SECURE OBJECT SHARING ON JAVA CARD

By
SYENG HO JANG
Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma

2000

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
May, 2003

SECURE OBJECT SHARING ON JAVA CARD

Thesis Approved:

S A

~ Thesis Ad\«lSOf

Ea

(it gﬂuﬂrffg A

Mﬁacu,ﬂ

724 b Ot

D&ert of the Graduate College

PREFACE

This research concerns enhancement in on-card verification of downloaded
applets in Java Card technology. In this thesis, we propose the on-card installer with a
one-way hash function to support on-card verification of download applets. The hash
value generated from the on-card installer is used to verify download applets when they
try to gain a S10 from a server applet.

This thesis is organized into five chapters and an appendix. Chapter |,
Introduction, depicts the background of Java Card technology, the current problem in the
Java Card platform, and the objectives of this research. Chapler 2, Literature Review,
introduces fundamental concepts and back ground knowledge on Smart Card, Java Card,
and message digest algonnthms. Chapter 3, Secure Object Sharing, presents solution to
meet the objectives. Chapter 4, Secure Object Sharing Simulation, simulates the object
sharing process between a server applet and a client applet. Chapter 5, Conclusion,
draws a conclusion of enhancement in on-card verification of downloaded applets.

Appendix presents source codes that are used for the simulation.

1

TABLE OF CONTENTS

Chapter Page
L TN R I T T N 0 B0 i 00 o mm e s SRS S i e T B AR AR B 1
L o T B b s |
L2 Current Problems. oo i vivs . o siisstuings .. o i ve s by e desia vy sty Yot e 2

E 3 OO BELIVEG | oo o s oo s ms it e o R B S S R A S SRR N R ah Tk 3

Z; LETERATUIBE REVIEW < oo ccins it s e it s i v g s st Mea oo s o D ek ey i 5
2] SIORTTCRRL .. e i o o o s e A B AR A SR RS L S o e S e Wi A oy S e 5
Smart Card ClassIfICAtIONccoiiiit i o e e e et ees S

Smart Card HardWareccoooooii i et e e rber e e e 7

Smart Card Operating SySLEIMcooou it it e 8

CAT] ACCEOTANCE IMENNCE o i s rin s oo e i S8 e o2 S 4 S50 A 08 9

smart Chird Commimicalion cuenaessne sanar s L Site oG8 6 b S 9

Smart Card Standards and Specification......ccoooeviviiriiiiaes i 11

2.2 JAVACAIA ..o ivieie ettt et e eaa oo eh e aa e e e et e e aaa s sraa e 12
BB o et e s i s e A A S i S S e R O S 13

Java Card Language Subsetcouoiiii e e 14

Java LS00 VITTUal WIRERIDE v v s savisin s estaates titaigoy pave vt v iimss VA 14

CAP FIlE FOIIAL ..ot ee e e e e a e eeae e e e e et eea et e e 16

JaAvE AT EOBIINRINDTR s i cinnsniirsisnnsens nasds S o senss w5 i i 2 SR SR iS5 16

Java Card Runtime EnVITONMENto voiiii e 16

PRDPICE X RO 00,500 2 o ainos Sttt s v S YR S RO 18

APPIEE ODJECE ...t et e et et e 20

Java Card TranSaCtioNo et e ettt e e s e e 21

Applet Fiteweall cco oo, oo S0 SR SRR L e enaaa s 22

COMNEEXT SWITCR ..ottt e eeee e = ettt et e e e 23
DipenCand FraneWork oo oo sonmevsimms ¢ woesinssnagosn gt 0ol 25

2 INIERRA RS TITESY ity idt i o s b o M RS o LS il i mm nimmm e RS 25
One-Way Hash FUNCHON.............cooeemomem e e 26
Megsase Digesl AlBOTtHing. oo vevssce s e siatis ssng s g Ui o 27

Secure Hash ATZOTTTRMIooioeeem i e e e 28

Chapter Page

3. SECURE OBJECT SHARINGcooiiiit e, 29
3.1 APPLet INSTAlTALION ..o e et 29
A C o1 115 S OSSO TR U UPEUDTPTOUUROURURPUPIRPURT § |
OfT-Card Installation Program and Installer.................ccc=<eoreererieesccceciiiienns 31
llepsl INSIAIAIGN oo pee et o e S R s 32

32 B0t SRRTIEE o0ttt iin e s ST e R s 33
Shareable Interface Mechanism..........__._....._.........ccoce. 34
el AP pIet W BRI AR i -smion i3 i s SGas - s Wt AR S S R 37

3.3 Enhanced Applet VerifiCation.........c.cco oo iee et cae e 38
Installer with a One-Way Hash Function.....................c...ccccoeee s st 39
Secure Object Sharing Processcoeiiiieic i 42

4. SECURE OBJECT SHARING SIMULATIONo 45
4.1 Java Card 2.2 Development Kit...........oo. i 47
4.2 Object Sharing Process Simulation with the Existing Approach..................... 47
Shared Informationoooiiiin e e 47
MG ST BRTTEEE. . o iacsn anasi veve v it v e S R A RS S 33 SRS 45 H 48

.3 IVIBBEREE LITRBRL .. o duonsius s st et RN o e S R 05 R S 3 i AN RN R 50
Propostd On-Card Insaller.........coimnmnsisins b e Aes S e SR e s 50

Hash Value of the Client Applet.............. 51
AP IR LRRI O i o s s/ s s o 58 0 S8 58168 A Y A3 52
Enhanced Client Applet Verification ... c e, 53
Updated a Hash Value of the Client Applet. ..o, 57

BIBLIOGRAPHY ...ttt it vttt ST 61
A PN i o iR S ikt o om mme A S R S 2 B SR I IR S ER AR 63
AUEIVIIE BV o s me o e S i s o e it i AR S SO s S S 63
ATIMIleINterface JAVA......coooi e et e e 67
B TP PN @ 5 oot e s o i S e B 0 e s o8 SRR e Ao A SR 67
HOSAITMIIE JAVA ..o st 70
DG PUTSE OV - oo nihmmmio s i 3yl AR S RS0 e o 55 S e e 74
HashlInstaller java............... OSSR TG Rt s e I G T MR L AT 78
HashInstallerInterface Javaooooomee i 97

Chapter Page
HVGeneratorjava......... s e e B B A e e sy buis vesdais s Jaae ik 97
TermINal JAVA ... ettt et 112

vi

LIST OF TABLES

Table Page
1. Smart Card COMPATISONISiiiieiiiiii ittt e e es e 6
2. The Methods in the Class javacard.framework. Applet..........cooooooiiiii e 19

Vil

LIST OF FIGURES

Figure Page
I Conuiand- AP DU SIS 50 . o s erisnstianmmionsesfonss S THAR S SR esasa s Suia R R PN 11
2 Responte APDUESTUCIITE iococn e rursfiend it SN S S o G AT 11
3: Sinicture of Appheabion Idenbier: o e s iniies st e 14
4 Java Card Vivhial MaCHINg .uon s s iveite e s i Wit e e esseusssas Fesans 15
3. JavarCand Rubtinge EnVITODMACIIL < o.ove oo s e fisia it isisiis SR vsianis s Mt g s e 18
b Applet EXCEURDTE STRIEN.. .. q vuin s s oot s oo s Sy o s o S i i i 20
T AP et L O T VRN ISR OITN cc5.5m0sn i s 11508 i i s e 48 5 R it weo 20
B APPIEE FITEWA o i i oo R e s A H55 SE B SOeBeS Ei 23
9. One-Way Hash FUNCHOMN. ..o cieecree e e ettt cesnaeceenee s 20
10. Applet Installation ProCesscooiiiiiiiiiiiiiiiiirii i s et 30
11, Object Sharing PrOCESSiooeveiiieiiee et e ettt e 35
12. Installer with a One-Way Hash Function................coccciiiiiiin oo 41
13. Secure Object Sharing ProCessccocoiriiiiiiiiiiiiiiiiitie e et aene s 42
14. The Usage of Tools in the Java Card 2.2 Development Kit46
15. Host Application for the AirMile with Existing Approach 49
16. Host Application for the EPurse with Existing Approach............................. 49
17. Hash Value Generator with the Hash Value of EPurse Applet 51
18, Termimal APPLCBHON, orse s isiomitssd s a8 1S S mmam et smens s e b stesens 53
19. Secure Object Sharing Simulation ..o e 54

viil

Figure

20. Host Application for the AirMile with Our Approach..............ccocvviii S5
21. Host Application for the EPurse with OQur Approach ... 56

22. Update the Hash Value of the EPurse Applet in the AirMile Applet

1. INTRODUCTION

1.1 Background

The rapid growth of the Intenet has changed the mode of business dealings from
the traditional face to face in-store transactions to worldwidc on-line transactions directed
with a few mouse clicks in the home or office. For the electronic business market to
reach its full potential, technology must offer the same level of trust as face to face
business relations and must be able to handle business transactions in an efficient and
user-fnendly manner.

Smart cards have the potential to provide great security and portability due to the
added intelligence of a microprocessor on the card, their size and computing ability.
Smart cards therefore afford a way to enable secure transactions and a broad range of
electronic business. These days, smart cards are mainly used for prepaid phone cards,
electronic purses, retail royalty cards, and storage of identification and medical records,
among other applications. The demand for smart cards is growing at a rate of 40 percent
per year [1]. Currently, over 3 billion cards are in circulation worldwide with over 15%
of the total in use in the United States and Canada [2].

However, smart cards have some limitations such as a small universe of
knowledgeable programmers and limited flexibility to download applications into cards
[3]. These factors prevent a broader deployment of smart card applications. The inner
workings of smart cards differ widely from one manufacturer 1o another even though the
cards are standardized in size, shape, and communication protocol. As a result,
developing smart card applications have been limited to a small group of highly skilled

and specialized programmers. Also, in the traditional approach, smart card applications

are burned in the chip, so after the card is issued, the embedded application cannot
evolve.

A Java card is simply defined as a smart card that is capable of running
applications called applets written in the Java programming language, and it offers a way
to overcome the limitations of existing smart cards. While the Java Card platform
preserves many of the benefits of the Java programming language such as productivity,
security, robustness and portability across different chip architectures, it also provides
several unique benefits. In the Java Card platform, new applets can be installed securely
at any time, limited only by the memory size after a card has been issued, so card issuers
can have the ability to dynamically respond to their customer’s changing needs. Also, the
Java Card platform provides a secure environment using an applet firewall that enables
multiple applications supplied by different service providers to coexist securely on a
single card.

1.2 Current Problems

Even though Java Card technology provides a secure environment to enable
multiple applets supplied by different vendors to coexist via the applet firewall
mechanism and cooperate securely by way of the object sharecable interface mechanism
on a single card, enhancement in on-card verification of downloaded applets is still under
consideration.

In the Java Card platform, the Java Card installer, an on-card component to install
an applet on Java Cards, does not verify a converted applet (CAP) file that consists of
applet classes and is the loadable and installable unit on the Java Card platform [3]. This

means the correctness and integrity of a CAP file are verified off-card, and the installer

on the Java Card platform docs not perform most of the traditional Java verifications at
class-loading time. For this reason, it is possible for a malicious applet to be installed
onto a card via illegal applet installation process.

In Java Card technology, cooperation between applets provided by different
vendors 1s achieved through a shareable interface object (SIO) that is an object instance
of a class implementing one or more shareable interfaces of an applet. To cooperate with
other applets provided by different vendors, the behavior of a S1O should be available for
other application providers who are asked not to reveal the behavior of the SIO.
However, there is no guarantee that the application providers will not share it with
unauthorized means. Therefore, a malicious applet that can get a SIO from other applets
can be developed. Once the malicious applet is installed onto a card by way of an illegal
applet installation process, the malicious applet can access sensitive data and service of
other applets supplied by different vendors by invoking one of other applets’ SIO.

1.3 Objectives

The purpose of this research is to enhance Java Card security, and our objectives
are following:

The first objective is to improve on-card verification mechanism of downloaded
applets. Beyond minimum-security protections enforced by the on-card installer and the
Java Card Runtime Environment in the Java Card platform, Java Card technology does
not standardize applets installation policy. For this reason, a malicious applet can be
installed onto a card via illegal applet installation process, and determination of

validation of applets relies on cryptographic exchange algorithms that may exist between

applets. However, the most frequently anticipated security concerns have been developer
mistakes and design oversights.

The second objective is to improve a client applet verification mechanism before
a server applet agrees to share its SIO with a client applet. In the Java Card platform, a
server applet determines validation of a client applet only by the client’s AID and secret
parameter before the server applet agrees to share its SIO. Therefore, there is no way for
a server applet to reject a malicious client applet that impersonates with a valid AID and

secret parameter before it agrees to share its SIO with the malicious applet.

2. LITERATURE REVIEW

In the Java Card platform, card applications called applets can be added at any
time onto the cards after the card has been issued while applications in many embedded
systems need to be burned into the ROM during manufacture. Also, multiple applets
from different service providers can coexist and cooperate securely on a single Java Card.
This thesis considers on-card verification of downloaded applets, and in our novel
approach, the on-card installer with a one-way hash function supports on-card
verification of downloaded applets that cooperates with other applets from different
service providers on a single card. Here, the one-way hash function is used in the on-card
installer to support verification of downloaded applets that cooperates with other applets
residing on the same card because developing a malicious applet that can request service
to other applets and also has the same hash value is almost impossible. In this chapter,
we first review smart cards and Java cards in sections 2.1 and 2.2 respectively. Then, we
review message digest algorithms in section 2.3.

2.1 Smart Card

A smart card is similar in appearance to a credit card, but has electronic circuits
embedded in silicon in the plastic substrate of the card. Unlike a magnetic stripe card, a
smart card can carry all necessary functions and information on the card, so it does not
require access to remote database at the time of the transaction. Smart cards have
enjoyed wide acceptance in many application areas due to its added intelligence of a
microprocessor, size and computing ability.

Smart Card Classification

There are two major categories of smart cards; embedded with either only a

nmemory chip with non-programmable logic, which is called a memory card, or a
microprocessor and memory chip which js called a microprocessor card [3]. The

comparison of two categories of smart cards with magnctic stripe cards 1s illustrated in

Table 1.

' - N Max. Data . : - 2, Caost of Reader
I)»/m:of(‘ards Capacity Processing Pow_cr_ 1 Cost _of(ard and Connection
Magnetic SIrip |40 pytes None $0.20 - $0.75 $750

Cards .. e, i o
Memory Cards 1 Kbytes None $1-%$2.50 $500
Mi_c'roproccssor 8-bit CPU, moving T .) .
. Cards 8Kbytes | 5 16-bitand 32-bit | ! 51 $500

Tablel. Smart Card Comparisons (2]

The typical memory cards hold up to |- 4 KB of data. but do not have processor
on the card with which to manipulate that data [2]. Memory cards are popular as high-
security altematives to magnetic strip cards, and they are used primarily as prepatd cards
for public phones or similar applications that are sold against prepayment [3]. Since a
memory card has no processor, a simple circuit capable of exceuting a few
preprogrammied instructions performs its data processing |3]. For example, prepaid
phone cards contains the hard wired logic that treats the chip memory as a counter by
allowing one bits to be sct to zero bits but not the reverse to prevent the value from being
increased [4]. However, such a circuit has limited functions and cannot be
reprogrammed, so memory cards cannot be reuscd after the value in the card is spent.

Microprocessor cards, as the name implics, contain a processor. They have the
power to process data as well as to store and secure information. Also, they can integrate
several different applications. Therefore, microproccssor cards offer more functional

capabtlity and increased secunity than memory cards. Typical microprocessor cards have

an 8-bit processor, 16KB read-only memory. and 512 bytes of random-access memory
[2]. They are widely used where data security and privacy are major concern such as
payment and banking industries, payment of parking and tolls, storage of identification
and medical records, and access to satellite television, among other applications.
The term smart card generally refers to both memory cards and microprocessor
cards [3]. However, some publications refer ta call only microprocessor cards as smart
card because memory cards are not really smart due to lack of intelligence to process data
[3]. In this thesis, the term smart card refers to microprocessor cards.

Smart Card Hardware

A typical smart card contains a Central Processing Unit (CPU) and three different
types of memory - Read Only Memory (ROM), Electrical Erasable Programmable Read
Only Memory (EEPROM) and Random Access Memory (RAM).

The most popular CPU in smart cards 1s an 8-bit micro controller, usually using
the Motorola 6805 or Intel 8051 instruction set with clock speeds up to 5 MHz [3]. A 16-
bit or 32-bit micro controller with Reduced Instruction Set (RISC) architecture is
becoming more common [3]. Also, some smart cards have a built-in coprocessor for use
in security applications that require computationally expensive cryptographic operations
on voluminous data.

Read Only Memory (ROM), as the name implies, cannot be written to after the
card is manufactured. Also, no voltage is needed to hold data in memory. Therefore,
ROM in smart cards is used for containing operation systems’ routines, permanent data as
well as various testing and diagnostic functions [5]. Currently, chips with more than

32KB of ROM arc available for smart cards [4].

Electrical Erasable Programmable Read Only Memory (EEPROM) functionally
corresponds to a PC hard disk because 1t not only can preserve data content when power
10 the memory is tumed off. but also can bc modified during normal use of the card {5].
Therefore, EEPROM is uscd for data storage in smart cards. However, writing o
EEPROM is 1,000 times slower than writing to random access memory (RAM) even
though reading from EEPROM is as fast as reading from RAM [3). Currently, chips arc¢
available with more than 8KB of EEPROM for smart cards [4].

Random Access Memory (RAM) needs a power supply for its operation, and once
it is switched off, the data contents in RAM are evaporated. RAM is used in smart card
as temporary working spacc for storing and modifying data. These days, chips are
avatlable with more than 64KB of RAM for smart cards [4].

Currently, other memory technologies such as Flash EEPROM are gaining
popularity for smart cards [3]. Also, some experts prefer to use Recoverable Persistent
Memory (RPM) to hide differences between volatile and non-volatile memories in
application development [6].

Smart Card Operating System

The Intemational Organization for Standardization (ISO) standardizes a widc
range of instructions for smart cards, and smart card operating systems support some or
all of these instructions as well as the manufacturer’s additions to do secure program
execution and protect access to data [3]. Also, most of smart card operating systems
support a hierarchical file structure with file directories to support a smart card-based
service such as file selection and file selection command [3]. In this case, a card

application 1s a data file that stores application-specific information, and smart card

operating sysicm is the one that implements the semantics and instructions lo access the
card application duta file [2].

FHowever, the hicrarchicat approach for smart card operating system has lismted
services available on the smart card such as processing data with card application-specific
security requircmenls, so newer operating systems that support multiple applications
simultaneously arc becoming more popular [8].

Card Acceptance Device

Card Acceptance Device (CAD), into which a smart card is inscrted, can be
classified as two types: rcaders and terminals [3]. A reader, that has a slot into which a
card is placed, is connected to the parallel, serial or USB port of a computer, and it can
write to the card as wel} as read data from it [7]. In general, a reader docs not have the
power to process data while some readers have the power to detect errors and correct
functions when transmittced data are not compliant with the underlying transport protocol
(3]. A terminal that integrates a smart card reader as one of ils components is a computer
on its own. A terminal has the power to process data exchanged between itself and the
smart card, and Bank ATMs and decvices used in gas station for payment or slores for
payments and credit card transactions are the most commonly seen terminals [3].

In this thesis, the application that interfaces with the smart card through a card
acceptance device 1s referred to as host application whether it reside in the compuicer
connected to the reader or in the terminal.

Smart Card Communication

The communication between the smart card and the host application is one-way

communication, known as a ‘half-duplex’ pathway. That is, the data can cither be sent

from the host application or the smart card in tum but not both at the samc time, so the
other party must always be in reception mode. The entire data exchanged between smart
card and host application takes place using Application Protocol Data Units (APDUs)
that is the layer that is located directly above the transmission protocals in smart card,
and the APDU is carried by the transmission protocol without modification or
interpretation [5].

For the data exchange between smart card and host application, the master-slave
model is employed, and a smart card always plays the slave role [3]. When a smart card
1s inserted 1n a CAD, the smart card is waiting for a command APDU from the host
applicatton. Then the smart card executes the instruction specified in the command
APDU, and replies to the host application with a respond APDU.

Command APDU that is sent by a host application to a smart card consists of a
header and an optional body [3]. The header consists of 4 bytes: Class of Instruction
(CL.A}, Instruction Code (INS), and Parameter 1 and 2 (P1 and P2). The CLA byte is
used to identify a category of the command and respond APDUs, and the INS byte
specifies the instruction of the command. The two parameters bytes are used to describe
more closely the instruction selected by the INS byte. The optional body that consists of
data field, Lc, and Le varies in length. The data field contains data that are sent to the
smart card for executing the instruction of the command and the length of the data field is
specified in the Lc byte. The last byte in the command APDU is the Le that specifies the
length of the data field expected by the host application in the smart card’s response. The

structure of command APDU is illustrated in Figure 1.

10

Header o Body
CLA | INs | P1 | P2 Lc1 Data field Le

Figure 1. Command APDLUI Structure (3]

Response APDU that sent by a smart card in reply to a command APDU of a host
application consists of an optional body and a tratler [3]. The optional body consists of
the data ficld that its length was determined in the previous command APDU’s Le byte.

The trailer consists of two bytes, Status Word 1 (SW1) and 2 (SW2) that contain
the processing state in the card after executing the command APDU. The structure of

response APDU is illustrated in Figure 2.

[Body (Optional) '__{ Trailer

[Data field SW1 | sw2

Figure 2. Response APDU Structure [3]

Smart Card Standards and Specification

Because the proliferation of smart cards depends seriously on the existence of
national and international standards and gencrally recognized specifications, for the past
15 years, a number of smart card standards and specifications have been defined to
ensure that smart card issuers, card acceptance device vendors, and application
developers can work together [3].

The ISO 7816 that was published by The Intemational Organization for
Standardization (ISO) in 1987 is the first set of standard defining the characteristics of
integrated circuit cards that uses electrical contacts [4]. The [SO 7816 consists of distinct
sections, and each section covers various aspects of smart cards; physical characteristics,
dimension and location of contacts, electronic signal and transmission protocols, inter-

industry commands for interchange, numbering system and registration procedure for

I

application identifiers, and inter-industry data clements [4].

Europay Intemational, MasterCard Intermational and Visa Intemnational (EMV)
have made efforts to create common application standard where the ISO 7816 does not
address smart card applications [4]. Thc EMV specification is based on the ISO 7810
series of standards with additional proprictary featurcs 10 meet the specific needs of the
financial industry such as the cooperative development of financial payments standards
[3].

The Global System for Mobile Communications (GSM) defined by the European
Telecommunications Standards Institute (ETSI) 1s a specification that covers smart cards
for use in an international terrestrial mobile telephone system [3]. The GSM specifies the
digital authonization and authentication procedures and programs that are stored in a
smart card or a smaller form called a Subscriber Identity Module (SIM) [1].

2.2 Java Card

Although smart cards have been widely used in many application areas due to
their underlying advantage of providing powerful and sccure computing capabilities
come 1n simple and portable forms, their limitations such as chip architecture dependent
of application development, no standardized high-level application interfaces, small
universe of knowledgeable programmers and lack of interoperability have prevented a
broader deployment of smart cards.

In 1996, Schlumberger proposed the implementation of a virtual machine for a
subset of the Java programming language on a standard 8-bit smart card microprocessor.
Base on this proposal, in 1997 SUN launched the Java Card 2.0 API specification, which

is compatible with the smart card intemational standard ISO 7816 [4). The latest version

12

of this specification1s 2.2 and is now the standard specification for Java Card.

Whilce Java Card technology preserves many of the benefits of the Java
programming languagc such as productivity, security, robustness and portability ucross
different chip architectures, it also has several unique benefits over existing smart cards.
New applications can be installed securely at any time limited only by the memory sizc
after a card has been issued. Jt provides card issuers with the ability to dynanvcally
respond to their customer’s changing nceds. Also, Java Card technology provides a
secure environment to enable mujtiple applications from different service providers (o
coexist and cooperate securely on a single card using the applet firewall mechantsm and
the shareable interface object mechanism.

Applet

An applet is a Java Card application that runs within the Java Card Runtime
Environment (JCRE) on card. Although it is different from Java applet that js intended to
run within a browser environment, the reason the namc applet was chosen for Java Card
applications is that Java Card applets can be loaded dynamically onto the Java Card in a
distributed network such as the Internet within a sccure environment over a Card
Accepting Device (CAD) [3]. It can be downloadcd anytime onto the cards afier the card
has been issucd while applications in many cmbedded systems need 1o be burncd into the
ROM during manufacture [3]). This makes the Java Card a very powerful platform for
developing new apphcations. Also, the Java Card applet can be burned into ROM
together with the JCRE and other systern components during the process of card
manufacturing as other applications in typical embedded systems [3].

Each applet instance is uniquely identified by thc Application Identifier (AID).

The AID controlled by the Intemational Organization for Standardization (1SO) can be 5
to 16 bytes long, and is constructed of two data elements: Resource Identifier (RID) that
is a 5 bytes value and Proprictary Identificr Extension (PIX) that can be from O to 11

bytes in length. The structure of the A1D 1s shown in Figure 3 [5].

RID (5 bytes) PIX (D-11 bytes)

Figurc 3. Structure of Application Identifier [5]

[SO controls the assignment of RIDs to the application providers, so each
application provider has a unique RID. Then, each application provider can add its own
PIX after RID in AID. In the Java Card platform, each applet instance is identified and
selected by its unique AID that is constructed by concatenating the company’s RID and
the PIX for that applet [3].

Java Card Language Subset

Because of limited memory resource and computing power, the Java Card
platform supports only a subset of the language featurcs defined in the Java Language
Specification. For example, dynamic class loading, security manager, varbage collection
and finalization, thread and cloning arc unsupported Java language fecatures on the Java
Card platform [4]. Also, Java Card platform does not support arrays of more than one
dimension, and types long, float, double, char and string [3]. Notice that the int keyword
and 1ts 32-bit integer data type are optionally supported, and a Java Card Virtual Machine
(JCVM) that does not support int data type rejects programs using that type [3].

Java Card Virtual Machine

Java Card Virtual Machine (JCVM) is implemented as two scparate pieces as

illustrated in Figure 4.

14

Class files | l

. Offcard VM On-card VM

Card _—

. converter Acceptance interpt eler
Dewnice |
ra '\\
A
Export files Z 4

) L

CAP file Export file

L

Figure 4. Java Card Virtual Machine 3]

In the off-card portion of the JCVM that runs on a PC or workstation, the
converter converts a package composed of all class files that are gencrated by
compilation of the source code to a converted applet (CAP) file that contains an
executable binary representation of the classes in the package [3]. A CAP file is the
loadable and installable unit on the Java Card platform, and it consists of classes that
make up a Java package [3]. That is, the CAP file format is the form in which a card
application is loaded onto Java Cards [3]. Also, the converter takes as input onc or more
export files and produce another export file. An export file that can be thought of as the
header files in the C programming language contains name and link information for the
contents of other packages that are imported by the classes being converted [9].

The on-card portion of the JCVM includes interpreter that provides runtime
support of the Java language model and thus allows hardware independence of applet
code [3]. The interpreter executes bytecode instructions and ultimately executes applets
[3].

[n a PC or workstation, the Java Virtual Machine (JVM) runs as an operating

system process, and when the operating system process is terminated, the JVM and

15

objects that were created in RAM arc automatically destroyed [9]. Unlike the JVM, the
JCVM on a card appears to run forever cven when no power is supplied [9]. When
power is removed, the JCVM on the card only stops temporarily, and when the next time
the card is energized, the JCVM starts up again and exccute from the beginning of the
main loop instead from the exact point where it lost power [3].

CAP File Format

A CAP file generated by the converter consists of a set of components, which
describe a Java package, and utilizes the JAR filc format. Each component in a CAP file
describes a set of element in the Java package defined [&]. In addition to the components,
the CAP file also contains a manifest file. The manifest file provides additional human-
readable information, such as the creation time of the CAP file, the version of the
converter, and the provider of the converter, and it can be used to facilitate the
distribution of the CAP file.

Java Card Framework

The Java Card Framework is compatible with formal interational standards,
especially [SO 7816 standard, and dcfines a sct of Application Programming Interface
(API) classes for developing applets that provide system services to those applications. It
provides applet developers with a relatively casy and straightforward programming,
interface by hiding the details of the smart card infrastructurc [4). Also, it allows applets
written for one Java Card enabled platform to run on any other Java Card enabled
platform.

Java Card Runtime Environment

The Java Card Runtime Environment (JCRE) serves as the operating system of

the Java Card {3]. Itis responsible for cird resource management, network
communication, applel exceution, and on-card system and applet sccurity |3]. The JORE
that sits on top of a specific integrated circuit and native operation system
implementation contains on-card potion of the JCVM, JCRE system classes, Java Card
framework (and tndustry specific extensions), and installer

The system classcs are responsible for managing transactions, communication
between the host applications and applets, and instance crecation, selection and
deselection of applets [3]. The industry specific extensions supplied by a specific
industry or business are add-on libranes to provide additional services or to refine the
security and system model] for industry or business [3].

The installer downloads applets onto the card after the card is made and 1ssued. [t
cooperates with an off-card installation program that resides on PC or workstation. The
off-card installation program transmits a CAP file that contains an executable binary
representation of the classes to the installer running on the card via a card acceplance
device, then the installer writes the binary into the card memory, links it with the other
classes that have already been ptaced on the card, and creates an instance of the applet
[3). More detail about the installer and off-card installation program will be given in the

next chapter with applet installation process. The JCRE is illustrated in Figure 5.

17

T | G|
— "

Framework | | Industey Specfic| | |]
Classes Extensions
System Classes JCRE

JavaCard Virtual Machine

Smant Card Hardware and N ative System:

Figure 5. Java Card Runtime Environment [3]

The JCRE 1s initialized at card initialization time, and during this process the
JCRE creates its objects for providing the JCRE service and managing applets and store
them in EEPROM that can hold the information even when power is removed from the
card [3]. When power is removed, the JCVM is only suspended, and the state of the
JCRE and applets on the card are preserved in EEPROM [3]. The next time the card 1s
inserted, the JCVM restarts the JCRE by loading data from EEPROM [3].

Applet Execution

Every applet i1s implemented by creating a subclass of the class
javacard.framework.Applet. The basc Applet class is the super class for all applets
residing on a Java Card, and it defines install, register, select, process, and desclect
methods. However, the base Applet class provides only the default behavior for these
methods, so an applet needs to override some or all of these methods to implement its
function. Table 2 lists the methods invoked by the JCRE during applet creation and

execution.

18

Public static void

|
|
§
|
|

install (byte[] bArray, short bOfTsct, byte thl;glll)_“ —

The JCRE calls this method to create an instance of the Applet
subclass. It is similar to the maim method is a Java application,
and the arguments to the install method carry the applet
installation parameters.

T Protected final void |

register (byte[] bArray, short bOflset. byte blength)

This method is used by the applet to register this applet instance
with the JCRE using its AID specified in the array bAmay.

! Public Boolean

I

—

select ()

The JCRE calls this method to inform the applet that it has been
selected. An applet remains in a suspended state until this method
is explicitly called by JCRE.

Public abstract void

process (APDU apdu)

The JCRE calls this method to instruct the applel to process an
incoming APDU command. On receiving an APDU command,
this method decodes the APDU header and calls a service method
to execute the requested function. An applet must directly or
indirectly override this method.

Public void

deselect ()

The JCRE calls this method to inform the currently selected applet
that another applet will be selected. The descelected applet will be
remained in a suspended state until the next time it is selected.

Table 2. The Methods in the Class javacard.framework. Applet [3]

After an applet is correctly loaded into the card and linked with the Java Card

Framework and other libraries on the card, an applct’s life starts when the JCRE calls the

applet’s install method to create an instance of the applet in EEPROM. The JCRE then

calls the applet’s register method to register this applet instance with the JCRE using the

applet’s AID. On successful return from the install and register method, the applet is

ready to be selected and to process the upcoming APDU commands.

The JCRE 1s a single thread cnvironment - means that only one applet is running

atatime [3]. An applet on the card remains in a suspended state until it is explicitly

19

sclected. Figure 6 illustrates execution states of an applet.

select ———
create _— Y ———
Suspended 'i_ Aichve ptocess a
State - ~._ State - comm and

deselect

Figure 6. Applet Exccution States [3]

A host application sends a select APDU command to the JCRE. The JCRE
suspends the currently selected applet and invokes the applet’s deselect method to
perform any necessary cleanup. Then, the JCRE calls the sclect method of the newly
selected applet whose AID is specified in the select APDU command as the currentiy
selected applet. Once the typical applet is selected, it waits for an application running on
the host side to send a command APDU. The applet then executes the command APDU
and returns a response APDU to the host via the JCRE. All subsequent APDUs are
forwarded to the current applet until a new applet is selected or the card is removed from
the card acceptance device, and once the applet is deselected, the applet remains in a
suspended state until the next time it is sclected. Figure 7 illustrates applet

communication.

-~ N

command command
APDU AFPDU
> — -
Host JCRE Applet
Application| - ‘
response response
APDU APDU

\\h Jaquu:d'/)

Figure 7. Applet Communication [3]

Applet Object

In the Java platform, objects arc created in RAM, and they are automatically

20

destroyed when the Java Virtual machine exits. In Java Card technology, however, most
JCRE and applet objects are created in EEPROM using the new operator, so their
information can be preserved cven when power is removed. Those objects are called the
persistent objects, and their reference and data are preserved across CAD sessions [3].

For security and performance reasons, applets sometimes require objects that
contain temporary data that need not be persistent across CAD sessions. Thosc objects
arc called transient objects, and applets can create the transient objects in RAM by
invoking the Java Card API [3]. Thc data of the transient object is cleared and reset to
their default value when certain events such as power loss, card reset or applct
deselection are occurred. The reference of the transient objects, however, 1s saved in a
persistent filed, so the next time the card is energized, the applet uscs the same object
reference to access the transient object even though the object data from the previous
session are lost [3].

Java Card Transaction

Java Card technology guarantees atomic transactions, so the updated field either
gets the new value in casc of normal execution or is restored to the previous value in case
of accidental events such as power loss in the middle of a transaction or program errors
that might cause data corruption [9]. An applet, sometimes, needs to update several
different fields atomically, and the Java Card platform provides a transactional model
with commit and rollback capability to guarantee that complex operations can be
accomplished atomically [9]. Either all updates are completed correctly and con sistently,
or their partial results arc not put into effect and restored to their previous values.

Therefore, the atomicity of all the updates is ensured.

Applet Firewall

Multiple applets from different vendors can coexist in a single Java Card, so each
applet should be protected from others because an applet might contain highly security
information such as electronic money and private cryptographic key. In the Java Card
platform, the applet firewall provides a secure execution environment between different
applets in the same card [8].

The applet firewall confines an applet to its own designated area called contexts,
and the firewall is the boundary between one context and another. When an applet
instance is created, the JCRE assigns it a context. Recall that on the Java Card platform,
the loading and installable unit is a CAP file, and a CAP file consists of classes that make
up a single Java package. At this point, the context is essentially a group context, so all
applet instances of a single Java package share the same group context. There is no
firewall between two applets instance in a same group context, so object access between
applets in the same group context is allowed unless members and methods of the objects
are declared as private. However, the applet cannot reach beyond its context to access
the contents or behaviors of objects in a different context. In addition, the JCRE
maintains its own JCRE context, and accessing from the JCRE context to any applet’s
context in the same card is allowed while accessing from an applet’s context to the JCRE

context is denied by the firewall. Figure 8 illustrates the applet firewall.

[

Applet Frrewall
Context Context
AppletB
Applet A Applet C
Parckage A Paciage B

Figure 8. Applet Firewali 8]

At any point in time, there is only one active context within the execution of the
JCVM [8]. This can be either an applet’s group context or the JCRE context. When a
new object is created, its ownership is assigned to the current active context, and the
object can be accessed from within that context, that is, by all applet instances in its
owning context. If the JCRE context is the currently active context, the object is owned
by the JCRE.

All bytecodes that access an object are checked at runtime [8]. A private instance
method, for example, cannot be invoked from outside the object. Also, when an object is
accessed, the object’s owning context is compared to the currently active context in order
to determine if the access is allowed. If the contexts do not match, the access is denied
and a SecurityException is thrown.

Context Switch

As mentioned at the previous section, there is only one active context at any time
within the JCVM, and all object accesses are denied by the applet firewall if the owning
context of the object being accessed is not the same as the currently active context.

However, for some situations where applets need to execute cooperatively, context

switches are occurred within the JCVM. Context switches only occur during invocation
of and return from certain methods of an object owned by a different context, and the
result of a context switch is a new cuwrrently active context [8].

During a context switch, the current context and object owner information is
pushed on an internal JCVM stack, and a new context becomes the currently active
context. The invoked method is now executing in this new context. When the method
exits from a normal return or an exception, the JCVM performs a restoring context
switch. The original context is popped from the stack and is restored as the currently
active context.

Recall that the JCRE context to any applet’s context in the same card is allowed.
For example, when the JCRE receives an APDU command from a host application, it
invokes the currently selected applet’s select, deselect, or process method. When the
JCRE invokes an applet’s those methods, the JCRE context is switched to the applet’s
context [3]. Also, on return from the applet’s method, the JCRE context is restored [3].

Recall that applets are not allowed to access the JCRE context. However, a
secure computer system must have a way for users who don’t have privilege to request
system service that are performed by privileged system routine, and this requirement is
accomplished by using JCRE entry point objects in the Java Card platform [8]. The
JCRE entry point objects that are objects owned by the JCRE context have been flagged
as containing entry point methods. The entry point designation allows the public
methods of such objects to be invoked from any context through the firewall, and when
such invocation occurs, a context switch to the JCRE context is performed. Notice that

only the public methods of the JCRE entry point objects are accessible, and the fields of

24

these objects are still protected by the firewall [3]. The JCRE-owned AID instance that
the JCRE creates to encapsulate an applet’s AID when the applet instance is created is an
example of the JCRE entry point object.

Java Card technology enables multiple applications from different service
providers to cooperate securely on a single card via the sharable interface mechanism.
During the process of cooperation between applets that reside on different contexts,
context switches are also occurred. The sharable interface mechanism will be discussed
in the next chapter.

OpenCard Framework

OpenCard Framework (OCF) developed by the OpenCard consortium is the host
application framework providing common interface for both the card readers and the
applications in the card [10]. OCF implemented in the Java programming language is
designed to reduce dependence on each of terminal vendors, card operating system
providers, card issuers and application developers.

2.3 Message Digest

When security information is transmitted over the network, it must be protected
from unauthorized disclosure — that is called as data confidentiality, and it can be
accomplished by encryption scheme. Encryption is the process of converting some
information from an easily understandable formant into an unintelligible form in such a
way that the onginal data can be obtained only by using the decryption process [11].
Triple-DES (Triple Data Encryption Standard) and public key scheme are the most
popular encryption algorithms. The main difference between two algorithms is that same

keys are used for both encryption and decryption in Triple-DES while the public key

25

scheme uses two different keys, called as a public key that is used for encryption and a
private key that is used for decryption.

A Message digest algorithm has much in common with techniques used in
encryption, but to a different end; verification that data have not been modified since the
signature was published — that is called as data integrity that pertains to protection of
information from alteration by unauthorized means.

One-Way Hash Function

A one-way hash function takes an arbitrary length plaintext as input and outputs a
relatively small fixed-length string called hash value. Assume F as a one-way hash
function and M as a data message to be protected. Then, we can obtain a hash value H of
the data message by applying the function on the data message. That is H = F (M).

Figure 9 illustrates one-way hash function.

Message Message Last Check
Block 1 Block 2 Message sum
Part
Iratial One-way Hash
Buffer Hash V alue
unction

Figure 9. One-Way Hash Function [13]

Each unique message fed to a one-way has function produces a unique hash value
of the entire message, and it is virtually impossible to generate the original message from
the hash value - that is the reason why it is called a one-way hash function [12]. The
purpose of a one-way hash function is to provide the means for the receiver to detect

whether the message has been modified by unauthorized users [11].

26

There arc some basic requirements for one-way hash functions [13]. First, the
one-way hash function can be applied to an arbitrary length of data message. Second, the
hash value from the one-way hash function has a fixed size. Next, it is impossible to find
the data message from the hash value. Finally, it is very hard to find a data block calied
collision tﬁat has the same hash value with the data message.

Message Digest Algorithms

MD2, MD4 and MD5 are message digest algorithms developed by Ronald L.
Rivest [14]. All message digest algorithms take a data message of arbitrary length as
input and produce a 128-bit message digest of the data message, but MD2 was designed
for 8-bit machines while MD4 and MD5 were optimized for 32-bit machines [14].

MD?2 that was developed in 1989 is designed for use with Privacy Enhanced Mail
(PEM). The data message is first padded so its length in bytes is divisible by 16, then a
16-bit checksum is appended. The message digest is computed on the resulting message.
However, Rogier and Chauvaud found that a collision for MD2 could be constructed if
the calculation of the checksum is omitted [14].

MD4 that was developed in 1990 also requires padding, but to a multiple of 512
bits. The padding always includes a 64-bit value that indicates the length of the
unpadded message, and this adds a significant measure of security over MD2 because if it
1s difficult to produce two messages that have the same 128-bit message digest, it is all
the more difficult to do it with two messages that have the same length [15]. However,
Dobbertin showed how a collision for MD4 could be found in under a minute on a typical
PC, so MD4 now might be considered broken [14].

MDS5 that 1s an extension of the MD4 was developed in 1991 for use with digital

27

signature applications where a large message has to be compressed securely before being
signed with the private key [16]. The algorithm consists of four distinct rounds while
MD4 consists of three distinct rounds, so it is more secure than MD4 while it s shghtly
slower. Van Oorschot and Wiener estimate a collision search machine designed
specifically for MD5 with brute-force search could find a collision for MD5 1n 24 days
on average [14].

Secure Hash Algorithm

Secure Hash Algonithm (SHA) developed by the U.S. National Institute of
Standards and Technology (NIST) in 1994. SHA produces a 160-bit hash value, and its
design is very similar to MD4. The algorithm is slightly slower than MDS35, but the larger

hash value increases its protection ability [17].

28

3. SECURE OBJECT SHARING

Beyond minimum-security protections enforced by the on-card installer and the
Java Card Runtime Environment in the Java Card platform, Java Card technology does
not standardize applets installation policy [3]. For this reason, enhancement in on-card
verification of downloaded applets is still under consideration. In this thesis, the on-card
installer with a one-way hash function is proposed to support on-card verification of
downloaded applets that cooperates with other applets from different service providers on
a single card. We first go through the applet installation process and address the
possibility of 1llegal installation of a malicious applet in section 3.1. In section 3.2, we
show how multiple applets from different providers can cooperate on a single card and
point out the need for improvement in on-card verification of applets when they
cooperate. Then, our proposed installer and secure object sharing are detailed in section
3.3.

3.1 Applet Installation

In Java Card technology, applets can be either downloaded anytime onto the cards
after the card has been issued or burned into ROM together with the JCRE during the
process of card manufacturing. In this thesis, however, applet installation process refers
to the process of loading applet classes via 2 Card Acceptance Device (CAD) onto a Java
Card and creating an applet instances to bring the applet into a selectable and executable
state.

Applet installation process consists of conversion, verification and a CAP file
installation on the card. During conversion process, the converter takes a package as

input, and outputs a CAP file that contains an cxccutable binary representation of the

29

classes in the package. After conversion, the verifier performs static checks on the CAP
file before it is loaded onto a Java Card. For a CAP file installation process, Java Card
installer cooperates with an off-card installation program, and together, they load a CAP
file via a CAD onto a card and create one or more applets instances in the card’s
persistent memory such as EEPROM. Applet installation process is illustrated in Figure

10.

% . Off-card VM

converter

/
21~ :
—J _J = Installer

CAP file Export file Acceptance
‘ Device

A mtuprcti‘

v

Off-card
Installation
Program

K

On-card VM

Figure 10. Applet Installation Process
The applet installation process is transactional, so if an error or power loss occurs
during applet installation, the installer discards the CAP file and any applet instances
created during installation, and recovers the space and the previous state of the JCRE [3].
Converter
Although a trustworthy compiler can ensure that Java source code does not violate

safety rules, class files could come from a network that is unsecured [3]. The converter is

30

the front end of the off-card virtual machine, and it takes as input all of Java class files
for a package and converts them to a CAP file that is the loading and installable unit on
the Java Card platform and consists of classes that make up a Java package. It also takes
one or more export files that can be thought of as the header fiies in the C programming
language as input, and generates an export file for the converted package. During
conversion, the converter performs tasks that a Java virtual machine in a desktop
environment would perform at class-loading time such as checking for Java Card
language subset violations, performing static variables initialization, optimizing
bytecode, allocating storage and creating virtual machine data structures to represent
classes [3].

Verifier

The correctness and integrity of a CAP file cannot be taken for granted even
though a CAP file generated by a trustworthy converter will immediately be loaded onto
Java Card in a secure environment [3]. The verifier that runs off card due to the limited
memory space and computing power of a smart card verifies a CAP file before it is
loaded onto a Java Card. That is, the verifier provides a means to assert that a CAP file
conforms to the Java Card specification, providing additional assurance that the
executable code in a CAP files will not compromise the integrity of JCVM [18].

Off-Card Installation Program and Installer

Applet installation on Java Card is completed through the cooperation of an off-
card installation program and the on-card installer. The off-card installer program
transmits the executable binary in the CAP file to the installer running on the card with a

sequence of APDU commands by way of card acceptance device (CAD). When the CAP

31

file is read in, the installer first checks to see whether the card can support the CAP file
by checking such as availability of the card’s memory resource [3]. Then, the installer
writes the CAP file content into the card’s persistent memory such as EEPROM and links
it with other classes that already reside on the card.

In the last step during installation, the installer creates instances of applets in
EEPROM by calling the applets’ install methods, and when instances of the applets are
created, a context is assigned to the instances of the applets. Recall that a context is
essentially a group context, so instances of multiple applets defined in the same package
share one context. Also, the installer registers the applets’ AIDs with the JCRE by
calling their register methods. Notice that each applet within a Java Card is associated
with unique AID, so if the same AID has been previously successfully registered on the
JCRE, an error occurs and the installer discards the CAP file and destroys any applet
instances created during installation [19].

On successful return from the install and register methods, applet installation
process is completed, and the applets are now ready to be selected and to process the
upcoming APDU commands.

Illegal Installation

Applet installation security consists of two levels: standard security protections
enforced by the converter, verifier and the JCRE, and security policies dictated by the
issuers [3]. This means that beyond the minimum-security protections such as Java Card
language subset violation enforced by the converter and insufficient card’s memory and
illegal AID usage enforced by the JCRE, Java Card technology does not standardize the

installation policy, so the issuers have the flexibility to define security policies.

32

The simplest scheme of protection is to authenticate an off-card installation
program by using PIN - thus providing a measure of trust to the CAP file provider and
the content of the CAP file [3]. A more powerful scheme can use digital signature and
data encryption [3]. For example, any Java Card file such as class file, export file or CAP
file can be encrypted and digitally signed to ensure integrity and to provide the identify of
its provider during transportation between development and on-card installation. To
build such strengthened security scheme, a card issuer needs to define security polices
using key management and cryptographic mechanisms.

However, the Java Card installer does not verify a CAP file [3]. This means the
correctness and integrity of a CAP file are verified off-card, and the installer on the Java
Card platform does not perform most of the traditional Java verifications at class-loading
time. Therefore, it is possible a malicious applet to be installed onto a card via illegal
applet installation process due to lack of a CAP file verification power in the Java Card
installer. For this reason, enhancement in on-card verification of downloaded applets is
still under consideration. Qur proposed on-card installer with a onc-way hash function
support on-card verification of downloaded applets that cooperates with other applets
supplied by different service providers on a single card. More detail about the proposed
installer will be given in section 3.3.

3.2 Object Sharing

In Java Card technology, multiple applets from different vendors can coexist in a
single card, and the applet firewall enables that each applet that may store highly
sensitive information can be protected from other applets. An applet is prevented from

reaching the contents of objects owned by other applets residing on a different context by

33

the firewall.

In real card world, however, applets from different service providers often need to
execute cooperatively. For example, consider cooperation between an airline loyalty
applet and an electronic purse applet - when buying a flight ticket with the electronic
purse, add miles to the airline loyalty program. In this case, shared information from the
airline loyalty applet and the electronic purse may be received by the airline loyalty
applet and the electronic purse applet. To support cooperation between applications from
different application providers on a single card, Java Card technology provides well-
defined and secure shareable interface mechanism.

Shareable Interface Mechanism

Shareable interface mechanism is a feature in the Java Card API to enable object
sharing between applets [9]. An object instance of a class implementing one or more
shareable interfaces is called a Shareable Interface Object (SIO), and these interface
methods can be invoked from one context even if the SIO is owned by an applet in
another context.

To cooperate with other applets provided by different vendors, the behavior of a
SIO of an applet, such as name of methods defined in the S10, needed parametcers type
and expected results, should be available for other application providers. However, the
class type of SIO is not exposed to other application providers even though the behavior
of an SIO 1s available for other application providers. During sharing process, only
methods defined in a server SIO are presented to client applets in another context, and all
other members and methods of the server SIO are protected by the firewall. Therefore,

with shareable interface mechanism, an applet can execute cooperatively with other

34

applets from different application providers without worrying about exposition of their
sensitive data.

The object sharing process can be described as a client-server relationship as
below [3]. Let’s consider cooperation between an airline loyalty applet (server applet)
and an electronic purse applet (client applet) supplied by different service providers. The
wallet applet stores electronic cash, and the money can be spent to purchase goods.
Similar to the wallet applet, the airline loyalty applet stores values — the miles the card
holder has traveled. Under a co-marketing deal between two service providers, for every
dollar spent using the wallet applet, one air mile is credited to the airline loyalty applet.
Suppose that the electronic purse applet now requests air miles to the airline loyalty
applet after its debit transaction for purchasing goods. Following are the steps during
cooperation between two applets residing on different contexts, and Figure 11 illustrates

the object sharing process.

yd

{AppletShareab / / \-.\ . getShareablelnterfa
flma‘ﬁce&:ject .’ s1o . AN : \,. ceOject (AID
(AID server aid, / / %3 sio N N\ icasdbye
byte parameter) ™ g T el
iy method e S

. invaoke

Client Applet s Server Applet
(Electronic Purse) - - (Autine loyalty) | JCSystem getPrewn

method ousContextAID ()
Server’sAID retum ‘ Clients® AIDs
and parameters and parameters
i RN

Figure 11. Object Sharing Process

[n step 1, to get the airline loyalty applet’s SI1O, the electronic purse applet that

35

resides on a different context calls the method
JCSystem.getAppletShareablcInterfaceObject with the airline loyalty applet’s AID and a
parameter. In here, the sever applet’s AID and the parameter are programmed into the
client applet code before the client applet is installed on the card. The parameter can be
used later as a security token, which carries a secret shared by the server and the client.
Also, recall from section 2.2 that there is only one active context at any time within the
JCVM - either an applet’s group context or the JCRE context, and context switches occur
during invocation of and return from certain methods of an object owned by a different
context. Therefore, when the electronic purse applet invokes the method
JCSystem.getAppletShareablelnterfaceObject that belongs to the JCRE, a context switch
occurs from the context on which the electronic purse applet resides to the JCRE context.

In step 2, the JCRE identifies the electronic purse applet and the airline loyalty
applet with their AIDs that were registered on the JCRE when the applets were installed
onto the card. After the JCRE ensures that the airline loyalty applet is already residing on
the card, the JCRE invokes the airline loyalty applet’s getShareablelnterfaceObject
method. In the server’s getShareablelnterfaceObject method, the JCRE replaces the first
argument with the electronic purse applet’s AID and passes along the same parameter
supplied by the electronic purse applet. Now, the airline loyalty applet’s group context is
a currently active context.

In step 3, with the electronic purse applet’s AID and the parameter, the airline
loyalty applet determines validation of the client applet. In here, the client applet’s AID
and the parameter are programmed into the server applet code before the server applet is

installed on the card. If the airline loyalty applet agrees to share its SIO with the

36

electronic purse applet, then the airline loyalty applet returns its SIO to the JCRE, and a
context switch occurs.

In step 4, the JCRE returns the server’s SIO to the electronic purse applet, and at
the end of the step 4, the electronic purse applet’s group context is restored as a current
active context.

In step 5, once the electronic purse applet gets the SIO from the airline loyalty
applet, the client applet requests air miles to the server applet by invoking a service
method of the airline loyalty SIO. During the method invocation, a context switch is
occurs, and the airline loyalty applet becomes the currently active context.

In step 6, When the service method is invoked from the electronic purse applet,
the airline loyalty applet should verify the client again because the electronic purse applet
that onginally requests the SIO could break the contract and share the SIO with a third
party without getting the proper permission [3]. To find out the AID of the actual caller,
the airline loyalty applet invokes the JCSystem.getPreviousContextAID method. After
performing the service for the electronic purse applet, the electronic purse applet’s group
context 1s restored as a current active context.

Notice here that, for a higher degree security, the server applet developer must
define some cryptographic exchange algorithms to verify its clients when the client applet
requests service to the applet by invoking one of shareable interface methods [3].

Client Applet Verification

Recall that, to cooperate with other applets from different vendors, the behavior of
a shareable interface object (SIO) and the secret parameter of an applet should be

available for other application providers. The application providers are now asked not to

37

share the information with unauthorized means. However, therc is no guarantee that the
application providers will not make them available worldwide. Once they are revealed, a
malicious applet if installed with an illegal installation process can get a SIO from a
server applet. At this point, there is no way for a server applet to reject the malicious
client applet that impersonates with a valid AID and parameter. The server applet will
agree to share its SIO with the malicious because the server applet determines validation
of the client applet only by the client’s AID and parameter.

In addition, as previously mentioned, after a server applet agrees to share its SIO
with a client applet, there may exist some cryptographic exchange algorithms between
the server applet and the client applet to determine validation of the client applet.
However, the most frequently anticipated security concerns have been developer
mistakes and design oversights. Therefore, enhancement in on-card verification of a
client applet before a server applet agrees to share its SIO is needed. Our proposed on-
card installer with a one-way hash function helps a server applet to determine more surely
whether the client applet is a valid or not before the server applet agrees to share its SIO
with the client applet. More detail about the proposed installer will be given in the next
section.

3.3 Enhanced Applet Verification

Recall from the section 3.1 that, in Java Card technology, the correctness and
integrity of a CAP file are verified off-card and the on-card installer does not verify a
CAP file at class loading time. Therefore, installation of a malicious applct onto a card
may be possible by way of an illegal applet installation process.

Recall from section 3.2 that, to cooperate with other applets provided by different

38

service providers, the behavior of a shareable interface object {SIO) of an applet should
be available for other application providers who are asked not to rcveal the shared
information such as the behavior of SIO, a secrete parameter and existing cryptographic
exchange algorithms between a server applet and a client applet. Therefore, it is possible
that the information may be shared with unauthorized means. Once the malicious applet
is installed onto a card via an illegal applet installation process, it can get a SIO from a
server applet.

Moreover, if a cryptographic exchange algorithm that may exists between a server
applet and a client applet can be revealed or broken, then the malicious applet can be
allowed to access sensitive data and service of the server applet by invoking one of server
SIO. Therefore, enhancement in on-card verification of downloaded applcts that
cooperates with other applets from different vendors is required urgently.

Our approach using the on-card installer with a one-way hash function enhances
on-card verification of downloaded applets that cooperates with other applets supplied by
different vendors on a single card. In our novel approach, a malicious applet if installed
with an illegal installation process cannot access the SIO of a server applet. Any client
whose hash value is not stored in the server code will not be granted access.

Installer with a One-Way Hash Function

In this thesis, the installer with a one-way hash function is proposed to support
on-card verification of downloaded applets that cooperates with other applets supplied by
different application providers on a single card. While the installer in the Java Card
platform registers only an applet’s AID on the JCRE, the proposed installer registers not

only an applet’s AID, but also an applet’s hash value that is computed by the proposed

39

installer during the applet installation process.

Recall that, during the applet installation process, when a CAP file 1s read in, the
installer writes the CAP file content into EEPROM, and in the last step of the installation,
the installer invokes JCRE entry point methods to registers an applet’s AID with the
JCRE. However, with the proposed installer, while a CAP file is read in, the proposed
installer computes a hash value of the CAP file contents before it write them into
EEPROM. Also, in the last step of the installation, the proposed installer registers with
the JCRE not only an applet’s AID but also the CAP file’s hash value computed by the
proposed installer during the CAP file is read in.

Recall from section 2.2 that a CAP file contains not only a set of components that
describe a Java package but also a manifest file that provides additional human-readable
information such as the creation time of the CAP file and the version of the converter.
For this reason, each CAP file in itself does not have an identical hash value even though
each CAP files is created from the same Java package. However, a hash value of a set of
components in each CAP file is identical if each CAP file is created from the same Java
package. Therefore, when a CAP file is loaded onto a card, our proposed installer
generates a hash value of a set of components in the CAP file. Hence, in this thesis, a
hash value of the CAP file means a hash value of a set of components in the CAP file.

Once an AID of an applet and a hash value of a CAP filc are registered in the
JCRE object, applets provided by different vendors can now share their data and service
in a more secure manner. With our proposed installer, even though it is still possible a
malicious applet to be installed onto a card via illegal applet installation process, it is

extremely hard to get a service from a server applet because developing a malicious

40

applet that can request service to other applets and also has the same hash value is almost
impossible.

Notice here that it is safe to assume that the installer is trustworthy as the installer
1s programmed by the card manufacturer. The installer is burned into a card with on-card
potion of the JCVM, JCRE system classes and Java Card framework. To the JCRE, the
installer appears to be an applet, so at card initialization time, the installer registers its
AID with the JCRE. Later, when the installer registers an applet’s AID with the JCRE,
the installer needs to invoke JCRE entry point methods, and the JCRE identifies the
installer applet by its AID. Therefore, installing a malicious installer with the valid AID
onto a card is impossible because the same AID cannot be registered on the JCRE.

For the one-way hash function used in the proposed installer, MDS or other hash
algorithms, which are secure and optimize card resource usage can be chosen. Figure 12

lustrates the applet installation process with the proposed installer.

Host
CAP‘,:
file |!
A 4
Off-card Installation
Program
o> B
- AID
Hash Value
\ JCRE | \ EEPROM /
Java Card

Figure 12. Installer with a One-Way Hash Function

41

Notice here that our approach assumes that servers are provided the hash values
of the client who are likely to request their services. When server applets are being
developed by the application developers, the hash values of client applets that may use
their services are programmed into the server code before the server applet is installed on
the card. Any client whose hash value is not stored in the server code will not be granted
access,

Secure Object Sharing Process

Because the proposed installer registers not only an applet’s AID, but also an
applet’s hash value, the object sharing process of two applets that reside on different
contexts is now different as below, and Figure 13 illustrates our secure object sharing

process.

™~ cllcnt_a: d m

getAppletShareati s S getShareablelnterfa
elnterfice Object /‘/ &9 & . ceObject (AD

e SI0 S . eter, MD
byle parameter) 3 . pararn v:l,!)
. method
. _ invoke
Client Applet < Sverdiaien
—-
method . -—
Server s AID JEen Clients’ AlDs, JC Systemn getPrevi
param parareters and usContextAID ()
Q Hash Values
_—
N

Figure 13. Secure Object Sharing Process

The step 1 is identical with the step 1 in the existing object sharing process

illustrated n section 3.2.

In step 2, the JCRE invokes the server applet’s getShareablelnterfaceObject with
the client applet’s AID, the parameter, and a hash value that is computed by the installer.
Our proposed installer registers with the JCRE not only an applet’s AID but also the CAP
file’s hash value computed by the proposed installer when the CAP file is read in.

In step 3, the server applet determines validation of the client applet with the
client applet’s AID, the parameter, and the hash value. At this point, the server applet
now can determine validation of the client applet in more secure manner because it 1s
near impossible for the malicious to have the same hash value as the CAP file containing
the valid client applet’s classes has. This is also true even if the hash value of the CAP
file were revealed. If the server applet agrees to share its SIO with the client applet, then
the server applet returns its SIO to the JCRE. In our approach, the hash values of client
applets are programmed into the server applet’s code before the server applet 1s installed
on the card. Therefore, any client whose hash value is not stored in the server code will
not be granted access.

The steps 4, 5 and 6 are identical with the steps 4, 5 and 6 in the existing object
sharing process illustrated in section 3.2.

Recall that the hash values of client applets should be saved in a server applet
before the server applet is installed on the card. If the application code were burned into
the card at manufacture time such a scheme would be a major drawback. However, in the
Java Card platform, both client applets and server applets can be downloaded at any time.
In the case of a new valid client whose has value has not been programmed into the

server, the up-to-date version of the server can be downloaded very easily. As the Java

43

Card platform has ability to dynamically respond to a card issuer’s changing needs, such
problems could be solved very eastly.

Therefore, our approach that provides enhanced on-card verification of
downloaded applets is practical, and with our approach, an applet can verify other applets
supplied by different vendors in a more secure manner along with cryptographic

exchange algorithms that may exist between applets.

44

4. SECURE OBJECT SHARING SIMULATION

To demonstrate the enhanced on-card verification of downloaded applets by using
the proposed installer, we simulate the object sharing process between a server applet and
a client applet. We simulate the object sharing process not enly with our proposed
approach that uses hashing for the verification of client applets but also with the existing
approach that does not use Hashing. Our objective is to demonstrate that our approach
does indeed enhance security.

In this chapter, we first introduce the Java Card 2.2 development kit in section
4.1. Next, in section 4.2, the object sharing process simulation with the existing approach
shows that a malicious applet if installed with an illegal installation process can get a SIO
from a server applet. Then, in section 4.3, we simulate the object sharing process with
our approach that use hashing to demonstrate enhanced on-card verification of a client
applet.

4.1 Java Card 2.2 Development Kit

The Java Card 2.2 development kit provided by SUN Microsystems is a collection
of tools for designing Java Card technology-based implementations and for developing
applets based on the Java Card 2.2 framework [19]. Some tools, which are used for our
simulation, in the Java Card 2.2 development kit are described below.

Recall from section 3.1 that the applet installation process consists of conversion,
verification and a CAP file installation on the card. For the conversion process, the
converter tool is used, and it converts class files that make up a Java package to a CAP

file. Also, the converter tool takes as input one or more export files and produce another

45

export file. The verifycap tool is used for the verification process, and it confirms
whether a CAP file is internally consistent. For the CAP file installation process, the
scriptgen tool and the apdutool tool are used. The scriptgen tool converts a CAP file into
a script file that contains a sequence of APDUs in ASC II formant. Then, the apdutool
tool reads a script file containing APDUs and send them to a Java Card. Therefore, both
tool works together as off-card installer in Java Card technology. Figure 14 illustrates the
usage of tools that is in the Java Card 2.2 development kit.

Class fles

% o Termanal

adglvaN
) U

CAP file Export file

v

verifiycap
tool

B

scriptgen tool

v
apdu scnpt

v
apdutoal tool

Java Card

L 2 AN
\\J apdu exchange l/“>

Fay

Figure 14. The Usage of Tools in the Java Card 2.2 Development Kit
The C-language Java Card Runtime Environment (C-JCRE) in the Java Card 2.2

Development Kit is a simulator that presents a real Java Card in a card acceptance device

46

(CAD). It has ability to simulate persistent memory such as EEPROM, and to save and
restore the contents of EEPROM to and from the disk file. Also, the on-card installcr,
interpreter, and Java Card framework are already masked into the C-JCRE, so applets
developed by a user can be installed and executed in the C-JCRE. The C-JCRE 1s
supplied as pre-built executable, cref.exe for Windows {19].

4.2 Object Sharing Process Simulation with the Existing Approach

For the object sharing process simulation with the existing approach, let’s
consider cooperation between an AirMile applet (server applet) and an EPurse applet
(client applet) supplied by different service providers as descnbed in section 3.2. The
AirMile applet stores values — the miles the card holder has traveled. Similar to the
AirMile applet, the EPurse applet stores electronic cash, and the money can be spent to
purchase goods. Assume that under a co-marketing deal with between two service
providers, for every dollar spent using the EPurse applet, one air mile is credited to the
AirMile applet.

Shared Information

Recall from section 3.2 that to cooperate with other applets from different
vendors, certain information, such as the behavior of a sharcable interface object (S1O)
and the secrete parameter, should be available for other application providers. The
shared information between two applets is below. (Notice that Ox stands for hex)

? The AID of the AirMile applet: 0x0 0x0 0x0 0x0 0xB 0x0 0x0 Ox)
? The AID of the EPurse applet: 0x0 0x0 0x0 0x0 OxC 0x0 0x0 Ox |
? The secrete parameter: OxAF

? The behavior of a SIO: void bonusMile (short mileage)

47

- AirMile applet grants milcages on request from the EPurse applet.

? The airmileloyalty package that contains classes of AirMile and AirMilelnterface.

? The export file of the airmileloyalty package.
The source codes of the AirMile applet and EPurse applet are in Appendix.
Illegal SIO Access

The EPurse application provider is asked not to share the information with
unauthorized means. However, there is no guarantee that the provider will not share the
information with unauthorized means. Once the shared information is revealed, a
malicious applet (client applet) that can get a SIO from the AirMile applet (server applet)
can be developed.

For simulating a malicious applet, we add a class variable, which does not affect
the compilation and functionality of the client applet, into the source code of the EPurse
applet as below.

public class EPurse extends Applet {

ia.llivale byte for_malicious = (byte)0x0;

}

Recall from section 3.1 that the correctness and integrity of a CAP file are
verified off-card, and the installer on the Java Card platform does not perform most of the
traditional Java verifications at class-loading time. Therefore, it is possible a malicious
applet to be installed onto a card via illegal applet installation process due to lack of a
CAP file verification power in the Java Card installer.

The malicious applet if installed with an illegal installation process can get a SIO

from the AirMile applet as shown in Figure 15 and 16. Notice that every value appeared

48

in the result box in the host applications is hex format. The source codes of two host

applications are in Appendix.

;‘.:': AiuMile Host Apphcation

?_—:“"»FF"'I-' e Host Application

Figure 16. Host Application for the EPurse with Existing Approach
The arrow A in Figure 15 indicates that the initial mileage of the AirMile applet

set as zero. Also, the arrow C in Figure 16 shows that the initial balance of the EPurse

49

applet set as one thousand.

After a debit transaction with sixteen dollars, the arrow D in Figure 16 indicates
that the balance in the EPurse applet has been changed. Also, the arrow B in Figure 15
shows that the debit transaction causes to add sixteen mileages in the AirMile applet.
This means the malicious client applet have gotten a SIO from the server, and invoke the
bonusMile method in the SIO successfully.

As shown in the above simulation, when the malicious applet asks to share a SIO
of the AirMile applet, there is no way for the AirMile applet to reject the malicious client
applet that impersonates with a valid AID and parameter. Because the AirMile applet
determines validation of the client applet only by the client’s AID and parameter, the
server applet agrees to share its SIO with the malicious applet.

4.3 Object Sharing Process Simulation with Qur Approach

For simulating the object sharing process with our approach, we will consider the
same situation environment, which 1s specified between the AirMile applet and the
EPurse applet.

Proposed On-Card Installer

To simulate the object sharing process with our approach that use hashing for the
verification of client applets, an applet called Hashlnstaller should be installed onto a
Java Card before other applets are installed. The HashInstaller generates a hash value of
a CAP file when the CAP file is read in and registers the hash value in its instance.
Therefore, the HashInstaller applet and the existing Java Card installer residing on the
Java Card platform together perform as the proposed on-card installer. The source code

of the Hashlnstaller applet is in Appendix A.

50

The MDS5 algorithm is implemented in the Hashlstaller applet to generate a hash
value of a CAP file. The reason for choosing MDS5 algorithm is that it is not only one of
the most robust one-way hash functions, but also as it does not require any large
substitution tables, it can optimizes card resource usage [16].

Hash Value of the Client Applet

Recall from section 3.3 that, in our secure object sharing scheme, a hash value of
a client applet needs to programmed into a server applet’s code before the server applet is
installed. For this, a card issuer - or the AirMile applet provider if it issues the card —
provides a hash value generator to the EPurse applet provider. Notice here that a hash
value generated from the given hash value generator should be the same hash value that
the proposed on-card installer generate when the CAP file is read in.

After the client applet provider developed the EPurse applet along with the shared
information, it generates a hash value of the CAP file that contains the EPurse applet
classes by using the given hash value generator. Figure 17 is a screen shot of the hash

value generator that generated the hash value of EPurse applet.

Figure 17. Hash Value Generator with the Hash Value of EPurse Applet

Now, the hash value of the CAP file that contains the EPurse applet classes need

51

to be programmed into the AirMile applet’s code as below before the server applet 1s
installed.

public class AirMile extends Applet implements AirMilelnterface {

['J.r.ivalc byte[] md_epurse = |
(byte)Ox A0, (byte)0x44, (byte)0x60, (byte)0x6A, (byte)0x 78,
(byte)0x6D, (byte)OxE2, (byte)0x 76, (byte)0x74, (byte)0x64,
(byte)0x7B, (byte)0x22, (byte)0x05, (bytc)Ox7E, (byte)0x21
(byte)Ox35 };

H

The source codes of the hash value generator is in Appendix.

Applet Installation

Recall from section 3.1 that applet installation on Java Card is completed through
the cooperation of an off-card installation program and the on-card installer. The off-card
installer program transmits a CAP file to the installer running on the card via a card
acceptance device (CAD). To support our simulation, however, we provide our own off-
card installation program that transmits a CAP file not only to the Java Card installer but
also to the HashInstaller installed onto a card before other applets are installed.

Notice that, in real implementation of our proposal scheme, an off-card
installation program will transmit a CAP file only once to the proposed on-card installer,
and the proposed on-card installer computes a hash value of the CAP file contents before
wnting it into EEPROM while a CAP file is read in.

Figure 18 1s a screen shot of the application that is for simulating the applet

1nstallation process in a terminal. This application contains our off-card installation

program, and the source code of the application is in Appendix.

52

Figure 18. Terminal Application

When a user clicks the Transmit button, our off-card installation program
transmits a CAP file to the Java Card installer, and it also transmits the CAP file to the
HashlInstaller to generate a hash value of the CAP file. Therefore, in the last step of the
applet installation process, the Java Card installer registers an applet’s AID with the
JCRE, and the Hashlinstaller registers an applet’s AID and a hash value of the CAP file in
its own instance.

Enhanced Client Applet Verification

Figure 19 illustrates the steps in the simulation during the object sharing process
between the AirMile applet and the EPurse applet. Here we use hashing to demonstrate

enhanced on-card verification of a client applet.

53

JCRE HashInstaller

Applets AID AlDs | Hash Values
! S [
AiriVileapplet's EPurse applet’s
AlID and AD, parameter
parameter (0xAF) (OxAF), and
hash value
EPurse Applet AirMile Applet

Figure 19. Secure Object Sharing Simulation

The steps 1 and 2 are identical with the steps 1 and 2 in the existing object sharing
process illustrated in section 3.2.

In step 3, The AirMile applet verifies the client applet with the electronic purse
applet’s AID and the secret parameter that were programmed into the AirMile applet
code before the server applet was installed. If the client applet is valid, then the AirMile
applet passes the EPurse applet’s ATD and hash value that was also programmed into the
server applet code to the HashlInstaller.

In step 4, The Hashlnstaller compares the hash value that is from the AirMile
applet with the hash value computed when the CAP file was read in. If they are identical,
the Hashlnstaller returns true to the AirMile applet. Otherwise, it returns false to the
AirMile applet. Once the AirMile gets a response from the HashlInstaller, the scver applet
now can determine the validation of the client applet.

The steps from 5 to 8 are identical with the steps from 3 to 6 in the existing object

sharing process illustrated in section 3.2.

To compare our proposed approach with the existing approach, we used the same

54

malicious applet used in the previous section. As shown in the previous section with the
existing approach, the malicious applet if installed with an illegal installation process can
get a SIO from the AirMile applet. However, with our approach that uses hashing for the
verification of client applets, the malicious applet cannot get a SIO from the AirMile
applet even though 1t is still possible for a malicious applet to be installed onto a card via

an illegal applet installation process as shown in Figures 20 and 21.

-

f-: AirMile Host Apphcation

Figure 20. Host Application for the AirMile with Our Approach

55

?:‘:. FPuise Host Application

Figure 21. Host Application for the EPurse with Our Approach

In Figure 20 and 21, the arrow A indicates that the initial mileage of the AirMile
applet set as zero, and the arrow C shows that the initial balance of the EPurse applet set
to one thousand.

The arrow D in Figure 21 indicates that during a debit transaction with sixteen
dollars, granting a SIO from the server applet has failed. Notice that the response APDU
can be either an Acknowledgement (called an ACK) or Negative Acknowledgement
(called a NAK). The value for an ACK frame SW1SW2 is 9000, and the value for a
NAK frame SWI1SW2 is 6XXX.

After the debit transaction with sixteen dollars, the arrow E in Figure 21 indicates
that the balance in the EPurse applet has been changed. However, the arrow B in Figure
20 shows that the mileage in the AirMile applet has not been changed. This means the

malicious client applet although installed with an illegal installation process applet failed

to get a SIO from the server.

56

As shown in the above simulation, with our proposed approach that uses hashing
for the verification of client applets, even though it is still possible for a malicious applet
to be installed onto a card via an illegal applet installation process, it is extremely hard to
get a service from a server applet because it is almost impossible for the malicious applet
to have the same hash value as the value of the valid client’s applet classes contained in
the CAP file.

Update a Hash Value of the Client Applet

Recall that applets can be installed and deleted at any time in the Java Card
platform. Let’s assume that the EPurse applet provider found some bugs later in the
EPurse applet, and the provider wants to distribute a new version of the EPurse applet to
its costumers. So, when card holders (the customers}) insert a card into a CAD next time,
the provider deletes the existing EPurse applet from the card and installs the new version
of the EPurse applet onto the card. With our proposed on-card installer, when the new
version of the EPurse applet is installed, the new hash value of the EPurse applet is
registered with the JCRE.

Recall that, in our approach, the hash values of client applets should be saved in a
server applet for verification of client applets. If the application code were burned into
the chip at manufacture time as in the traditional smart card approach, this would be a
major drawback. However, because the Java Card platform has the ability to
dynamically respond to a card issuer’s changing needs, such problems could be solved
very easily. Figure 22 shows that the hash value of the client applet in the AirMile applet
can be updated any time by the AirMile applet provider. The only constraint is that the

new client’s hash value has been stored in the server’s code previously.

57

':':‘ AnMile Host Apphcatior

0011 2233445566877 68098aabboc ddes

Figure 22. Update the Hash Value of the EPurse Applet in the AirMile Applet
The simulation tools were made available on the web. The purpose was to allow
outsiders to attack our proposed security mechanism. At the time of writing, no-one had

succeeded in breaking our system.

58

5. CONCLUSION

[n Java Card technology, the correctness and integrity of a CAP file are verified
off card, and the on-card installer does not verify a CAP file at class loading time.
Therefore, installation of a malicious applet onto a card may be possible by way of an
illegal applet installation process. Also, to cooperate with other applets provided by
different service providers, certain information should be available for other application
providers who should not to reveal this information. However, it is possible that the
information may be shared with unauthorized means. Thercfore, a malicious applet if
installed with an illegal installation process can get a SIO from a server applet because
there is no way the server applet can reject the malicious client applet that impersonates
with a valid AID and parameter.

We proposed in this thesis an on-card installer with a one-way hash function to
support on-card verification of download applets by using a hash value of a CAP file.
While the installer in the Java Card platform registers only an applet's AID on the JCRE,
our proposed installer registers not only an applet’s AID but also an applet’s hash value
that 1s computed by the proposed installer during the applet installation process. Later,
the hash value is used to verify the client applet when it tries to gain a SIO from a server
applet.

With our approach, even though it is still possible for a malicious applet to be
installed onto a card via an illegal applet installation process, it is extremely hard to get a
SIO from a server applet because it is almost impossible for the malicious applet to have
the same hash value as the value of the valid client’s applet classes contained in the CAP

file. We have validated our proposal by simulating a Java Card environment

59

development using the Java Card 2.2 Development Kit. This simulation tool contains

over 4000 lines of code.

60

10.

fl

12.

13

14.

BIBLIOGRAPHY

Dreifus, Henry and Monk, Thomas. Smart Card: a guide to building and managing
smart card applications. New York: John Wiley & Sons, Inc., 1997,

“Smart Card Overview.” Online. Internet. Aug. 2002. Available:
http://java.sun.com/producls/javacard/samrtcards.html.

. Chen, Zhiqun. Java Card Technology for Smart Cards: architecture and programmer's

guide. California: Sun Microsystems, Inc., 2000.

“Smart Card Overview.” Online. Internet. Aug. 2002. Available:
http://www .javacard.org.

Rankl, Wolfgang and Effing, Wolfgang. Smart Card Handbook. England: John Wiley
& Sons Ltd., 1997.

Donsez, D. Grimaud, G. and Lecomte, S. “Recoverable Persistent Memory for

SmartCard.” Proceedings of the Third International Conference, CARDIS’98 (1998):
134-140.

Hendry, Mike. Smart card secunty and applications. Boston: Artech House, 1997.

“Java Card 2.2 Java Card Virtual Machine Specification.” Online. Internet. Aug.
2002. Available: http://java.sun.com/products/javacard.

“Java Card 2.2 Java Card Runtime Environment Specification.” Online. Internet.
Aug. 2002. Available: http://java.sun.com/products/javacard.

“What is OpenCard and the OpenCard Framework?"” Online. Intemet. Sep. 2002.
Available: http://www.opencard.org.

Ahuja, Vijay. Network & Internet Security. Michigan: AP Professional, 1996.

Hughes, Larry. Intemet Security Technigues. Indiana: New Riders, 1995,

“What 1s a hash function?” Online. Internet. Nov. 2002. Available:
http://www.rsasecurity.com/rsalabs/faq/2-1-6.html.

“What are MD2, MD4, andMD5?" Online. Internet. Nov. 2002. Available-:
hitp://www.rsasecurity.com/rsalabs/faq/3-6-6.html.

. Hughes, Larry. Actually Useful Internet Security Techniques. Indiana; New Riders,

1995.

61

16.

17.

18.

19.

20.

“The MDS5 Message-Digest Algorithm.” MIT Laboratory. Apr. 1992,

“What are SHA and SHA-1?" Online. Internet. Nov. 2002. Available:
http://www.rsasecurity.com/rsalabs/fag/2-1-6.html.

“Java Card Platform Security.” Online. Internet. Oct. 2002. Available:
http://java.sun.com/products/javacard.

“Java Card 2.2 Application Programming Interface.” Online. Internet. Aug. 2002.
Available: http://Java.sun.com/products/javacard.

“Java Card 2.2 Development Kit User Guide.” Online. Internet. Aug. 2000.
Available: http://Java.sun.com/products/javacard.

62

APPENDIX

AirMile.java

R e L S T T T T R R R L e T PP AL L L L

The class AirMile contains the miles the card holder has traveled. It implements the
verifyHashValue method in the HashlnstallerInterface interface. When a client applet requests
a SIO, it asks a validation of the client applet to the HashInstaller. If the client applet is valid,
it shares its SIO with the client applet.

EE e R T R R T T R PR R R RS L L R L L R R L L Ll Ll Al t##‘!’#“t“*.i'}’

package airmileloyalty;

import javacard. framework.*;
import installersupport.HashinstallerInterface;

public class AirMile extends Applet implements AirMilelnterface {

/f codes of CLA byte in the command APDUs
private final static byte AirMile_CLA = (byte)0xBO;,

// codes of INS byte in the command APDUs
private final static byte DISPLAY = (byte)0x01;

/f used with the Hashlnstaller
private final static byte UPDATEMD = (byte)0x02;
private final static byte ADD = (byte)0x03;

/! applet-specific status words

// used with the Hashlnstaller

private final static short SW_UNAUTHORIZED CLIENT = 0x6A01;
private final static short SW_FAILED TO GET SERVER SIO — 0xGA02;
private final static short SW_FAILED TO_VERIFY = 0x6A03;

private final static short SW_INVALID MD LENGTH - Ox6A04,

/f AID of this applet instance

private final byte[] own aid = {0x00, 0x00, 0x00, 0x00, 0x0B, 0x00, 0x00, O0x01};

#/ AID of the server applet (Hashlnstaller) instance

/f used with the HashlInstaller

private final byte[] hash_installer aid = {0x00, 0x00, 0x00, 0x00, 0x0A, O0x00, 0x00, 0x01};
/1 AID of the client applet (EPurse) instance

private final byte[] epurse_aid = {0x00, 0x00, 0x00, 0x00, 0x0C, 0xD0, 0x00, 0x01};

// parameter between AirMile and HashlInstaller
private final byte password hash = (byte)Ox0A;
// parameter between EPurse and AirMile

private final byte password_epurse = (byte)OxAl";
/ the hash value of the client applet (EPurse)

// used with the HashInstaller

private byte[] md_epurse;

private short mileage;

private AirMile () {

63

md cpurse = new byte[16];

!/ hashvalue of the CAP file contains EPurse applet
// used with the HashInstaller
md_epurse[0] = (byte)OXAQ;
md epurse[]1] = (byte)0x44;
md_epurse[2] = (byte)0x60;
md_epurse[3] = (byte)0x6A;
md_epurse[4] = (byte)Ox78;
md_epurse[5] = (byte)0x6D;
md_epurse[6] = (byte)OxE2;
md_epurse[7] = (byte)0x76;
md_epurse[8] = (byte)0x74;
md_epurse[9] = (byte)0x64;
md epurse[10] = (byte)0x7B;
md_epurse[]1] = (byte)0x22,
md_epurse[12] = (byte}0xDS;
md_epurse[13] = (byte)0x7E;
md epurse[14] = (byte)0x21;
md_epurse[15] = (byte)Ox35;

mileage = (short)0;

. // register the applet instance with the JCRE
register{own_aid, (short)0, (byte)(own_aid.length));

} // end of constructor
public static void install (byte[] bArray, short bOffset, byte bl.ength) {

// create a AirMile applet instance
new AirMile();

} // end of install method
public void process (APDU apdu) {
byte[] buffer = apdu.getBuffer();

// rerurn if the APDU is the applet SELECT command
if (selecting Applet())
return;

/! verify the CLA bytes
if (buffer[ISO78 16.OFFSET_CLA] != AirMile_CLA)
ISOException.throwIt(ISO7816,.SW_CLA NOT SUPPORTED);

/f check the INS byte to decide which service method to call
switch (buffer{ISO7816.OFFSET _INS]) {

case DISPLAY: display(apdu),

return;
/! used with the HashlInstaller
case UPDATEMD: updateMD(apdu);
return;
case ADD: addMile (apdu);
return;

64

default: ISOException. throwIt(ISO7816.SW_INS NOT SUPPORTED);

| // end of process method

/1 used with the Hashlnstaller
public Shareable getShareablelnterfaceObject (AID client aid, byte parameter) |

if (client_aid.equals(epurse_aid, (short)0, (byte){epurse aid.length)) = falsc)
return null;

if (parameter != password_epurse)
return null;

// check the hash value of the client applet
/ obtain the Hashlnstaller ALD object
AID server_aid = JCSystem.lookupAJD(hash_installer aid, (short)0, (byte)(hash_installer aid.length));

!/ request the sio from the server
HashlinstallerInterface sio
= (HashInstallerInterface)(JCSystern. getAppletShareableInterfaceObject
(server_aid, password_hash));

byte aidl = 0, aid2 = 0, aid3 = 0, aid4 = 0, aid5 — 0, aid6 = 0, aid7 = 0, aid8 = 0,
aid9 = 0, aid10 =0, aid11 = 0, aid12 = 0, aid13 = 0, aid14 = 0, aid15 = 0, aid16 = 0;

byte aid_length = (byte)epurse_aid.length,

if (aid length >= 1) aid1 = epurse_aid[0];

if (aid_length >= 2) aid2 = epurse_aid[1];

if (aid_length >= 3) aid3 = epurse_aid[2];

if (aid_length >= 4) aid4 = epurse_aid[3];

if (aid_length >= 5) aid5 = epurse_aid[4];

if (aid_length >~ 6) aid6 = epurse_aid[5];

if (aid length >= 7) aid7 = epurse aid[6];

if (aid_length >= §) aid8 = epurse_aid[7);

if {aid length >= 9) aid9 = epurse aid[8);

if (aid length >= 10) aid10 = epurse_aid[9];

if (aid length >= 11) aid11 = epurse_aid[10];

if (aid length >= 12) aid12 = epurse_aid[11];

if (aid_length >= 13) aid13 = epurse_aid[12];

if (aid_length >= 14) aid14 = epurse_aid[13};

if (aid_length >= 15) aid15 = epurse_aid[14];

if (aid_length >= [6} aid16 = epurse_aid[15];

byte mdl = 0, md2 = 0, md3 = 0, md4 = 0, md5 =0, md6 - 0, md7 = 0, md§ — 0,
md9 =0, md10=0,mdl]1 =0, md12=0, md13 =0, mdl4 =0, md15 =0, md16 = 0;

mdl = md_epurse[0];

md2 = md epurse[1];

md3 = md _epurse[2];

md4 = md_epurse[3];

md5 = md_epurse[4];

md6 = md epurse[5);

md?7 = md_epurse[6];

md8 - md epurse|7];

md9 = md_epurse[8],

md10 - md_epurse[9];

mdll = md_epurse[10];

65

md12 = md epurse[11];

md13 = md_cpurse[12];

mdl4 = md epurse[13];

md15 = md epurse[14];

md16 = md epurse[15],

/! verify the client applet with its hash value

boolean result = sio.verifyHashValue
(aid_length, aid1, aid2, aid3, aid4, aid5, aid6, aid7, aid8, aid9, aid10,
aid11, aid12, aid13, aid14, aid15, aid16, md1, md2, md3, md4, mdS, mdo,
md7, md8, md9, md10, md11, md12, md13, md14, md15, mdl6);

if (result — false]
ISOException.throwIt(SW_FAILED TO_VERIFY);

return (this);
} // end of method getShareableInterfaceObject
public void bonusMile (short bonus) {

// get the caller's AlD
AID client_aid = JCSystem.getPreviousContextAID();

/i check if the actual caller is the EPurse applet
if (client_aid.equals(epurse_aid, (short)0, (byte)}epurse_aid.length)) — false)
ISOException.throwlt(SW_UNAUTHORIZED CLIENT);
mileage = (short){mileage + bonus);
+ // end of method bonusMile
private void display (APDU apdu) {
byte(] buffer = apdu.getBuffer();

/! inform the JCRE that the applet has data to return
apdu.setQutgoing():

/I set the actual number of the outgoing data bytes
apdu_setQutgoingLength((byte)2);

// write the balance into the APDU buffer at the offset 0
Util.setShort(buffer, (short)0, mileage):

// send the 2-byte balance at the offset 0 in the apdu buffer
apdu.sendBvtes((short)0, (short)2);

} // end of method balance

/! used with the Hashlnstaller
private void updateMD (APDU apdu) {

byte(] apdu_buffer — apdu.getBuffer();

/I set the JCRE into the data receiving mode

66

apdu.sctincomingAndReceive(§;

// the length of a message block 1s from 1 to €4 bytes
short md length = (short}{apdu buffer{ISO7816.0FFSET LC] & Ox00FF);

if (md_length = 16)
ISOException_throwlt(SW INVALID_MD_LENGTH);

// copy a message that is contained from index 5
Util.arrayCopy(apdu_buffer, (short}ISO7816.OFFSET_CDATA & Ox0OFF),
md_epurse, (short)0, md_length);
} // end of method update
private void addMile (APDU apdu) {
byte[] apdu_buffer = apdu.getBuffer();

// set the JCRE into the data_recetving mode
apdu.setincoming AndReceive();

short mile = (short)(apdu_buffer{[SO7816.0FFSET_CDATA] & Ox00FF);
mileage = (short)(mileage + mile);
} /7 end of method addMile

} // end of class AirMile

AirMilelnterface.java

ftt‘tt't"'.ittt't-*tttil-ltlt!lt‘-‘-ttit.**t**tt!#!ti**-'ttitt‘tlf"i'*t##t‘t

The interface AirMilelnterface contains the method bonusMile that 1s an abstract method

used for grant a mileage.
t*tt‘*‘t#*tt#tt‘t1ttttt!!‘-v‘--tttit#.tit*tttttttltttttt-tntttil-itt-ti#Utit-f

package airmileloyalty;

import javacard.framework Shareable;

public interface AirMilelnterface extends Shareable {
public void bonusMile (short mileage);

i

EPurse.java

f‘#‘**t"l*'*t't‘!‘Uﬂtttittttttti"*'*ttttttttt**tiiti.tt#i‘t*llt.tt't-**ttltti

The class EPurse contains ¢lectronic cash used for buy goods. It has an ability to get a SIO
and invoke the bonusMile method from the AirMile applet.

BESERREE NN RR KRR AR F IR R R EEF T AR Rk b b Rk hr kbR AR e R bk ok ek

package electronicpurse;

67

import javacard. framework.*;
import airmileloyalty. AirMileInterface;

public class EPurse extends Applet |

/I codes of CLA byte in the command APDUs
private final static byte EPurse CLA = (byte)0xB0;

'/ codes of INS byte in the command APDUs

private final static byte PAY = (byte)0x01;
private final static byte BALANCE = (byle)Ox02;

/i Applet-specific status words
private final static short SW_INVALID AMOUNT = 0x6A01;
private final static short SW NEGATIVE _BALANCE = 0x6A02;
private final static short SW_SERVER NOT EXIST - 0x6A03;
private final static short SW_FAILED_TO_GET SERVER_SIO = 0x6A04;
/1 ATD of this applet instance
private final byte[] own_aid = {0x00, 0x00, 0x00, 0x00, 0x0C, 0x00, 0x00, 0x01};
/1 AID of the server applet(AwrMile applet) instance
private final byte[] airmile aid = {0x00, 0x00, 0x00, 0x00, 0x0B, 0x00, 0x00, 0x01};
I/ parameter between EPurse and AirtMile
private final byte password = (byte)OxAF,
// maximum transaction amount
private final byte max_payment = (byte)100;
private short money;
private EPurse () {
money = (short)1000;

/f register the applet instance with the JCRE
register(own_aid, (short)0, (byte)}own_aid.length));

) /I end of constructor
public static void install (byte[] bArray, short bOffset, byte bLength) |

/f create a EPurse applet instance
new EPurse ();

} // end of install method

public void process (APDU apdu) {
byte[] buffer = apdu.getBufler();
// return if the APDU is the applet SELECT command
if (selecungApplet(})

return;

// verify the CLA bytes
if (buffer[ISO7816 OFFSET CLA]!- EPurse CLA}

68

ISOException.throwly(ISO7816.SW CLA NOT SUPPORTEDY).

/! check the INS byte to decide which service method to call
switch (buffer[ISO7816.0FFSET_INS]) {
case PAY: payment{apdu};
retum,
casc BALANCE: balance(apdu};
return;
default: ISOException.throwIt{(ISO7816.SW_INS_NOT_SUPPORTED);

)

} // end of process method

private void payment (APDU apdu) {
byte[] buffer = apdu.getBuffer(},

// get the number of bytes in the data ficld of the command APDU
byte numBytes = (byte)(buffer(ISO7816 OFFSET_LCJ);

if (numBytes != 1)
ISOException.throwIt(ISO7816.SW_WRONG_LENGTH);

// receive data
apdu.setincoming AndReceive();

/{f get the payment amount
byte amount = buffer[ISO7816.0FFSET_CDATA],

if {((amount > max_payment) || {atmount < 0))
1SCException. throwlt(SW_INVALID AMOUNT);

if ((short){(money - amount) < (short)0)
[SOException. throwlt(SW_NEGATIVE BALANCE),

/! new balance
money = (short}(money - amount};

/! obtain the server AID object
AID server_aid = JCSystem.lookupAID(airmile_aid, (short)0, (byte)(airmile_aid.Jength));

if (server_aid == null)
ISOException.throwlt(SW_SERVER NOT _EXIST):

// request the sio from the server
AirMilelnterface sio
= (AirMilelnterface)(JCSystem. getAppletSharcable InterfaceObject(server_aid, password));

if (s10 == null)
ISOException.throwIt(SW_FAILED TO GET SERVER SIO);

/ ask the server to bonus milcs
sio.bonusMile((short)(amount&0x 00FF)),

| /1 end of method payment

69

private void balance (APDU apdu) {
byte[] buffer = apdu.getBuffer();

7/ inform the JCRE that the applet has data to return
apdu_setOutgoing(};

// set the actual number of the outgoing data bytes
apdu.setQutgoing Length((byte)2);

// write the balance into the APDU buffer at the offset 0
Utl setShort(buffer, (short)0, money);

/1 send the 2-byte balance at the offset 0 in the apdu buffer
apdu.sendBytes((short)0, (short)2);

) // end of method balance

} /7 end of class EPurse

HostAirMile.java

l‘tl!ﬂ“t‘-‘l"iﬂ!.."‘tl‘*’.'.tt..Il“.ti“tl‘.““!t*.tl...l!.‘t.t.-.*‘l‘

The class HostAirMile is a host application for the AirMile applet resided on the terminals.

It has an ability to extract a current mileage from the AirMile applet.
ER R R e e e L e L L e

import java.io.*;

import java.awt.*;
import java.awt.event.*;
tmport javax.swing.*;
import java.util.*;

class HostAirMile extends JFrame {

private JPanel first_panel;
private JButton display_mile;

private JPanel second_panel;
private JScrollPane scroll;
private JTextArea area;

// only used with the HashInstaller applet
private JPanel third_panel;

private JButton update_md;

private JTex1Field md;

private File scr_file;
private File batch;
private File result,

HostAirMile () {

setTitle("AirMile Host Application™);
setDefaultCloscOperation(JFrame. EXIT ON_CLOSE);

70

getContentPane().setlLayout(nuil);
getContentPane().setBackground(Color.green):

first panel — new JPanek);
first panel.setBounds(25, 25, 450, 55);
first_panel.setBackground(Color.green),
display mile = new JButton(" My Milcage b

new Imagelcon("c:/demo/sourcecode/ gif/display.gif”)):
display_mile.setBackground(Color.orange);
display_mile.setSize(100, 40});
first_panel.add(display_mule);

second panel = new JPanel(),

second panel setBounds(25, 80, 450, 190);

secand_panel setBackground(Color.green);

second_panel.setBorder{BorderFactory.createTitledBorder
(BorderFactory.createLineBorder(Caolor blue), " Result "));

area = new JTextArea(400, 100);
area.setBackground(Color.green);

area setEnabled(true);

scroll = new JScrollPane(area);

scroll setPreferredSize(new Dimension(420, 140));
second panel.add(scroll);

/! only used with the Hashlnstaller applet
third_panel = new JPanel();
third panel setBounds(25, 280, 450, 80);
third_pancl.setBackground(Color.green);
third panel.setBorder(BorderFactory.createTitledBorder
(BorderFactory createLineBorder(Color.red), " Update Hash Value ")),

// only used with the HashlInstaller applet

md = new JTextField();
md.setPreferredSize(new Dimension(280, 20));
third_panel.add(md);

/¢ only used with the HashInstaller applet
ppdate_md = new JButton(" Update ",
new [magelcon("c:/demo/sourcecode/giffupdateMD. gaf™));
update_md.setBackground(Color.orange);
update _md.setSize(100, 40);
third_panel.add(update md);

!/ to extract a current mileage from the AirMile applet.
display mule addActionListener(new ActionListener() |
public void actionPerformed (ActionEvent) {

md.setEnabled(true);
md. setText(null);

/ to create a script file that can extract a current mileage from the AirMile applet
try |

scr file = new File{"apdu.scr™),

LT

BufferedWrniter out = new BufferedWriter(new FileWnter(scr file)):

out.write('powerup;in'n");
out.write("/ Select AirMile appletin™).
out. write
("0x00 OxA4 0x04 0x00 0x08 0x00 0x00 0x00 0x00 Ox0B 0x00 0x00 0x01 0x7F;n'n").
out.write("// Display miliage\n™);
out.write("0xB0 0x01 0x00 0x00 0x00 0x7F;\n'\n");
out.write("powerdown;,”);
out.close();

} catch (Exception ee) {

/ to create a batch file to run the script file
try {

batch = new File("execute.bat");

result = new File{"result™);

Buffered Writer out = new BufferedWriter(new FileWriter(batch)});

out. write("(@echo off'\n");

out.write("apdutool -0 " + result.getAbsolutePath() + " " + scr_file. getAbsolutePath() + "n");
out.close();

String batch_path = batch.getAbsolutePath();
batch_path = batch_path.replace("\\, '),

Process child = Runtime.getRuntime().excc(batch_path);
child.waitFor();

} catch (Exception e2) {
}

String text;

// to display current mileage in the AirMile applet
try {
BufferedReader reader — new BufferedReader(new FilcReader(result));
while ((text = reader.readLine()) != null) {
area.append(text + "\n");
H
area.append('\n"):
reader.close();

} catch (Exception ee) {
+ finally {
scr_file. delete():
scr_file = null,
batch.delete(};

batch = null;
result.delete();
result = null:

s

/{ only used with the Hashinstaller applet

// 1o update a hash value of a CAP file

update md.addActionLisicner(new ActionListener() {
public void actionPerformed (ActionEvent c) |

md._setEnabled(false);

String hash - md.getText();
String hash_value = new String():
StringTokenizer token = new StringTokenizer(hash):
while (token.hasMoreTokens())
hash_value — hash_value + "0x" + token.nextToken() tollpperCase() + " *;

// to create a script file that can update a hash value in Hashinstaller applet
try {

scr_file = new File("apdu.scr™);
BufferedWrniter out =~ new BufferedWnter(new FileWniter(scr_file));

out. write("powerup;'nn");
out.write("// Select AirMile applet\n”);
out.write
("0x00 O0xA4 0x04 0x00 0x08 0x00 0x00 0x00 0x00 0x0B 0x00 0x00 0x01 Ox7F;\n'n");
out.write("// Update MD'n");
out. write("0xB0 0x02 0x(0 0x00 0x10 " + hash_value + “"0x7F;\n\n");
out.write("powerdown;");
out.close(),

} catch (Exception ee) |

}

/1 1o create a batch file to run the script file
try {

batch = new File("execute bat");

result = new File("result");

BufferedWriter out = new BufferedWriter(new I'ile Writer(batch));

out. write("@echo offin");

out.write("apdutool -0 " + result.getAbsolutePath() + " " + scr_file.getAbsolutePath() + "'n");
out.close();

String batch_path = batch. getAbsolutePath().
batch_path = baich_path.replace("\\", '"");

Process child = Runtime getRuntime().cxec(batch path);
child.waitFor();

1 catch (Exception e2} |
i

String text;

// to display current mileage in AirMile applet
try {
BufferedReader reader = new BufferedReader(new FileReader(result));
while ((text — rcader.readLine()) != null) {
area.append(text + "'n"},

73

b
area.append("\n"):
reader close();

} catch (Exception ee) {
} finally {
scr_file delete().
scr_file = null;
batch.delete();
batch = null;
result.delete(};
result = null;

}
0

getContentPane().add(first_panel);
getContentPane(}.add(second_panel);
getContentPane().add(third_panel);
} // end of constructor
public static void main (String(] args) {
JFrame frame = new HostAirMile();
frame_setBounds(0, 0, 510, 420),
frame.setVisible(true),
} /f end of method main

} # end of class HostAirtMile

HostEPurse.java

P T L e e R L R L L L L e AL R Ll L R R R L

The class HostEPurse is a host application for the EPurse applet resided on the terminals.

It has an ability to update and extract a current balance in the EPurse applet.
LR L e L e e T P T T L PR

import java.io.¥;

import java.awt.*;
import java.awt.event. ®;
import javax.swing.*;

class HostEPurse extends JFrame {

private JPanel first_panel:
private JButton balance;

private JPanel second panel:
private JButton pay;
private JTextField money;

private JPanel third_panel;

74

http:1�����������������������*����*�*����������*��*��*��*��..........�

private JScrollPane scroll;
private JTextArea area;

private File scr_file;
private File batch;
private File result;

HostEPurse () |

setTitle("EPurse Host Application”);
setDefaultCloseOperation{JFrame. EXIT ON CLOSE);
getContentPane().setLayout(null);
getContentPane().setBackground(Color.green);

first_panel = new JPanel();
first_panel setBounds(25, 25, 450, 55);
first_panel setBackground(Color.green);

balance = new JButton(" Current Balance ", new
Imagelcon("¢:/demoisourcecode/gif/display.gif*});

balance setBackground(Color.orange);

balance setSize(100, 40);

first_panel.add(balance};

second_panel = new JPanel();
second_panel.setBounds(25, 80, 450, 55);
second_panel setBackground(Color.green);

maoney = new JTextField(};
money.setPreferredSize(new Dimension(50, 35));
money.setBackground(Color.green);

second panel.add(money);

pay = new JButton(" Debit ", new Imagelcon("c:/demo/sourcecode/gif/pay.gif'));
pay.setVertical TextPosition{ AbstractButton. CENTER):
pay.setHorizontal TextPosition{ AbstractButton. LEFT);
pay.setBackground(Color.orange);

pay.setSize(100, 40);

second_panel.add(pay);

third_panel = new JPanel();

third_panel.setBounds(25, 140, 450, 190),

third_panel.setBackground(Color.green),

third panel.setBorder(BorderFactory.create TitledBorder
(BorderFactory.createLineBorder(Color.blue), " Result ")),

area = new JTextArea(250, 100);

area setBackground(Color.green};
area.setForeground(Color.black);
area.setEnabled(true);

scroll = new JScrollPane(area);
scroll.setPreferredSize(new Dimension(420, 150));
third_panel.add(scroll);

balance.addActionListener(new ActionListener() |
public void actionPerformed (ActionEvent ¢) {

money set Text(null);
money.setEnabled(true);

/I to create a script file that can extract a current balance from the EPurse applet
try {

scr file = new File("apdu.scr");
BufferedWriter out = new BufferedWriter(new FileWnter(scr_file));

out. write("powerup:\n\n");

out.write("// Select EPurse applet\n");

out. write("0x00 0xA4 0x0¢ 0x00 0x08 0x00 0x00 0x00 0x00 0x0C 0x00 0x00 0x01 0x7F;\n\n");
out, write("// Display balance'n");

out.write(”0xB0 0x02 0x00 0x00 0x00 Ox7F;\n\n");

out. write("powerdown;");

out.close(),

i catch (Exception ee) {
1
]

/7 to create a batch file to Tun the script file
try |

batch = new File("execute.bat");

result = new File("result™);

BufferedWriter out = new BufferedWriter(new FileWriter(batch));

out.write("@echo offin");

out.write("apdutool -0 " + result.getAbsolutePath() + " * + scr_file.getAbsolutePath() + ™n");
out.close();

String batch_path = batch. getAbsolutePath();

batch_path = batch_path.replace("V, '/");

Process child = Runtime.getRuntime().exec(batch_path),
child. waitFor(};

| catch (Exception e2) |
1

String text;

/I to display current balance in the EPurse applet
try {
BufferedReader reader = new BufferedReader(new FileReader(iesult));
while ((text = reader.readLine()) '~ null) {
area.append(text + "\n");
!
area.append(™n");
reader.close();

} catch (Exception e3) {
{ finally {
ser file.delete();
scr_file = null;
batch.delete();
batch = null;

76

result. delete(),
result = null;

}

H
N

pay.

addActionl.istener(new ActionListener() {

public void actionPerformed (ActionEvent ¢} {

]
i

/ to create a script file that can update a current balance from the EPurse applet

ry {

scr file = new File("apdu.scr');
BufferedWriter out = new BufferedWriter(new FileWriter(scr_file)):

int amount = Integer.valueOfi moncy.getText()).intValue(),
String amount16 = Integer.toString(amount, 16);
System.out.println(amount 16);
if (amount16.length{) =~ 1)

amountl6 = "0" + amount6;

out. write("powerup;inin");

out write("// Select EPurse applet\n”);

out, write("0x00 0xA4 0x04 0x00 0x08 0x00 0x00 0x00 0x00 0x0C Ox00 0x00 0x01 0x7F;'\n'\n");
out.write("// Debit'n");

out, write("0xB0 0x01 0x00 0x00 0x01 Ox" + amount16 + " Ox7F;n'n");
out.write("powerdown;");

out.close();

money.setEnabled(false);

) catch (Exception ee) {
}

t

/ to create a baich file to run the script file
Ty A

batch = new File("execute bat");

result = new File("result”);

BufferedWriter out = new BufferedWriter(new FileWriter(batch));

out.write("@echo offin"}),

out. write{ "apdutool -0 " + result.getAbsolutePath() + " " + ser file petAbsolutePath() + "n"}J;
out.close();

String batch_path = batch.getAbsolutePath();

batch_path = batch_path.replace("\, '/},

Process child - Runtime.ge¢tRuntime().exec(batch_path);
child.waitFor();

} catch (Exception €2) 4
]

String text,

!

/ to display current balance in the EPurse applet

77

try |

BufferedReader reader = new BufferedReader(new FileReader{result)):
while ((text — reader.readline()) '= null) {
area.append(text + ")
}
area.append(™n");
reader.close();

} catch (Exception ¢3) |
} finally {
scr_file.delete().
scr_file = null;
batch.delete();
batch = null;
result.delete();
result = null;

'
1
getContentPane().add(first_panel);
getContentPane().add(second_panel);
getContentPane().add(third panel);
} // end of constructor
public static void main (String[] args) {
JFrame frame = new HostEPurse();
frame.setBounds(0, 0, 510, 400);
frame.setVisible(true);

} // end of method main

} // end of class HostAirMile

HashlInstaller.java

T L e T e e L RS

The HashInstailer generates a hash value of a CAP file with the MDS class when the CAP file
is read in and it registers the hash value in its instance. Therefore, the Hashlnstaller applet and
the existing Java Card installer residing on the Java Card platform together perform
as the proposed on-card installer. The AppletInfo class has an AID and hash value of cach CAP
file. The AppletinfoManager implements a linked list with a list Appletinfo.

LR T E R S R TR RS LS AL Rl e bl LRt Al Lt e i R e L L L R R T LT Ry L
package installersupport;

import javacard.framework. ¥,

public class Hashlnstaller extends Applet implements HashInstallerInterface |

/l codes of CLLA byte in the command APDUs

78

private final static byte HASH CLA = (byte)0xB0;

/I codes of INS byte in the command APDUs

private final static byte APPLET AID = (byte)0x01;
private final static byte CAP START = (byte)0x02;
private final static byte CAP_CONTENT = (byte}0x03;
private final static byte CAP_END = (byte)0x04;

/** For Test **/

private final static byte CHECK = (by1e)}0x05:

/1 Applet-specific status words

private final static short SW_INVALID AID LENGTH = Ox6A01;
private final static short SW INVALID_MB_LENGTH = 0x6A02;
private final static short SW_UNAUTHORIZED_CLIENT = 0x6A03;

private final byte[] own_aid — {0x00, 0x00, 0x00, 0x00, 0x0A, 0x00, 0x00, 0x01};
private final byte[] atrmule aid = {0x00, 0x00, 0x00, 0x00, 0x0B, 0x00, 0x00, 0x01};

private final byte password = (byte)Ox0A

private AppletinfoManager manager;
private MD5 md5;

private byte[] temp message;
private byte[] temp_aid,
private byte[] temp_md,;
private HashlInstaller () {

manager = new AppletlnfoManager();
mdS = new MD5();

// the length of an message block is from 1 to 64 bytes
temp_message = new byte[64]:
temp_aid = new byte[16];
temp_md = new byte[16];
register{own_aid, (shor)0, (byte)(own aid.length});

} // end of constructor

public static void install (byte[] bArmray, short bOffset, hyte bLength) {
new Hashlnstaller();

) // end of method install

public void process (APDU apdu) {
byte[] apdu_buffer = apdu.getBuffer();
// return if the APDU is the applet SELECT command
if (selecting Applet())

return;

{1 verify the CLA byte

if (apdu_buffer[1SO7816.OFFSET CLA] '~ HASH_CLA)
ISOE xception.throwlt(ISO7816. SW_CLA_NOT SUPPORTED);

/! check the INS byte to decide which service mehtod to call
switch (apdu_buffer[ISO7816.OFFSET _INS)) |
case APPLET_AID: save AlD(apdu),
retum;
case CAP START: imtMD():
return;
case CAP_CONTENT: updateMD{(apdu),
return;
case CAP_END: saveMD(};
retum;
case CHECK: check(apdu);
return;
default: 1ISOException. throwIt(ISO7816.SW INS NOT SUPPORTED);

}

} // end of method process

private void save AID {APDU apdu) {
byte[] apdu_buffer = apdu.getBuffer();

// set the JCRE into the data_receiving mode
apdu.setincoming AndReceive();

// data field = AID length (1 byte) + AID + papameter length (1 byte)
short aid_length = (short)(apdu_buffer[ISO7816.OFFSET LC] & 0x00FF);

if (aid_length < 5 || aid_length > 16)
[SOException.throwlt(SW _INVALID_AID LENGTH);

manager.add(new Appletinfo(apdu buffer));
t // end of method saveAlID
private void initMD () §
mdS.initialize();
} // end of method updateMD
private void updateMD (APDU apdu} {
byte[] apdu_buffer = apdu.getBuffer();

/i set the JCRE into the data_receiving mode
apdu.setincomingAndReceive();

/! the length of a message block is from 1 to 64 bytes
short mb_length = (short)(apdu buffer[[SO7816.OFFSET 1.C] & Ox00FF);
if (mb_length < 1 || mb_length > 64)

[SOException throwIt(SW_INVALID MB LENGTH);

// copy a message that is contained from index 5

80

arrayCopy(apdu_buffer, (short{ISO7816.0FFSET_CDATA & Ox00FF),
temp_message. (short)0, mb_length);

mdS5 . update(temp_message, mb_length):
| /1 end of method updateMD
private void saveMD () {
mdS.update(temp_message, (short)0);

/I save a MD in an Appletinfo object
md5. generate(manager.getCurrent().getHash()};

1/ end of method saveMD
public Shareable getShareableInterfaceObject (AID client_aid, byte parameter) {

if (client_aid.equals(airmile_aid, (short)0, (byte)(airmile_aid.length)) == false)
return null;

if (parameter != password)
return null;

// grant the SIO
return (this);

} // end of method getShareablelnterfaceObject

public boolean verifyHashValue (byte aid_length, byte aidl, byte aid2,
byie aid3, byte aid4, byte aid5, byte aid6, byte aid7, byte aid8,
byte aid9, byte aid10, byte aid11, byte aid12, byte aid13, byte aid14,
byte aid15, byte aid16, byte md}, byte md2, byte md3, byte md4,
byte mdS, byte md6, byte md7, byte md8, byte md9, byte md10, byte md11,
byte md12, byte md13, byte md14, byte md15, byte md16) |

/1 get the caller's AID
AID client_aid = JCSystem.getPreviousContextAID();

/I check if the actual caller is the airmile applet
if (chient_aid.equals(airmile_aid, (short)0, (byte)airmile aid length)) == false)
ISOException.throwlt(SW_UNAUTHORIZED CLIENT),

temp_aid[0] = aidl;
temp_aid[1] = aid2;
temp_aid[2] = aid3;
temp_aid[3] = aid4;
temp_ aid[4] = aid5;
temp aid[5] = aide;
temp_aid[6] = aid7;
temp _aid[7] = aid8;
temp_aid[8] = aid9;
temp_aid[9] = aid10;
temp_aid[10] = aid11;
temp aid[11] = aid12;
temp_aid[12] = ad13;

81

temp_aid[13) = aid14;
temp aid(14] - aid15;
temp aid[15] = aid16;

temp md[0] = md1;
temp md[1] = md2;
temp_md{2] = md3;
temp md([3] = md4;
temp_md[4] = md5;
temp md[5] = md6;
temp md(6] = md7,
temp_md[7] = md8;
ternp_md[8] = md9;
temp_md[9] = md10;
temp_md[10] = md11;
temp md[11] = md12;
temp_md[12] = md13;
temp _md[13] = md14;
temp md[14] = md15;
temp _md[15] = md16;

Appletinfo applet = manager.getHead();
boolean result = false;

while (applet '= null) {
result = arrayCompare(applet.getAid(), (short)0, temp_aid, (short)0, (short)aid_length & 0x00FF));
if (result == true) {
result = arrayCompare(applet.getHash(), (short)0, temp_md, {short)0, (short}16),
if (result = true)
retum frue;
else

return false,
'

applet =~ applet. getNext();
H

return false;
 // end of method getHashValue
private void check (APDU apdu) {
byte[] buffer = apdu.getBuffer();

// inform the JCRE that the applet has data to return
apdu.serOutgoing();

// set the actual number of the outgoing data bytes
apdu.setOutgoingLength({byte)48);

Appletinfo applet = manager.getHead();

Util.arrayCopy(applet.getAid(), (short)0, buffer, (short)0, (short)8);
Unl.arrayCopy(applet.getHash(), (short)0. buffer, (short)8, {short}16};

82

applet — applet.gctNext().
Uul.arrayCopy(applet.getAid(), (short)0, buffer, (short)24, {short)&);
Unl.arrayCopy(applet.getHash(), {short)0, buffer, (short)32, (short)16}).

apdu._sendBytes((short)0, {shor)}48);

{ // end of method check

private void arrayCopy (byte[] source, short s_start, byte[] destination, short d_start, short length) {
short perform = 0;

for (perform = length; perform = 0; --perform) {
destination[d_start] = source[s_start];
s start++,
d start++,

H

} // end of method arrayCopy

private boolean arrayCompare (byte[] source, short s_start, byte[] destination, short d_start, short length)

{
short perform = 0,

for {perform = length; perform > 0; --perform) {
if (source[s_start] != destination[d_start])
return false;
s_start++;
d_start++,
'

return true;
t // end of method arrayCompare
{ 7/ end of class HashlInstaller
class MDS5S |

If for S table

private static final byte S11 = 7,
private static final byte §12 = 12;
private static final byte S13 = 17;
private static final byte S14 = 27;
pnivate static final byte §21 - §;
private static final byte S22 = 9;
privatc static final byte $23 = 14;
private static final byte S24 = 20;
private static final byte S31 = 4,
private static final byte $32 = 11,
private static final byte S33 = 16;
private static final byte §34 = 23;
private static final byte S41 = 6;
private static final byte 542 = 10;
private static final byte 543 = 15,

83

private static final byte S44 = 21

/! for padding at the end of the message
private static final byte[] padding =
{(byte)0x80, 0x00, 0x00, (x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, Ox00, 0x00, 0x00, 0x00, 0x00, Ox0(,
0x00, 0x00. 0x00, 0x00, 0x00, 0x00, 0x00, (0x00, 0x00, 0x0O,
0x00, 0x00, 0x00, 0x00, 0x00, (00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, Ox00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00};

private boolean pre_padding = false:

/{ for a 64 bits hash value

private byte[] word a = new byte[4];
private byte[] word_b — new byte[4];
private byte[] word_c = new byte[4];
private byte[] word_d = new byte{4]:

private byte[] word _aa = new byte[4];
private byte[] word_bb = new byte(4];
private byte[] word_cc = new byte[4];
private byte[] word_dd = new byte[4]:

private byte[] message length = new byte[8];
private byte[] x table = new byte[64];

private byte[] support_templ = new byte[4];
private byte[] support_temp2 = new byte[4);

void initialize () |

(/ initialized a message digest buffer

/f word A = {0x67, Ox45, 0x23, 0x01};
// word B = {OxEF, OxCD, 0xAB, 0x89};
#/ word C = {0x98, 0xBA, 0xDC, OxFE};
/f word D = {0x10, 0x32, 0x54, 0x76},
word_a[0] = (byte)0x67,

word_a[1] = (byte)0x45:

word_a[2] = (byte)0x23;

word _a[3] = (byte)0x01;

word_b[0] = (byte)OxEF;

word_b[1] = (byte)0xCD;

word_b[2] = (byte)OxAB;

word_b([3] = (byte)0x89;

word_c[0] = (byte)0x98;

word_c[1] = (byte)OxBA;

word_c[2] = (byte)0xDC:

word c[3] = (byte)OxFE;

word_d[0] = (byte)0x 10,

word d[1] = (byte)0x32;

word_d([2] = (byte)0x54;

word _d[3] = (byte)0x76;

for (shorti - 0; 1< B, it 1)

84

message lengthfi] = 0x00,
pre_padding - false;
I /7 end of method inmtialize
void update (byte[] bufier, short length) |
short operation = 0;
switch (length} §

// during transmit a message block (each 64 byles)
case 64: operation = I
break;
// after transmit the last message block
case 0: // when the length of total message is 0 module 512
if (pre_padding == false) {
operation = -1;
break;
}
else
returm;
/f when transmut the last messgae block
default: operation = 3;
pre_padding = true;

/! add the length of a message block to the total length of message
addLength{message lcngth, length);

/! save word a as word_aa, word_b as word_bb,

/I word_c as word cc, word_d as word_dd
arrayCopy(word_a, (short)), word aa, (short)0, (short)4);
arrayCopy(word_b, (short}0, word bb, (short)0, (short)4);
arrayCopy(word c, (short)0, word cc, {short)0, (shor1)4),
arrayCopy(word d, (shor)0, word dd, (shor1)0, (short)4);

do {

build x_table
switch (operation) {

// padding 56 bytes (starts with 1) followed by total length of message (8 bytes)
case -1: arrayCopy(padding, (short)0, x_table, (short)0, (short)56);
arrayCopy(message length, (short)0, x_table, (short)$6, (short)8);
operation - {;
break;
// save a message block (64 bytes) to x_table
case 1:arrayCopy(buffer. (short)0, x_table, (short)0, (short)64);
operation = 0;
break:

/{ padding 56 bytes (start with 0) followed by total length of message (8 bytes)

case 2: arrayCopy{padding, (short})8, x_table, (shori)0, (short)56);
arrayCopy(message length, (short)0, x_table, (short)56, (short)8);

85

operation = 0.
break;

// the last message block followed by at least one byie or at most 64 bytes
// padding and total length of message (8 bytes)
case 3: if (length < 56) {
short required_pad = (short){(short)56 - length}:
arrayCopy(bufter, (short)0, x_table, (short)0, length),
arrayCopy(padding, (short)0, x_table. (short)length, required pad):
arrayCopy(message length, (short)0, x_table, {short)56, (short)8);
operation = 0;
)
else {
short required pad = (short)((short)64 - length),
arrayCopy(buffer, (short)0, x table, (short)0, length);
arrayCopy(padding, (short)0, x_table, (short)length, required pad),
operation = 2;
)
break;

}

/f Round 1: do the following 16 operations
firstRound (word_a, word_b, word_c, word_d, x_table,

(short)0, S11, (byte)OxD7, (byte)Ox6A, (byte)0xA4, (byte)0x78);
firstRound (word_d, word_a, word_b, word_c, x_Llable,

(short)4, S12, (byte)OxES8, (byte)0xC7, (byte}OxB7, (byte)0x56);
firstRound (word_c, word_d, word_a, word b, x_table,

(short)8, S13, (byte)0x24, (byte)0x20, (byte)0x70, (byte)0xDB);
firstRound (word_b, word c, word_d, word_a, x_table,

(short)12, S14, (byte)0xC 1, (byte }OxBD, {byte)OxCE, (byte)OxEE);
firstRound (word_a, word b, word _c, word_d, x_table,

(short}16, SL1, (byte)0xF5, (byte)Ox7C, (byte)OxO0F, (byte)JOxAF);
firstRound (word d, word a, word b, word ¢, x_table,

(short)20, S12, (byte)0x47, (byle)0x87, (byte)0xCoO, (byte)Ox2A);
firstRound (word_c, word_d, word_a, word_b, x_table,

(short)24, S13, (byte)OXAS, (byte)0x30, (byte)0x46, (byte)0x13);
firstRound (word_b, word_d, word_d, word_a, x_table,

(short)28, S14, (byte)OxFD, (byte)Ox46, (byte)0x95, (byte)0x01):
firstRound (word a, word b, word ¢, word d, x ble,

(short)32, S11, (byte)0x69, (byte)0OxR0, (byte)0x98, (byte)0xD8):
firstRound (word d, word a, word b, word ¢, x table,

(short)36, S12, (byte)0x8B, (byte)0xd4, (byte)OxF7, (byte)0xAF);
firstRound (word ¢, word d, word a, word b, x table,

(short)40, $13, (byte)OxFF, (byte)OxFF, (byte)Ox5B, (byte)0xB1);
firstRound (word_b, word_c, word_d, word a, x_table,

(short)44, S14, (byte)0x89, (byte)0x5C, (byte)0xD7, (byte)0xBE),
firstRound (word_a, word_b, word_c, word d, x table,

(short)48, S11, (byte)Ox6B, (byte)0x90, (byte)0x 11, (byte)0x22);
firstRound (word_d, word_a, word b, word ¢, x table,

(short)52, S12, (byte)OxFD, (byte)0Ox98. (byte)0x71, {byte)0x93);
firstRound (word ¢, word_d, word_a, word b, x table,

(short)56, $13, (byte)UxA6, (byte)0x79, (byte)0x43, (byte)Ox8E):
firstRound (word b, word ¢, word_d, word a, x_table,

(short)60, S14, (byte)0x49, (byte)0xB4, (byte)0x08, (byte)0x21);

77 Round 2: do the following 16 opeartions

86

el W

*2 %

i* 3 e

* 4%

i® 5 »)

"6

27

/" g

s

"0

"1

Tl P

13

14 %

/* 15 %

16 %

secondRound {word_a. word b, word ¢, word_d, x table,

(shorn)d, 521, (byte)OxF6, (bytc)ﬂxl E, (byte)0x25, (byte)0x62);
sccondRound (word_d, word_a, word_b, word ¢, x_table,

(short)24, S22, (byte)0xCO, (byie)0x40, (byte)OxR3, (byte)0x40);
secondRound (word_c, word_d, word_a, word_b, x_table,

(short)44, S23, (byte)0x26, (byic)OxSE, (byte)OxSA, (byte)Ox51):
secondRound (word_b, word_¢, word_d. word_a, x_table,

(short)0, S24, (byte)0xE9, (byte)0xB6, (byte)0xC7, (byte)OxAA);
secondRound (word_a, word_b, word_c¢, word_d, x_table,

(short)20, S21, {byte)0xD6, (byte)0x2F, (byte)0x10, (byte)0xSD);
secondRound {word _d, word_a, word_b, word_c, x_table,

(short)40, S22, (byte)0x2, (byte)0x44, {(byte)0x14, (byte}0x53);
secondRound (word_c, word_d, word_a, word b, x_table,

(short)60, S23, (byte)OxDR, (byte)0xAl, (byte)OxE6, (byte)0x81);
secondRound (word_b, word_d, word_d. word a, x_table,

(short)24, 524, (byte)OxE7, (byte)0xD3, (byte)OXFB, (byte)0xC8);

secondRound (word_a, word_b, word ¢, word_d, x_table,

(short)36, S21, (byte)0x21, (byte)OxEl, (byte)0xCD, (byte)OxE6):
secondRound (word_d, word_a, word_b, word_c, x_table,

(short)56, S22, (byte)OxC3, (byte)0x37, (byte)0x07, (bytc)OxD6);
secondRound {word_c, word_d, word_a, word_b, x_table,

(short)12, 523, (byte)OxF4, (byte J0xD5, (byte)0x0D, (byte)0x87);
secondRound (word b, word_c, word_d, word_a, x table,

(short)32, 524, (byte)0x45, (byte)0x5A, (byte)0x 14, (byte)OXxED);
secondRound (word_a, word_b, word_c, word d, x_table,

(short)52, S21, (byte)0xA9, (byte)OxE3, {byte)OxE9, (byte)0x05);
secondRound (word_d, word_a, word_b, word_c, x_table,

(short)B, S22, (byte)OxFC, (byte)OxEF, (byte)0xA3, (byte)OxF8);
secondRound (word_c, word_d, word_a, word_b, x_table,

(short)28, S23, (byte)0x67, (byte)0x6F, (byte)0x02, (byte)OxD9);
secondRound (word_b, word_c, word_d, word a, x_1table,

(short)48, S24, (byte)0x8D, (byte)Ox2 A, (byte)0x4C, (byle)0x8A);

// Round 3: do the following 16 opeartions
thirdRound (word_a, word_b, word_c, word_d, x_table,

(short)20, 531, (byte)OxFF, (byte)OxFA. {byte)(0x39, (byte)0x42);
thirdRound (word_d, word_a, word_b, word c, x table,

(short)32, 832, (byte)0x87, (byte)0x71, (byte)OxF6, (byte)0x81);
thirdRound (word_c, word_d, word_a, word_b, x_table,

(short)44, S33, (byte)0x6D, {byte)0x9D, (byte)0x61, (byte)Dx22);
thirdRound (word b, word_c, word d, word a, x_table,

(short)56, 834, (byte)OxFD, (byte)OxES. (byte)0x38, (byte)0x0C);
thirdRound (word_a, word_b, word ¢, word_d, x_table,

(short)4, 531, (byte)0xA4. (byte)OXBE. (byte)0xEA, (byte)0x44);
thirdRound (word_d, word a, word b, word ¢, x table,

(short)16, S32, (byte)Ox4B, (byte)OxDE, (byte)OxCF, (byte)0xA9);
thirdRound (word_c, word_d, word_a, word b, x_table,

(short)28, S33, (byte)OxF6, (byte)0xBB, (byte)0x4B, (byte)0x&0);
thirdRound (word_b, word_d, word d, word _a, x_table,

(short)40, S34, (byte)OxBE, (byte)OxBF, (byte)0xBC, (byte)0x70),
thirdRound (word_a, word_b, word ¢, word d, x_table,

(short)52, S31, (byte)0x28, (byte)0x9B, (byte)Ox7E, (byte }0xC6):
thirdRound (word d, word_a, word b, word c, x_table,

{short)0, S32, (byte)UXEA, (byte)OxAl, (byte)0x27, (byte)OxFA);
thirdRound (word ¢, word d, word a, word b, x_table,

(short)12, 533 (byte) me (byte)OXEF, (byte)0x30, (byte)0x85);

87

~1e
(*2 %
™3
40
[* 5%
e
®T e
[*B ¥
/X Q %7
/* 10 %
AR VIl
/12
/*13 %/
/%14 %/
/*15%

™ 16*

BNV
1*2%
/3
4%
/* 5%
/* 6™

* 7%

/g%

Jre

10 %

Al R

thirdRound (word b, word_c, word_d. word a. x table.

(short)24, 824, (byte)Ux4, (byte)0x88, (byte)0x1D, {byte)0x(5);
thirdRound (word_a, word_b, word_c, word d, x_table,

(short)36. S31, (byte)0xD9, (byte)0xD4, (byte)0xDO, (byte)0x39):
thirdRound (word d, word_a, word _h, word_c, x_table,

(short)48, S32, (byte)OxE6, (byte)0xDE, (byte)0x99, (byte)OxES),
thirdRound {word ¢, word d, word a, word b, x_table,

(short)60, S33, (byte)Ox1F, (byte)0xA2, (byte)0x7C., (byte)OxF8):
thirdRound (word_b, word_c, word_d, word_a, x_table,

(short)8, S34, (byte)0xC4, (byte)0xAC, (byte)0x56, (byte)0x65);

// Round 4: do the following 16 opeartions
fourthRound (word_a, word_b, word_c, word d. x_table,

(short)0, S41, (byte)0xF4, (byte)0x29, (byte)0x22, (hyte)0x44);
fourthRound (word_d, word _a, word_b, word c, x_table,

(short)28, S42, (byte)0x43, (byte)0x2A, (byte)OxFF, {(byte)0x97);
fourthRound {word_c, word_d, word_a, word b, x_table,

(short)$6, S43, (byte)OxAB, (byte)0x94, (byle)0x23, (byte)OxAT),
fourthRound (word_b, word_c, word_d, word_a, x_table,

(short)20, S44, (byte)OxFC, (byte)0x93, (byte}0xAQ, (byte)0x39);
fourthRound (word_a, word_b, word_c, word_d, x_table,

(short)48, S41, (byte)0x65, (byte)OxSB, (byte)0x59, (bytc)0xC3);
fourthRound {word_d, word_a, word_b, word_c, x_table,

(short)12, S42, (byte)Ox8F, (byte)0x0C, (byte)0xCC, (byte)0x92);,
fourthRound (word_c, word_d, word_a, word_b, x_table,

{short)40, $43, (byte)OxFF, (byte)OXEF, (byte)0xF4, (byte)0x7D);
fourthRound (word_b, word _d, word_d, word_a, x_table,

(short)4, S44, (byte)0x85, (byte)0x84, (by1e)0x5D, (byte)IxID1);
fourthRound (word_a, word_b, word_c, word_d, x_table,

(short)32, S41, (byte)Ox6F, (byte)0x AR, (byte)OXTE, (byte)0x4F),
fourthRound (word _d, word a, word b, word_c, x_table,

(short)60, S42, (byte)OxFE, (byte)0x2C, (byte)YOxEG, (byte)OxED):
fourthRound (word_c, word_d, word_a, word b, x_table,

(short)24, 843, (byte)OxA3, (byte)0x01, (byte)0x43, (byte)0x14);
fourthRound (word b, word_c, word_d, word_a, x_table,

(short)52, S44, (byte)0x4E, (bytc)0x08, (hyte)0x 11, (byle)OxAl);
fourthRound (word_a, word_b, word_c, word_d, x_table,

(short)16, S41, (byte)OxF7, (byte)0x53, (byte)Ox7H, (byte)0x82);
fourthRound (word_d, word_a, word_b, word_c, x_table,

(short)d4, S42, (byte)OxBD, (byte)0x3 A, (byte}0xF2, (byte)0ix15);
fourthRound (word_c, word_d, word_a, word b, x_table,

(short)8, 543, (byte)0x2A, (byte)0xD7, (byte)0xD2, (byte)0xBB);
fourthRound (word_b, word_c, word_d, word a, x table,

(short)36, S44, (byte)OXEB, (byte)0x86, (byte)0xD3, (byte)0x91);

// perform the increment each of the four words
/I’ by the value it had before this block was started
/' word a = word a+word_aa

// word_b = word b + word_bb

/! word ¢ = word_c + word _cc

/'word d - word d + word_dd
addBytes(word_a, word_aa, (short)0, (short)3);
addBytes(word_b, word_bb, (short)0, (short)3);
addBytes(word c, word_cc, (short)0, (short)3);
addBytes(word_d, word_dd, (short)0, (short)3);

8%

*12 %

/13

'It 14 *

*15%

16

el
"%
i |
* 4%
T
6
ERT
/*8 %
[*Q %
™10 %
S LL%
i~ 124
113 %
%144/
/*15 %

16 %

} while (operation ! 0);
t /! end of method update
void generate (byte[} md) {

// the message digest produced as output is A, B, C, D.
// That 1s, we begin with the low-order byte of A, and end with the
// high-order byte of D.

for (shorti=0,;=3;j>=0, ++i,)
md{i] - word_a[j];

for (short 1= 4, j = 3.] >=0; ++i, —J)
md[i] = word_b[}];

for (shortt = 8, j = 3; j >= 0; ++1, —j)
md[i} = word_<{j};

for (short 1 =12, = 3; j >= 0; ++i, --j)
md[i] = word_d[j):

t // end of method generate

// Round 1:
I/ When F(X, Y, Z) = (X & Y) | (~X & 2),
/l let [abcd k s 1] denote the operation
/la=b +{{a + F(b.c,d) + X[k] + T[i]) <<<s).
private void firstRound (byte[] a, byte|] b, byte[] c, byte[] d, byte[] x,
short offset, byte s, byte t1, byte 12, byte t3, byte t4) |

HEX, Y, D)~ (X&Y)|(~X & Z)

bitAnd(b, c, support_templ);

bitComplement(b, support_temp2});
bitAnd(support_temp2, d, support_temp2);
bitOr(support_temp1, support_temp2, support_temp2);

//a+ F(b.ed) + X[k] + T[1]

arrayCopy(x, (short)offset, support_templ, (short)0, (short)4};
addBytes(support_temp2, support_templ, {short)0, {short)3);

support_temp1[0] = t1;

support_templ[1] =12;

support_templ[2] = t3,

support templ[3] = t4;

addBytes (support_temp2, support_temp|, (short)0, (short)3},
addBytes (support_temp2, a, (short)0, (short)3);

/7 bt ({a+ F(b,c,d) + X[k] + T[i]) <<< s)
rotateLeft(support temp2, s, support temp?2);
addBytes(support_temp2, b, (short)0, (short)3);

7a-h+({a+ F(bed) + X[k] + T[i]) <<= s)
arrayCopy(support_temp2, (short)0, a, (short)0, (short)4);

} /7 end of method firstRound

89

// Round 2:
7 When G(X, Y, Z)= (X & Z) I (Y & ~2),
// let [abed k s 1] denote the operation
/fa=b+ ((a+G(bed + X[k] + T[i]) === s).
private void secondRound (byte[] a, byte[] b, byte[] ¢, byte[] d. byte[] x,
short offset, byte s, byte t1, byie 12, byie 13, bytc t4) {

TG Y. 2)=(X&Z)[(Y & ~Z)

bitAnd(b, d, support_templ):

bitComplement(d, support_temp2);

bitAnd(c, support temp2, support temp2);
bitOr(support_temp], support_temp2, support_temp2);

//'a+ G(b,c.d) + X[k] + T3]

arrayCopy(x, (short)offset, support templ, (short)0, (short)4);
addBytes(support_temnp2, support_templ, (short)0, (short)3);
support_templ[0] = t1;

support_templ[1] = 12;

support_templ(2] = t3;

support_templ[3] = t4,

addBytes (support_temp2, support_templ, (short)0, (short)3);
addBytes (support_temp2, a, (short)0, (short)3);

/b + ((a+ G(b,c,d) + X[k] + T[i]) <<<5)
rotateLeft(support_temp2, s, support_temp2);
addBytes(support_temp2, b, (short)Q, (short)3);

/la=b+((a+ G(b,c,d) + X[k] + T[i]) <<<s)
arrayCopy(support_temp2, (short)0, a, (short)0, (short)4);

} /f end of method secondRound

/t Round 3:
// When H(X, Y, Z)=X"Y " Z,
// let [abed k s 1] denote the operation
//a=b+((a+H(bcd)+ X[k] + T[i]) <<<s).
private void thirdRound (byte[] a, byte[] b, byte(] c, byte[] d, byte(] x,
short offset, byte s, byie t1, byle t2, byte t3, byte t4) {

THIX, Y, Z)= X" Y Z
bitXor(b, c, support_templ);
bitXor(support_temp1, d, support_temp2);

/! a + H(b,c,d) + X[k] = T[1]

arrayCopy(x, (short)offset, support_temp1, (short)0, (short)4);
addBytes(support_temp2, support_templ, (short)0, (short)3);
support_temp1[0] = tl;

support_templ(1] = t2;

support_templ{2] = t3;

support_temp1[3] = t4;

addBytes (support_temp2, support templ, (short)0, (short)3);
addBytes (support_temp2, a, (short)(, (short)3);

/' b+ ({a+ H(bc,d) + X[k] + Tfi]) <<<s)

rotateLeft(support_temp2, s, support_temp2);
addBytes(support_temp2, b, (short)Q, (short)3);

90

//a=b+({a+ H(b,e,d)+ X[k] + T[i]) =<<s)
arrayCopy(support_temp2, (shor)U. a, (short)0, (short)4).

} // end of method thirdRound

// Round 4:
/ When [(X, Y, Z) = Y ~(X | ~2).
// let [abed k s i] denote the operation
/fa=b+((a+I(bcd)+ X[k] + T[i)) <<<s).
private void fourthRound (byte[] a, byte[] b, byte[] ¢, byte{] d, byte[] x,
short offset, byte s, byte t1, byte 12, byte t3, byte t4) {

HUX, Y, Z)=Y " (X|~Z)
bitComplement(d, support_templ),
bitOr(a, support_templ, support_termnpl);
bitXor(c, support_templ, support_temp2);

/a+1(bed)+X[k]+ T[]

arrayCopy(x, (short)offset, suppert templ, (short)Q, (short)d);
addBytes(support_temp2, support_templ, (short)0, (short)3);
support_temp1[0] =t1;

support_templ[1] =t2;

support_temp1(2] = 13;

support_temp1[3] = t4;

addBytes (support_temp2, support_templ, (short)0, (short)3);
addBytes {support_temp2, a, (short)0, (short)3);

/tb+ ((a+ 1(b,c,d) + X[k] + T[i]) <<= s)
rotateLeft(support temp2, s, support_temp2);
addBytes(support_temp2, b, (short)0, (short}3);

ta=b+((at I{becd)+ X[k] + ThH]) <<<s)
arrayCopy(support_temp2, (short)0, a, (short)0, (short)4);

} / end of method fourthRound

/ two bytes are added and result will be saved in the first byte
private void addByles (byte(] a, byte[] b, short overflow, short length) {

if (length == -1)
return;

short one_byte = (short)((short)(a[length]&0x00FF) + {shortyb[length]&0x00FF) + overflow),
a[length] = (byte)(one_byte & (short)Ox00FF);

if (overFlow(one hyte))
addBytes(a, b, (short)1, --length);
else
addBytes(a, b, (short)0, --length);
returmn;

} #/ end of method addBytes

/! a short value will be added (o the byte array

91

private void addLength (bytc[] total_length, short length) |

byte[] part_length = new byte[5]:
short offset = -1;

while (true) {
if (length >= 127) {
part_length[++offset] = (byte)Ox7F;
length = (short)(length - (short}127);
}
else {
part_length[++offset] = (byte)(length%({(short)127));
break;
H
'

/# call the roundEachLength mehtod recursively
for {short array index = 7; offset >= 0; —offset, array_index = 7) {
short one_byte = (short)((short)(total length{array index]&0x00f¥)
+ (short)(part_length[offset]&0x00(1));
total length(array_index] = (byte)(one byte & (short)Ox00FF);
if (overFlow(one_byte))
total_length = roundEachLength(total length, --array index, (short)1);
t
} // end of method addLength
private byte[] roundEachLength(byte[] total, short index, short overflow) {

if (index < 0)
return total;

short one_byte = (short)((short)(total[index]&0x00ff) + overflow);
total[index] = (byte)(one_byte & (short)0x00FF):

if (overFlow(one_byte))
total = roundEachLength(total, --index, (short)1);

return total;
} /f end of method roundEachLength
private boolean overFlow (short num) {
if ((short){ numé&(short)OxFF00) =~ (short)0x0100)
return true;
else
return false;
} // end of method overFlow

private void bitComplement (byte{] array, byte[] result) |

for (short i = 0; 1 < (shor)}d; i++)
result[i] = (byte)~(array[1]),

92

} !/ end of method bitComplement
private void bitOr (byte[] array1, byte[] array2, byte(] result) {

for (short 1 = 0; 1 < {short)4; it t)
result1] = (byte)(array1[i] | array2[i]);

| // end of method bitOr
private void bitAnd (byte[] arrayl, byte[] array2, byte[] result) {

for (short i = 0; i < (short)4; 1++)
result[i] = (byte)(arrayl[i] & array2[i]);

} /2 end of method bitAnd
private void bitXor (byte[] arrayl, byte[] array2, byte[] result) {

for (short 1 = 0; 1 < (short)4; i++)
result[i] = (byte)(array1[i] ~ array2[i});

} // end of method bitAnd

/1 left shift in a byte array with rotation
private void rotateLeft (byte[] array, byte n_shift, byte[] result) {

byte offset = 0x00;

byte shift = Ox00;

byte reverse_shift = 0x00;
byte for_current = 0x00;
short for_next = (0x00;

byte first = 0x00;
byte second = 0x00;
byte third = 0x00Q;
byte fourth = 0x00;

switch (n_shift % (byte)8) {

case 0: offset = {(byte)OxFF;
break;

case 1: offset = (byte)0x80;
break;

case 2: offset = (byte)0xCO;
break;

case 3: offset = (byte)OXEOD;
break;

case 4: offset = (byte)OxF0;
break;

case 5: offset = (byte)0xF8,
break;

case 6: offset = (byte)OxFC;
break;

case 7: offset = (byte)OxFE;
break,

i

shift — (byte}(n_shift % (byte)8);
reverse shift = (byte)((bytc)0x08 - shift):

i (shift == 0) {
shift = 8;
reverse_shift = 0;

]
"

if (n_shift <= 8) {

first = array[0];

second = array(1];
third = array[2];

fourth = array[3);

else if (n_shift <= 16) {
first - array(1];

second = array[2];
third = array(3];

fourth = array[0];

else if (n_shift <= 24) {
first = array[2];

second = array([3];
third = array[0];

fourth = array[1];

b

for_next = (short){(fourth & offset) & 0x00FF},
result[3] = (byte)(fourth << shift);

-

for_current = (byte)(for_next >>> reverse_shift);
for_next = (short)((third & offset) & 0x00FF),
result[2] = (byte}{(third << shift) | for_current);

for current = (byte){(for next > reverse_shift);
for next = (short)((second & offset) & 0x00FF);
result[1] = (byte)((second << shift) | for_current);

for_current = (byte)(for_next >>> reverse_shift);
for next = (short)((first & offset) & Ox0Q0FF);
result[0] = (byte)((first << shift) | for current);

for current = (byte)(for_next >>> reverse_shift);
result[3] = (byte)(result[3] | (for_current));

i // end of method rotateLeft

private void arrayCopy (byte[] source, short s_start,
byte[] destination, short d_start, short length) {

short perform = 0;

for (perform = length; perform > 0; --perform) {
destination[d start] = source[s_start];
s starl+ +;
d start—+;

}

94

t // end of method arrayCopy
¢ /7 end of class MDS
class Appletinfo |
private byte[] aid;
private byte aid_length;
private byte[] hash;
private AppletInfo next:
Appletinfo (byte[] aid_buffer) {
aid = new bytefaid buffer[[SO7816.0FFSET_LC]];
/I save a AID of each CAP file
arrayCopy(aid_buffer, (short)(ISO7816 OFFSET_CDATA & 0x00FF),
aid, (shor)0, (short)(aid_buffer[ISO7816.0FFSET_LC] & 0x00FF));
aid_length = aid_buffer[ISO7816.OFFSET_LC];

hash = new byte[16].
next = nulfl;

} / end of constructor
void saveNext (Appletinfo applet) {
next = applet;
t // end of mehtod
byte[] getAid () ¢
return aid,
{ // end of method getAid
byte getAidLength () {
return aid_length;
} /I end of method getLength
byte(] getHash () {
return hash;,
1| /! 'end of method getHash
Appletinfo getNext () {
refurn next,

i / end of method getNext

95

pnivate void arravCopy (byte[] source, short s_start, byte[] destination, short d start, short length) |
short perform = 0,
for (perform = length; perform > 0; --perform) {
destination[d_start) = source|s start];
s start++;

d_start++,
H

} // end of method arrayCopy
} /7 end of class Appletinfo
class AppletinfoManager |

private Appletlnfo head;
private AppletInfo temp;

void add (Appletinfo applet) |

if (head == null}

head = applet;
else {
temp = head;

while (temp.getNext() != null) {
temp = temp.getNext():

H
temp.saveNext{applet);

H
} // end of method add

/I to save a hash value in an Appletinfo object
Appletinfo getCurrent () {

temp = head,
while (temp.getNext{) != null) {

temp = temp.getNext();
}

return temp,
} // end of method getCurrent
Appletinfo getHead () |
return head;
} // end of method getHead

+ // end of class AppletManager

96

HashlInstallerInterface.java

RALA T R LR LA R Rl A2 Rttt SRl el el il bt PP IEISSREE R A Ll Ll l bl L

The interface HashlnstallerInterface contains the method verifyHashValue that is an abstract
method used for verifying a hash value of a CAP file.

e e o o o o ol e oo o ol o o ol o o ke ol e s o ol o e ol ol o o o o o o o e e o o e o o e el o o e o e o e e ok ek ok ko

package installersupport,

import javacard.framework Shareable;
import javacard.framework.AID;

public interface HashlnstallerInterface extends Shareable |

public boolean verifyHashValue
{byte aid_length, byte aidl, byte aid2, byte aid3, byte aid4, byte aid5,
byte aid6, byte aid7, byte aid8, byte aid9, byte aid10, byte aid11,
byte aid12, byte aid13, byte aid14, byte aid15, byte aid16, byte md]1,
byte md2, byte md3, byte md4, byte md5, byte md6, byte md7, byte md8,
byte md9, byte md10, byte md11, byte md12, byte md13, byte md14, byte md15,
byte md16);

HVGenerator.java

PR e e e e L

The HVGenerator class sends a CAP file content, the output of the capdump tool, to the MD35
class, and the MDS class that implement the MDS algorithm generate a hash value of the content
of the CAP file. The MDS5 class is the same class used in the proposed installer.

i*t‘-i‘itii‘*‘!t-‘tttt‘tt!t.t‘-‘-*‘lt'i‘l‘t.-t‘tl*!t“tl.“'t“!lﬂ‘lt!ll.l.“h;

import java.io.*;

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

class HVGenerator extends JFrame {

private JButton select_file;
private JButton generate:
private JLabel label;
private JTextField result;
private JFileChooser fc;
private File cap_file,
private File cap_dump;
private File batch;

private MD5 md35;

HVGenerator () |
// for the upper panel
setTitle("Hash Value Generator™):

setDefaultCloseOperation(JFrame. EXIT ON CLOSE);
getContentPane().setLayout(null):

97

getContentPane().setBackground(Color.green);

select_file = new JButton("Select a CAP file"):
select file.setBackground(Color.orange),
select file.setBounds(25,25,275,30);

// for the bottom panel

generate = new JButton("Generate a hash value");
generate.setBackground(Color.orange);

generate. setBounds(25, 75, 275, 30);

label = new JLabel{"The hash value of this CAP file");
label.setBounds{25, 150, 240, 30);

result = new JTextField();

result.setEditable(false);

result.setBounds(25, 180, 275, 25);

fc = new JFileChooser();
md5 = new MD5(),

/! select a CAP file
select_file.addActionListener (new ActionListener() {
public void actionPerformed (ActionEvent) {

result.setText(null);

fc = new JFileChooser("c:\\demo");
it returnVal = fe.showOpenDialog (HVGenerator.this):

// a cap file must be selected
if{returnVal == JFileChooser. APPROVE_OPTION)
cap file = fc.getSelectedFile():
else (
JOptionPane showMessageDialog (HVY Generator.this,
"You must choose a CAP file”, "Error” JOptionPane. ERROR_MESSAGE);
cap_file = null;
retum;

t

String temp = cap_file.getName();
if (temp.indexOf(".cap™) = -1) {
JOptionPane.showMessageDialog (HV Generator. this,
"You must select a CAP file is”, "Error”,JOptionPane. ERROR_MESSAGE);
cap_file = null;

}

}
1

/I get a text representation of a CAP file 1o generate a hash value
generate.addActionListener(new ActionListener() !

public void actionPerformed (ActionEvent e) (

/f create a batch file to run the capdump tool
try |

98

batch = new File("dump.bat”);

BufferedWriter out = new BufferedWnter(new FileWriter(batch)):
out.write("capdump “ + cap_file + "\n");

out.close():

Process child = Runtime getRuntime().exec("dump.bat"),
cap_dump = new File("capdump");

/I standard output of the capdump tool will be recorded in a file
BufferedReader in =

new BufferedReader(new InputStreamReader(child.getinputStwream()}),
BufferedWriter out2 = new BufferedWriter(new FileWriter(cap dump));

String input;
int control = 0;

while ((input = in.readLine()) != null) {
if (control < 2) {
control++;
continue;

}
out2.write(input + "\n");

out2.closef);

| catch (Exception ee) {
| finally {

i/ a valid CAP file must be selected
if (cap_dump.length{) = 0) {
batch.delete();
batch = null;
cap_dump.delete();
cap_dump = null;
JOptionPane.showMessageDialog (HV Generator. this,
"Please, select a valid CAP file", "Error” JOptionPane ERROR_MESSAGE):

cap_file = null;
retum,
H
}
short length = 0;

byte[] data = new byte[64];

byte(} hv = new byte[16];

String message digest = new String();
mdS5.initialize();

try |

BufferedInputStream bufferin =
new BufferedInputStream(new FileInputStream(cap dump)):

/7 call the update method in the MDS$ class to update a hash value

while (true) {
length = (short)(bufferin.read(data));

99

if (length == -1)
break:;
md5.update(data, length);
)

bufferin.close();

// call the generate nethod in the MDS class to generate a hash value
md5.update(data, (short)0);
md5.generate(hv);

String temp:

/! display a message digest
for (inti=10;1i<16;i+) {
temp = Integer.toString(hv[i]&0x000000FF, 16);
if (temp.length{) == 1)
temp = "0" + temp;

if (i '=15)
message_digest = message_digest + temp + ":";
else

message_digest = message digest + temp;
!

result.setText(message digest);

batch.delete();
batch = null;
cap_dump.delete();
cap_dump = null;

} catch (FileNotFoundException ee) {
} catch (IOException eee} {
|

!
b

getContentPane().add(select_file);
getContentPane().add(generate),
getContentPane().add(label);
getContentPane().add(result);
} /7 end of constructor
public static void main (String[] args) {
JFrame mask = new HVGenerator();
mask.setBounds(0, 0, 335, 250);
mask setVisible(true);
i /7 end of method mamn

+ // end of class HVGenerator

class MDS |

100

/! for S table

private static final byte 511 = 7;
private static final byte S12 = 12;
private static final byte S13 = 17;
private static final byte S14 = 22;
private static final byte S21 = §;
private static final byte S22 = 9;
private static final byte 523 = 14,
private static final byte 524 = 20,
private static final byte 531 = 4;
private static final byte §32 = 11,
private static final byte S33 = 16;
prnivate static final byte $34 = 23,
private static final byte S41 = 6;
private static final byte S42 = 10,
private static final byte 843 = 15;
private static final byte S44 = 21;

// for padding at the end of the message
private static final byte[] padding =
{(byte)0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00};

private boolean pre_padding = false;

// for a 64 bits hash value

private byte[] word_a = new byte[4];
private byte[] word b — new byte[4];
private byte[] word ¢ = new byte[4];
private byte[] word_d = new byte[4];

private byte[] word_aa = new byte[4];
private byte[] word bb — new byte[4];
private byte[] word _cc = new byle[4];
private byte[] word dd = new byte[4];

private byte[] message length = new byte[8];
private byte[] x_table = new byte[64],

private byte[] support_templ = new byte(4];
private byte[] support_temp2 = new byte[4];

void initialize () |

/7 initialized a message digest buffer
/Fword A = J0x67, 0x45, 0x23, 0x01};

/ word B = {OxEF, 0xCD», OxAB, 0x89};
/tword C — {0x98, 0xBA, 0xDC, OxFE};
/word D = [Ox10. 0x32. Ox54, 0x76},
word a[0] = (byte)0x67;

word_a[l] = (byte)0x45:

101

word_a[2] = (byte)0x23;
word_a[3] = (byte)0x01;
word b[0] = (byte)OxEF;
word b[1] = (byte)OxCD;
word_b[2] = (byte)OxAB;
word b[3] = (byte)0x89;
word c[0] = (byte)0x98;
word _c[1] = (byte)0OxBA;
word ¢[2] = (byte)0xDC;
word c[3] = (byte)OxFE;
word d[0] = (byte)0x10;
word_d[1] = (byte)0x32;
word_d[2] = (byte)0x54;
word d[3] = (byte)0x76;

for (shorti=0; i< 8; i++)
message length[1] = 0x00;,

pre_padding = false;

} /7 end of method mitialize

void update (byte[] buffer, short length) {
short operation = 0;
switch (length) {

/ during transmit a message block (each 64 bytes)
case 64: operation = |,
break;
// after transmit the last message block
case (0 // when the length of fotal message is 0 module 512
if (pre_padding == false) {
operation = -1;
break;
H
else
return;
/{/ when transmit the last messgae block
default: operation = 3;
pre_padding = true;
}

// add the length of a message block to the total length of message
addLength{message_length, length);

// save word_a as word_aa, word_b as word_bb,

/I word c as word cc, word d as word dd
arrayCopy(word_a, (short)0, word_aa, (short)0, (short)4);
arrayCopy{word_b, (short)0, word_bb, (short)0, (short)4);
arrayCopy(word_c, (short)0, word_cc, (short)0, (short)4);
arrayCopy(word_d, (short)0, word_dd, (short)0, (short)4);

do |

// build x_table
switch {operation) |

// padding 56 bytes (starts with 1) followed by total length of message (8 bytes)
case -1: arrayCopy(padding, (short)0, x_table, (short)0, (short)56);
arrayCopy{message length, (short)0, x_table, (shor1)56, (short)8);
operation = 0;
break;
// save a message block (64 bytes) to x_table
case |:arrayCopy(buffer, (short)0, x table, (short)0, (short}64);
operanon = 0;
break;

// padding 56 bytes (start with 0) followed by total length of message (8 bytes)
case 2: arrayCopy(padding, (short}8, x_table, (short)0, (short)56);
arrayCopy(message length, (short)0, x_table, (short)56, (short)B);
operation = {J;
break;

// the last message block followed by at least one byte or at most 64 bytes
// padding and total length of message (8 bytes)
case 3: if (length < 56) {
short required pad = (short)((short)56 - length),
arrayCopy(buffer, (short)0, x_table, (short)0, length);
arrayCopy(padding, (short)0, x_table, (short)length, required pad);
arrayCopy(message length, (short)(, x table, (short)56, (short)8);
operation = 0,
)
else {
short required pad = (short)((short)64 - length);
arrayCopy(buffer, (short)0, x_table, (short)0, length),
arrayCopy(padding, (short)0, x_table, (shori)length. required_pad);
aperation = 2;
)
break;

}

// Round 1- do the following 16 operations
firstRound (word_a, word b, word_c, word_d, x_table,

(short)0, S11, (byte)OxD7, (byte)Ox6A, (byle)OxA4, (byte)0x78); /* 1 */
firstRound (word_d, word a, word b, word c, x table,

(short)4, S12, (byte)OxES8, (byte)0xC7, (byte)0xB7, (byte)0x56); "2
firstRound (word_c, word_d, word_a, word_b, x_table,

(short)8, S13, (byte)0x24, (byte)0x20, (bytc)0x70, (byte)0xDB); PR
firstRound (word_b, word_c, word_d, word a, x_table,

(short)12, S14, (byte)0xC1, (byte)OxBD, (byte)0xCE, (byte)OXEE); /* 4 */
firstRound (word a, word b, word ¢, word d, x_table,

(short)16, S11, (byte)OxFS, (byte)0x7C, (byte)0x0F, (byte)OXxAF): /=5 */
firstRound (word_d, word_a, word b, word ¢, x table,

(short)20, 812, (byte)0x47, (bytc)0xB7, (byte)0xC6, (byte)Ix2A); 6%
firstRound (word ¢, word_d, word_a, word b, x_table,

(short)24, S13, (byte)OX AR, (byre)0x30, (byte)0x46, (byte)0x13); /* 7 */
firstRound {word b, word_d. word d. word_a, x_table,

(short)28, S14, (byte)UxFD, (byte)0x46, (byte)0x95, (byte)0x(1); * 8™
firstRound (word_a, word_b, word ¢, wurd d, x_table,

(short)32, S11, (byte)0x69, (byte)Ox80, (by1e)0x98, (byte }0xD8); j% g %

firsiRound (word d, word a, word b, word ¢, x table,

(short)36, S12, (byte)0x8B, (byle)0xd4, (byte)OxF 7, (byte)DxAF);
firstRound (word ¢, word d, word_a, word_b, x table,

(short)40, 13, (byte)JOXFF. (byte)JOXxFF, (byte)0x5B, (byte)OxB1});
firstRound (word b, word ¢, word d, word_a, x_table,

{short)44, S14, (byte)0x89, (byte)0x5C, (byte)0xD7, (byte)OxBE);
firstRound (word_a, word_b, word ¢, word_d. x_table,

(short)}4g, S11, (byte)Ox6B, (byic)0x90, (byte)0x11, (byte)0x22),
firstRound (word_d, word_a, word_b, word ¢, x_table,

(short)52, S12, (byte)OxFD., (byte)0x9R, (byte)Ox71, (byte)0x93):
firstRound (word_c, word_d, word_a, word_b, x_table,

(short)56, S13, (byte)0xA6, (byte)}0x79, (byte)0x43, (byte)OxBE);
firstRound (word_b, word_c, word_d, word_a, x_table,

(short)60, S14, (byte)0x49, (byte)0xB4, (byte)0x08, (byle)0x21);

if Round 2: do the following 16 opeartions
secondRound (word_a, word_b, word_¢, word d. x table,

(short)4, S21, (byte)OxF6, (byte)Ox1E, (byte)0x25, (byte)0x62);
secondRound (word_d, word_a, word b. word_c, x_table,

(short)24, S22, (byte)0xCO, (byte)0x40, (bytec)0xB3, (byte)0x40);

secondRound (word_c, word_d, word_a. word_b, x_table,

(short)44, 523, (byte)0x26, (byte)Ox5SE, (byte)0xSA, (byte)0x51);

secondRound (word b, word c, word d, word_a, x_table,

(short)0, S24, {byte)OxE9, (byte)UxB6, (byte)0xC7, (byte)OxAA);

secondRound (word_a, word_b, word ¢, word d, x table,

(short)20, S21, (byte J0xD6, (byte)0x2F, (byte)0x10, (byte}0xSD);

secondRound (word_d, word_a, word b, word ¢, x_table,
(short)40, S22, (byte)0x2, (byte}0x44, (bytc)0x14, (byte)0x53),
secondRound (word_c, word_d, word_a, word b, x_table,

(short)60, S23, (byte)0xD8, (byte)OXA L, (byte)OXES6, (byte)0x81),

secondRound (word_b, word_d, word_d, word_a, x_table,

(short)24, S24, (byte)OxE7, (byte)OxD3, (byte)OxFB, (byte)0xC8);

secondRound (word a, word b, word ¢, word_d, x table.

(short)36, S21, (byte)0x21, (byie}OxE1, (byte)0xCD, (byte)0xE6);

secondRound {word_d, word_a, word_b, word ¢, x tahle,

(short)56, S22, (byte)UxC3, (byte }0x37, (byte)0x07, (bytc)0xD6);

sccondRound (word_c, word_d, word_a, word_b, x_table.

(short)12, $23, (byte)0xF4, (byte)0xD5. (byte)0xOD, (byte)0x87);

secondRound (word_b, word ¢, word d, word_a, x_table,

(short)32, S24, (byte)0x45. (byte)OxSA, (byte)0x14, (byte)OxED):

secondRound (word_a, word b, word_c, word_d, x table,

(short)52, 821, (byte)OxA9, (byte)0xE3, (byte)0xE9, (byte)0x05);

secondRound (word_d, word a, word b, word ¢, x table,

(short)8, 522, (bytc)0xFC. (byte)OxEF, (byte)0xA3, (byte)0xF8);

secondRound (word_c, word d, word a, word b, x table,

(short)28, 523, (byte)0x67, (hyic)Ox6F, (bytc)0x02, (byte)0xD9);

secendRound (word_b, word_c, word_d, word a, x table,

{short)48, 524, (byte)0x8D, (bytej0x2 A, (byte)0x4C, (byic)0xBA},

/f Round 3: do the following 16 opeartions
thirdRound (word_a, word_b, word ¢, word d, x table,

(short)20, S31, (byte)xFE, (byie)ixFA, (byte)0x39, (byte)0x42);
thirdRound (word_d, word_a, word b, word ¢, x table,

(short)32, 832, (byte)0x&7, (byte)0x71, (byte)OxF6, (byte)0x81);
thirdRound (word_c, word_d, word_a, word b. x_table.

(short)d4, 833, (byte)0x6D. (byte) 9D, (byte}0x61, (byle)0x22);

104

*10%
M1
"12%
*13 %
14
(=15

1% 16 */

1%
g
*3 %
4w
s
1*6%
/%7 %
1+ 8
9
f* 10 %f
11 %
124
/*13%
*14%
A R

*16%

1

Thd R

3

thirdRound (word b, word ¢, word d, word a, x_table,

(short)56, S34, (byte)OXFD, (byte)OxES, (byte)0x3R, (byte)0x0C), /* 4 %/
thirdRound (word_a, word_b, word_c, word d, x_table,

(short)4, 831, (byte)OxA4, (byte)OxBE, (byte)OxEA, (byte)Oxdd); e 5
thirdRound {word_d, word a, word_b. word_c. x_table,

(short)16, 832, (byte)0x4B, (byte)IxDE, (byte)OXCF, (byte)OXAQ);, /* 6 */
thirdRound (word_c, word _d, word_a, word b, x table,

{short)28, S33, (byte)OxF6, (byte)OXBB, (byie)0x4B, (bytc)0x80). /* 7 */
thirdRound (word_b, word_d, word_d, word_a. x_table,

(short)40, S34, (byte)OXBE, (byte)ixBF, (byte JOXBC, (byte)0x70): /* 8 */
thirdRound (word_a, word_b, word_c¢, word_d, x_table,

({short)52, S31, (byte)0x28, (byte}(x9B, (byte)OXTE, (byte)0xC6), /* 9 */
thirdRound (word _d, word_a, word_b, word_c, x_table,

(short)0, S32, (byte)OXEA, (byte)OXA 1, (byte)0x27, (byte)OxFA); /* 10 %/
thirdRound (word_c, word_d, word_a, word_b, x_table,

(short)12, S33, (byte)0xD4, (byte)OXEF, (byte)0x30, (bytc)0x85); /* 11 */
thirdRound (word b, word_c, word_d, word_a, x_table,

(short)24, $34, (byte)0x4, (byte)0x88, (byte)Ox1D, (byte)0x05); /* 12 %/
thirdRound (word_a, word_b, word_c, word_d, x_table,

(short)36, S31, (byte)0xD9, (byte)0xD4, (byte)0xDO, (byte)Dx39): /* 13 */
thairdRound (word_d, word_a, word b, word_c, x_table,

(short)48, S32, (byte)OxES, (byte)OxDRB, (byte)0x99, (byte)0xES); /* 14 */
thirdRound (word ¢, word d, word_a, word_b, x_table,

(short)60, S33, (byte)OxIF, (byte)OxA2, (byte)0x7C, (byte)OxF8); /* 15 */
thirdRound (word_b, word_c¢, word_d, word_a, x_table,

(short)8, S34, (byte)0xCA4, (byte)0OXAC, (byte)0x56, (byte)0x65); /* 16 */

// Round 4: do the following 16 opeartions
fourthRound (word_a, word_b, word_c, word_d, x_table,

(short)0, S41, (byte)OxF4, (byte)0x29, (byte)0x22, (byte)0x44); Al B
fourthRound (word_d, word_a, word_b, word c, x_table,

(short)28, S42, (byte)0x43, (byte)0x2A, (byte)OxFF, (byte)0x97); /*2*/
fourthRound {(word_c, word_d, word_a, word_b, x_table,

(short)56, 843, (byte)0xAB, (byie)0x%4, (byte)0x23, (bylc)OxAT); /* 3 %
fourthRound (word_b, word_c, word d, word_a, x_table,

(short)20, S44, (byte)0xFC, (byte)0x93, (byte)OxAQ, (byte)0x39); /* 4%/
fourthRound (word_a, word_b, word_c, word d, x_table,

(short)d8, 541, (byte)0x65, (bytc)0xSB, (byte)0x59, (byte)0xC3), /* 5%/
fourthRound (word d, word a, word b, word ¢, x_table,

(short)12, S42, (byte)OxSF, {byte)0x0C. (byte)0xCC, (byte)0x92); /* 6 */
fourthRound (word_c, word_d, word_a, word_b, x table,

(short)40, 543, (byte)OxFF, (byle)OxEF, (byte)0xF4, (byte)Ox7D); /* 7%/
fourthRound {word_b, word d, word d, word a, x_table,

(short)d, S44, (byte)0x85, (byte)Ox84, (byte)0xSD, (byte)oxD1); /* 8 %/
fourthRound (word_a, word_b, word ¢, ward d, x_table,

(short)32, S41, (byte)Ox6F, (byte)OxAS8, (byte)OX7E, (byte)Ox4F), /* 9%/
fourthRound (word_d, word_a, word b, word c, x_table,

(short)60, S42, (byte)OxFE, (byte)0x2C, (byte)OxES, (byte)OxED), /* 10 */
fourthRound (word_c, word_d, word a, word b, x_table,

(short)24, 543, (byte)}0xA3, (byte)0x01, (byte)0x43, (byte)Ox14), /* 11 %/
fourthRound (word_b, word_c, word_d, word a, x_table,

(short)52, S44, (byte)0x4E, (byte)0x08, (byte)0x11, (byte)xAl);, /=12 %/
fourthRound (word_a, word b, word_c, word d, x table,

(short)16, S41, (byte)JOxF7, (byte)0x 53, (bytejOx7E, (byte)0x82); /* 13 %/
fourthRound (word_d, word_a, word b, word ¢, x_tablc,

(short)}44, S42, (byte)0xBD, (byte)0x3 A, (byte)OxF2, {byte)0x35); /=14 */

105

fourthRound (word ¢, word d, word_a, word_b, x_table,

(short)8, S43, (byte)Ox2A, (byte)0xD7, (byte)0xD2, (byte)OxBB); /* 15 */
fourthRound (word b, word ¢, ward_d, word_a, x_table,

(short)36, 544, (byte JOXEB, (byte)0x86, (byte)0xD3, (byte)0x91); /= 16 */

'/ perform the increment each of the four words

'/ by the value it had before this block was started
// word_a = word_a + word_aa

/t word b= word b+ word bb

/' word ¢ = word ¢ + word cc

/' weord_d = word_d + word_dd
addBytes(word_a, word_aa, (short)0, (short)3);
addBytes(word_b, word_bb, (short)0, (short)3);
addBytes(word ¢, word_cc, (short)0, (shori)3);
addBytes(word_d, word dd, (short)(), (short)3);

t while (operation !=0);
t+ // end of method update
void generate (byte[] md) {

// the message digest produced as outputis A, B, C, D,
// That is, we begin with the low-order byte of A, and end with the
/! high-order byte of D.

for {(short1=0,j = 3;] >= 0; ++1, --J)
md[1] = word_a[j]:

for (shorti=4,j =3;j>=0; ++i, —))
md[i] = word_b[j];

for (short1= &, j = 3; j7>= 0; ++i,)
md[i] = word_c[j]:

for (shorti=12,j=3;j>=0; ++i,--j)
md[1] = word_d[j];

} // end of method generate

/! Round 1:
M WhenF(X, Y, Z)=(X&Y) | (-X & Z),
// let [abed k s i] denote the operation
/la=b+((a+F(be,d)+ X[k] + T[1]) <<<s).
private void firstRound (byte[] a, byte[] b, byte[] ¢, byte[] d, byte[] x,
short offset, byte s, byte tl, byte t2, byte t3, byte t4) {

X, Y, Z)=(X&Y)|(-X & 2Z)

bitAnd(b, c. support_templ);

bitComplement(b, support_temp2};
bitAnd(support_temp2, d, support_temp2});
bitOr(support_templ, support temp2, support_temp2);

" at+ F(bed) + X[k] + T(i]
arrayCopy(x, (short)offset, support_temp1, (short)0, (short)4):
addBytes(support_temp2, support_templ, (short)0, (short)3);

106

support_templ[0] =t1;

support_templ[1] = t2;

support templ[2] = 13;

support_tempi[3] = 14,

addBytes (support_temp2, support_templ, (short)0, (short)3);
addBytes (support_temp2, a, (short)), (short)3);

b - ((a+ F(be,d) + X[k] + T[i]} <<< s)
rotateleft{ support_temp2, s, support_temp2);
addBytes(support temp2, b, (short)0, (short)3);

/la=b+((a+ F(be,d) + X[k] + T[1]) <<< s)
arrayCopy(support_temp2, (short)0, a, (short)0, (short)4);

} #/ end of method firstRound

// Round 2:
HWhen G(X, Y, Z)=(X & Z) |{Y & ~Z),
// let [abed k s 1] denote the operation
ifa=b+{(a+G(bed)+ X[k] + T[i]) <<< s).
private void secondRound (byte[] a, byte[] b, byte[] ¢, byte[] d, byte[] x,
short offset, byte s, byte tl, byte t2, byte 13, byte t4) |

HGIX, Y, Z2)=(X &2)1(Y & ~2)

bitAnd(b, d, support_templ);

bitComplement(d, support_temp2},

bitAnd(c, support_temp2, support_temp2);
bitOr(support_templ, support_temp2, support_temp2);

/'a+ Gib,e,d) + X[k] - T[i]

arrayCopy(x, (short)offset, support_temp1, (short)0, (short)4});
addBytes(support_temp2, support_templ, (short)0, (short)3);
support_temp1[0] =11;

support_templ[1] =12;

support templ[2] = t3;

support templ(3] = t4;

addBytes (support_temp2, support_templ, (short)0, (shart)3);
addBytes (support_temp2, a, (short)(, (short)3);

7b+ ((a + G(b,c,d) + X[k] 1 T[1]) <<<s)
rotateLeft(support_temp2, s, support_temp2);
addBytes(support_temp2, b, (short)0, (short)3);

/a=b+ {(a+ G(b.c.d) ~ X[k} + T[i]) <<< s)
arrayCopy(support_temp2, {short)0, a, (short)0, {short)4);

} // end of method secondRound

/# Round 3:
o When H(X, Y, Z)= X" Y"Z,
/i let [abed k s 1] denote the operation
Ja—h+ ((a+H(bcd) + X[k] + T1]) === 3),
privatc void thirdRound (byte{] a, byte[] b, byte[] ¢, byte[] d, byte[] x,
short offset, byte s, byte t1, byte t2, byte 13, byte t4) |

HH(X,Y,Z)=X~Y "7

107

bitXor(b, ¢, support_templ],
bitXor(support_templ, d, support_temp2);

/i a + Hib.e,d) + X[k] + T[i]

arrayCopy(x, (short)offset, support_templ, {short)0, {short}4);
addBytes(support_temp2, support_templ, (shor1)0, (short)3);
support_termp1[0] = t!;

support_templ[1] = 12;

support_templ{2] = 3.

support templ[3] =14,

addBytes (support_temp2, support_templ, (short)0, (short)3);
addBytes (support_temp2, a, (short)0, {short)3);

/b +((a+ H(b,c,d) + X[k] + T[1]) <<<s)
rotateLeft(support _temp2. s, support_temp2);
addBytes(support_temp2, b, (short)0, (short)3);

/fa=b+((a+Hbed)+ X[k] + T[1]) <<<s)
arrayCopy(support_temp?2, (short)), a, (short)0, (shor)4);

t // end of method thirdRound

// Round 4:
A WhenI(X, Y, Z) =Y ~ (X | ~Z),
// let [abcd k s i] denote the operation
/fa=b+((a+I(bcd)+ X[k] + T[i]) <<<s).
private void fourthRound (byte[] a, byte[] b, byte[] c, byte[] d. byte[] x,
short offset, byte s, byte t1, byte 12, byte t3, byte t4) |

HIUX,Y,Z)=Y X | ~Z)
bitComplement(d, support_temp1),
butOr(a, support_templ, support_templ);
bitXor(c, support_templ, support_temp2);

/fa+ I(be,d)y+ X[k] + T1]

armayCopy(X, (short)offset, support templ, (short)0, (short)4);
addBytes(support_temp?2, support_templ, (short)0, (short)3);

support_templ[0] = t1;

support_templ|1] = 2;

support templ[2] - t3;

support_temp1[3] = t4;

addBytes (support temp2, support templ, (short)0, (short)3);
addBytes (support_temp2, a, (short)0, (short)3);

/b +((a+ I(bec,d)+ X[k] + T[1]) <<<s)
rotateLeft(suppori_temp2, s, support_temp2);
addBytes(support_temp2, b, (short)0, (short)3},

/fa=b+((a+]1{becd)+ X[k] * T[i]) === s)
arrayCopy(support_temp2. (short)Q, a, (short)0, (short)4),

} // end of methed fourthRound

// two bytes are added and result will be saved in the first byte
private void addBytes (byie[] a. byte[] b, short overflow, short length) {

108

if (length — -1)
return:

short one byte = (short)((short)(a[length]&0x00FF) + (short)(b[length]&0x00FF) + overflow};
a[length] = (byte)Xone byte & (short)Ox00FF);

if (overFlow(one_byte))
addBytes(a, b, (short)1, --length):
else

addBytes(a, b, (short)0, --length);
return;
1 /! end of method addBytes

// a short value will be added to the byte array
private void addLength (byte[] total_length, short length) {

byte[] part_length = new byte[5];
short offset = -1;

while (true) |
if (tength >= 127) |
part_length[++offset] = (byte)Ox7F;
length = (short)(length - (short)127);

else {
part_length[++offset] = (byte) length%((short}127)),
break;
H
H

/7 call the roundEachLength mehtod recursively
for (short array index = 7; offset == 0; --offset, array_index = 7) {

short one_byte = (short){(short){1otal_length|array _index |&0x00T)

+ (short)(part_length[offset]&0x001T));
total_length[array index] = (byte)(one_byte & (short)0x00FF);
if {overFlow(one byte))
total_length = roundEachLength(iotal length, --array_index, {short)1);

}

} // end of method addLength
private byte[] roundEachl ength(byte[] total, short index, short overflow) {

if (index < 0)
return total;

short one byte — (short)({short) total[index |&0x00fT) + overflow),
total[index] = (byte){one byte & (short)0xGOIF):

if (overFlow(one byte))
total = roundEachLength(total. --index, {short]l}),

return total;

109

} // end of method roundEachLength
private boolean overFlow (short num} {

if ((short}{numdé&(short)OxFF00) >= (short)0x0100)
return true,;

else
return false;

} /7 end of method overFlow
private void bitComplement (byte[] array. byte| | result) |

for (short i = 0; i < {short)4; i++)
result{i] = (byte)~(array|i]);

1 /7 end of method bitComplement
private void bitOr (byte[] array1, byte[] array2, byte[] result) {

for (short 1 = 0; 1 < (short)4; i++)
result[i] = (byte)(arrayl[i] | array2(i]);

+ // end of method bitOr
private void bitAnd (byte[] arrayl, byte[] array2, byte[] result) {

for (short 1 = 0; i < (short)4; i++)
resultfi) = (byte)(array1[i] & array2(i);

}+ /1 end of method bitAnd
private void bitXor (byte[] array1, byte[] array2, byte[] resulr) {

for (short i = 0; i < (short)4; i++)
result[i] = (byte)(arrayl[i] * array2[i]);

4 // end of method bitAnd

/! left shift in a byte array with rotation
private void rotateLeft (byte[] array, byte n_shift, byte[] result) {

byte offset = 0x00;

byte shift = 0x00;

byte reverse _shift = 0x00;
byte for current = 0x00;
short for_next = 0x00;

byte first = 0x00;
byte second = 0x00;
byte third = 0x00;
byte fourth = 0x00;

switch (n shift % (byte)8) {
case 0: offset = (byte)OxFF;
break:

case 1: offset = (byte)Ox80;
break;

case 2: offset = (byte)}0xC0;
break;

case 3: offset = (byte}OxEQ;
break;

case 4: offset = (byte)OxFO0;
break;

case 5: offset = (byte)OxFg;
break;

case 6: offset — (byte)OxFC,
break;

case 7: offset = (byte)OxFE;
break;

}

shift = (byte)(n_shift % (byte)8);
reverse shift = (byte)((byte)Ox08 - shift);

if (shift == 0) {
shift = §;
reverse_shift = 0;

'

if (n_shift <= 8) {
first = array{0];
second = array[1];
third = array(2],;
fourth = array[3},

} elseaf (n_shift <= 16) {
first = array{1]:
second = array[2];
third — array[3]:
fourth = array[0];

- else if (n_shift <= 24) {
first = array[2];
second = array|3];
third = array{0},
fourth = array[1];

!

for_next = {short)({fourth & offset) & Ox00FF):
result[3] = (byte)(fourth << shift);

for current = (byte)(for_next >>> reverse_shift);
for next = (short)((third & offset) & 0x00FF);
result[2] = (byte)({third << shift) | for_current),

for_current —= (byte){(for_next >>> reverse_shift);
for_next = (short)((second & offset) & Gx00FF);
result[1] = (byte)({sccond << shift) | for_current);

for current = (byte)(for next >=> reverse shift);
for_next = (short)((first & offset) & 0xO0FF);
result[0] - (byte)((first << shift} | for current);

11k

for current = (byte)(for_next »>> reverse shift);
result[3] = (byte)result[3] | (for_current));

} // end of method rotatel.eft

private void arrayCopy (byte[] source, shorts_start,
byte[] destination, short d start, short length} |

short perform = 0;

for (perform = length; perform > 0; --perform) {
destination(d_start] = source[s_start];
s _start++;
d_start++;

]
i

} 7/ end of method armrayCopy

{ // end of class MD35

Terminal.java

;-‘t!H!tlltt!tt*t*ﬂ*ltt*'tﬁt-#*tttiiitt-tt!*-!#‘ttt!t!it‘i*!###tttt‘ti#t'*.t*i

The class Terminal contains the off-card installation program that transmits a CAP file not
only to the Java Card installer but also to the HashInstaller installed onto a card before other
applets are installed. Also, this class enables for a user to run the converter tool, the scriptgen

tool, and the apdutool tool in the Java Card 2.2 Development Kit with pre-created batch files.
ttt#*t*tt#ttt*#t&‘t‘l‘t#i“*ttI'#l!“‘.“ﬂ#ﬂ..“’t*ttt.1“!tt#ttl.ttll*““";’

umport java.awt.*;
import java.awi.event. *;
import javax.swing.*;
import java.io.®;

class Termunal extends J¥Frame {

// for the top panel

private JPanel download;
private JButton download_files;
private JRadioButton is_server,
private JRadioButton is_client;
private ButtonGroup group;

f/ far the muddle panel
private JPanel convert;
private JButton converter,

/7 for the bottom panel
private JPanel off card,
private]Button select _cap:
private JBurton install;

private JFileChooser fc;

private File cap_file:
private File batch;

112

private File scr_file;
private File out file;
private File cap dump;

Terminal () |

setTitle("Terminal™);

setDefaultCloseOperation(JFrame EXIT _ON_CLOSE);
getContentPane().setLayout(null);
getContentPane().setBackground(Color.green),

/! for the top panel

download = new JPanel();

download.setBounds(25, 25, 250, 105);

download .setBackground{Color.green);

download.setBorder(BorderFactory.createTitledBorder
{BorderFactory.createLineBorder(Color.black), " Download "));

download_files = new JButton(" Download ")
download_files.setBackground(Color.orange);
download_files.setSize(100, 40);

i1s_server = new JRadioButton("Server Applet");
is_server.setBackground(Color.green);

is_client = new JRadioButton("Client Applet");
is_client.setBackground(Color.green);

group = new ButtonGroup();
group.add(is_server);

group.add(is_client);

download.add(is server),
download.add(is_client);
download.add(download files);

/! for the middle panel

convert = new JPanel();

convert.setBounds(25, 145, 250, 75);

convert.setBackground(Color.green);

convert.setBorder(BorderFactory.create TitledBorder
(BorderFactory.createLineBorder(Color.black), " Converter "));

converier = new JButton(" Convert ");
converter.setBackground(Color.orange);
converter.setSize(150, 40);
convert.add{converter);

/! for the bottom panel

off card = new JPanel(};

off_card.setBounds(25, 245, 250, 75);

off _card.setBackground(Color.green);

ofT_card.setBorder(BorderFactory.create TitledBorder
(BorderFactory.createLineBorder(Color.black), " Off-card installation program "});

install = new JButton(" Transmt ");
install.setBackground(Color.orange];
install.setSize(200, 40},

off card.add(install);

// to simulate download applets' classfiles via Internet
download _files.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent e) {

/{ to run a specific baich file
if ((1s_server.isSelected() || 1s_client.isSelected(})) |
JOptionPane.showMessageDialog
(Terminal this, "Select one of following buttons: Server Applet or Chent Applet”,
"Error”,JOptionPane. ERROR_MESSAGEY;
return;

}

{/'s_down_1(2).bat is a batch file contains commands for copying class files
// from other directory
if (1s_server.isSelected()) {

ty |

String command = "c:/demo/sourcecode/systemfile/s down_] bat";
Process child = Runtime.getRuntime().exec(command);
child. waitFor();

} catch (Exception e2) {

}

try {
String command = "c:/demo/sourcecode/systemfile/s down 2. bat";

Process child = Runtime.getRuntime().exec(command);
} catch (Exception e3) |

t

/{ ¢_down bat is a batch file contams commands for copying class files
// from other directory
if (is client.isSelected()) {
try {
String command = "c:/demo/sourcecode/systemfile/c_down.bat",
Process child = Runtime.getRuntime().exec(command);
} catch (Exceptionel) |
H
H

t
3R

/! to convert class files and export files to a CAP file and a export file
converter.addActionListener(new ActionListener() {
public void actionPerformed (ActionEvent) {

//'s_convert.bat is a batch file contains commands to run the convert tool
if (is_server.isSelected()) |
ty |
String command = "c:‘demo/sourcecode/systemfile/s convert.bat";
Process child = Runtime.gctRuntime(}.cxec(command);
} catch (Exception ee) |
}
}

114

/! ¢_convert.bat 1s a batch file contains commands to run the convert tool
if (is_client.asSelected()) |
try {

String command = "c:/demo/sourcecode/systemfile/c convert.bat™;
Process child = Runtime.getRuntime().exec{command);
} catch (Exception ee) {

H
1)

/I to transmits a CAP file to the Java Card installer and the Hashlnstaller
/I to generate a hash value of the CAP file
install.addActionListener(new ActionListener() {

public void actionPerformed (ActionEvent e) {

fc = new JFileChooser("c:\\demo'\terminal™);
fc.setDialogTitle("Select a CAP file");
int returnVal = fc.showOpenDialog(Terminal.this);

// a CAP file must be selected for conversion process
if (returnVal == JFileChooser. APPROVE_OPTION)
cap_file = fc.getSelectedFile();
else {

JOptionPane.showMessageDialog (Terrmunal.this, "You must choose a CAP file",

"Error”,JOptionPane ERROR_MESSAGE),
cap_file = null;
return;

}

String temp = cap_file.getName(),
if (temp.indexOf(".cap™) == -1) {

JOptionPane.showMessageDialo (Terminal.this, "You must select a CAP file is",

"Error”,JOptionPane. ERROR_MESSAGE);
cap_file = null;
return;

b

/i create a batch file and run the scriptgen tool
fy |

batch = new File("script.bat"};

scr_file = new File("apdu.scr”);

BufferedWriter out = new BufferedWriuter(new FileWniter(batch));

out.write("@echo offin");

out.write("scriptgen -0 " + scr_file getAbsolutePath(} +
+ cap_file.getAbsolutePath() + "n");

]

out.close();

String batch path = batch.getAbsolutePath():

batch_path = batch_path.replace(""', /')

Process child = Runtime. getRuntime().exec(batch_path};
child.waitForf };

115

} catch (Exception el) {

{ finally {
// after run the scriptgen tool, the batch file will be deleted
batch.delete();
batch = null;

f

String dumps = new String(};
cap_dump = new File("dump"),

/I create a batch file and run the capdump tool
try {

batch = new File("gendump.bat");

BufferedWriter out = new BufferedW riter(new FileWriter(batch));
out.write("@echo off\n"};

out.write("capdump " + cap_file.getAbsolutePath() + "\n");
out.close();

String batch_path = batch.getAbsolutePath().
batch_path = batch_path.replace(™', ')
Process child = Runtime.getRuntime() exec(batch_path);

// standard output of the capdump tool will be recorded in a file
BufferedReader in = new BufferedReader

(new InputStreamReader(child.getInputStream()});
BufferedWriter out2 = new BufferedWriter(new FileWriter(cap_dump));

while ((dumps = in.readLine()) != null)
out2.write(dumps + "n");
out2.close();

} catch (Exception ee) |
}+ finally {
/ after run the capdump tool, the batch file will be deleted
batch.delete();
batch = null;
cap_file = mull;

!

out_file = new File("updated_s_apdu.scr™);
String input = new String();

byte[] data = new byte[64];

int length = 0;

byte apdu_length = 0;

String temp_byte = new String();

!/ to update the previously generated script file by the scriptgen tool to transmits
// 'a CAP file to the Java Card installer and the Hashlnstaller
try {

BufferedReader reader = new BufferedReader(new FileReader(scr file));
BufferedWriter writer = new BufferedWrniter(new FileWniter(out_file));

writer. write("powerup;\n\n");

116

writer. write("//Select Installer'n”);

writer. write
("0x00 0xA4 0x04 0x00 0x09 Ox A0 0x00 0x00 0x00 0x62 0x03 0x01 0x08 0x01 0x7F:\n'\n"};

while ((input = reader.readLine()) != null) |
writer.write(input + "in");

j

// create an instance of this applet
writer. write("\n");
writer. write("//Install this applet'n™);
1f (is server.sSelected()) {
writer.write
("0x80 0xB8 0x00 0x00 0x0A 0x08 0x00 0x00 0xDO 0x00 0x0B 0x00 0x00 0x01 0x00
Ox7F;,\n'n"),
'
else {
writer. write
("0x80 0xB8 0x00 0x00 0x0A 0x08 0x00 0x00 0x00 0x00 0x0C 0x00 0x00 0x01 0x00
O0x7F;\n'n");
f
reader.close();
BufferedInputStream bufferin = new BufferedInputStream(new FilelnputStream(cap dump));

/! select hashinstaller applet

writer. write("'//Select hash installer'\n");

writer.write("0x00 0xA4 0x04 0x00 0x08 0x00 0x00 0x00 0x00 0x0A 0x00 0x00 0x01
Ox7F:\n'\n");

// for save AID
writer. write{"//Save AID\n");
if (is_server.isSelected())
writer.write{"0xB0 0x01 0x00 0x00 0x08 0x00 0x00 0x00 0x00 0x0B 0x00 0x00 0x01
Ox7F;\n'\n");
else
writer.write("0xB0 0x01 0x00 0x00 0x08 0x00 0x00 0x00 0x00 0x0C 0x00 0x00 0x01
Ox7F;\n\n");

writer. write("//Start of CAP content'n");
writer.write("0xB0 0x02 0x00 0x00 0x00 0x7F,\n'n");

/f write a CAP content into script file
while (true) {

length = (bufferin.read(data));

if (length == -1)
break;

#/ to change to hex from decimal
apdu_length = (byte)(length & O0x000000FF);
temp_byte = (Integer.toString(apdu_length & 0x000000FF, 16)).toUpperCase();

if (temp byte.length() = 1)
temp byte = "0" + remp_byte;

117

writer.write("0xB0 0x03 0x00 0x00 " + "0x" + temp_byte + " "}

for (int i = 0; i < length; i++) {
temp_byte = (Integer.toString(data[1] & 0x000000FF, 16)).toUpperCase();
if (temp byte length() == 1)
temp_byte = "0" + temp_byte;
writer write("0x" + temp byte + ");

j
writer.write("Ox7F;\n");
| // end of while

// generate a message digest

writer. write("\n");

wrniter.write("// End of CAP content'n");

writer. write("0xB0 0x04 0x00 0x00 0x00 0x7F;'\n'n");

writer. write("powerdown;");

bufferin.close();
writer.close(),

catch (FileNotFoundException ee) {
} catch (IOException eee) {
} finally {

scr file.delete();

scr_file = null;

cap_dump.delete():

cap_dump = null;

¥
]

!/ create a batch file and run the apdutool tool
try §

batch = new File("install.bat");

BufferedWriter out = new BufferedWriter(new FileWriter(batch)),
out.write("(@echo offn");

out.write("apdutool -o result " + out file.getAbsolutePath() + "n").
out.close();

String batch_path = batch.getAbsolutePath();
batch_path = batch_path replace(\\', '/');

Process child = Runtime. getRuntime().exec(batch_path};
child.waitFor();

catch (Exceptionel) {
finally {
batch.delete();

batch = null;

out file. delete(),

out file = null;

118

getContentPane().add(download);

getContentPane().add(conven);

getContentPane().add(ofl_card);

} ., end of constructor

public static void main (String[] args) {
JFrame frame : new Terminal();
frame.setBounds(0, 0, 3110, 380);
frame.setVisible(true):

} // end of methoed main

) // end of class Offinstaller

119

VITA AH,)_

SYENG HO JANG
Candidate for the Degree of

Master of Science

Thesis: SECURE OBJECT SHARING ON JAVA CARD
Major Field: Computer Science
Biographical:

Personal: The husband of Seon Kyung Kim, and the father of Lauren Sunny Jang
and Jamie Austin Jang.

Education: Received Bachelor of Science degree in Computer Science from
Oklahoma State University, Stillwater, Oklahoma in July 2000.
Completed the requirements for the Master of Science degree with a major
in Computer Science at Oklahoma State University in May, 2003.

Experience: Employed by Oklahoma State University, Center for Laser And
Photonics Research as a system administrator; Employed by Oklahoma
State University, Department of Computer Science as a teaching assistant.

