
REDUCING THE SCOPE OF DENIAL OF SERVICE

ATTACKS IN QUALITY OF SERVICE ROUTING

NETWORKS

By

MUNIRUL ISLAM

Bachelor of Science

North South University

Dhaka, Bangladesh

1999

Submitted to the Faculty of the

Graduate College of the

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of

MASTER OF SCIENCE

May, 2003

REDUCING THE SCOPE OF DENIAL OF SERVICE

ATTACKS IN QUALITY OF SERVICE ROUTING

NETWORKS

Thesis Approved:

~hesi~Adviser

-7~~~
-----rtii'ofthe·Graduate College

II

ACKNOWLEDGMENTS

wish to express my sincere appreciation to my major advisor, Dr. Johnson

Thomas for his careful supervision, constructive guidance. precious suggestions,

inspiration and friendship. My sincere gratitude extends to Dr. J. P. Chandler and Dr.

Nohpill Park whose guidance, assistance, encouragement, and friendship are also

invaluable.

I would also like to give my special appreciation to my mother, Mrs. Nasim

Islam, for her love and encouragement. I wish to convey my gratefulness for her

blessings and her support to inspire me to finish my degree. In addition my thanks

extends to all my family memberS' and friends who were there to motivate me throughout

my research effort.

Finally, I would like to thank the members of the Department of Computer

Science for their support during the two and a half years ofmy study.

1lI

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION' 1

1.1 MOTIVATION '" '.'. '" 2

2. LITERATURE REVIEW 4

2.1 DoS AND DDoS 4

2.1.1 SPOOFING 6

2.1.2 FILTER 6

2.2 ROUTING ON THE INTERNET 8

2.2.1 FIXED ROUTIN"G 8

2.2.2 ADAPTIVE ROUTING 9

2.2.2.1 DISTANCE VECTOR ALGORITHM 9

2.2.2.2 UNK STATE ALGORITHM ll

2.3 QoS ROUTING 12

2.3.1 BELLMAN-FORD-MOORE ALGORITHM 13

2.3.2 BANDWIDTH-DELAY CONSTRAINED QOS ROUTING '" .17

3. THESIS OBJECTIVE 18

4. DESIGN 19

4.1 ASSU:MPTION 19

IV

4.2 INPUT 19

4.3 SECURE BELLMAN-FORD-MOORE ALGORITHM 20

4.3.1 A METRIC FOR SECURITy 21

4.3.2 MODIFIED SECURE BMF ALGORITHM 23

4.3.3 TRACEBACK 24

4.4 SECURE DISTANCE VECTOR ALGORITHM 24

4.4.1 DENIAL OF SERVICE ATTACK 27

4.4.2 TRACEBACK 28

5. IMPLEMENTAION APPROACH , 29

5.1 PROTOCOL DESIGN 30

5.1.1 FINDING OUT NEIGHBORS 30

5.1.2 FINDING OUT FILTER COVERAGE FOR A NODE ..30

5.2 SECURE ROUTING PROTOCOL BASED ON BELLMAN-FORD-MOORE

ALGORITHM 31

5.2.1 PACKET FIELDS 3 t

5.2.2 PATH RESERVATION 39

5.2.3 TRACEBACK 40

5.3 SECURE ROUTING PROTOCOL BASED ON DISTANCE VECTOR

ALGORITHM 41

5.3.1 PACKET FIELDS 41

6. SIMULATION RESULTS AND ANALYSIS 47

v

7. CONCLUSIONS 56

REFERENCES 57

APPENDICES 59

APPENPIX A - GLOSSARY 59

APPENDIX B - IMPLEMENTATION 60

VI

LIST OF FIGURES

fi~re P~

1. DoS Attack ' 5

2. DdoS Attack 6

3. Input Example 20

4. Hello Packet Travel Path 25

5. Flow Diagram for Secure DVA 27

6. Neighbor Table Construction 30

7. Reservation ofa Path .40

8. Security on 20-node network .48

9. Security on 40-node network 50

10. Security on 60-node network , , 52

II. Security on 80-node network 54

Vll

LIST OF TABLES

Table Page

1. Forwarding Table for node 1 26

V111

NOMENCLATURE

DoS Denial of Service

DDoS Distributed Denial of Service

QoS Quality of Service

DVA Distance Vector Algorithm

BFM Bellman-Ford-Moore

IX

Chapter 1

Introduction

Denials of Service (DoS) attacks consume the resources of a remote host or

network that would otherwise be used for serving legitimate users. DoS continue to be a

pervasive problem for Internet services, as evidenced by the recent denial of service at

Computer Emergency Response Team (CERT) [7]. Such attacks require each attacking

node to perform only a small amount of work, relying on the cumulative efforts ofmany

machines to overload the victim node. Attacks range from simple Internet Control

Message Protocol (ICMP) ping requests to sophisticated attacks that are difficult to

distinguish from a sudden spike in legitimate use.

In a Distributed Denial of Service (DDoS) attack, the perpetrators may spend

weeks or months subverting hundreds or thousands ofmachines by exploiting well

known security flaws. Once the machines are subverted, the perpetrator installs tools to

execute an attack. On command, the prepared machines (known a "zombie")

collectively target a specified victim with a packet stonn consisting of repeated packet

requests. The packets may also have forged return addresses, allowing one machine to

generate requests that appear to be coming from hundreds of machines, and making the

sources of the attack difficult to trace. This problem may intensify since newer operating

systems that are being introduced may make it easier to spoof IP addresses [6]. Halting

these attacks is nontrivial and typically relies on filtering at the router (or just waiting out

the "packet stonn").

New multimedia applications and message passing demand more bandwidth and

are less tolerant to jitters, delays and lost packets than the traditional data applications

1

that have so far dominated the networks. Real-time quality of service (QoS) of the

network is essential for such applications on low capacity links and over long hauls.

Although the issues of QoS and resource reservation have been studied in great

detail, but the QoS protocols do not offer any fonn ofsecurity. In this paper, we explore

these issues by implementing two protocols that provide QoS with a measure of security

for peer to peer networking. The first protocol reserves the best secured path for

multimedia applications and the second protocol finds the most secured path for a

message on an ad-hoc basic.

1.1 Motivation:

According to CNN, In February 2000 a number of popular websites were slowed

or shut down by distributed denial of service attacks. Amazon.com, Buy.com, CNN.com,

eBay, E*Trade and ZDNet were all victims ofthese attacks. Analysts estimated that

Yahoo! lost $500,000 in e-commerce and advertising revenue when it was knocked

offline for three hours. [14]

Part of the problem with DoS attacks is the sheer number ofways in which they

can operate. A DoS attack can be launched to overwhelm a target's Web site, CPU,

memory, network bandwidth or routers. It can also work by taking advantage of known

flaws in products. [5]

Distributed DoS (DDoS) attacks are another variation. Such assaults, which are

more difficult to detect than other DoS attacks, involve short-lived bursts of spurious

traffi,c directed at a target from multiple sources and are aimed at slowing network

perfonnance. The problem arises because almost all DoS attacks involve multiple

2

networks and attack sources, many of which have spoofed IF addresses to make detection

even harder.

These alanning issues need to be addressed and plethora of design parameters

must be considered in order to come up with a secure network system.

3

Chapter 2

Literature Review

2.1 DoS and DDoS:

DoS attacks, when successful, make a system difficult or impossible to use. Some

attacks crashes the systems, others merely make them so busy that no useful work is

done. There are two principal classes of attacks:

Logic attacks and flooding attacks. Attacks in the first class, such as the "Ping-of

Death", exploit existing software flaws to cause remote servers to crash or substantially

degrade in perfonnance. Either upgrading faulty software or filtering particular packet

sequences can prevent many of these attacks, but they remain a serious and ongoing

threat. The second class, flooding attacks, overwhelm the victim's CPU, memory, or

network resources by sending large numbers of spurious requests. Because there is

typically no simple way to distinguish the "good" requests from the '"bad", it can be

extremely difficult to defend against flooding attack .

The WWW Security FAQ [11] describes a DoS attack as:

"an attack designed to render a computer or network incapable of providing

nonna! services. The most common DoS attacks will target the computer's network

bandwidth or connectivity. Bandwidth attacks flood the network with such a high

volume of traffic, which all available network resources are consumed and legitimate

user requests cannot get through. Connectivity attacks flood a computer with such a high

volume of connection requests, that all available operating system resources are

consumed, and computer can no longer process legitimate user requests."

4

Figure 1 (below) depicts the scheme of a simple DoS attack. The services will be denied

until the source of the attack can be identified and calls from source can be blocked.

Here, the attacker takes control of a computer (zombie) which then become the source for

the actual attack.

~I----------..I~~f--------..I~~
,,- Zombie VlcUm

Figure 1: DoS attack [9]

Consequently attackers have discovered new ways of bringing these system to its

knees. They don't use single bosts for their attacks but they also cluster several dozens or

even hundreds of computers to do a coordinated strike. The WWW Security FAQ [11]

on Distributed Denial of Service (DDoS) attacks, as these fonns are called:

"A Distributed Denial of Service (DDoS) attack uses many computers to launch a

coordinated DoS attack against one or more targets. Using client/server technology, the

perpetrator is able to multiply the effectiveness of the Denial of Service significantly by

harnessing the resources ofmultiple unwitting accomplice computers that serve as attack

platforms."

Figure 2 depicts a DDoS network where the attacker controls one or more

computers (masters), which then control several more zombies. This in turn means more

pathways that need to be blocked, along with a dramatic increase in the amount of

resources being consumed by the target.

As we can see, there is only one attacker in a DDoS attack. The attacker takes

over a number ofmasters. The masters control several zombies. And the zombies do the

actual attack and bring down a network.

5

Zombie

Figure 2: DDoS Attack [9]

2.1.1 Spoofing:

To conceal their location, thereby forestalling an effective response, attackers

typically forge, or "spoof', the source address of each packet they send. Consequently,

the packets appear to the victim to be arriving from one or more third parties.

2.1.2 Filter:

Consider a point-to-point communication network representing as a directed

graph G = (Y, E), where V is the set of all nodes and E is the set of links in G. Let 1;(u. v)

denote the set of all loop-free paths from u to where u, v E V. A routing algorithm and its

computed routes lead to a subset R(u,.v) c((u, v). An IP packet M(s,t) with source lP

address s and destination IP address t is routed through the network according to R(s,t).

A filter [4] Fe: y 2 is a function defined for the link e = Cu. v) E E where this is

interpreted to mean that a rouler in v acting as a peering inspects an IP packet M(s. t)

6

arriving on e, then decides whether to forward the packet (Fe(s,t) = 0), or filter-i.e.,

discard-the packet (Fe(s,t) = 1). We call Fea route-based packet filter with respect to R if

FeCs,f) = °for e E R(s,!).

With a slight abuse of notation, we can use "e E R(s.t)" to mean that link e is on

some path belonging to R(s,t). Thus a route-based filter is safe in the sense that it does

not discard packet that are potentially consistent with respect to R as judged locally at e.

A route-based filter is maximal [4] if it satisfies Fe(s,!) = °if, and only if, there exists a

path in R(s, f) with e as one of its links. Thus a maximal route-based filter carries out all

the filtering of spoofed IP traffic that is possible without adversely affecting routing of

non-spoofed IP packets as detennined by R.

A semi-maximal [4] filter is a maximal filter which uses only the source IP

address of a packet to out its filtering (i.e., a projection of Fe). In other words, Fe(s,t) is a

semi-maximal filter with respect to R if

Fe(s,t) = { 0, if e E R(s.v) for v E V;

1, otherwise

Hence, its filtering capability is, in general, less than that of its maximal

counterpart. Although we lose in potential filtering power - but a semi-maximal filter can

be represented by a filtering table in linear space, which brings it to the domain of

feasibility, if not practicality.

We include semi-maximal filters to achieve security features within a network. In

this paper, filter and semi-maximal filter notation is used interchangeably.

7

Example:

With packetfiltering executed at node 8, the spoofable address range at attack site 1. is

reduced/rom SJ.9 = {O,1,2,3,4,5,6,7,8} to {O,I,2,3,4.. 5}.

2.2 Routing on the Internet:

Intemet[8] is a packet switched network where routing is done on a per packet

basis. Devices called routers make the routing decisions. The routers are responsible for

receiving and forwarding packets through the network. Each router maintains a routing

table. which acts as reference to decide the next hop router to which a packet should be

forwarded. Depending on how the routing tables are updated, routing can be classified

into two categories: Fixed Routing and Adaptive Routing.

2.2.1 Fixed Routing:

Fixed routing is a simple routing scheme where a single pennanent route is fixed

for each source and destination pair in the network. The routes are mostly fixed, unless

there is a change in the topology of the network. Hence, in this case the routing cannot

be perfonned on any kind of dynamic variables such as cost, delay or bandwidth. Fixed

8

routing requires the routing tables to be pre-configured and so is not capable of taking

any action during congestion or network failures.

2.2.2 Adaptive Routing:

As the name implies, adaptive routing is adaptive to changes in the network. The two

main conditions that influence the routing decisions are: network failure and congestion.

Though adaptive routing sounds very attractive, it has its drawbacks too.

•	 Algorithms to determine paths based on dynamic parameters get very complex,

increasing the processing burden on the routers.

•	 To make effective routing decisions, the routers have to be updated from time to

time about the state of the network. But this update adds overhead to the already

burdened network.

Adaptive routing algorithms can be classified based on the way a router updates its

information. If the adjacent routers initiate the update it is called the Distance Vector

Routing algorithm, and if the updates are based on information from all the routers it is

called the Link State Algorithm.

2.2.2.1 Distance Vector Algorithm:

Distance vector algorithms [15] based on a table giving the best route to every

destination in the system. We have to define a "metric" in order to fmd the best route. In

simple networks, it is common to use a metric that simply counts how many gateways a

message must go through. In more complex networks, a metric is chosen to represent the

total amount ofdelay that the message suffers, the cost of sending it, or some other

quantity, which may be minimized. The main requirement is that it must be possible to

represent the metric as a sum of "costs" for individual hops.

9

Formally, if it is possible to get from node i to node j directly, then a cost, d(iJ) is

associated with the hop between I andj. In the normal case where all entities on a given

network are considered to be the same, d(iJ) is the same for all destinations on a given

network, and represents the cost ofusing the network. To get the metric ofa complete

route, one just adds up the costs of individual hops that makes up the route. We assume

that the costs are positive integers.

Let d(i,j) represent the metric of the best route from node i to node j. It should be

defined for every pair of nodes. d(i,j) represents the costs of individual steps. Formally,

let d(iJ) represent the cost of going directly from node I to node j. It is infinite if i and j

are not immediate neighbors. Here, d(i,i) is infinite. So, there is no direct path from a

node to itself. Since the costs are additive, it is easy to show that the best metric must be

described by

d(iJ.) = 0, all i

d(IJ) = mink[d(iJ) + d(kJ)], otherwise

and that the best routes start by going from i to those neighbors k for which d.(i,k) + d(kJ)

has the minimum value.

Example: Dest Cost Next

B 1 BI

C 1 C

D 00
E 1 E

F 1 E

G 00

10

A graph of7 nodes. Initial cost vector at A. We are doing the routing from A's

perspective. Initially A receives hello packets from its neighbors and updates its table

accordingly.

Dest Cost Next

B 1 B !

C 1 C

0 2 C

E I .E

F 1 E

G 2 F

After the first iteration, A's table has information for all the nodes.

2.2.2.2 Link State AJgprithm:

In these algorithms a router does not limit its updates only to its neighboring

routers, rather the routing updates are flooded to all the routers in the network. Link state

algorithms are so called because, instead of advertising a list ofdistances to each known

destination, a router running a link state algorithm floods the network with state of the

local link. The result is that all routers obtain the same database of collected

advertisements, collectively describing the current map of the network. Using this

11

network map each router runs Dijkstra's algorithm [13] on it, resulting in shortest path

distances to each of the destinations.

In Dijkstra's algorithm we start from source towards destination. Steps in

Dijkstra's algorithm:

1.	 Set probe node to starting node.

2.	 Probe neighboring node and tentatively label them with (probe node,

cumulative distance from start).

3.	 Search all tentatively labeled nodes for the minimum label, make this

minimum node's label pennanent, make it the new probe node.

4. If the probe node is the destination node, stop, else goto 2.

Here, the distance part of the node labels is cumulative distance from the source node, not

simply distance from the last probe node.

2.3	 QoS Routing:

Under QoS based routing, paths for flows would be detennined based on some

knowledge of resource availability in the network as well as the QoS requirements of

flows. The metrics used to compute the paths playa very important role in QoS routing,

since these metrics represent the basic network properties of interest, such as residual

bandwidth, delay, jitter and monetary cost.

In our discussions we assume one metric on any link, i.e., bandwidth.

The QoS routing problems can be divided into two major classes: unicast routing

and multicast routing. Unicast routing aims at finding paths from source to the

destination satisfying one or more constraints. On the other hand, multicast routing aims

at finding an optimal tree such that the paths from the source to a set of destinations

12

satisfy one or more constraints. Generally speaking, unicast routing could be considered

as a special case of multicast routing problem. This thesis deals with unicast routing

problem.

We first give an examp]e of delay-constrained unicast routing. We do that by

explaining the BelLman-Ford-Moore (BFM) algorithm.

2.3.1 The BFM algorithm:

Consider a point-to-point communication network representing as a directed

graph N = (V, E), where V is the set of all nodes and E is the set oflinks in N. The

algorithm associates to variables with node u, namely CLABEL{u) and PRED(u). At any

step in this algorithm CLABEL(u) represents the cost of a path from node s to node u and

PRED(u) indicates the node from which node u has received its latest CLABEL value.

Initially CLABEL(s)=O, CLABEL(u)=oc, for all u E V and u"* sand PRED(u)=u for all

u E V.

The general step in the algorithm is:

Pick any link (u,v) such that CLABEL(u)"* 00 and CLABEL(v) > CLABEL(u) +

Cu.v. Set CLABEL(v) = CLABEL(u) + cu,v and PRED(v) = u.

If no such link is available, the BFM algorithm terminates.

Here, t is the destination. At termination CLABEL{t) gives the cost of a minimum cost s

t path. This path can be traced starting at PRED(t) and working backwards towards the

source node s.

We next present an efficient O{m,n) implementation ofBFM algorithm [13].

13

In the following discussion scanning a node u means examining all the edges (u,v) and

labeling the neighbor nodes ofu, if possible. A sweep of the BFM algorithm refers to the

process ofscanning all the nodes 1,2,3 ,n in that order.

Following is an implementation of the BFM algorithm using the concept of the

sweep.

The BFM algorithm:

1.	 (INITIALIZATION) Set CLABEL(s) = 0, CLABEL(u) = 00, for all u E V and

u"* s and PRED(u) = u, for all u E V.

2.	 Perlonn a Sweep.

3.	 If no node CLABEL value gets updated, STOP. CLABEL(t) gives the cost of the

min-cost shortest s-t path. OtheIWlse, repeat step 2.

It can be shown that after performing n sweeps the BFM algorithm will terminate,

resulting in the time complexity of 0 (mn).

Here, while scanning a node u during a sweep, the current value of CLABEL (u) i

used to label the neighbors of node u.

e----cu.v----e

Q
10

4

1

14

Initialization:

(00)
(00)

10

CLABE
(0) Q5

6
(00)

1

(00)
(00)

Sweep 1:

(10)
(00)

10

ClABE
(0) Q5

4 6

1

(1)
(00)

Sweep 2:

(5)
(7)

10

CLABE
(0) Q5

1

(1)
(2)

15

Sweep 3:

(3)(4)

CLABE

10

5~(3)(0) Q 6
s)J

11

(2)
(1)

Sweep 4:

(3)
(4)

10

ClABE
(0) Q 4

s

1

(2)(1)

So, the path is s-2-4-1.

As we can see the BFM algorithm is only concerned with finding a QoS path

from source to destination. It does not have any security features. To deal with situation,

we have devised a QoS heuristic based on the BFM algorithm. To include security

feature, we have use some of the nodes as filters. By using filters we are able to block

some of the IP spoofing attacks. Using the filter infonnation we can traceback to a set of

nodes, which are capable ofspoofing.

16

Next we talk about Bandwidth-Delay constrained QoS routing [16]. It is based on

the standard Dijkstra's algorithm.

2.3.2 Bandwidth-Delay Constrained QoS routing:

The problem is defined as finding a path that has bandwidth greater than Band

having total delay less than D. This algorithm first deletes all those nodes from the graph

that has bandwidth less than B. From the remaining graph, we find the path with length

less than threshold based on Dijkstra's algorithm. The algorithm is:

1.	 Set dij = 00, ifbij < B

2.	 Set L = {l}, Dj = b1i for alll~1

3.	 Find ktL so that Dk = min D j

IfDk> D, no such a path can be found and algorithm tenninates.

If L contains node m, a path is found and algorithm terminates.

L= Lu {k}

4.	 For all I not belonging to L, set D j = min[Di,Dk+Dki]

5. Goto step 3

Step 1 removes the low bandwidth path and step~ 2-5 find a path satisfying delay

constraint.

17

Chapter 3

Thesis Objective

In particular this thesis investigates 2 classes ofQoS routing algorithms, namely

resource reservation algorithm and dynamic algorithms. In resource reservation

algorithms, packets are sent on a particular path from a source once the path is computed

and reserved for the source to destination communication. And in dynamic algorithms, a

path is chosen from a node to a neighbor node on an ad-hoc basic till the packet reaches

the destination. Distance Vector Algorithm is a dynamic algorithm whereas BFM and

Dijkstra's algorithms are resource reservation algorithms. We take a look at DVA and

BFM as they represent an algorithm from each class. As BFM is faster and more

efficient than Dijkstra's, we chose BFM in this study. Our objective is to propose a

secure DVA and secure BFM algorithm.

The protocols are va.lidated defining security and QoS metri.cs. The two main

objectives of this thesis are:

1. Propose secure BFM and DAV QoS algorithms

2. To evaluate the effectiveness of these secure protocols.

18

Chapter 4

Design

4.1 Assumption:

We make certain assumptions for this study.

1. All the links within the network is one-directional

2. All the nodes are numbered

3. The initial bandwidth of each of the links is supplied manually

4. The system knows all the location of the ftlter locations

Two Routing Algorithms are proposed in the following subsections. The first

algorithm is based on the BFM algorithm and the second algorithm is based on the

Distance Vector algorithm.

4.2 Input:

The algorithms work on a direct network structures with filters. Each node is

numbered. We assume that we know the bandwidth available on each of the links

(denoted by labels on each link).

The network in the diagram below displays an example of a network structure. Here, the

filters are displayed in bold color. This network diagram is used for the explanation of

the protocols.

19

600 750

J"
(6 ;-850

'r
700

'\} ~ ""

""~, "~ l:roo--<-: ~ r... I

6 0-,.. ...-0

Figure 3: Input Example

4.3 Secure BFM Algorithm:

This algorithm finds a secure path from a source node to destination and reserves

the path for future communication. It follows the Bellman-Ford-Moore algorithm to find

most secure path. This protocol can be used for multimedia communications.

In this case, there are fewer chances for a denial of service attack. The attacker

must reside within the reserved set of nodes. But it takes more time to find a path from

source to destination, as we need to first find the path, then establish connections and

then send packets. Once a path is established from source to destination, only that

discovered path can be used to send packets from the particular source to the destination.

To send packets on a new path, a new connection needs to be established.

20

4.3.1 A Metric for Security:

We need a security measure that can be used as a constraint along with bandwidth

in this algorithm. We may find the securit.y measure by going through an example.

In our input example:

We have the nodes 6, 10 and 12 as filters.

7 paths from node 1 to node 16

Path A 1-2-6-10-15-16

Path B 1-2-6-7-11-12-16

Path C 1-2-6-10-14-15-16

PathD 1-5-10-15-16

Path E 1-5-9-10-15-16

Path F 1-5-10-14-15-16

Path G 1-5-9-10-14-15-16

From each link, a filter can detennine its coverage:

Filter 6 has only one input link - covers nodes 1 and 2

Filter 12 has only two input links -link Icovers nodes 7 and 11, link 2 covers

nodes 3, 4 and 8

Filter 10 has three input links - link I covers nodes node 6 (which is itself a filter), link 2

covers 1 and 5, and link 3 covers nodes 1,5,9, 13

Let S(Fu) be the set ofnodes covered by filter i on link [.

Therefore,

S(F6./) = 1,2

S(FI2./) = 7, 11

21

S(F/lu) = { } (empty)

S(F/lu) = 1,5

S(FIO. j) = 1,5,9, 13

Given this scheme the spoofable nodes are:

Path A 1,2, 15

Path B 1,2, 7, 11

Path C 1,2, 14, 15

PathD 1,5,15

Path E 1, 5,9, 13, 15

Path F 1,5, 14, 15

Path G 1,5,9, 13, 14, 15

Let PA be the set ofnodes in a path A

Let UF:.A be the set of n filters in a path A
I_I

Let D be the destination node

Let US(F,.I) be the spoofable set of nodes in a path
'-I

For example in path B.

Path B 1-2-6-7-11-12-16

S(F12.1) = 7, 11

In other words,

S(F6..>US(F,2.1) = {1,2,7,1l} =US(F,") for path B
/-1

The security measure for a path is therefore:

22

PA -clJF:.AUD)U«(jS(F:,,»
/-1 '_I

The best security path is therefore:

n n

max«(PIf -(UF:.AUD»U(US(F:,l» (I)
;=1 i=l

4.3.2 Modified Secure BFM algorithm:

In the following discussion scanning a node v means examining all the edges (u,v)

and labeling the neighbor nodes of u, ifpossible. A sweep refers to the process of

scanning all the nodes as 1,2,3,.....n in that order.

Following is an implementation of the algorithm using the concept of sweep.

1. Initialization

2. Sweep

3. If for no node PA value gets updated, STOP.

luitialization:

The source node (suppose node 2) is named AI. AI names the nodes in its

forwarding table as A2, A) ... and so on. If there is no alias for the destination node, the

algorithm fails.

Then we update the filter coverage accordingly.

For example when source is node 1:

Filter coverage for node 6 at link 1 is : {A" A2}

Filter coverage for node 12 at link 1 is: {A7, ALO}

Filter coverage for node 12 at link 2 is: {3,4, 8}

Here, Al is an alias for node 1. Both can be used to denote node 1.

23

Let s be the source node. Initially PAis {s} for the source node sand {I ,2, ... ,ex:}

for the rest of the nodes. AI, A2, ... , An are the nodes in consideration in the initialization

stage. So, for any node v except s, cardinality IPA(V) 1 = oc.

Sweep Phase:

Il u

Pick any link (u,v) such that I(PACu) - (UF;,A(It)UD)UCUSCFI.I») 1>1 PA(v) 1and
;=1 ;=1

(Bandwidth(v) >= bandwidthRequired).

PA(V) = PA+ v (where v is not a filter and not the destination).

If no such link is available, the BFM algorithm terminates. At the tennination PA

provides the s-t path.

We provide an example of this algoritlun. in the next section.

4.3.3 Traceback:

Once tbe path is established any node (except the filters and destination) in the

path can spoof. In this way the number ofnodes that can spoofdecreases.

Equation: Suppose a is an attacking node.

II

a E (PA -CUFA + D)
;=J

n

For UFA finds the number of filter for path PAand D is the destination.
;=1

4.4 Secure Distance Vector Algorithm:

This algorithm finds a secure QoS path from a source to destination within a

network. It follows the Distance Vector Algorithm to find the most secure path. The

QoS metrics used are hops and bandwidth. Initially each node floods a hello packet

throughout the network. A hello packet contains the node id, the number ofhops,

24

number ofregular nodes and the number of filters the packet has traversed till now. Any

node receiving a hello packet updates the hop number, number of regular nodes and

number of filters on the path; and fOlwards the packet to its incoming links. Though we

assume that the user-defined network is uni-directional, the hello packets are allowed to

traverse in the opposite direction. The following diagram displays the traversal path of

hello packets initiated by node] 6.

80:\1

6
Figure 4: Hello Packet travel path

Upon receiving the hello packet, each node updates its forwarding table. A

forwarding table contains information about a destination, next hop towards the

destination and the total hops required to reach the destination, the number ofregular

nodes on the path and the number of filters on the path.

25

Next is a forwarding table of source node 1 containing necessary information to

send packets towards a destination.

Destination Next Hop Hop Regular No. of filters
nodes

2 2 1 1 0
3 {} 0 0 0
4 f} 0 0 0
5 5 1 I. 0
6 2 2 2 0
7 2 3 2 I.
8 {} 0 0 0
9 5 2 2 0
10 2 3 2 I.
10 5 3 3 0
11 2 4 3 1
12 2 5 4 1
13 {} 0 0 0
14 2 4 2 2
14 5 4 3 I.
15 2 4 2 2

I15 5 5 4 1
1.6 2 5 3 2
1.6 5 5 4 I.

Table I.: Forwarding Table for node I.

The rest of the nodes also create its own forwardi,ng in similar fashion.

We may have multiple entries for a destination in the forwarding of a node. This

only means that there are multiple paths from this node towards the destination. In that

case, a node will forward the packet to a neighbor based on bandwidth available and hops

required. Also, it sends the packet to a neighbor through which it takes the minimum

number of regular nodes and the maximum number of filters to traverse to reach the

destination. If two or more paths have similar metrics, then a node chooses one of the

26

paths on a random decision. It has been mentioned earlier that each node is assumed to

know about each of its outgoing links.

Next we provide a flow diagram showing how a packet from a source node

reaches the destination node.

Source Node Sends Packet
to a Desllnatlon

Is the Intermediate
node a filter?

yes

check filter
coverage for the no

source node

Intermediate nodel
filter checks

Invalid packet no forwarding lable

discard

send to neighbor

node from forwarding

table with highest

bandwidth

with minimum hop.

minimum number of

regular nodes and

maximum numbar of

filters

Figure 5: Flow Diagram for Secure DVA

The following section provides an example of this algorithm.

27

4.4.1 Denial of Service (DoS) Attack:

DoS attack can occur if one or more nodes start spoofing on behalf of another

node and start sending packets to a destination. lfthe attacking nodes are already in the

filter coverage, the filters would not block the inflow ofpackets towards the destination.

As a result, the bandwidth will be consumed on the particular links. Therefore, the

network communication is highly likely to be freezed on those particular links. Important

messages sent by other nodes will be dropped and fai I to reach the destination. If

multiple node target a destination, then distributed denial of service attack will occur.

Thus, the destination node may have to shut down its operation shortly because the

incoming packets may overflow its queue.

4.4.2 Traceback:

The problem is that we cannot pinpoint any specific attacker in the case of denial of

service attack. We just can make a prediction based on the filter coverage of the spoofed

node.

However, we are certain that the attackerls are members of the union of filter coverage

for the spoofed node.

Here, k is the source node. Sk(Fi,,j gets the filter coverage for filter i on link I for source

node k.

28

Chapter 5

Implementation Approach

The protocols would be tested for several network systems. Visual C++.net

would be used for the implementation purpose and the platfonn would be Windows

98/20001XP. We assume that the user provides the network structure and the location of

the filters. We consider that the links between nodes are uni-directional. An example of

an input network is given below:

Q-...-ep
'5.

",0

..1"

'r
12)

0' •
0 ••

o
0••

...-6

29

1

5.1 Protocol Design:

5.1.1 Finding out neighbors:

We assume that each node only keeps infonnation about its first degree neighbor .

Initially each of the nodes forwarding table is empty. Each node sends hello packets to

its incoming links. We assume that hello packets can be sent in the opposite direction.

Each node updates its neighbor table after receiving the "hello" packets.

A hello packet contains basic Infonnation about the sender node. Once receiving

a hello packet, a node easily learns about the source.

For example:

Node 1 receives hello packets from node 2 and node 5. Thus node 2 and node 5

notify node 1 about their presence.. Therefore, forwarding table for node I is: {2,5}

hello packet

hello
peckel

Figure 6: Neighbor Table Construction

5.1.2 Finding out Filter Coverage for a node:

At first the user selects the source node and the destination node. Initially the

source node sends out control messages towards the filter. Each node receiving the

control packet adds its node id to PA and then forwards it to its neighbor nodes.

Let S(Fu) be the set of nodes covered by filter I on link I.

30

Initially S(Fu) is empty for all the filters.

Once a filter receives PA. it updates its spoofable set for the source node. It takes

non-filter nodes the nodes in PA after the last filter specified in PA. The filter sends

control message containing PA to all its outgoing links.

Once this is done, all the other nodes that were not included in PA sends out

control messages with their node id. S(Fu) is updated after each filter receives PA from

these nodes.

We assume that the filter coverage same for both protocols.

5.2 Secure Routing Protocol Based on BeUman-Ford-Moore Algorithm:

5.2.1 Packet Fields:

(Source id, PA, Destination id, cid, bandwidth Requirement)

Here, cid is the job id. PAis the set of all nodes on path A. Initially the user

specifies the bandwidth requirement for the connection. A node receiving a request

checks for PA • If it is on the path, it discards the request as it finds a loop.

The following is an example of this protocol where the source node is 1 and

destination node 16 and Bandwidth required = 300.

31

Initial ization:�

Bandwidth required = 300�

600�

8�
lnitially SOUfce node A] hasPA= {I} and rest of the nodes has PA = {1,2 ... ,oc).�

Sweep 1:�

32�

Al sends packet to A z and A3. IPAI at Az and A3 is greater that {I}. So, Az updates PA to

{1,2} and A3 updated PA to {1,5}.

33�

Sweep 2:

A2 sends packet to A6 (filter). As A6 is a filter PA remains unchanged at A6.

Sweep 3:

G(~~~ O-~-Y
550 600 p. = 750

~r~ (~;:~ (.)
700 600 "" Y

P.={1.5.9} I P.=e-} - ~
P ={} .. PI. -{} ""'

A,j9 no~A,I~~ ~JA,/12)A,/11

(800 '1800

G p.=oA\ p.. ={}
600 :G- ~={}
~700 ,..,/15 900 ,..,/16

34�

A 3 sends PA to As. IP AI at A3 = cx:, as a result at A3 PA becomes {I ,5,9}

Sweep 4:

800�

6�
A6 sends PA to A 7 (filter). PA remains unchanged at A7.

Sweep 5:

State unchanged

As sends P A to A7. IPAI at As is 3, whereas IPAI at A7 is 5. So PA remains unchanged at

35�

Sweep 6:

P.. ={1,2)

v~-<? O-~y

550 600 p .. = 750

$0115l (~;::~6.n 9
700 600 750

P.. ={1.5,9}P = ~ P .. =8- 85O~
.. {1,2..6,7,11 P = {}

As/9 {1 ~6~1. '""\ .. ., /

770 ,!~~ AJ11 800--.1 All/12)

\ BOO ':1
800

~P"~_{}o 600PA={~ p.. ={}
~700 A,r/15 900 ~/16

A6 sends PA to Ag. PA at Ag get updated to {1,2,7,lO}

Sweep 7:

P.. ={1} P,={1.2}

q>-~-<? 0-'OOy
550 600 p.. = 750

0r'~ (~;::~.n ~
'00 600 ".C0- Y

P,=(1.5.9} \ 850
AJ9 {1~6:? +"'\ p.. = {1,2,7,11} p.. = (~ ~

770 ,A,/10 A,f11 800-.1 Alll12)

(800 ':10
800

8
Pzj=600 P _ {}

{1.2~~1~,1~ {1,2,6\O,15

~700 A,r/15 900 A,/16

36�

A7 sends PA to A9 and Alo. PA gets updated for both the nodes.

Sweep 8:

9-~~2J &800y
550 600 P = 750

PA ={1.2.6.7}A \..... {,.~.61

~'J1'~ (:r)-'W---7 9
700 600 750

P =(1.5.9} I PA = P - 850 P =
A

.. (1.2.6.10) {1.2,6.;,11} ~.2.6,7,11.12)

""--<:-/~~ A,/11 SOOJA,,/,,)

\ 800 'l
800

{1.2~~1~.1~ {1.2~~1~.1~ P =~
~700~900~8

A

A II is a filter. Upon Receiving PA from As, AIl updates it PA to {I ,2,6,7,10}

37�

Sweep 9:

9-=~21 o-~y
550 600 p = 750

~r'5} (~~~6n 9
700 600 750

P = (1 5 9} P = 850 P =
A ., \ A ~ (1 A

.. {1.2,6.10} ~.2.6.7.11.12}

71O_{Y~~ 800--./:::,?AJ"

\ 800 640

6
800

P = A
A 600 P =~ P{0-(}

(1 ,2.6.10.1~{1.2.6.10.14.1

~700 A,r/15 900 A.!16�

A9 sends PA to AIO. IP AI at AJO is less than the received PA. PAis changed at AIQ.

38�

Sweep 10:

P
A

={1} PA ={1.2}

0-
800

7~~ -«
550 600 PI. = 750

$~{1'5} (~;:::~2o.n

700 600 750 B50 P _
PA = {1.5.9} \ PI. = P = 1.

" {1 .2,6.1 O} {1.2,~.7.11} ~.2,6.7.11.12}

BOO----.l'A11/12j770~/~~
'1

\ BOO 640 PI. =
600 1,2.6,10,14.15

,16}
{1.2.6~10,14P=G

AJ14 700

AIO sends PA to destination A12• AI2 updates its PA to {l,2,6,IO,14,15,I6}.

Sweep II:

State unchanged.

All sends PA to A 12. But PA sent by All can have 4 attacking nodes on its path whereas

the current PA at A12 can have 6 attacking nodes on its path. So, PA remains unchanged at

Thus, the path from node 1 to 16 is {I, 2, 6, 10, 14,15, I6} which is the most secured�

path available according to secure BFM.�

Ifnecessary, a hop constraint can be added.�

39�

The destination sends back confinnation to reserve the path based on PA. While we

reserve, each node on the path updates its bandwidth available. When done each node on

the path releases the bandwidth.

5.2.2 Path reservation:

Reservation of the path PA starts from the destination in the reverse order. For

each link the bandwidth is reserved for the particular job. The reserved bandwidth is

released once infonnation transfer is tenninated. The following diagrams describe the

reservation procedure.

Step 1:

o
I ••

\�

40�

Step 2:

0-000

6
800

Figure 7: Reservation of a path

5.2.3 Traceback:

Once the path is established any node (except the filters and destination) in the

path can spoof. In this way the number of nodes that can spoof decreases. Suppose: for

the path 1-2-6-10-15-16 (as per example)

n,

PA = {1,2,6,10,15,16}, UFA = {6,10} and D = 16.
1=1

n

From the equation, a E (PA - (UFA +D) , we find that 'a' can be a member of
;=1

the set {I ,2,15}. That means, only nodes 1,2 and 15 can spoof on behalf of node 1 on

this path.

41�

5.3 Secure Routing Protocol Based on Distance Vector Algorithm:

5.3.1� Packet Field:

(source id, destination id, Bandwidth Requirement)

Here, bandwidth requirement refers to th°e bandwidth requirement for sending a

packet on a link. As we can see, the bandwidth decreases with each packet on the

network and bandwidth is released once the packet reaches the neighboring node.

Filter coverage is the same as the proposed algorithm based on the BFM

algorithm covered earlier in this paper.

The following is an example to find a path from source node 1 to destination node

16. We use the proposed protocol based on Distance Vector Algorithm to find the path.�

The network being used is user-defined.�

User-defined Network: Bandwidth required = 300.�

700

>-__770

6
800

42�

700

Initial network with numbered nodes and labeled bandwidth on each link.

L--_- 770

6
800

Bandwidth on (l,2) is 200 which is less that 300. So, the Packet is sent on the path from
node 1 to 5. Bandwidth is reduced from 550 to 250.

43�

Step 2:

400

o
800�

Packet reaches node 5. Bandwidth is returned to link (1,5).�

44�

Step 3:

From node 9 the forwarding node to go to destination 16 is node 10 which is a filter.
Bandwidth is reduced to 470. Filter 10 checks the validity of the packet. It receives the
packet on its link 1, which is a valid path for source node 1. Bandwidth is returned to the
link (9,10).

Step 4:

.y--ep o---y
J 7~

(,/.",.~~'I
\ 750

~ 1 ~0006
to \ 000-1 ~ 'J11¢- --(J""" \.• 770 1 r000

6 6-~
45�

From node 10 the forwarding node is node 15 to reach destination. The link. (10,15) has
enough bandwidth to support the packet transfer. So the packet is sent to node 15.
Bandwidth is reduced to 500 while packet is on the link.

Step 5:

6
100�

Bandwidth is returned to the Unk (10,15). Node 15 forwards packet to the de tination.�

46�

100

Step 6:

0-

L.--_- l1O

o
800

Packet reaches destination node 16.

In Step 1, node 1 sends packet to node 5 instead of node 2. The reason behind is

that the link between node 1 and 2 has bandwidth less than 300. It is clear that node 2

would have been chosen if there were enough bandwidth available between node 1 and

node 2.

47�

Chapter 6

Simulation Results and Analysis

Network topologies were generated using the BRITE Topology Generation Tool

[17]. A hundred simulations were performed in each category and the average taken.

Networks with 20 nodes, 40 nodes, 60 nodes, and 80 nodes were generated using BRITE.

To generate a network, Waxman's probability model [18] for interconnecting the nodes

of the topology was used. The model is given by:

P(u. v) = ae-dl(fJL)

Where 0 < a, f3 <= 1, d is the Euclidean distance from node u to node v, and L is

the maximum distance between any two nodes.

For each network, 4 kinds of simulations were done.

1. Best Placement Low Density

2. Best Placement High Density

3. Random Placement Low Density

4. Random Placement High Density

At low density, only 10% of all nodes are filters. 20% of all filters are considered

filters at high density. In the case ofbest filter placement strategy, the filters were placed

strategically at nodes with the maximum input and output links. In random filter

placement strategy, the filters were placed in a random manner.

For each edge, bandwidth capacity was generated with a random distribution

between 10 and 1024.

48�

First we have a look at Figure 8(a) for 20-node network in the case ofbest filter

placement low density. 2 (10% of 20) nodes were assigned as filters because oflow

density filter placement. The secure DVA performs the best among all the algorithms. It

Best Placement Low Density� Best Placement High Density

4.5

4

2.5

~
2� 3.5

~ 3
X' T! 1.5� f 25 ..".. J:z: 2

it� /-.1� 1.5 .1

0.5� rI0.5

o •.P'"
a o 4 6 8 10 12 14

0 4 6 8 10 12 14
Filter.

H.opt!I__BFM_OVA Secured OVA --*"""Seeured BFM I I--BFM -4-DVA Secured OVA --*"""Secured BFM I

(a)� (b)

Random Placement Low Density� Random Placement High Density
1.4 ..-_----- ~__.......~
 3.5

1.2 +--------~..::::-

2.5�

I!! 0.8 t-----;=:j'F;lIr'"'~;.;....~-:----__i I!! 2�
! S�
u:: 0.8 +----.i~.--___..,....------~ Ii: 1.5�

0.4--.rI- -_.~l---------,--i

0.2� 0.5�

O........F~--....-----....-------I 0�
o� 10 15 a 2

Hops� Hop.

__BFM -4-0VASecured OVA --*"""Secured BFM I !� Secured OVA --*"""Seeured BFM I

(c)� (d)

Fihrure 8: Security on 20-node network

finds more filters on paths ofshorter lengths. There seems to be only three graphs

because BFM and DVA generated the same results. We can see that secure BFM

performs fairly well. It generates longer paths than secure DVA and also there is a

graduate increase in filter quantity in terms of path length. Equation 1 (page 23) doesn't

find the path with maximum filters on some occasions. The Equation depends on the

49�

filter coverages. And we may get higher filter coverage for lesser number of filters due

to the randomness of the network. That's why, secure BFM doesn't reach the 2 filter

mark. We can see hikes on secure DVA, BFM and OVA because of randomly selected

paths.

Next, we look at Figure 8(b) for a 20-node network with best filter placement at

high density. 4 (20% of 20) nodes were assigned as filters because of high density filter

placement. The secure DVA performs best among all the algorithms. The secure BFM

finds longer paths but performs in a consistent manner. BFM and DVA find the shortest

paths and also finds less filters on various paths compared to secure DVA and secure

BFM. Secure DVA finds more filters on shorter paths. Whereas the performance of

secure BFM depends on the random behavior of Equation 1 (page 23). That's why it

finds close to maximum filters on some occasions.

Now, lets consider Figure 8(c) for a 20-node network with random filter

placement at low density. 2 (10% of20) nodes were randomly assigned as filter because

of low density filter placement. The graphs indicate that the number of filters in the path

increases with the path length upto a certain point. Below this optimum point, the

number of filter in a path decreases even as the path length increases. This is particularly

true of the secure DVA algorithm. Secure DVA performs quite well but falters at the

end. The sharp drops in secure OVA and DVA are seen because of randomly selected

paths. However, future work is required to contion this. Moreover the secure BFM

performs well for longer paths. This happens due to the random behavior of Equation 1

(page 23). Equation 1 indicates that paths oflonger hops with more filters in them will

be generated for secure BFM.

50

Now, we consider Figure 8(d) for a 20-node network with random filter

placement at high density. 4 (20% of20) nodes were randomly assigned as filters

because of high density filter placement. We see a sharp drop at the end for the secure

DVA. We see this sharp drop because of randomly selected paths and also the filters

were placed randomly. Further research is needed to confirm this. Secure BFM does

fairly well for longer paths. The BFM and DVA perform in a consistent manner. They

find the shortest path between two nodes. And the filters found on each path depend on

the randomness of this filter placement strategy. These results indicate that for long

paths, secure BFM is the preferred choice, whereas for short and medium paths, secure

DVA provides better security.

Next, we consider Figure 9(a) for a 40-node network with best filter placement at

low density. The secure DVA performs best among all the algorithms. This

Best Placement low Density Best Placement High Density
4.5 9

-- 8 -'"
L .;,£"~3.5 ~ .I"~ "'"7\3 6

~ .~.i 2.5 1!5
/C ..;ril: 2 ~4.r1.5

~- 3 --~ ...
2

0.5 II -::do .
o .H

o
o 5 10 15 20 o 15 2510 20

Hops�

I-+-BFM __OVA� Secured OVA -"-'Secured BFM I Secured OVA -"-'Secu'ed BFM I

(a) (b)

51�

Random Placement Low Density Random Placement High Density
6..-__- ,3....----------_-----,
5 ~-------",..'::::_-----i2.5--------,.~"=-----___;

4------:"":~----M_-__12-----:-:;-'~--'.,;:---~If____;

~ 1.5 -1----- i 3 ~---~:.::::...--~~C~:.........--1
ifu:

0.5 +-.-,.--..;_

o.J.II'l-=:........,...----.---.----...--~ o-I-MFoL=:...-.-----.----.----.----l�
o 5 10 15 20 25 o 10 15 20 25

Hop. Hop.

Secured DVA -M--Secured BFM I Secured DVA -M--Secured BFM I

(c) (d)

Figure 9: Security on 40-node network

happens because secure DVA tries to reduce the number of regular nodes and at the same

time increase the number of filters. As a result, it produces shorter paths with more filters

compared to secure BFM. Secure BFM also performs pretty well. Because of Equation

1 (page 23) it produces larger hops for secure BFM but on some occasions it does not

find the maximum number of filters on a path. Again, as expected, the DVA and BFM

find shortest paths amongst the algorithms. We see a sudden drop in the number of filters

for these algorithms at hop 8. This happens because the paths were selected randomly.

Figure 9(b) is considered for a 40-node network in the case of best filter

placement at high density. The performance of the algorithms is very similar to Figure

9(a). Because ofhigh density filter placement, 8 (20% of40) nodes were assigned as

filters. For longer hops it is noticeable that Secure DVA and Secure DVA fmd more

filters on a path compared to DVA and BFM.

Next, we look at Figure 9(c) for a 40-node network with random filter placement

at low density. 4 (10% of 40) nodes were randomly assigned as filters. Secure DVA

starts off doing quite well. But we see a sharp drop after hop 12 because of randomly

52�

positioned filters within the network. This effect has been noticed with smaller and

larger networks and is an area for future research. Secure BFM does better than the DVA

and BFM. We also see a few drops and hikes on secure BFM because of randomly

selected paths. BFM and DVA find the shortest paths with fewer filters among the

algorithms.

Now, lets look at Figure 9(d) for a 40-node network in the case of random filter

placement at high density. 8 (20% of40) nodes were randomly assigned as filters.

Secure DVA perfonns the best among all the algorithms. Secure BFM produces longer

hops compared. to secure DVA. Due to Equation 1 (page 23) it does not find the

maximum filters on its paths. The sharp drops and hikes on secure DVA and secure

DVA are due to the random selection ofpaths. We see slight difference in BFM and

DVA because of the filters was selected. randomly for each of the algorithms.

Next, we look at Figure I O(a) for a 60-node network with best filter placement at

low density. In this figure secure DVA perfonns the best among all the algorithms.

Secure DVA generates shorter paths with more filters on each path. On the

Best Placement Low Density Best Placement High Density
12---

7

6
; 10i----;:;;r~~

5
8 -1---------"" ;:;.;I

e 4 e
! ! 8 +---- ,.iIfP.'-----------f,--:
u:: 3 u::

T"

-...
2

1 ~ 2

o,·G I

0 5 10 15 25,20 30 5 10 Hops 15 20 26 30
Hops�

I-+-BFM ____ OVA� Secured OVA ~Secured BFM I Secured OVA ~Secured BF'" I

(a) (b)

53�

__

Random Placement Low Density Random Placement High Density

9...--~----------_,
8.J.------------:·.:.------13.5 J-------(;h.....-------t

3 ~----~::-j
6 -I--------r--;:.~----_1

2.5 ~---____;:~-~
e j 5 +--------;,.;..::.--~r_-___t

i&:
1.5~

~ 4 ~----.... .., Ji--~..~.....,.IIr"-.,~2t=~~~~
3~----:

2+---
0.5-1--~'" ~--------.,

5 10 15 20 25 30 5 20 2510 Hop. 15

Secured OVA -M-Secured BFM I I-+-BFM _OVA Secured OVA -M-Secured BFM I

(c) (d)

Figure 10: Security on 60-node network

other hand, secure BFM produces longer paths with fairly good amount of filters on each

path. It happens because of Equation 1 (page 23). The DVA and BFM finds shortest

path with fewer filters on each path. The hikes and drops in secure DVA, DVA and BFM

happen due to the randomness of the paths.

Figure 10(b) is shown for a 60-node network in the case of best filter placement at

high density. 12 (20% of 60) nodes were assigned as filters. We see almost the same

picture as Figure 10(a) with more filters on each path because of high density filter

placement.

Now, we look at Figure 10(c) for a 60-node network with random filter placement

at low density. 6 (10% of 60) nodes were randomly placed as filters. Secure DVA starts

performing quite well but has a sharp drop at the end. This happens due to randomly

placed filters. Secure BFM perfonns worst. We see some hikes and drops in the case of

secure BFM. This happens because of randomly selected paths and randomly positioned

filters. The DVA and BFM falls in between secure DVA and secure BFM at the end.

DVA and BFM find the shortest paths.

54�

Next, we consider Figure tOed) for a 60-node network in the case of random filter

placement at high density_ 12 (10% of60) nodes were randomly assigned as filters.

Secure DVA performed the best among all the algorithms. Secure BFM performed

gradually but its performed dropped at the end. It happened due to randomness of

Equation 1 (page 23). The DVA and BFM found the shortest paths between any two

nodes but with fewer filters on each path.

Figure I 1(a) shows the graph for an 80-node network with best filter placement at

low density. 8 (10% of 80) nodes were assigned as filters. The performance of secure

DVA is shown to be the best. Secure DVA reduces the number of regular nodes and also

tries to increase the number of filters on a particular path. Therefore, it generates shorter

paths with more filters. Secure BFM also performed well. It found longer paths because

of Equation t (page 23). It found a good quantity of filters on its paths. The DVA and

BFM found the shortest paths with fewer filters on the paths.

Now we look at Figure It(b) for an 80-node network in the case of best filter

placement at high density. 16 (20% of 80) nodes were assigned as filters in thi ca e.

Best Placement low Density Best Placement High Density

B 18�

7� 16
.~~-- ,~

,~ ~
B .- 14

12 'A~ JC
"I!

5
~. .Ii 10

~ 4 .~ if 8iL ,r

-
~ 3

'JI -', 6
..1___

2. -'~-
1 :.Jr' ~'. 2�

.~

ol~ o

o 10 2.0 30 40
0 5 10 20 25 30 35~ Hop>

I-+-BFM ___ OVA I-+-BFM OVASecured OVA -M--5ecored BFM I Secured OVA -M--Secured BFM I

(a) (b)

55

Random Placement High Density
10 -,---- --------,Random Placement Low Density
9.J-------------iIlf----l
8.J--------------t-i

6 +---------...~-----_;

5 +--------.......,:~----......_;�
8 +-------- j;.---iIt7.F--i

el!! 4 +---------=-;:;:::.~----_+__;
~ 5 +-------~

~	 i:i:
i:i:� 3 i----~___:' ."'",-!:.-----....,.-JlH--1

3 -1-----"'; __~~------_i

o W§iil!!!~-...._-.....__-...---...._-........~

o 10 15 20 25 30 35 5 10 HOM; 20 25 30 35HopI

Secured OVA ---+f- Secured BFM ~BFM_OVA Secured OVA ---+f-Seeured BFM

(c)� (d)

Figure 11: Security on 80-node network

The perfonnance of DVA was still the best. It found the shorter paths with more filters

on the paths. Secure BFM found longer paths with a good amount of filters between two

nodes. We see a drop for secure BFM because ofthe randomness in Equation 1 (page

23). The DVA and BFM found the shortest paths. These paths had fewer filters in them.

Lets look at Figure I I (c) for an 80-node network in the case of random filter

placement at low density. 8 (10% of 80) nodes were randomly assigned as filters. Secure

DVA perfonns best among all the algorithms. Secure BFM doesn't do well till hop 28.

After that we see some hikes on secure BFM. This happens due to the randomness of

Equation I (page 23). The BFM and DVA find the shortest paths among all the

algorithms. We see a hike of BFM due to randomly selected paths.

Now, we look at Figure 11(d) for an 80-node network with random filter

placement at high density. 16 (20% of 80) nodes were randomly assigned as filters.

Secure DVA again perfonned well. We see a better perfonnance of secure BFM

compared to Figure 11(c). This happens because there are more :filters within the

56�

network now. Equation 1 (page 23) produces larger paths. And on larger paths we see a

better performance in terms of filters in the case of Secure BFM. The DVA and BFM

fmd the shortest paths. We see a hike on DVA due to randomly selected paths.

The following main conclusion can be drawn from these simulations:

•� As expected, the shortest routes are obtained using the standard BFM and DVA

•� Again as expected the best placement strategy produced more secure routes than a

random placement strategy

•� Simulations show the superiority of the secure DVA over the secure BFM�

algorithm.�

•� An unexpected result is the degradation in performance of the secure DVA as the

number of nodes in the network exceeds a certain threshold. In other words, there

is an optimum path length at which the number of filters in the path is a

maximum. Above this length, the number of filters in the path decreases. But as

the number ofnodes in a network increase, secure DVA tends to overcome this

behavior. Further research is needed to define the 'optimum' point when the

number of filters in the path is a maximum.

57�

Chapter 7

Conclusions

In tbis paper we have proposed secure QoS routing algorithms for dynamic,

routing and resource reservation. The paths gt-'Ilerated by these algorithms are longer

than those generated by non-secure algorithms. The secure Distance Vector Algorithm

provides shorter paths and better security than the secure Bellman-Ford-Moore algorithm.

That is, the path generated by the secure DVA passes through more filters, thus reducing

the scope for spoofing. We get more secure paths using best filter placement with high

density. Further work is needed to determine the optimal distribution of filters in the

network. Future work will also investigate secure routing satisfying multiple QoS

requirements. ..

This work may be extended to investigate IP traceback to determine the probable

locations of the attackers. A rea] system is more desired to carryon the test. Also,

experiments should involve as many nodes as possible.

However, in summary we believe that the se,cure QoS routing algorithms can

significantly reduce the Denial of Service attacks.

58�

REFERENCES�

[1] Thomas H. Cormen, Charles E. Leiserson and Ronald L. Rivest, Introduction to

Algorithms, MIT Press, 1990

[2] Eric Greenberg, Network Application Frameworks: Design and Architecture, Addison

Wesley, 1999

[3] Donna Gbosh, Venkatesh Sarangan and Raj Acharya, Quality-of·Service Routing in

IP Networks, IEEE Transactions on Multimedia, VOL. 3, NO.2, June 2001,

Pages :200-208

[4] Kihong Park and Heejo Lee, On the Effectiveness ofRoute-Based Packet Filtering for

Distributed DoS Attack Prevention in Power-Law Internets, Proceedings of the 2001

Conference on Applications, Technologies, Architecture and Protocols for Computer

Conununication, ACM SIGCOMM, page(s) 15-26

[5] Jaikumar Vijayan, Denial ofService Attacks on the Rise? URL:

http://www.cnn.com/2002!fECH/intemet/04/09/dos.threat.idgi (April 9, 2002)

[6] S. Gibson, The Strange Tale ofthe Denial ofService Attack against GRC.com,

URL: http://grc.com/dos/grcdos.htm (March 5, 2002)

[7] Mark Ward, Web Warning Center in Net Attack, URL:

http://news.bbc.co.uk/1/low/sci/tech/1348820.stm (May 24,2001)

[8] John T. Moy, OSPF Anatomy ofan Internet Routing Protocol, Addison Wesley,

1998

[9] Overview ofScans and DDoS Attacks, URL: http://www.nipc.gov/ddos.pdf

[10] TechTarget, WhatI?com, URL: ww.whatis.com

59�

[11] L. Stein. The World Wide Web Security FAQ, version 3.1.2, URL:

http://www.w3.orglSecurity/FAQ/ (February 4,2002)

[12] Jupitennedia Corporation, Online Dictionary For Computer and Internet terms,

URL: www.webopedia.com (October 13,2002)

[13] R.K.Abuja, T.Magnanti and lB.Orlin, Network Flows: Theory, Algorithms and

Applications, Prentice Hall, 1993

[14] Danielle Dunne, What is a Denial o/Service Attack?, URL:

http://www.darwinmag.com/learn/curve/column.html?Artic1eID=115&action=print,

(June 24,2001)

[15] Brent Baccala,� Distance Vector Algorithms, An Internet Encyclopedia, URL:

www.freesoft.orglCIEIRFC/1058/6.htm (April 1997)

[16] Jon Crowcroft, Zhang Wang, Quality o/Service Routingfor Supporting Multimedia

Applications, IEEE Journal on Selected Areas in Communication, 14(7), pages 1288

1234, Sep 1996

[17] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byer� ,BRITE: An

Approach to Universal Topology Generation, Proceedings of IEEE MASCOTS '0 I,

August 2001

[18] B. Waxman, Routing on Multipoint Connections, IEEE Journal on Selected Areas on

Selected Areas in Communication, December 1988

60�

APPENDIX A�

GLOSSARY�

Node: In a network, a node is a connection point, either a redistribution point or an end

point for data transmissions. In genera], a node has programmed or engineered capability

to recognize and process or forward transmissions to other nodes.

Spoof: To deceive for the purpose of gaining access to someone else's resources (tor

example, to fake an Internet address so that one looks like a certain kind of Internet user)

Bandwidth: Bandwidth (the width ofa band ofelectromagnetic frequencies) is used to

mean (1) how fast data flows on a given transmission path, and (2), somewhat more

technically, the width of the range of frequencies that an electronic signal occupies on a

given transmission medium..

Hop: One hop is defined as the transit through one router. Each router always adds 1 to

account for itself.

ICMP: Short for Internet Control Message Protocol, an extension to the Internet Protocol

(IP). ICMP supports packets containing error, control, and informational messages. The

PING command, for example, uses ICMP to test an Internet connection.

Ping: A utility that detennines whether a specific IP address is accessible. It works by

sending a packet to the specified address and waiting for a reply. PING is used primarily

to troubleshoot Internet connections.

61�

APPENDlXB

IMPLEMENTATION

IIMunirul Islam
Ilosu ID# 440-15-5382
IIThesis

1***1

II project.cpp

#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>
#include <windows.h>

#include "nodes.h"
#include "statistics.h"

const char STRATEGIES[] [80]=
{

"Best placement, low density",
"Best placement, high density",
"Random placement, low density",
"Random placement, high density",
"Incremental placement, low density",
"Incremental placement, high density"

const char ALGORITHMS[] [80]=
{

"Print all paths",
"Bellman-Ford-Moore Algorithm",
"Distance Vector Algorithm",
"Secure Distance Vector Algorithm",
"Secure Bellman Ford Moore Algorith"

} ;

struct setup
{

int placement_type;�
int path_strategy;�
float bandwidth;�

} ;

62�

void eatFile(const char* fileName, ofstream& report,
~eA@i8E~e~§e8Ea@JCe@@~p~h8etu~,~k,ofstream& report,
Statistics& stat, setup& setup);
int main(int argc, char**argv}
{

if(argc!=3}
{

cout «"Syntax: "«argv [0] «" path\ \mask* .brit.e
report_file\n\n";

return 1;
}
ofstream report(argv[2]);
if (! report)
{

cout «"Can't open report file "«argv[2] «endl;
return 1;

setup setup;

/* placement stuff */
cout « "\nSpecify strategy for placement of the

filters: \n";
cout « "1. Best placement, low density\n";
cout « "2. Best placement, high density\n";
cout « "3. Random placement, low density\n";
cout « "4. Random placement, high density\n";
cout « "5. Incremental placement, low density\n";
cout « "6. Incremental placement, high density\n";

/* read placement type (repeat until user made co rect
selection) */

int placement_type;
cin »placement_typei
while(placement type<l I I placement_type>6}
{

cout «"Value of "«placement_type«" is incorrect choice.
Retype: ";

cin »placement_type;
}
setup.placement_type = placement_typei
report «"Placement type: "« STRATEGIES[placement_type

1] «endli

/* read path selection strategy./
cout « "\nSpecify path selection strategy:\n"i
cout « "b) Bellman-Ford-Moore Algorithm\n"i
cout « "c) Distance Vector Algorithm\n"j

63�

cout « "e) secure Bellman Ford Moore Algorith \n";

E§~~ m~nli~te!@E~f@nl?istanceVector Algorithm\n";�
char *Pi�

do
{

cin »menu selection;�
while(cin.get(} !='\n')�

p=strchr ("BeDE", toupper(menu_selection» ;�
if (p==NULL)�
{�

cout «"Wrong selection. Retype: " ,.�
}�

}�
while (p==NULL) ;�

static const char menumap[]={l,2,2,3,4};
report «"Algorithm: "« ALGORITHMS[toupper(menu_selection)

'A'] «endl;
setup.path_strategy=menumap[toupper(menu_selection)-'A'] ;

cout «"Ender minimum bandwidth: ";�
cin » setup.bandwidth;�
report «"minimum bandwidth: "« setup.bandwidth«end1i�
report «"files selected: n« argv[l] «endl;�

report «endl«endl;
report

«"*** ***\n\n"

Statistics stat;�
applySearch(argv[l] , report, stat, setup);�
return 0;�

}

void applySearch(const char* mask, ofstream& report,�
Statistics& stat, setup& setup)�
{�

WIN32_FIND_DATA FileData; II Data structure describes the
file found

HANDLE hSearch; II Search handle returned by
FindFirstFile

BOOL bFinished = FALSE;

hSearch FindFirstFile(mask, &FileData);

64�

cerr «"No files n«mask«" fOWld\n"j�
i f r~@.e.~ftfch INVALID_HANDLE_VALUE)�
}

char *fileDirEnd=strrchr(mask, ,\\.} j�

const char *fileDiri�
if (fileDirEnd)�
{�

* (++fileDirEnd}=Oi
fileDir=maskj�

}�
else�

fileDir="";

while (! bFinished)�
{�

char *fullFileName=new�
char [strlen(fileDir} +strlen (FileData.cFileName) +1] ;

strcpy(fullFileName, fileDir};
strcat(fullFileName, FileData.cFileName};
eatFile(fullFileName, report, stat" setup};
delete[] fullFileNamej

if (!FindNextFile (hSearch, &FileData)}�
{�

bFinished = TRUE;�

if (GetLastError ()
{

cerr «"Unable to find next file within "«mask«endl;
}

II Close the search handle.

if (!FindClose (hSearch»)�
{�

cerr « "Unable to close search handle.\n";�
}�

stat.calculateGlobalStat() ;

report«"\n\n\nRESULTS\n------------------------------\n\n"j
stat.reportGlobalStat(report)j
report.flush() ;

65�

mailto:r~@.e.~ftfch

void eatFile(const char* fileName, ofstream& report,
Statistics& stat, setup& setup)
{

Nodes nodes;

if(lnodes.loadNodes(fileName»
{

report«fileNarne«" : cannot be loaded (check file
syntax) \n" ;

return ;

cout «"Analyzing "«fileName«" ... "«endl;�
nodes.placeFilters(setup.placement_type) ;�

int start, end;

stat.startNetwork() ;�
for (start=O; start<nodes.node number; start++)�
{

if (start) cout «"\b\b\b\b";
cout «setw(3)«lOO*start/(nodes.node_number-l)«"t";
cout.flush() ;
if (nodes.nodes [start] .isFilter(» continue;
for(end=O; end<nodes.node number; end++)
{

if (start==end II nodes . nodes [end] . isFilter () continue;

//guaranteed start!=end, and both are non-filters

Path path=nodes.findpath(start, end,
setup.path_strategy, setup.bandwidth,NULL);

if(path.exists(»
{

stat.addPath(path) ;
}

cout«endl;�
stat.finishNetwork() ;�
report«fileNarne«endl;�
stat.reportNetwork(report) ;�
report.flush() ;�

}

/***/

II node.h

66�

#ifndef NODE H
#define NODE H

class node

private:
int node id;
double x,y;
bool filter;
int in_neighbore[50];
int in_neighbor_countj
int out_neighbors [50] ;
int out_neighbor_counti
double bandwidth [50] ;
double distance [50] ;

public:
node (void) i II Default constructor.
node(int,double,doubleli II Constructor
-node (void) i II Destructor
void setFilter{void) i
void clearFilter() {filter=false;}
bool isFilter{void) const {return filter;}
int get_in_neighbor_count(void) consti
int get_out_neigbbor_count{void) const;
void set_in_neigbor(int) ;
void set_out_neighbor(int,double, double) i
void operator=(const node&);

friend class Paths;
friend class Pathi
};

#endif

1*************************************;*********************1

II node.cpp

#include "node.h"
#include <iostream.h>

11-------------------------------
II node methods
11-------------------------------

node: : node (void) {
node id = -100i
x Oi

Y = Oi

67

int i;�
for (i=0;i<50;i++)�
filterifi_~el§KDors[i] = -100;�
for (i=0;i<50;i++)�

out_neighbors[i] = -100;�
for (i=0;i<50;i++)�

{
bandwidth[i] = -100;�
distance[i] -100;�

}
in_neighbor_count 0;�
out_neighbor_count = 0;�

node::node(int id,double x_coordinate,double y_coordinate) {
node_id = id;
x = x_coordinate;
y = y_coordinate;
filter = false;

int i;�
for (i=0;i<50;i++)�

in_neighbors[i] = -100;�
for (i=0;i<50;i++l�

out_neighbors[il = -100;�
for (i=0;i<50;i++)�

{�
bandwidth [i] = -100;�
distance[i] -100;�

}�
in_neighbor_count 0;�
out_neighbor_count = 0;�

node: : -node (void)
}

void node: :setFilter(void)
filter = true;

}

int node: :get_in_neighbor_count(void) const {
return in_neighbor_count;

int node::get_out_neighbor_count(void) const {
return out_neighbor_count;

void node: :operator=(const node& p)

68�

node id = p.node_id;�
x = p.x;�
Y = p·Yi�
filter = false;�

int i;�
for (i=0;i<50;i++)�

in_neighbors[i] = -100;�
for (i=0;i<50;i++)�

out_neighbors[i] = -100;�
for (i=0;i<50;i++)�

{
bandwidth[i] = -100;�
distance[i] -lOOi�

}
in_neighbor_count 0;�
out_neighbor_count = 0;�

void node::set_in_neigbor(int i)
{

in_neighbors [in_neighbor_countl i·,
in_neighbor_count++;

void node::set_out_neighbor(int i,double bwidth, double diet)
{

out_neighbors [out_neighbor_count] = i;
bandwidth [out_neighbor_count] = bwidth;
distance[out_neighbor_count]=dist;
out_neighbor_count++i

I***~***********1

II nodes.h

#ifndef NODES H
#define NODES H

#include "node.h"
#include "paths.h"

struct Nodes
{

node *nodes;�
int *nodeyos;�
int node_number;�

Nodes(): node_number (0) , nodes(NULL),nodeyos(NULL) {};

69

bool loadNodes(const char *fileName);
int placeFilters{int strategy);�
~R~ln~P2'~~~s~~~st {return node_number>O;}�
void showCovers(int start, void{* callback) (int, bool*»;�
Path findPath(int start, int final, int algorithm, float�

bandwidth, void(* callback) (Path&»);�
} ;�
#endif�

/***/

I I nodes. cpp

#include <fstream.h>
#include <string.h>
#include <stdlib.h>
#include <time.h>
#include "nodes.h"

bool Nodes: :loadNodes(const char *fileName)
{

char line[lOO];

if (nodes) delete[] nodes;�
nodes=NULL;�

if (node-pos) delete[] node-pos;�
node-pos=NULL;�

ifstream in (fileName) ;�
if (! in)�
{�

return false;
}

node number = 0;�
int i = 0, edge_number = 0, nodeNumber 0;�
double x axis = 0, y axis = 0;�
in.getli;e(line,lOO);�
char *temp = strtok(line, II \t\n() , II);�
II read number of nodes�
temp = strtok(NULL," \t\n(),II);�
node_number = atoi{temp);�
nodes=new node [node_number] ;�
temp strtok(NULL," \t\n(), II);�

temp strtok(NULL, n \t\n(), II);�
edge_number = atoi(temp);�
in.getline{line,lOO) ;�

70

in.getline(line,lOO) ;

a8aB~~1~mMA!~~~SlOO) ;�
matrix=new double* [node_number] ;�

int **adj,**path;�
adj = new int*[node_number];�
path = new int*[node_number];�

for (i=O;i<node_number;i++)
{�

matrix[i]=new double [node_number] ;�
adj [i] = new int[node_number];�
path[i] = new int[node_number];�
for (int j=O;j <node_number; j++)�
{�

matrix[i] [j] = 0;�
adj [i] [j] = 0;�
path[i] [j] = 0;�

}�
II network topology info processing�
II while (!in.eof(»�
{

for (i=O;i<node number;i++)
(

in.getline(line,lOO) ;
char* temp = strtok(line," \t\n");
char* num = new char[lO];
strcpy(num,temp);
nodeNumber = atoi(num);
temp = strtok(NULL," \t\n l1);

strcpy (num, temp) ;
x axis = double (atof(num»;
t~mp = strtok(NULL," \t\n");
strcpy(num,temp) ;
y_axis = double (atof(num»;
long oldFlag = cout.setf(ios: :fixed,ios::floatfield);
long oldPrec = cout.precision(2);
Ilcout « nodeNumber « " " « X axis « " «It

y_axis « "\n";
cout.setf(oldFlag, ios::floatfield);
cout.precision(oldPrec);
node aNode(nodeNumber,x axis,y axis);
nodes [i] = aNode; -

}�
cout.flush() ;�
do�
{�

71�

}
while (strcmp(line, 1111)==0) ;
fori~ig~~l~~~g~ifl~Q9}i++)
{

in.getline(line,lOO) ;
char* temp = strtok(line," \t\n");
int from = 0, to = 0;
double bw = 0, distj
temp strtok(NULL," \t\n");
from atoi(temp) j

temp strtok(NULL," \t\n") i

to = atoi (temp) i
nodes [to] .set in neigbor(from);
temp = strtok{NULL,1I \t\n");
dist=(double} atof(temp);
temp = strtok(NULL," \t\n");
temp = strtok (NULL, II \ t \n II) ;

bw = (double) atof(temp) i

matrix[from] [to] = bw;
adj [from] [to] = 1;
nodes [fromJ . set_out_neighbor(to,bw, dist) i
Ilcout « from « II « to « II « bw « "\n";II II

}

II filter placement
nodeyos = new int[node_nurnber] i

int *neighborCount = new int[node_number] j

for (i=O;i<node_nurnber;i++)
nodeyos[i] = ii

for (i=O;i<node_nurnber;i++)
neighborCount[i] = nodes[i] .get in neighbor count() +

nodes [i] .get_out_neighbor_count () ; - - .

II bubble sort
for (i=Oj i<node_nurnber-l; iTT) {

for (int j=Oj j<node_nurnber-l-i; j++)
if (neighborCount[j] < neighborCount[j+l]) 1*

compare the two neighbors *1
int tmp = neighborCount[j] j 1* swap a[jl and

a[j+l1 *1
neighborCount[j] = neighborCountrj+l];
neighborCount[j+l] = tmp;
tmp = nodeyos[j] j

nodeyos[j] = nodeyos[j+ll;
nodeyos[j+l] = tmpj

}�
for (i=Oii<node_nurnberji++)�

72�

delete[] matrix[i]

delete[] matrix;�
delete [] adj i�
delete[] path;�
return true;�

}

int Nodes: :placeFilters(int placement_type)
{

int
placement_nodes=(int) (node_number*(placement_type%2==1?O.1:0.2
»;

int period=node_number/placement_nodes;�
int position=period-l;�
int ii�

for(i=Oi
{

nodes[i] .clearFilter();�
}�

/* randomize pseudo random numbers generator */�
srand(time(NULL» i�
/* perform placement strategy */�

int really-placed=O;

for(i=Oi i<placement_nodesi i++)�
{�

if(placement type<=2) /*if best placement*/�
{

/* just put filter to the nodes with most neighbors
count *1

nodes [node-pos [i]] .setFilter();
really-placed++;

}�
else if(placernent type<=4) 1* random */�
{

int position;
II don't put flter flag twice: repeat trying until we

found a non-filter
do
{

position=rand()%node_numberi�
}�
while (nodes [position] .isFilter(») i�

73�

nodes [positiGn] .setFilter();�
reallyylaced++;�

} Ilplace filter to the position found
else if(placement_type<=6) 1* incremental*1
{

if(position != node number-l) 1* not last node*1
{

nodes [poaition] .setFilter();
position+=period;
reallyylaced++;

}

return reallyylaced;

Path Nodes: :findPath(int start, int final, int algorithm,�
float bandwidth, void(* callback) (Path&»�
{�

Paths paths (nodes, node_number, 0) i�

1* set path strategy for Paths object *1�
paths.setStrategy(algorithm) ;�

1* set bandwidth for Paths object *1�
paths.setBandwidth(bandwidth);�

1* run path selection algorithm*1�
if (algorithrn>l)�
{

Path bestPath=paths.findyaths(start, final);
if (callback) callback(bestPath);
return bestPath;

}�
else�
{

paths.setCallback(callback) i

return paths.findyaths(start, final) i

int Nodes::nurnFilters()
{

int result=Oi
int ii�
for(i=Oi i<node number; i++)�
{

if(nodes[i] .isFilter(» result++i�
}�

74�

voiaeN~~@S~~§H6w€overs(int start, void(* callback) (int,�
bool*))�
{�

int i, j;�
bool *nodeCovered=new bool[node_number];�

for(i=O; i<node_number; i++)�
if (nodes [i] .isFilter(»�
{�

for(j=O; j<node_number; j++) nodeCovered{j]=false;�
nodeCovered[start]=true;�
Path path(nodes, node_number);�
path.markFilterCover(i, nodeCovered);�
nodeCovered[start]=false;�
callback (i, nodeCovered);�

}�
delete[] nodeCovered;�

1***1

II paths.h

#ifndef PATH H
#define PATH H

#include "node.h"

Ilpath contains directed path
class Path
{

node* nodes;�
int count;�

int* path;�
int path_length;�
double path_distance;�
int count_filters;�
int securityMeasure;�

double edge_distance(int v, int w);�
void recalcSecurityMeasure() i�

public:
Path () ;
Path(node* nodes, int count);
Path(const Path&) ;

75

bool is_in-path(int vertex) ;�
~g~ahAdG_vertex(int vertex) ;�
void delete_from_end();�
void print();�

double getDistance() const {return path_distance;}�
int getFiltersCount() const {return count_filters;}�
int getLengthO const {return path_length;}�
bool exists() {return path_length>=2;}�
Path& operator=(const Path& rhsl;�

int getItem(int index) {return path [index] ;}�
int getSecurityMeasure() ;�

void markFilterCover(int vertex, bool *nodeMeasuredl;
};

class Paths
{

node* nodes;
int* visited from;
int count;
bool assume_unidirectional;

int strategy;�
double bandwidth;�

Path minimumPath;�
void(* cb) (Path&) ;�

void find-path_between(int start, int finish, Path&
partial-path);

public:
Paths(node* nodes, int count, bool assume_unidirectional);
-Paths() ;

void setBandwidth(double bwidth) {bandwidth=bwidth;};
void setStrategy(int strat) {strategy=strat;};
void setCallback(void(* callback) (Path&» {cb=callback;}
Path find-paths(int start, int finish);

};

#endif

j***j

II paths.cpp

76�

#include <iostream.h>
#include "paths.h"

11-------------------------------
II paths methods
11-------------------------------

Path::Path{node* nodes, int count):
nodes (nodes) , count{count), path_length(Ol I

path_distance{O.O), count_filters{O),
securityMeasure{-l)

{
path=new int[count] i

} i

Path: : Path () :
nodes{NULL), count (0) , path_length{O), path distance{O.O),

path (NULL) , count_filters{O),
securityMeasure{-l)

{
} ;

1* copy constructor: required when re use path in return from
the function*1
Path: : Path (const Path& rhs): path (NULL)
{

*this=rhsi
}

Path: : -Path ()
{

delete [] path;
}

1* copy operator: copies path from rhs to this *1
Path& Path: :operator=(const Path& rhs)
(

if (this==&rhs) return *this;

1* make sure to free current path if it's not NULL*I�
if (path) delete[] path;�
count=rhs. count;�
nodes=rhs.nodesi�
path_length=rhs.path_length;�
path_distance=rhs.path_distancei�
count_fil.ters=rhs. count_filters i�
securityMeasure=rhs.securityMeasure;�

77�

/* replace path*/�
if (rhs.path)�
{

path=new int[countl;�
for(int i=Oj i<path_lengthj i++) path[il=rhs.path[i];�

}
else�

path=NULL;�

return *thisj

double Path::edge_distance(int v, int w)
(

for(int i=Oj i<nodes[v] .out_neighbor_countj i++)�
{�

if(nodes[vl .out neighbors[i]==w)�
{

return nodes [v] .distance[i];�
}�

return O.Of;

bool Path::is_in-path(int vertex)
{

int i;

for(i=Oj i<path_lengthj i++) if(path[i]==vertex) return
truej

return false;

void Path: : add_vertex (int vertex)
{

if (path_length>O)
path_distance+=edge_distance (path [path_length-I] I vertex);

if (nodes [vertex] .isFilter(» count_filters++j
path[path_length++]=vertex;
securityMeasure=-lj

void Path::delete_froffi_end()
{

if (path_length>l) path_distance
=edge_distance(path[path_length-2] I path[path length-I]);

if(nodes[path[path_length-I]] .isFilter(» count_filters--j
path_length--j

78�

voi8ep~A~Y~~ffl~r¥=-1;

{
int i;

for(i=Oi i<path_length; i++)
{

cout «path[i)«" ";�
}�

int Path: :getSecurityMeasure()
{

II since securityMeasure takes some time to calculate, we
cache it

II once calculated. value of -1 means that securityMeasure
was never

II calculated for given path or that path updates
invalidated securityMeasure

II so it needs to be racalculated
if (securityMeasure==-l) recalcSecurityMeasure();
return securityMeasurei

void Path: :markFilterCover(int vertex, boo1 *nodeMeasured)
{

II algorithm: depth-first search b ckward (i.e. in
direction

II opposing to the edge direction)

int j, neighbor;

for(j=O; j<nodes[vertex) .in_neighbor_count j++)�
{�

neighbor=nodes[vertex] .in neighbors[jJ i�
{

II stop if either neighbor is a filter or it's
already marked

II note: for this strategy work lOOt correctly, DO
NOT

II mark plain path nodes before marking spoofable
nodes!

if(!nodeslneighbor) .isFilter() &&
!nodeMeasured[neighbor)

{
nodeMeasured[neighbor)=true;
markFilterCover(neighbor, nodeMeasured);

79�

}

}
void Path: :recalcSecurityMeasure()
{

IIAlgorithrn:�
II 1. marks all nodes that either part of the path�
II or spoofable but not filters or final node�
II
II� 2. calculate number if such nodes and return this count

as� the security measure
II (smaller means better)
II
bool *nodeMeasured=n.ew bool[countl;�
int i;�

Ilinitially all nodes are "clean"�
for(i=O; i<count; i++) nodeMeasured[il=false;�

II for all nodes (except the final node)�
for(i=O; i<path length-1; i++)�
(

if(nodes[path[i]] .isFilter(» Ilif node is a filter
(

Ilfind cover for this filter and mark it
markFilterCover(path[i], nodeMeasured);

II for all nodes (except the final node)�
for(i=O; i<path length-I; i++}�
{

if(lnodes[path[i]] .isFilter(» Ilif node is no a ilter
nodeMeasured[path[i]]=true; Ilmark just his nod

nodeMeasured[path[path_length-1]1 =false; Ilmake sure final
node is not marked

Ilcalculate securityMeasure�
securityMeasure=Oi�
for(i=Oi i<count; i++)�

if(nodeMeasured[i]} securityMeasure++;

II free dynamic memory�
delete[] nodeMeasured;�

80�

nodes (nodes) , count (count) ,
~8sbMe:Rftl8ft@e~~~na~~S§s~@tuB2~~ec~28~al), cb(O)
~ssume=unidirectional):

visited from = new int[count];
};

Paths: : -Paths ()
{

delete[] visited from;
}

//implements DFS strategy
Path Paths: :find-paths(int start, int finish)
(

Path current-path(nodes, count);�
minimumPath=Path() ;�

find-path_between(start, finish, currentyath);�
return minimumPath;�

void Paths::find-path_between(int start, int finish, Path&
partialyath)
{

int i, neighbor;

partial-path.add_vertex(start) ;

/* for strategy 2, stop advancing current path if i 's
length already biger than current best's length

note: this can be accomplished in the middle of building
path, i.e. we must not reach final node

to determine this condition�
*/�
if((strategy==2)�

&& minimumPath.exists()
&& partial....Path.getLength(»=minimumPath.getLength(»

/* we stopped at this point*/�
partial-path.delete_from_end(l;�
return;�

}
/* for strategy 3, apply selection strategy. note: we can

apply this strategy only if we got whole
path from start to finish built */

if((start==finish) && (strategy==3) &&
minimumPath.exists(l)

81�

1* count of filter nodes*1
int filters_cur=partialyath.getFiltersCount()i
1* count of regular nodes (node is a regular node if and

only if it's not a filter) *1
lnt regular_cur=partialyath.getLength()-filters_cur;
1* count of filter nodes*1
int filters min=minimumPath.getFiltersCount();
1* count of-regular nodes (node is a regular node if and

only if it's not a filter) *1
int regular_min=minimumPath.getLength()-filters_mini

bool cut=
(filters min>O && filters cur==O) II prefer paths

that have at least one filter
I I (regular_cur> regular_min) II take path with

minimum of regular nodes
I I (filters cur< filters_min); II take path with

maximum of filter nodes

if(cut)
{

1* we stopped at this point*1
partialyath.delete_from_end() ;
retu.rn;

}
if((start==finish) &&(strategy==4) &&

minimumPath.exists())
{

int sec_measure_cur=partialyath.getSecurityMeasure();
int sec_measure_min=minimumPath.getSecurityMeasure();

if(sec measure cur<=sec measure min){ - - -

return;�
}�

}�
if (start==finish)
(

1* if path selection strategy applied earlier in this
function not cuts path, it's assumed to be better

than previous one
*1
minimumPath=partialyath;

if(strategy==l && cb) cb(partialyath);

#if PRINT ALL

82�

cout «" Number of
filters="«partial-path.getFiltersCount{)

part~~l-Rep§=p~~~aftial-path.getLength()
«" sec. measure="«minimumpath.getSecurityMeasure()
«endli

#endif

partial-path.delete_from_end() i�

return;�

1* try every edge starting current vertex *1�
for(i=Oi i<nodes[start] .out_neighbor_count; i++)�
{�

neighbor=nodes[start] .out_neighbors[i];
if(lpartial-path.is_in-path(neighbor») /* check neighbor

node is not in the path yet *1
{

bool skip=false;

1* if edge has a limited bandwidth, don't go there*1
if ((strategy>=2) &&

nodes [start] .bandwidth[i] <bandwidth)
{

#if PRINT ALL
cout «"Cut because of bandwidth restrictions:";
Ilpartial ath.print{};
cout « neighbor;
cout « "

Bootleneck=" «nodes [start] .bandwidth[iJ«endl;
#endif

skip=true;

if (! skip)�
{�

find-path_between(neighbor, finish, partial-path);
}�

}�

/***/

1/ statistics.h

#ifndef STATISTICS H

83�

#include <iostream.h>
~~~~in@eST~a~§8~hS_H 

struct Hoplnfo 
{ 

int hOPSi� 
int filters_total;� 
int regular_total;� 
int count_records;� 

float avg_filters;� 
float avg_regular;� 

} ; 

struct Filterlnfo 
{ 

int filters; 
int hops_total; 
int count_records; 

float avg_hops; 
} ; 

struct HoplnfoAvg 
{ 

int hOPSi 
float avg_filters_total; 
float avg_regular_total; 
int count_records; 
float avg_avg_filters; 
float aV9_av9_regular; 
HoplnfoAv9(): aV9_filters_total(0.Of) I 

aV9_re9ular_total(0.Of) , 
count_records (0) , 
avg_avg_filters(O.Of) , aV9_av9_regular (0. Of) {}; 

} ; 

struct FilterlnfoAvg 
{ 

int filtersi 
float aV9_hops_total; 
int count_records; 
float avg_avg_hops; 
FilterlnfoAv9{): aV9 hops total{O.Of), count_records{O), 

aV9_av9_hops{O.Of) {};- 
} ; 

const int maxSize 100; 

84� 



class Statistics 
{ 
private: 

Hoplnfo hoplnfo[maxSize]; 
Filterlnfo filterlnfo[maxSize]; 

HoplnfoAvg hoplnfoAvg[maxSize];� 
FilterlnfoAvg filterlnfoAvg[maxSize]� 

public: 
Statistics() i 

void startNetwork() i� 

void addPath{Path& path) ;� 
void finishNetwork() i� 
void reportNetwork(ostream&);� 

void calculateGlobalStat(); 
void reportGlobalStat(ostream&) i 

} i 

#endif IlsTATISTICS_H 

1***********************************************************1 

/1 statistics.cpp 

#include "statistics.h" 

Statistics: :Statistics() 
{ 

int i; 

for (i=O; i<maxSizei i++)� 
{� 

hoplnfoAvg[i] . hops = i;� 

filterlnfoAvg[i] . filters i·I 

void Statistics: : startNetwork () 
{ 

int 1.; 

for (i=Oi i<maxSize; i++) 
{� 

hoplnfo[iJ.hops = ii� 
hoplnfo[i] . count_records 0;� 

85� 



hoplnfo[i] . regular_total = 0; 

!2P~~f!J!b{It+!~!@e~gt~li~0;� 
filterlnfo[i] . count_records 0;� 
filterInfo[i] .hops_total = 0;� 

void Statistics: : addPath{Path& path) 
{ 

if(lpath.exists()} return; 

int hops=path.getLength()-l;� 
int filters=path.getFiltersCount();� 
int regular=path.getLength()-path.getFiltersCount();� 

hopInfo[hops] . filters_total +=filters;� 
hopInfo[hopsl .regular_total +=regular;� 
hopInfo[hopsl.count_records++;� 

filterInfo[filters] .hops_total +=hops;� 
filterlnfo[filtersl . count records++;� 

void Statistics::finishNetwork() 
{ 
int i; 

for (i=O; i<rnaxSize; i++)� 
{� 

if (hopInfo[iJ . count records)�
{ 

hoplnfo[il .avg_filters = (float) 
hoplnfo[i] . filters total/hoplnfo[il . count records; 

hoplnfo[i] .a~g_regular = (float) 
hoplnfo[i] .regular_total/hoplnfo[il . count_records; 

hoplnfoAvg[i] .avg filters total += 
hoplnfo[i] .avg_filters;- 

hopInfoAvg[i] .avg regular total += 
hoplnfo[i] .avg regular;- 

hopInfoAvg[il.count_records++;� 
}� 
else� 
{� 

hoplnfo[i] .avg_filters hopInfo[il.avg_regular 0.0;
} 

86� 



if (filterlnfo[i] . count_records) 
{ 

filterlnfo[i] .avg hops = (float) 
filterlnfo[i] .hops total/filterlnfo[i] . count_records; 

filterlnfoAvg[i] .avg_hops_total += 
filterlnfo [i] .. avg hops; 

filterlnfoA;g[i] .count_records++;� 
}� 
else� 
{ 

filterlnfo[i] .avg_hops 0.0;� 
}� 

void Statistics: :calculateGlobalStat{) 
{ 

int i; 

for (i=O; i<maxSize; i++)� 
(� 

if {hoplnfoAvg[i] . count records)�
( 

hopInfoAvg[i] .avg avg filters 
hoplnfoAvg[i] .avg_filte~s_total/hoplnfoAvg[i]. count_records; 

hoplnfoAvg[i] .avg avg regular 
hopInfoAvg[i] .avg regul~r total/hoplnfoAvg[i) . count records;

} - - 
else 
{� 

hoplnfoAvg[i] .avg_avg_filters O.Of;� 
hoplnfoAvg[i] .avg_avg_regular O.Of;� 

if {filterlnfoAvg[i} . count records)
{ 

filterlnfoAvg[i] .avg avg hops 
filterlnfoAvg[i] .avg_hops_total/filterlnfoAvg[i] . count_records 

} 
else� 
{� 

filterlnfoAvg[i] .avg avg hops O.Of;�} - 

void Statistics: : reportNetwork{ostream& report} 
{ 

87� 



for(i=O; i<maxSize-l; i++)tnt i, j;� 

j=i+l;� 
if (hoplnfo[j) . count_records)� 
{ 

report «"\tNumber of hops:\t"«j«endl; 
report «"\t\tAverage 

filters:\t"«hoplnfo[j) .avg_filters«endl; 
report «"\t\tAverage 

regular:\t"«hoplnfo[j) .avg_regular«endl; 
} 

for(i=l; i<maxSizei i++) 
{� 

if (filterlnfo[il . count_records)� 
{� 

report «"\tNumber of filters:\t"«i«end1i 
report «"\t\tAverage hop 

count:\t"«filterlnfo[i] .avg_hops«endl; 
} 

void Statistics::reportGlobalStat(ostream& report) 
{ 

int i, ji 

for(i=Oi i<maxSize-l; i++) 
{� 

j=i+l;� 
if (hoplnfoAvg[j) . count_records)� 
{� 

report «"Number of hops:\t"«j«endli 
report «"\tAverage 

filters:\t"«hoplnfoAvg[j) .avg_avg_filters«end1i 
report «"\tAverage 

regular:\t"«hoplnfoAvg[j) .avg_avg_regular«end1i 
} 

for (i=l; i<maxSize,; i++)� 
{� 

if (filterlnfoAvg[i) . count records)�
{ 

report «"Number of filters:\t"«i«endl; 
report «"\tAverage hop 

count:\t"«filterlnfoAvg[i) .avg_avg_hops«endl; 

88� 



/***********************************************************/ 

89� 



VITA 

Munirul Islam 

Candidate for the Degree of 

Master of Science 

Thesis:� REDUClNGTHE SCOPE OF DENIAL OF SERVICE ATTACKS 
IN QUALITY OF SERVICE ROUTING NETWORKS 

Major Field: Computer Science 

Biographical: 

Personal Data: Born in Dhaka, Bangladesh on January 20, 1976, the 2nd son 
ofMahbubul Islam and Nasim Islam. 

Education: Graduated from Computer Science Department, North South 
University, Dhaka, Bangladesh in December, 1999; received 
Bachelor of Science degree in Computer Science. Completed the 
requirements for the Master of Science degree at Oklahoma State 
University in May 2003. 

Professional Experience: Jan 1999-Aug 1999: Teaching As i tant 
Department of Computer Science, North South Univ r ity, Dhaka, 
Bangladesh 
Oct 1999-July 2000: Junior Programmer, Devnet Dhaka, Banglade h 
Aug 2001-Present: Graduate Assistant, CEAT Labs, Oklahoma State 
University 


