSDL()"

calls "ReadWSMethod()". Like first method's file this file is checked line by line, too. [f

Web Service is calling another Web Service then again it needed respective WSDL file

and that called Web Services method, and so on. In this way" WSDL() " and

"ReadWSMethod()" calls each other alternatively and required information is collected.

49�

....... ..
~

""'" ReadWS
WSDL() -l ethod ()

L....

..� L-�

r-­ Main
~

l.-
~

....
lean ()

4
IIf+-

PetriNet()

~ Process
~ SubStrO -

4
I-­ ... ~

Proce s ad ()
~

I+­
'­

Eliminate ()
4

etFlagO ...

ieEfO ..~

Set etTO

et etT20

Fig. 24 Abstract Diagram of Software

50�

All method files are checked for all their "if-else" statements. When no more Web

Service is cal1ed then the program follows the return messages and finally come back to

its first method file. Then the rest of this method file is checked, for another Web ervice

call. Jf there is another web service call, then the required inforn1ation is obtained as

described above and the sequence ofcomputation is saved. After reading all WSDL files

and Method files, the program returns to "main()" for further processing towards Petri

net sketching of Web Services. The sequence number of file reading, with their name, is

saved. If the file method is calling other file the sequence number is labeled "c" but

when this method is returning then the sequence number is lab led "R". Between two file

numbers with their label a "-" sign is inserted to differentiate one file from the other. The

different particular letter is assigned to the particular conditional statement. For "If'

statement "i", for "Else" statement "e", for "Else If' statement "E" and for "End If' the

"f' are saved in a global array. In this global array all r quired information are stored and

ready for further processing. At this point control is in the "main() " which sends this

global array's data to the "ieEf() " to check if it is holding only valid letters otherwise

returns error message and program comes back in "main() ".

After verifying the validity ofletters in array we need to match the "if', "]se", "else if'

and "end if' statements in the methods which is needed to determine the flow of

execution and necessary for Reachability analysis. To perform this matching the sub

string having conditional statements data string of one method file is passed to the

"ProcessSubStr() ". This function searches first "f' moving pointer forward in the sub

string which show "End If' statement in the method and then pointer moves backwards to

find "i" which show "If' statement. Then portion of the sub string is passed to

51�

"Eliminale() " from the "Pro e s ubSlr() " to replace them with equal nLlrnber 0["*"

characters, which shows that this portion of the sub string of the method is perfectly

matching. Then program comes back in "ProcessSubSlr()" to match next 'If' and 'End

If' statement and goes in "Elimil1.ate() " to confirm the matching. As each "If' statement

must match with "End If' statement, if there is any mismatch then program show error in

the method. This mismatching also affects Reachability. At the end of "Process ubSlr(

)" all "i", "e", "" and "f' which are involved in invoking other Web Services are

converted in to ,.*,. and those which are involved in invoking other Web Services ar left

but their matching is verified. When program comes back from "ProcessSubS!r() " to the

"main() ", we get confirmation of matching of "If' and "End If' statements. Now the

data string is ready to pass to "PetriNet() " for further processing and representing in

Petri Net form.

The resulting array from "ProcessSubStr() " is passed to "PelriNe!()" from "main() ".

The "PetriNet()" sends data array to "Clean ()" to remove all "*" characters from the

string and after cleaning data string comes back in "PelriNet() ", which send this

cleaned data string to "ProcessCocle() " for final processing. The "Proc ssCode()" with

the help of three functions store the data in Petri net fOJm. First of those three functions is

"SelNGetT2() ", which process the if-else statements which are involved in invoking

Web Services. Second is SelNGelT() " which handles calling (C) and returning (R)

methods and third function "SelFlag() " keep the record of forward and backward

movement of execution. When program returns from the "ProcessCode() " to the

"PetriNel() " then "PetriNel() " have enough information to present the Petri net of Web

Services and run Reachability analysis. Different abbreviations are used to represent the

52�

different states of methods and WSDL. A P is for Places, which is repr senting message

data for methods and PortTypes for WSDL. T is for Transitions, which shows

computational work in methods and Service (ports) in WSDL. In each curly bracket first

P is starting place and second Pis next place after perfonning transition.

5.3 Reachability

The Reachability analysis is part of our Petri net modeling software. It is applied at the

end of Petri net sketching. To perfonn Reachability analysis, the program takes two

inputs - one representing the beginning place number from where the Reachability

analysis will start and other the ending place number at which Reachability analysis will

end. Validity of starting place number and ending place number is checked, in other

words, at the initial state of the transaction there is a token in place Po and at the end of

the web services transaction, the final state will be defmed by a token in place P26 only.

On giving range of starting place number and ending place number for Reachabilily

analysis, program reads a global. array, which have the whole Petri net data and verifies

the given ranges of places. [fboth beginning and ending ranges are valid, it fills one array

with zeros (0) equal to all places in between both given ranges, which shows prior to

execution state. Then it starts reading all Petri net steps (places) one by one and on

reading each step it turns next zero into one which represents the movement of token

from one place to another and previous one is turned into zero which shows that there lS

no token anymore. In this way it goes through all Petri net steps till reaches the last step.

Ifthe net is safe, at each step there will be only one token in at least one place while rest

places will be showing zero (no token) and at the end the token will be in the last place

only. Ifthe net is live, all the places will eventually receive at least one token.

53

In our example, the Reachability analysis was applied on the whole Petri net and its result

are shown in the next fig 25.

Reachabi lity testing:

Enter starting state number (-1 to exit): 0

Enter final state number: 26

Start State: 0�

Final State: 26�

{OOOOOOOOOOOOOOOOOOOOOOOOOOO}�

{lOOOOOOOOOOOOOOOOOOOOOOOOOO}�

{OIOOOOOOOOOOOOOOOOOOOOOOOOO}�

{OOlOOOOOOOOOOOOOOOOOOOOOOOO}�

{O 0 0 I 0 0 0 0 0 0 000 0 0 0 0 0 0 00 0 0 0 0 0 0 }�

{OOOOlOOOOOOOOOOOOOOOOOOOOOO}�

{O 00 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 {) 000 () () }�

{O 00000 1 000000000000 00000 () 0 0 }�

{OOOOOOOlOOOOOOOOOOOOOOOOOOO}�

{OOOOOOOOlOOOOOOOOOOOOOOOOOO}�

{OOOOOOOOOlOOOOOOOOOOOOOOOOO}�

{OOOOOOOOOOlOOOOOOOOOOOOOOOO}�

{OOOOOOOOOOOlOOOOOOOOOOOOOOO}�

iOOOOOOOOOOOOIOOOOOOOOOOOOOO}�

54�

fOOOOOOOOOOOOOIOOOOOOOOOOOOO}

{OOOOOOOOOOOOOOIOOOOOOOOOOOO}

{OOOOOOOOOOOOOOOlOOOOOOOOOOO}

{OOOOOOOOOOOOOOOOIOOOOOOOOOO}

fOOOOOOOOOOOOOOOOOIOOOOOOOOO}

fOOOOOOOOOOOOOOOOOOlOOOOOOOO}

{OOOOOOOOOOOOOOOOOOOIOOOOOOO}

{OOOOOOOOOOOOOOOOOOOOlOOOOOO}

{OOOOOOOOOOOOOOOOOOOOOlOOOOO:

{OOOOOOOOOOOOOOOOOOOOOOIOOOOI

{OOOOOOOOOOOOOOOOOOOOOOOIOOO}

{OOOOOOOOOOOOOOOOOOOOOOOOlOOI

fOOOOOOOOOOOOOOOOOOOOOOOOOlO}

fO 0 0 0 0 0 0 0000000000000000000 1 I

Fig. 25 An output of Reach ability analysis

55�

Chapter 6�

Conclusion�

In this thesis we present a model and a tool for Tepre enting Web service. Petri Net

formalism has been used to model web services and a C++/C tool has been developed to

generate a Petri et representation of distributed web services and their WSDL. The large

number of distributed web services and corresponding distributed clients make the

modeling of web services a very complex task. The hierarchical modeling approach we

present in this thesis is designed to deal with the complexity of such systems.

The developed tool generates for the user the sequence of all execution steps performed

to complete a business process. This is achieved by invoking many Web services where

each Web service is accessed through its WSDL til and each web service does some

computational work. Such a model of the complet xecution of tasks shows how the

intennediate and final results in the business transaction are being compiled and what

options are feasible during the execution of the business process at different steps. The

model is obtained by merging the representations of the individual web servi.ces. Our

approach allows the representation of web services in an abstract high-level form, which

can then be refined to show more detail. The model generated using the software tool

shows the flow of programs in which many programs are involved and invoking each

other.

Reachability analysis allows the evaluation of the Petri et model for system deadlock

and enables the user to check if the Petri net is safe and Ii ve.

56�

6.1 Future work

There are a number of areas for future work. The tool can be enhanced to provide a�

graphical representation of the Petri Net representation of Web erv1ces.�

A graphical representation of the Reachability tree can also be incorporated in the tool.�

Our tool currently generates Petri Net models ofa method's conditional statements only.�

Future work will include Petri Net modeling ofmore complex programming constructs.�

Due to the complexity of the web, a more compact representation is desirable. Other Petri�

Net formalisms such as colored Petri Nets may result in a more compact Petri Net�

representation. Although, the work reported here forms the underlying basis of Web�

services modeling, to implement uch a system in a real internet web-service�

environment would require a lot of additional work.�

Other issue such as modeling security has not been touched in this work and is an area for�

future research.�

The modeling of accessing the UDDI and then selection of Web ervices out of�

hundreds, which will be thousands very soon, can also be added to this work.�

57�

Chapter 7�

References�
7.1 Bibliography

Web Services and UDDI, IBM Corporation. http://www.ibm.com/ser ices/uddi.

2 Kreger, H., 2001, "Web Services Conceptual Architecture (WSCA 1.0)", IBM

Software Group, www-4.ibm.com/software/ olutions/webservices/resources.html

3 Web Services, IMB Corporation.

http//www.xml.com/pub/a/2001/04/04/webservices/index.html?page=3#ibmtut

4 Technical Report: SOAP Version 1.2 Working Draft.

http://www.w3 .org/TR/soap I2

5 Technical Report: Web Services Description Language (WSDL) 1.1.

http://www.w3.orglTRJwsdl

6� Universal Description, Discovery and Integration. http://www.uddi.org

7 Lambros, P., Schmidt, M., Zentner, c., 2001, "Combine Business Process

Management Technology and Business Services to Implement Complex Web

Services", www- 4.ibm.com/software/ olutions/webservices/resources.html

8� McGregor, C; Kwnaran, S. "Business process monitoring lIsing web services in

B2B e-commerce", Parallel and Distributed Processing Symposium, Proceedings

International, IPDPS 2002, Abstracts and CD-ROM, 2002, pp. 219 -226

9� Rettberg, A.; Thronicke, W, "Embedded system design based on web services",

Design, Automation and Test in Europe Conference and Exhibition, 2002.

Proceedings, 2002, pp. 232 -236

59

1() IBM Web Services Architecture Tam... Web services architecture overview. The

next stage 0/evolution/or e-busines ", IBM Technical Docmnent, Web

Architecture Library, 2000.

II D.G. Schwartz. "Cooperating Heterogeneous Systems ". Kluwer Academic

Publisher, 1995.

12 Aoyama, M.; Weerawarana, s.; Maruyama, H.; Szyperski, C; Sullivan, K.; Lea,

D. "Web services engineering: promises and challenges", Software Engineering,

2002. ICSE 2002. Proceedings of the 24th International Conference, 2002

pp. 647 -648

13 IBM, Web Services: Taking e-business to the Next Level, White Paper 2000,

http://www-3.ibm.com/services/uddi/papers/e-businessj.pdf

14 Szyperski, c., Component Software, Addison Wesley, 1988.

15 Hatashima, T.; Yokozeki, D.; Suzuki, M.; Tokumaru, K.; Miyata, S.; Kawasaki,

R.; Kato, J.," WebServices processing platform - eCo-Flow", Applications and

the Internet (SAINT) Workshops, 2002. Proceedings. 2002 Symposium on , 2002,

pp. 186 -195

16 C.A.Petri, "Kommunikation mit Automaten." Bonn: Institute fur Instum ntelle

Mathematik, Schriften des lIM Nr. 3, 1962. Also, English Translation,

"Communication with Automata." New York: Griffiss Air Force Base. Tech. Rep.

RADCTR-65-377, Vol. I, Suppl. 1, 1966.

17 Murata T, "Petri Nets: Properties, Analysis and Applications", Proceedings of the

IEEE, Vol. 77, NO.4, April 1989. pp. 541-580

60�

18 Thomas J.P, issanke N, Baker K.D "A Hierarchical Petri et Framework for

the Representation and Analysis of As embly", IEEE Transactions on Robotic

and Automation, Vol. 12, 0.2, April 1996. pp. 268-279.

19 Faul RM, "Using Petri net web services to build dynamic and adaptive service

oriented workflows' , Silver Falls Software, Inc.

20� Leymann F, Roller D, Schmidt M.T, " Web services and business process

management", IBM Systems Journal- New Development in Web Services and E­

Commerce, Vol. 41, NO.2, 2002.

7.2 Appendix

(A) A Carlot program

arlot program takes customer's, vebicle's and payment information. if custom r need fmaJ1Cing then it
'invokes two Bank's Web 'services to get financing and after getting re ponse from the bank it checks
'which bank is charging less interest rate and forwards 'that to u tom r for finalizing the deal.

Public Class WebForml 'input boxes to collect required information
Inherits System.Web.UI.Page
Protected WithEvents TextBox13 As System.Web.UI.WebControls.TextBox
Protected WithEvents TextBox19 As System.Web.UI.WebControls.TextBox
Protected WithEvents Process As System.Web.UI.WebControls.Button
Protected WithEvents Cash As System.Web.UI.WebControls.RadioButton
Protected WithEvents Finance As System.Web.UI.WebControls.RadioButton
Protected WithEvents lblBankReference As

System.Web.UI.WebControls.Label
Protected WithEvents lblCustomerNo As System.Web.UI.WebControls.Label
Protected WithEvents RadioButtonl As

System.Web.UI.WebControls.RadioButton
Protected WithEvents RadioButton2 As

System.Web.UI.WebControls.RadioButton
Protected WithEvents Buttonl As System.Web.UI.WebControls.Button
Protected WithEvents TextBox9 As System.Web.UI.WebControls.TextBox
Protected WithEvents lbllnterestRate As

System.Web.UI.WebControls.Label
Protected WithEvents lblName As System.Web.UI.WebControls.Label
Protected WithEvents txtFirstName As

System.Web.UI.WebControls.TextBox
Protected WithEvents txtLastName As System.Web.UI.WebControls.TextBox
Protected WithEvents txtStreet As System.Web.UI.WebCon rols.TextBox
Protected WithEvents txtCity As System.Web.UI.WebControls.TextBox
Protected WithEvents txtState As System.Web.UI.WebControls.TextBox
Protected WithEvents txtZip As System.Web.UI.WebControls.TextBox
Protected WithEvents txtSSN As System.Web.UI.WebControls.TextBox
Protected WithEvents txtHomePhone As

System.Web.UI.WebControls.TextBox
Protected WithEvents txtVehMake As System.Web.UI.WebControls.TextBox
Protected WithEvents txtVehModel As System.Web.UI.WebControls.TextBox
Protec'ted WithEvents txtVehYear As System.Web.UI.WebControls.TextBox
Protected WithEvents txtNoOfPayments As

System.Web.UI.WebControls~TextBox

Protected WithEvents txtFinanceAmount As
System.Web.UI.WebControls.TextBox

Protected WithEvents IblTokenl As System.Web.UI.WebControls.Label
Protected WithEvents lblToken2 As System.Web.UI.WebControls.Label
Protected WithEvents Labelll As System.web.UI.WebControls.Label
Protected WithEvents LabellO As System.Web.UI.WebControls.Label
Protected WithEvents Labe19 As System.Web.UI.WebControls.Label
Protected WithEvents LabelS As System.Web.UI.WebControls.Label
Protected WithEvents Label? As System.Web.UI.WebControls.Label
Protected WithEvents Label3 As System.Web.UI.WebControls.Label
Protected WithEvents Labell As System.Web.UI.WebControls.Label
Protected WithEvents Labe14 As System.Web.UI.WebControls.Label

Protected WithEvents LabelS As System.web.UI.WebControls.Label�
Protected WithEvents Labe16 As System.Web.UI.webControls.Label�
Protected WithEvents Label12 As System.Web.UI.WebControls.Label�
Protected WithEvents Label13 As System.Web.UI.WebControls.Label�
Protected WithEvents Label14 As System.Web.UI.WebControls.Label�
Protected WithEvents LabellS As System.Web.UI.WebControls.Label�
Protected WithEvents Label16 As System.Web.UI.WebControls.Label�
Protected WithEvents Labell? As System.Web.UI.WebControls.Label�
Protected WithEvents Label18 As System.Web.UI.WebControls.Label�
Protected WithEvents BlockedTokenHeading As�

System.Web.UI.WebControls.Label
Protected WithEvents BlockedTokenl As System.Web.UI.WebControls.Label
Protected WithEvents BlockedToken2 As System.Web.UI.WebControls.Label
Protected WithEvents Label19 As System.Web.UI.WebControls.Label
Protected WithEvents Labe120 As System.Web.UI.WebControls.Label
Protected WithEvents Labe12l As System.Web.UI.WebControls.Label
Protected WithEvents Labe122 As System.Web.UI.WebControls.Label
Protected WithEvents Labe123 As System.Web.UI.WebControls.Label
Protected WithEvents lbllnitial As System.Web.UI.WebControls.Label
Protected WithEvents Labe124 As System.Web.UI.WebControls.Label
Protected WithEvents lblFinal As System.Web.UI.WebControls.Label
Protected WithEvents Labe12 As System.Web.UI.WebControls.Label

#Region " Web Form Designer Generated Code "
'This call is required by the Web Form Designer.

<System.Diagnostics.DebuggerStepThrough(}> Private Sub
InitializeComponent()

End Sub�
Private Sub Page_Init(ByVal sender As System.Object, ByVal e As�

System. EventArgs) Handles MyBase.lnit
'CODEGEN: This method call is required by the Web Form Designer
'Do not modify it using the code editor.
InitializeComponent()

End Sub
#End Region
Private Sub Page_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load
'Put user code to initialize the page here

End Sub
Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As

System. EventArgs} Handles Buttonl.Click
Dim strCustomerNo As String

'Giving customer's reference number
strCustomerNo = Now() .Day & Now() .Year & Left (UCase(txtFirstName.Text) ,
1) & Left (UCase (txtLastName.Text) , 1)
If RadioButton2.Checked = True Then 'if customer needs financing

Dim strRating As String
Dim cBank As New localhostl.MyBank()
Dim clsResponse As localhostl.Response
Dim abcBank As New localhost2.abcBank()
Dim abcclsResponse As localhost2.abcResponse

'invoking Web Service MyBank's method and 'sending all 'required information
clsResponse = cBank.GetBankApproval(txtFirstName.Text,

txtLastName.Text, strCustomerNo, txtCity.Text, txtState.Text,
txtZip.Text, txtSSN.Text, txtVehMake.Text, txtVehModel.Text,
txtVehYear.Text, txtFinanceAmount.Text, txtNoOfPayments.Text)

'invoking Web Service abcBank's method and 'sending all 'requir d information

63�

abcclsResponse =
abcBank.abcGetBankApproval(txtFirstName.Text, txtLastName.Text,
strCustomerNo, txtCity.Text, txtState.Text,txtZip.Text, txtSSN.Text,
txtVehMake.Text, txtVehModel.Text, txtVehYear.Text,
txtFinanceAmount.Text, txtNoOfPayments.Text)

Dim ilnterestRate As Double�
ilnterestRate = Val (clsResponse.strInterestRate)�
Dim ilnterestRate2 As Double�
ilnterestRate2 = Val(abcclsResponse.strInterestRate)�

, if loan request is declined by the any bank
If clsResponse.strlnterestRate = "Declined" And

abcclsResponse.strlnterestRate = "Declined" Then
IbllnterestRate.Text = "Declined"

Elself clsResponse.strlnterestRate = "Declined" And
abcclsResponse.strlnterestRate <> "Declined" Then

IblName.Text = abcclsResponse.strFirstName & " " &
abcclsResponse.strLastName

lbllnterestRate.Text = abcclsResponse.strInterestRate
IblBankReference.Text = abcclsResponse.strReference

Elself clsResponse. strlnterestRate <> "Declined" And
abcclsResponse.strlnterestRate = "Declined" Then

IblName.Text = clsResponse.strFirstName & " " &
clsResponse.strLastName

IbllnterestRate.Text = clsResponse.strlnterestRate
lblBankReference.Text = clsResponse.strReference

Else ' if loan is approved by both banks
'select charging lower interest rate

If ilnterestRate < ilnterestRate2 Or ilnterestRate
ilnterestRate2 Then

lblName.Text clsResponse.strFirstName & " " &
clsResponse.strLastName

IblInterestRate.Text = clsResponse.strlnterestRate
IblBankReference.Text = clsResponse.st Refe ence

Else
IblName.Text = abcclsResponse.strFirstName & " " &

abcclsResponse.strLastName
IblInterestRate.Text =

abcclsResponse.strlnterestRate
IblBankReference.Text abcclsResponse.strReference

End If
End If

Else 'if customer is paying by each/check
IblName.Text txtFirstName.Text & II " & txtLastName.Text
lblInterestRate.Text = "Sold"

End If
End Sub

End Class

64�

(B) WSDL file of a bank

WSDL is an XML document which describe

• Messages tbat the Web Service understands and the format of its respon e to tho e mages
• Protocols that the service supports
• Where to send messages

<?xml versio ="1.0" encodi g="utf-8"?>�
<definition -xmlns:http=''http://schemas.xmlsoap.org/wsdl/http/''�
xmlns:soap=-;;-http://schemas.xmlsoap.org/wsdl/soap/''�
xmlns:s=''http://r:;ww.w3.org/2001/XMLSchema''�
xmlns:sO=''http://tempuri.org/''�
xmlns: soapenc=''http://schemas . xmlsoap. org/ soap/encoding/"�
xmlns:tm=''http://microsoft.com/wsdl/mime/textMatching/"�
xmlns:mi_e=''http://schemas.xmlsoap.org/wsdl/mime/''�
targetName_pace=''http://tempuri.org/''�
xmlns=''http://schemas.xmlsoap.org/wsdl/''>�

<types>
<s:schema elementFormDefault="qualified"

targetNameyace=''http://tempuri.org/''>
<s:element na_ulOl ?="GetBankApproval"><!--bank's method name-- >

<s:complexType>
<s:sequence>�

<!--below are parameters and their data types-- >�
<!--accepted by the bank method-- >�

<s:element minOccurs="O" maxOccurs="l" na lilOl ?="strFirstName"�
type.="s:string" />�
<s:element minOccurs="O" maxOccurs="l" na li101 ?="strLastName.'"�
type="s:string" />�
<s:element minOccurs="O" maxOccurs="l" na ul01 ?="strCustomerNo"�
type="s:string" />�
<s:element minOccurs="O" maxOccurs="I" na lilOl ?="strCity"�
type="s:string" />�
<s:element minOccurs="O" maxOccurs="l" na lilOl ?="strStateCod "�
type="s:string" />�
<s:element minOccurs="O" maxOccurs="I" na li101 ?="strZip"�
type="s:string" />�
<s:element minOccurs="O" maxOccurs="l" na_u101 ?="strSSN"�
type="s:string" />�
<s:element minOcclirs="O" maxOccurs="l" na lil01 ?="strVehMake"�
type="s:string" />�
<s:element minOccurs="O" maxOccurs="I" na ulOl ?="strVehModeE"�
type="s:string" />�
<s:element minOccurs="O" maxOccurs="l" na li101 ?="strVehYear"�
type="s:string" />�
<s:element minOccurs="O" maxOccurs="l" na_li10l ?="strFinanceAmount"�
type="s:string" />�
<s:element minOccurs="O" maxOccurs="I" na_li101 ?="strNoOfPayments"�
type="s:string" />�
<s:element minOccurs="O" maxOccurs="l" na_e="strTo_u10l ?n"�
type="s:string" />

</s:sequence>
</s:complexType>

</s:element>

65�

<s:element na ulOI ?="GetBankApprovalResponse">
<s:complexType>

<s:sequence>
<s:element minOccurs="0" maxOccurs="I" na ulOl

?="GetBankApprovalResult" type="sO:Response" />
</s:sequence>

</s:complexType>�
</s:element>�
<s:complexType na_ulOI ?="Response">�

<s:sequence>
<!--below are parameters and their data types which will-- >
<!--be returned by the bank method-- >

<s:element minOccurs="O" maxOccurs="I" na ulOI ?="strReference"
type="s:string" />
<s:element minOccurs="O" maxOccurs="I" na e="strFirstName ll

type="s:string" />
<s:element minOccurs="O" maxOccurs="I" na ulOI ?="strLastName"
type="s:string" />
<s:element minOccurs="O" maxOccurs="I" na ulOI ?=lstrRating"
type="s:string" />
<s:element minOccurs="0" maxOccurs="I" na ulOI ?="strIAterestRate"
type=" s : s tring" />
<s:element minOccurs="0" maxOccurs=ll" na ulOI ?="strCustomerNo"
type="s:string" />
<s:element minOccurs="0" maxOccurs="I" na ulOI ?="strToUen"
type="s:string" />
<s:element minOccurs="0" maxOccurs=ll" na ulOI ?="BlockedTokenl"
type="s:string" />
<s:element minOccurs="O" maxOccurs="l" na ulOl ?="BlockedToken2"
type="s:string" />

</s:sequence>�
</s:complexType>�
<s:element na ulOl ?="Response" nillable="true"�

type=lsO:Response" />
</s:schema>

</types>
<!-- messages protocol i.e SOAP-- >

<message na_ulOI ?="GetBankApprovalSoapIn">
<part na_ulOl ?="parLmetersII element="sO:GetBankApproval" />�

</message>�
<message na_ulOl ?="GetBankApprovalSoapOut">�
<part na_ulOI ?="parLmeters" element="sO: GetBankApprovalResponse" / >

</message><!--internet protocol for the message-- >
<message na_ulOl ?="GetBankApprovalHttpGetIn">

<!--messages(parameters) name and data type-- >�
<part na_ulOl ?=lstrFirstName" type="s:string" />�
<part. na_ulOI ?="strLastName" type="s:string" />�
<part na_ulOl ?="strCustomerNo" type="s: s tring" />�
<part na_ulOl ?="strCity" type="s:string" />�
<part na_ulOl ?="strStateCode" type="s:string" />�
<part na_ulOl ?= strZip" type="s:string" />�
<part na_ulOl ?= strSSN" type="s:string" />�
<part na_ulOl ?= strVehMake" type=" s : s tring" />�
<part na_ulOl ?= strVehModeE" type="s:string" />�
<part na_ulOl ?= strVehYear" type="s:string" />�
<part na_ulOl ?= strFinanceAmount" type="s:string" />�
<part na ulOl ?= strNoofPayments" type="s:string" />�

66�

-�

<part na_ulOl ?="strToUen" type="s: string" I>�
</message>�
<message na_ulOl ?="GetBankApprovalHttpGetOut">�

<part na_ulOl ?="Body" element="SO:Response" I>
</message>
<message na_ulOl ?="GetBankApprovalHttppostIn"> <!--second choice-- >

<!--of internet protocol-- >�
<part na ulOl ?= "strFirstName" type=" s: string" 1>�
<part na ulOl ?="strLastName" type=" s: string" I>�
<part na ulOl ?="strCustomerNo" tyPe="s:string" I>�
<part na ulOl ?="strCity" type="s: string" I>�
<part na ulOl ?="strStateCode" type="s:string" I>�
<part na ulOl ?="strZip" type="s:string" I>�
<part na ulOl ?="strSSN" type="s:string" I>�
<part na ulOl ?="strVehMake" type="s :string" I>�
<part na ulOl ?="strVehModeE" type="s:string" I>�
<part na ulOl ?="strVehYear" type="s :string" I>�
<part na ulOl ?="strFinanceAmount" type="s:string" I>�
<part na ulOl ?= "strNoOfPayments " type="s:string" I>�
<part na ulOl ?="strToUen" type="s:string" I>�

</message>�
<message na_ulOl ?= "GetBankApprovalHttppostOut" >�

<part na._ulOl ?="Body" element="sO:Response" I>�
</message>�
<portType na_ulOl ?= "M_u66 ?9_u83 ?oap" >�

<operation na_ulOl ?="GetBankApproval"><!--name of the method-- >
<input message=" sO: GetBankApproval SoapIn II 1 >< ' - - takes SOAP- - >

<!--input message-- >
<output message="sO:GetBankApprovalSoapOut" I>

<[--returns SOAP output message-- >
<Ioperation>

</portType>
<portType na_ulOl ?="M u66?c:; u72 ?ttpGe ">

<operation na_ulOl ?="GetBankApproval"><!--name of the method-- >
<input message="sO:GetBankApprovalHttpGetIn" I>

<[--takes HttpGet input message-- >
<output message="sO:GetBankApprovalHttpGetOut" I>

<!--returns HttpGet output message-- >
<Ioperation>

</portType>
<port Type na_ulOl ?="M u66?c:; u72 ?ttpPost">

<operation na_ulOl ?="GetBankApproval"><!--name of the method-- >
<input message="sO : GetBankApprovalHttpPostIn" I>

<!--Gets HttpPost input message-- >
<output message="sO:GetBankApprovalHttpPostOut" I>

<'--Sends HttpPost output message-- >
<Ioperation>�

</portType> <1-- Web Service name is MyBank-- >�
<binding na_ulOl ?="M_u66 ?c:;_u83 ?oap" type="sO :!"lyBankSoap" >�

<soap:binding transport="http://schemas.xmlsoap.org/soap/http''
style="document" />

<operation na_ulOl ?="GetBankApproval">
<soap:operation soapAction=''http://tempuri.org/GetBankApproval''

style="document" I>
<input>

<soap:body use="literal" I>
<Iinput>

67

-�

<output>�
<soap:body use="literal" I>�

<Ioutput>�
<Ioperation>

</binding>
<binding na_ulOI ?="M_u66 ?~_u72 ?ttpGet" type="sO:MyBankHttpGet">

<http:binding verb="GET" I>
<operation na_ulOI ?="GetBankApproval">�

<http:operation location="IGetBankApproval" I>�
<input>�

<http:urlEncoded I>�
</input>�
<output>�

<mi ulOI ?:mimeXml part="Body" I>�
<Ioutput>�

<Ioperation>
</binding>
<binding na_ulOI ?="M_u66 ?~_u72 ?ttpPost" type="sO:MyBankHttpPost">

<http:binding verb="POST" I>
<operation na_ulOl ?="GetBankApproval">�

<http:operation location="IGetBankApproval" I>�
<input>�

<mi ulOl ?: content type=" application/x-www- form-urlencoded II 1>

</input>
<output>

<mi ulOl ?:mimeXml part="Body" I>�
<Ioutput>�

<lopeTation>�
</binding>�
<service na_ulOl ?="M_u66 ?~_u34 ?>�

<port na_ulOl ?="M_u66 ?c;:_u83 ?oap" binding="sO:MyBankSoap">
<soap:Lddre_s location=htt :lllocalhost/m I>

<!--method's address-- >
</port>
<port na ulOl ?="M_u66 ?~_u72 ?ttpGet" binding="sO:MyBankHttpGet">

<http:Lddre_s location=''http://localhost/mybank/mybank.asmx'' I>
</port>
<port na_ulOl ?="M_u66 ?~_u72 ?ttpPost"

binding="sO:MyBankHttppost">
<http:Lddre S location=''http://localhost/mybank/mybank.asmx'' I>

</port> ­
</service>

</definition_>

-�
68�

(C) Software

//--­
1/ objective: Petri net Modeling of Web Services and
1/ Reachabilityanalysis

1/-------------------_·_---­
1* SOFTWARE:

This software is developed to abstract the Petri net
modeling of interacting Web Services. It takes first input of web
site's name to reads the methods of that web site, which is invoking
Web Services, collects if-else statements and gets Web Service's name
to read its WSDL file. Before reading Web services method, it reads
that Web Service's WSDL file because to communicate with any Web
Service the information about message, Internet protocols it supports,
and the http address of that Service is required. After getting this
i.nformation from WSDL file its reads respective Web Service's method
and collects if-else statements. If this Web Service is invoking
another Web Service and program read their WSDL and methods files. This
reading goes on till no more web Service is invoked. Then results from
each file are collected and saved in a global array for further
processing towards Petri net formation.
The if-else statement with its end-if statements are matched and if
they are not matching it means there a problem in the execution of that
method, an error message is displayed. If every thing is fine then
program sketches the Petri net of this whole system and then runs
Reachability analysis on the sketched Petri net. */

/1-- ----------------­
#include "stdafx. h" I /headers
:l*include "PetriNetWS.h"
:1* ifde f DEBUG
#define new DEBUG NEW
:l*endif

//prototypes
void WSDL(};
void ReadWSMethod();
bool ieEf(int chr);
bool ProcessSubStr(char *SubStr);
bool Eliminate(char *SubStr, int k);
void PetriNet(char FinalStr[300]);
bool Clean(char *Str, char*Dest);
bool ProcessCode(char *cDigit, char *clnd, char *cCond};
bool SetNGetT(char *cInd, int *T, int *P);
bool SetNGetT2(char *clnd, int *T, int *P);
void SetFlag();

Ilglobal arrays and variables
int PN [5J [50] ;
int PNCounter, Lastp, LastT;
bool bPreviousReturn, bPreviousCond, bStart,Condition;
char myfile[30];
char filename[30];
char files [80) [80)
int fileslndex=O;
int counter = 0;
int Data [5] [50J ;
char mStartFromLeft[lOO);
char mTages[25);

69�

char IfElse[300];
int mNoOfLines;
char mProtocol[25];
char WSName [10] ;
char strCheck[]= "nothing";
int windex=O;
char StartFromLeft[26];
char Protocol [1] ;
char LocationAddress[lOO);
char wsMethodName[lOO];
char WService[lOO];
char S[255];
int Start, End;
char Tages[lOO];
char wsTages[lOO];
char List [5] ;
char FinalList[3];
int p=Oj
int P_col=Oj
int index=O;
int yes = 0;
int WebService = 0;
int Address = 0;
int OperationName = 0;
int NoOfLinesj
char InvertedComma[l);
Ilglobal variables end here
II The one and only application object
CWinApp theApp;
using namespace std;

Ilmain starts here
int tmain (int argc, TCHAR* argv [)" TCHAR* envp [])
{

int nRetCode = 0;�
II initialize MFC and print and error on failure�

if (!AfxWinlnit(: :GetModuleHandle (NULL) , NULL, : : GetCommandLin (), 0))
{

II TODO, change error code to suit your needs
_tprintf(_T("Fatal Error: MFC initialization failed\n"));
nRetCode = 1;

}
else
{

FILE *inFile;
memset(files,O,sizeof(files)) ;
strcpy(mProtocol,"") ;
CString strSoap = "soap";
char buffer[lOO];
char wsdl[30];
int Counter=O;
memset(wsdl,O,sizeof(wsdlJ) ;
strcpy(wsTages, "");

Ilreads web sites method
cout«"Please enter Web Site method file: ";
scanf("%s", &myfile);
char cfilesIndex[lO];
memset(cfileslndex, 0 , sizeof(cfileslndex));

70�

strcpy(files[fileslndex], myfile);�
itoa(fileslndex, cfileslndex, 10);�
strcat(IfEIse, cfileslndex);�
strcat {IfElse, "-");�
index+=(int) strlen (cfileslndex) +1;�
fiIeslndex++;�
inFile = fopen (myfile, "r");�
if (inFile)�
{�
while {fgets (buffer,100, inFile) != NULL)�
{

if (buffer)
{
char string [l00] ="";�
char SubString[20]="";�
char strGetlf[]= "If";�
char strGetEIse[] = "Else";�
char strGetEIself[] = "Elself";�
char strGetEnd[] = "End";�
char strService [] = "<service";�
char strLocaIHost[]="localhost";�
char strDot[]=".";�
char strBrackets[] = "() ";�
for (unsigned int i=O; i<strlen(buffer); i++)�
{
sscanf (buffer+i, "%s", string);�

if(string)�
{
if (strstr(string,strGetEnd))�
{�
char LocalString[lOO]="";�
for {unsigned int k=Oi k<strlen(buffer); k++)�
{�
sscanf(buffer+k, "%s", LocalString) i�

if(strstr(LocaIString,strGetlf)�
{
If Else [index] = 'f'; Ilend if�
cout«IfElse[indexl«endl;�
index++;�
break;�
}
}�
break;�
}�
if(strstr(string,strGetEIseIf))�
{�
IfElse [indexl= 'E'; Ilelse if�
cout«IfElse[index]«endl;�
index++;�

break;�
}
if(strstr(string,strGetElse))�
{�
If Else [indexl= 'e'; Ilelse�
cout«IfElse[indexl«endl;�
index++;�

71

~ -,

break;
}
if(strstr(string,strGetIf»
{
IfElse [index) = 'i'; Ilif�
cout«IfElse [index) «endlj�
index++;�

break;�
}�
if (strstr(string,strLocalHostJ)�
{
for (unsigned int i=o; i<strlen(string); i++)
{
sscanf (string+i, "%c", SubString);
if (strstr(string,strBrackets»
{
if (strstr(SubString,strDot))
{
if(strstr(string,strCheck»)
{
break;
}
else
{
i++;�
strcpy(WSName, string+i);�
strrev(WSName) ;�
strcpy(WSName, WSName+2);�
strrev(WSName) ;�
strcpy(strCheck,WSName); IIWS name�
Ilcalling WSDL function to read WSDL f'le�
WSDL () ;�
strcpy(files[fileslndex), myfile);�
itoa(filesIndex, cfilesIndex, 10);�
strcat(IfElse, cfilesIndex);�
strcat(IfElse, "R-");�
index+=(int)strlen(cfileslndex) +2;�
filesIndex++;�
break;�
}�
breakj�
}
}
}
break;
}
}
}
}
}

}
else
{
printf("***File is not Find or ERROR in file***\n");
exit(l);

72

}
fclose(inFile) ;
cout«endl;

}
cout « endl;
for(int j=O;j<fileslndex;j++)
{

cout « files [j 1 ;
cout « endl;

for (int i=o;i<index;i++)
{

cout « IfElse [il ;
}
cout « endl;�
char SubStr[255];�
memset(SubStr, 0, sizeof(SubStr»);�
for(int k=O;k<index;k++)�
{ //a function is called to check whether data is valid

if(isdigit(*(IfElse+k))
{

while(*(IfElse+k) != '-') {k++;}�

memset(SubStr, 0, sizeof(SubStr));�
Start = k+1;�
End = 0;�
while (true)�
{�

k++;
if(ieEf(*(IfElse+k)))
{

strncat(SubStr, IfElse+k, 1);
End = k;

}
else
{

k- -;
break;

}
if(strlen(SubStr) > 0)
{

ProcessSubStr(SubStr) ;
}

}
for(int i=O; i<index; i++)
{

cout « If Else [il ;
}
cout « endl;�
PetriNet(IfElse); //calling function to sketch the Petri net�
return nRetCode;�

73

bool ieEf(int chr)//function to check that if only if-else statements
are collected

if«(chr== 'i') II (chr 'e') II (chr 'E') II (chr , f I))

return true;
return false;

}
bool ProcessSubStr(char *Sub8tr)//it matches the if-else statements
with end-if
{

char *p = SubStr;�
memset (8, 0, sizeof (S)) ;�
bool bError = false;�
for (unsigned int k = 0; k < strlen(SubStr); k++)�
(

if(*(p+k) == 'f')�
(�
if(!Eliminate(SubStr, k))�

bError = true;

}�
if (bError) return true;�
return bError;�
//eliminate those if-else which are taking part in invoking web�

services
boo1 Eliminate(char *SubStr, int k)
{

int t = k;�
char *p = Sub8tr + k;�
bool bFound = false;�
while(p >= 8ub8tr)�
(

if(*p == 'i')
(

memset(S, 0, sizeof(S));�
strncat(S, SubStr, p-SubStr);�
for (char *g=p; 9 <= SubStr +ki g++)�
{�

I •* (IfElse+Start) + (int) (g-Sub8tr)) * I ,
g = '';�

}�
bFound true;�

}�
if (bFound)�

break;�
p--;�

}�
return bFound;�

}
void WSDL() //read WSDL file
{

FILE *wsFile;�
char ptr[30];�
int wCounter=O;�
char cfilesIndex[lO];�
memset(cfilesIndex, 0 , sizeof(cfilesIndex));�

74

memset(ptr, 0, sizeof(ptr));
cout«"Please enter WSDL file of " «WSName«" .". /.
scanf (" %s", &ptr);
strcpy(Protocol,"") ;
char wsbuffer[lOO];
memset(wsbuffer, 0, sizeof(wsbuffer»);
char wsbuffCopy[lOO];
memset(wsbuffCopy,O, sizeof(wsbuffCopy));
char wsstring[lOO];
memset(wsstring,O, sizeof(wsstring»;
wsFile = fopen(ptr, "r");
strcpy(files[fileslndex], ptr);
itoa(fileslndex, cfileslndex, 10);
strcat(IfElse, cfilesIndex);
strcat (IfElse, "C-");
index+= (int) strlen(cfilesIndex) +2;
fileslndex++;
if (wsFile)
{

while(fgets(wsbuffer,lOO, wsFile) t= NULL)
{

if (wsbuffer)
{

char strSoap[]= "Soap";�
char strPost[]= "HttpPost";�
char strGet[]= "HttpGet";�
char strAddress[] = ":address";�
char strWebSerMethod[] = "<operation";�
char strService[]= "<service";�
char *pt = wsbuffer;�
while(strlen(pt) > 0)�
{�

strcpy(wss ring, pt);�
if (wsstring)�
{�

if (strstr(wsstring,strSoap)
{
wsTages[windex]= 'S'; //soap�
windex++;�
break;�
}�
if (strstr(wsstring, strPostl)�
{�
wsTages[windex]= 'P';�

//httpPost
windex++;
break;
}
if(strstr(wsstring,strGet))
{
wsTages[windex]= 'G';

//httpGet
windex++;
break;
}

}
if (WebService==O)

75

{
if(strstr(wsstring,strService»
{
strrev(wsbuffer) ;
strcpy(wsbuffer, wsbuffer+3);
strrev(wsbuffer) ;
strcpy(WService, wsbuffer+17);
WebService++;
}
}�
if (Address==O)�
{�
if (strstr(wsstring,strAddress))�
{�
strrev(wsbuffer) ;�
strcpy(wsbuffer, wsbuffer+3);�
strrev(wsbuffer) ;�
strcpy(LocationAddress, wsbuffer+20);�
Address++;�
}
}
if (OperationName==O)
{
if (strstr(wsstring, strWebSerMethod»

{
strrev(wsbuffer);�
strcpy(wsbuffer, wsbuffer+2);�
strrev(wsbuffer) ;�
strcpy(wsMethodName, wsbuffer+15);�
OperationName++;�

}
}
pt++;

else
{

Olprintf("***File is not fined***\n);

return;

}
fclose(wsFile) ;

List[O]='S';
List[l]='P';
List[2]='G';
for(int sort=O; sort<3; sort++)
{

for(int f=O; f<windex; f++)�
{�

if (wsTages [f]==List[sort])�
{

FinalList [P_col] =List [sort] ;
P_col++;

76�

break;
}
else
{

continue;
}

WebService=O;
//calls function to read respective Web

//Services method
ReadWSMethod{) ;
strcpy{files[filesIndex] , ptr);
itoa{filesIndex, cfilesIndex, 10);
strcat{IfElse, cfilesIndex);
strcat (IfElse, "R-");
index+= (int) strlen(cfilesIndex) +2;
fileslndex++;

}
void ReadWSMethod()//this function reads Web services method
{

FILE *MethodFile;
char method [30] ;
memset(method,O,sizeof(method))
cout«"Please enter the method file of "«WService«": ";
scanf{"%s", &method),.
int mCounter=O;
char cfileslndex(10);
memset(cfilesIndex, ° , sizeof(cfilesIndex»;
strcpy(files[fileslndex), method);
itoa{fileslndex, cfileslndex, 10);
strcat{IfElse, cfilesIndex);
strcat{IfElse, "C_II);
index+= (int) strlen(cfileslndex) +2;
fileslndex++;
char MethodBuffer[lOO);
char strWebMethod[)= "<WebMethod(»";
char MethodString[100]="";
MethodFile = fopen(method, "r");
if (MethodFile)
{

while (fgets (MethodBuffer,lOO,MethodFile) != NULL)
{
for {unsigned int i=O; i<strlen(MethodBuffer),. i++)
{
sscanf(MethodBuffer+i, "%s", MethodString);�
if (MethodString)�
{�
if(strstr(MethodString,strWebMethod»�
while(fgets (MethodBuffer, 100, MethodFile) != NULL)�
{
if (MethodBuffer)�
{�
char MethodSubString[20]="";�
char strGetlf[)= "If";�
char strGetElse [) = "El se" ;�

77

char strGetElseIf[] = "ElseIf";�
char strGetEnd [] = "End";�
char strService[]= "<service";�
char strLocalHost[]="localhos ";�
char strDot[]=".";�
char strBrackets[] = ,,() ";�
for(unsigned int i=O; i<strlen(MethodBuffer); i++)�
{�
sscanf (MethodBuffer+i, "%s", MethodString);�
if (MethodString)�
{
if(strstr(MethodString,strGetEnd))�
{�
char LocalString[lOO]="";�
for (unsigned int k=O; k<strlen(MethodBuffer); k++)�
{
sscanf (MethodBuffer+k, "%s", LocalString);�
if (strstr(LocalString,strGetIf))�
{�
IfElse [index] = 'f'; Ilend if�
cout«IfElse [index] «endl;�
index++;�
break;�
}
}�
break;�

}
if(strstr(MethodString,strGetElseIf)�
{�
IfElse [index] = 'E'; Ilelse if�
cout«IfElse [index] «endl;�
index++;�
break;�
}
if(strstr(MethodString,strGetElse)�
{�
IfElse [index) = 'e'; /Ielse�
cout«IfElse [index] «endl;�
index++;�
break;�
}�
if(strstr(MethodString,strGetIf))�
{
IfElse [index] = 'i'; Ilif�
cout«IfElse [index) «endl;�
index++;�
break;�
}�
if(strstr(MethodString,strLocalHost)�
{�
for (unsigned int i=O; i<strlen(MethodString); i++)�
{�
sscanf(MethodString+i, "%c", MethodSubString);�
if (strstr(MethodString,strBrackets»�
{�

if (strstr(MethodSubString,strDot))
{

78�

if(strstr(MethodString,strCheck»
{

break;
}
else
{

i++;�
strcpy(WSName, MethodString+i);�
strrev (WSName) ;�
strcpy(WSName, WSName+2);�
strrev(WSName) ;�
strcpy(strCheck,WSName); //WS name�
WSDL() if/calling function to read WSDL file�
strcpy(files[fileslndex), method);�
itoa(fileslndex, cfileslndex, 10);�
strcat(IfEIse, cfilesIndex);�
strcat(IfEIse, "R-");�
index+=(int)strlen(cfilesIndex)+2;�
filesIndex++;�
break;�

else
{

printf("***File is not Find or Error in file***\n");
return;

}�
fclose(MethodFile) ;�
cout«endl;�

}
void PetriNet(char FinalStr[300)//this function ske ches Petri net
{

char Final [300) ;�
memset(Final, 0, sizeof(Final);�
for(int p = 0; p<5; p++)�

for (int q=O; q<50;q++)
PN [p) [q) = - 1 ;

PNCounter 0;
Lastp = -1;
LastT = -1;
bPreviousReturn = false;
if(JClean(FinalStr, Final»//remove all star sYmbols
{

cout«"ERROR in Method"«endl;
exit (0) ;

7')�

}
char *ptr = Final;�
int len = (int) strlen(Final);�
bool bError = false;�
cout « endl « endl;�
bStart = true;�
cout « "Processing if/else conditionals." « endl;�
cout « "--------------------------------,, « endl;�
while (ptr < Final + len)llgiving a final shape to�

II collected information
{
char c = * (ptr) ;�
char cCode(4) = to,,;�

char cDigit(3) = "";�
char clnd(2) = "";�
char cCond[2] = "";�
if (!isdigit (e»�
{�
bError = true;�
break;�
}�
strneat(eDigit, ptr, 1);�
strncat(cCode, ptr, 1);�
ptr++;�
c = *ptr;�
if (1 (ptr < FinalStr + len»�
{
bError true;�
break;�
}�
if(isdigit(*ptr)�
{�
strncat(cDigit, ptr, 1);�
strncat(cCode, ptr, 1);�
ptr++;�
e= *ptr;�
if(! (ptr < FinalStr + len))�
{�

bError = true;
break;

}
if(c == 'C') II (c == 'R'))
{

strncat(clnd, ptr, 1);
strncat(eCode, ptr, 1);

}
else if (e == 'i ') II (c == 'e') II (c 'E') II (c I f I))

{
strncat(cCode, ptr, 1);
strncat(cCond, ptr, 1);

}
else
{

bError true;�
break;�

so�

else
{�
if((c == 'C') II (c == 'R')�
{�

strncat(clnd, ptr, 1);
strncat(cCode, ptr, 1);

}
else if ((c , i ') II (c == 'e I) I I (c == • E') II (c , f '))

strncat(cCode, ptr, 1)
strncat(cCond, ptr, 1)

}
else
{

bError true;
break;

}
if (! ProcessCode (cDigit, clnd, cCond»)
{

bError = true;
break;

ptr++;

if (Condition)� Ilwhen if-else statement is involved in
II invoking web services

PN [0] [PNCounter] = 0;�
PN [1] [PNCounter] LastP;�
PN[2] [PNCounter] ++LastT;�
PN [3] [PNCounter] ++Lastp;�
PN[4] [PNCounter] 0;�
PNCounter++;�

PN[O] [PNCounter]= 0;�
PN [1] [PNCounter] O',�
PN[2] [PNCounter] 0;�
PN [3] [PNCounter] ++LastP;�
PN [4] [PNCounter] O'�I

PNCounter++;
}
elsellwhen if-else statement is involved in invoking web services
{

PN[O] [PNCounter]= 0;
PN [1] [PNCounter] LastP j
PN[2] [PNCounter] ++LastTj
PN[3] [PNCounter] ++LastPj
PN[4] [PNCounter] 0;
PNCounter++;

cout « "Processing complete." « endl;�
cout « "Petri Net" « endl;�
for(int v = 0; v < PNCounter; v++) Ilprinting Petri net�
{�

cout « "{II;

81�

cout « "pI! « PN (1) [v) « " , " ,.
cout « lITI! « PN [2J fv) « , " ,."
cout « "pI! « PN [3J [v) ;
cout « II } II ;

cout « endl;

int iStart = O·,
int iFinal = O·,
int StartNdx 0;

int FinalNdx 0;

int SPas 0;

int EPos = 0;

while (true)
{ //Reachabilityanalysis

cout « endl « "Reachability testing:"«endl;
cout « "Enter starting state number (-1 to exit) " ,.
cin » iStart;
if (iStart == -1)

break;
if «iStart > LastP) II (iStart < 0»
{
cout « "Invalid state number. Please try again" « endl;

continue;
}
cout « "Enter final state number " .,
cin » iFinal;
if ((iFinal > Lastp) I I (iFinal < 0) I I iFinal <= iStart)
{
cout « "Invalid state number. Please try again" « endl;

continue;
}
int h = 0;�
int SPas 0;�
int EPos = iFinal - iStart + 1;�

for(int w = 0; w <= PNCounter; w++)
{

if (PN [lJ [w) == iStart)
{

StartNdx = PN[l] [wJ
break;

}
for(int x = PNCounter; x >= 0; x--)
{

if (PN [3] [xJ == iFinal)
{

FinalNdx = PN [3J [x] ;
break;

cout « endl « "Start State: " « iStart « endl;
cout « "Final State : " « iFinal « endl;

cout « "{!I;

82�

for(h=SPos;h<EPos;h++)�
{�

cout « "0 ";�
}
cout « "}" « endl;�
cout « "{";�

for(h=SPos;h<EPos;h++)�
{

if (PN [1] [StartNdx] h + iStart)
cout « "1 ";

else
cout « "0 ";

cout « "}" « endl;

for(int f = StartNdx; f<FinalNdx; f++)
{

cout « lI{llj

for(h=SPos; h<EPos; h++)
{

if (PN [3] [f) == h + iStart)
cout « "l ";

else
cout « "0 ";

cout « "}" « endl;

//saving sketch of Petri net
bool ProcessCode(char *cDigit, char *clnd, char *cCond)
{

if (bStart)
{�

LastP = 0;�
bStart = false;�

}
int P = 0; int T = 0;�
if (strcmp(cCond, "i") == 0) //when if statement�
{

SetNGetT2(cCond, &T, &P);�
PN [0] [PNCounter] = 3;�
PN[l] [PNCounter) P;�
PN [2) [PNCounter] T;�
PN [3) [PNCounter] ++LastP;�
PN[4) [PNCounter] atoi (cDigit);�
PNCounter++;�

} //when else and elseif statement
if((strcmp(cCond, "e") == 0) II strcmp (cCond, "E") == 0))
{

SetNGetT2(cCond, &T, &P);�
PN [0] [PNCounter] = 5;�
PN[l] [PNCounter] = P;�
PN [2] [PNCounter] = T;�
PN [3] [PNCounter) =++LastP;�
PN [4] [PNCounter) = atoi (cDigit)�

83

PNCounter++;
}
if (strcmp (clnd, "C") == 0) //when call for web service or WSDL
{

SetNGetT(clnd, &T, &P);�
PN[O] [PNCounter]= 1;�
PN[I] [PNCounter] = P;�
PN [2] [PNCounter] = T;�
PN [3] [PNCounter] =++Lastp;�
PN [4] [PNCounter] = atoi (cDigit) ;�
PNCounter++;�

}
if (strcmp(clnd, "R") == Ol//when returning to web service or WSDL
{

SetNGetT(clnd, &T, &P);�
PN[O] [PNCounterl 0;�

PN[IJ [PNCounterJ = P;�
PN[2] [PNCounter] = T;�
PN [3 J [PNCounterJ =++LastP;�
PN [4] [PNCounterJ = atoi (cDigit) ;�
SetFlag () ;�
PNCounter++;�

}
if(strcmp(clnd, "R") == 0)

bPreviousReturn = true;
if (strcmp(cCond, "i") == 0)

bPreviousCond true;
return true;

}
//sets flag when there is call or�
//returning to the web service or WSDL�
bool SetNGetT (char *clnd, int *T, int *P)�
{

bool bResult = false;�
bool bFlag = false;�
for(int k = PNCounter-1; k>=O;k--)�
{

if(PN[O] [k] == 2)
{

bFlag = true;
*T PN[2J[kJ;
* P = PN [1 J [k J ;

}�
if ((PN [oj [kJ == 1) && bFlag)�

break;
}
if(bPreviousReturn && (strcmp(clnd, "C")==O))
{

bPreviousReturn = false;
return true;�

}�
else�
{

*T ++LastT;
*p LastP;

}
return false;

84

~R:liffi1"'l5~~~:;;---------------

I

} Iisets flag when there is if-else statement
bool SetNGetT2(char *cCond, int *T, int *p)
(

bool bResult = false;�
bool bFlag = false;�
for(int k = PNCounter-1; k>=O;k--)�
{

if (PN [0] [k] == 3)
{

bFlag = true;�
*T PN [2] [k] ;�
*p = PN[l] [k];�

}
if«PN[O][k] == 1) && bFlag)

break;
}
if (bPreviousCond&& (strcmp (cCond, "e") ==0) II (strcmp (cCond, "E") ==0))
{

bPreviousCond = false;
return true;�

}�
else if (strcmp(cCond, Ilfll) 1= 0)�
{�

*T ++LastT;�
*p LastP;�

}
return false;

}
void SetFlag () Iisets flag when return is matched with call
(

for(int k = PNCounter-1; k>=O;k--)
(�

if(PN[O][k] 1)�
{�

PN [0] [k] = 2;�
break;�

}
}llclean the stars from the array which were inserted to verify the

II Matching of if-else statements with end-if statements.
bool Clean(char *Str, char *Final)
{

char *ptr = Str;�
int len = (int)strlen(Str);�
bool bError = false;�
Condition = false;�
char CheckCond (] = "f";�
cout « endl « endl;�
while(ptr < Str + len)�
{�

char c = * (ptr) ;
1111 •char cDigit[3] = ,

II,. .char cCode[2] = ,
II II •char cCond[2] = ,�

if (isdigit (c»�
{�

strncat(Final, ptr, 1);

85�

}
else if ({c == I C') II (c == 'R '))
{

strncat{Final, ptr, 1);
}
else if({c=='i') II (c=='e') II (c 'E') " (c 'f'))
{

strncat(Final, ptr, 1);
}
ptr++;

}�
if{strstr{Final,CheckCond)�
{�

Condition = true;�
}�
return true;�

}//program ends here

86�

VITA

Muhammad Asif Javed

Candidate for the Degree of

Master ofSceince

Thesis: PETRI NET MODELING OF WEB SERVICES

Major Field: Computer Science

Biographical:

Personal Data: Born in Sargodha, Pakistan, on December 09, 1966, son of
Muhammad Younis Javed

Education: Graduated from High School Bhowana, Distt. Jang, Pakjstan in 1981;
received a Bachelor of Science Degree in Biology in 1987 and Master of Science
Degree in Zoology in 1990; from Plll1jab University, Lahore, Pakistan,
respectively.
Completed the requirements for the Master of Scjence Degree with a major in
Computer Science at Oklahoma State University in May 2003.

Experience: Worked as a Research Assistant in U AID on a project managed by Kansas
State University, Kansas from April 1990 to August 1992 in Lahore, Pakistan.

Employed as an Assistant Sales Manager with a Jamjoom Vehiel '5 and
Equipment, Rjyadh, Saudi Arabia from August 1992 to January 1999.

