
SECURE OBJECT SHARING ON JAVA CARD

By

SYENG HO lANG

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

2000

Submitted to the Faculty of the

Graduate College of the

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of

MASTER OF SCIENCE

May, 2003

SECURE OBJECT SHARlNG ON JAVA CARD

Thesis Approved:

~~

~JM2 tJ~tJ.,J..~""""":::!::==-=---

-~-~c1.~DQaf the Graduate Co;.;;l;;;;;;l-eg-e----­

II

PREFACE

This research concerns enhancement in on-card verification of downloaded

applets in Java Card technology. In this thesis, we propose the on-card installer with a

one-way hash function to support on-card verification of download applets. The hash

value generated from the on-card installer is used to verify download applets when they

try to gain a SIO from a server applet.

This thesis is organized into five chapters and an appendix. Chapter 1,

Introduction, depicts the background ofJava Card technology, the current problem in the

Java Card platfonn, and the objectives of this research. Chapter 2, Literature Review,

introduces fundamental concepts and background knowledge on Smart Card, Java Card,

and message digest algorithms. Chapter 3, Secure Object Sharing, presents solution to

meet the objectives. Chapter 4, Secure Object Sharing Simulation, simulates the object

sharing process between a server applet and a client applet. Chapter 5, Conclusion,

draws a conclusion of enhancement in on-card verification of downloaded applets.

Appendix presents source codes that are used for the simulation.

111

-

TABLE OF CONTENTS

Chapter	 Page

1. INTRODUCTION	 1

1.1 Background	 1

1.2 Current Problems	 2

1.3 Objectives	 3

2. LITERATURE REVIEW	 5

2.1	 Smart Card 5

Smart Card Classification 5

Smart Card Hardware 7

Smart Card Operating System 8

Card Acceptance Device 9

Smart Card Communication 9

Smart Card Standards and Specification \ \

2.2 Java Card ,. 12

Applet. 13

Java Card Language Subset 14

Java Card Virtual Machine 14

CAP File Format 16

Java Card Framework "'''''' 16

Java Card Runtime Environment 16

Applet Execution 18

Applet Object 20

Java Card Transaction 21

Applet Firewall 22

Context Switch 23

OpenCard Frame'Work 25

2.3 M,essage Digest	 25

One-Way Hash Function ···· ·· ·· 26

Message Digest Algorithms 27

Secure Hash Algorithnl "28

IV

Chapter	 Page

3. SECURE OBJECT SHARING	 29

3.1	 Applet Installation , 29

Converter. 30

Verifier " 31

Off-Card Installation Program and Installer 31

Illegal Installation 32

3.2 Object Sharing	 33

Shareable Interface Mechanism 34

Client Applet Verification 37

3.3 Enhanced App1et Verification	 38

Installer with a One-Way Hash Function 39

Secure Object Sharing Process 42

4. SECURE OBJECT SHARING SIMULATION	 45

4.1 Java Card 2.2 Development Kit..	 47

4.2 Object Sharing Process Simulation with the Existing Approach 47

Shared Infonnation 47

Illegal SIO Access 48

4.3 Message Digest	 50

Proposed On-Card Installer 50

Hash Value of the Client Applet.. 51

Applet Installation 52

Enhanced Client Applet Verification 53

Updated a Hash Value oftbe Client Applet. 57

5. CONCLUSION	 , 59

BIBLIOGRAPHY	 61

APPENDIX	 63

AirMilejava 63

AriMi leInterfacej ava 67

EPurse.java 67

HostAirMile.java 70

HostEPursejava , 74

HashInstalleLjava 78

HashInstallerInterfacejava 97

v

Chapter Page

HVGenerator.java _ 97
Tenn.inal.java 112

VI

LIST OF TABLES

Table Page

1. Smart Card COlnparisons 6

2. The Methods in the Class javacard.framework.Applet.. 19

VB

LIST OF FIGURES

Figure Page

1. Command APDU Structure , 11

2. Response APDU Structure 11

3. Structure of Application Identifier. 14

4. Java Card Virtual Machine 15

5. Java Card Runtime Environment 18

6. Applet Execution States 20

7. Applet Comrnunication 20

8. Applet Firewall 23

9. One-Way Hash Function 26

10. Applet Installation Process 30

11. Object Sharing Process 35

12. Installer with a One-Way Hash Function 41

13. Secure Obj ect Sharing Process 42

14. The Usage of Tools in the Java Card 2.2 Development Kit 46

15. Host Application for the AirMile with Existing Approach 49

16. Host Application for the EPurse with Existing Approach 49

17. Hash Value Generator with the Hash Value of EPurse Applet 51

18. Terminal Application 53

19 . . S' l'
S.. ecure Object Shanng Iroll atlon 54

Vlll

~~ P~

20. Host Application for the AirMile with OUf Approach 55

21. Host Application for the EPurse with OUf Approach 56

22. Update the Hash Value of the EPurse Applet in the AirMile Applet 58

IX

1. INTRODUCTION

1.1 Background

The rapid growth of the Internet has changed the mode of business dealings from

the traditional face to face in-store transactions to worldwide on-line transactions directed

with a few mouse clicks in the home or office. For the electronic business market to

reach its full potential, technology must offer the same level of trust as face to face

business relations and must be able to handle business transactions in an efficient and

user-friendly manner.

Smart cards have the potential to provide great security and portability due to the

added intelligence ofa microprocessor on the card, their size and computing ability.

Smart cards therefore afford a way to enable secure transactions and a broad range of

electronic business. These days, smart cards are mainly used for prepaid phone cards,

electronic purses, retail royalty cards, and storage of identification and medical records,

among other applications .. The demand for smart cards is growing at a rate of 40 percent

per year [1]. Currently, over 3 billion cards are in circulation worldwide with over 15%

of the total in use in the United States and Canada [2].

However, smart cards have some limitations such as a small universe of

knowledgeable programmers and limited flexibility to download applications into cards

[3]. These factors prevent a broader deployment of smart card applications. The inner

workings of smart cards differ widely ITom one manufacturer to another even though the

cards are standardized in size, shape, and communication protocol. As a result,

developing smart card applications have been limited to a small group ofhighly skilled

and specialized programmers. Also, in the traditional approach, smart card applications

are burned in the chip, so after the card is issued, the embedded application cannot

evolve.

A Java card is simply defined as a smart card that is capable of running

applications called applets written in the Java programming language, and it offers a way

to overcome the limitations ofexisting smart cards. While the Java Card platform

preserves many of the benefits of the Java programming language such as productivity,

security, robustness and portability across different chip architectures, it also provides

several unique benefits. In the Java Card platform, new applets can be installed securely

at any time, limited only by the memory size after a card has been issued, so card issuers

can have the ability to dynamically respond to their customer's changing needs. Also, the

Java Card platform provides a secure environment using an applet firewall that enables

multiple applications supplied by different service providers to coexist securely on a

single card.

1.2 Current Problems

Even though Java Card technology provides a secure environment to enable

multiple applets supplied by different vendors to coexist via the applet firewall

mechanism and cooperate securely by way of the object shareable interface mechanism

on a single card, enhancement in on-card verification of downloaded applets is still under

consideration.

In the Java Card platform, the Java Card installer, an on-card component to install

an applet on Java Cards, does not verify a converted applet (CAP) file that consists of

applet classes and is the loadable and installable unit on the Java Card platform [3]. This

means the correctness and integrity of a CAP file are verified off-card, and the installer

2

on the Java Card platfonn does not perfonn most of the traditional Java verifications at

class-loading time. For this reason, it is possible for a malicious applet to be installed

onto a card via illegal applet installation process.

In Java Card technology, cooperation between applets provided by different

vendors is achieved through a shareable interface object (SIO) that is an object instance

of a class implementing one or more shareable interfaces of an applet. To cooperate with

other applets provided by different vendors, the behavior of a SIO should be avaiJable for

other application providers who are asked not to reveal the behavior of the SIO.

However, there is no guarantee that the application providers will not share it with

unauthorized means. Therefore, a malicious applet that can get a SIO from other applets

can be developed. Once the malicious applet is installed onto a card by way of an illegal

applet installation process, the malicious applet can access sensitive data and service of

other applets supplied by different vendors by invoking one of other applets' SIO.

l.3 Objectives

The purpose ofthis research is to enhance Java Card security, and our objectives

are following:

The first objective is to improve on-card verification mechanism of downloaded

applets. Beyond minimum-security protections enforced by the on-card installer and the

Java Card Runtime Environment in the Java Card platfonn, Java Card technology does

not standardize applets installation policy. For this reason, a malicious applet can be

instaUed onto a card via iUegal applet installation process, and determination of

validation of applets relies on cryptographic exchange algoritJuns that may exist between

3

applets. However, the most frequently anticipated security Concerns have been developer

mistakes and design oversights.

The second objective is to improve a client applet verification mechanism before

a server applet agrees to share its SIO with a client applet. In the Java Card platform, a

server applet determines validation ofa client applet only by the client's AID and secret

parameter before the server applet agrees to share its SIO. Therefore, there is no way for

a server applet to reject a malicious client applet that impersonates with a valid AID and

secret parameter before it agrees to share its SIO with the malicious applet.

4

2. LITERATURE REVIEW

In the Java Card platform, card applications called applets can be added at any

time onto the cards after the card has been issued while applications in many embedded

systems need to be burned into the ROM during manufacture. Also, multiple applets

from different service providers can coexist and cooperate securely ona single Java Card.

This thesis considers on-card verification of downloaded applets, and in our novel

approach, the on-card installer with a one-way hash function supports on-card

verification of downloaded applets that cooperates with other applets from different

service providers on a single card. Here, the one-way hash function is used in the on-card

installer to support verification ofdownloaded applets that cooperates with other applets

residing on the same card because developing a malicious applet that can request service

to other applets and also has the same hash value is almost impossible. In this chapter,

we first review smart cards and Java cards in sections 2.1 and 2.2 respectively. Then we

review message digest algorithms in section 2.3.

2.1 Smart Card

A smart card is similar in appearance to a credit card, but has electronic circuits

embedded in siJjcon in the plastic substrate of the card. Unlike a magnetic stripe card, a

smart card can carry all necessary functions and information on the card, so it does not

require access to remote database at the time ofthe transaction. Smart cards have

enjoyed wide acceptance in many application areas due to its added intelligence of a

microprocessor, size and computing ability.

Smart Card Classification

There are two major categories of smart cards; embedded with either only a

5

I1lCIllOr chip \ ith non-programmable logic, which i all d a memory card, or a

microprocessor and memory chip which is called a micropro e or card [3]. The

compan 011 of two categorles of smart cards with magnetic trip ards is illustrated in

Tabl 1.

Max. Data Cost of Reader
Type orCards Processing Pow r Co torCard

Capacity and Connection
Magnetic Strip

140 bytes None 0.20 - $0.75 $750
Cards

Memory Cards I Kbytes None 1 - $2.50 $500

Microprocessor 8-bit CPU, moving

8 Kbytes $7 - $15 $500

Cards to 16-bit and 32-bit

Table!. Smart Card Comparisons [21

The typical memory cards hold up to 1- 4 KB of data but do not have processor

on the card with which to manipulate that data [2]. Memory cards are popular as high-

security alternatives to magnetic strip cards, and they are used primarily as prepaid cards

for public phones or similar applications that are sold against prepayment [3]. Since a

memory card has no processor, a simple circuit capable or executing a few

preprogrammed instructions performs its data proc sing []. For example, prepaid

phone cards contains the hard wired logic that treats th chip memory as a counter by

allowing one bits to be set to zero bits but not the r verse to prevent the value from being

increased [4]. However, such a circuit has Ii mited functions and cannot be

reprogrammed, so memory cards cannot be reused after the value in the card is spent.

Microprocessor cards, as the name implies, contain a processor. They have the

power to process data as well as to store and secure information. Also, they can integrate

several different applications. Therefore, microprocessor cards offer more functional

capability and increased security than memory cards. Typical microprocessor cards have

6

an 8-bit processor, l6KB read-only memor . and 511 bytes of random-access memory

[2]. They are widely used where data security and pri acy are major concern such as

payment and banking industries, payment of parking and toll, storage of identification

and medical records, and access to satellite television, among other applications.

The tenn smart card generally r fers to both memory cards and microprocessor

cards [3]. However, some publications refer to call only microprocessor cards as smart

card because memory cards are not realJy smart due to lack of intelligence to process data

[3]. In this thesis, the tenn smart card refers to microprocessor cards.

Smart Card Hardware

A typical smart card contains a Central Processing Unit (CPU) and three different

types of memory - Read Only Memory (ROM), Electrical Erasable Programmable Read

Only Memory (EEPROM) and Random Access Memory (RAM).

The most popular CPU in smart cards is an 8-bit micro controller, usually using

the Motorola 6805 or Intel 8051 instruction set with c lock speeds up to 5 MHz [3]. A 16­

bit or 32-bit micro controller with Reduced Instruction Set (RISC) architecture is

becoming more common [3]. Also, some smart cards have a built-in coprocessor for use

in security applications that require computationally expensive cryptographic operations

on voluminous data.

Read Only Memory (ROM), as the name implies, cannot be written to after the

card is manufactured. Also, no voltage is needed to hold data in memory. Therefore,

ROM in smart cards is used for containing operation systems' routi.nes, permanent data as

well as various testing aJld diagnostic functions [5]. Currently, chips with more than

32KB of ROM are available for smart cards [4].

7

Electrical Erasable Programmable Read Only Memory (EEPROM) functionally

corresponds to a PC hard disk becau c it not only can preserve data content when pow r

to the memory is turned off. but also can be modified during nonnal use of the card [5].

Therefore, EEPROM is used for data storage in smart cards. However, writing to

EEPROM is 1,000 times slower than writing to random access memory (RAM) even

though reading from EEPROM is as fast as reading from RAM [3]. Currently, chips are

available with more than 8KB of EEPROM for smart cards [4].

Random Access Memory (RAM) needs a power supply for its operation, and once

it is switched off, the data contents in RAM are evaporated. RAM is used in smart card

as temporary working space for storing and modifying data. These days, chips are

available with more than 64KB of RAM for smart cards [4].

Currently, other memory technologies such as Flash EEPROM are gaining

popularity for smart cards [3]. Also, some experts prefer to use Recoverable Persistent

Memory (RPM) to hide diJferences between volatile and non-volatile memories in

application development [6].

Smart Card Operating System

The International Organization for Standardization (ISO) standardizes a wide

range of instructions for smart cards, and smart card operating systems support some or

all of these instructions as well as the manufacturer's additions to do secure program

execution and protect access to data [3]. Also, most of smart card operating systems

support a hierarchical file structure with file directories to support a smart card-based

service such as fi.le selection and file selection command [3]. In this case, a card

application is a data fi.le that stores application-specific information, and smart card

8

operating y tern i the olle that implements the semantics and instruction to a ccs the

card application data (II [3).

However. the hierarchical approach for smart card operating system ha limited

services available on the smart card such as processing data with card application-specific

security requirements, so newer operating systems that support multiple applications

simultaneously are becoming more popular [8].

Card Acceptance Device

Card Acceptance De ice (CAD), into which a smart card is inserted, can be

classified as two types: readers and tenninals [3]. A reader, that has a slot into which a

card is placed, is connected to the parallel, serial or USB port of a computer, and it can

write to the card as well as read data from it [7]. In general, a reader does not have the

power to process data while some readers have the power to detect errors and correct

functions when transmitted data are not compliant with the underlying transport protocol

[3]. A terminal that integrates a smart card reader as one of its components is a computer

on its own. A terminal has the power to process data exchanged between it Ifand the

smart card, and Bank ATMs and devices used in gas station for payment or stores for

payments and credit card transactions are the most commonly seen terminals [3].

]n this thesis, the application that interfaces with the smart card through a card

acceptance device is referred to as host application whether it reside in the computer

connected to the reader or in the teoninal.

Smart Card Communication

The communication between the smart card and the host application is one-way

communication, known as a 'half-duplex' pathway. That is, the data can either be sent

9

from the ho·t application or the smart card in turn but. not both at the ame time, so the

other party must always be in reception mode. The entire data xchanged between smart

card and host application takes place using Application Protocol Data Units (APDUs)

that is the layer that is located directly above the transmission protocols in smart card,

and the APDU is carried by the transmission protocol without modification or

interpretation [5].

For the data exchange between smart card and host application, the master-slave

model is employed, and a smart card always plays the slave role [3]. When a smart card

is inserted in a CAD, the smart card is waiting for a command APDU from the host

application. Then the smart card executes the instruction specified in the command

APDU, and replies to the host application with a respond APDU.

Command APDD that is sent by a host application to a smart card consists of a

header and an optional body [3]. The header consists of 4 bytes: Class of Instruction

(CLA), Instruction Code (INS), and Parameter 1 and 2 (PI and P2). The CLA byte is

used to identify a category of the command and respond APDUs, and the INS byte

speci lies the instruction of the command. The two parameters bytes are used to describe

more closely the instruction selected by the INS byte. The optional body that consists of

data field, Lc, and Le varies in length. The data field contains data that are sent to the

smart card for executing the instruction of the command and the length of the data field is

specified in the Lc byte. The last byte in the command APOU is the Le that specifies the

length of the data field expected by the host application in the smart card's response. The

structure of command APDU is illustrated in Figure 1.

10

Figure 1. Command APD truclure [3]

Response APDU that sent by a smart card in r ply to a command APDU of a host

application consists of an optional body and a trailer [3]. The optional body consists of

the data field that its length was determined in th previous command APDU's Le byte.

The trailer consists of two bytes, Status Word I (5 WI) and 2 (SW2) that contain

the processing state in the card after executing the command APDU. The structure of

response APDU is illustrated in Figure 2.

Body (Optional) Trailer

Data field SWI I SW2

Figure 2. Response APDU Structure [3]

Smart Card Standards and Specification

Because the proliferation of smart cards depends seriously on the existence of

national and international standards and gen rally recognized specifications, for the past

15 years, a number of smart card standards and speci fications have been defined to

ensure that smart card issuers, card acceptance device vendors, and application

developers can work together [3].

The ISO 7816 that was published by The International Organization for

Standardization (ISO) in 1987 is the first set of standard defining the characteristics of

lntegrated circuit cards that uses electrical contacts [4]. The [SO 7816 consists of distinct

sections, and each section covers various aspects of smart cards; physical characteristics,

dimension and location of contacts, electronic signal and transmission protocols, inter­

industry commands for interchange, numbering system and registration procedure for

11

application identifiers, and inter-in lu tf data I' ments [4].

Europay International, MasterCard lntemational and Visa International (EMV)

have made efforts to create common application standard where the ISO 7816 does not

address smart card applications [4]. The MY specification is based on the ISO 7816

series of standards with additional proprietary features to meet the specific needs of the

financial industry such as the cooperati ve development of financi.al payments standards

[3].

The Global System for Mobile Communications (GSM) defined by the European

Telecommunications Standards Institute (ETSI) is a specification that covers smart cards

for use in an international terrestrial mobile telephone system [3]. The GSM specifies the

digital authorization and authentication procedures and programs that are stored in a

smart card or a smaller fonn called a Subscriber Identity Module (SIM) [1].

2.2 Java Card

Although smart cards have been widely used in many application areas due to

their underlying advantage of providing powerful and secure computing capabilities

come in simple and portable forms, their limitations such as chip architecture d pendent

of application development, no standardized high-level application interfaces, small

universe of knowledgeable programmers and lack of interoperability have prevented a

broader deployment of smart cards.

In 1996, Schlumberger proposed the implementation of a virtual machine for a

subset of the Java programming language on a standard 8-bit smart card microprocessor.

Base on this proposal, in]997 SUN launched the Java Card 2.0 API specification, which

is compatible with the smalt card international standard ISO 7816 [4]. The latest version

12

of this specification is 2.2 and is no\ the standard specification for Java Card.

While Java ard technology preserves many of the benefits of the Java

programming language such as productivity, security, robustness and portability across

different chip architectures, it also has several unique benefits over existing smart cards.

New applications can b installed securely at any time limited only by the memory size

after a card has been issued. It provides card issuers with the ability to dynamically

respond to their customer's changing needs. Also, Java Card technology provides a

secure environment to enable multiple applications from different service providers to

coexist and cooperate securely on a single card using the applet firewall mechanism and

the shareable interface object mechanism.

Applet

An applet is a Java Card application that runs within the Java Card Runtime

Environment (JCRE) on card. Although it is different from Java applet that is intended to

run within a browser environment, the reason the name applet was chosen for Java ard

applications is that Java Card applets can be loaded dynamically onto the Java ard in a

distributed network such as the Internet within a secure environment over a ard

Accepting Device (CAD) [3]. It can be downloaded anytime onto the cards after the card

has been issued while applications in many embedded systems need to be bumed into the

ROM during manufacture [3J. This makes the Java Card a very powerful platform for

developing new applications. Also, the Java Card applet can be burned into ROM

together with the JCRE and other system components during the process of card

manufacturing as other applications in typical embedded systems [3J.

Each applet instance is uniquely identified by the Application Identifier (AID).

13

The AID controll d h the Intemational Organization for Standar litalion (I 0) can be 5

to 16 byt s long, and is constructed of two data elements: R soure Identifi r (RID) that

is a 5 hyt s aluc and Propri tary Identifier Extension (PI) that can be from 0 to II

bytes in length. The structure of the AID is shown in Figur 3 [5].

RID (5 bytes) PIX (0-11 bytes)

Figure 3. Stmcture of Application IdentiG r l5]

ISO controls the assignment of RIDs to the application providers, so each

application provider has a unique RID. Then, each application pro ider can add its own

PIX after RID in AID. In the Java Card platfonn, each applet instance is identified and

selected by its unique AID that is constructed by concatenating th company's RID and

the PIX for that applet {3].

Java Card Language Subset

Because of limited memory resource and computing power, the Java Card

platfonll supports only a subset of the language featur s defined in th Java Language

Specification. For example, dynamic class loading, security managcr, garbage collection

and finalization, thread and cloning are unsupported Java language features on the Java

Card platfonll [4]. Also, Java Card platfonn does not support arrays of more than one

dimension, and types long, float, double, char and string [3]. Notice that the int keyword

and its 32-bit integer data type are optionally supported, and a Java Card Virtual Machine

(JCVM) that does not support int data type rejects programs using that type [3].

Java Card Virtual Machine

Java Card Virtual Machine (JCVM) is implemented as two separate pieces as

illustrated in Figure 4.

14

Class files

Off-card VM On-card VM

Card

I converter Acceptanc e interpr eter
Device

Export-fUes

DO
CAP file Export-file

Figure 4. Java Card Virtual Machine [3]

]n the off-card portion of the JCVM that runs on a PC or workstation, the

converter converts a package composed of all class files that are generated by

compilation of the source code to a converted applet (CAP) file that contains an

executable binary representation of the classes in the package [3]. A CAP file is the

loadable and install able unit on the Java Card platfoml, and it consists of classes that

make lip a Java package [3]. That is, the CAP file fonnat is the form in which a card

application is loaded onto Java Cards [3]. Also, the converter takes as input one or more

export files and produce another export file. An export file that can be thought of as the

header files in the C programming language contains name and link information for the

contents of other packages that are imported by the classes being converted [9].

The on-card portion of the JCVM includes interpret r that provides runtime

support of the Java language model and thus allows hardware independence of applet

code [3]. The interpreter executes bytecode instructions and ultimately executes applets

[3].

In a PC or workstation, the Java Virtual Machine (JVM) runs as an operating

system process, and when the operating system process is terminated, the JVM and

15

objects that were created in RAM are automatically de troyed [9]. Unlike the JVM, the

JCVM on a card appears to run for ver e n when no power is supplied [9]. When

power is removed, the JCVM on the card onl tops 1 mporarily, and when the next time

the card is energized, the JCVM starts up again and execute from the beginning of the

main loop instead fTom the exact point wher it lost pow r [3 l·

CAP File Format

A CAP file generated by the converter consists of a set of components, which

describe a Java package, and utilizes the JAR file format. Each component in a CAP file

describes a set of element in the Java package defined [8]. ill addition to the components,

the CAP file also contains a manifest fi Ie. The mani fest file provides additional human­

readable information, such as the creation time of the CAP file, the versi,on of the

converter, and the provider of the converter, and it can be used to facilitate the

distribution of the CAP file.

Java Card Framework

The Java Card Framework is compatible with formal international standards,

especially ISO 7816 standard, and defines a set of Application Programming Interface

(API) classes for developing applets that provide system services to those applications. It

provides applet developers with a relatively easy and straightforward programming

interface by hiding the details of the smart card infrastructure [4]. Also, it allows applets

written for one Java Card enabled platfoml to run on any other Java Card enabled

platform.

Java Card Runtime Environment

The Java Card Runtime Environment (JCRE) serves as the operating system of

16

the Java Card [3]. It is r pon iblc ~ r card resource management, network

communication, appl t e' cUlion. and on-card sy tern and applet securit [3]. Thc J R

that sits on top ofa specific int grated circuit and native operation system

implementation contains on-card potion of the J VM JCRE system class s 1a a ard

framework (and industry peci fie e tensions), and installer

The system classes are responsible for managing transactions, communication

between the host applications and applets, and instance creation, selection and

deselection of applets [3]. The industry specific extensions supplied by a speci fic

industry or business are add-on libraries to provide additional services or to refine the

security and system model for industry or business [3].

The installer downloads applets onto the card after the card is made and issued. It

cooperates with an off-card installation program that resides on PC or workstation. Th

off-card installation program transmits a CAP file that contains an executable binary

representation of the classes to the installer running on the card via a card acc ptance

device, then the installer writes the binary into the card memory, links it with the oth r

classes that have already been placed on the card, and creates an instance ofth applet

[3]. More detail about the installer and off-card installation program will be given in the

next chapter with applet installation process. The JCRE is illustrated in Figure 5.

17

Framework Industry Specific Installer
Classes Extensions I

System Classes JCRE

JavaCardVirtuaJ. Machine

Sm art Card Hardware and Native System

Figure 5. Java Card Runtime Environment [3]

The JeRE is initialized at card initialization time, and during this process the

JCRE creates its objects for providing the JCRE service and managing appl ts and store

them in EEPROM that can hold the information even when power is remov d from the

card [3]. When power is removed, the JCYM is only suspended, and the state of the

JCRE and applets on the card are preserved in EEPROM [3]. The next time the card is

inserted, the JCVM restarts the JeRE hy loading data from EEPROM [3].

Applet Execution

Every applet is implemented by creating a subclass of the class

javacard.framework.Applet. The base Applet class is the super class for all applets

residing on a Java Card, and it defines install, register, select, process and deselect

methods. However, the base Applet class provides only the default behavior for these

methods, so an applet needs to override some or all of these methods to implement its

function. Table 2 lists the methods invoked by the JeRE during applet creation and

execution.

18

Public tatic oid install (byte[] bArray, short barr: t. h te bL ngth)

Protected final void

The JCRE calls this method to create an in tance of the Applet
subclass. It is similar to the main I11dh d i a Java application,
and the arguments to the install method carry the applet
installation parameters.

register (byte[] bArray, short bOrrs t. byte bLength)

Public Boolean

This method is used by the appl t to register this applet instance
with the JeRE using its AID speci ficd in the array bArray.
select ()

Public abstract void

The JCRE calls this method to inform the applet that it has been
selected. An applet remains in a suspended state until this method
is explicitly called by JCRE.
process (APDU apdu)

Public void

The JCRE calls this method to i.nstruct the applet to process an
incoming APDU command. On receiving an APDU command,
this method decodes the APD header and calls a service method
to execute the requested function. An applet must directly or
indirectly override this method.
deselect ()

The JCRE calls this method to inform the currently selected applet
that another applet will be selected. The deselected applet will be
remained in a suspended state until the next tim it is selected.

Table 2. The Methods in the Class javacard. framework. Applet [3J

After an applet is correctly loaded into the card and linked with the Java Card

Framework and other libraries on the card, an applet's Ii fe starts when th J RE calls the

applet's install method to create an instance of the applet in EEPROM. The JCRE then

calls the applet's register method to register this applet instance with the JCRE using the

applet's AID. On successful return from the install and register method, the applet is

ready to be selected and to process the upcoming APDU commands.

The JCRE is a single thread environment - means that only one applet is running

at a time [3]. An applet on the card remains in a suspended state until it is explicitly

19

elected. Figure 6 illustrates execution state of all appl I.

select
create Active ~ process a ...

State ..~ command..---­
deselect

Figure 6. Applet Execution States [3]

A host application sends a select APD command to the JCRE. The JCRE

suspends the currently selected applet and invoke the applet's deselect method to

perform any necessary cleanup. Then. the JCRE calls the select method of the newly

selected applet whose AID is specified in the select APDU command as the currently

selected applet. Once the typical applet is selected, it waits for an application running on

the host side to send a command APDU. The applet then executes the command APDU

and returns a response APDU to the host via the JCRE. All subsequent APDUs are

forwarded to the current applet until a new applet is selected or the card is removed from

the card acceptance device, and once the applet is deselected, the applet remains in a

suspended state until the next time it is selected. Figur 7 illustrates applet

communication.

command command
APDU APDU

HostApplication .. -+_I::l,',.L::.J ... ·1, APPIo,1
response response
APDU APDU

JavaCard

Figure 7. Applet Communication [3]

Applet Object

In the Java platform, objects are created in RAM, and they are automatically

20

destroyed when the Ja a Virlual machine exits. In Java Card technology, however 010 1

JCRE and applet objects are crealeJ in EEPROM using the new operator, so their

information can be pres rved even wh n power is removed. Those objects are called th

persistent objects, and their reference and data are preserved across CAD sessions [3].

For security and performance reasons, applet sometimes require objects that

contain temporary data that need not be persistent across CAD sessions. Those object

are called transient objects, and applets can create the transient objects in RAM by

invoking the Java Card API [31. The data of the transient object is cleared and reset to

their default value when certain events such as power loss, card reset or applet

deselection are occurred. The reference of the transient objects, however, is saved in a

persistent filed, so the next time the card is energized, the applet uses the same object

reference to access the transient object even though the object data from the previous

session are lost [3].

Java Card Transaction

Java Card technology guarantees atomic transactions, so the updated field eith r

gets the new value in case of normal execution or is restored to the previous value in cas

of accidental events such as power loss in the middle of a transaction or program errors

that might cause data corruption [9]. An applet, sometimes, needs to update several

different fields atomically, and the Java Card platform provides a transactional model

with commit and rollback capability to guarantee that complex operations can be

accomplished atomically [9]. Either all updates are completed correctly and consistently,

or their partial results are not put into effect and restored to their previous values.

Therefore, the atomicity of all the updates is ensured.

21

Applet Firewall

Multiple applets from different vendors can coexist in a single Java Card, so each

applet should be protected from others because an applet might contain highly security

information such as electronic money and private cryptographic key. In the Java Card

platform, the applet firewall provides a secure execution environment between different

applets in the same card [8].

The applet firewall confines an applet to its own designated area called contexts,

and the firewall is the boundary between one context and another. When an applet

instance is created, the JCRE assigns it a context. Recall that on the Java Card platfonn,

the loading and installable unit is a CAP file, and a CAP file consists of classes that make

up a single Java package. At this point, the context is essentially a group context, so all

applet instances of a single Java package share the same group context. There is no

firewall between two applets instance in a same group context, so object access between

applets in the same group context is allowed unless members and methods of the objects

are declared as private. However, the applet cannot reach beyond its context to access

the contents or behaviors ofobjects in a different context. In addition, the JCRE

maintains its own JCRE context, and accessing from the JCRE context to any applet's

context in the same card is allowed while accessing from an applet's context to the JCRE

context is denied by the firewall. Figure 8 illustrates the applet firewall.

22

JCRE Context []

Applet Firewall

Context Conl.ext

~E~
~

Package B Package A

Figure 8. Applet Firewall [8]

At any point in time, there is only one active context within the execution of the

JCVM [8]. This can be either an applet's group context or the JCRE context. When a

new object is created, its ownership is assigned to tbe current active context, and the

object can be accessed from within that context, that is, by all applet instances in its

owning context. If the JCRE context is the currently active context, the object is owned

by the JCRE.

All bytecodes that access an object are checked at runtime [8]. A private instance

method, for example, cannot be invoked from outside the object. Also, when an object is

accessed, the object's owning context is compared to the currently active context in order

to detennine if the access is allowed. If the contexts do not match, the access is denied

and a SecurityException is thrown.

Context Switch

As mentioned at the previous section, there is only one active context at any time

within the JCVM, and all object accesses are denied by the applet firewall if the owning

context ofthe object being accessed is not the same as the currently active context.

However, for some situations where applets need to execute cooperatively, context

23

switches are occurred within the JCVM. Context switches only occur during invocation

of and return from certain methods of an object owned by a different context, and the

result of a context switch is a new currently active context [8].

During a context switch, the current context and object owner information is

pushed on an internal JCVM stack, and a new context becomes the currently active

context. The invoked method is now executing in this new context. When the method

exits from a nonnal return or an exception, the JCVM performs a restoring context

switch. The original context is popped from the stack and is restored as the currently

active context.

Recall that the JCRE context to any applet's context in the same card is allowed.

For example, when the JCRE receives an APDD command from a host application, it

invokes the currently selected applet's select, deselect, or process method. When the

JCRE invokes an applet's those methods, the JCRE context is switched to the applet's

context [3]. Also, on return from the applet's method, the JCRE context is restored [3].

Recall that applets are not allowed to access the JCREcontext. However, a

secure computer system must have a way for users who don't have privilege to request

system service that are performed by privileged system routine, and this requirement is

accomplished by using JCRE entTy point objects in the Java Card platform [8]. The

JCRE entry point objects that are objects owned by the JCRE context have been flagged

as containing entry point methods. The entry point designation allows the public

methods of such objects to be invoked from any context through the firewall, and when

such invocation occurs, a context switch to the JCRE context is performed. Notice that

only the public methods of the JCRE entry point objects are accessible, and the fields of

24

these objects are still protected by the firewall [3]. The JCRE-owned AID instance that

the JCRE creates to encapsulate an applet's AID when the applet instance is created is an

example of the JCRE entry point object.

Java Card technology enables multiple applications from different service

providers to cooperate securely on a single card via the sharable interface mechanism.

During the process of cooperation between applets that reside on different contexts,

context switches are also occurred. The sharable interface mechanism will be discussed

in the next chapter.

OpenCard Framework

OpenCard Framework (OCF) developed by the OpenCard consortium is the host

application framework providing common interface for both the card readers and the

applications in the card [10]. OCF implemented in the Java programming language is

designed to reduce dependence on each oftenninal vendors, card operating system

providers, card issuers and application developers.

2.3 Message Dieest

When security information is transmitted over the network, it must be protected

from unauthorized disclosure - that is called as data confidentiality, and it can be

accomplished by encryption scheme. Encryption is the process of converting some

information from an easily understandable formant into an unintelligible fonn in such a

way that the original data can be obtained only by using the decryption process [11].

Triple-DES (Triple Data Encryption Standard) and public key scheme are the most

popular encryption algorithms. The main difference between two algorithms is that same

keys are used for both encryption and decryption in Triple-DES while the public key

25

scheme uses two different keys, caned as a public key that is used for encryption and a

private key that is used for decryption.

A Message digest algorithm has much in common with techniques used in

encryption, but to a different end; verification that data have not been modified since the

signature was published - that is called as data integrity that pertains to protection of

information from alteration by unauthorized means.

One-Way Hash Function

A one-way hash function takes an arbitrary length plaintext as input and outputs a

relatively small fixed-length string called hash value. Assume F as a one-way hash

function and M as a data message to be protected. Then, we can obtain a hash value H of

the data message by applying the function on the data message. That is H = F (M).

Figure 9 illustrates one-way hash function.

r-------.,.------r-----------r-------r--...,
Message Message Last , Check

Message sumBlock 1 Block 2
L..---....,----'----r-_....l..- '--Part__......__-'

Initial Hash�
Buffer Value�

Figure 9. One-Way Hash Function [13]

Each unique message fed to a one-way has function produces a unique hash value

of the entire message, and it is virtually impossible to generate the original message from

the hash value - that is the reason why it is called a one-way hash function [12]. The

purpose of a one-way hash function is to provide the means for the receiver to detect

whether the message has been modi fied by unauthorized users [11].

26

There are some basic requirements for one-way hash functions [13]. First, the

one-way hash function can be applied to an arbitrary length of data message. Second, the

hash value from the one-way hash function has a fixed size. Next, it is impossible to find

the data message from the hash value. Finally, it is very hard to find a data block called

collision that has the same hash value with the data message.

Message Digest Algorithms

M02, MD4 and MD5 are message digest algorithms developed by Ronald L.

Rivest [14]. All message digest algorithms take a data message of arbitrary length as

input and produce a 128-bit message digest ofthe data message, but M02 was designed

for 8-bit machines while MD4 and MD5 were optimized for 32-bit machines [14].

M02 that was developed in 1989 is designed for use with Privacy Enhanced Mail

(PEM). The data message is first padded so its length in bytes is divisible by 16., then a

16-bit checksum is appended. The message digest is computed on the resulting message.

However, Rogier and Chauvaud found that a collision for MD2 could be constructed if

the calculation of the checksum is omitted [14].

M04 that was developed in 1990 also requires padding, but to a multiple of 512

bits. The padding always includes a 64-bit value that indicates the length of the

unpadded message, and this adds a significant measure of security over M02 because if it

is difficult to produce two messages that have the same 128-bit message digest, it is all

the more difficult to do it with two messages that have the same length [15]. However,

Dobbertin showed how a collision for M04 could be found in under a minute on a typical

PC, so MD4 now might be considered broken [14].

MD5 that is an extension of the MD4 was developed in 1991 for use with digital

27

signature applications where a large message has to be compressed securely before being

signed with the private key [16]. The algorithm consists of four distinct round.s while

MD4 consists of three distinct rounds, so it is more secure than MD4 while it is slightly

slower. Van Oorschot and Wiener estimate a collision search machi.ne designed

specifically for MD5 with brute-force search could find a collision for MD5 in 24 days

on average [14].

Secure Hash Algorithm

Secure Hash Algorithm (SHA) developed by the U.S. National Institute of

Standards and Technology (NIST) in 1994. SHA produces a 160-bit hash value, and its

design is very similar to MD4. The algorithm is slightly slower than MD5, but the larger

hash value increases its protection ability [17].

28�

3. SECURE OBJECT SHARING�

Beyond minimum-security protections enforced by the on-card installer and the

Java Card Runtime Environment in the Java Card platform, Java Card technology does

not standardize applets installation policy [3]. For this reason, enhancement in on-card

verification of downloaded applets is still under consideration. In this thesis, the on-card

installer with a one-way hash function is proposed to support on-card verification of

downloaded applets that cooperates with other applets from different service providers on

a single card. We first go through the applet installation process and address the

possibility of illegal installation ofa malicious applet in section 3.1. In section 3.2, we

show how multiple applets from different providers can cooperate on a single card and

point out the need for improvement in on-card verification of applets when they

cooperate. Then, our proposed installer and secure object sharing are detailed in section

3.3.

3.1 Apple. Installation

In Java Card technology, applets can be either downloaded anytime onto the cards

after the card has been issued or burned into ROM together with the JCRE during the

process of card manufacturing. In this thesis, however, applet installation process refers

to the process ofloading applet classes via a Card Acceptance Device (CAD) onto a Java

Card and creating an applet instances to bring the applet into a selectable and executable

state.

Applet installation process consists of conversion, verification and a CAP .file

installation on the card. During conversion process, the convener takes a package as

input, and outputs a CAP file that contains an executable binary representation of the

29�

~'----

classes in the package. After conversion, the verifier perfonns static checks on the CAP

file before it is loaded onto a Java Card. For a CAP file installation process, Java Card

installer cooperates with an off-card installation program, and together, they load a CAP

file via a CAD onto a card and create one or more applets instances in the card's

persistent memory such as EEPROM. Applet installation process is illustrated in Figure

10.

Class fl1es�

Off-card VM�[{]
converter

[{]
I~E~ort files

Installer
Card0 0

AcceptanceCAP file Export file
Device

I.• Interpreter I
~

On-cardVM•Off-card�
Installation�
Program�

Figure 10. Applet Installation Process

The applet installation process is transactional, so if an error or power loss occurs

during applet installation, the installer discards the CAP file and any applet instances

created during installation, and recovers the space and the previous state of the JCRE [3].

Converter

Although a trustworthy compiler can ensure that Java source code does not violate

safety rules, class files could come from a network that is unsecured [3]. The converter is

30�

the front end of the off-card virtual machine, and it takes as input all of Java class files

for a package and converts them to a CAP file that is the loading and installable unit on

the Java Card platform and -consists of classes that make up a Java package. It also takes

one or more export files that can be thought of as the header files in the C programming

language as input, and generates an export file for the converted package. During

conversion, the converter performs tasks that a Java virtual machine in a desktop

environment would perfonn at class-loading time such as checking for Java Card

language subset violations, perfonning static variables initialization, optimizing

bytecode, allocating storage and creating virtual machine data structures to represent

classes [3].

Verifier

The correctness and integrity of a CAP file cannot be taken for granted even

though a CAP file generated by a trustworthy converter will immediately be loaded onto

Java Card in a secure environment [3]. The verifier that runs off card due to the limited

memory space and computing power of a smart card verifies a CAP file before it is

loaded onto a Java Card. That is, the verifier provides a means to assert that a CAP file

conforms to the Java Card specification, providing additional assurance that the

executable code in a CAP files will not compromise the integrity of JCVM [18].

Off-Card Installation Program and Installer

Applet installation on Java Card is completed through the cooperation of an off­

card installation program and the on-card installer. The off-card installer program

transmits the executable binary in the CAP file to the installer running on the card with a

sequence of APDU commands by way ofcard acceptance device (CAD). When the CAP

31�

file is read in, the installer first checks to see whether the card can support the CAP file

by checking such as availability of the card's memory resource [3]. Then, the installer

writes the CAP file content into the card's persistent memory such as EEPROM and links

it with other classes that already reside on the card.

In the last step during installation, the installer creates instances of applets in

EEPROM by calling the applets' install methods, and when instances of the applets are

created, a context is assigned to the instances of the applets. Recall that a context is

essentially a group context, so instances of multiple applets defined in the same package

share one context. Also, the installer registers the applets' AIDs with the JCRE by

calling their register methods. Notice that each applet within a Java Card is associated

with unique AID, so ifthe same AID has been previously successfully registered on the

JCRE, an error occurs and the installer discards the CAP file and destroys any applet

instances created during installation [19].

On successful return from the install and register methods, applet installation

process is completed, and the applets are now ready to be selected and to process the

upcoming APDU commands.

Illegal Installation

Applet installation security consists of two levels: standard security protections

enforced by the converter, verifier and the JCRE, and security policies dictated by the

issuers [3]. This means that beyond the minimum-security protections such as Java Card

language subset violation enforced by the converter and insufficient card's memory and

illegal AID usage enforced by the JCRE, Java Card technology does not standardize the

installation policy, so the issuers have the flexibility to define security policies.

32

The simplest scheme of protection is to authenticate an off-card installation

program by using PIN - thus prov'ding a measure of trust to the CAP file provider and

the content of the CAP file [3]1. A more powerful scheme can use digital signature and

data encryption [3]. For example, any Java Card file such as class file, export file or CAP

file can be encrypted and digitally signed to ensure integrity and to provide the identify of

its provider during transportation between development and on-card installation, To

build such strengthened security scheme, a card issuer needs to define security polices

using key management and cryptographic mechanisms.

However, the Java Card installer does not verify a CAP file [3]. This means the

correctness and integrity of a CAP file are verified off-card, and the installer on the Java

Card platfonn does not perform most of the traditional Java verifications at class-loading

time. Therefore, it is possible a malicious applet to be installed onto a card via illegal

applet installation process due to lack of a CAP file verification power in the Java Card

installer. For this reason, enhancement in on-card verification of downloaded applets is

still under consideration. Our proposed on-card installer with a one-way hash function

support on-card verification ofdownloaded applets that cooperates with other applets

supplied by different service providers on a single card. More detail about the proposed

installer will be given in section 3.3.

3.2 Object Sharing

In Java Card technology, multiple applets from different vendors can coexist in a

single card, and the applet firewall enables that each applet that may store highly

sensitive information can be protected from otber applets. An applet is prevented from

reaching the contents of objects owned by other applets residing on a different context by

33�

the firewall.

In real card world, however, applets from different service providers often need to

execute cooperatively. For example, consider cooperation between an airline loyalty

applet and an electronic purse applet - when buying a flight ticket with the electronic

purse, add miles to the airline loyalty program. In this case, shared infomlation from the

airline loyalty applet and the electronic purse may be received by the airline loyalty

applet and the electronic purse applet. To support cooperation between applications from

different application providers on a single card, Java Card technology provides well­

defined and secure shareable interface mechanism.

Shareable Interface Mechanism

Shareable interface mechanism is a feature in the Java Card API to enable object

sharing between applets [9]. An object instance of a class implementing one or more

shareable interfaces is called a Shareable Interface Object (SIO), and these interface

methods can be invoked from one context even if the SIO is owned by an applet in

another context.

To cooperate with other applets provided by different vendors, the behavior ofa

SID of an applet, such as name of methods defmed in the SID, needed parameters type

and expected results, should be available for other application providers. However, the

class type of SIO is not exposed to other application providers even though the behavior

of an SIO is available for other application providers. During sharing process, only

methods defined in a server SIO are presented to client applets in another context, and all

other members and methods of the server SIO are protected by the firewall. Therefore,

with shareable interface mechanism, an applet can execute cooperatively with other

34�

applets from different application providers without worrying about exposition of their

sensitive data.

The object sharing process can be described as a client-server relationship as

below [3]. Let's consider cooperation between an airline loyalty applet (server applet)

and an electronic purse applet (client applet) supplied by different service providers. The

wallet applet stores electronic cash, and the money can be spent to purchase goods.

Similar to the wallet applet, the airline loyalty applet stores values - the miles the card

holder has traveled. Under a co-marketing deal between two service providers, for every

dollar spent using the wallet applet, one air mile is credited to the airline loyalty applet.

Suppose that the electronic purse applet now requests air miles to the airline loyalty

applet after its debit transaction for purchasing goods. Following are the steps during

cooperation between two applets residing on different contexts, and Figure 11 illustrates

the object sharing process.

getApplet~eab1	 getShareableInterG
ceOb,j ect (AIDelrterGce Obj ect

(AID servo-_aid. c1ierll._aid. byte
byte paIameter) ~	 parcuneto-)

eli ent Appl et
(El ectroni c Purse)

Server Appl et
(Airline loyalty) JCSystern getPrevi.

Server' sAID CHents' AIDs
ousContextAID ()

and parcuneters and parameto-s

Figure 11. Object Sharing Process

In step 1, to get the airline loyalty applet's SIO, the electronic purse applet that

35

resides on a different context calls the method

JCSystem.getAppletShareahleInterfaceObject with the airline loyalty applet's AID and a

parameter. In here, the sever applefs AID and the parameter are programmed into the

client applet code before the client applet is installed on the card. The parameter can be

used later as a security token, which carries a secret shared by the server and the client.

Also, recall from section 2.2 that there is only one active context at any time within the

JCVM - either an applet's group context or the JCRE context, and context switches occur

during invocation of and return from certain methods of an object owned by a different

context. Therefore, when the electronic purse applet invokes the method

JCSystem.getAppletShareablelnterfaceObject that belongs to the JCRE, a context switch

occurs from the context on which the electronic purse applet resides to the JeRE context.

In step 2, the JCRE identifies the electronic purse applet and the airline loyalty

applet with their AIDs that were registered on the JCRE when the applets were installed

onto the card. After the JCRE ensures that the airline loyalty applet is already residing on

the card, the JCRE invokes the airline loyalty applet's getShareableInterfaceObject

method. In the server's getShareableInterfaceObject method, the JCRE replaces tbe first

argument with the electronic purse applet's AID and passes along the same parameter

supplied by the electronic purse applet. Now, the airline loyalty applet's group context is

a currently active context.

In step 3, with the electronic purse applet's AID and the parameter, the airline

loyalty applet determines validation of the chent applet. In here, the client applet's AID

and the parameter are programmed into the server applet code before the server applet is

installed on the card. If the airline loyalty applet agrees to share its SIO with the

36�

electronic purse applet, then the airline loyalty applet returns its SIO to the JCRE, and a

context switch occurs.

In step 4, the JCRE returns the server's SIO to the electronic purse applet, and at

the end of the step 4, the electronic purse applet's group context is restored as a current

active context.

In step 5, once the electronic purse applet gets the SIO from the airline loyalty

applet, the client applet requests air miles to the server applet by invoking a service

method of the airline loyalty SIO. During the method invocation, a context switch is

occurs, and the airline loyalty applet becomes the currently active context.

In step 6, When the service method is invoked from the electronic purse applet,

the airline loyalty applet should verify the client again because the electronic purse applet

that originally requests the SIO could break the contract and share the SIO with a third

party without getting the proper permission [3J. To find out the AID of the actual caller,

the airline loyalty applet invokes the JCSystem.getPreviousContextAID method. After

performing the service for the electronic purse applet, the electronic purse applet's group

context is restored as a current active context.

Notice here that, for a higher degree security, the server applet developer must

define some cryptographic exchange algorithms to verify its clients when the client applet

requests service to the applet by invoking one of shareable interface methods [3].

Client Applet Verification

Recall that, to cooperate with other applets from different vendors, the behavior of

a shareable interface obj.ect (SIO) and the secret parameter of an applet should be

available for other application providers. The application providers are now asked not to

37�

share the infonnation with unauthorized means. However, there is no guarantee that the

application providers will not make them available worldwide. Once they are revealed, a

malicious applet if installed with an illegal installation process can get a SIO from a

server applet. At this point, there is no way for a server applet to reject the malicious

client applet that impersonates with a valid AID and parameter. The server applet will

agree to share its SIO with the malicious because the server applet determines validation

of the client applet only by the client's AID and parameter.

In addition, as previously mentioned, after a server applet agrees to share its SIO

with a client applet, there may exist some cryptographic exchange algorithms between

the server applet and the client applet to determine validation of the client applet.

However, the most frequently anticipated security concerns have been developer

mistakes and design oversights. Therefore, enhancement in on-card verification of a

client applet before a server applet agrees to share its SIO is needed. Our proposed on­

card installer with a one-way hash function helps a server applet to determine more surely

whether the client applet is a valid or not before the server applet agrees to share its SIO

with the client applet. More detail about the proposed installer will be given in the next

section.

3.3 Enhanced Applet Verification

Recall from the section 3.1 that, in Java Card technology, the correctness and

integrity of a CAP .file are verified off-card and the on-card installer does not verify a

CAP file at class loading time. Therefore, installation of a rnabcious applet onto a card

may be possible by way of an illegal applet installation process.

Recall from section 3.2 that, to cooperate with other applets provided by different

38�

service providers, the behavior of a shareable interface object (SIO) of an applet should

be available for other application providers who are asked not to reveal the shared

information such as the behavior of SIO, a secrete parameter and existing cryptographic

exchange algorithms between a server applet and a client applet. Therefore, it is possible

that the infonnation may be shared with unauthorized means. Once the malicious applet

is installed onto a card via an illegal applet instaUation process, it can get a SIO from a

server applet.

Moreover, if a cryptographic exchange algorithm that may exists between a server

applet and a client applet can be revealed or broken, then the malicious applet can be

allowed to access sensitive data and service of the server applet by invoking one of server

SIO. Therefore, enhancement in on-card verification ofdownloaded applets that

cooperates with other applets from different vendors is required urgently.

Our approach using the on-card installer with a one-way hash function enhances

on-card verification of downloaded applets that cooperates with other applets supplied by

different vendors on a single card. In our novel approach, a malicious applet if installed

with an illegal installation process cannot access the SIO of a server applet. Any client

whose hash value is not stored in the server code will not be granted access.

Installer with a One-Way Hash Function

In this thesis, the installer with a one-way hash function is proposed to support

on-card verification ofdownloaded applets that cooperates with other applets supplied by

different application providers on a single card. While the installer in the Java Card

platform registers only an applet's AID on the JCRE, the proposed installer registers not

only an applet's AID, but also an applet's hash value that is computed by the proposed

39�

installer during the applet installation process.

Recall that, during the applet installation process, when a CAP file is read in, the

installer writes the CAP file content into EEPROM, and in the last step of the installation,

the installer invokes JCRE entry point methods to registers an applet's AID with the

JCRE. However, with the proposed installer, while a CAP file is read in, the proposed

installer computes a hash value of the CAP file contents before it write them into

EEPROM. Also, in the last step of the installation, the proposed installer registers with

the JeRE not only an applet's AID but also the CAP file's hash value computed by the

proposed installer during the CAP file is read in.

RecaU from section 2.2 that a CAP file contains not only a set of components that

describe a Java package but also a manifest file that provides additional human-readable

information such as the creation time of the CAP file and the version of the converter.

For this reason, each CAP file in itself does not have an identical hash value even though

each CAP files is created from the same Java package. However, a hash value of a set of

components in each CAP file is identical if each CAP file is created from the same Java

package. Therefore, when a CAP file is loaded onto a card, our proposed installer

generates a hash value of a set of components in the CAP file. Hence, in this thesis, a

hash value of the CAP file means a hash value ofa set of components in the CAP file.

Once an AID of an applet and a hash value of a CAP file are registered in the

JCRE object, applets provided by different vendors can now share their data and service

in a more secure manner. With our proposed installer, even though it is still possible a

malicious applet to be installed onto a card via illegal applet installation process, it is

extremely hard to get a service from a server applet because developing a malicious

40�

applet that can request service to other applets and also has the same hash value is almost

impossible.

Notice here that it is safe to assume that the installer is trustworthy as the installer

is programmed by the card manufacturer. The installer is burned into a card with on-card

potion of the JCVM, JCRE system classes and Java Card framework. To the JCRE, the

installer appears to be an applet, so at card initialization time, the installer registers its

AID with the JCRE. Later, when the installer registers an applet's AID with the JCRE,

the installer needs to invoke JCRE entry point methods, and the JeRE identifies the

installer applet by its AID. Therefore, installing a malicious installer with the valid AID

onto a card is impossible because the same AiD cannot be registered on the JCRE.

For the one-way hash function used in the proposed installer, MD5 or other hash

algorithms, which are secure and optimize card resource usage can be chosen. Figure 12

illustrates the applet installation process with the proposed installer.

Host�

ICAP}�file i..
Off-card Installation�

Program�

i~ I

I

'\ I'

<8
.:\

JeRE ObjectInc;taller
(with One- r,.
Way Hash Ire~~;)

AID
Hash Value function)

I

JCHE--! EEPROMI '\.

Java Card

Figure 12. Installer with a One-Way Hash Function

41

Notice here that our approach assumes that servers are provided the hash values

of the client who are likely to request their services. When server applets are being

developed by the application developers, the hash values of client applets that may use

their services are programmed into the server code before the server applet is installed on

the card. Any client whose hash value is not stored in the server code will not be granted

access.

Secure Object Sharing Process

Because the proposed installer registers not only an applet's AID, but also an

applet's hash value, the object sharing process of two applets that reside on different

contexts is now different as below, and Figure 13 illustrates our secure object sharing

process.

JeRE]

get.Appl eLS'hareabl getShareableInterfa
elmerfaceObj ect SIO ceObject(AID
(ArD server_aid, client_aid, byte
byte parameLer) parameter. MD

hash_valm)

met1lod
invoke

eli ent Applet ~---+----- Server Appl et

method
return Clients' ArDs, JCSystem getPrevi

Server's AID
parameters and ousCon1.extAID ()and pammeLer
Hash Values

Figure 13. Secure Object Sharing Process

The step 1 is identical with the step I in the existing object sharing process

illustrated in section 3.2.

42

In step 2, the JCRE invokes the server applet's getShareablelnterfaceObject with

the client applet's AID, the parameter and a hash value that is computed by the installer.

Our proposed installer registers with the JCRE not only an applet's AID but also the CAP

file's hash value computed by the proposed installer when the CAP file is read in.

In step 3, the server applet detennines validation of the client applet with the

client applet's AID, the parameter, and the hash value. At this point, the server applet

now can detennine validation of the client applet in more secure manner because it is

near impossible for the malicious to have the same hash value as the CAP file containing

the valid client applet's classes has. This is also true even if the hash value of the CAP

file were revealed. If the server applet agrees to share its SIO with the client applet, then

the server applet returns its SIO to the JCRE. In our approach, the hash values of client

applets are programmed into the server applet's code before the server applet is installed

on the card. Therefore, any client whose hash value is not stored in the server code will

not be granted access.

The steps 4, 5 and 6 are identical with the steps 4, 5 and 6 in the existing object

sharing process illustrated in section 3.2.

Recall that the hash values of client applets should be saved in a server applet

before the server applet is installed on the card. If the application code were burned into

the card at manufacture time such a scheme would be a major drawback. However, in the

Java Card platfonn, both client applets and server applets can be downloaded at any time.

In the case of a new valid client whose has value has not been programmed into the

server, the up-to-date version of the server can be downloaded very easily. As the Java

43�

Card platform has ability to dynamically respond to a card issuer's changing needs, such

problems could be solved very easily.

Therefore, our approach that provides enhanced on-card verification of

downloaded applets is practical, and with our approach, an applet can verify other applets

supplied by different vendors in a more secure manner along with cryptographic

exchange algorithms that may exist between applets.

44�

4. SECURE OBJECT SHARING SIMULATION�

To demonstrate the enhanced on-card verification ofdownloaded applets by using

the proposed installer, we simulate the object sharing process between a server applet and

a client applet. We simulate the object sharing process not only with our proposed

approach that uses hashing for the verification ofclient applets but also with the existing

approach that does not use Hashing. Our objective is to demonstrate that our approach

does indeed enhance security.

In this chapter, we first introduce the Java Card 2.2 development kit in section

4.1. Next, in section 4.2, the object sharing process simulation with the existing approach

shows that a malicious applet if installed with an illegal installation process can get a SIO

from a server applet. Then, in section 4.3, we simulate the object sharing process with

our approach that use hashing to demonstrate enhanced on-card verification of a client

applet.

4.1 Java Card 2.2 Development Kit

The Java Card 2.2 development kit provided by SUN Microsystems is a collection

of tools for designing Java Card technology-based implementations and for developing

applets based on the Java Card 2.2 framework [19]. Some tools, which are used for our

simulation, in the Java Card 2.2 development kit are described below.

Recall from section 3.1 that the applet installation process consists ofconversion,

verification and a CAP file installation on the card. For the conversion process, the

converter tool is used, and it converts class files that make up a Java package to a CAP

file. Also, the converter tool takes as input one or more export files and produce another

45�

export file. The verifycap tool is used for the verification process, and it confinns

whether a CAP file is internally consistent. For the CAP file installation process, the

scriptgen tool and the apdutool tool are used. The scriptgen tool converts a CAP file into

a script file that contains a sequence of APDUs in ASC IT fonnant. Then, the apdutool

tool reads a script file containing APDUs and send them to a Java Card. Therefore, both

tool works together as off-card installer in Java Card technology. Figure 14 illustrates the

usage of tools that is in the Java Card 2.2 development kit.

Class files�

Terminal�

converter�
to01.�

Export files I~

DO
CAP file Export file

•
verifiycap�

tool�

Iscriptgen tool I
Java Card

...
apdu script

+
apdutool tool

apdu exchange

Figure 14. The Usage of Tools in the Java Card 2.2 Development Kit

The C-Ianguage Java Card Runtime Environment (C-JCRE) in the Java Card 2.2

Development Kit is a simulator that presents a real Java Card in a card acceptance device

46�

(CAD). It has ability to simulate persistent memory such as EEPROM, and to save and

restore the contents of EEPROM to and from the disk file. Also, the on-card installer,

interpreter, and Java Card framework are already masked into the C-JCRE, so applets

developed by a user can be installed and executed in the C-JCRE. The C-JCRE is

supplied as pre-built executable, cref.exe for Windows [19J.

4.2 Object Sharing Process Simulation with the Existing Approach

For the object sharing process simulation with the existing approach, let's

consider cooperation between an AirMile applet (server applet) and an EPurse applet

(cllent applet) supplied by different service providers as described in section 3.2. The

AirMile applet stores values - the miles the card holder has traveled. Similar to the

AirMile applet, the EPurse applet stores electronic cash, and the money can be spent to

purchase goods. Assume that under a co-marketing deal with between two service

providers, for every dollar spent using the EPurse applet, one air mile is credited to the

AirMile applet.

Shared Information

Recall from section 3.2 that to cooperate with other applets from different

vendors, certain information, such as the behavior of a shareable interface object (SIO)

and the secrete parameter, should be available for other application providers. The

shared information between two applets is below. (Notice that Ox stands for hex.)

? The AID of the AirMile applet: OxO OxO OxO OxO OxB OxO OxO Oxl

? The AID of the EPurse applet: OxO OxO OxO OxO oxe OxO OxO Ox 1

? The secrete parameter: OxAF

? The behavior of a SIO: void bonusMile (short mileage)

47

- AirMile applet grants mileages on request from the EPurse applet.

? The airmileloyalty package that contains classes of AirMile and AirMileInterface.

? The export file of the airmileloyalty package.

The source codes of the AirMile applet and EPurse applet are in Appendix.

Illegal SIO Access

The EPurse application provider is asked not to share the information with

unauthorized means. However, there is no guarantee that the provider will not share the

information with unauthorized means. Once the shared information is revealed, a

malicious applet (client applet) that can get a SIO from the AirMile applet (server applet)

can be developed.

For simulating a malicious applet, we add a class variable, which does not affect

the compilation and functionality of the client applet, into the source code of the EPurse

applet as below.

public class EPurse extends Applet {

private byte for_malicious = (byte)OxO;

}

Recall from section 3.1 that the correctness and integrity of a CAP file are

verified off-card, and the installer on the Java Card platform does not perform most ofthe

traditional Java verifications at class-loading time. Therefore, it is possible a malicious

applet to be installed onto a card via illegal applet installation process due to lack of a

CAP file verification power in the Java Card instalIer.

The malicious applet if installed with an iUegal installation process can get a SIO

from the AirMile applet as shown in Figure 15 and 16. Notice that every value appeared

48�

in the result box in the host applications is hex format. The source codes of two host

applications are in Appendix.

A

B

Figure 15. Host Application for the AirMile with Existing Approach

c

o

Figure 16. Host Application for the EPurse with Existing Approach

The arrow A in Figure 15 indicates that the initial mileage ofthe AirMile applet

set as zero. Also, the arrow C in Figure 16 shows that the initial balance of the EPurse

49

applet set as one thousand.

After a debit transaction with sixteen dollars, the arrow D in Figure 16 indicates

that the balance in the EPurse applet has been changed. Also, the arrow B in Figure 15

shows that the debit transaction causes to add sixteen mileages in the AirMile applet.

This means the malicious client applet have gotten a SIO from the server, and invoke the

bonusMile method in the SIO successfully.

As shown in the above simulation, when the malicious applet asks to share a SIO

of the AirMile applet, there is no way for the AirMile applet to reject the malicious client

applet that impersonates with a valid AID and parameter. Because the AirMile applet

determines validation of the client applet only by the client's AID and parameter, the

server applet agrees to share its SIO with the malicious applet.

4.3 Object Sbarin2 Process Simulation with Our Approach

For simulating the object sharing process with our approach, we will consider the

same situation environment, wruch is specified between the AirMile applet and the

EPurse applet.

Proposed On-Card Installer

To simulate the object sharing process with our approach that use hashing for the

verification ofclient applets, an applet called HashInstaller should be installed onto a

Java Card before other applets are installed. The Hashlnstaller generates a hash value of

a CAP file when the CAP fi Ie is read in and registers the hash value in its instance.

Therefore, the Hasblnstaller applet and the existing Java Card installer residing on the

Java Card platform together perform as the proposed on-card installer. The source code

ofthe HashInstaller applet is in Appendix A.

50

The MD5 algorithm is implemented in the Hashlstaller applet to generate a hash

value of a CAP file. The reason for choosing MD5 algorithm is that it is not only one of

the most robust one-way hash functions, but also as it does not require any large

substitution tables, it can optimizes card resource usage [16].

Hash Value of the Client Applet

Recall from section 3.3 that, in our secure object sharing scheme, a hash value of

a client applet needs to programmed into a server applet's code before the server applet is

installed. For this, a card issuer - or the AirMile applet provider ifit issues the card­

provides a hash value generator to the BPurse applet provider. Notice here that a hash

value generated from the given hash value generator should be the same hash value that

the proposed on-card installer generate when the CAP file is read in.

After the client applet provider developed the BPurse applet along with the shared

infonnation, it generates a hash value of the CAP file that contains the BPurse applet

classes by using the given hash value generator. Figure 17 is a screen shot of the hash

value generator that generated the hash value of EPurse applet.

Figure 17. Hash Value Generator with the Hash Value of BPurse Applet

Now, the hash value of the CAP file that contains the BPurse applet classes need

51

to be programmed into the AirMile applet's code as below before the server applet is

installed.

public class AirMile extends Applet implements AirMileInterface {

private byte[] md_epurse = {
(byte)OxAO, (byte)Ox44, (byte)Ox60, (byte)Ox6A, (byte)Ox78,
(byte)Ox6D, (byte)OxE2, (byte)Ox76, (byte)Ox74, (byte)Ox64,
(byte)Ox7B, (byte)Ox22, (byte)Ox05, (byte)Ox7E, (byte)Ox21
(byte)Ox35 };

}

The source codes of the hash value generator is in Appendix.

Applet Installation

Recall from section 3.1 that applet installation on Java Card is completed through

the cooperation of an off-card installation program and the on-card installer. The off-card

installer program transmits a CAP file to the installer running on the card via a card

acceptance device (CAD). To support our simulation, however, we provide our own off-

card installation program that transmits a CAP file not only to the Java Card installer but

also to the Hashlnstaller installed onto a card before other applets are installed.

Notice that, in real implementation of our proposal scheme, an off-card

installation program will transmit a CAP file only once to the proposed on-card installer,

and the proposed on-card installer computes a hash value ofthe CAP file contents before

writing it into EEPROM while a CAP file is read in.

Figure 18 is a screen shot of the application that is for simulating the applet

installation process in a tenninal. This application contains our off-card installation

program, and the source code of the application is in Appendix.

52�

Figure 18. Tenninal Application

When a user clicks the Transmit button, our off-card installation program

transmits a CAP file to the Java Card installer, and it also transmits the CAP file to the

Hashlnstaller to generate a hash value of the CAP file. Therefore, in the last step ofthe

applet installation process, the Java Card installer registers an applet's AID with the

JCRE, and the HashInstaller registers an applet's AID and a hash value of the CAP file in

its own instance.

Enhanced Client Applet Verification

Figure 19 illustrates the steps in the simulation during the object sharing process

between the AirMile applet and the EPurse applet. Here we use hashing to demonstrate

enhanced on-card verification of a client applet.

53�

JCRE HashInsta11er

IApplets' AID IAIDs IHash Values

AirMile appl et's E.Purse applet' s�
AID and AID, parcuneter�
parameter (0xAF) (OxAF), and�

hash value

EPurse Applet Air:Mile Appl et

Figure 19. Secure Object Sharing Simulation

The steps 1 and 2 are identical with the steps 1 and 2 in the existing object sharing

process illustrated in section 3.2.

In step 3, The AirMile applet verifies the client applet with the electronic purse

applet's AID and the secret parameter that were programmed into the AirMile applet

code before the server applet was installed. If the client applet is valid then the AirMile

applet passes the EPurse applet's AID and hash value that was also programmed into the

server applet code to the HashInstaller.

In step 4, The HashInstaller compares the hash value that is from the AirMile

applet with the hash value computed when the CAP file was read in. If they are identical,

the Hashlnstaller returns true to the AirMile applet. Otherwise, it returns false to the

AirMile applet. Once the AirMile gets a response from the Hashlnstaller, the sever applet

now can determine the validation of the client applet.

The steps from 5 to 8 are identical with the steps from 3 to 6 in the existing object

sharing process illustrated in section 3.2.

To compare our proposed approach with the existing approach, we used the same

54

malicious applet used in the previous section. As shown in the previous section with the

existing approach, the malicious applet if installed with an illegal installation process can

get a SIO from the AirMile applet. However, with our approach that uses hashing for the

verification ofclient applets, the malicious applet cmmot get a SIO from the AirMile

applet even though it is still possible for a malicious applet to be installed onto a card via

an illegal applet installation process as shown in Figures 20 and 21.

A�

B�

Figure 20. Host Application for the AirMile with Our Approach

55�

c

D

E

Figure 21. Host Application for the EPurse with Our Approach

In Figure 20 and 21, the arrow A indicates that the initial mileage of the AirMile

applet set as zero, and the arrow C shows that the initial balance ofthe EPurse applet set

to one thousand.

The arrow D in Figure 21 indicates that during a debit transaction with sixteen

dollars, granting a SIO from the server applet has failed. Notice that the response APDU

can be either an Acknowledgement (called an ACK) or Negative Acknowledgement

(called a NAK). The value for an ACK frame SWlSW2 is 9000, and the value for a

NAK frame SWISW2 is 6XXX.

After the debit transaction with sixteen dollars, the arrow E in Figure 21 indicates

that the balance in the EPurse applet has been changed. However, the arrow B in Figure

20 shows that the mileage in the AirMile applet has not been changed. This means the

malicious client applet although installed with an illegal installation process applet failed

to get a SIO from the server.

56

As shown in the above simulation, with our proposed approach that uses hashing

for the verification of client applets, even though it is still possible for a malicious applet

to be installed onto a card via an illegal applet installation process, it is extremely hard to

get a service from a server applet because it is almost impossible for the malicious applet

to have the same hash value as the value of the valid client's applet classes contained in

the CAP file.

Update a Hash Value of the Client Applet

Recall that applets can be installed and deleted at any time in the Java Card

platform. Let's assume that the EPurse applet provider found some bugs later in the

EPurse applet, and the provider wants to distribute a new version of the EPurse applet to

its costumers. So, when card holders (the customers) insert a card into a CAD next time,

the provider deletes the existing EPurse applet from the card and installs the new version

ofthe EPurse applet onto the card. With our proposed on-card installer, when the new

version of the EPurse applet is installed, the new hash value of the EPurse applet is

registered with the JCRE.

Recall that, in our approach, the hash values of client applets should be saved in a

server applet for verification of client applets. If the application code were burned into

the chip at manufacture time as in the traditional smart card approach, this would be a

major drawback. However, because the Java Card platfonn has the ability to

dynamically respond to a card issuer's changing needs, such problems could be solved

very easily. Figure 22 shows that the hash value of the client applet in the AirMile applet

can be updated any time by the AirMile applet provider. The only constraint is that the

new client's hash value has been stored in the server's code previously.

57

Figure 22. Update the Hash Value of the EPurse Applet in the AirMile Applet

The simulation tools were made available on the web. The purpose was to allow

outsiders to attack our proposed security mechanism. At the time of writing, no-one had

succeeded in breaking our system.

58�

5. CONCLUSION

bJ Java Card technology the correctness and integrity of a CAP file are verified

off card, and the on-card installer does not verify a CAP file at class loading time.

Therefore, installation of a malicious applet onto a card may be possible by way of an

illegal applet installation process. AJso, to cooperate with other applets provided by

different service providers, certain information should be available for other application

providers who should not to reveal this infonnation. However, it is possible that the

information may be shared with unauthorized means. Therefore, a malicious applet if

installed with an illegal installation process can get a SIO from a server applet because

there is no way the server applet can reject the malicious client applet that impersonates

with a valid AID and parameter.

We proposed in this thesis an on-card installer with a one-way hash function to

support on-card verification ofdownload applets by using a hash value of a CAP file.

While the installer in the Java Card platfonn registers only an applet's AID on the JCRE,

our proposed installer registers not only an applet's AID but also an applet's hash vaJue

that is computed by the proposed installer during the applet installation process. Later,

the hash value is used to verify the client applet when it tries to gain a SIO from a server

applet.

With our approach, even though it is still possible for a malicious applet to be

installed onto a card via an illegal applet installation process, it is extremely hard to get a

SIO from a server applet because it is almost impossible for the malicious applet to have

the same hash value as the value ofthe valid client's applet classes contained in the CAP

file. We have validated our proposal by simulating a Java Card environment

59

development using the Java Card 2.2 Development Kit. This simulation tool contains

over 4000 lines of code.

60�

BIBLIOGRAPHY�

1.� Dreifus, Henry and Monk, Thomas. Smart Card: a guide to building and managing
smart card applications. New York: John Wiley & Sons, Inc., 1997.

2.� "Smart Card Overview." Online. Internet. Aug. 2002. Available:
http://java.sun.com/products/javacard/samrtcards.html.

3.� Chen, Zhiqun. Java Card Technology for Smart Cards: architecture and programmer's
guide. California: Sun Microsystems, Inc., 2000.

4.� "Smart Card Overview." Online. Internet. Aug. 2002. Available:
http://www.javacard.org.

5.� Rankl, Wolfgang and Effing, Wolfgang. Smart Card Handbook. England: John Wiley
& Sons Ltd., 1997.

6.� Donsez, D. Grimaud, G. and Lecomte, S. "Recoverable Persistent Memory for
SmartCard." Proceedings of the Third International Conference, CARDIS'98 (1998):
134-140.

7.� Hendry, Mike. Smart card security and applications. Boston: Artech House, 1997.

8.� "Java Card 2.2 Java Card Virtual Machine Specification." Online. Internet. Aug.
2002. Available: http://java.sun.com/products/javacard.

9.� "Java Card 2.2 Java Card Runtime Environment Specification." Online. Internet.
Aug. 2002. Available: http://java.sun.com/products/javacard.

1O. "What is OpenCard and the OpenCard Framework?" Online. Internet. Sep. 2002.
Avai labIe: http://www.opencard.org.

11. Ahuja, Vijay. Network & Internet Security. Michigan: AP Professional, 1996.

12. Hughes, Larry. Internet Security Techniques. Indiana: New Riders, 1995.

13. "What is a hash function?" Online. Internet. Nov. 2002. Available:
http://www.rsasecurity.com/rsalabs/faq/2-1-6.html.

14. "What are MD2, MD4, andMD5?" Online. Internet. Nov. 2002. Available:
http://www.rsasecurity.com/rsalabs/faq/3-6-6.html.

I5. Hughes, Larry. Actually Usefullnternet Security Techniques. Indiana: New Riders,
1995.

6]

16. "The MD5 Message-Digest Algorithm." MIT Laboratory. Apr. 1992.

17. "What are SHA and SHA-1?" Online. Internet. Nov. 2002. Available:
http://www.rsasecurity.com/rsalabs/fag/2-1-6.html.

18. "Java Card Platfonn Security." Online. Internet. Oct. 2002. Available:
http://java.sun.com/productsliavacard.

19. "Java Card 2.2 Application Programming Interface." Online. Internet. Aug. 2002.
Available: http://java.sun.com/products/javacard.

20. "Java Card 2.2 Development Kit User Guide." Online. Internet. Aug. 2000.
Available: http://iava.sun.com/products/javacard.

62�

APPENDIX�

AirMile.java

1**********··*······*····***···*·**·*·*************·****.**••*.****************
The class AirMile contains the miles the card holder has traveled. It implements the

verifyHashValue method in the HashInstallerinterface interface. When a client applet requests
a SIO, it asks a validation of the client applet to the HashInstaller. If the client applet is valid,
it shares its SIO with the client applet.
******************••••*.**••****.********************.****.**************.****/
package ainnileloyalty;

import javacard.framework.*;
import installersupport.HasbInstallerInterface;

public class AirMile extends Applet implements AirMileInterface {

II codes ofCLA byte in the command APDUs�
private final static byte AirMde_CLA = (byte)OxBO;�

1/ codes of INS byte in the command APDUs�
private final static byte DISPLAY = (byte)OxOI;�

II used with the HashInstaller�
private final static byte UPDATEMD = (byte)Ox02;�
private final static byte ADD = (byte)Ox03;�

II applet-specific status words�
II used with the HashInstalJer�
private final static short SW UNAUTHORJZED CLIENT = Ox6AOl;�
private final static short SW=FAILED_TO_GET=SERVER_SIO = Ox6A02;�
private final static short SW_FAILED_TO_VERIFY = Ox6A03;�
private final static short SW_INVALID_MD_LENGTH = Ox6A04;�

II AID of this applet instance�
private final byte[] own_aid = {OxOO, OxOO, OxOO, OxOO, OxOB, OxOO, Oxoo, OxOl};�
II AID of the server applet (HashlnstalIer) instance�
II used with the Hashlnstaller�
private final byte[J has~installeI_aid = {OxOO, OxOO, OxOO, OxOO, OxOA, OxOO, OxOO,. OxOI};�
II AID of the client applet (EPurse) instance�
private final byte[J 'epurse_aid = {OxOO, OxOO, Oxoo, Oxoo, OxOC, Oxoo, axoo, OxOI};�

1/ parameter between AirMile and Hashlnstaller�
private final byte password_hash = (byte)OxOA;�
II parameter between EPurse and AirMile�
private final byte password_epurse = (byte)OxAF;�

II the hash value of the client applet (EPurse)�
II used with the HashInstaller�
private byte[] md_cpurse;�

private short mileage;

private AirMile 0 {

63

md_epurse = new byte[16];

II hashvalue of the CAP file contains EPurse applet�
II used with the HasWnstaller�
md_epurse[O] = (byte)OxAO;�
md_epurse(l] = (byte)Ox44;�
md_epurse[2] = (byte)Ox60;�
md_epurse[3] = (byte)Ox6A;�
md_epurse[4] = (byte)Ox78;�
md_epurse[5] = (byte)Ox6D;�
md_epurse[6] = (byte)OxE2;�
md_epurse[7] = (byte)Ox76;�
md_epurse[8] = (byte)Ox74;�
md_epurse[9] = (byte)Ox64;�
md_epurse[10] = (byte)Ox7B;�
md_epurse[11] = (byte)Ox22;�
md_epurse[12] = (byte)Ox05;�
rod_epurse[13] = (byte)Ox7E;�
rod_epurse[l4] = (byte)0x21;�
md_epurse(l5] = (byte)0x35;�

mileage = (short)O;

_ II register the applet instance with the JCRE
register(oWll_aid, (short)O, (byte)(oWll_aid.length»;

} II eod of constructor

public static void install (byteO bArray, short bOffset, byte bLength) {

II create a AirMile applet instance�
new AirMileO;�

} II end of install method

public void process (APDU apdu) (

byte[] buffer = apdu.getBufferO;

II return if the APDU is the applet SELECT command�
if (selectingApplet())�

return;�

1/ verify the CLA bytes
if(buffer[IS07816.0FFSET_CLA] != AirMile_CLA)

ISOException.throwlt(IS07816.SW_CLA_NOT_SUPPORTED);

1/ check the INS byte to decide which service method to call�
switch (buffer[IS07816.0FFSET_INS]) (�

case DISPLAY: display(apdu);�
return;�

/I used with the HashInstaller�
case UPDATEMD: updateMD(apdu)'�

return;�
case ADD: addMile (apdu);�

return;�

64

default: ISOException.throwlt(IS07816.SW_INS_ OT_SUPPORTED);

} II end of process method

II used with the HashInstaller�
public Shareable getShareablelnterfaceObject (AID client_aid, byte parameter) {�

if(c1ient_aid.equals(epurse_aid, (short)O, (byte)(epurse_aid.length)) = false)�
return null;�

if (parameter ~= password_epurse)�
return nul1;�

II check the hash value of the client applet
II obtain the HashInstaller AID object
AID server_aid = JCSystemJookupAID(hash_instalier_aid, (short)O, (byte)(hash_installer_aid. length»;

II request the sio from the server�
HashInstallerInterfaee sio�

= (Hashlnstallerlnterface)(JCSystem.getAppletShareablelnterfaceObjeet�
(server_aid, password_hash»;�

byte aidl = 0, aid2 = 0, aid3 = 0, aid4 = 0, aidS = 0, aid6 = 0, aid7 = 0, aid8 = 0,
aid9 = 0, aidlO = 0, aidll = 0, aidl2 = 0, aid13 = 0, aidl4 = 0, aidlS = 0, aidl6 = 0;�

byte aid_length = (byte)epurse_aid.length;�
if (aid_length >= I) aidl = epurse_aid[O];�
if (aid_length >= 2) aid2 = epurse_aid[I];�
if (aid_length >= 3) aid3 = epurse_aid[2];�
if (aid_length >= 4) aid4 = epurse_aid[3];�
if (aid_length >= 5) aidS = epurse_aid[4];�
if (aid_length >= 6) aid6 = epurse_aid[S];�
if (aid_length >= 7) aid7 = epurse_aid[6];�
if (aid_length >= 8) aid8 = epurse_aid[7];�
if (aid_length >= 9} aid9 = epurse_aid[8];�
if(aidJength >= 10) aid 10 = epurse_aid[9];�
if (aid_length >= II) aidll =epurse_aid[10];�
if (aidJength >= 12) aid12 = epurse_aid[II];�
if (aid_length >= 13) aidl3 = epurse_aid[12];�
if (aid_length >= 14) aidl4 = epurse_aid[13];�
if (aid_length >= 15) aidl5 = epurse_aid[14];�
if (aid_length >= 16) aid16 = epurse_aid[IS];�

byte md I = 0, md2 = 0, md3 = 0, md4 = 0, md5 = 0, rnd6 = 0, md7 = 0, md8 = O.
md9 = 0, mdlO = 0, mdll = 0, mdl2 = 0, mdl3 = 0, mdl4 = 0, mdlS = 0, mdl6 = 0;�

mdl = md_epurse[O];�
md2 = md_epurse[l];�
mdJ = md_epurse[2];�
md4 = md_epurse[3];�
mdS = md_epurse[4];�
md6 = md_epurse[5];�
md7 = md_epurse[6];�
md8 = md_epurse[7];�
md9 = md_epurse[8];�
mdlO = md_epurse[9];�
mdll = md_epurse[10];�

65

mdl2 = md_epurse[ll);�
Oldl3 = md_epurse[l2];�
md 14 = Old_epurse[13);�
md15 = md_epurse[14];�
Old16 = Old_epurse[15];�

II verify the client applet with its hash value�
boolean result = sio.verifyHasbValue�

(aid_length, aidl, aid2, aid3, aid4, aid5, aid6, aid?, aid8, aid9, aidIO,
aid] I, aid12, aid13, aid14, aidI5, aidI6, md1, Old2, md3, Old4, md5, md6
Old?, Old8, Old9, mdIO, OldII, mdI2, Old13, mdI4, mdI5, md16);

if (result = false)
ISOException. throwIt(SW]AILED_TO_VERIFY);

retwn (this);

} II end of method getShareablelnterfaceObject

public void bonusMile (short bonus) {

II get the caIler's AID
AID client_aid = JCSystem.getPreviousContextAID(};

II check if the actual caller is the EPurse applet
if (client_aid.equals(epUfse_aid, (short)O, (byte)(epurse_aid.length» = false)

ISOException.throwIt(SW_UNAUTHORlZED_CLIENT);

mileage = (short)(mileage + bonus);

} II end of method bonusMile

private void display (APDU apdu) {

byte[] buffer = apdu.getBuffer(};�

II inform the JCRE that the applet has data to return�
apdu.setOutgoingO;�

II set the actual number of the outgoing data bytes
apdu.setOutgoingLength«byte)2);�

II wTite the balance into the APDU buffer at the offset °�
Uti1.setShort(buffer, (short)O, mileage);�

II send the 2-byte balance at the offset 0 in the apdu buffer�
apdu.sendBytes«short)O, (short)2);�

} II end of method balance

II used with the HashInstaller
private void updateMD (APDU apdu) {

byte[] apdu_buffer = apdu.getBufferO;�

II set the JCRE into the dataJeceiving mode�

66

apdu.setIncomingAndReceiveO;

II the length ofa message block is from 1 to 64 bytes�
short md_length = (short)(apdu_buffer[lS07816.0FFSET_LC] & OxOOFF);�

if(md_length != 16)�
ISOException.throwIt(SW_INVALID_MD_LENGTH);�

II copy a message that is contained from index 5�
Util.arrayCopy{apdu~buffer, (short)(lS07816.0FFSET_CDATA & OxOOFF),�

md_epurse, (short)O, md_length);�

} II end of method update�

private void addMile (APDU apdu) {�

byte[] apdu_buffer = apdu.getBuffer();

II set the JCRE into the data_receiving mode�
apdu.setlncomingAndReceive();�

short mile = (short)(apdu_buffer[IS07816.0FFSET_CDATA] & OxOOFF);�

mileage = (short)(mileage + mile);�

} II end of method addMile

} II end of class AirMile

AirMileIn terface.java

I··· .
The interface AirMilelnterface contains the method bonusMile that is an abstract method

used for grant a mileage.
.....................................•................·······················1�
package airmileloyalty;

import javacard.framework.Shareable;

public interface AirMilelnterface extends Shareable {

public void bonusMjle (short mileage);

EPurse.java

1·····**·*····*···*······························*···· **.*••••
The class EPurse contains electronic cash used for buy goods. It has an ability to get a SIO

and invoke the bonusMile method from the AirMile applet.
••••*.*.*•••••*••*•••**•••••*•••••••••*•••*•••••••••••··············**········1
package electronicpurse;

67

import javacard.framework.*;
import airmiJeloyalty.AirMilelnterface;

public class EPurse extends Applet {

II codes ofCLA byte in the conunand APDUs�
private final static byte EPurse_CLA = (byte)OxBO;�

II codes of INS byte in the command APDUs�
private [mal static byte PAY = (byte)OxOl;�
private final static byte BALANCE = (byte)Ox02;�

II Applet-specific status words�
private final static short SW_INVALID_AMOUNT = Ox6AOl;�
private final static short SW_NEGATIVE_BALANCE = Ox6A02;�
private [mal static short SW_SERVER_NOT_EXIST = Ox6A03;�
private final static short SW]AILED_TO_GET_SERVER_SIO = Ox6A04;�

II AID of this, applet instance�
private final byte[] own_aid = {OxOO, OxOO, Oxoo, Oxoo, OxOC, OxOO, Oxoo, OxOl};�
II AID of the server applet(AirMile applet) instance�
private final byte[] airmile_aid = {OxOO, Oxoo, OxOO, OxOO, OxOB, Oxoo, OxOO, OxOl};�

II parameter between EPurse and AirMile�
private final byte password = (byte)OxAF;�
II maximum transaction amount�
private final byte maxyayment = (byte) I00;�

private short money;

private EPurse 0 {

money = (short)IOOO;

II register the applet instance with the JCRE�
register(oWD_aid, (short)O, (byte)(oWD_aid.length);�

} II end of constructor

public static void install (byte[] bArray, short bOffset, byte bLength) {

II create a EPurse applet instance�
new EPurse 0;�

} II end of install method

public void process (APDU apdu) {

byte[] buffer = apdu.getBufferO;

II return if the APDU is the applet SELECT command�
if (selectingApplet(»�

return;�

II verify the CLA bytes�
if(buffer[IS07816.0FFSET_CLA] != EPurse_CLA)�

68

ISOException.throwIt(IS07816. W_CLA_ OT_SUPPORTED);

II check the INS byte to decide which setvice method to call�
switch (buffer[IS07816.0FFSET_ INSJ) {�

case PAY: payment(apdu);�
return;�

case BALANCE: balance(apdu)~

rettlm;�
default: ISOException.throwIt(lS07816.SW_INS_ OT_SUPPORTED);�

}

} II end of process method

private void payment (APDU apdu)

byte[] buffer = apdu.getBufferO;

1/ get the number of bytes in the data field of the command APDU�
byte numBytes = (byte)(buffer[IS07816.0FFSET_LC));�

if(numBytes != 1)�
ISOException.throwIt(IS07816. SW_WRONG_LENGTH);

/I receive data�
apdu.setlncomingAndReceiveO;�

1/ get the payment amount�
byte amount = buffer[IS07816.0FFSET_CDATA];�

if «amount> max--.payment) II (amount < 0»�
ISOException. throwIt{SW_[NVALID_AMOUNT);�

if «short)(money - amount) < (short)O)�
ISOException.throwIt(SW_NEGATIVE_BALANCE);�

II new balance�
money = (short)(money - amount);�

II obtain the setver AID object�
AID server_aid = JCSystem.lookupAID(ainnile_aid, (short}O, (byte)(airmile_aid.Iength»;

if (server_aid = null)
ISOException.throwIt(SW_SERVER_NOT_EXIST):

1/ request the sio from the server
AirMilelnterface sio

= (AirMilelnterface)(JCSystem.getAppletShareabJelnterfaceObject(server_aid, password»;

if (sio = null)
ISOException.throwIt(SW] AI LED_TO_GET_SERVER_SIO);

II ask the server to bonus miles
sio.bonusMile«short)(amount&OxOOFF»;

} II end of method payment

69

private void balance (APDU apdu) {�

byte[] buffer = apdu.getBufferO;�

// infoml the JCRE that the applet has data to return�
apdu.setOutgoingO;

/1 set the actual number of the outgoing data bytes�
apdu.setOutgoingLength((byte)2);�

1/ write the balance into the APDU buffer at the offset 0�
Util.setShort(buffer, (short)O, money);

II send the 2-byte balance at the offset 0 in the apdu buffer
apdu.sendBytes«short)O, (short)2);

} // end of method balance

} /1 end of class EPurse

HostAirMile.java

/.*••••••••••••*••••*.**********•••*••••••••****•••**.*••**.*** •••••••***.

The class HostAirMiIe is a host application for the AirMile applet resided on the terminals.
It has an ability to extract a current mileage from the AirMile applet.
• *.*****.*.*.***•••••*.*.*•••••*******••**.*••••**••• *··*·**·······***·*··1
import java.io.*;
import java.awt.*;
importjava.awt.event.*;
import javax.swing. *;
import java.uti!.·;

class HostAirMile extends JFrame {

private JPanel first""panel;�
private JButton display_mile;�

private JPanel second""panel;�
private JScrolIPane scroll;�
private JTextArea area;�

// only used with the Hashlnstaller applet�
private JPanel thirdyanel;�
private JButton update_md;�
private JTextField md;�

private File scr_file;�
private File batch;�
private File result;�

HostAirMile 0 {

setTitle("AirMile Host Application");�
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);�

70

get ontentPaneO·setLayout(null);
getContentPaneO·setBackground(Color.green);

firstyanel = new JPanelO;
firstyanel.setBounds(25, 25,450,55);
fustyanel.setBackground(Color.green);

display_mite = new JButton(" My Mileage
new IrnageIcon("c:/derno/sourcecode/gif/disptay.gif'»;

display_mile .setBackground(ColoLorange);
display-mile.setSize(lOO,40);
firstyanel.add(display_mile);

secondyanel = new JPanelO;
secondyanel.setBounds(25, 80, 450, 190);
secondyanel.setBackground(Color.green);
secondyanel.setBorder(BorderFactory.createTitledBorder

(BorderFactory.createLineBorder(Color.blue), II Result ,,».
area = new JTextArea(400, lOO);�
area.setBackground(ColoLgreen);�
area.setEnabled(true);�
scroll = new JScrollPane(area);�
scroll.setPreferredSize(new Dimension(420, 140»;�
secondyanel.add(scroll);�

II only used with the Hashlnstaller applet�
thirdyanel = new JPanelO;�
thirdyanel.setBounds(25, 280,450,80);�
thirdyanel.setBackground(Color.green);�
thirdyanel.setBorder(BorderFactory.createTitledBorder�

(BorderFactory.createLineBorder(Color.red), " Update Hash Va]ue "));

II only used with the Hashlnstaller applet
md = new JTextFieldO;
md.setPreferredSize(new Dimension(280, 20»;
thirdyanel.add(md);

II only used with the HashInstaIler applet
update_md = new JButton(" Update ",

new ImageIcon("c:/demo/sourcecode/gif/updateMD.gif'»;
update_md.setBackground(ColoLorange);
update_md.setSize(IDO, 40);
thirdyanel. add(update_md);

II to extract a current mileage from the AirMile apple!.
display-mile.addActionListener(new ActionListenerO {

public void actionPerformed (ActionEvent e) {

md.setEnabled(true);�
md.setText(null);�

II to create a script file that can extract a current mileage from the AirMile applet�
try {�

seT_file = new File("apdu.scr");

71

BufferedWriter out = new BufferedWriter(new FileWriter(scr_file»'

out.write("powerup;\n\n");�
out.write("11 Select AirMile applet\n");�
out.write�

("OxOO OxA4 Ox04 OxOO Ox08 OxOO OxOO OxOO OxOO OxOB OxOO OxOO OxOI Ox7F;\n\n");
out.write("11 Display miliage\n");
out.write("OxBO OxOI OxOO OxOO OxOO Ox7F;\n\n");
out.write("powerdown;");
out.closeO;

} catch (Exception ee) (
I

II to create a batch file to run the script file
try {

batch = new File("execute.bat");�
result = new File("result");�
BufferedWriter out = new BufferedWriter(new FileWriter(batch»;�
out.write("@echo off\n");�
out.write("apdutool -0 " + result.getAbsolutePathO + " "+ scr_file.getAbsolutePathO + "\n");�
out.closeO;�

String batchyath = batch.getAbsolutePath();�
batchyath = batchyath.replace('\\', 'f');�
Process child = Runtime.getRuntime().exec(batchyath);�
child.waitForO;�

} catch (Exception e2) {
}

String text;

II to display current mileage in the AirMile applet
try {�

BufferedReader reader = new BufferedReader(new FileReader(result»;�
while «text = reader.readLine()) != null) {�

area.append(text + "\n");�
}�
area.append("\n");�
reader.closeO;�

} catch (Exception ee) f
} finally {�

scr_file.deleteO;�
scr_file = null;�
batch.deleteO;�
batch = null;�
result.deleteO;�
result = null;�

}

}
});

72�

II only used with the Hashlnstaller applet
II to update a hash value of a CAP file
update_md.addActionListener(new ActionListenerO {

public void actionPerforrned (ActionEvent e) {

md.setEnabled(false);

String hash = md.getTextO;�
String hash_value = new StringO;�
StringTokeoizer token = new StringTokenizer(hash);�
while (token.hasMoreTokens(»�

hash_value = hash_value + "Ox" + token.nextTokenO·toUpperCaseO + " ";

II to create a script file that can update a hash value in Hashlnstaller applet�
try {�

scr_file = new File("apdu.scr");�
BufferedWriter out = new BufferedWriter(new FileWriter(scr_file»;�

out.write("powerup;\n\n");�
out.write("11 Select AirMile applet\n");�
out.write�

("OxOO OxA4 Ox04 OxOO Ox08 OxOO OxOO OxOO OxOO OxOB OxOO OxOO OxOl Ox7F;\n\n");
out.write("11 Update MD\n");
out.write("OxBO Ox02 OxOO OxOO OxlO II + hash_value + "0x7F;\n\n");
out.write("powerdown;");
out.closeO;

} catch (Exception ee) {
}

II to create a batch file to run the script file�
try {�

batch = new File("execute.bat");�
result = new File("result");�
BufferedWriter out = new BufferedWriter(new FileWriter(batch»;�
out.write("@echo off\n");�
out.write("apdutool -0 " + result.getAbsolutePathO + " " + scr_file.getAbsolutePathO + "\n");�
out.closeO;�

String batchJlath = batch.getAbsolutePatbO;�
batcbJlath = batchJlath.replace('\\', 'I');�
Process child = Runtime.getRuntimeO.exec(batch_.path);�
child.waitForO;�

} catch (Exception c2) {�
}�

String text;

II to display current mileage in AirMile applet
try {�

BufferedReader reader = new BufferedReader(new FileReader(result»;�
while «text = reader.readLine()) != null) {�

area.append(text + "\n");

7J

I
area.append("\n");
reader.closeO;

I catch (Exception ee) {
} finally {�

ser_fiLe.deleteO;�
ser_file = null;�
batch.deleteO;�
batch = null;�
result.delete();�
result = null;�

}

}�
});�

getContentPaneO·add(first--.panel);�
getContentPaneO.add(second--'panel);�
getContentPaneO.add(third--'panel);�

} II end ofconstructor

public static void main (String[] args) {

JFrame frame = new HostAirMileO;�
frame.setBounds(O, 0, 510,420);�
frame.setVisible(true);�

} II end of method main

} II end ofclass HostAirMile

HostEPurse.java

1·······················*····*·*··········*··*··*··*··..........•.......•*••*••�
The class HostEPurse is a host application for the EPurse applet resided on the terminals.

It has an ability to update and extract a current balance in the EPurse applet.
.*.*••• *****••••••••••****••******.**••*.**•••**.******··*··············*****··1
import java.io.*;
import java.awt. *;
import java.awt.event. .;
import javax.swing.*;

class HostEPurse extends JFrame {

private IPanel fust--'panel;
private JButton balance;

private !Panel second_panel'�
private JButton pay;�
private JTextField money;�

private JPanel third--.panel;

74

http:1�����������������������*����*�*����������*��*��*��*��..........�

private lScrollPane scroll;
private ITextArea area;

private File scr_file;
private File batch'
private File result;

HostEPurse () {

setTitle("EPurse Host Application");�
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);�
getContentPaneO·setLayout(null);�
getContentPaneO·setBackground(Color.green);�

firstyanel = new IPanelO;�
firstyanel.setBounds(25, 25,450, 55);�
firstyane1. setBackground(Color.green);�

balance = new JButton(" Current Balance ", new
lmagelcon("c:/demo/sourcecode/gif/display.gif"»;�

balance.setBackground(Color.orange);�
balance.setSize(100, 40);�
firstyane1.add(balance);�

secondyanel = new JPanelO;�
secondyanel.setBounds(25, 80,450, 55);�
secondyanel.setBackground(Color.green);�

money = new JTextFieldO;�
money.setPreferredSize(new Dimension(50, 35»;�
money.setBackground(Color .. green);�
secondyanel.add(money);�

pay = new JButton(" Debit ", new ImageIcon("c:/demo/sourcecode/gif/pay.gif'»;�
pay.setVerticaITextPosition(AbstractButton. E TER);�
pay.setHorizontaITextPosition(AbstractBut1on.LEFT);�
pay.setBackground(Color.orange);�
pay.setSize(100, 40);�
secondyanel.add(pay);�

thirdyanel = new JPanelO;�
thirdyane1.setBounds(25, 140,450, 190);�
th irdyanel.setBackground(Color.green);�
thirdyanel.setBorder(BorderFactory.createTitledBorder�

(BorderFactory.createLineBorder(Color.blue), .. Result "»;

area = new JTextArea(250, 100);�
area.setBackground(Color.green);�
area.setForeground(Color.black);�
area.setEnabled(true);�
scroll = new JScrollPane(area);�
scroIl.setPreferredSize(new Dimension(420, 150»;�
thirdyanel.add(croll);�

balance.addActionListener(new ActionListenerO {�
public void actionPerfonned (ActionEvent e) {�

75

money.setText(null);
money.setEnabled(true);

II to create a script file that can extract a current balance from the EPurse applet
try (

scr_file = new File("apdu.scr");�
BufferedWriter out = new BufferedWriter(new FileWriter(scr_file»;�

out.write("powerup;\n\n");�
01lt.write("11 Select EPurse applet\n");�
out.write("0xOO Ox.A4 Ox04 OxOO Ox08 OxOO OxOO OxOO OxOO OxOC OxOO OxOO OxOI Ox7F;\n\n");�
out.write("11 Display balance\n");�
out.write("0xBO Ox02 OxOO OxOO OxOO Ox7F;\n\n");�
out.write("powerdown;");�
out.closeO;�

} catch (Exception ee) {
}

II to create a batch file to run the script file
try {

batch = new File("execute.bat");�
result = new File("result");�
BufferedWriter out = new BufferedWriter(new FiJeWriter(batch»;�
out.write("@echo off\n");�
out.write("apdutool -0 II + result.getAbsolutePathO + II " + scr_fiJe.getAbsolutePathO + "\n");�
out.closeO;�

String batehyath = batch.getAbsolutePathO;�
batchyath = batebyath.replace('\\', 'I');�
Process child = Runtime.getRuntimeO.exec(batchyath);�
child.waitFor();�

} catch (Exception e2) {
}

String text;

II to display current balance in the EPurse applet
try {

BufferedReader reader = new BufferedReader(new FileReader(result»;
while «text = reader.readLineO) != null) {

area.append(text + "\n");�
}�
area.append("\n");�
reader.closeO;�

} catch (Exception e3) {
} finally {

seT_file.deleteO;
ser_file = null;
batch.deleteO;
batch = null;

76

result.deleteO;�
result = null;�

}
});

pay.addActionListener(new ActionListenerO {
public void actionPerformed (ActionEvent e) {

II to create a script file that can update a current balance from the EPurse applet�
try {�

scr_file = new File("apdu.scr");�
BufferedWriter out = new BufferedWriter(new FileWriter(scr_file))'�

int amount = Integer.valueOf{money.getTextO).intValueO;�
String amount16 = Integer.toString(amount, 16);�
System.out.println(amount16);�
if(amountl6.lengthO = 1)�

amountl6 = "0" + amoun.t16;

out.write("powerup;\n\n");�
out.write("11 Select EPurse applet\n");�
out.write("OxOO OxA4 Ox04 OxOO Ox08 OxOO OxOO OxOO OxOO OxOC OxOO OxOO OxOl Ox7F;\n\n");�
out.write("11 Debit\n");�
out.write("0xBO OxOl OxOO OxOO OxOl Ox" + amount16 +" Ox7F;\n\n");�
out.write("powerdown;");�
out.closeO;�

money.setEnabled(false);�

} catch (Exception ee) {
}

II to create a batch file to run the script file�
try {�

batch = new File("execute.bat");�
result =new File("result");�
BufferedWriter out = new BufferedWriter(new FileWriter(batch»;�
out. write("@echo off\n");�
out.write("apdutool -0 " + result.getAbsolutePathO + " " + scr_file.getAbsolutePathO + "\n");�
out.c1oseO;�

String batchyath = batch.getAbsolutePathO;�
batchyath = batchyath.replace('\\', '/');�
Process child = Runtime.getRuntimeO.exec(batchyath);�
child.waitForO;�

} catch (Exception e2) {�
}�

String text;

II to display current balance in the EPurse applet

77

try {

BufferedReader reader = new BufferedReader(new FileReader(result»;�
while «text = reader.readLine(» != Dull) {�

area.append(text + "\n");�
}�
area.append(Ol\nOl);�
reader.closeO;�

} ca tch (Exception e3) {
} fmally {�

scrJile.deleteO;�
scr_file = null;�
batch.deleteO;�
batch = null;�
result.deleteO;�
result = null;�

}

}
});

getContentPaneO.add(fust--'panel);�
getContentPaneO.add(second--'panel);�
getContentPaneO.add(third--'panel);�

} // end of constructor

public static void main (String[] args) {

JFrame frame = new HostEPurseO;�
frame.setBounds(O, 0, 510, 400);�
frame.setVisible(true);�

} // end of method main

} 1/ end of class HostAirMiIe

HasbInstaller.java

/**
The HashInstaller generates a hash value of a CAP file with the MD5 class when the CAP file

is read in and it registers the hash value in its instance. Therefore, the HashInstaUer applet and
the existing Java Card installer residing on the Java Card platform together perform
as the proposed on-card installer. The AppletInfo class has an AID and hash value of each CAP
file. The AppletInfoManager implements a linked list with a list AppletInfo.
***/

package installersupport;

import javacard. frame work. *;

public class Hashlnstaller extends Applet implements HashIllstallerInterface {

// codes ofCLA byte in the command APDUs

78

private final static byte HA H_CLA = (byte)OxBO'

II codes of INS byte in the command APDUs�
private final static byte APPLET_AID = (byte)OxOI;�
private final static byte CAP_START = (byte)Ox02;�
private final static byte CAP_CO TE T = (byte)Ox03;�
private final static byte CAP_E D = (byte)Ox04;�
1** For Test **/�
private fmal static byte CHECK = (byte)Ox05;�

II Applet-specific status words�
private final static short SW_INVALID_AID_LENGTH = Ox6AO I;�
private final static short SW_INVAltD_MB_LENGTH = Ox6A02;�
private final static short SW_UNAUTHORIZED_CLIENT = Ox6A03;�

private final byte[] own_aid = {OxOO, OxOO, OxOO, OxOO, OxOA, Oxoo, Oxoo, OxOI};�
private final byte[] ainnile_aid = {OxOO, OxOO, OxOO, OxOO, OxOB, Oxoo, OxOO, OxOI};�

private final byte password = (byte)OxOA;

private AppletInfoManager manager;
private MD5 md5;

private byte[] temp_message;
private byte[] temp_aid;
private byte[] temp_md;

private HashInstaller () {

manager = new AppletInfoManagerO;�
mdS = new MD50;�

II the length of an message block is from 1 to 64 bytes�
temp_message = new byte[64];�
temp_aid = new byte[16};�
temp_md = new byte[16];�

register(oWll_aid, (short)O, (byte)(own_aid.length»;

} II end of constructor

public static void install (byte[] bArray, short bOffset, byte bLength) {

new HashlnstallerO;

} II end of method install

public void process (APDU apdu) {

byte[] apdu_buffer = apdu.getBufferO;

II retum ifthe APDU is the applet SELECT command�
if (selectingAppletO)�

return;�

II verify the CLA byte

79

if(apdu_buffer[IS07816.0FFSET_CLA]!= HASH_CLA)�
ISOException.throwIt{IS07816.SW_CLA_ OT_SUPPORTED);�

II check the INS byte to decide which service mehtod to call
switch (apdu_buffer[IS07816.0FFSET_INS]) {

case APPLET_AID: saveAID(apdu);
return;

case CAP_START: initMDO;
return;

case CAP_CONTENT: updateMD(apdu);
retu.rn;

case CAP_END: saveMDO;
return;

case CHECK: check(apdu);
return;

default: ISOException.throwlt(IS07816.SW_I S_NOT_SUPPORTED);

} II end of method process

private void saveAID (APDU apdu) {

byte[] apdu_buffer = apdu.getBufferO;

II set the JCRE into the dataJeceiving mode
apdu.setlncomingAndReceiveO;

II data field = AID length (1 byte) + AID + papameter length (I byte)
short aid_length = (short)(apdu_buffer[IS07816.0FFSET_LC] & OxOOFF);

if (aid_length < 5 II aid_length> 16)
ISOException.tmowIt(SW_INVALID_AID_LENGTH);

manager.add(new Appletlnfo(apdu_buffer»;

} II end of method saveAlD

private void initMD 0 {

md5.initializeO;

} II end of method updateMD

private void updateMD (APDU apdu) {

byte[] apdu._buffer = apdu.getBufferO;

II set the JeRE into the dataJeceiving mode�
apdu.setlncomingAndReceive();�

II the length of a message block is from 1 to 64 bytes�
short mb_Iength = (short)(apdu_buffer[IS07816.0FFSET_LC] & OxOOFF);
if (mb_length < I II rob_length> 64)

ISOException.tmowIt(SW_INVALID_MB_LENGTH);

II copy a message that is contained from index 5

80

arrayCopy(apdu_buffer, (short)(IS07816.0FF ET_CDATA & OxOOFF),
temp_message, (short)O, mb_length);

mdS.update(temp_message, mb_length);

} II end of method updateMD

private void saveMD () {

mdS.update(temp_message, (short)O);

II save a MD in an Appletlnfo object
md5.generate(manager.getCurrentO·getHashO);

} II end of method saveMD

public Shareable getShareablelnterfaceObject (AID client_aid, byte parameter) {

if (c1ient_aid.equals(airmile_aid, (short)O, (byte)(airmile_aid.lengtb» = false)
return null;

if (parameter != password)�
return null;�

II grant the S10
return (this);

} II end of method getShareable1nterfaceObject

public boolean verifyHashVaJue (byte aid_length, byte aidl, byte aid2,
byte aid3, byte aid4, byte aidS, byte aid6, byte aid7, byte aid8,
byte aid9, byte aidIO, byte aidIl, byte aid12, byte aid13, byte aidI4,
byte aidlS, byte aid16, byte mdl, byte rod2, byte md3, byte md4,
byte mdS, byte md6, byte rod7, byte rod8, byte md9, byte md 10, byte md II,
byte mdl2 byte mdl3, byte md14, byte mdIS, byte md16) {

II get the caller's AID
AID client_aid = JCSystem.getPreviousContextAIDO;

II check if the actual caller is the airmile applet
if (client_aid.equaIs(airmile_aid, (short)O, (byte)(airmile_aid.length» = false)

ISOException.throwIt(SW_UNAUTHORIZED_CUE T);

temp_aid[O] = aid 1;�
temp_aid[I] = aid2;�
temp_aid[2] = aid3;�
temp_aid[3] = aid4;�
temp_aid[4] = aidS;�
temp_aid[S] = aid6;�
temp_aid[6] = aid?;�
temp_aid[7] = aid8;�
temp_aid[8] = aid9;�
temp_aid[9] = aidlO;�
temp_aid[lO] =aidll;�
temp_aid[11] = aid12;�
temp_aid[12] = aid13;�

81

temp_aid(13] = aid14;�
temp_aid[14] = aidl5'�
temp_aid[15] = aidl6;�

temp_rod[O] = mdl;�
temp_md[l] = rod2;�
temp_md[2] = rod3;�
temp_md[3] = md4;�
temp_md[4] = md5;�
temp_md[5] = md6;�
temp_md[6] = md7;�
temp_rod[7] = rod8;�
temp_md[8] = md9;�
temp_md[9] = mdlO;�
temp_md[lO] = rod 1I;�
terop_md[11] = md12;�
temp_md[l2] = md13;�
temp_md[13] = md14;�
temp_md[l4] = md15;�
temp_rod[l5] = md16;�

AppletInfo applet = manager.getHeadO;
boolean result = false;

while (applet != null) {

result = arrayCompare(applet.getAidO, (sbort)O, temp_aid, (short)O, (short)(aid_length & OxOOFF»;

if (result = true) {�
result = arrayCompare(applet.getHashO, (short)O, temp_md, (short)O, (short) I6);�
if (result = true)�

return true;�
else�

return false;�

applet = applet.getNextO;�
}�

return false;

} II end of method getHashValue

private void check (APDU apdu) {

byte[] buffer = apdu.getBufferO;

II inform the JCRE that the applet has data to return�
apdu.setOutgoingO;�

II set the actual number of the outgoing data bytes�
apdu .setOutgoingLength((byte)48);�

AppletInfo applet = manager.getHeadO;�
til.arrayCopy(applet.getAidO, (short)O, buffer, (short)O, (short)8);�
til.arrayCopy(applet.getHashO, (short)O. buffer, (short)8, (short) 16);�

82

applet = applet.get extO;�
Util.arrayCopy(appler.getAidO, (short)O buffer, (short)24, (short)8);�
Util.arrayCopy(appler.getHashO, (short)O, buffer, (short)32, (short) 16);�

apdu.sendBytes«short)O, (short)48);

} II end of method check

private void arrayCopy (byte[] source, short s_start, byteO destination, short d_start, short length) {

short perform = 0;

for (perform = length; perform> 0; --perform) {�
destination[d_start] = source[s_start];�
s_start++;�
d_start++;�

}

} II end of method arrayCopy

private boolean arrayCompare (byte[) source short s_start, byte[] destination, short d_start, short length)
{

short perform = 0;

for (perform = length; perform> 0; --perform) {�
if(source[s_start] != destination[d_start])�

return false;�
s_start++;�
d_start++;�

}

return true;

} II end of method arrayCompare

} II end of class HashInstaller

class MD5 {

II for S tabl,e�
private static final byte 811 = 7;�
private static final byte 812 = 12;�
private static final byte 813 = 17;�
private static final byte 814 = 22;�
private static final byte 821 = 5;�
private static final byte 822 = 9;�
private static final byte 823 = 14;�
private static final byte 824 = 20;�
private static final byte 831 = 4;�
private static final byte 832 = 11;�
private static final byte 833 = 16;�
private static final byte 834 = 23;�
private static final byte 841 = 6;�
private static final byte S42 = 10;�
private static final byte 843 = 15;�

83

private static final byte $44 = 21 ;

II for padding at the end of the message
private static final byte[] padding =

{(byte)Ox80, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, Oxoo, Oxoo,
OxOO, OxOO, OxOO OxOO,Oxoo,OxOO,OxOO,OxOO, OxOO, OxOO
OxOO,OxOO OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO
OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO,OxOO,OxOO,
OxOO,OxOO,OxOO, OxOO,OxOO,OxOO, OxOO, OxOO,OxOO, OxOO,
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,
OxOO,OxOO,OxOO,OxOO};

private boolean pre--'padding = false;

II for a 64 bits hash value
private byte[] word_a = new byte[4];
private byte[] word_b = new byte[4];
private byte[] word_c = new byte[4];
private byte[] word_d = new byte[4];

private byte[] word_aa = new byte[4];
private byte[] word_bb = new byte[4];
private byte[] word_cc = new byte[4];
private byte(J word_dd = new byte[4];

private byte[] message_length = new byte[8];
private byte[] x_table = new byte[64];

private byte[] support_tempI = new byte[4];
private byte[] support_temp2 = new byte[4];

void initialize 0 {

/1 initialized a message digest buffer�
II word A = {Ox67, Ox45, Ox23, OxOI};�
/1 word B = {OxEF, OxeD, OxAB, Ox89};�
II word C = {Ox98, OxBA, OxDC, OxFE};�
II word D = {OxIO, Ox32, Ox54, Ox76};�
word_a(O] = (byte)Ox67;�
word_a[l] = (byte)Ox45;�
word_a[2] = (byte)0x23;�
word_a[3] = (byte)OxO I;�
word_b[O] = (byte)OxEF;�
word_b(l] = (byte)OxCD;�
word_b[2] = (byte)OxAB;�
word_b[3] = (byte)Ox89;�
word_c[O] = (byte)Ox98;�
word_c[l] = (byte)OxBA;�
word_c(2] = (byte)OxDC;�
word_c(3] = (byte)OxFE;�
word_d[O] = (byte)OxIO;�
word_d[1] = (byte)OxJ2;�
word_d[2] = (byte)Ox54;�
word_d[3] = (byte)Ox76;�

for (short i = 0; i < 8; i++)

84

message_length[i] = OxOO;

pre--'padding = faJse;

} II end of method initialize

void update (byte[] buffer, short length) {

short operation = 0:

switch (length) {

1/ during transmit a message block (each 64 bytes)�
case 64: operation = 1;�

break;�
1/ after transmit the last message block�
case 0: II when the length of total message is 0 module 512�

if(preyadding = false} {�
operation = -1 ;�
break;�

}�
else�

return;�
II when transmit the last messgae block�
default: operation = 3;�

preyadding = true;

/1 add the length ofa message block to the total length ofmessage�
addLength{message_length, length);�

/1 save word_a as word_aa, word_b as word_bb,�
1/ word_c as word_cc, word_d as word_dd�
arrayCopy(word_a, {sh.ort)O, word_3a, (short)O, (short)4);�
arrayCopy{word_b, (short)O, word_bb, (short)O, (short)4);�
arrayCopy(word_c, (short)O, word_cc, (short)O, (sbort)4);�
arrayCopy{word_d, (short)O, word_dd, (short)O, (short)4);�

do {

1/ build x table�
switch (operation) {�

II padding 56 bytes (starts with 1) followed by total length of message (8 bytes)
case -1: anayCopy(padding, (short)O, x_table, (short)O, (short)56);

arrayCopy(message_length, (short)O, x_table, (sbort)56, (short}8);
operation = 0;
break;

II save a message block (64 bytes) to x_table
case 1: arrayCopy(buffer, (short}O, x_table, (short)O, (sh.ort)64);�

operation = 0;�
break;�

II padding 56 bytes (start with 0) followed by totall.ength of message (8 bytes)
case 2: arrayCopy(padding, (short)8, x_table, (short)O, (short)56);

arrayCopy(message_length, (short)O, x_table, (short)56, (short)8);

85

operation = 0;
break'

II the last message block followed by at least one byte or at most 64 bytes
II padding and total length of message (8 byte)
case 3: if (length < 56) {

short required-pad = (short)«short)56 - length);
arrayCopy(buffer, (short)O, x_table, (short)O, length);
arrayCopy(padding, (short)O, x_table, (short)length, required-pad);
arrayCopy(message_length, (short)O, x_table, (short)56, (short)8);
operation = 0;

}
else {

short required-pad = (short)«short)64 - length);
arrayCopy(buffer, (short)O, x_table, (short)O, length);
arrayCopy(padding, (short)O, x_table, (short)length, required-pad);
operation = 2;

}
break;

}

II Round 1: do the following 16 operations
frrstRound (word_a, word_b, word_c, word_d, x_table,

(short)O, SII, (byte)OxD7, (byte)Ox6A, (byte)OxA4, (byte)Ox78); 1* 1 *1
ftrstRound (word_d, word_a, word_b, word_c, x_table,

(short)4, SI2, (byte)OxE8, (byte)OxC7, (byte)OxB7, (byte)Ox56); 1* 2 *1
fustRound (word_c, word_d, word_a, word_b, x_table,

(short)8, S13, (byte)Ox24, (byte)OxlO, (byte)Ox70, (byte)OxDB); 1* 3 *1
ftrstRound (word_b, word_c, word_d, word_a, x_table,

(short)12, SI4, (byte)OxCI, (byte)OxBD, (byte)OxCE, (byte)OxEE); 1* 4 */
firstRound (word_a, word_b, word_c, word_d, x_table,

(short) 16, Sll, (byte)OxF5, (byte)Ox7C, (byte)OxOF, (byte)OxAF); 1* 5 *1
firstRound (word_d, word_a, word_b, word_c x_table,

(short)20, S12, (byte)Ox47, (byte)Ox87, (byte)OxC6, (byte)OxlA); 1* 6 *1
firstRound (word_c, word_d, word_a, word_b, x_table,

(short)24, S13, (byte)OxA8, (byte)Ox30, (byte)Ox46, (byte)Ox13); 1* 7 *1
first Round (word_b, word_d, word_d, word_a, x_table,

(short)28, SI4, (byte)OxFD, (byte)Ox46, (byte)Ox95, (byte)OxOI); 1* 8 *1
ftrstRound (word_a, word_b, word_c, word_d, x_table,

(short)32, Sll, (byte)Ox69, (byte)Ox80, (byte)Ox98, (byte)OxD8); 1* 9 *1
firstRound (word_d, word_a, word_b, word_c, x_table,

(short)36, S12, (byte)Ox8B, (byte)Ox44, (byte)OxF7, (byte)OxAF); 1* 10 *1
fustRound (word_c, word_d, word_a, word_b, x_table,

(short)40, S13, (byte)OxFF, (byte)OxFF, (byte)Ox5B, (byte)OxBl); 1* 11 *1
firstRound (word_b, word_c, word_d, word_a, x_table,

(short)44, S14, (byte)Ox89, (byte)Ox5C, (byte)OxD7, (byte)OxBE); 1* 12 *1
tirstRound (word_a, word_b, word_c, word_d, x_table,

(short)48, S 11, (byte)Ox68, (byte)Ox90, (byte)Oxll, (byte)Oxl2); 1* 13 *1
firstRound (word_d, word_a, word_b, word_c, x_table,

(short)52, SI2, (byte)OxFD, (byte)Ox98, (byte)Ox71, (byte)Ox93); 1* 14 *1
firstRound (word_c, word_d, word_a, word_b, x_table,

(short)56, S 13, (byte)OxA6, (byte)Ox79, (byte)Ox43, (byte)Ox8E); 1* 15 */
firstRound (word_b, word_c, word_d, word_a, x_table,

(short)60, S14, (byte)Ox49, (byte)Ox84, (byte)Ox08, (byte)Oxll): 1* 16 *1

II Round 2: do the following 16 opeartions

86

secondRound (word_a, word_b, word_c word_d _table,
(short)4, 821, (byte)OxF6, (byt)OxlE, (byte)0x25, (byte)Ox62); /* 1 */

secondRound (word_d, word_a, word_b, word_c x_table,
(short)24, 822, (byte)OxCO (byte)Ox40, (byte)OxB3, (byte)Ox40); /* 2 */

secondRound (word c, word d word a, word b, x table,
(short)44, S23, (byt~0x26, (byte)Ox5E, (byte)Ox5A, (byte)Ox5l); /* 3 */

secondRound (word_b, word_c, word_d, word_a, x_table,
(short)O, 824, (byte)OxE9, (byte)OxB6, (byte)OxC7, (byte)OxAA); /* 4 */

secondRound (word_a, word_b, word_c, word_d, x_table,
(short)20, 821, (byte)OxD6, (byte)Ox2F, (byte)OxIO, (byte)Ox5D); /* 5 */

secondRound (word_d, word_a, word_b, word_c, x_table,
(short)40, 822, (byte)0x2, (byte)Ox44, (byte)OxI4, (byte)Ox53); /* 6 */

secondRound (word_c, word_d, word_a, word_b, x_table,
(short)60, 823, (byte)OxD8, (byte)OxAl, (byte)OxE6, (byte)Ox81); /* 7 */

secondRound (word_b, word_d, word_d, word_a, x_table,
(short)24, 824, (byte)OxE7, (byte)OxD3, (byte)OxFB, (byte)OxC8); /* 8 */

secondRound (word_a, word_b, word_c, word_d, x_table,
(short)36, 821, (byte)0x21, (byte)OxEl, (byte)OxCD, (byte)Ox.E6); /* 9 */

secondRound (word_d. word_a, word_b, word_c, x_table,
(short)56, 822, (byte)OxC3, (byte)Ox37, (byte)Ox07, (byte)OxD6); /* 10 */

secondRound (word_c, word_d, word_a, word_b, x_table,
(short) 12, 823, (byte)Ox.F4, (byte)OxD5,. {byte)OxOD, (byte)Ox87); /* II */

secondRound (word_b, word_c, word_d, word_a, x_table,
(short)32, 824, (byte)Ox45, (byte)Ox5A, (byte)OxI4, (byte)OxED); /* 12 */

secondRound (word_a, word_b, word_c, word_d, x_table,
(short)52, 821, (byte)OxA9, (byte)OxE3, {bytc)OxE9, (byte)Ox05); /* 13 */

secondRound (word_d, word_a, word_b, word_c, x_table,
(short)8, 822, (byte)OxFC, (byte)OxEF, (byte)OxA3, (byte)OxF8); /* 14 */

secondRound (word_c, word_d, word_a, word_b, x_table,
(short)28, 823, (byte)Ox67, (byte)Ox6F, (byte)Ox02, (byte)OxD9); /* 15 */

secondRound (word_b, word_c, word_d, word_a, x_table,
(short)48, 824, (byte)Ox8D, (byte)Ox2A, (byte)Ox4C, (byte)Ox8A); /* 16 */

// Round 3: do the following 16 opeartions
thirdRound (word_a, word_b, word_c, word_d, x_table,

(short)20, 831, (byte)OxFF, (byte)OxFA, (byte)OxJ9, (byte)Ox42); /* I */
thirdRound (word_d, word_a, word_b, word_c, x_table,

(short)32, 832, (byte)Ox87, (byte)Ox71, (byte)OxF6, (byte)Ox81); /* 2 */
thirdRound (word_c, word_d, word_a, word_b, x_table,

(short)44, 833, (byte)Ox6D, {byte)Ox9D, (byte)Ox61, (byte)0x22); /* 3 */
thirdRound (word_b, word_c, word_d, word_a, x_table,

(short)56, 834, (byte)OxFD, (byte)OxE5, (byte)Ox38, (byte)OxOC); /* 4 */
thirdRound (word_a, word_b, word_c, word_d, x_table,

(short)4, 831, (byte)Ox.A4, (byte)OxBE, (byte)OxEA, (byte)Ox44); /* 5 */
thirdRound (word_d, word_a, word_b, word_c, x_table,

(short)16, 832, (byte)Ox4B, (byte)OxDE, (byte)OxCF, (byte)Ox.A9); /* 6 */
thirdRound (word_c, word_d, word_a, word_b, x_table,

(short)28, 833, (byte)OxF6, (byte)OxBB, (byte)Ox4B, (byte)Ox80); /* 7 */
thirdRound (word_b, word_d, word_d, word_a, x_table,

(short)40, 834, (byte)OxBE, (byte)OxBF, (byte)OxBC, (byte)Ox70); /* 8 *j
thirdRound (word_a, word_b, word_c, word_d, x_table,

(short)52, 831, (byte)0x28, (byte)Ox9B, (byte)Ox7E, (byte)OxC6); /* 9 */
thirdRound (word_d, word_a, word_b, word_c, x_table,

(short)O, 832, (byte)OxEA, (byte)OxAl, (byte)0x27, (byte)OxFA); j* 10 */
thirciRound (word_c, word_d, word_a, word_b, x_table,

(short)12, 833, (byte)OxD4, (byte)OxEF, (byte)Ox30, (byte)Ox85); /* II */

87

- - -

- - -
- - -

thirdRound (word_b, word_c, word_d, word_a x_table,
(short)24, 834, (byte)Ox4, (byte)Ox88, (byte)Ox 10, (byte)Ox05); 1* 12 *1

thirdRound (word_a, word_b, word_c, word_d, x_table,
(short)36, 831, (byte)OxD9, (byte)OxD4, (byte)OxDO, (byte)0x39); 1* 13 *1

thirdRound (word_d, word_a, word_b, word_c, x_table,
(short)48, 832, (byle)OxE6, (byte)OxDB, (byte)Ox99, (byte)OxE5); 1* 14 *1

thirdRound (word_c, word_d, word_a, word_b, x_table
(short)60, 833, (byte)OxIF, (byte)OxA2, (byte)Ox7C, (byte)OxF8); 1* 15 "'I

thirdRound (word_b, word_c, word_d, word_a, x_table,
(short)8, 834, (byte)OxC4, (byte)OxAC, (byte)Ox56, (byte)Ox65); I'" 16 *1

II Round 4: do the following 16 opeartions
fourthRound (word_a, word_b, word_c, word_d, x_table,

(short)O, S41, (byte)OxF4, (byte)Ox29, (byte)Ox22, (byte)Ox44); 1*] *1
fourthRound (word-.:o, word_a, word_b, word_c, x_table,

(short)28, 842, (byte)Ox43, (byte)Ox2A, {byte)OxFF, (byte)Ox97); I'" 2 *1
fourthRound (word_c, word_d, word_a, word_b, x_table,

(short)56, 843, {byte)OxAB, (byte)0x94, (byte)0x23, (byte)OxA7); I'" 3 *1
fourthRound (word_b, word_c, word_d, word_a, x_table,

(short)20, 844, (byte)OxFC, (byte)Ox93, (byte)OxAO, (byte)0x39); I'" 4 "'/
fourthRound (word_a, word_b, word_c, word_d, x_table,

(short)48, 841, (byte)Ox65, (byte)Ox5B, (byte)OxS9, (byte)OxC3); 1* 5 *1
fourthRound (word_d, word_a, wordc-b, word_c, x_table,

(short)12, 842, (byle)Ox8F, (byte)OxOC, (byte)OxCC, (byte)Ox92); 1* 6 *1
fourthRound (word_c, word_d, word_a, word_b, x_table,

(short)40, 843, (byle)OxFF, (byte)OxEF, (byte)OxF4, (byte)Ox7D); 1* 7 *1
fourthRound (word_b, word_d, word_d, word_a, x_table,

(short)4, S44, (byte)Ox8S, (byte)Ox84, (byte)OxSD, (byte)OxDl); 1* 8 *1
fourthRound (word_a, word_b, word_c, word_d, x_table,

(short)32, 841, (byle)Ox6F, (byte)OxA8, (byte)Ox7E, (byte)Ox4F); 1* 9 *1
fourthRound (word_d, word_a, word_b, word_c, x_table,

(short)60, 842, (byte)OxFE, (byte)Ox2C, (byte)OxE6, (byte)OxEO); 1* 10 *1
fourthRound (word_c, word_d, word_a, word_b, x_table,

(short)24, 843, (byle)OxA3, (byte)OxOI, (byte)Ox43, (byte)OxI4); 1* II *1
fourthRound (word_b, word_c, word_d, word_a, x_table,

(short)52, 844, (byte)Ox4E, (byte)Ox08, (byte)Oxl I, (byte)OxAl); 1* 12 *1
fourthRoWld (word_a, word_b, word_c, word_d, x_table,

(short) 16, 841, (byte)OxF7, (byte)Ox53, (byte)Ox7E, (byte)Ox82); 1* 13 *1
fourthRound (word_d, word_a, word_b, word_c, x_table,

(short)44, 842, (byte)OxBD, (byte)Ox3A, (byte)OxF2, (byte)Ox35); I'" 14 *1
fourthRound (word_c, word_d, word_a, word_b, x_table,

(short)8, 843, (byte)Ox2A, (byte)OxD7, (byte)OxD2, (byte)OxBB); I'" 15 *1
fourthRound. (word_b, word_c, word_d, word_a, x_table,

(short)36, 844, (byte)OxEB, (byte)Ox86, (byte)OxD3, (byte)Ox91); 1* 16 *1

II perform the increment each of the four words
II by the value it had before this block was started
II word a = word a + word aa
II word b = word b + word bb
II word c = word c + word cc
II word_d = word_d + word_dd
addByt.es(word_a, word_aa, (short)O, (short)3);
addBytes(word_b, word_bb, (short)O, (short)3);
addBytes(word_c, word_cc, (short)O, (short)3);
addBytes(word_d, word_dd, (short)O, (short)3);

88

} while (operation != 0);

} II end of method update

void generate (byte[J md) {

II the message digest produced as output is A, B, C, o.�
II That is, we begin with the Low-order byte of A, and end with the�
II high-order byte ofO.�

for (short i = 0, j = 3; j >= 0; ++i, --j)�
md[i] = word_a(j];�

for (short i = 4,j = 3;j >= 0; ++i, --j)�
md[iJ = word_b[j];�

for (short i = 8, j = 3; j >= 0; ++i, --j)�
md[i] = word_c(jJ;�

for (short i = 12, j = 3;j >= 0; ++i, --j)�
md[i] = word_d[jJ;�

} II end of method generate

/I Round 1:
II When F(X, Y, Z) = (X & Y) I(-X & Z),
/I let [abcd k s i] denote the operation
II a = b ... «a + F(b,c,d) + X[k] + T[i)) «< s).
private void firstRound (byte[] a, byteO b, byte[] c, byteO d, byte[] x,

short offset, byte s, byte tl, byte t2, byte t3, byte t4) {

II F(X, Y, Z) = (X & Y) I (-X & Z)
bitAnd(b, c, support_tempi);�
bitCompLement(b, support_temp2);�
bitAnd(support_temp2, d, support_temp2);�
bitOr(support_temp I, support_temp2, support_ temp2);�

II a + F(b,c,d) + X[k] + T(i]�
arrayCopy(x, (short)offset, support_tempi, (short)O, (short)4);�
addBytes(support_temp2, support_tempi, (short)O, (short)3);�
support_templ[O] = t1;�
support_tempi [I] = t2;�
support_temp 1[2] = t3;�
support_temp1[3] = t4;�
addBytes (support_temp2, support_tempi, (short)O, (short)3);�
addBytes (support_temp2, a, (short)O, (short)3);�

lib + «a + F(b,c,d) + X(k] + T[iJ) «< s)�
rotateLeft(support_ temp2, s, support_ temp2);�
addBytes(support_temp2, b, (short)O, (short)3);�

II a = b ... «a + F(b,c,d) + X[k] + T[iJ) <<< s)�
arrayCopy(support_temp2, (short)O, a, (short)O, (short)4);�

} II end of method firstRound

89

II Round 2:
II When G(X, Y, Z) = (X & Z) I (Y & -Z),
II let [abed k s i] denote the operation
II a = b + «a + G(b e,d) + X[k] + T[i]) «< s).
private void seeondRound (byte[] a, byte[] b, byte[] e, byte[] d, byte[] x,

short offset, byte s, byte tl, byt.e t2, byte tJ, byte t4) {

II G(X, Y Z) = (X & Z) I (Y & -Z)�
bitAnd(b, d, support_tempi)'�
bitComplement(d, support_temp2);�
bitAnd(e, support_temp2, support_temp2);�
bitOr(support_templ, support_temp2, support_tempI);�

II a + G(b,e,d) + X[k] + T[i]�
aITayCopy(x, (short)offset, support_tempI, (short)O, (short)4);�
addBytes(support_ temp2, support_temp I, (short)O, (short)3);�
supporUempl[O] = tl;�
support_tempi [1] = t2;�
support_tempI [2] = t3;�
support_tempI [3] = t4;�
addBytes (support_temp2, support_tempI, (short)O,. (short)3);�
addBytes (support_temp2, a, (sbort)O, (short)3);�

lib + «a + G(b,e,d) + X[k] + T[i)) «< s)�
rotateLeft(support_temp2, s, support_temp2);�
addBytes(support_temp2, b, (short)O, (short)3);�

II a = b + «a + G(b,e,d) + X[k] + T[i)) «< s)�
arrayCopy(support_temp2, (short)O, a, (short)O, (short)4);�

} II end of method secondRound

II Round 3:
II When H(X, Y, Z) = X " Y " Z,�
II let [abed k s i) denote the operation�
II a = b + ({a + H(b,e,d) + X[k] + T[i)) «< s).�
private void thirdRound (byte[] a, byte[] b, byte[] c, byte[] d, byte[] x,�

short offset, byte s, byte tl, byte t2, byte t3, byte t4) {

II HeX, Y, Z) = X " Y " Z�
bitXor(b, c, support_temp l);�
bitXor(support_temp1, d, support_temp2);�

II a + H(b,e,d) + X[k] + T[i)�
arrayCopy(x, (short)offset, support_temp1, (short)O, (short)4);�
addBytes(support_temp2, support_temp 1, (short)O, (short)3);�
support_tempI [0] = t1;�
support_temp I [I] = t2;�
support_tempI [2] =t3;�
support_temp1[3] = t4;�
addBytes (support_temp2, support_tempI, (short)O, (short)3);�
addBytes (support_tempI, a, (short)O, (short)3);�

lib + «a + H(b,e,d) + X[k] + T[i)) «< s)�
TOtateLeft(support_temp2, s, support_temp2);�
addBytes(support_templ, b, (shon)O, (short)3);�

90

II a = b + «a + H(b,e,d) + X[k) + T[i]) «< s)�
arrayCopy(support_temp2, (short)O a, (short)O, (short)4);�

} II end of method thirdRound

II Round 4:�
II When leX, Y, Z) = Y 1\ (X I-Z),�
II let [abed k s i) denote the operation�
II a = b + «a + l(b,c,d) + X[k] + T[i)) «< s).�
private void fourthRound (byte[] a, byte[] b. byte[] c, byte[] d, byte[] x,�

short offset, byte s, byte n, byte t2, byte 13, byte t4) {

III(X, Y, Z) = Y A (X I-Z)�
bitComplement(d, support_temp 1);�
bitOr(a, support_tempI, support_tempI);�
bitXor(c, support_tempI, support_temp2);�

II a + I(b,c,d) + X[k] + T[i]�
anayCopy(x, (short)offset, support_tempI, (short)O, (short)4);�
addBytes(support_temp2, support_tempI, (short)O, (short)3);�
support_tempI [0] =tI;�
support_tempI [1] = t2;�
support_tempt [2] = t3;�
support_temp 1[3] = t4;�
addBytes (snpport_temp2, support_tempt, (short)O, (short)3);�
addBytes (support_temp2, a, (short)O, (short)3);�

lib + «a + I(b,c,d) + X[k] + T[i)) «< s)�
rotateLeft(support_temp2, s, support_temp2);�
addBytes(snpport~temp2,b, (short)O, (short)3);�

II a = b + «a + I(b,c,d) + X[k] + T[i]) «< s)�
arrayCopy(support_temp2, (short)O, a, (short)O, (short)4);�

} II end of metbod fourthRound

II two bytes are added and result will be saved in the frrst byte
private void addBytes (byte[] a, byte[] b, short overflow, short length) {

if (length = -1)�
return;�

short one_byte = (short)«short)(a[length]&OxOOFF) + (short)(b[length]&OxOOFF) + overflow);
a[length] = (byte)(one_byte & (short)OxOOFF);

if (overFlow(one_byte»�
addBytes(a, b, (short) I, --length);�

else�
addBytes(a, b, (short)O, --length);�

return;

} II end of method addBytes

II a short value will be added to the byte array

91

private void addLength (byte[] total_length short length) {

byte[] part_length = new byte[5];�
short offset = -1;�

while (true) {
if {length >= 127) {�

part_length[++offset] = (byte)Ox7Fo�
length = (short)(length - (short) 127);�

}
else {�

part_length[++offset] = (byte)(Iength%«short)l27));�
break;�

}�
}�

II call the roundEachLength mehtod recursively�
for (short array_index = 7; offset >= 0; --offset, array_index = 7) {�

short one_byte = (short)«short){totaUength[array_index]&OxOOff)�
+ (short)(part_length[offset)&OxOOff);�

totaUength[array_index] = (byte)(one_byte & (short)OxOOFF);�
if (overFlow(one_byte»�

total_length = roundEachLength(totaUength, --array_index, (short) 1);

} 1/ end of method addLength

private byte[] roundEachLength(byte[] total, short index, short overflow) {

if (index < 0)
return total;

short one_byte = (short)«short)(total[index]&OxOOft) + overflow);�
total[index] = (byte)(one_byte & (short)OxOOFF);�

if (overFlow(one_byte»�
total = roundEachLength(total, --index, (short)l);

return total;

} II end of method roundEachLength

private boolean overFlow (short num) {

if ((short)(num&(short)OxFFOO) >= (short)OxO 100)
return true;

else
return false;

} /1 end of method overFlow

private void bitComplement (byte{] array, byte[] result) {

for (short i = 0; i < (short)4; i++)
result[i] = (byte)-(amy[i]);

92

} II end of method bitComplement

private void bitOr (byte[J array1, byte[] array2, byte[] result) :

for (short i = 0; i < (short)4; i++)�
result[i] = (byte)(arrayl [i] I array2[i]);�

} II end of method bitOr

private void bitAnd (byte[J array I, byte[] array2, byte[] result) {

for (short i = 0; i < (short)4; i++)�
result[i] = (byte)(arrayl[i] & array2[i]);�

} II end of method bitAnd

private void bitXor (byte[] array I, byte[] array2, byte(] result) {

for (short i = 0; i < (short)4; i++)�
result[i] = (byte)(arrayl[i] 1\ array2[i]);�

} II end of method bitAnd

II left shift in a byte array with rotation�
private void rotateLeft (byte[] array, byte u_shift, byte[] result) {�

byte offset = OxOO;�
byte shift = OXOO;�
byte reverse_shift = OxOO;�
byte for_current = OxOO;�
short for_next = OxOO;�

byte first = OxOO;�
byte second = OxOO;�
byte third = OxOO;�
byte fourth = OxOO;�

switch (n_shift % (byte)8) {�
case 0: offset = (byte)OxFF;�

break;�
case 1: offset = (byte)Ox80;�

break;�
case 2: offset = (byte)OxCO;�

break;�
case 3: offset = (byte)OxEO;�

break;�
case 4: offset = (byte)OxFO;�

break;�
case 5: offset =(byte)OxF8;�

break;�
case 6: offset = (byte)OxFC;�

break;�
case 7: offset = (byte)OxFE;�

break;�

93

shift = (byte)(n_shift % (byte}8);
reverse_shift = (byte)«byte)Ox08 - shift);

if(shift = 0) {�
shift = 8;�
reverse_shift =0;�

if (n_shift <= 8) {�
first = array[O];�
second = array[]];�
third = array[2];�
fourth = array[3];�

} else if(n_shift<= 16) {�
first = array[1];�
second = array[2];�
third = array[3];�
fourth = array[O];�

} else if (n_shift <= 24) {�
first = array[2];�
second = array[3];�
third = array[O];�
fourth = array[1];�

}

for_next = (short)«fourth & offset) & OxOOFF);
result[3] = (byte)(fourth« shift);

fOf_current = (byte)(for"_next »> reverse_shift);�
for_next = (short)«third & offset) & OxOOFF);�
result[2] = (byte)«third« shift) I for_current);�

for_current = (byte)(for_next »> reverse_shift);�
fOf_next = (short)«second & offset) & OxOOFF);�
result[I] = (byte)«second« shift) I for_current);�

for_current = (byte)(for_next »> reverse_shift);�
for_next = (short)«first & offset) & OxOOFF);�
result[O] = (byte)«first« shift) I for_current);�

for_current = (bytelefor_next »> reverse_shift);
result[3] = (byte)(result[3] I (for_current»;

} II end of method rotateLeft

private void arrayCopy (byte[] source, short s_start,
byte[] destination, short d_start, short length) {

short perform = 0;

for (perform = length; perform> 0; --perform) {�
destination[d_start] = source[s_start];�
s_start++;�
d_start++;�

I

94

~------------------

} II end of method arrayCopy

} II end of class MD5

class AppletInfo {

private byte[] aid;
private byte aid_length;
private byte[] hash;�
private AppletInfo next;�

AppletInfo (byte[] aid_buffer) {�

aid = new byte[aid_buffer[IS078I 6.0FFSET_LC]];�

II save a AID of each CAP file�
arrayCopy(aid_buffer, (short)(IS078L6.0FFSET_CDATA & OxOOFF),�

aid, (short)O, (short)(aid_buffer[IS07816.0FFSET_LC] & OxOOFF»;

aid_length = aid_buffer[IS078 J6.0FFSET_LC];

hash = new byte[16];
next = null;�

} II end of constructor�

void saveNext (AppletInfo applet) {�

next = applet;�

} II end ofmehtod�

byte[] getAid () 1�

return aid;�

} II end of metbod getAid�

byte getAidLength 0 {�

return aid_length;�

} II end of method getLength�

byte[] getHasb 0 {�

return hash;�

} II end of method getHash�

Appletlnfo get ext 0 {�

return next;�

} II end of method getNext�

95

private void array opy (byte[] source, short s_start, byte[] destination short d_start short length) :

short perform = 0;

fOT (perform = length; perform> 0; --perform) {
destination[d_start] = source[s_start];
s_start++;
d_start++;

}

} II end of method arrayCopy

} II end of class Appletlnfo

class AppletlnfoManager {

private Appletlnfo head;�
private Appletlnfo temp;�

void add (Appletlnfo applet) {

if (head = Dull)�
head = applet;�

else {�
temp = head;�
while (temp.getNextO != null) {�

temp = temp.getNextO;�
}�
temp.saveNext(applet);�

}�

} II end of method add�

II to save a hash value in an AppletInfo object�
Appletlnfo getCurrent 0 {�

temp = head·�

while (temp.getNextO != null) {�
temp = temp.getNextO;�

}�

return temp;�

} II end of method getCurrent

AppletInfo getHead 0 {

return head;

} II end of method getHead

} II end of class AppletManager

96�

Hasblnstallerlnterface.j ava

1*·*····**·*******·****·*******************·*·**··*·*·••**••*******••••*••*•••
The interface HashInstal1erInterface contains the method verifyHashValue that is an abstract

method used for verifying a hash valu.e ofa CAP file .
••*••*•••*••*******.*****.*.*.***.****.**••**.*•••••**·*·*····*····*········*1

package installersupport;

import javacard.framework.shareable·
importjavacard.framework.AID;

public interface HashlnstallerInterface extends Shareable {

public boolean verifyHashValue
(byte aid_length, byte aidl, byte aid2, byte aid3, byte aid4, byte aidS,�
byte aid6, byte aid?, byte aid8, byte aid9, byte aidlO, byte aidl l,�
byte aid12, byte aid13, byte aid14, byte aidl5, byte aidl6, byte mdl,�
byte md2, byte md3, byte md4, byte md5, byte md6, byte md?, byte md8,�
byte md9, byte mdlO, byte mdl I, byte md12, byte mdn, byte mdl4, byte md15�
byte md16);�

}

HVGenerator.java

1************·**·**·*·*············**·****·*··········**••*.*•••*.*.***••••*.**
The HVGenerator class sends a CAP file content, the output of the capdump tool, to the MD5

class, and the MDS class that implement the MD5 algorithm generate a hash value of the content
of the CAP file. The MD5 class is the same class used in the proposed installer.
•*••••••••*.*****•• *.**•••••**••*••••••*••*•••••*•••••••••••••••••••••••••••••/

import java.io.·;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

class HVGenerator extends JFrame {

private JButton select_file;�
private JButton generate;�
private ..FLabellabel;�
private lTextField result;�
private JFileChooser fe;�
private File cap_file;�
private File cap_dump;�
private File batch;�
private MD5 rod5;�

HVGenerator 0 {

/1 for the upper panel�
setTitle("Hash Value Generator");�
setDefaultCloseOperatIon(JFrame.EXlT_0 _CLOSE);�
getContentPaneO·setLayout(null);�

97

getContentPaneO.setBackground(Color.green);

select_file = new JButton("Select a CAP file")'�
select_file.setBackground(Color.orange);�
select_file.setBounds(25,25,275,30);�

II for the bottom panel�
generate = new JButton("Generate a hash value");�
generate.setBackground(Color.orange);�
generate.setBounds(25, 75, 275, 30)'�

label = new JLabel("The hash value of this CAP ,file");�
label.setBounds(25, 150,240,30)'�
result = new JTextFieldO;�
result.setEditable(false);�
result.setBounds(25, 180,275,25);�

fc = new JFileChooser();�
md5 = new MD50;�

II select a CAP file
select_file.addActjonListener (new ActionListenerO {

public void actionPerformed (ActionEvent e) {

result.setText(null);

fc = new JFileChooser("c:\\demo");�
int retumVal = fc.showOpenDialog (HVGenerator.this);�

II a cap file must be selected�
if{returnVal = JFileChooser.APPROVE_OPTION)�
cap_file = fc.getSelectedFileO;�

else {
JOptionPane.showMessageDialog (HVGenerator.this,

"You must choose a CAP file", "Error",JOptionPane.ERROR_ME SAGE);
cap_file = null;

return;

String temp = cap_file.getNameO;
if(temp.indexOf(".,cap") = -1) {

JOptionPane.showMessageDialog (HVGenerator. this,
"You must select a CAP file is", "Error",JOptionPane.ERROR_MESSAGE);

cap_file = null;
}

}
});

II get a text representation of a CAP file to generate a hash value
generate.addActionListener(new ActionListenerO {

public void actionPerforrned (ActionEvent e) {

II create a batch file to nm the capdump tool�
try {�

98

-------- --

batch = new File("dump.bat");�
BufferedWriter out = new BufferedWriter(new FileWriter(batch»'�
out.write("capdump " + cap_file + "\0'')"�
out.closeO;�

Process child = Runtime.getRuntimeO.exec("dump.bat");�
cap_dump = new File("capdump");�

II standard output of the capdump tool will be recorded in a ftle�
BufferedReader in =�

new BufferedReader(new lnputStreamReader(child.getlnputStreamO»;�
BufferedWriter ou12 = new BufferedWriter(new FileWriter(cap_dump»;�

String input;�
int control = 0;�

while «input = in.readLine()) != null) {
if (control < 2) {�

control++;�
continue;�

}
out2.write(input + "\n");�

}�
out2.closeO;�

} catch (Exception ee) {
} fmally {

II a valid CAP file must be selected
if (cap_dump.1engthO =0) {�

batch.deleteO;�
batch = null;�
cap_dump.deleteO;�
cap_dump = null;�
JOptionPane.showMessageDialog (HVGenerator. this,�

"Please, select a valid CAP file", "Error",JOptionPane.ERROR_M SAGE);�
cap_file = null;�
return;�

short length = 0;�
byte[) data = new byte[64];�
byte[1 hv = new byte[16];�
String message_digest = new StringO;�

md5.initializeO;�

try {�

BufferedlnputStream bufferin =�

new BufferedInputStream(new FilelnputStream(cap_dump»;�

II call the update method in the MD5 class to update a hash value�
while (true) {�

length = (short)(bufferin.read(data»;�

99

if (length = -I}�
break:�

md5.update(data, length);�
}�

bufferin.c1oseO;

II call the generate nethod in the MD5 class to generate a ha h value�
md5.update(data, (short)O);�
md5.generate(hv);�

String temp;

II display a message digest
for (int i = 0; i < 16; i++) {

temp = IntegeLtoString(bv[i]&OxOOOOOOFF, 16);
if (temp.lengthO = I)

temp = "0" + temp;
if(i != IS)

message_digest = message_digest + temp + ":";
else

message_digest = message_digest + temp;

J
result.setText(message_digest);

batch.deleteO;�
batch = null;�
cap_dump.deleteO;�
cap_dump = null;�

} catch (FileNotFoundException ee) {�
} catch (IOException eee) {�
}�

}�
});�

getContentPaneO·add(select_flIe);�
getContentPaneO·add(generate);�
getContentPane().add(label);�
getContentPane().add(result);�

I II end of constructor

public static void main (String[] args) {

JFrame mask = new HVGeneratorO;�
mask.setBounds(O, 0, 335,250);�
mask.setVisible(true);�

l II end of method main

} II end of class HVGenerator

class MD5:

100

II for Stable
private static final byte S II = 7;
private static final byte 812 = 12;
private static final byte 813 = 17;
private static final byte 814 = 22;
private static final byte 821 = 5;
private static final byte S22 = 9;
private static final byte S23 = 14;
private static final byte 824 = 20;
private static final byte S31 = 4;
private static final byte 832 = 11;
private static final byte 833 = 16;
private static final byte 834 = 23;
private static fma1byte S41 = 6;
private static final byte S42 = 10;
private static final byte S43 = 15;
private static final byte S44 = 21;

II for padding at the end of the message
private static final byte[J padding =

{(byte)Ox80, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO,
OxOO, OxOO, OxOO,OxOO, OxOO,OxOO, OxOO,Oxoo,OxOO, Ox00,
OxOO, OxOO,OxOO,OxOO,OxOO,OxOO, OxOO,OxOO,OxOO,OxOO,
OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,OxOO,
OxOO, OxOO,Oxoo, OxOO,OxOO,OxOO, OxOO, OxOO,OxOO,OxOO,
OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, OxOO, Oxoo,
Oxoo, Oxoo,Oxoo, OxOO};

private boolean pre""'padding = false;

II for a 64 bits hash value
private byte[] word_a = new byte[4];
private byte[J word_b = new byte[4];
private byte[] word_c = new byte[4];
private byte[J word_d = new byte[4];

private byte[J word_aa = new byte[4];
private byte[] word_bb = new byte[4];
private byte[] word_cc = new byte[4];
private byte[] word_dd = new byte[4];

private byte[J message_length = new byte(8];
private byte[J x_table = new byte[64];

private byte[] support_tempI = new byte[4];
private byte[] support_temp2 = new byte[4];

void initialize 0 {

II initialized a message digest buffer�
II word A = {Ox67, Ox45, Ox23, OxOl};�
II word B = {OxEF, OxCD, OxAB, Ox89};�
II word C = {Ox98, OxBA, OxDC, OxFE};�
II word D = {OxIO, Ox32. Ox54, Ox76};�
word_a[O] = (byte)Ox67;�
word_a[l] = (byte)Ox45;�

101

word_a[2] =

word_a[3] =

word_b[O] =
word_b[1] =

word_b[2] =

word_b[3] =

word_c[O] =

word_c[1] =

word_c[2] =
word_c[3] =

word_d[O] =
word_d[l] =

word_d[2] =

word_d[3] =

for (short i =

(byte)Ox23;
(byte)OxOl;
(byte)OxEF;
(byte)OxCD;
(byte)OxAB;
(byte)Ox89;
(byte)Ox98;
(byte)OxBA;
(byte)OxDC;
(byte)OxFE;
(bytelOx I0;
(byte)Ox32;
(byte)Ox54;
(byte)Ox76;

0; i < 8; i++)
message_length[i] = OxOO;

preyadding = false'

} II end of method initialize

void update (byte[] buffer, short length) {

short operation = 0;

switch (length) {

II during transmit a message block (each 64 bytes)�
case 64: operation = 1;�

break;
II after transmit the last message block
case 0: II when the length of total message is 0 module 512

if (preyadding = false) {�
operation = -I;�
break;�

}�
else�

return;�
II when transmit the last messgae block�
default: operation = 3;�

preyadding = true;

II add the length ofa message block to the total length of message
addLength(message_Iength, length);

II save word_a as word_aa, word_b as word_bb,�
II word_c as word_cc, word_d as word_dd�
arrayCopy(word_a, (short)O, word_aa, (short)O, (short)4);�
arrayCopy(word_b, (short)O, word_bb, (short)O, (short)4);�
arrayCopy(word_c, (short)O, word_cc, (short)O, (short)4);�
arrayCopy(word_d, (short)O word_dd, (short)O, (short)4);�

do I

102

II build x_table
switch (operation) {

II padding 56 bytes (starts with 1) followed by total length of message (8 bytes)
case -1: arrayCopy(padding, (short)O, x_table, (short)O, (short)56);

arrayCopy(message_lengtb, (short)O, x_table, (short)56, (sbort)8);
operation = 0;
break;

II save a message block (64 bytes) to x_table
case 1: arrayCopy(buffer, (short)O, x_table, (short)O, (short)64);

operation = 0;
break;

II padding 56 bytes (start witb 0) followed by total length of message (8 bytes)
case 2: arrayCopy(padding, (short)8, x_table, (short)O, (short)56);

arrayCopy(message_length, (short)O x_table, (short)56, (short)8);
operation = 0;
break;

II the last message block followed by at least one byte or at most 64 bytes
II padding and total length of message (8 bytes)
case 3: if (length < 56) {

short requirede..Pad = (short)«short)56 - length);
arrayCopy(buffer, (short)O, x_table, (short)O, length);
arrayCopy(padding, (short)O, x_table, (short)length, requiredyad);
arrayCopy(message_length, (short)O, x_table, (short)56, (short)8);
operation = 0;

}
else {

short requiredyad = (short)«short)64 - length);
arrayCopy(buffer, (short)O, x_table (short)O,length)­
arrayCopy(padding, (short)O, x_table, (sbort)length, requiredy3d);
operation = 2;

}
break;

II Round I: do the following 16 operations
firstRound (word_a, word_b, word_c, word_d, x_table,

(short)O, SII, (byte)OxD7, (byte)Ox6A, (byte)OxA4, (byte)Ox78); I"" 1 ""I
firstRound (word_d, word_a, word_b, word_c, x_table,

(short)4, S12, (byte)OxE8, (byte)OxC7, (byte)OxB7, (byte)Ox56); I"" 2 *1
fustRound (word_c, word_d, word_a, word_b, x_table,

(short)8, S13, (byte)0x24, (byte)Ox20, (byte)Ox70, (byte)OxDB); I"" 3 *1
fustRound (word_b, word_c, word_d, word_a, x._table,

(short)12, S14, (byte)OxCI, (byte)OxBD, (byte)OxCE, (byte)OxEE); 1* 4 ""I
fustRound (word_a, word_b, word_c, word_d, x_table,

(short) 16, S11, (byte)OxF5, (byte)Ox7C, (byte)OxOF, (byte)OxAF); /"" 5 ""/
firstRound (word_d, word_a, word_b, word_c, x_table,

(short)20, S12, (byte)Ox47, (byte)Ox87, (byte)OxC6, (byte)Ox2A); I"" 6 */
flTstRound (word_c, word_d, word_a. word_b, x_table,

(short)24, S13, (byte)OxA8, (byte)0x30, (byte)Ox46, (byte)Ox13); /"" 7 ""/
firstRound (word_b, word_d, word_d, word_a, x_table,

(short)28, S14, (byte)OxFD, (byte)Ox46, (byte)Ox95, (byte)OxOI); 1* 8 */
fustRound (word a, word b, word c, word d, x table,

(sh~rt)32, SII, (byte)Ox69, (byte)Ox80, (byte)0x98, (byte)OxD8); /* 9 ""I

]03

flfstRound (word d word a, word b word_c, x_table
(sh~rt)36, S12, (byte)Ox8B, (byte)Ox44, (byte)OxF7, (byte)OxAF); 1* 10 *1

flfStRound (word_c, word_d, word_a word~b x_table,
(short)40, S13, (byte)OxFF, (byte)OxFF, (byte)Ox5B, (byte)OxBI); 1* II *1

flfstRound (word_b, word_c, word_d word_a, x_table,
(sbort)44, SI4, (byt.e)Ox89, (byte)Ox5 , (byte)OxD7 (byte)OxBE); j* 12 *1

firstRound (word_a, word_b, word_c, word_d, x_table
(short)48, SII, (byte)Ox6B, (byte)Ox90, (byte)Oxll, (byte)0x22); 1* 13 *1

firstRound (word_d, word_a) word_b, word_c) x_table,
(short)52, SI2, (byte)OxFD, (byte)Ox98 (byte)Ox71, (byte)Ox93); 1* 14 *1

firstRound (word_c) word_d, word_a, word_b, x_table,
(short)56, S13, (byte)OxA6 (byte)Ox79, (byte)Ox43) (byte)Ox8E); 1* 15 *1

firstRound (word_b) word_c) word_d) word_a, x_table)
(short)60, 814, (byte)Ox49, (byte)0xB4, (byte)Ox08, (byte)0x21); 1* 16 *1

II Round 2: do the following 16 opeartions
secondRound (word_a, word_b, word_c, word_d) x_table)

(short)4, 821) (byte)OxF6, (byte)Ox IE) (byte)Ox25) (byte)Ox62); 1* 1 *1
secondRound (word_d, word_a, word_b, word_c, x_table,

(short)24, 822, (byte)OxCO, (byte)Ox40) (byte)OxB3, (byte)Ox40); 1* 2 *1
secondRound (word_c, word_d, word_a, word_b, x_table,

(short)44, 823, (byte)Ox26, (byte)Ox5E, (byte)Ox5A, (byte)Ox51); 1* 3 *1
secondRound (word_b, word_c, word_d, word_a, x_table)

(short)O, 824, (byte)OxE9) (byte)OxB6, (byte)OxC7, (byte)OxAA); 1* 4 *1
secondRound (word_a, word_b, word_c, word_d, x_table,

(short)20, 821, (byte)OxD6, (byte)Ox2F, (byte)OxIO, (byte)Ox5D); 1* 5 *1
secondRound (word_d, word_a, word_b) word_c, x_table,

(short)40) 822, (byte)Ox2, (byte)Ox44, (byte)OxI4) (byte)Ox53); 1* 6 *1
secondRound (word_c, word_d) word_a, word_b, x_table,

(short)60, S23, (byte)OxD8) (byte)OxAl, (byte)OxE6, (byte)Ox81); 1* 7 *1
secondRound (word_b) word_d, word_d, word_a, x_table,

(short)24) 824) (byte)OxE7, (byte)OxD3, (byte)OxFB, (byte)OxC8); 1* 8 */
secondRound (word_a, word_b, word_c, word_d, x_table,

(short)36, 821, (byte)Ox2I) (byte)OxEI, (byte)OxCD, (byte)OxE6); 1* 9 *1
secondRound (word_d, word_a, word_b, word_c, x_table,

(short)56, 822, (byte)OxC3, (byte)Ox37, (byte)Ox07, (byte)OxD6); /* 10 */
secondRound (word_c, word_d, word_a, word_b, x_table,

(short)12, 823, (byte)OxF4, (byte)OxD5, (byte)OxOD, (byte)Ox87); /* II *1
secondRound (word_b, word_c, word_d, word_a, x_table,

(short)32, 824, (byte)Ox45) (byte)Ox5A, (byte)OxI4, (byte)OxED); 1* 12 */
secondRound (word_a, word_b, word_c, word_d, x_table,

(short)52, 821, (byte)OxA9, (byte)OxE3, (byte)OxE9, (byte)Ox05); /* 13 */
secondRound (word_d, word_a, word_b, word_c, x_table,

(short)8, S22, (byte)OxF , (byte)OxEF, (byte)OxA3, (byte)OxF8); 1* 14 *1
secondRound (word_c, word_d, word_a, word_b, x_table,

(short)28, 823) (byte)Ox67, (byte)Ox6F, (byte)Ox02, (byte)OxD9); /* 15 */
secondRound (word_b, word_c, word_d, word_a) x_table,

{short)48, 824, (byte)Ox8D, (byte)Ox2A, (byte)Ox4C) (byte)Ox8A); 1* 16 *1

II Round 3: do the following 16 opeartions
thirdRound (word_a, word_b) word_c, word_d, x_table,

(short)20, 831, (byt.e)OxFF, (byte)OxFA, (byte)Ox39, (byte)Ox42); /* 1 *1
thirdRound (word_d, word_a) word_b, word_c, x_table,

(short)32, 832, (byte)Ox87, (byte)Ox7I, (byte)OxF6, (byte)Ox81); /* 2 */
thirdRound (word_c, word_d, word_a, word_b, x_table,

(short)44, S33, (byte)Ox6D, (byte)Ox9D, (byte)Ox61, (byte)0x22); 1* 3 *1

104

thi.rdRound (word_b, word_c, word_d word_a x_table,
(short)56, 834, (byte)OxFD, (byte)OxE5 (byte)Ox38, (byte)OxO); 1* 4 */

thirdRound (word_a, word_b, word_c, word_d, x_table,
(short)4, 831, (byte)OxA4 (byte)OxBE, (byte)OxEA, (byte)Ox44); 1* 5 */

thirdRound (word_d, word_a, word_b word_c, x_table,
(short)16, 832, (byte)Ox4B, (byte)OxDE, (byte)OxCF, (byte)OxA9); /* 6 */

thirdRound (word_c, word_d, word_a, word_b x_table,
(short)28, 833, (byte)OxF6, (byte)OxBB, (byte)Ox4B, (byte)Ox80); 1* 7 */

thirdRound (word_b, word_d, word_d, word_a, x_table,
(short)40, 834,. (byte)OxBE, (byte)OxBF, (byte)OxBC, (byte)Ox70); 1* 8 */

thirdRound (word a, word b, word c, word ct, x table,
(short)52, S31, (byt~)Ox28, (bytejOx9B, (byte)Ox7E, (byte)OxC6); 1* 9 *1

thirdRound (word_d, word_a, word_b, word_c, x_table,
(short)O, S32, (byte)OxEA, (byte)OxA 1, (byte)0x27, (byte)OxFA); /* 10 */

thirdRound (word_c, word_d, word_a, word~b x_table,
(short)12, S33, (byte)OxD4, (byte)OxEF, (byte)Ox30, (byte)Ox85); 1* II *1

thirdRound (word_b, word_c, word_d, word_a, x_table,
(short)24, 834, (byte)Ox4, (byte)Ox88, (byte)Ox ID, (byte)Ox05); /* 12 *1

thirdRound (word_a, word_b, word_c, word_d, x_table,
(short)36, 831, (byte)OxD9, (byte)OxD4, (byte)OxDO, (byte)Ox39); 1* 13 *1

thirdRound (word_d, word_a, word_b, word_c, x_table,
(short)48, S32, (byte)OxE6, (byte)OxDB, (byte)0x99, (byte)Ox.E5); /* 14 *1

thirdRound (word_c, word_d, word_a, word_b, x_table,
(short)60, S33, (byte)OxIF, (byte)OxA2, (byte)Ox7C, (byte)OxF8); 1* 15 *1

thirdRound (word_b, word_c, word_d, word_a, x_table,
(short)8, 834, (byte)OxC4, (byte)OxAC, (byte)Ox56, (byte)Ox65); /* 16 */

/1 Round 4: do the following 16 opeartions
fourthRound (word_a, word_b, word_c, word_d, x_table,

(short)O, 841, (byte)OxF4, (byte)0x29, (byte)Ox22, (byte)Ox44); /* 1 *1
fourthRound (word_d, word_a, word_b, word_c, x_table,

(short)28, 842, (byte)Ox43, (byte)Ox2A, (byte)OxFF. (byte)Ox97); /* 2 *1
fourthRound (word_c, word_d, word_a, word_b, x_table,

(short)56, 843, (byte)Ox.AB, (byte)Ox94, (byte)Ox23, (byte)OxA7); 1* 3 *1
fourthRound (word_b, word_c, word_d, word_a, x_table,

(short)20, 844, (byte)OxFC, (byte)Ox93, (byte)OxAO, (byte)0x.39); 1* 4 */
fourthRound (word_a, word_b, word_c, word_d, x_table,

(short)48, 841, (byte)Ox65, (byte)Ox5B, (byte)Ox59, (byte)OxC3); /* 5 *1
f:i� urthRound (word_d, word_a, word_b, word_c, x_table,

(short)12, 842, (byte)Ox8F, (byte)OxOC, (byte)OxCC, (byte)Ox92); 1* 6 *1
fourthRound (word_c, word_d, word_a, word_b, x_table,

(short)40, 843, (byte)OxFF, (byte)OxEF, (byte)OxF4, (byte)Ox7D); 1* 7 */
fourthRound (word_b, word_d, word_d, word_a, x_table,

(short)4, 844, (byte)Ox85, (byte)Ox84, (byte)Ox5D, (byte)OxDI); 1* 8 *1
fourthRound (word_a, word_b, word_c, word_d, x_table,

(short)32, 841, (byte)Ox6F, (byte)OxA8, (byte)Ox7E, (byte)Ox4F); /* 9 */
fourthRound (word_d, word_a, word_b, word_c, x_table,

(short)60, 842, (byte)OxFE, (byte)Ox2C, (byte)OxE6, (byte)OxEO); 1* 10 *1
fourthRound (word c, word d, word a, word b, x table,

(short)24, 843, (byte)OxA3, (byte)OxOl, (byte)Ox43, (byte)OxI4); 1* II *1
fourthRound (word_b, word_c, word_d, word_a, x_table,

(short)52, S44, (byte)Ox4E, (byte)Ox08, (byte)Oxll, (byte)OxA 1); 1* 12 *-;
fourthRound (word_a, word_b, word_c, word_d, x_table,

(short)16, S41, (byte)OxF7, (byte)Ox53, (byte)Ox7E, (byte)Ox82); /* 13 *1
fourthRound (word_d, word_a, word_b, word_c, x_table,

(short)44, S42, (byte)OxBD, (byte)Ox3A, (byte)OxF2, (byte)Ox35); /* 14 */

105

- - -
- - -
- - -

fourthRound (word_c, word_d, word_a, word_b, x_table,
(short)8, S43 (byte)Ox2A, (byte)OxD7, (byte)OxD2 (byte)OxBB); 1* 15 *1

fomthROlmd (word_b, word_c, word_d, word_a, x_table,
(short)36, S44, (byte)OxEB (byte)Ox86, (byte)OxD3, (byte)Ox91); 1* 16 *1

II perform the increment each of the four words�
II by the value it had before this block was started�
II word_a = word_a + word_aa�
II word b = word b + word bb�
II word c = word c + word cc�
II word d = word d + word dd�
addBytes(word_a, word_aa, (short)O, (short)3);�
addBytes(word_b, word_bb, (short)O, (short)3);�
addBytes(word_c, word_cc, (short)O, (short)3);�
addBytes(word_d, word_dd, (short)O, (short)3);�

} while (operation != 0);

} II end of method update

void generate (byte[] md) {

II the message digest produced as output is A, B, C, D.�
II That is, we begin with the low-order byte of A, and end with the�
II high-order byte ofD.�

for (short i = 0, j = 3; j >= 0; ++i, --j)�
md[i] = word_a[j];�

for (short i = 4, j = 3; j >= 0; ++i, --j)�
md[i] = word_b(j];�

for (short i = 8, j = 3; j >= 0; ++i, --j)�
md[i] = word_c[j);�

for (short i = 12, j = 3; j >= 0; Hi, --j)�
md[i] = word_d[j];�

} II end of method generate

II Round 1:
II When F(X, Y, Z) = (X & Y) I(-X & Z),
II let [abcd k s i] denote the operation
II a = b + «a + F(b,c,d) + X[k] + T[i]) «< s).
private void fustRound (byte[] a, byte[] b, byte[] c, byte[] d. byte[] x,

short offset, byte s, byte tl, byte t2, byte 13, byte t4) {

II F(X, Y, Z) = (X & Y) I (-X & Z)�
bitAnd(b, c, support_tempI);�
bitComplement(b, support_temp2);�
bitAnd(support_temp2, d, support_temp2);�
bitOr(support_templ, support_temp2, support_temp2);�

II a + F(b,c,d) + X[k] + T[i]�
arrayCopy(x, (short)offset, support_tempI, (short)O, (short)4);�
addBytes(support_temp2, support_tempI, (short)O, (short)3);�

106

support_ lemp I[0] = t1 ;�
SUPPOTl_temp 1[1] = t2;�
support_templ[2] = 13;�
support_tempI [3] = 14;�
addBytes (support_temp2, support_tempi, (short)O, (short)3);�
addBytes (support_temp2, a, (short)O, (short)3);�

lib + «a + F(b,c,d) + X[k] + T[i]) «< s)�
rotaleLeft(support_temp2, s, support_temp2);�
addBytes(support_temp2, b, (short)O, (short)3);�

II a = b + «a + F(b,c,d) + X[k] + T[i]) «< s)�
arrayCopy(support_temp2, (short)O, a, (short)O, (short)4);�

} II end of method firstRound

II Round 2:
II When G(X, Y, Z) = (X & Z) I (Y & -Z),
II let [abed k s i] denote the operation
II a = b + «a + G(b,e,d) + X[k] + T[i) <<< 5).
private void seeondRound (byte[] a, byte[] b, byte[] e, byte(] d, byte[] x,

short offset, byte s, byte tl, byte 12, byte 13, byte t4) {

II G(X, Y, Z) = (X & Z) I (Y & -Z)�
bitAnd(b, d, support_temp I);�
bitComplement(d, support_temp2);�
bitAnd(e, support_temp2, support_temp2);�
bitOr(support_temp 1, support_temp2, support_temp2);�

II a + G(b,c,d) + X[k] + T[i]�
arrayCopy(x, (short)offset, support_temp1, (short)O, (short)4);�
addBytes(support_temp2, support_tempI, (short)O, (short)3);�
support_temp 1[0] = t1;�
support_templ[l] = 12;�
support_temp 1[2] = t3;�
support_tempI [3] =t4;�
addBytes (support_temp2, sllpporUempl, (short)O, (short)3);�
addBytes (support_temp2, a, (short)O, (short)3);�

lIb + «a + G(b,c,d) + X[k] + T[i]) «< s)�
rotateLeft(support_temp2, s, support_temp2);�
addBytes(support_temp2, b, (short)O, (short)3);�

II a = b + «a + G(b,e,d) + X[k] + T[i]) «< s)�
arrayCopy(support_temp2, (short)O, a, (short)O, (short)4);�

} II end of method secondRound

II Round 3:
II When H(X, Y, Z) = X A Y A Z,�
II let [abed k s i] denote the operation�
II a = b + «a + H(b,c,d) + X[k] + T[i]) «< s).�
private void thirdRound (byte[] a, byte[] b, byte[] c, byte[] d, byte[] x,�

short offset, byte s, byte tI, byte t2, byte 13, byte t4) {

II H(X, Y, Z) = X A Y A Z

107

bitXor(b, c, support_tempI);�
bitXor(support_templ, d, support_temp2);�

II a + H(b,c,d) + X[k] + T[i]�
arrayCopy(x, (short)offset, support_temp I, (short)O (short)4);�
addBytes(support_temp2, support_tempt, (short)O, (short)3);�
support_tempI [0] = tI;�
support_temp t [I] = t2;�
support_temp1[2] = 13;�
support_tempt [3] = t4;�
addBytes (support_temp2, support_tempI, (short)O, (short)3);�
addBytes (support_temp2, a, {short)O, (short)3);�

lib + «a + H(b,c,d) + X[k] + T[i)) «< s)�
rotateLeft(support_temp2, s, support_temp2);�
addBytes(support_temp2, b, (short)O, (short)3);�

II a = b + «a + H(b,c,d) + X[k] + T[i)) «< s)�
arrayCopy(support_temp2, (short)O, a, (short)O, (short)4);�

} II end of method tbirdRound

II Round 4:�
II When I(X, Y, Z) = y" (X I-Z),�
II let [abed k s i] denote the operation�
II a = b + «a + I(b,c,d) + X[k] + T[i» «< s).�
private void fourthRound (byte[] a, byte[] b, byt.e[] c, byte[] d byte[] X,�

short offset, byte s, byte n, byte t2, byte t3, byte t4) {

III(X, Y, Z) = Y" (X I-Z)
bitComplement(d, support_temp I);�
bitOr(a, support_tempI, support_tempI);�
bitXor(c, support_tempt, support_temp2);�

II a + I(b,c,d) + X[k] + T[i]�
arrayCopy(x, (short)offset, support_tempi, (short)O, (short)4);�
addBytes(support_temp2, support_tempt, (short)O, (short)3);�
support_tempi [0] = tl;�
support_temp1[1] = t2;�
support_temp1[2] = t3;�
support_tempt [3] =t4;�
addBytes (support_temp2, support_tempI, (short)O, (short)3);�
addBytes (support_temp2, a, (short)O, (short)3);�

II b + «a + I(b,c,d) + X[k] + T[i)) «< s)�
rotateLeft(support~temp2, S, support_temp2);�
addBytes(support_temp2, b, (short)O, (short)3);�

II a = b + «a + I(b,c,d) + X[k] + T[i)) «< s)�
arrayCopy(support_temp2, (short)O, a, (short)O, (short)4);�

} II end of method fourthRound

II two bytes are added and result will be saved in the first byte
private void addBytes (byte[] a, byte[] b, short overflow, short length) {

108

if{length = -1)�
return;�

short one_byte = (short)«short)(a[length]&OxOOFF) + (short)(b[length]&OxOOFF) + overflow);
a[length] = (byte)(one_byte & (short)OxOOFF);

if (overFlow(one_byte»�
addBytes(a, b, (short) I, --length)­�

else�
addBytes(a, b, (short)O, --length);�

return;

} II end of method addBytes

II a short value will be added to the byte array�
private void addLength (byte(] total_length, short length) {�

byte[] part_length = new byte[S];�
short offset = -1;�

while (true) {
if (length >= 127) {�

parUength[++offset] = (byte)Ox7F;�
length = (short)(Iength - (short) 127);�

}
else {�

part_length[++offset] = (byte)(Iength%((short) 127»;�
break;�

}�
}�

II call the roundEachLengtb roehtod recursively�
for (short array_index = 7; offset >= 0; --offset, array_index = 7) {�

short one_byte = (short)«short)(totaUength[arraLindex]&OxOOff)�
+ (short)(part_length[offset]&OxOOff);�

totaUength[array_index] = (byte)(one_byte & (short)OxOOFF);�
if (overFlow(one_byte»�

total_length = roundEachLength(totaUength, --array_index, (short) I);�
}�

} II end of method addLength

private byteO TOundEachLength(byte[] total, short index, short overflow} {

if (index < 0)�
return total;�

short one_byte = (short)«short)(total[index}&OxOOff) + overflow);�
total[index} = (byte)(one_byte & (short}OxOOFF);�

if (overFlow(one_byte»�
total = roundEachLength(total, --index, (short) 1);�

return total;

109

} II end of method roundEachLength

private boolean overFlow (short Dum) {

if «short)(num&(short)OxFFOO) >= (short)OxO 100)
return true;

else
return false;

} II end of method overFlow

private void bitComplement (byte[] array, byte[] result) {

for (short i = 0; i < (short)4; i++)
result[i] = (byte)-(array[i]);

} II end of method bitComplement

private void bitOr (byte[] array1, byte[] array2, byte[] result) {

for (short i = 0; i < (short)4; i++)
result[i] = (byte)(arrayl [i] Iarr.ay2[i]);

} II end of method bitOr

private void bitAnd (byte[] array1, byte[] array2, byte[J result) {

for (short i = 0; i < (short)4; i++)
result[i] = (byte)(arrayl[i] & array2[i]);

} II end of method bitAnd

private void bitXor (byte[] array], byte[] array2, byte[J result) {

for (short i = 0; i < (short)4; i++)
result[i] = (byte)(arrayl [i] 1\ array2[i]);

} II end of method bitAnd

II left shift in a byte array with rotation
private void rotateLeft (byte[] array, byte n_shift, byte[J result) {

byte offset = OxOO;�
byte shift = OxOO;�
byte reverse_shift = OxOO;�
byte for_current = OxOO;�
short for_next = OxOO;�

byte first = OxOO;�
byte second = OxOO;�
byte third = OxOO;�
byte fourth = OxOO;�

switch (n_shift % (byte)8) {�
case 0: offset = (byte)OxFF;�

break:�

110

case 1: offset = (byte)Ox80;
break;

case 2: offset = (byte)OxCO;
break;

case 3: offset = (byte)OxEO;
break;

case 4: offset = (byte)OxFO;
break;

case 5: offset = (byte)OxF8;
break;

case 6: offset = (byte)OxFC;
break;

case 7: offset = (byte)OxFE;
break;

)

shift = (byte)(n_shift % (byte)8);
reverse_shift = (byte)«byte)Ox08 - shift);

if (shift = 0) {
shift = 8;
reverse_shift = 0;

}

if (n__shift <= 8) {
first = array[O];
second = array[l];
third = array[2];
fourth = array[3];

} else if(n_shift<= 16) {
first = array[l];
second = array[2];
third = array[3];
fourth = array[O];

} else if (n_shift <= 24) {
first = array[2];
second = array[3];
third = array[O];
fourth = array[1];

I

for_next = (short)«fourth & offset) & OxOOFF);
result[3] = (byte)(fourth« shift);

for_current = (bytelefor_next »> reverse_shift);
fOf_next = (short)«third & offset) & OxOOFF);
result[2] = (byte)«third « shift) I for_current);

for_current = (byte)(fof_next »> revefse_shift);
for_next = (short)«second & offset) & OxOOFF);
result[l] = (byte)«second« shift) I fOf_current);

for_current = (byte)(for_next »> reverse_shift);
fOf_next = (short)«first & offset) & OxOOFF);
result[O] = (byte)«frrst« shift) I for_current);

I 11

for current = (byte)(for_next »> reverse_shift);�
res~lt[3] = (byte)(result[3] I(for_current);�

) II end of method rotateLeft

private void arrayCopy (byte[) source, short s_start,�
byte[] destination, short d_start, short length}�

short perfonn = 0;

for (perform = length; perform> 0; --perfonn) {�
destinatlon[d_start] = source[s_start];�
s_start++;�
d_start++;�

}

} II end of method arrayCopy

l II end of class MD5

Terrninal.j ava

1***·***·******·******·········*****·******·*****··**·•••••••••••••*••***•••••
The class Terminal contains the off-card installation program that transmits a CAP me not

only to the lava Card installer but also to the HashInstaUer installed onto a card before other
applets are installed. Also, this c.1ass enables for a user to run the converter tool, the scriptgen
tool, and the apdutool tool in the Java Card 2.2 Development Kit with pre-created batch files.
.****.*******.***.************.********.*****•••*********··*·*·*··*·***1

import java.awt.*;
import java.awt.event.·;
import javax.swing.·;
import java.io.·;

class Terminal extends JFrame {

II for the top panel�
private lPanel download;�
private lButton download_files;�
private lRadioButton is_server;�
private JRadioButton is_client;�
private ButtonGroup group;�

II for the middle panel�
private lPanel convert;�
private JButton converter;�

II for the bottom panel�
private lPanel off_card;�
private lButton select_eap;�
private lButton install;�

private JFileChooser fe;�
private File cap_file:�
private File batch;�

112

private File scr_ file;
private File out_file;
private File cap_dump;

Terminal 0 {

setTitle("Terminal");�
setDefaultCloseOperation(JFrame.EXIT_0 _CLOSE);�
getContentPaneO·setLayout(null);�
getContentPane().setBackground{Color.green);�

II for the top panel�
download = new JPanelO;�
download.setBounds(25, 25, 250, 105);�
download.setBackground(Color.green);�
download.setBorder(BorderFactory.createTitledBorder�

(BorderFactory.createLineBorder{Color.black), " Download "»;
download_files = new JButton(" Download tI);�
download_files.setBackground(Color.orange);�
download_files.setSize(I00, 40);�

is_server = new JRadioButton("Server Applet");�
is_server.setBackground(Color.green);�
is_client = new JRad.ioButton("Client Applet");�
is_c1ient.setBackground(Color.green);�
group = new ButtonGroupO;�
group.add(is_server);�
group.add(is_client);�

d.ownload.add(is_server);�
download.add(is_c1ient);�
download.add(download_files);�

II for tbe middle panel�
convert = new JPanelO;�
convert.setBounds(25, 145,250,75);�
convert.setBackground(Color .green);�
cODvertsetBorder(BorderFactory.createTitledBorder�

(BorderFactory.createLineBorder(Color.black). II Converter "»;

converter = new JButton(" Convert ");�
converter.setBackground(Color.orange);�
converter.setSize(150, 40);�
convert.add{converter);�

II for the bottom panel�
off_card = new JPanelO;�
off_card.setBounds(25, 245, 250, 75);�
ofCcard.setBackground(Color.green);�
off_card.setBorder(BorderFactory.createTitledBorder�

(BorderFactory.createLineBorder(Color.black), " Off-card installation program "});

install = new JButton(" Transmit ");�
install.setBackground(Color.orange);�
install.setSize(200, 40);�

113

ofCcard.add(install);

II to simulate download applets' classfiles via Internet
download_files.addActionListener(new ActionListenerO {

public void actionPerformed (ActionEvent e) {

II to run a specific batch file
if (!(is_server.isSelectedO II is_client. isSelected())) {

JOptionPane.showMessageDialog
(Terminal.this, "Select one of following buttons: Server Applet or Client Applet",

"Error" .JOptionPane.ERROR_MESSAGE);
return;

II s_down_l(2).bat is a batch file contains commands for copying class files�
II from other directory�
if (is_server. isSelected()) {�

try {
String command = "c:/demo/sourcecode/systemfile/s_dOWD_I.bat";�
Process child = Runtime.getRuntirneO.exec(command);�
child.waitForO;�

} catch (Exception e2) {
}

try {�
String command = "c:/demo/sourcecode/systemfile/s_dowD_2.bat";�
Process child = Runtime.getRuntime().exec(command);�

} catch (Exception e3) {
}

}

II c_down.bat is a batch file contains commands for copying class files�
II from other directory�
if (is_client. isSelected()) {�

try {�
String command = "c:/demo/sourcecode/systemfile/c_down. bat";�
Process child = Runtime.getRuntimeO.exec(command);�

} catch (Exception e I) I�
}�

}�

}
});

II to convert class files and export files to a CAP file and a export file
converter.addActionListener(new ActionListenerO {

public void actionPerformed (ActionEvent e) {

II s convert.bat is a batch file contains commands to run the convert tool�
if (is_server.isSelected()) {�

try {
String command = "c :/demo/sourcecode/systernfile/s_convert.bat" ;�
Process child = Runtime.getRul1timeO.exec(command);�

} catch (Exception ee) :�
}

}

114

II c convert.bat is a batch file contains commands to run the COlivert tooJ�
if (is_c1ient.isSelected()) {�

try {�
String corrunand = "c:/demo/sourcecode/sy temfile/c_collvert.bat";�
Process child = Runtime.getRwltimeO.exec(conunand);�

} catch (Exception eel {�
}�

}�

}
});

II to transmits a CAP file to the Java Card installer and the HashInstaller
II to generate a hash value oftbe CAP file
install.addActionListener(new ActionListenerO {

public void actionPeTformed (ActionEvent e) {

fc = new JFileCbooser("c:\ demo\\terminal");�
fc.setDialogTitle("Select a CAP file");�

int retumVal = fc.showOpenDialog(Terrnina1.this)·�

II a CAP file must be selected for conversion process
if (returnVal = JFileChooser.APPROVE_OPTION)

cap_file = fc.getSelectedFi leO;
else {

JOptionPane.showMessageDialog (Terminal.this, "You must choose a CAP file",
"Error",JOptionPane.ERROR_MESSAGE);

cap_file = null;
return;

String temp = cap_file.getNameO;
if (temp.indexOf{".cap") = -1) {

JOptionPane.showMessageDialo (Terrninal.this, "You must select a CAP file is",
"Error",JOptionPane.ERROR_MESSAGE);�

cap_file = nuB;�
return;�

}

II create a batch file and run the scriptgen tool�
try {�

batch = new File("script.bat");�
scr_file = new File("apdu.scr");�
BufferedWriter out = new BufferedWriter(new FileWriter(batch»;�
out.write("@echo off\n");�
out.write("scriptgen -0 " + scr_file.getAbsolutePathO + " "�

+ cap_file.getAbsolutePathO + "\0");�
out.closeO;�

String batchyath = batch.getAbsolutePathO;�
batchyath = batchyath.replace('\\', 'I');�
Process child = Runtime.getRuntimeO.exec(batchyath);�
child.waitForO;�

115

I catch (Exception e1) {
} fmally {

II after run the scriptgen tool, the batch file will be deleted
batch.deleteO;
batch = null;

}

String dumps = new StringO;
cap_dump = new File("dump");

II create a batch ftle and run the capdump tool
try {

batch = new File("gendump.bat");�
BufferedWriter out = new BufferedWriter(new FileWriter(batch»;�
out.write("@echo offin");�
out.write("capdump " + cap_file.getAbsolutePathO + "\n");�
outcloseO;�

String batchyath = batch.getAbsolutePathO;�
batchyath = batchyath.replace('\\', 'I');�
Process child = Runtime.getRuntimeO·exec(batchyath);�

II standard output of the capdump tool will be recorded in a file�
BufferedReader in = new BufferedReader�

(new InputStreamReader(child.getlnputStream());�
BufferedWriter out2 = new BufferedWriter(new FileWriter(cap_dump»;�

while «dumps = in.readLine()) != null)�
out2.write(dumps + "\n");�

out2.c1oseO;�

} catch (Exception ee) {
} finally {

II after run the capdump tool, the batch file will be deleted
batch.deleteO;
batch = null;
cap_file = null;

}

out_file = new File("updated_s_apdu.scr");�
String input = new StringO;�

byte[] data = new byte[64];�
int length = 0;�
byte apdu_Iength = 0;�
String temp_byte = new StringO;�

II to update the previously generated script file by the scriptgen tool to transmits�
II a CAP file to the Java Card instaIler and the HashInstaller�
try {�

BufferedReader reader = new BufferedReader(new FileReader(scr_file»;�
BufferedWriter writer = new BufferedWriter(new FileWriter(out_file»);�

"'-'fiter. write("powerup;\n\n");

116

writer.write("IISelect Installer\n");
writer. write

("OxOO OxA4 Ox04 OxOO Ox09 OxAO OxOO OxOO OxOO Ox62 Ox03 OxOI Ox08 OxOI Ox7F;\n\n");

while «input = reader.readLine()) != null) {�
writer.write(input + "\n");�

}�

II create an instance of this applet�
writer. write("\n");�
writer.write("/lInstall this applet\n");�
if (is_server.isSelectedO)' {�

writer. write
("Gx80 OxB8 OxOO OxOO OxOA Ox08 OxOO OxOO OxOO OxOO OxOB OxOO OxOO OxOI OxOO

Ox7F;\n\n");
}
else {

writer. write
("Ox80 OxB8 OxOO OxOO OxOA Ox08 OxOO OxOO OxOO OxOO OxOC OxOO OxOO OxOI OxOO

Ox7F;\n\n");
}
reader.closeO;�
BufferedlnputStream bufferin = new BufferedlnputStream(new FilelnputStream(cap_dump»;�

II select hashinstaller applet�
writer.write("IISelect hash installer\n");�
writer.write("OxOO OxA4 Ox04 OxOO Ox08 OxOO OxOO OxOO OxOO OxOA OxOO OXOO OxOI�

Ox7F;\n\n");

II for save AID�
writer.write("IISave AID\n");�
if (is_server.isSelected())�

writer. write("OxBO OxO 1 OxOO OxOO Ox08 OxOO OxOO OxOO OxOO OxOB OxOO OxOO OxO I
Ox7F;\n\n");

else
writer. write(II OxBO OxO I OxOO OxOO Ox08 Ox00 OxOO OxOO OxOO OxO OxOO OxOO OxO 1

Ox7F;\n\n").;

writer.write("IIStart of CAP content\n");�
writer.write("OxBO Ox02 oxon OxOO OxOO Ox7F;\n\n");�

II write a CAP content into script file�
while (true) {�

length = (bufferin.read(data));

if (length = -1)�
break;�

II to change to hex from decimal�
apdu_Iengrh = (byte)(1ength & OxOOOOOOFF);�
temp_byte = (Integer.toString(apdu_length & OxOOOOOOFF, 16)).toUpperCaseO;�

if(temp_byte.1engthO = I)�
temp_byte = "0" + temp_byte;�

117

writer.write("OxBO Ox03 OxOO OxOO" + "OX " + temp_byte + " ");

for (int i = 0; i < length; i++) {
temp_byte = (lnteger.toString(data[i] & OxOOOOOOFF, 16».toUpperCaseO;
if(temp_byte.1engtbO = 1)

temp_byte = "0" + temp_byte;�
writer.write("0x" + temp_byte + II ");�

}

writer.write("0x7F;\n");

} II end of while

II generate a message digest�
writer.write("\n");�
writer.write("11 End of CAP content\n");�
writer.write("OxBO Ox04 OxOO OxOO OxOO Ox7F;\n\n");�
writer.wTite("powerdown;");�

bufferin.closeO;�
writer.c1oseO;�

}catch (FileNotFoundException ee) {�
} catch (IOException eee) {�
} finally {�

scr_ftIe.deleteO;�
sCT_file = null;�
cap_dump.deleteO;�
cap_dump = nuB;�

II create a batch file and run the apdutool tool�
try {�

batch = new File("install.bat");�
BufferedWriter out = new BufferedWriter(new FileWriter(batch»;�
out.write("@echo off\n");�
out.write("apdutool-o result II + out_file.getAbso]utePathO + "\n");�
out.c1oseO;�

String batch-path = batch.getAbsolutePathO;�
batchyath = batch-path.replace('\\', 'I');�
Process child = Runtime.getRuntirneO.exec(batch-path);�
child.waitForO;�

} catch (Exception e1) {
I finally {�

batch.deleteO;�
batch = null;�
out_file.deleteO;�
out_file = null;�

});

118�

I

get ntentPaneO.add download ;
get ontentPane .add(con ert .
get ontentPane .add(ofCcard)·

} II end of constructor

public static oid main (String[] args) {

JFrame frame = new TerminalO;
frame.setBounds(O, 0, 310, 380);
frame.setVisible(true);

} II end of method main

} II end of class Offlnstaller

I

119

*~ VITA)­

SYENG HO JANG�

Candidate for the Degree of�

Master of Science�

Thesis: SECURE OBJECT SHARING ON JAVA CARD

Major Field: Computer Science

Biographical:

Personal: The husband of Seon Kyung Kim, and the father of Lauren Sunny Jang
and Jamie Austin Jang.

Education: Received Bachelor of Science degree in Computer Science from
Oklahoma State University, Stillwater, Oklahoma in July 2000.
Completed the requirements for the Master of Science degree with a major
in Computer Science at Oklahoma State University in May, 2003.

Experience: Employed by Oklahoma State University, Center for Laser And
Photonics Research as a system administrator; Employed by Oklahoma
State University, Department ofComputer Science as a teaching assistant.

