PETRI NET MODELING OF

WEB SERVICES

BY
MUHAMMAD ASIF JAVED
Master of Science
Punjab University
Lahore, Pakistan

1990

Submitted to the Faculty of the
Graduate College of he
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
August 2003

Oklahoma State University Library

PETRI NET MODELING OF

WEB SERVICES

Thesis Approved:

>

Thesns Adyvisor

Mww N —

/W il

7:%,@.%

(_Déairof the Graduate College

11

ACKNOWLEDGEMENTS

I feel highly privileged in taking the opportunity to thank my worthy advisor

Dr. Johnson P. Thomas, under whose auspices I took a stride in the completion of this
work. I can never forget his incessant meticulous criticism, affectionate supervision,
distinguished inspiring behavior and valuable knowledge, which he contributed to this
work in a multitude of ways.

My heartiest thanks to committee members Dr. Marcin Paprzycki and Dr. Debao Chen
for their valuable criticism and suggestions that helped me to cover the gaps. I love to
thank Dr. Adjith Abraham for accepting my request to be a committee member while the
time was very short.

I am in deep dept of gratitude to Mr. Khalique Rehman for his cooperation throughout the
course of my study.

I acknowledge from the core of my heart the Chaudhary family for their kind help in all
ways and loving behavior. And especially words are inadequate to thank Mr. Zahir
Chaudhary and Mr. Nasir Chaudhary.

I would like to say special thank to my wife Saima Waheed who stood beside me all the
time with her unfailing and indispensable support.

A heart-felt thanks goes to my parents and brother for their encouragement and emotional

support throughout my life.

11}

TABLE OF CONTENTS

Chapter Page
1- I OAUC I O Y. . . e e e 01
1.1 WD SEIVICES. .. veeeient e et et et e e e 01

1.2 Visual Studio. Net....ooouvreiie et iecie e e anae e 04

1.3 WebSphere SDK for Web Services (WSDK). ... 05
1.4 Java Web Services Developer Pack 1.0 01 (Java WSDP).............. 05

1.5 HP Web Services Platform 2.0....... ..., 05

O S i o B N SO 05

2- Objectives.................. P SRR E. 07
3- Literature ReVIieW o s 08
3.1 WD SeIVICES. ..ottt ittt e 08

3.1.1 TIdea Behind Web Services...........coooiiviiiiiii i 10

3.1.2 Goal........ooooiii F S EANS SISRN . {

3.1.3 Difference Between Web Services and Traditional web...... 11

314 SECUIILY ..ot 12

32 Analysis of Web Services.............ooooiiii 12

33 Anatomy of Web Services................oo 15

3.31 057 51 T P 17

3.3.2 MESSAZES. ettt 18

333 POrt TyPeS. oot 18

334 Bindings................ B 19

335 SOIVICES . oo 19

4- PPt NGS5 5 5 s miims s i « - FBFCAVEP B b KTV AW LTTO SN AN A AR 2 RS S 24
4.1 INtrodUCtION.\t 24
42 Reachability...........c. oo 25
4.3 Petri Net Model of Web servicesccccoevviviiiniiiinnn 26
4.3.1 Propertiesof WSPN..............ooiiii 27
4.3.2 Modeling of Method......................oo 30
433 Petrinet Merging.............ccoooeiiieiiiiiiiiiiiin... 31
43.3.1 Merging Procedure....................... 32
4332 Merging Structure Constraint.......... 33
4.3.4 Petri Net Modeling of Methods.......................... 36
4.4 Limitation to this approach......................... 38
5- Methodology and Implementation. ... 39
5.1 Petri Netmodel..............co 39
5.2 Modeling Tool for Web Services..................coooee49
5.3 Reachability. ..., 53
6- CONCIUSION.o e e e e e 56
6.1 Future work. 57
7- REfErences. 59
7.1 Bibliography..........oooii 59
7.2 AppendiX..... ..., 62
(A) ACarlotprogram................oooiiiiiii i 62
(B) WSDL fileofabank.................................... 65
(C) Software....... ..o 69

LIST OF TABLES

Table Page
1. Formal definition of Petri net. i i 25
1L Mapping of WSDIL. ... e e e 26
I11. Mapping for methods.ooiii i e 26

Vi

Figure

10.
11.

12.

18.
19.

20

LIST OF FIGURES

Page
General Architecture Of Web SerViCe.ouvereeeeeenenaanereiinerieenns 02
Two Interacting BuSINess PrOCESSES.vuursteieeeseeaiaeenaananeetiesenns 03
Generic Web Service Architecture..............o..oovevveuenvneieeeiiinrnennen 09

A scenario of Interaction among Carlot, Bank and Credit Rating Co..........13

Abstract Definition of WSDL............ e e 17
A client invoking @ Web ServiCe.........oooiiiieiiiiiiiie e eiiee i, 21
A scenario showing the usage of UDDI and Web Services..................... 22
WSDL model for Carlot transaction..................cccovevniannn. e 23
Structure of Pettri Net.ooo i Gercivisumsvires s bin s bisnasams 24
WSDL flow model of Carlot............ooo i 29
Petri Net model of Carlot.o e ..29
Joining Model of Petri Net. ..o 30
Split Model of Petrl INEL. . .. cosonesrrusiminssi svrsamons sossanannsans remns obsan SO &
Iteration Model of POErl Wek....o.q oo scesnin s sswmssnnssonmsai supssnsmmsns ehs smemsers 31
UNSAFE METZIIE. 0ot ittt et e et e e et e ene 32
Petri Net Model of Carlot Method. ... 36
Petri Net Model of Bank Method.................oo 37
After merging of both Carlot and Bank methods.............. 37
Abstract diagram of example.................... A WAL B8 B i ot o 41

Petri net modeling of Web Services

(a) Carlot, MyBank and abcBank........................... . 42

Vii

21.

22.

23.

24.

25.

(b) MyCreditRatings, WScreditRating, and abcCreditRating...............43
Merged global view of the entire SyStem............c.ovieiuearsrainneeannnnen 43

Petri Net models of Web site and Web services Methods

(a) Corlot Websitemethodcccovciinensmmnmssssves s snuerss 44
(b) MyBank Web Servioe Method.ocvsseivissmniiasses sasnmessssss s ve 45
© abcBank Web Service method.ccovssisminiiiimmsmnier i imnaiasa 45
(d) abcCreditR Web Service method...........ccooviiiiiiiieiiiiiian. . 45
(e) abcCreditR Web Service method.............oooooiiiainny 45
(H MyCreditRatings Web Service method...... v emcaeme's 5§ WEE § 3 RS 46
Graphical Petri net representation of Carlot and invoked Web Services...... 48
Abstract Diagram of Software............................ . Sh BN RS SN RTAG AN 50
An output of Reachability analysis. ..., 55

viii

HTTP

IDE

Mﬁn
MIME

Mini

pinp
PKI
PN

Pout

RPC

T

tm

treset
SAML
SMTP
SOAP
W

WSDL

NOMENCLATURE

Destination

Hyper Text Transfer Protocol
Integrated Development Environment
Marking

Final Marking

Multipurpose Internet Mail Extensions
Initial Marking

Place

Input Place

Public Key Infrastructure

Petri Net

Output Place

Reachability

Remote Procedure Call

Transition

Time Stamp

Reset Transition

Security Assertion Markup Language
Simple Mail Transfer Protocol
Simple Object Access Protocol
Weight

Web Services Description Language

1X

WSPN

XACML

XML

XSD

UDDI

Web Service Petri Net

Extensible Access Control Markup Language
Extensible Markup Language

XML Schema Definition

Universal Description, Discovery and Integration

Chapter 1

Introduction to Web Services

1.1 Web services

In today’s e-commerce environment, various commercial and other organizations provide
their services through the web. These services range from educational services, which
provide distance learning to commercial services such as credit rating services. For
example, a car purchase transaction requires accessing a number of web services. Car
dealer uses bank’s web service to get financing for their customers while bank uses credit
bureau’s web service to check customer’s credit history to decide for approval. A single
business transaction therefore invokes a number of web services.

Web services are defined as “internet-based applications fulfilling a specific task or a set
of tasks, that can be combined with other web services to maintain workflow or business
transactions” [13].

Web Services, which is a distributed computing environment, is based on Extensible
Markup Language (XML) technology. The concept of business communication is
certainly not new, but web services bring a new perspective to the cross-domain
interaction [11]. Web services [10] provide a conceptual foundation and a technology
infrastructure for service-oriented computing. In web services interoperability is at
highest priority. It allows program written in different languages on different platforms to
communicate with each other in standard-based way. Web services are considered as

reusable software components [14] over the Internet by wrapping the interface with XML

and publishing it over the Internet. Web services are in fact a standardized integration
approach. They are not limited to one environment, but can be integrated into every
software-system that is web service-aware [9]. Web services have different layers. XML
Schema (XSD)-used to define the message format which describes the type and structure
of XML document, Simple Object Access Protocol (SOAP)-message envelope also
defines a standard representation for errors and binding to HTTP or other open protocols
and RPC, Web Services Description Language (WSDL)-explains how operations can be
invoked using particular transport protocol bindings and Universal Description,

Discovery and Integration (UDDI)- to get the technical details.

Service
Requester

(Using WSDL)

Find

Transport Protocol
(SOAP/ HTTPGET/ HTTPPOST)

Service Provider

(Web Service) \

Publish

" Service Directory
| (UDDI)

Fig. 1 General Architecture of Web Service

The scope of web services applications goes beyond organizational boundaries, such as e-
Business. Web-based e-commerce began with stand-alone Web servers, but these Web

servers soon began to be inter-connected with other systems [15]. Web services are

rapidly evolving and are expected to change the paradigms of both software development

and use [12].

Service Provider/ Service Provider/
Service Requester Service Requester

Fig. 2 Two interacting business process

As shown in Fig. 2, to make the business process work the requesting operation of one
process (A, C, and T) is associated with matching performing operations (O, R, and E) in
the other process [20].

Microsoft, SUN Microsystems, IBM, HP and some others have recently developed tools

for building the Web Services.

Microsoft Visual Studio.Net has made it very easy to create, deploy and access an XML
Web service. Visual Studio. Net have friendly interface and is very powerful tool to
develop Web Services. So we used Microsoft’s Visual Studio.Net to develop Web

Services and to test our developed software.

1.2 Visual Studio.NET is a powerful set of tools for building web applications. It

simplifies the development of XML Web Services and generates required codes.
Different web references can be added to access those sites automatically and it generates
WSDL which have the information that how operations will be completed. The Visual
Basic, C++, C#, Jscript and XML languages create a mixed language solution by using
same Integrated Development Environment (IDE) and leverage the functionality of .NET
Framework.

Web services involve interaction between different distributed sites on the Internet. New
web services are continuously being added and linked to existing web services. In such a
dynamic distributed environment, there is enormous potential for deadlock and other
problems. It is therefore essential to model web services and reason about them to verify
the correctness of the services. Although tools exist for developing web services, tools for
the abstract modeling of these web services do not exist. In this thesis we model Web
services using Petri Nets.

Other companies besides Microsoft have developed their Web Services and are offering

their web services development tools in the market.

1.3 WebSphere SDK for Web Services (WSDK): IBM has built Web

Services support in WSDK. It offers tools in WSDK to build Web Services for Java

programmers. W ebSphere offers wide interoperability with other software and

systems.

1.4 Java Web Services Developer Pack 1.0 01 (Java WSDP): Sun

Microsystems is supporting Web Services in “iPlanet” and developed (Java WSDP),
which in conjunction with Java platform allows to built, test and deploy Web
Services. Sun ONE Studio 4 provides the latest tools for Java to develop Web

Services.
1.5 HP Web Services Platform 2.0: developed by HP, which provides a

standard based architecture and toolset for creating and deploying Web Services.
Oracle is moving to support Web Services standards in its 91 database management

software, application service and development tools.

Microsoft have developed Visual Studio.Net, which is very easy to use, have friendly
interface and is very powerful tool to develop Web Services. So we used Microsoft’s

Visual Studio.Net to develop Web Services and to test our developed software.

1.6 Petri net is a graphical and mathematical tool [17] used for modeling and

analyzing systems with concurrency. The mathematical framework behind Petri Nets
facilitates reasoning about the model generated. For example, Petri net analysis of the
model will detect deadlock in the model. Petri net consist of Places, Transitions and Arcs.
Transitions are active components and on firing change the state of the system. Places

can have tokens, which represent the current state of the system. Both (places and

transitions) are connected with input (from places to transition) and output (from
transition to places) Arcs. It can be used for variety of purposes.

Software is developed for Petri net modeling of WSDL and Methods, being used during
and after the development of Web Services by the Visual studio. We use reachability
analysis to detect deadlock. This thesis also proposes a Petri Net merging method to
model the integration of distributed web services. The software development process
begins by XML’S parsing of the generated WSDL. It gets input and output data from
types elements, operation name from portType element, network protocol from binding
element, and operation address from service element. Having these information Petri net
will be drawn and to detect deadlock reachability is analyzed by using C/C++. The
reachability analysis ends in final states if there is no deadlock otherwise there is

deadlock.

Chapter 2
Objectives

The main objective of this thesis is to verify the correctness of message flows in web
services. This is achieved by generating a model of the web services. This model is then
analyzed to determine if the web services contain deadlocks, will terminate correctly and
will function as desired. To realize this main objective we aim to:

1. Generate a Petri Net model of web services. This is achieved by parsing the
WSDL and collecting all required information about input/output data, network
protocol, operation name and destination.

2. Propose a mechanism for linking different distributed web services. As stated
earlier, a single business transaction invokes a number of web services.

3. Reason about the generated Petri Net model. Software will be written to generate
the reachability tree of the Petri Net model. This will allow us to detect deadlock,
check for correct termination of the business transaction and detect other such

potential problems

‘We will be using the Visual Studio.NET, Visual Basic, C and C++.

Chapter 3
.NET AND WEB SERVICES

3.1. Web Services

The emergence of Web Services represents the next evolution of e-business [1].
Kreger [2] defines a web service as an interface that describes a collection of operations

that are network accessible through standardized XML messaging.

A formal definition of a web service may be borrowed from IBM [3].

Web services are a new breed of Web application. They are self-
contained, self-describing, modular applications that can be published,
located, and invoked across the Web. Web services perform functions,
which can be anything from simple requests to complicated business
processes...Once a Web service is deployed; other applications (and other

Web services) can discover and invoke the deployed service.

Viewed from an n-tier application architecture perspective, the web service is a veneer
for programmatic access to a service, which is then implemented by other kinds of
middleware. Access consists of service-agnostic request handling (a listener) and a facade
that exposes the operations supported by the business logic. The logic itself is

implemented by a traditional middleware platform. Lambros et al [7] state the

interactions between the service registry, service requestor and service provider in the

context of the establishment and commencement of a web service relationship.

XML Request | B
L U
1 S

S — > I ¢ Middleware | Business

FIEJ ﬁ N logic
XML Response E
- E S
R S
Facad

Fig. 3 Generic Web Service Architecture

Extensible Markup Language (XML) provides a metalanguage in which you can write
specialized languages to express complex interactions between clients and services or
between components of a composite service. Behind the facade of a web server, the XML
message gets converted to a middleware request and the results converted back to XML.
The full-function web services platform can be thought of as XML plus Hyper Text
Transfer Protocol (HZTP) plus Simple Object Access Protocol (SOAP) [4] plus Web
Services Definition Language (WSDL) [5] plus Universal Discovery Description and

Integration (UDDI) [6].

The ability of Web Services to reach beyond the firewall, the loose coupling between
applications encouraged by Web Service interfaces, and the wide support for core Web
Service standards by major enterprise software vendors are the key reasons why Web
Services technology promises to make integration of applications both within the
enterprise and between different enterprises significantly easier and cheaper than before.
Web Services are in essence a collection of standards and protocols that allow us to make
processing requests to remote systems by speaking a common, non-proprietary language
and using common transport protocols (HTTP, SMTP).

The introduction of the web services approach has increased efficiency however;
business knowledge regarding relationships with suppliers and customers is now buried

within the internal processing of the web services [8].

3.1.1 Idea behind Web services:

The basic idea behind Web services is to adapt the loosely coupled Web programming

model for use in applications that are not browser-based.

3.1.2 Web Services Goal:

The goal is to provide a platform for building distributed applications using software
running on different operating systems and devices, written using different programming
languages and tools from multiple vendors, all potentially developed and deployed

independently.

10

3.1.3 Major differences between Web services and traditional Web
applications:

There are three major differences. Web services use SOAP messages instead of MIME
messages, Web services are not HTTP-specific, and Web services provide metadata
describing the messages they produce and consume.

Browsers usually just render HTML pages (or other MIME-typed data, like images) and
leave interpretation of the information they display up to the user. Web service clients, on
the other hand, typically need to interpret the data they receive and do something
meaningful with it they may not even have a user interface.

The second major difference between Web services and traditional Web applications is
that Web services are not transport protocol specific. While the SOAP specification only
defines how to send SOAP messages over HTTP and that's what the vast majority of
today's Web services do, other transport protocols can also be used. SO AP messages can
be sent using SMTP, raw TCP, an instant messaging protocol like Jabber, or any other
protocol you like.

The SOAP specification defines the notion of intermediaries, nodes that a message passes
through on its way to its final destination. Using intermediaries, you can "virtualize"
physical network topology so that messages can be sent to Web services using whatever
path and whatever combination of transport protocols is most appropriate.

The third major difference between Web services and traditional Web applications is that
Web services are self-describing; they provide metadata describing the messages they

produce and consume, the message exchange patterns they use to expose behaviors, the

11

physical transport protocols they use, and logical addressing information required to

invoke them. A Web service's message formats are defined using XML Schema (XSD).

3.1.4 Security

Without doubt, the main problem facing Web Services is security. This is true with all
software, but since the rapidly growing technology area that is Web Services doesn't yet
have dedicated security protocols and standards, it is a more glaring hole. It is, though, a
hole that is being filled, with proposals to secure all levels of the communication being
presented and submitted; Security Assertion Markup Language (SAML,

http://www.saml.org/, or http://www.oasis-open.org/committees/security/), for

transferring the security level (authorization and authentication), along with XML
encryption and Public Key Infrastructure (PKI), which can be managed by XML Key
Management Specification; the security of storage of documents in repositories such as
UDDI registries is targeted by Extensible Access Control Markup Language (XACML,

http://www.oasis-open.org/committees/xacml/).

3.2 Analysis Of Web Services

Web services enable the exchange of data and the remote invocation of application logic
using XML messaging to move data through firewalls and between heterogeneous

systems. The programs written in any language, using any component model, and

running on any operating system can access XML Web services.

It can be explained with the help of a Car Sale example, in which three different web sites
are communicating automatically with each other. Graphically their communication can

be shown as:

Method Method Method
Calling Bank’s Method Calling Credit Co Method
s For Credit report

For Financing

Resull is coming back

Approval/Decline

Carlot Bank Credit Ranting Co.

Fig. 4 A scenario of Interaction among Carlot, Bank and Credit Rating Co.

If a customer at Car Dealer needs a bank financing, then customer’s data is needed by the
bank to decide about loan approval or rejection. To send customer’s data from Car Dealer
to Bank, we need to invoke bank’s method over Internet. To invoke bank’s method,
required parameters and its data type are encoded which are checked from the WSDL
file, published by the bank.

When Bank receives customer’s data, it checks 1f that is its active customer. If so then it
approves otherwise Bank sends data to Credit Rating Co to check customer’s credit
history. Here bank is invoking another website’s method through Internet, after meeting

the requirements given in WSDL file published by the Credit Rating Co.

Through Internet bank invokes the method of Credit Rating Co. This method is

calculating credit score, and after calculations it returns the result to bank.

When bank receives credit rating of the customer then it calculates interest rate and sends

its decision back to car dealer. This whole flow is automatic. which is saving labor cost

and avoiding delay due to unavailability of any concerned person at any point.

During building or consuming Web Services there are few key spcciﬁcations and

technologies that need to be encountered.

1-

Extensible Markup Language (XML) — A standard way to represent data. It
provides a significant advance in how data is described and exchanged by
Web-based applications using SOAP. The Hypertext markup language
(HTML) enables universal methods for viewing data while XML provides
universal methods for working directly with data. XML facilitates the transfer
of structured data between servers themselves.

Simple Object Access Protocol (SOAP) - A common, extensible, message
format. SOAP is a lightweight XML based protocol for exchange of
information in a decentralized, distributed environment. SO AP has three parts,
i.e. envelope, header and body. SOAP codifies the use of XML as an
encoding scheme for request and response parameters using HTTP as a
transport.

Web Services Description Language (WSDL) - A common, extensible,

service description language. It is explained in detail later.

Universal Discovery Description and Integration (UDDI) — To discover
service providers. UDDI provides @ mechanism for clients to dynamically find

other web services. Using a UDDI interface, businesses can dynamically

14

connect to services provided by external business partners. A UDDI registry is
similar to a CORBA trader, or it can be thought of as a DN'S service for
business applications. A UDDI registry has two kinds of clients: businesses
that want to publish a service (and its usage interfaces), and clients who want

to obtain services of a certain kind and bind programmatically to them.

3.3 Anatomy Of WSDL

WSDL is an XML document. WSDL is used to describe what a web service can do,
where it resides, and how to invoke it. It provides critical information about the Web
Service that both the developers and programming tools need. In a comipact, concrete

way, this document describes everything, including:

e Messages that the Web Service understands and the format of its responses to
those messages
o Protocols that the service supports

» Where to send messages

WSDL focuses on describing wire formats, not on describing implementation details of

an endpoint.

A WSDL document always has a <definitions> element as its root.

Here we declare the WSDL namespace as the default namespace for the document so all
elements belong to this namespace unless they have another namespace prefix.

The WSDL-specific elements are:

1- types: Describes the types used by messages

15

message: Defines the data passed from one point to another in a call
portType: Defines a collection of operations.
operation: Defines a combination of input, output, and fault messages
input: A message that is sent to the server
output: A message that is sent to the client

fault: An error value returned as a result of a problem processing a message

There are two main classes of faults: client faults and server faults. If a
client fault occurs, the client should not resend the request until it fixes the
input data in some fashion. A server fault indicates there was a failure at
the server that was no fault of the client. Clients might wait a short time

and try resending the request.

4- binding: Describes the protocol being used to carry the Web Service
communication; bindings currently exist for SOAP, HTTP GET, HTTP POST, and

MIME.

5- Service: Defines a collection of ports (end points); port specifies an address for a
binding, thus defining a single communication endpoint. Each service should map
to one portType and represent different ways of accessing the operations in that

portType.

Service

N
The Services section refers 10 the Bindings sgetion
. K
Binding
. Ports
dnsport (Services section contains port elements)
Bindings section refers 10 the PortTypes section
PortTypes . Qperathns . s
. (Binding sections contain operation elements)
Input, Output, fauit
PortTypes section uses delinitions
in the Messages section
Message Operations
Parts {PoriTypes sections contain operation name)
(parameters)

Message uses definition in the types

Types
{data types)

Fig. 5 Abstract Definition of WSDL
By using Bank and Credit Rating CO’s example, the WSDL’s each element can be

explained.

3.3.1 TYPES
It defines the data types used by the messages. It has the information about both

messages- input and output. Output message name ends with Response. The

17

<complexType> can express more than just the equivalent of a struct in C. For example,
a data type for bank will contain strings.

3.3.2 MESSAGE

Messages consist of one or more logical parts. Each part is associated with a type from
some type system using a message-typing attribute. The part name attribute provides a
unique name among all the parts of the enclosing message.

In message each part defines the input and output parameters. There incoming and
outgoing both messages are described along with their protocol of transfer. In our
example all three ways SOAP, HTTPGET, and HTTPPOST for input and output

messages are described.

3.3.3 PORT TYPES

It 1s collection of operations. The name of operation is name of the method that is being
called. The operation specifies two messages, input message (sent to the web services)
and output message (from web services to the client). PortType have information for
operations, which can use any one out of three network protocols, i.e. SOAP, HTTPGET

or HTTPPOST. Input and output message of one operation use one type of protocol.

WSDL has four transmission primitives that an endpoint can support:

e One-way. The endpoint receives a message.

« Request-response. The endpoint receives a message, and sends a correlated
message.

o Solicit-response. The endpoint sends a message, and receives a correlated

message.

18

» Notification. The endpoint sends a message.

WSDL refers to these primitives as operations,

3.3.4 BINDINGS

A binding defines message format and protocol details for operations and messages
defined by a particular portType. There may be any number of bindings for a given
portType. The binding element can be used to define how each operation within the
portType maps to a particular protocol. A binding MUST specify exactly one protocol.
The binding clement states that the operations can travel using SOAP over HTTP,
HTTPGET, or HTTPPOST. So it binds the operation and transfer protocols. In input and
output use is equal to literal. "Literal” means that the resulting SOAP message contains
data formatted exactly as specified in the abstract definitions (Types, Messages, and
PortTypes sections). Message the each parts define the concrete schema of the message.
The <binding> element is given a name (in this case " CreditRatingsSoap ") so that the
<port> element in the Services section can refer to it. It has a "type" attribute that refers
to a <portType>, which in this case is " CreditRatingsSoap ".

3.3.5 SERVICES

A service is a set of <port> elements. A port defines an individual endpoint by
specifying a single address for a binding.

Each <port> element associates a location with a <binding> in a one-to-one fashion.
Location has the address of the file, that file have the method need to be invoked.

There can be more than one <service> element in a WSDL document. Within one WSDL

document, the <service> "name" attribute distinguishes one service from another. The

19

binding attribute refers to the binding using the linking rules defined by WSDL. Because
there can be several ports in a service. Client can search for the <service> that matches
the protocol that it can deal with. A port MUST NOT specifies more than one address.
Ports within a service have the following relationship:
None of the ports communicate with each other (e.g. the output of one port is not
the input of another).
If a service has several ports that share a port type, but employ different bindings
or addresses, the ports are alternatives. Each port provides semantically equivalent
behavior (within the transport and message format limitations imposed by each
binding). This allows a consumer of a WSDL document to choose particular
port(s) to communicate with based on some criteria (protocol, distance, etc.).
By examining it's ports, we can determine a service's port types. This allows a
consumer of a WSDL document to determine if it wishes to communicate to a
particular service based whether or not it supports several port types. This is
useful if there is some implied relationship between the operations of the port
types, and that the entire set of port types must be present in order to accomplish a

particular task.

20

CLIENT

-

Input message

—>

UDDI have all information about the Web services providers. Using UDDI the Web
services provider(s) is selected which meet the required criteria. After choosing Web
Services and having it’s WSDL the method is developed accordingly. More than one
Web services requiring different transfer protocol can be selected. Different clients can
use the same Web service. One Web service also can use another web service to fulfill it

requirements. In this way a big web like structure is developed. A small part of that is

shown in Fig 7.

HTTPGET
HTTPPOST

Fig. 6 A client invoking a Web Service

-

output message

21

SOAP/HTTP (request-response) OR

OR

port

WEB

SERVICES

Client 1
(using different WS needed
different protocals)

Port

UDDI

(Have information
about Web service)

Web Service users
Consulting UDDI

Bank 1

(Web service provider)

port

v

Credit Rating Co.

transfer

Client 2
(using different WS needed
different protocals)

protocols

Banks using
UDDI

Bank 2

(Web service provider)

[1NDDI

(Web service provider)

4

Credit Rating Co.

(Web service provider)

Fig. 7 A scenario showing the usage of UDDI and Web Services

22

After establishing contact with UDDI, a WSDL of a Carlot can be modeled as:

BANK CREDIT RATINT CO.
Client-1
port Meth port | Method
Method Binding | ‘ Bindin
: B 1L S
opera
(i}r)lput,mn SOAP SOAP
output) < ﬁ
L i
Service . Service

Client-2
port { port
Method [np”'F;
operation | F——F’

(input, d HTTPGET
output) output| | ’

Service
Client-3
Method] port . port
operation { nput I;—4> mput —T>
E::til:t) | TrOsT] | ‘ QMWNM _]lj
‘ l OUth output
N
Bindings service

Method has operations (input, output messages)-portTypes

Fig. 8 WSDL model for carport transaction

o
(8}

Chapter 4
Petri Nets

Carl Adam Petri originally gave the concept of Petri Net, in his dissertation [16] in 1962.
Petri nets are graphical and mathematical modeling tool applicable to many systems.
They are very useful tool for describing and studying information processing systems,
which are characterized as being concurrent, asynchronous, distributed, parallel,
nondeterministic, and/or stochastic [17]. They can be used both by practitioners and
theoreticians. Petri nets representation can also be used to analyze the performance and

throughput [18].

4.1 Introduction

Petri nets are directed graphs. They include Places, Transition, Token, and Arcs.

Place Token Transition Weight

(SO
Fr

Fig. 9 Structure of Petri Net

Places may represent states, before transition represents pre-firing state and right of the
transition represents post-firing state. Places contain tokens. Token could be data or truth
of condition. Transitions are active components, transitions are allowed to fire only when

they are enabled. Enabled means that pre-firing conditions are met successfully. Arcs

represent the flow of system and carry weight where k-weight represents the k parallel

arcs.

The formal definition of Petri net [17] is as:

A Petri net is a 5-tuple, PN = (P, T, F, W, M) where:
P ={p1, p2, ... pm} is a finite set of places,
T={t,1,, ... t,} is a finite set of transitions,

Fc (PxT)U(Tx P)is a finite set of arcs,

W: F-> {1,2,3,...} is a weight function,

M: P > {0,1,2,3,...} is the initial marking,

PN T=ZandPuT=O.

A Petri net structure N = {P, T, I, W} without any specific initial marking is
denoted by N.
A Petri net with given initial marking is denoted by (N, M).

Table -1

The complete absence of deadlock is closely related to the liveness. So a transition z in a
Petri net N with initial marking M is said to be live if and only if for any M in R(N, M),
there exists a marking reachable from M’ in which ¢ is enabled. A Petri net is live if all its
transitions are live. Petri net is safe if and only 1f all its places are safe, while place is safe
if it is one-bounded (M{(p) < 1). A path in a Petri net is a finite altemating sequence of
transitions and places. A circuit in a Petri net is a path that begins and ends at the same
transition such that no transition or place appears more than once in the circuit. A live
and save path is a path in a Petri net such that all the transitions in the path are live and

the places in the path are safe, given an appropriate initial marking of the net [18].

4.2 Reachability

A fundamental basis for studying the dynamic properties of any system is reachability. In

a net the token distribution (marking) is changed on firing the enabled transition. A

[y}
9]

sequence of firings will result in a sequence of markings. A marking M’ is said to be

reachable from a marking M if there exists a sequence of firings that transforms M to M.
A firing or occurrence sequence of is denoted by s =Mt M, t: M,M,, or simply & = ¢,
1> ...t,. Here M, 1s reachable from M by ¢ and we write M[c>M,,. The set of all possible
markings reachable from A in a net (N, M) is denoted by R(N, M) or simply L(M). The
reachability problem for Petri nets is the problem of finding if M, & (R(V, M) for a given

marking M, in a net (N, M) [17].

4.3 Petri Net model of Web Services

In our model the mapping of WSDL’s parts is as below:

Place — PortType (Operations — input, output messages)
Transition — Service - Port (Name, Binding name, Location)
Token — Message (Data)

' Arc — Binding (PortType, Protocol)

Table-II

The mapping for methods is defined as:

Place — data storage
Transition = computational primitives
Token — Message (Data)

Table-I11

The Web Services Petri Net (WSPN) representation of web service flows or WSDL is an
ordinary Timed Petri net NV:

N=(P, T.F, W, M, tm, d)

Where the following applies.

-P={p.ps ..., Pm} 1s a finite set of places representing the set of assembly
objects.
-T={1) 6., t,} U {lesw! is a finite set of transitions; { t;, t5,.... In}
Transitions represent Service-Port in the WSDL and operations or
computation in the methods of the web service. The transition #,.se Tmodels the
resetting of the web service for the next transaction.
- F'and W are same as mentioned above.
- There exists a set of places P,, P where P,, represents the initial state of the
Web service transaction
- There exists a set of places P,, — P where P,, represents the final state of the
Web service transaction
-Pip NP, =O.
-Ifp e Py, M(p) =1 else 0. This is the initial marking.
- tm: P = time is the time stamp associated with a token at a place.
- d: T = time is the time duration associated with a transition.
In the initial marking of the net, there will be a token in each of the places P,
representing the initial state of the web service transaction Attached to each place with a
token is a time value specifying the time of data initialization for the transaction This is
given by the function t,,. It can be seen that the WSPN modeling Web Services are live

and safe.
4.3.1 Properties of WSPN

The formal basis of Petri nets allows the derivation and deduction of properties of the

WSPN. Properties of the WSPN are listed below:

Property 1: Given the WSPN N representing web services, a subnet N' representing one
plan in NV is conflict-free and persistent.
It is not sufficient to show that the WSPN is live and safe. The unique initial and
terminating conditions of the transaction must be satisfied. This leads to the next two
properties.
Property 2: The property of clean termination. This property states that the web services
transaction terminates only when the transaction has been completed. A web services
transaction should not terminate with a partial transaction.
Theorem 1- Property of Clean Termination: Given an WSPN

N=(P T, F, W, M, t,, d) with initial marking M, there exists a final marking
MG, such that

Mrn € R(N, M) and My, = Mp(that is, M(P,p) = 1).
Property 3: The property of complete initialization. This property states that a web
services transaction an assembly cannot terminate cleanly (Theorem 1) if all the data or
information required for the transaction are not received from the external environment.
Theorem 2 — Property of Complete Initialization. Given an WSPN N = (P, T, F, W, M,
tm, d) with initial marking M, where only a subset of the input places are marked, that is,
if AM'c M, then the marking M where M(P,,) =1 cannot be reached.
Proofs for these properties are simple and therefore omitted. The liveness property of the
net guarantees that the plan will not deadlock and the safeness property ensure that each
stage in the transaction is unique. The WSPN representation therefore provides for a
precise and accurate framework for the description of web services, and furthermore,

captures desirable properties of web services.

28

Client-1 port Bank Credit CO.

Method
Method

¢« PortType 1‘

Client-2

Fig. 10 WSDL flow model of Carlot

The Petri net model of WSDL.s is below Fig. 10:
Client-1 Bank needs credit report

Credit Co

Client-2

Client-1

Credit Co sends

| Bank sends bank decides report to bank
Decision on the base of
report

Client-2

Fig. 11 Petri Net model of Carlot

4.3.2 Modeling of Methods

It is beyond the scope of this work to model every kind of computation found in a
method. The bank decides whether to approve the loan request from the Carlot or to use
the credit company’s web services to obtain a credit history score for the customer.
Decisions based on input conditions are modeled. It is also necessary to model the
merging of two or more WSPNs. For example, the bank web service is modeled as two
WSPNSs. One net will model the situation where the bank makes the decision on the
customer without recourse to the credit card company’s services (the customer is along-
standing customer of the bank for example). Another net will model the situation where
the credit card company’s services are needed. The merging of these two nets represents

the bank’s web services.

The Joining construction, which could be “OR” or “ AND” form, is used for merging. In
the OR form, the transition will fire if there is a token in any one of its input places and in

the AND form there me be tokens in all of the input places before the transition can fire.

(O

Fig. 12 Joining Model of Petri Net

30

PN splitting construction which could be “OR” or “AND". It is called conflict, choice or

decision structure. In our case only “OR” model is used.

o

Fig. 13 Split Model of Petri Net

Methods may also contain loops. Looping (iteration) and merging construction is shown

below:

® ()

Fig. 14 Iteration Model of Petri Net

4.3.3 Petri Net Merging

Models of each individual web service are merged to obtain a system-wide view of a web

business transaction. Although the individual models may display the desired properties

of liveness, safeness and complete termination, the merged nhet may not display such

properties. See the below example

Merged net

> (O

Fig. 15 Unsafe Merging

Both nets may be safe before merging, but after merging place C is not safe.

Merging Procedure

The WSPNs of each web service are merged to form a single control model of the entire

transaction V.. The WSPNs of each web service are merged such that the following

applies.

- For each WSPN of a web service NV ¢, with set of output places P',. = m(()(r‘))

U Plor = Plow U P'og, there exits a net N'c with set of input places P'ic =
m(I(t")) w P'\g = Py U Pz, such that there is a mapping from Py, to a
place p € P“‘in,, of net N'¢, unless P'out = m(Poa) OF Phlnp < m(Py,) of the plan

net NV,. That is, there is a function

/ /
z: Pow 2 P/inp

w
o

- for each WSPN subnet N', with a set of output places P og representing the
final state of the transaction, there may be corresponding input production

places P'ig in net ' to which they are mapped.

Given a net N' with initial marking M(p) = 1, for all p € P'c where P'c = Py U P and
anet V' with initial marking M(p) = 1, for all p € P'\c where Pic = P, W P'ig, the
initial marking M;,; of the merged net such that Py, is merged with a place p € anp is
defined as:

Mini(P) = {Plinp U Pling — 2(P'ou) U Pir U P'i — Plog}.
The initial marking of the N'. component of the merged net is as if N'. were isolated. The
initial marking of N'. component of the merged net is partly derived from the output

marking of net N..

Lemma 1: The merging of two live and safe refined WSPN’s does not always result in a

net, which is also safe and live.

Proof: If a loop is introduced in the merged net, this net may not be safe and live. In the
simple example in Fig. 15 place C is not safe.

The types of nets that can be merged are therefore restricted so that the merged net is safe
and live.

Merging Structure Constraint: Any circuit introduced into a net as a result of merging,

must be a live and sage circuit, given and initial marking M,,; for the merged net.

w
2

To determine if a circuit is live and safe, it is necessary to extract the subnet associated
with all transitions and places in the circuit. The subnet Nob = (Psubs Tsubs Fsubs Waubs Msun)
associated with the circuit can be determined recursively as follows.
For transition ¢ in the circuit, let ps,, be an input place of the transition:

a) if paub € O(1), then Py = Pgup U K1), Tewpr = Toun U 1

b) if a place p € Py, such that p € O(1;) and t; # t, then Py, = Pswp U (1),

Too = Top Y ti, Msyp = Mini for p € Pgyp.

If O(t) < Psup, this implies that the circuit is a live and safe circuit. In Fig.12 For
transition #y, Py + { 4, B}, Tab = £, O(ty) = {B, C}, and therefore, O(ty) < Pp 1s not
true. This circuit therefore does not satisfy the merging structure constraint given above.
Theorem 3: An WSPN N, representing individual web services formed by merging two
live and safe control WSPN’s N'. and N', such that the merging structure constraint is
satisfied in the merged net, will be a safe and live WSPN given that the initial marking of
the merged net is Miy;.
Proof Outline: Each net N'. and N'. is live by definition. Moreover, given the initial
marking of the merged net and by the appropriate introduction of transition #,, it can be
deduced that the merged net is live. The N'. component of the merged net N, can be
made unsafe only if the N'. component provides net N'. more that one token at the merged
places. Show that this is not possible and therefore the merged net is safe.
Theorem 3 is now extended to cover a complete web service transaction that includes all
the individual web services. A complete transaction is a sequence with commences in the

initial state of the transaction and terminates in the final state of the transaction with the

34

Initiator of the transaction getting the requested web services. By a recursive application

of Theorem 3 we get Lemma 2.

Lemma 2: A merged complete web services transaction is a live and safe net.

Proof Qutline: Follows from Theorem 3.

This leads to the following conclusion.

Theorem 4: given an WSPN N. composed of merged nets that represent a complete
transaction such that Theorem 3 is satisfied, then given an initial marking M;,; where
Mii(p) = 1 for all p € Pic where Py = Py, U Py, there exists a final marking M such
that Mna(p) = 1 for all p € P, where P, = Py, W Pr. The merged net obeys the
properties of complete initialization and clean termination with respect to assembly parts
and the production system.

Proof Outline: First we prove the property of clean termination. From Lemma 2,
transition fese 18 live in the merged net N.. Therefore, we deduce that M(p) =1 forall p
Poui- Next we show that in the final marking there does not exist a place p, such that p, is
some place excluding places { Pinp U Pou W Pir}. From this result that p, cannot also be
one of places Pinp. We can therefore conclude that there exists M € R(N¢, Mini) such that
M(p)=1 forall p € {Pouw Pir} and M(p) = 0 forall p ¢ { Poy W Pir}. However, a
situation may arise whereby transition ¢ could fire before the net has reached marking
M(Pir). In other words, there could exist a marking M(p,) where p, = { Py U Py} and Py
P;;. We next show that there exists a marking P, W Pir that is reachable from P,

P,. A similar approach is used to prove the property of complete initialization.

The use of computer-aided tools is necessary for practical application of Petri nets. Safely
modifying workflow logic in real-time requires validation of system changes before
actual system deployment [19].

Petri net modeling of the WSDL gives very descriptive information of the web service.
With the help of Petri nets possible deadlocks and safeness in the system can be checked.
Moreover, the WSPN models both WSDL and the methods in a web service. The detailed

picture of the entire system can therefore be analyzed.

4.3.4 Petri Net Modeling of Methods:

At Carlot we have choice that if payment is cash then done otherwise send to Bank for
financing.

The Carlot transaction is modeled with OR model to represent two choices. One arc
shows that payment is made by cash and if this is not the case then customer’s data will

go to Bank for loan approval and this is modeled with second arc of OR model.

Message 1s sent from
Carlot to the bank Web
service to apply for the
loan

If financing needed

[f paid cash

L
Carlot side \®

Fig. 16 Petri Net Model of Carlot Method Sold

Bank can send two kinds of replies 1.e. approved or declined. Similar to Carlot these both

replies are modeled with the help of OR model. As is shown below:

Approved
D< From bank

Declined

(o)

Sold

Bank side

Fig. 17 Petri Net Model of Bank Method

To model the complete set of transactions at the carlot, the outgoing and incoming

messages are merged. After merging of both we get following model:

If financing needed | —

If paid cash

[] Approved
¢

Sold

Declined

Not sold

Fig. 18 After merging of both Carlot and Bank methods

Similarly the methods in Bank and in Credit Co. can also be modeled.

37

However, these only represent the individual web services. To get a view of the entire
transactions requires a model of the web transactions at all three sites. This model will be

generated and presented as part of the implementation.

4.4 Limitation to this approach
A major problem with formal modeling is scalability. As the number of sites increases,
the modeling does not scale well. The usual approach to this problem is to hierarchical

modeling of systems. In our case as shown above, we refine transitions for scalability.

Chapter 5

Methodology and Implementation

5.1 Petri Net model

The Petri net modeling captures Web sites, which use Web Service. such as the Carlot
website in our example. The Web Services provide services to the Carlot and WSDL is
the description of the Web Services. Reachability analysis of the Petri Net yields
properties of the Petri Net such as deadlocks and safeness.

One web site’s method may use many Web Services. Before and after the calling of Web
Services there is a computational work to complete the initiated business process. The
called Web Service, if needed can also invoke another Web Service to get required
information and so on. In this way the whole process of Web Services is like a big
complicated web.

Methods are written to implement the company’s business process computation. They
include conditional statements, and calls for other Web Services methods. The
conditional statements may include “if-else” statements. One “if-clse” statement can
have some other “if-else” statements nested in it. Although not considered in this thesis,
other programming constructs such as loops may also be included.

To draw the Petri net of Web Services, global information of the web services is required.
Each web site is only aware of its own methods and other web services it calls. The entire
web service transaction can therefore be modeled by merging the models of individual

transactions. Each line of a method file is scanned. The sequence of all Web Services

calls is saved. All the possible paths from the beginning of the web services transaction
are traced. As conditional statements increases the number of possible paths increase and
Petri net becomes complex.

When a method of a Web Service needs to be invoked, its respective WSDL file is traced.
A WSDL file has all the information required to communicate with Web Services. For
example, the list of sending parameters, detail of returning response, allowed Internet
protocol, name of Web Service and its method along with its address are ;111 contained in
a WSDL file. Like a method, each WSDL file is scanned. WSDL’s information is
enclosed in different fixed elements. It includes input and output messages which arc
collected from <types> element, method’s name from <binding> element, transport
protocols (SOAP, HTTPGET, HTTPPOST), Web Services name, and its address from
<service> element. WSDL’s format is fixed; the detail of WSDL is given in chapter 3.
The complete Petri net represents all the possible execution paths of the whole system, in
which a web site’s method is followed by the WSDL and then the Web Service’s method.
In a correct web transaction, the path will come back to the calling method in the same
sequence.

A high level global view ol all participating Web site, Web services and WSDL file is
sketched in fig 19.

As each web site is aware only of its local computation, the Petri Net model of the web
service at an individual site is first constructed fig 20.

The generated Petri Nets of individual web services are merged to create the Petri Net
model of the entire web transaction fig 21. Qur approach also allows for the hierarchical

modeling of web transaction.

40

Carlot

WSDL
MyBank abcBank [
<__
WSDL WSDL WSDL WSDL
MyCredit MyCredit WSCredit abcCredit
Rating Rating Rating Rating

Fig. 19 Abstract diagram of example

The results from the remote web site are turned to the Carlot method and finally to the

LSer.

In Web Services a Carlot invokes the web services of two Banks to get finance for its

customers and on the basis of the cheapest interest rate returned it selects one of them.

Qut of these two banks one calls one Credit Co’s Web Services and the other bank calls

three Credit Co’s Web Services to check the credit history of the customers. After getting

a credit score from the credit companies, the bank decides whether to approve the loan

41

and the interest rate to be charged. The results from the banks are returned to the Carlot.
This scenario is depicted in fig 23 .

Each Web Service is accessed through its particular WS DL file. The code for this Web
services application is shown in the appendix A . Qur modeling software reads all the
Web Service’s methods and their WSDL files, and derives the Petri net model of the
entire business transaction.

In the example below, the individual higher level Petri net diagram of Carlot, Banks and
Credit Rating Companies are shown fig 20. In the Carlot transaction, place P; represents
the user who is applying for a loan. The transition represents the methods at the Carlot
website. This method calls two web services, MyBank and abcBank whose ports are
represented by place P;and P;. The Two banks, the abcBank is invoking three credit
companies while the MyBank Web Service is communicating with only one Credit

Company. But the Credit companies are not invoking any further Web Services.

Fig. 20(a) Petri net modeling of Web Services
Carlot MyBank abeBank

P, Py

MyCreditR WSCreditR abeCreditR
Py P>

P4

Ty

P""’ P]}])/5

Fig. 20(b) Petri net modeling of Web Services
An abstract global view of the entire system is obtained by merging these Petri Nets as

shown in figure 21.

" O

Carlot
T

Pymerge Pg
P, merge Py P> . P;

abcBank T3
MyBank
P5 merge P10 . P10 .
P7 merge I’]O P8 merge P12 P9 merge P14
MyCreditR MyCreditR T5 WscreditR T's abcCreditR l T
Py P II

Fig. 21 Merged global view of the entire system

The detailed method of each site is then constructed. This is modeled as a Petri Net
refinement. For example, the detailed model of the Carlot method and others are shown
below. In Theorem 3 in chapter 4 we showed that Petri Nets can be merged to form a
composite Petri Net that is safe and deadlock free. Based on this theorem these nests are

then merged to create the model of the entire web transaction.

The Petri net of Web Services methods can also be sketched. In a method If-else
statements provide a number of execution paths, and these are modeled in the Petri net.
The Carlot’s first if-else statement decided whether to invoke web services on the basis of
payment mode. This is shown by transition ¢; below in fig 22(a). If the Web service is
used then on the returned results, declining or approving shown by ¢,, from banks it
accepts the lowest interest rate offering bank mention by 7;. Similarly, the Petri net of the

methods of Web Services are sketched. These Petri net models are shown in fig 22.

3

Finance Cash

Dec Approved

Ps
I3
Interest rate (lowest)

(a) Carlot Web site method

44

P

if ty
P Approved P
P;
Declined if ty
ts else (abcCR<)
Dec
Py P;

Interest rate

(b) MyBank
Web Service method

Py P4
Interest rate Interest rate
(c¢) abcBank Web Service method

if Score<140

P; P;
if Score<150
i
if Score<160
if Score<150
Py
if Score<150 else(>=170)
P; if Score<160™ Py P
else(>=160)
{d) abeCreditR Web Service method (e) abeCreditR Web Service method

45

if Score<10

else(>=140)

abcBank
(f) MyCreditRatings Web Service method

Fig. 22 Petri Net models of Web site and Web services Methods

The Petri Net derived by the tool is described as:
{P0O,TO,P1},{P1,T1,P2},{P2,T2,P3},{P3,T3,P4},{P4,T4,P5},{P5,T5,P6},{P6,TG,P7},
{P7,T7,P8},{P8,T8,P9},{P1,T1,P10},{P10,T9,P11},{P11,T10,P12},{P12,T11,P13},
{P13,T12,P14},{P14,T13,P15},{P11,T10,P16},{P16,T14,P17},{P17,T15,P18},
{P18,T16,P19},{P11,T10,P20},{P20,T17,P21},{P21,T18,P22},{P22,T19,P23},
{P23,T20,P24},{P24,T21,P25},{P25,T22,P26},{P0,TO,P27}.

Our tool does not generate a graphical representation of the Petri Net model. The Petri net

can also be shown graphically in which different abbreviations are used to represent the

46

different states of methods and WSDL. As P is for Places, which is representing message
data for methods and PortTypes for WSDL. T'is for Transitions, which shows
computational work in methods and Service (ports) in WSDL., and Arcg (—) are
representing bindings (protocols) for WSDL while in methods incomin g Arcto transition
is incoming data for computation and outgoing Arc from transition is outgoing data after
computational work to the next state. Tokens in both cases are data. Transition can have
one or more input Arcs and similarly one or more than one output Arcs. In methods
varying number of input and output Arcs depends upon the implementation of business
strategy. Starting and final places are observed to implement the Reachability analysis.

The graphical Petri net representation of above given example is shown in fig 23.

47

mycarlot

mycarlot method

finance
corlot method

beBank’s portType

MyBank’s protType

1.Protocot 1.Protocol

MyBank Service(port) abcBank’s Service (port)

MyBank abcBank

MyBank’s method abcBank's method

PortTypes
abeCredit R

PortTypes for
PortTypes for MyCreditRatings
 MyCreditRatings

PortTypes
Wscredit R

I.Protocol I.Protocol I.Protocol

1. Protocol Service Service Service
Service (port) (port) (port)
(port)

Wseredit R abcCredit R

WscreditR

abcCreditRating

MyCreditR abcBank method method method
Method
portTypes for PortTypes portTypes
abcBank lor abcBank for abcBank
portTypes for I.Protocol I.Protocol

I.Protocol I.Protocol

MyCreditR

Service
(port)

Service
(port)

Service
(Port)

1.Protocol

Service (port)

abcBank abcBank abcBank

AbcBank’s method
MyBank’s method

PortTypes for mycarlat

PortTypes for mycarlot
I.Protocol

I.Protocol

Service (port) Service (port)

mycarlot mycarlot

mycarlot’s method

Loan Approved / Declined

Fig. 23 Graphical Petri net representation of Carlot and invoked Web Services

48

A dynamic approach to sketch the Petri net is also implemented. In this approach on each
step of program execution a token is passed to the next state of program and respective

transition (T) number along with place (P) number is updated. As the program executes a
token moves representing a new state of the system. At the end of program we get whole

execution path, from beginning to end, in the form of a Petri net.

5.2 Modeling Tool for Web Services

To capture this whole scenario a software-modeling tool is developed. Its first input in
the “main()" is method’s file name, which is invoking Web Services. This software
checks each line of method, finds the “if-else” statements and calls for Web Services.
Prior to access the Web Service’s method it needs WSDL file name as another input to
have communications information of that Web Services as mentioned above. To read
WSDL file “main()" calls “WSDL()” function. “WSDL()” reads a WSDL file line by
line and saves the information of the Internet Protocol being used by that Web Service,
name of Web Service and method, which is going to be invoked. Then it requires the
respective Web Services method file. To read Web Service’s method file “WSDL()"
calls “ReadWSMethod()". Like first method’s file this file is checked line by line, too. If
Web Service is calling another Web Service then again it needed respective WSDL file
and that called Web Services method, and so on. In this way “WSDL()" and

“ReadWSMethod()" calls each other alternatively and required information is collected.

49

Main

L WSDL()

Process
SubStr()

PetriNet()

!

!

Eliminate ()

ieEf()

50

\J-/_ﬂ ReadWS
Method ()
-

Clean ()
]
ProcessCode(}
l—
|

SetFlag() «—
SetNGetT() - —
SetNGetT2() <

Fig. 24 Abstract Diagram of Software

All method files are checked for all their “if-else” statements. When no more Web
Service is called then the program follows the return messages and finally comes back to
its first method file. Then the rest of this method file is checked, for another Web Service
call. If there is another web service call, then the required information is obtained as
described above and the sequence of computation is saved. After reading all WSDL files
and Method files, the program returns to “main()" for further processing towards Petri
net sketching of Web Services. The sequence number of file reading, with their name, is
saved. If the file method is calling other file the sequence number is labeled “C” but
when this method is returning then the sequence number is labeled “R”. Between two file

[

numbers with their label a sign is inserted to differentiate one file from the other. The

different particular letter is assigned to the particular conditional statement. For “If”
statement “1”, for “Else” statement “e”, for “Else If” statement “E” and for “End If” the
“f” are saved in a global array. In this global array all required information are stored and
ready for further processing. At this point control is in the “main()" which sends this
global array’s data to the "“ieEf{’)" to check if it is holding only valid letters otherwise
returns error message and program comes back in “main().

After verifying the validity of letters in array we need to match the “if”, “else”, “clse if”
and “end if” statements in the methods which is needed to determine the flow of
execution and necessary for Reachability analysis. To perform this matching the sub
string having conditional statements data string of one method file is passed to the
“ProcessSubStr(). This function searches first “f” moving pointer forward in the sub

string which show “End If” statement in the method and then pointer moves backwards to

find “i”” which show “If” statement. Then portion of the sub string is passed to

51

“Eliminate()" from the “ProcessSubStr()" to replace them with equal number of “*”
characters, which shows that this portion of the sub string of the method is perfectly
matching. Then program comes back in “ProcessSubStr()" to match next “If” and “End
If” statement and goes in “Eliminate()" to confirm the matching. As each “If” statement
must match with “End If” statement, if there is any mismatch then program show error in
the method. This mismatching also affects Reachability. At the end of “ProcessSubStr(
)7 all “17, “e”, 7 and “f” which are involved in invoking other Web Services are
converted in to “*”" and those which are involved in invoking other Web Services are left
but their matching is verified. When program comes back from “ProcessSubStr()" to the
“main()”’, we get confirmation of matching of “If” and “End If” statements. Now the
data string is ready to pass to “PetriNet()” for further processing and representing in
Petr1 Net form.

The resulting array from “ProcessSubStr()’ is passed to “PetriNet()" from “main()".
The “PetriNet()" sends data array to “Clean()” to remove all *“**” characters from the
string and after cleaning data string comes back in “PetriNet(), which sends this
cleaned data string to “ProcessCode()" for final processing. The “ProcessCode()" with
the help of three functions store the data in Petri net form. First of those three functions is
“SetNGetT2()", which process the if-else statements which are involved in invoking
Web Services. Second is SetNGetT() ” which handles calling (C) and returning (R}
methods and third function “SetFlag()” keep the record of forward and backward
movement of execution. When program returns from the “ProcessCode()" to the
“PetriNet()" then “PetriNet()" have enough information to present the Petri net of Web

Services and run Reachability analysis. Different abbreviations are used to represent the

52

different states of methods and WSDL. As P is for Places, which is representing message
data for methods and PortTypes for WSDL. T is for Transitions, which shows
computational work in methods and Service (ports) in WSDL. In each curly bracket first

P is starting place and second P is next place after performing transition.

5.3 Reachability

The Reachability analysis is part of our Petri net modeling software. It is applied at the
end of Petri net sketching. To perform Reachability analysis, the program takes two
inputs - one representing the beginning place number from where the Reachability
analysis will start and other the ending place number at which Reachability analysis will
end. Validity of starting place number and ending place number is checked, in other
words, at the initial state of the transaction there is a token in place Py and at the end of
the web services transaction, the final state will be defined by a token in place P4 only.
On giving range of starting place number and ending place number for Reachability
analysis, program reads a global array, which have the whole Petri net data and verifies
the given ranges of places. If both beginning and ending ranges are valid, it fills one array
with zeros (0) equal to all places in between both given ranges, which shows prior to
execution state. Then it starts reading all Petri net steps (places) one by one and on
reading each step it turns next zero into one which represents the movement of token
from one place to another and previous one is tumed into zero which shows that there is
no token anymore. In this way it goes through all Petri net steps till reaches the last step.
If the net is safe, at each step there will be only one token in at least one place while rest
places will be showing zero (no token) and at the end the token will be in the last place

only. If the net is live, all the places will eventually receive at least one token.

In our example, the Reachability analysis was applied on the whole Petri net and its result

are shown in the next fig 25.

Reachability testing:
Enter starting state number (-1 to exit): 0

Enter final state number : 26

Start State : 0

Final State : 26

{000000000000000000000000000}
{100000000000000000000000000}
{010000000000000000000000000}
{001000000000000000000000000}
{000100000000000000000000000 }
{000010000000000000000000000}
{000001000000000000000000000 §
{000000100000000000000000000 }
{000000010000000000000000000}
{000000001000000000000000000}
{000000000100000000000000000}
{000000000010000000000000000}
{000000000001000000000000000 }

{000000000000100000000000000}

54

{000000000000010000000000000 }
{000000000000001000000000000}
{000000000000000100000000000 }
{000000000000000010000000000 §
{000000000000000001000000000 §
{0000000000000006000100000000 }
{000000000000000000010000000}
{000000000000000000001000000}
{000000000000000000000100000}
{000000000000000000000010000}
{000000000000000000000001000}
{000000000000000000000000100}
{000000000000000000000000010}

{000000000000000000000000001 }

Fig. 25 An output of Reachability analysis

n
(W]

Chapter 6

Conclusion

In this thesis we present a model and a tool for representing Web services. Petri Net
formalism has been used to model web services and a C++/C tool has been developed to
generate a Petri Net representation of distributed web services and their WSDL. The large
number of distributed web services and corresponding distributed clients make the
modeling of web services a very complex task. The hierarchical modeling approach we
present in this thesis is designed to deal with the complexity of such systems.

The developed tool generates for the user the sequence of all execution steps performed
to complete a business process. This is achieved by invoking many Web services where
each Web service is accessed through its WSDL file and each web service does some
computational work. Such a model of the complete execution of tasks shows how the
intermediate and final results in the business transaction are being compiled and what
options are feasible during the execution of the business process at different steps. The
model is obtained by merging the representations of the individual web services. Our
approach allows the representation of web services in an abstract high-level form, which
can then be refined to show more detail. The model generated using the software tool
shows the flow of programs in which many programs are involved and invoking each
other.

Reachability analysis allows the evaluation of the Petri Net model for system deadlock

and enables the user to check if the Petri net is safe and live.

56

6.1 Future work

There are a number of areas for future work. The tool can be enhanced to provide a
graphical representation of the Petri Net representation of Web services.

A graphical representation of the Reachability tree can also be incorporated in the tool.
Our tool currently generates Petri Net models of a method’s conditional statements only.
Future work will include Petri Net modeling of more complex programming constructs.
Due to the complexity of the web, a more compact representation is desirable. Other Petri
Net formalisms such as colored Petri Nets may result in a more compact Petri Net
representation. Although, the work reported here forms the underlying basis of Web
services modeling, to implement such a system in a real intemet web-service
environment would require a lot of additional work.

Other issue such as modeling security has not been touched in this work and is an area for
future research.

The modeling of accessing the UDDI and then selection of Web Services out of

hundreds, which will be thousands very soon, can also be added to this work.

57

7.1

Chapter 7

References

Bibliography

Web Services and UDDI, IBM Corporation. http://www.ibm.com/services/uddi.
Kreger, H., 2001, "Web Services Conceptual Architecture (WSCA 1.0)", IBM
Software Group, www-4.ibm.com/software/solutions/webservices/resources.html|
Web Services, IMB Corporation.
http//www.xml.com/pub/a/2001/04/04/webservices/index.html?page=3#ibmtut
Technical Report: SOAP Version 1.2 Working Draft.
hittp://www.w3.org/TR/soap12

Technical Report: Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl

Universal Description, Discovery and Integration. http://www.uddi.org
Lambros, P., Schmidt, M., Zentner, C., 2001, "Combine Business Process
Management Technology and Business Services to Implement Complex Web
Services"”, www- 4.ibm.com/software/solutions/webservices/resources.html
McGregor, C.; Kumaran, . “Business process monitoring using web services in
B2B e-commerce”, Parallel and Distributed Processing Symposium, Proceedings
Intemational, IPDPS 2002, Abstracts and CD-ROM, 2002, pp. 219 -226
Rettberg, A.; Thronicke, W., “Embedded system design based on web services”,
Design, Automation and Test in Europe Conference and Exhibition, 2002.

Proceedings, 2002, pp. 232 -236

59

10

Il

12

13

14

15

16

17

IBM Web Services Architecture Tam. ““Web services architecture overview. The
next stage of evolution for e-business”, IBM Technical Document, Web
Architecture Library, 2000.

D.G. Schwartz. “Cooperating Heterogeneous Systems''. Kluwer Academic
Publisher, 1995.

Aoyama, M.; Weerawarana, S.; Maruyama, H.; Szyperski, C.; Sullivan, K., Lea,
D. “Web services engineering: promises and challenges”, Software Engineering,
2002. ICSE 2002. Proceedings of the 24th International Conference, 2002

pp. 647 —648

IBM, Web Services: Taking e-business to the Next Level, White Paper 2000,

http://www-3.ibm.com/services/uddi/papers/e-businessi.pdf

Szyperski, C., Component Software, Addison Wesley, 1988.

Hatashima, T.; Yokozeki, D.; Suzuki, M.; Tokumaru, K.; Miyata, S.; Kawasaki,
R.; Kato, J.,” WebServices processing platform - eCo-Flow”, Applications and
the Internet (SAINT) Workshops, 2002. Proceedings. 2002 Symposium on , 2002,
pp. 186 —195

C.A.Petr1, “ Kommunikation mit Automaten.” Bonn: Institute fur Instumentelle
Mathematik, Schriften des IIM Nr. 3, 1962. Also, English Translation,
“Communication with Automata.” New York: Griffiss Air Force Base. Tech. Rep.
RADCTR-65-377, Vol. 1, Suppl. 1, 1966.
Murata T, “Petri Nets: Properties, Analysis and Applications”, Proceedings of the

IEEE, Vol. 77, NO. 4, April 1989. pp. 541-580

60

18

19

Thomas J.P, Nissanke N, Baker K.D, ** A Hierarchical Petri Net Framework for
the Representation and Analysis of Assembly”, IEEE Transactions on Robotic
and Automation, Vol. 12, NO. 2, April 1996. pp. 268-279.

Faul B.M, “Using Petri net web services to build dynamic and adaptive service
oriented workflows”, Silver Falls Software, Inc.

Leymann F, Roller D, Schmidt M.T, ** Web services and business process
management”, IBM Systems Journal- New Development in Web Services and E-

Commerce, Vol. 41, NO. 2, 2002.

O1

7.2 Appendix

(A)

«
e e e e o et et b b et et et et et et et et

A Carlot program

e e e e e e et b et et et el e e e et e et e et et et ettt

‘Carlot program takes customer’s, vehicle’s and payments information. If customer needs financing then it

‘invokes two Bank’s Web ‘services to get financing and after getting response from the banks it checks
‘which bank is charging less interest rate and forwards ‘that to customer for finalizing the deal.

¢

e e e et Pt e e e et e et ot b e s

Public Class WebForml
Inherits System.Web.UI.Page

Protected
Protected
Protected
Protected
Protected
Protected

WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents

s

‘input boxes to collect required information

e s e b e e et et et et e e et et e e b

TextBox1l3 As System.Web.UI.WebControls.TextBox
TextBox1l9 As System.Web.UI.WebControls.TextBox
Process As System.Web.UI.WebControls.Button

Cash As System.Web.UI.WebControls.RadioButton
Finance As System.Web.UI.WebControls.RadioButton
lblBankReference As

System.Web.UI.WebControls.Label
Protected WithEvents lblCustomerNo As System.Web.UI.WebControls.Label
Protected WithEvents RadioButtonl As
System.Web.UI.WebControls.RadioButton
Protected WithEvents RadioButton2 As
System.Web.UI.WebControls.RadioButton
Protected WithEvents Buttonl As System.Web.UI.WebControls.Button
Protected WithEvents TextBox9 As System.Web.UI.WebControls.TextBox
Protected WithEvents lblInterestRate As
System.Web.UI.WebControls.Label
Protected WithEvents lblName As System.Web.UI.WebControls.Label
Protected WithEvents txtFirstName As
System.Web.UI.WebControls.TextBox

Protected
Protected
Protected
Protected
Protected
Protected
Protected

WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents

txtLastName As System.Web.UI.WebControls.TextBox
txtStreet As System.Web.UI.WebControls.TextBox
txtCity As System.Web.UI.WebControls.TextBox
txtState As System.Web.UI.WebControls.TextBox
txtZip As System.Web.UI.WebControls.TextBox
txXtSSN As System.Web.UI.WebControls.TextBox
txtHomePhone As

System.Web.UI.WebControls.TextBox
Protected WithEvents txtVehMake As System.Web.UI.WebControls.TextBox
Protected WithEvents txtVehMcdel As System.Web.UI.WebControls.TextBox
Protected WithEvents txtVehYear As System.Web.UI.WebControls.TextBox
Protected WithEvents txtNoOfPayments As
System.Web.UI.WebControls. TextBox
Protected WithEvents txtFinancelAmount As
System.Web.UI.WebControls.TextBox

Protected
Protected
Protected
Protected
Protected
Protected
Protected
Protected
Protected
Protected

WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents

1blTokenl As System.Web.UI.WebControls.Label
1blToken2 As System.Web.UI.WebControls.Label
Labelll As System.Web.UI.WebControls.Label
Labell0 As System.Web.UI.WebControls.Label
Label9 As System.Web.UI.WebControls.Label
Label8 As System.Web.UI.WebControls.Label
Label7 As System.Web.UI.WebControls.Label
Label3 As System.Web.UI.WebControls.Label
Labell As System.Web.UI.WebControls.Label
Label4 As System.Web.UI.WebControls.Label

62

Protected
Protected
Protected
Protected
Protected
Protected
Protected
Protected
Protected
Protected

WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents

Label5 As System.Web.UI.WebControls.Label
Label6é As System.Web.UI.WebControls.Label

Labell2
Labell3
Labell4
Labells
Labelle6
Labell?7
Labells

As
As
As
As
As
As
As

System.Web.UI.WebControls.Label
BlockedTokenl As System.Web.UI.WebControls.Label
BlockedToken2 As System.Web.UI.WebControls.Label

Protected
Protected
Protected
Protected
Protected
Protected
Protected
Protected
Protected
Protected
Protected
#Region

WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents
WithEvents

Labell9
Label20
Label21l
Label22 As
Label23 As
1blInitial
Label24 As

As
As
As

System
System
System
System
System
System
System

System.
System.
System.
System.
System.

.Web.
.Web.
.Web.
.Web.
.Web.
.Web.
.Web.
BlockedTokenHeading As

Web.
Web.
Web.
Web.
Web.

UI
UI
UI
Ul
UI
UI
UI

UT.
UI.

UI

Ul.

Ul

Label
Label
Label
Label
Label
Label
Label

.WebControls.
.WebControls.
.WebControls.
.WebControls.
.WebControls.
.WebControls.
.WebControls.

Label
Label
Label
Label
Label

WebControls.
WebControls.
.WebControls.
WebControls.
.WebControls.

As System.Web.UI.WebControls.Label
System.Web.UI
lblFinal As System.Web.UI.WebControls.Label
Label2 As System.Web.UI.WebControls.Label

" Web Form Designer Generated Code "

.WebControls.Label

'This call is required by the Web Form Designer.
<System.Diagnostics.DebuggerStepThrough(}> Private Sub
InitializeComponent ()

End Sub

Private Sub Page_ Init (ByVal sender As System.Object,

System.EventArgs) Handles MyBase.Init
'CODEGEN: This method call is required by the Web Form Designer
'Do not medify it using the code editor.
InitializeComponent (}

End Sub
#End Region

ByVal e As

Private Sub Page_ Load(ByVal sender As System.Object, ByVal e As

System.EventArgs)

End Sub

Handles MyBase.Load

'"Put user code to initialize the page here

Private Sub Buttonl_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs)

Handles Buttonl.Click

Dim strCustomerNo As String
‘Giving customer’s reference number

strCustomerNo

1)

Dim
Dim
Dim
Dim
Dim

1)

True Then
strRating As String
cBank As New localhostl.MyBank ()
clsResponse As localhostl.Response
abcBank As New localhost2.abcBank ()
abcclsResponse As localhost2.abcResponse

Now () .Day & Now() .Year & Left (UCase(txtFirstName.Text),
& Left (UCase (txtLastName.Text),
If RadioButton2.Checked

‘if customer needs financing

‘invoking Web Service MyBank’s method and ‘sending all ‘required information

txtLastName.
txtZip.Text,
txtVehYear. Text,

clsResponse
strCustomerNo,
ExXtSSN.Text,

Text,

txtCity.Text,

txtvVehMake.Text,
txtFinanceAmount.Text,

63

cBank.GetBankApproval (txtFirstName. Text,

txtState.Text,

txtVehModel . Text,

txtNoOf Payments.Text)
‘invoking Web Service abcBank’s method and ‘sending all ‘required information

abcclsResponse =
abcBank.abcGetBankApproval (txtFirstName.Text, txtLastName.Text,
strCustomerNo, txtCity.Text, txtState.Text, txtZip.Text, txtSSN.Text,
txtvVehMake.Text, txtVehModel.Text, txtVehYear.Text,
txtFinanceAmount .Text, txtNoOfPayments.Text)
Dim iInterestRate As Double
iInterestRate = Val (clsResponse.strInterestRate)
Dim iInterestRate2 As Double
iInterestRate2 = Val (abcclsResponse.strInterestRate)
* if loan request is declined by the any bank
If clsResponse.strInterestRate = "Declined" And
abcclsResponse.strinterestRate = "Declined" Then
lblInterestRate.Text = "Declined"
ElseIf clsResponse.strInterestRate = "Declined" And
abcclsResponse.strinterestRate <> "Declined" Then
lblName.Text = abcclsResponse.strFirstName & " " &
abcclsResponse.strLastName
lblInterestRate.Text = abcclsResponse.strlInterestRate
lblBankReference.Text = abcclsResponse.strReference
ElseIf clsResponse.strInterestRate <> "Declined" And

abcclsResponse.strinterestRate = "Declined" Then

lblName.Text = clsResponse.strFirstName & " " &
clsResponse.strLastName

lblInterestRate.Text = clsResponse.strinterestRate

lblBankReference.Text = clsResponse.strReference
Else ' if loan is approved by both banks
‘select charging lower interest rate
If iInterestRate < iInterestRate2 Or iInterestRate =
iInterestRate2 Then
lblName.Text = clsResponse.strFirstName & " " &
clsResponse.strLastName
lblInterestRate.Text = clsResponse.strinterestRate
lblBankReference.Text = clsResponse.strReference
Else
lblName.Text = abcclsResponse.strFirstName & " " &
abcclsResponse. strLastName
lblInterestRate.Text =
abcclsResponse.strInterestRate
lblBankReference.Text = abcclsResponse.strReference
End If
End If
Else ‘if customer is paying by cach/check
1blName.Text = txtFirstName.Text & " " & txtLastName.Text
lblInterestRate.Text = "Sold"
End If
End Sub
End Class

64

(B) WSDL file of a bank

WSDL is an XML document which describes:

e Messages that the Web Service understands and the format of its responses to those messages

* Protocols that the service supports

e Where to send messages

<?xml versio ="1.0" encodi_g="utf-8"?>
<definition xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:s="http://cww.w3.0rg/2001/XMLSchema"

xmlns:s0="http://tempuri.

org/"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:tm="http://microsoft.com/wsdl/mime/textMatching/"
xmlns:mi_e="http://schemas.xmlsoap.org/wsdl/mime/"
targetName pace="http://tempuri.org/"
xmlns="http://schemas.xmlscap.org/wsdl/">

<types>

<s:schema elementFormDefault="qualified"
targetName pace="http://tempuri.org/">

<s:element na ul0l ?="GetBankApproval"><!--bank’s method name- -

<s:complexType>
<s:sequence>

<!--below are parameters and their data types-- >

<!--accepted by the bank method--
<s:element minOccurs="0" maxOccurs="1" na_ul0l ?="strFirstName"

type="s:string" />
<s:element minOccurs="0"
type="s:string" />
<s:element minOccurs="0"
type="s:string" />
<s:element minOccurs="0"
type="s:string" />
<s:element minOccurs="0"
type="s:string" />
<s:element minOccurs="0"
type="s:string” />
<g:element minOccurs="0"
type="s:string" />
<g:element minOccurs="0"
type="s:string" />
<s:element minOccurs="0"
type="s:string" />
<g:element minOccurs="0"
type="s:string" />
<s:element minOccurs="0"
type="s:string" />
<s:element minOccurs="0"
type="s:string" />
<s:element minOccurs="0Q"
type="s:string" />
</s:seqguence>
</s:complexTypes>
</s:element>

maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"
maxOccurs="1"

maxOccurs="1"

65

>

na_ulocl
na_ulol
na_ulol
na_ulol
na_ulol
na_ulol
na_ulol
na_ulol
na_ulol
na_ulol

na_ulol

?="strLastName"

?="gtrCustomerNo"

?="strCity"

?="gtrStateCode"

?="gtrZip"
?="strSSN"

?="gstrVehMake"

?="gtrVehModeR"

?="gtrVehvear"

?="strFinanceAmount"

?="strNoOfPayments"

na_e="strTo_ulol ?n"

>

<s:element na_ ul0l ?="GetBankApprovalResponse'"s>
<s:complexType>
<s:sequence>
<s:element minOccurs="0" maxOccurs="1" na ul0l
?="GetBankApprovalResult" type="s0:Response" />
</s:sequence>
</s:complexType>
</s:element>
<s:complexType na_ul0l ?="Response">
<s:sequence>
<!--below are parameters and their data types which will-- >
<!--be returned by the bank method-- >
<s:element minOccurs="0" maxOccurs="1" na ul0l ?="strReference"
type="s:string" />
<s:element minOccurs="0" maxOccurs="1" na_ e="strFirstName"
type="g:string" />
<s:element minOccurs="0" maxOccurs="1" na ul0l ?="strLastName"
type="s:string" />
<s:element minOccurs="0" maxOccurs="1" na ul0l ?="strRating"
type="s:string" />
<s:element minOccurs="0" maxOccurs="1" na ul0l ?="strIAterestRate"
type="s:string" />
<s:element minOccurs="0" maxOccurs="1" na ul0l ?="strCustomerNo"
type="s:string" />
<s:element minOccurs="0" maxOccurs="1" na ul0l ?="strToUen"
type="s:string" />
<s:element minOccurs="0" maxOccurs="1" na_ul0l ?="BlockedTokenl"
type="s:string" />
<s:element minOccurs="0" maxOccurs="1" na ul0l ?="BlockedToken2"
type="s:string" />
</s:sequences
</s:complexType>
<s:element na ul0l ?="Response" nillable="true"
type="s0:Response" />
</s:schema>
</types>
<!-- messages protocol i.e SOAP-- >
<message na_ulQl ?="GetBankApprovalSoapIn":>
<part na_ulOl ?="parLmeters" element="s0:GetBankApproval" />
</message>
<message na_ul0l ?="GetBankApprovalSocapOut">
<part na ul0l ?="parLmeters" element="s0:GetBankApprovalResponse" />

</message><!--internet protocol for the message-- >
<message na ul0l ?="GetBankApprovalHttpGetIn"s>
<!--messages (parameters) name and data type-- >

<part na_ul0l ?="strFirstName" type="s:string" />
<part na_ul0l ?="strLastName" type="s:string" />
<part na_ul0l ?="strCustomerNo" type="s:string" />
<part na_ul0l ?="strCity" type="s:string" />

<part na_ul0l ?="strStateCode" type="s:string" />
<part na_ul0l ?="strZip" type="s:string" />

<part na_ul0l ?="strSSN" type="s:string" />

<part na_ul0l ?="strVehMake" type="s:string" />
<part na_ul0l ?="strVehModeE" type="s:string" />
<part na_ul0l ?="strVehYear" type="s:string" />
<part na_ul0l ?="strFinanceAmount" type="s:string" />
<part na_ul0l ?="strNoOfPayments" type="s:string" />

60

<part na_ul0l1 ?="strToUen" type="s:string" />
</message>
<message na_ul0l ?="GetBankApprovalHttpGetOut">
<part na_ul0l ?="Body" element="s0:Response" />
</message>
<message na_ul0l ?="GetBankApprovalHttpPostIn"> <!--second choice-- >
<!--of internet protocol-- >
<part na ul0l ?="strFirstName" type="gs:string" />
<part na ul0l ?="strLastName" type="g:string" />
<part na_ul0l ?="strCustomerNo" type="s:string" />
<part na_ul0l ?="strCity" type="s:string" />
<part na_ul0l ?="strStateCode" type="s:string" />
<part na_ul0l ?="strZip" type="s:string" />
<part na ul0l ?="strSSN" type="s:string" />
<part na ul0l ?="strVehMake" type="s:string" />
<part na_ul0l ?="strVehModeE" type="s:string" />
<part na_ul01l ?="strVehYear" type="s:string" />
<part na_ul0l ?="strFinanceAmount" type="s:string" />
<part na_ul0l ?="strNoOfPayments" type="s:string" />
<part na_ul0l ?="strToUen" type="s:string" />
</messages>
<message na_ulol ?="GetBankApprovalHttpPostOut">
<part na_ul0l ?="Body" element="s0:Response" />

</message>
<portType na_ul0l ?="M ué66 ?¢__ u83 ?oap">
<operation na ul0l ?="GetBankApproval"><!--name of the method-- >
<input message="s0:GetBankApproval ScapIn" /><!--takes SOAP-- >
<!--input message-- >
<output message="s0:GetBankApprovalScapoOut" />
<!--returns SOAP output message-- >
</operation>
</portType>
<portType na_ulo0l ?="M uéé ?¢_ u772 ?ttpGet">
<operation na ul0l ?="GetBankApproval'"><!--name of the method-- >

<input message="s0:GetBankApprovalHttpGetIn" />
<!--takes HttpGet input message-- >
<output message="s0:GetBankApprovalHttpGetoOut" />

<!--returns HttpGet output message-- >
</operations>
</portType>
<portType na_ul0l ?="M_u66 ?¢__u72 ?ttpPost">
<operation na_ul0l ?="GetBankApproval"><!--name of the method-- >

<input message="s0:GetBankApproval HttpPostIn" />
<!--Gets HttpPost input message-- >
<output message="s0:GetBankApprovalHttpPostout" />
<!--Sends HttpPost output message-- >
</operations>
</portType> <!-- Web Service name is MyBank-- >
<binding na_ul0l ?="M_u66 ?¢__ u83 2o0ap" type="s0:MyBankSoap">
<soap:binding transport="http://schemas.xmlsoap.org/soap/http"
style="document" />
<operation na_ulOl ?="GetBankApproval"s>
<soap:operation soapAction="http://tempuri.org/GetBankApproval®
style="document" />
<input>
<soap:body use="literal" />
</input>

07

<output>
<soap:body use="literal" />
</output>
</operation>
</binding>
<binding na ul01l ?="M_ué6 ?G__ u72 ?ttpGet" type="s0:MyBankHttpGet">
<http:binding verb="GET" />
<operation na_ ul0l ?="GetBankApproval">
<http:operation location="/GetBankApproval" />
<input>
<http:urlEncoded />
</input>
<output>
<mi_ul0l ?:mimeXml part="Body" />
</outputs>
</operation>
</binding>
<binding ma_ul0l ?="M u66 ?¢__ u72 ?ttpPost" type="s0:MyBankHttpPost">
<http:binding verb="POST" />
<operation na_ul0l ?="GetBankApproval">
<http:operation location="/GetBankApproval" />
<input>
<mi_ulOl ?:content type="application/x-www-form-urlencoded" />
</inputs>
<output>
<mi_ul0l ?:mimeXml part="Body" />
</output>
</operation>
</binding>
<service na ul0l ?="M_u66 ?¢_u34 ?>
<port na ul0l ?="M u66 ?¢_u83 ?7oap" binding="s0:MyBankSoap">
<soap:Lddre_s location=http://localhost/mybank/mybank.asmx />
<!--method’s address-- >
</ports>
<port na_ul0l ?="M _u66 ?¢__u72 ?ttpGet" binding="s0:MyBankHttpGet">
<http:Lddre_s location="http://localhost/mybank/mybank.asmx" />
</port>
<port na_ul0l ?="M _uéé ?¢__ u72 ?ttpPost"
binding="s0:MyBankHttpPost">
<http:Lddre_s location="http://localhost/mybank/mybank.asmx" />
</ports>
</service>
</definition >

68

©) Software

SO p—
// Objective: Petri net Modeling of Web Services and

// Reachability analysis

J = o= e o e o e 5 15 B 85t e S P 52 i et

/* SOFTWARE:

This software is developed to abstract the Petri net
modeling of interacting Web Services. It takes first input of web
site’s name to reads the methods of that web site, which is invoking
Web Services, collects if-else statements and gets Web Service’s name
to read its WSDL file. Before reading Web services method, it reads
that Web Service’s WSDL file because to communicate with any Web
Service the information about message, Internet protocols it supports,
and the http address of that Service is required. After getting this
information from WSDL file its reads respective Web Service’s method
and collects if-else statements. If this Web Service is invoking
another Web Service and program read their WSDL and methods files. This
reading goes on till no more web Service is invoked. Then results from
each file are collected and saved in a global array for further
processing towards Petri net formation.

The if-else statement with its end-if statements are matched and if
they are not matching it means there a problem in the execution of that
method, an error message is displayed. If every thing is fine then
program sketches the Petri net of this whole system and then runs
Reachability analysis on the sketched Petri net. */

#include "stdafx.h" //headers
#include "PetriNetWsS.h"
#ifdef DEBUG
#define new DEBUG NEW
#endif
//prototypes
void WSDL () ;
void ReadWSMethod () ;
bool ieEf (int chr);
bool ProcessSubStr (char *SubStr) ;
bool Eliminate (char *SubStr, int k) ;
void PetriNet (char FinalStr[300]);
bool Clean(char *Str, char*Dest) ;
bool ProcessCode (char *cDigit, char *cInd, char *cCond) ;
bool SetNGetT(char *cInd, int *T, int *P);
bool SetNGetT2 (char *cInd, int *T, int *P);
void SetFlag() ;
//global arrays and variables
int PN ([5] [50];
int PNCounter, LastP, LastT;
bool bPreviousReturn, bPreviousCond, bStart,Condition;
char myfile[30];
char filename[30];
char files[80] [80];
int filesIndex=0;
int counter = 0;
int Data([5] [50];
char mStartFromLeft [100] ;
char mTages[25];

69

char IfElse[300];
int mNoOfLines;
char mProtocol [25];
char WSName [10] ;
char strCheck[]l= "nothing";
int windex=0;
char StartFromLeft [26];
char Protocol[1l];
char LocationAddress[100];
char wsMethodName [100] ;
char WService[100];
char s[255];
int Start, End;
char Tages{100];
char wsTages[100];
char List[5];
char FinalList([3);
int p=0;
int P_col=0;
int index=0;
int yes = 0;
int WebService = 0;
int Address = 0;
int OperationName = O;
int NoOfLines;
char InvertedComma [1] ;
//global variables end here
// The one and only application object
CWinApp theApp;
using namespace std;
//main starts here
int _tmain(int argc, TCHAR* argv[], TCHAR* envpl[])
{
int nRetCode = 0;
// initialize MFC and print and error on failure
if ('AfxWinInit (::GetModuleHandle (NULL), NULL, ::GetCommandLine(), 0))
{
// TODO: change error code to suit your needs
_tprintf(_T("Fatal Error: MFC initialization failed\n"));
nRetCode = 1;

else

FILE *inFile;
memset (files, 0,sizeof (files)) ;
strcpy (mProtocol, ") ;
CString strSoap = "soap";
char buffer({100];
char wsdl([30] ;
int Counter=0;
memset (wsdl, 0, sizeof (wsdl)) ;
strcpy (wsTages, "") ;

//reads web sites method
cout<<"Please enter Web Site method file: ";
scanf ("%s", &myfile) ;
char cfilesIndex[10];
memset (cfilesIndex, 0 , sizeof (cfilesIndex)) ;

70

strcpy (files([filesIndex], myfile) ;
itoa(filesIndex, cfilesIndex, 10);
strcat (IfElse, cfilesIndex) ;
strcat (IfElse, "-");
index+=(int)strlen(cfilesIndex) +1;
filesIndex++;

inFile = fopen(myfile, "r");

if (inFile)

{

while (fgets (buffer, 100, inFile) != NULL)
{

if (buffer)

{

char string[l100]="";
char SubString[20]="";

char strGetIf[]= "If",;

char strGetElse[] = "Else";
char strGetElself[] = "ElseIf";
char strGetEnd[] = "End";

char strService[l= "<service";

char strLocalHost[]="localhost";

char strDot[]l=".";

char strBrackets[] = "()";

for (unsigned int i=0; i<strlen(buffer); i++)

sscanf (buffer+i, "%s", string);
if (string)

{
if (strstr(string, strGetEnd))

{

char LocalString(l100]="";

for (unsigned int k=0; ke<strlen(buffer); k++)

sscanf (buffer+k, "%s", LocalString) ;
if (strstr (LocalString, strGetIf))

{

IfElse [index]= 'f'; //end if
cout<<IfElse [index] <<endl;

index++;

break;

}
}

break;

}

.

f(strstr (string, strGetElseIf))

{

IfElse[index]= 'E'; //else if
cout<<IfElse [index] <<endl;
index++;

break;

}

if (strstr (string,strGetElse))

{

IfElse[index]= 'e'; //else
cout<<IfElse[index] <<endl;
index++;

71

break;

if (strstr (string, strGetIf))

IfElse[index]= 'i'; J/if
cout<<IfElse [index] <<endl;
index++;

break;

1

if (strstr(string, strLocalHost))

{

for (unsigned int i=0; i<strlen(string); i++)
{

sscanf (string+i, "%c", SubString);

if (strstr(string, strBrackets))

if (strstr (SubString, strDot))
{

if (strstr(string, strCheck))

{

break;

}

else

{

i++4;

strcpy (WSName, string+i) ;
strrev (WSName) ;

strcpy (WSName, WSName+2) ;
strrev (WSName) ;

strcpy (strCheck, WSName) ; / /WS name
//calling WSDL function to read WSDL file
WSDL () ;

strcpy (files[filesIndex], myfile) ;
itoa(filesiIndex, cfilesIndex, 10);
strcat (IfElse, cfilesIndex) ;
gstrcat (IfElse, "R-"};
index+=(int)strlen(cfilesIndex) +2;
filesIndex++;

break;

}

break;

}

}

}

break;

e S S e Nt

}

else
{

printf ("***File is not Find or ERROR in file***\n");
exit (1) ;

)

fclose (inFile) ;
cout<<endl;

}

cout << endl;
for(int j=0;j<filesIndex;j++)
{

cout << files|[j];

cout << endl;

}

for(int i=0;i<index;i++)

{
}

cout << endl;

char SubStr[255];

memset (SubStr, 0, sizeof (SubStr)) ;
for(int k=0;k<index;k++)

cout << IfElse[i];

{ //a function is called to check whether data is wvalid
if (isdigit (* (IfElse+k)))
{
while (* (IfElse+k) != '-') {k++;}

memset (SubStr, 0, sizeof (SubStr)) ;
Start = k+1;
End = 0;
while (true)
{
kK++;
if (ieEf (* (IfElse+k)))

{

strncat (SubStr, IfElse+k, 1);

End = k;
}
else
{
k--;
break;

}

if (strlen(SubStr) > 0)

{
}

ProcessSubStr (SubStr) ;

}
}
for(int 1i=0;i<index;i++)

{
}

cout << endl;
PetriNet (IfElse); //calling function to sketch the Petri net
return nRetCode;

cout << IfElsel[il];

73

bool ieEf (int chr)//function to check that if only if-else statements
are collected

{

if ((chr == 'i') || (chr == 'e') || (chr == 'E') || (chr == 'f'))
return true;
return false;
}
bool ProcessSubStr (char *SubStr)//it matches the if-else statements
with end-if
{
char *p = SubStr;
memset (S, 0, sizeof (S));
bool bError = false;
for (unsigned int k = 0; k < strlen(SubStr); k++)

{

if(*{p+k) == 'f')

{

if (!Eliminate (SubStr, k)) {
bError = true;

}
}

!

if (bError) return true;

return bError;
} //eliminate those if-else which are taking part in invoking web
services
bool Eliminate (char *SubStr, int k)
{

int t = k;

char *p = SubStr + k;

bocl bFound = false;

while(p >= SubStr)

if(*p == 'i')
{
memset (S, 0, sizeof (S));
strncat (S, SubStr, p-SubStr);
for (char *g=p; g <= SubStr +k; g++)
{
* ((IfElse+Start) + (int) (g-SubStr)) = '*'.;
g = l';
}
bFound = true;
}
if (bFound)
break;
p--3
}
return bFound;
}
void WSDL() //read WSDL file
{
FILE *wsFile;
char ptr[30];
int wCounter=0;
char cfilesIndex[10] ;
memset (cfilesIndex, 0 , sizeof(cfilesIndex));

74

memset (ptr, 0, sizeof (ptr));
cout<<"Please enter WSDL file of " <<WSName<<"
scanf ("%s", &ptr);

strcpy (Protocol, "") ;

char wsbuffer [100];

memset (wsbuffer, 0, sizeof (wsbuffer)) ;
char wsbuffCopy[100];

memset (wsbuffCopy, 0, sizeof (wsbuffCopy)) ;
char wsstring[100];

memset (wsstring, 0, sizeof (wsstring));
wsFile = fopen(ptr, "r"});

strepy (files[filesIndex], ptr);
itoa(filesIndex, cfilesIndex, 10);

strcat (IfElse, cfilesIndex) ;

strcat (IfElse, "C-");
index+=(int)strlen({cfilesIndex) +2;
filesIndex++;

if (wsFile)

{

while (fgets (wsbuffer, 100, wsFile) != NULL)

{
if (wsbuffer)
{
char strSocapl[]= "Socap";
char strPost[]= "HttpPost";
char strGet []= "HttpGet";

’

char strAddress|[] = ":address";
char strWebSerMethod[] = "<operation";

char strServicel[]= "<service";

char *pt = wsbuffer;
while(strlen(pt) > 0)
{
strecpy (wsstring, pt);
if (wsstring)

{

if (strstr(wsstring, strSoap))

{

wsTages [windex] =
windex++;
break;

}

'St'; //soap

if (strstr{wsstring, strPost))

{

wsTages [windex] =

windex++;
break;

}

Ipl,.

//httpPost

if(strstr(wsstring, strGet))

{

wsTages [windex] =

windex++;
break;

)
}

if (WebService==0)

75

!GI,.

//httpGet

{

if (strstr(wsstring, strService))
{

strrev (wsbuffer) ;

strcpy (wsbuffer, wsbuffer+3);
strrev (wsbuffer) ;

strcpy (WService, wsbuffer+17);
WebService++;

)
}
if (Address==0)
{
if (strstr(wsstring, strAddress))
{
strrev (wsbuffer) ;
strcpy (wsbuffer, wsbuffer+3);
strrev (wsbuffer) ;
strcpy (LocationAddress, wsbuffer+20);
address++;
}
}
if (OperationName==0)
{
if (strstr(wsstring, strWebSerMethod))
{
strrev (wsbuffer) ;
strcpy (wsbuffer, wsbuffer+2);
strrev (wsbuffer) ;
strepy (wsMethodName, wsbuffer+15);
OperationName++ ;
}
}

pt++;

else

printf ("***File is not fined***\n");
return;

}

fclose(wsFile) ;
List[0]='S";
List[1]='P';
List[2]1="G"';
for (int sort=0; sort<3; sort++)

{

for (int f=0; f<windex; f++)

{

if (wsTages [f]l==List [sort])

{
FinalList [P_col]=List [sort];
P_col++;

76

break;

continue;

WebService=0;
//calls function to read respective Web
//Services method
ReadWSMethod () ;
strcpy (files[filesIndex], ptr);
itca(filesIndex, cfilesIndex, 10);
strcat (IfElse, cfilesIndex) ;
strcat (IfElse, "R-");
index+= (int)strlen(cfilesIndex) +2;
filesIndex++;

}

void ReadWSMethod () //this function reads Web services method
{
FILE *MethodFile;
char method[30];
memset (method, 0, sizeof (method)) ;
cout<<"Please enter the method file of "<<WService<<": ";
scanf ("%$s", &method) ;
int mCounter=0;
char cfilesIndex[10];
memset (cfilesIndex, 0 , sizeof (cfilesIndex)) ;
strcpy (files[filesIndex], method) ;
itoa(filesIndex, cfilesIndex, 10);
strcat (IfElse, cfilesIndex) ;
strcat (IfElse, "C-");
index+=(int)strlen(cfilesIndex) +2;
filesIndex++;
char MethodBuffer [100] ;
char strWebMethod[]= "<WebMethod()>";
char MethodString([100]="";
MethodFile = fopen (method, "xr"};
if (MethodFile)

{

while (fgets (MethodBuffer,100,MethodFile) !|= NULL)

{

for (unsigned int i=0; i<strlen (MethodBuffer); i++)
{

sscanf (MethodBuffer+i, "%s", MethodString) ;

if (MethodString)

{

if (strstr (MethodString, strWebMethod))}

while (fgets (MethodBuffer, 100, MethodFile) != NULL)
{

if (MethodBuffer)

{

char MethodSubString[20]="";

char strGetIf[]= "If";

char strGetElse[] = "Else";

77

char strGetElseIf[] = "Elself";

char strGetEnd[] = "End";

char strService[]l= "<service";
char strLocalHost[]="localhost";
char strDot[]=".";

char strBrackets[] = "()";

for (unsigned int i=0; i<strlen(MethodBuffer);

{

sscanf (MethodBuffer+i, "%s", MethodString);
if (MethodString)

{

if(strstr (MethodString, strGetEnd))

{

char LocalString[100]="";

for (unsigned int k=0; k<strlen(MethodBuffer) ;

{

sscanf (MethodBuffer+k, "%s", LocalString)};
if(strstr(LocalString, strGetIf))
{

IfElse[index]= 'f"'; //end if

cout<<IfElse [index] <<endl;

index++;

break;

}

}

break;

1

if (strstr (MethodString,strGetElself))
IfElse[index]= 'E'; //else if
cout<<IfElse[index] <<endl;
index++;
break;

if (strstr (MethodString, strGetElse))

{

IfElse[index]= 'e’'; //else
cout<<«IfElse [(index] <<endl;

index++;

break;

}

if (strstr (MethodString,strGetIf))

{

IfElse[index]= 'i'; //1if
cout<<IfElse [index] <<endl;

index++;

break;

}

if (strstr(MethodString,strLocalHost))

{

for (unsigned int i=0; i<strlen(MethodString); i++)

{
sscanf (MethodString+i, "%c", MethodSubString) ;
if (strstr (MethodString, strBrackets))
{
if (strstr (MethodSubString, strDot))

{

78

i++)

k++)

}

if (strstr (MethodString, strCheck))

{
}

else

{

break;

1++;

strcpy (WSName, MethodString+i) ;

strrev (WSName) ;

strcpy (WSName, WSName+2) ;

strrev (WSName) ;

strcpy (strCheck, WSName) ; / /WS name
WSDL () ; //calling function to read WSDL file
strcpy (files[filesIndex], method) ;
itoa(filesIndex, cfilesIndex, 10);

strcat (IfElse, cfileslIndex);

strcat (IfElse, "R-");
index+=(int)strlen(cfilesIndex) +2;
filesIndex++;

break;

else

printf (v***File is not Find or Error in file***\n");
return;

}

fclose (MethodFile) ;
cout<<endl;

void PetriNet (char FinalStr[300])//this function sketches Petri net

{

char Final [300};
memset (Final, 0, sizeof(Final)) ;
for(int p = 0; p<5; p++)

for (int g=0; g<50;g++)

PN [p] [gql=-1;
PNCounter = 0;
LastP = -1;
LastT = -1;
bPreviousReturn = false;

if (IClean(FinalStr, Final))//remove all star symbols

{
cout<<"ERROR in Method"<<endl;
exit (0) ;

79

}

char *ptr = Final;

int len = (int) strlen(Final) ;

bool bError = false;

cout << endl << endl;

bStart = true;

cout << "Processing if/else conditionals." << endl;

Cout €< "EaIoeessms s mimee s e e e SE S SRS " << endl;

while(ptr < Final + len)//giving a final shape to
// collected information

{

char c = *(ptr);

char cCodel4] = "";

char cDigit[3] = "";
char cInd([2] = "";

char cCond (2] = "";
if(tisdigit(c))

{

bError = true;

break;

}

strncat (cDigit, ptr, 1);
strncat (cCode, ptr, 1);
ptr++;

c = *ptr;

if (! (ptr < FinalStr + len))
{

bError = true;

break;

if (isdigit(*ptr))

{

strncat (cDigit, ptr, 1);
strncat (cCode, ptr, 1);
pEtr++;

c= *ptr;

if (! (ptr < FinalStr + len))

bError = true;

break;
}
if((c == 'C') || (¢ == 'R'))
{
strncat (cInd, ptr, 1);
strncat (cCode, ptr, 1);
}
else if((c == 'i') || (c == "e') || (¢ == 'E") || (c ==
{
strncat (cCode, ptr, 1);
strncat (cCond, ptr, 1);
}
else
{
bError = true;
break;
}
)

80

lfl))

else

if((c

I

|C|)

strncat (cInd, ptr,
strncat (cCode,

}

else if((c

— ||

else

}
}

if (! ProcessCode (cDigit,

{

bError

i) |] (e

break;

}

ptr++;

}

if (Condition)

//when if-else statement is

1) ;

ptrl 1) ;

== 'e') (c "£1))

strncat (cCode, ptr,
strncat (cCond, ptr,

1) ;
1) i

bError
break;

true;

cInd, cCond))

true;

involved in

// invoking web services

{

PN[O] [PNCounter] =
PN[1] [PNCounter]
PN [2] [PNCounter]
PN[3] [PNCounter]
PN[4] [PNCounter]
PNCounter++;

PN[0] [PNCounter] =
PN [1] [PNCounter]
PN[2] [PNCounter]
PN [3] [PNCounter]
PN [4] [PNCounter]
PNCounter++;

}

]

0;
LastP;
++LastT;
++LastP;
0;

++LastP;
0;

else//when if-else statement is involved in inwvoking web services

{

PN[0] [PNCounter]l= 0;
PN [1] [PNCounter] = LastP;
PN [2] [PNCounter] = ++LastT;
PN[3] [PNCounter] = ++LastPp;
PN [4] [PNCounter] = 0;
PNCounter++;
}
cout << "Processing complete." << endl;
cout << "Petri Net" << endl;
for{(int v = 0; v < PNCounter; v++) //printing Petri net

{

cout << "{r;

81

}

int
int
int
int
int
int

cout << "P" << PN [1] [v] << M,
cout << "T" << pN[Z] [V] << M,
cout << "P" << PN[3] [v];

cout << "}';

cout << endl;

isStart
iFinal
StartNdx = 0;
FinalNdx = 0;
SPos = 0;
EPos = 0;

||
o o

while (true)

{

//Reachability analysis
cout << endl << "Reachability testing:"<<endl;
cout << "Enter starting state number (-1 to exit): ";
cin >> iStart;

if (iStart == -1)
break;

if ((istart > LastP) || (iStart < 0))

{

cout << "Invalid state number. Please try again" << endl;
continue;

}

cout << "Enter final state number : ";
cin >> iFinal;
if((iFinal > LastP) || (iFinal < 0) || iFinal <= iStart)

{

cout << "Invalid state number. Please try again" << endl;

continue;
}
int h = 0;
int SPos = 0;
int EPos = iFinal - iStart + 1;
for(int w = 0; w <= PNCounter; w++)
1f(PN[1] [w] == iStart)

StartNdx = PN[1] [w];

break;
}
}
for(int x = PNCounter; x >= 0; x--)
{
if (PN[3] [x] == iFinal)
{
FinalNdx = PN[3] [x];
break;
}
}
cout << endl << "Start State : " << iStart << endl;
cout << "Final State : " << iFinal << endl;

cout << "{";

for (h=SPos; h<EPos; h++)

{
}

cout << "}" << endl;
cout << "{";
for (h=SPos; h<EPos;h++)

"o.
’

cout << "0

{
if (PN[1] [StartNdx] == h + iStart)
cout << "1 "“;
else
cout << "0 ";
}

cout << "}" << endl;

for(int f = StartNdx; f<FinalNdx; f++)

{
cout << "{";
for (h=SPos; h<EPos; h++)
{
if(PN[23] [f] == h + iStart)
cout << "1 ";
else
cout << "o v;
}
cout << "}" << endl;
}

}
//saving sketch of Petri net
bool ProcessCode (char *cDigit, char #*ciInd, char *cCond)

{
if (bStart)
{
LastP = 0;
bStart = false;
}
int P = 0; int T = 0;
if (stremp (cCond, "i") == 0) //when if statement
{
SetNGetT2 (cCond, &T, &P);
PN [0] [PNCounter]= 3;
PN [1] [PNCounter] = P;
PN [2] [PNCounter] = T;
PN [3] [PNCounter] = ++LastP;
PN [4] [PNCounter] = atoi(cDigit);
PNCounter++;
//when else and elseif statement
if (((strcmp(cCond, "e") == 0) || strcmp(cCond, "E") == 0))
{

SetNGetT2 (cCond, &T, &P);

PN [0] [PNCounter]= 5;

PN [1] [PNCounter]= P;

PN [2] [PNCounter]= T;

PN [3] [PNCounter] =++LastP;

PN [4] [PNCounter]= atoi (cDigit) ;

83

PNCounter++;

}
if (strcmp(cInd, "C") == 0) //when call for web service or WSDL
{

SetNGetT (cInd, &T, &P);

PN [0] [PNCounter]= 1;

PN [1] [PNCounter] P;

PN [2] [PNCounter] = T;

PN [3] [PNCounter] =++LastPp;

PN [4] [PNCounter]= atoi (cDigit) ;

PNCounter++;

}‘
if (strcmp (cInd, "R"} =

{

i}

0)//when returning to web service or WSDL

SetNGetT(cInd, &T, &P);
PN[0] [PNCounter]
PN (1] [PNCounter]
PN ([2] [PNCounter] = T;

PN [3] [PNCounter] =++LastP;

PN [4] [PNCounter]= atoi (cDigit) ;

non
T o

SetFlag () ;
PNCounter++;
}
if(strcmp (cInd, "R") == 0)
bPreviousReturn = true;
if (strcmp(cCond, "i") == 0)
bPreviousCond = true;

return true;
)
//sets flag when there is call or
//returning to the web service or WSDL
bool SetNGetT(char *cInd, int *T, int *P)
{

bool bResult = false;

bool bFlag = false;

for(int k = PNCounter-1; k>=0;k--)

{

if (PN[O] [k] == 2)

bFlag = true;
*T = PN[2] [k];
*P = PN[1] [k];
]
if((PN[O] [k] =
break;

1) && bFlag)

}

if (bPreviousReturn && (strcmp(cInd, "C")==0))

{

bPreviousReturn = false;
return true;

*T ++LastT;
*P = LastP;

}

return false;

84

} //sets flag when there is if-else statement
bool SetNGetT2 (char *cCond, int *T, int +*P)
{

bool bResult = false;

bool bFlag = false;

for (int k = PNCounter-1; k>=0;k--)

{

if (PN [0] [k] == 3)

bFlag = true;
*T = PN[2] [k];
*P = PN[]-] [k]:

if ((PN[0] [k] == 1) && bFlag)
break;

}
if (bPreviousCond&& (strcmp (cCond, "e")==0) | | (strcmp (cCond, "E") ==0))
{

bPreviousCond = false;

return true;
}
else if(strcmp{cCond, "f") != 0)

{

*T ++LastT;
*P = LastP;

}

return false;

}
void SetFlag() //sets flag when return is matched with call
{

for(int k = PNCounter-1; k>=0;k--)

{

if(PN[O] [k] == 1)

PN [0] [k] = 2;
break;

}

}//clean the stars from the array which were inserted to verify the
// Matching of if-else statements with end-if statements.
bool Clean(char *Str, char *Final)
{
char *ptr = Str;
int len = (int)strlen(Str);
bool bError = false;
Condition = false;
char CheckCond[] = "f";
cout << endl << endl;
while(ptr < Str + len)

char ¢ = *(ptr);
char cDhigit([3] = "";
char cCode[2] = "";
char cCond([2] = "";
if(isdigit(c))

{

strncat (Final, ptr, 1);

85

}

else if ((c == 'C") [| (c == 'R'))

{
}

else if((c=="'i") || (c=='e") || (c == 'E')

{
}

Ptr++;

strncat (Final, ptr, 1);

strncat (Final, ptr, 1);

}

if{strstr (Final, CheckCond))

{
}

return true;
}//program ends here

Condition = true;

86

-

V)

VITA

Muhammad Asif Javed
Candidate for the Degree of

Master of Sceince

Thesis: PETRI NET MODELING OF WEB SERVICES
Major Field: Computer Science
Biographical:

Personal Data: Born in Sargodha, Pakistan, on December 09, 1966, son of
Muhammad Younis Javed

Education: Graduated from High School Bhowana, Distt. Jang, Pakistan in 1981;
received a Bachelor of Science Degree in Biology in 1987 and Master of Science
Degree in Zoology in 1990; from Punjab University, Lahore, Pakistan,
respectively.
Completed the requirements for the Master of Science Degree with a major in
Computer Science at Oklahoma State University in May 2003.

Experience: Worked as a Research Assistant in USAID on a project managed by Kansas
State University, Kansas from April 1990 to August 1992 in Lahore, Pakistan.
Employed as an Assistant Sales Manager with a Jamjoom Vehicle’s and
Equipment, Riyadh, Saudi Arabia from August 1992 to January 1999.

