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ABSTRACT� 

Current methods for making nitrogen recommendation for winter wheat (Triticum 

aestivum L.) do not adjust for in-season temporal variability of plant available 

non-fertilizer nitrogen (N) sources. The purpose of this study was to compare the 

use of different nitrogen response indices determined in-season (RINDVI and 

RlpLANTHEIGHT) to the nitrogen response index measured at harvest (RIHARVEsT). In 

addition this study evaluated the use of the in-season response indices for 

determining topdress nitrogen rates for winter wheat. Nine experiments were 

conducted over two years and eight locations. A randomized complete block 

design with nine different treatments with four replications was used at each 

location. Preplant nitrogen source was ammonia nitrate (34-0-0). At Feekes 4-6, 

RINDVI was measured for use in determination of topdress nitrogen rates. The 

nitrogen source for topdressing was UAN (28-0-0). Both RINDVI and RlplANTHEIGHT 

were able to predict RIHARVEST (~= 0.75 and ~ = 0.74, respectively). Because 

the sensor based approach for making N recommendations relies on information 

obtained from the sensors, RINDVI should be used to, estimate a site's potential for 

response to additional nitrogen. Yet, if a handheld sensor is notavailable or 

affordable, then RlplANTHEIGHT will predict RIHAAVEST reliably for manag.ing nitrogen 

inputs for temporal variability. The use of sensor based nitrog,en 

recommendations were just as profitable compared to traditional nitrogen 

management schemes employed today by winter wheat producers. Further 

findings indicate that the estimated nitrogen use efficiency for topdress N 

applications is likely less than 70 percent, and more realistically near 50 per,cent. 
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INTRODUCTION 

Common fertWty management impl'emented by producers is to take a 

composite soil sample of an area, usually from 2.5 to 160 acres, evaluate nitrate 

nitrogen in the soil system through a soil test, subtract this amount from tha,t 

needed to reach a certain yield goal, and fertilize that area based on this 

information. This research aims to look at a new tool that can be used in 

managing nitrogen inputs for hard red winter wheat cropping systems. 

After reviewing yield data from a long-term soil fertility research trial in dry 

land winter wheat, Johnson and Raun (2003) proposed a response index, which 

measures the plant response to nitrogen fertilizer in terms of grain yield in a 

particular growing season. A response index was calculated by taking the 

highest yielding fertilized grain plot and dividing by the control yield (0 N applied). 

Oklahoma State University's soil fertility group has set a goal for trying to 

increase nitrog,en use efficiency from its current level of only 33 percent world 

wide for cereal grain production (Raun and Johnson, 1999). Being able to 

predict the magnitude of response that winter wheat will have to additional 

topdress fertilizer during the growing season would provide one way of reaching 

this goal. Furthermore, given the low prices for hard red winter wheat and 

associated high prices of N fertilizer (due to shortages of natural gas, a key 

component used to manufacture N fertilizer), wheat producers are looking for 

methods to cut fertilizer costs and maintain yield levels. A one percent increase 

in nitrogen use efficiency (NUE) would save around $234,,658,462 worldwide 
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while a 20 percent increase would have savings in excess of $4.7 billion per year 

(Raun and Johnson, 1999). 

In 1999 the United States used more than 11,165,310 Mg of nitrogen 

fertilizer (FAO 2001). It is believed that a large portion of environmental pollution 

from N sources comes from the·r use in agriculture cropping systems. The 

pollution results when producers app,ly excess N to insure against a ctlange in 

growing conditions where the crop might benefit from the extra N that might 

otherwise result in reduced yi,eld. Goolsby et. al. (2001) reported that the mean 

annual discharged flux of aU forms of N in the Mississippi and Atchafalaya River 

Basin was 1,568,000 Mt y(1 for the time period between 1980 to 1996. Jaynes 

et. al. (2001) reported in a study of N in tile drainage that even at the lowest N 

treatment rate (67 kg N ha -1), N03-N levels exceeded the maximum contaminant 

limit of 10 mg N03-N L-1 set by the USEPA for drinking water. With these 

pollution problems, methods for applying N to a cropping system that will 

increase efficiency and maintain or increase yield while lowering the amount of 

nitrogen contamination in fresh water supplies must be developed by researchers 

and employed by agriculture producers. 

LITERATURE REVIEW 

Agronomic crops have been intensively studied to find the optimum N 

fertilizer rate to produce crops most efficiently. Homenauth et al. (1986) reported 

that the economically optimum N rate for sunflowers in Mississippi is between 76 

and 116 kg N Ha -1. Pearson and Jacobs (1987) found N supplied before 
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anthesis increases maize grain yield more than N supplied after anthesis. 

Rhoads and Manning (1986) stated that maize has a 90% chance of achieving a 

yield increase when N applications, are initiated at emergence. They further 

noted that by waiting one week after seedling emergence to start applications of 

N resulted in increased N uptake in the plant when it was measured forty-one 

days after planting. 

Eckert et. al. (1986), found that when testing the effects of crop residue on 

N fertilizer response to no-till corn, check yields were higher for corn glrown in 

soybean stubble from the previous year, than corn grown in the stubble of the 

previous year's corn crop. They also noted differences in grain yield due t,o the 

type of N source used in no-till corn after corn. Urea-ammonium nitrate solution 

(UAN) and urea produced the lowest grain yields throughout the two-year study 

compared to anhydrous ammonia. The differences were associated with corn 

residue having a higher C: N ratio that immobilized the surface applied fertilizer 

that was not already lost by volatilization. Rasmussen and Rohde (1991) noted 

similar results in a winter wheat trial comparing stubble mulch operations to clean 

till operations to evaluate the effects on NUE. They reported that grain yield is 

more sensitive to growing season precipitation than tillage operation, thus 

explaining the combined direct relationship found between N rate and 

precipitation. 

Many scientists have made an effort to predict N mineralization rates 

throughout the growing season as an indirect indication of potential N response. 

One such method is a pre-side-dress soil nitrate test (PSNT) (Magdoffet. al , 
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1984). Evanylo and Alley (1997) reported that only five out of seventeen corn 

sites in 1990 and eight out ofthirty sites in 1991 responded significantly to a 

sidedress application of N fertilizer in Virginia. They attributed this insignificant N 

fertilizer response to amendments made to the soil with organic N sources and 

not high soil test inorganic N. They also noted that the envi,ronment prior to soil 

sampling may have provided poor conditions for the N mineralization process 

(large leaching rain. cool soils and/or extremely dry or wet soils) and conditions 

could have improved after the samples were taken. 

Another way to estimate N mineralization is to use a model. Greenwood 

et. al. (1987), developed a model by which estimated the response to N fertilizer 

of diverse crops. They indicated that the amount of N mineralized is proportional 

to soil temperature at depth of 10 cm, and declines exponentially with depth past 

10 cm. This mineralization model utilized several variables: volumetrilc water 

content at field capacity, initial distribution of mineral N down the soil profile and 

corresponding soil moisture deficit, monthly evapotranspiration, and soil 

temperature among others. They concluded that ~he number of quite different 

variables in the model had a substantial effect on N requirements. They suggest 

that the fertilizer N requirement will seldom be well correlated with anyone of the 

variables. However, this model has one major potential flaw; it does not account 

for the variability of soil types within a field. Another N mineralization model was 

developed by Hadas et. al. (1989) to predict mineralization at various depths in 

the soil. They observed considerable amounts of N mineralized under field 

conditions in the soil layers below 20 cm. Further, while developed in a 
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laboratory, their model over-estimated field mineralization by only 13 to 26 

percent. 

Johnson and Raun (2003) suggested that N mineralization over a season 

could be estimated by the use ofa response index. They found that the grain 

yield response to N fertilizer was more variable than the grain yields of the 

control' (0 N) and the maximum fertilized grain-yielding treatment in a long-term 

winter wheat study at Lahoma, Oklahoma. They verified this trend by finding 

similar results in a long-term Nebraska irrigated corn (Zea mays L.) study. 

Methods of visually observingr plant conditions are often the only 

diagnostics used to determine nutrient deficiencies on season. Johnson and 

Raun (2003) developed a method to assist winter wheat producers in 

determining in-season response to additional N fertilizer. This method involved 

installing a strip of N fertilizer that is twice the rate (or non-N-Iimiting) used during 

pre-plant fertilizationo Implementing this zone allows the producer to visually 

quantify the likelihood of achieving an in-season response to N fertilizer. If the 

non-N-Iimiting strip is not visible to the producer, then this would be indicative 

that minimal or no N response is likely, since adequate N was already available 

from preplant fertil'ization, N mineralizati.on, and/or rainfall. 

One problem in addressing variability in fields has been the resolution at 

which to properly manage spatial differences. Kachanoski and Fairchild (1996) 

used statistical equations to describe the average grain yield on a fiel'd basis from 

the application of a single constant rate of fertilizer, in fields with variable soil. 

They suggested that the relationship between yield response, soil test and 
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applied fertilizer are non-linear, and a single calibration (recommended fertilizer 

versus soil test) cannot exist for fields with different degrees of spatial variability. 

They further stated that calibrations obtained from sites with low soil test 

variability would not hold for sites with higher variability. Furthermore, they said 

that calibrations obtained from sites with low soil test variability would under 

predict the optimum fertillizer rate for maximum economic yield for sites with high 

variability . 

Solie et. al. (1999) looked at what field size element researchers and 

producers should be using to address the variability of soil in a particular field to 

ma.ke fertilizer N recommendations. To do this they performed rigorous soil 

sampling on two, 2 X 20 m areas in established Bermudagrass that appeared to 

be visually homogeneous. These selected areas were broken ,into 490,0.3 m by 

0.3 m subplots. Eight soil cores (0-15 cm) were taken from each 0.3 m by 0.3 m 

and mixed together and analysis was completed on five soil variables (total N. 

extractable P and K, organic C, and pH) and two plant variables (forage-total N' 

and biomass). Semivariance analysis was performed on the data and the 

authors found that the optimum field element size for N fertilization was 1.0 X 1.0 

m or smaller. These results were simi:lar to those discovered by LaRuffa et. al. 

(2001) when looking at the optimum field element size for maximum yields in 

winter wheat, using variable nitrogen rates. They found that there was a trend for 

finer resolutions « 54 m2
) to have increased nitrogen use efficiency in high 

yielding winter wheat environments. 
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Estimating crop yield has been the most common effective way to apply 

nitrogen, and other soil mobile nutrients. If the final yield is known or accurately 

estimated, then the nutrient can be applied based on the respective plant need to 

achieve that yield. Lamb et. at (1997) looked at the effects of spatial and 

temporal variability on the stability of corn grain yields and the use of yield maps 

to make recommendations. They recorded four years of data and tried to predict 

the fifth year's yield for each cellblock of the field. They reported that when the 

four years of data were averaged and then correlated with the fifth year, the r

value was 0.68. When they dropped the data from the best and worst years, the r 

values decreased to 0.60 and 0.57 respectively. They determined that yield is 

unstable and that using yield maps to make future predictions about yield is not 

precise enough for making management decisi,ons, even if yield from several 

years is used. Colvin et. al. (1997) found similar results from their study in 

central Iowa, which used ten years of yield data. 

With the further development of optica.l sensing technology, many 

researchers have been investigating the possibility of predicting crop yield by 

light absorbance (Coldwell, 1956; Jordan, 1969; Tucker, 1979; SeJler, 1985, 1987 

Stone et. al. 1996 a, b; Shanahan et. al. 2001). Ma. et. al. (1996) reported that 

canopy light reflectance values at 600 nm (Red light) and 800 nm (NIR light), 

could be used to calculate the Normalized Difference Vegetative Index (NDViI). 

NOVI is defined as «NIR - RED) I (NIR + RED)) and was found to be strongly 

correlated with grain yield. This correlation increased up to anthesis. They also 

stated that NDVI was better at d:ifferentiating N treatment effects than any other 
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wave bands and that NOVI was correlated with leaf area and leaf chlorophyll as 

well. 

Lukina, et. al. (2001) published an N fertilization optimization algorithm 

(NFOA) for winter wheat based on in-season estimates of yield and plant N 

uptake. The optical sensor that was used in this work measured both incident 

and reflected light to calculate NOVI values based on reflectance. By using 

reflectance NOVI, early-season plant N uptake was reliably predicted (R2= 0.75) 

at growth stages between Feekes 4 to 6. It was also noted that average N 

uptake, over nine exper'iments between Feekes growth stage 4 to 6, was 45 kg N 

ha-1
. This represented over half of the total nitrogen that was removed by the 

grain at harvest. Lukina et. al.(2001) indicated that NOVI measured at the same 

time, was positively correlated with final grain yield. By dividing NOVI by the 

number of days from planting to date of sensing, ensuing work found a more 

reliable method of estimating yield than the earlier method by using cumulative 

growing degree days (days where growing degree days «(Tmin + Tmax)/2)-4.40C) 

were greater than zero (Raun et al 2001» as the divisor. Lunkina et. al. (2001) 

outlined a procedure to determine the N fertilizer rate to be applied in a topdress 

application based on the yield potential of that crop, and is as follows. 

1.� Predict potential grain yield (PGY) form the grain yield-INSEY 

equation PGY in (Mg ha-1
) =0.74076+0.19219 ,e577.66INSEY. 

2.� Predict percent N in the grain based on predicted grai,n yield. 

Percent N in the grain =O.0704PGy2
- O.5298PGY + 3.16. 

9 



3.� Calculate predicted grain N uptake (predicted percent nitrogen 

in the grain multiplied by predicted grai!n yield). 

4.� Calculated predicted early-season plant nitrogen uptake for 

NDVI. Early season plant nitrogen uptake (kg ha-1
) = 

4S8NDVI14.76+0.7758 eS
. . 

5.� Determine in-season topdress fertilizer nitrogen requirement = 

(predicted grain nitrogen uptake-predicted early-season plant N 

uptake)/O.70. 

Mullen et. al. (2003) reported that computing an in-season response index 

(RI) from N induced NDVI differences (RINDVI) at Feekes 5 (large 1954) over 4 

years taken from 22 locations was well-correlated (~= 0.56) with RI measured at 

harvest (RIHARVEsT). The RINDVI was determined by dividing pilots that were non

N-limiting, by a zero N check plot. Raun et. al. (2002) incorporated RINDVI into 

the NFOA outlined by Lukina et. al. (2001). Raun et al. (2002) applied fertilizer 

based on the difference in grain N uptake for YPN (estimated yield potential if N 

fertilizer is added, YPN =PGY x RINDVI) and N uptake in the forage at Feekes 4-6. 

Using this method they reported an average increases in NUE of 15 percent 

compared to treatments that used similar or more N, applied either preplant 

and/or topdress. Thus, to use this practice, a producer will still have to install a 

non-N-limiting area. 

A method for finding a reliable, in-season estimate of the crop's response 

to additional topdress N that does not rely on an induced N non-Ilimiting area 

would be desirable. As this method could reliably predict the final response with 
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out incurring additional costs of installing a non-N-Iimiting strip or area, thus 

improving overall profitability. Work done on the field element size (Solie et. al. 

1999), and the micro-variab"lity of mobile and immobile soil nutrients (Raun et. 

al., 1998) illustrates the highly variable nature of soil nutrients. Knowing the 

optical sensor field element size (Solie et. al. 1996) for measuring plant N uptake 

using light reflectance is <1.5 m2
, it may be possible to develop a reliable in

season estimate of RI based on spatial variability (Rlsv) of plant available soil' N. 

Rlsv is defined by the equation: (Mean NOVI + 1 standard error) I (Mean NOVI 

1 standard error). The mean and the standard error for NDVI is calculated from 

all randomly selected field element sizes measured. Rlsv can be determined 

from sensor readings collected anywhere within fields not having the non-N

limiting (N-rich) strip. 

Furthermore, a method for producers to reliably measure a site's potential 

response to additional N, without using a sensor to measure RINDVI, needs further 

evaluation. This non-sensor based in-season RI would be of benefit to farmers in 

developing countries or a farmer in a developed country that can not afford a 

sensor or skeptical of its use in a N management scheme. A potential non

sensor based in-season response index could be based on differences in any 

crop characteristic that responds to N!. Crop canopy height (RlpLANTHEIGHT) is 

responsive to N availability and should be a good measure, right before making a 

topd ress N application, which is the same time one would measure RINDVI with a 

sensor. RlplANTHEIGHT would be measured the same way as RINDVI, (Mean plant 

height of N-rich) I (Mean plant height of check). 
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OBJECTIVES 

The objectives of this experiment were to: 1) determine the relationship between 

in-season spectral reflectance measured RI and RI measured at harvest; 2) 

determine the relationship between crop canopy height at the time of application 

of top-dress N fertilization and RI based on spectral reflectance; and 3) evaluate 

the nitrogen fertilization optimization algorithm developed at Oklahoma State 

University. 

MATERIALS AND METHODS 

In the fall of 2001 five short-term winter wheat experiments were 

established, three of these trials were placed in selected wheat farmer fields in 

Kingfisher County, Oklahoma and two at the Stillwater Experiment Station in 

Stillwater, Oklahoma. In the fall of 2002 three different sites were used in addition 

to the one at the Efaw upland site. The soils for these eight selected sites are 

reported in Table 1, along with prepl'ant soil test data. Plot management dates, 

varieties and harvest informati'on for all sites and years are reported in Tables 2 

and 3. 

A randomized complete block design was used with nine different N 

management treatments replicated four times at each site. The treatment 

structure is provided in Table 4. Plot sizes are 1.52 m by 1.52 m. The NDVI was 

measured between Feekes growth stages 4 to 6 (Large 1954), on all' plots both 

years. 
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Treatment one is the check with zero N applied either preplant or 

topdress. For all NFOA treatments that estimated grain N uptake used for 

topdress N cal'culation, 2.39 percent N in grain was used. Thus, grain N uptake 

equals estimated yield potential (YP) times percent N in grain (YP x 0.0239). 

Treatment two (forage NFOA), is a topdress N application for which the rate is 

calculated utilizing the NFOA ouUined by Raun et. al. (2002). The N 

recommendation for this algorithm is determined from the estimated amount of 

grain N uptake at YPN (estimated yield potential if additional N is applied, YPN = 

YPo X RINDVI, YPo = estimated grain yield if zero N is added) minus the estimated 

amount of N taken up by the forage. 

Treatment three (grain NFOA), is a topdress N application in which the N 

rate is calculated from the estimated amount of grain N uptake at YPN subtracted 

from the estimated amount of grain N uptake at. Treatment four (2x grain NFOA) 

used the same algorithm as treatment three except that RINDVI is multiplied by 

two, this inflated YPN to twice the amount estimated for treatment 3. Fertilizer N 

recommendation is then the estimated amount of grain N uptake at the inflated 

YPN minus the estimated amount of grain N uptake at YPo. A nitrogen use 

efficiency 70 percent was assumed for all NFOA N recommendation (Dahnke 

and Johnson, 1990; Hauck, 1973). Therefore, all NFOA N recommendation 

rates were divided by 0.7. However, with respect to treatment four (2 x Gra;n 

NFOA), the same N recommendation for this treatment can be derived from 

using 0.35 as the divisor for nitrogen use efficiency factor instead of 0.7 for 

treatmentthree (0.7 10.35 = 2.0). 

13 
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Treatments five thru eight represent traditional N management schemes 

used by winter wheat farmers in this region. Treatment five is the appli,cation of 

45 kg N ha-1 topdress only. Treatment six is applying 45 kg N ha-1 preplant with 

45 kg N ha-1 topdress. Treatment seven is an application of 45 kg N ha-1 

preplant only. Treatment eight is an application of 90 kg N ha-1 preplant only. 

Treatment nine is the application of 45 kg N ha-1 preplant and topdressing with 

the grain NFOA. 

NOVI was measured using a GreenSeeker ™ hand held optical sensor 

unit. The handheld optical sensor unit measures NOVI using self-contained 

illumination in both the red (650 ±10 nm full width half magnitude (FWHM)) and 

NIR (770.:t 10 nm FWHM) light bands. The device measures the fraction of the 

emitted light in the sensed areas that is returned to the sensor (reflectance). 

These fractions are used with the sensor to compute NOVI according to the 

folloWing formula: NDVI =(FN1R - FRED) I (FN1R + FREO), where FNIR is the fraction 

of emitted NIR radiation returned from the sensed area, and FRED is the fraction 

of emitted Red radiation returned from the sensed area. The area sensed by this 

handheld unit is 0.6 by 0.01 m. The sensor was passed over th~ entire plot area 

and an average NOVI was determined from all readings taken (approximately 15 

readings per plot). The sensor outputs an NOVI value at a rate of 10 readings 

per second. The sensor was held at height of approximately 0.9 m above the 

crop canopy. 
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In 2002 the INSEY equation used was YPo =365.85329 x exp (-INSEY/

0.0035267288). For the 2003 thrs equation was updated to YPo = (0.5005 x exp 

ONSEY x 267.65» x 1000. The updates in the 2003 algorithm reflect the 

additions of data coUected the previous growing season into the estimated yield 

potential database. 

An RI based on NOVI (RINDVI) was determined by taking sensor readings 

in the induced non-N-limiting plots (preplant application of 90 kg N ha-1
) and 

dividing by the check plots (0 N). Rlsv was calculate from NOVI readings of 

treatments one thru five, using the same NOVI: readings taken for calculating 

topdress rates using the NFOA algorithms. These treatments had zero additions 

of N fertilizer either preplant or topdress when the sensor readings were taken. 

This allowed for simulation of NOVI taken from 20 randomly selected 1.5 m2 field 

element sizes in the same field. The NOVI of 20 plot means (5 treatments x 4 

replications =20) were used to calculate an overall average, and a standard 

error. There by, Rlsv =(Overall mean NOVI + 1 Standard error) I (Overall mean 

NDVI- 1 Standard error). 

RlpLANTHEIGHT was determined using the same treatments e,s RINDVI. Plant 

height was measured with a meter stick, and recording the length of extended 

leaves to the nearest millimeter. Measurements were taken by setting the meter 

stick next to the wheat plant and height was figured from extending the leaves 

along the ruler. Five measurements were taken from each plot and a mean was 

figured for each to the two treatments used to determine the response index. 
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---------

All preplant treatments used ammonium nitrate (34-0-0) as the fertilizer N 

source. Preplant treatments will be incorporated by hand using a rake after 

application. All topdress rates used urea-ammonium nitrate solution (28-0-0), 

applied with a hand held variable rate sprayer developed at Oklahoma State 

University. All sites were planted in a 19cm row spacing using a Tye~ small grain 

drill except for the Tipton 2003 site. which was planted in a 25cm row spacing. A 

light tillage operation, using a field cultivator, was used on an as needed basis 

prior to planting for weed control. 

All plots were harvested by hand, removing the center 1m 2 from of each 

plot. Alit plots were cut at ground level, and dry weights taken before grain was 

threshed. Sub samples were taken of the straw and grain for total nitrogen 

analysis using a Carlo-Erba NA-1500 dry combustion analyzer (Schepers et aI., 

1989). All sub samples were dried and ground to pass a 140-mesh sieve (100 

~m). All statistical analysis was completed using SAS (SAS Institute, 2000). 

RESULTS� 

Crop Year 2001-2002� 
At three sites (Efaw Bottom, Marshall and Kingfisher) RI'NDVI was less than 

or near 1.1 indicating that it would be unlikely to observe a response to topdress 

applied N. This was confirmed at harvest with no significant differences between 

grain yields in the check (0 N) and those treatments that received topdress N at 

these same sites (Efaw Bottom, Marshall and King.fisher) (Table 4). Not 

surprisingly, applying no N was the most profitable management scheme at the 

non-N-responsive sites (Table 5). This supported the fact that producers need to 
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start reducing preplant N rates, to be able to capitalize on years where little to no 

N is needed to reach maximum profitability per hectare, which would have only 

been recognizable by having the N-rich strip. 

Within the same three non-responsive sites, most of the N treatments 

resulted in low NUE's. Treatments five to eight represents traditional N 

management practices used today. These findings support the fact that NUE in 

a typical winter wheat production system can be quite low. In addition, this 

illustrates that managing N fertilizer recommendations based on an in-season 

estimate of RI needs to be extended to producers. By using an in-season RI 

producers can adjust N recommendations for temporal variation. 

At the two remaining sites, RINDVl indicated additional N could achieve an 

increase in grain yield. Topdress N did significantly increase yields at the Efaw 

upland location, but did not at the Hennessey site (Table 4). At the Efaw upland 

site, supplying topdress N at lower rates (forage NFOA and grain NFOA) resulted 

in the same yield level as the 90 kg N ha-1 treatment Supplying, on average, 61 

kg N ha-1 as a topdress application (2x grain NFOA,) resulted in similar yield 

levels to that of applying 45 kg ha-1 N preplant and 45 kg ha-1 N as a topdress 

(Table 4). The response to in-season applied N at this site, as indicated by 

RINDVl is encouraging and helps to support the need for managing N for temporal 

variability. More over, this supports the theory winter wheat can recover from N 

stress encountered early in the growing season and still achieve maximum yield 

while improving profitability, even when application date may be past optimum 

(Boman et. al. 1995) 
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It is important to note that the Marshall site had the lowest preplant soil 

nitrate test level at 12 mg kg-1 N03-N ac-1 and had a low RI and no response to 

mid season N fertilizer (Table 4). This suggests that preplant soil test NH4-N and 

N03-N data can be unreliable because it does not integrate weather conditions 

that are actually encountered and that lead to increased and/or decreased plant 

available N from soil organic sources or rainfall. Using current methods to 

determine preplant N recommendations, this site was the most deficient in 

inorganic nitrogen and a response to N ferblizer would be likely .. Based on the 

response index and the yield of the check (0 N) treatment, this was obviously not 

the case (Table 4). This strengthens the argument that soil testing to determine 

N need is a static measure of a dynamic system which not reliably predict how 

the crop will respond to applied N (Walley et. al. 2002). 

Results: Crop Year 2002-2003 
It is important to note that the Tipton site experienced a hard freeze on 

April 9, 2003, a full month after topdress application of N fertilizer. The Tipton 

site had an RINDVI of 1.15 suggesting response to additional N would be likely. 

The highest grain yielding treatment was four, which received 77 kg N ha-1 of 

topdress N. Grain yield of treatment four was not statistically different from the 

grain yield of treatment six which received 45 kg N ha-1 preplant and 45 kg N ha.-1 

topdress (Table 6). Since, yield has the greatest impact on profitability, treatment 

four had the most return with respect to N management. It was apparent that 

treatments with preplant N were more susceptible to damage from a late freeze 

than those that received all N mid season (Alcoz et. a!. 1993). 
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The RINDVI at the Efaw Upland site indicated that there would be a large 

response (RINDVI =1.48) to additional N at time of application of topdress N 

(Feekes 4-6). Topdress N did significantly improve grain yields (Table 6). There 

was no difference in grain yields when the total amount on N applied was greater 

than 75 kg N ha-1
. Applying all N or a large portion of it preplant and topdressing 

with smaller amounts did result in higher profits than applying a I,arge amount of 

N midseason (zero preplant) (Table 7). Yields were significantly less with limited 

difference between grain yields, when total N amounts applied were less than 60 

kg N ha-1
. 

The RINDVI predicted that response to additional N would be small (RINDVI = 

1.06) at the Perkins site. The application of only 4 kg N ha-1 topdress N produced 

a grain yield that was no different than any other N treatment. This site is 

classified as a responsive site because there was a difference in the grain yield 

of when 45 kg N ha-1 preplant plus 45 kg N ha-1 topdress was applied compared 

with the check (0 N) treatment. However, there was no di,fference in return on N 

management from any treatment. This helps support the fact that if RINDVI 

indicates a site will have little response to additional N, a farmer can forgo 

making additional investments in applying N and still achieve maximum 

profitability (p value <0.05). 

The Lake Carl Blackwell (L.C.B.) site had an RINDVI of 1.27, indicating that 

there would be a response to additional N. This was observed with an increase 

in grain yields over 1500 kg ha-1 for some N treatments. However, limited 

differences between N treatments were found, excluding those where N rate was 
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less than 45 kg N ha-1. In general either applying all N preplant or applying a 

large quantity mid-season (no preplant) resulted in the highest grain yields and 

profit (Tables 6 and 7). 

DISCUSSION 

Based on two years and 9 experimental sites over eight different 

locations, the degree of response to N varied by year and location (Figure 1). 

This implies a need for N recommendations to have the flexibility to encompass 

temporal variations at different locations. RltVVI was a good indicator of a sites 

potential responsiveness to additional N. Across nine sites, different 

environments and two years RINDVl was positively correlated with RIHarvest 

(RIHlWVest =3.9365(RINDVI) - 3.2639, r 2 =0.75) (Figure 1). The slope of this line is 

greater than that reported by Mullen et. aL (2003) which was RIHarvest = 

1.06(RINDVl) + 0.18. 

However, looking at that set of data, six of the points for both RINDVI and 

RIHARVEST are below 1.25 and 1.26 respectively. This is encouraging even as it 

shows that if RINDV1 indicates that a site might be marginally responsive to 

additional N, it is confirmed with the low RIHARVEST. A site was considered non

responsive if the RINDVI is from 1.0 to 1.10 and marginally responsive from> 1.10 

<1.25. At the marginally responsive range the increase in grain yield from 

additional N may not have an economical return on the expenditure for the N 

fertilizer. In the non-responsive range it is very unlikely that the producer would 

observe an economic return on the N fertilizer dollar spent to obtain the small 

increase in grain yield. 
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It was somewhat i,nteresting to note that the slope of RINDVI verses 

RIHARVEST is not close to 1.0. Lukina et. al (2001) found that at Feekes 4-6, winter 

wheat had taken up in the forage 45 kg N ha-1
. This amount represented over 

half of the total N that would be in the grain at harvest. So, at early growth 

stages, winter wheat has taken up a large po.rtion of the N that the plant needs to 

meet its yield potential. Thus, one would expect that the relationship between 

the response indices would be very similar to and would have a slope of one. 

If a site is not responsive to additional N then a priming effect 

(Westerman and Kurtz, 1973; Ma. S.L. et ai, 1999) will not be observed, as there 

is already enough non- fertilizer N available to meet the needs of the developing 

crop to maturity. At a site that is responsive or predicted to be responsive, then 

there is a lack of N to meet the needs of the biological activity therefore; 

additional fertilizer N added maybe immobilized and reduces nitrogen use 

efficiency of topdress N applications. 

RlplANTHEIGt-fT over all nine locations was strongly correlated with 

RhiARVEST (r 2 =0.74) (Figure 2). This is very encuuraging findings as this allows 

for producers to make a reliable estimate of RIHARVEST without th~ use of a 

handheld sensor. This could be very useful to producers in developing countries 

that farm only a few hectares and can not afford a hand held sensor, but can still 

capitalize on the use of managing N for temporal variability by using a N-rich strip 

(area) and compare to the farmer practice of the rest of the fi:eld. RlplANTHEIGHT 

was slightly correlated with RINDVl over nine sites and two years (r 2 =0.61) 

(Figure 3, Tables 8 and 9). 
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Rlsv was poorly correlated with both with RIHARVEST and RINDVI (Fig.ures 

4 and 5). The failure of Rlsv to predict RIHARVEsT or estimate RINDVI could be due 

to not enough random field element size of <1.5m2 measured in this study. 

Further investigation is needed to determine how many field element size of < 1.5 

m2 would be needed to reliably predict and estimate both Rh·iARVEST and RINDVI , 

respectively in a given field. In addition Rlsv assumes that the variability 

measured by the sensor is due to spatial difference in N. Rlsv should be 

measured only when a crop stand visually appears uniform, and is not affected 

any other factors that could attribute to the variation in NOVI measured in a 

random field elements. Factors that could contribute the failure of Rlsv to predict 

RIHARVEST could be but not limited to the following: uneven plant stands, 

variations in tiller density, differences in plant available water in the soil solution, 

drainage, degree and direction of facing slope. Any soil parameter that affects 

the growth of the crop other than N status of the soil from one field element to 

another would make Rlsv an unreliable estimate of the crops potential 

responsiveness to additional N. 

In-season N management schemes that incorporate an in-season 

response index (RINDVI or RlplANTHEIGHT) will allow for producers to quantify the 

likelihood of achieving an economical response to addition N, tailored to that site, 

for that growing season. If producers are to realize full potential of this system, 

preplant N rates must be reduced. By reducing preplant N rates they can start to 

take advantage of years where little or no N is needed to achieve maximum 

yields and profitability on N management. This helps support the effectiveness of 
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using a sensor based approach for making N recommendations over the current 

industry standard of yield goals and preplant soil samples for residual nitrate. 

Even if producers do not treat with in field spatial variability, the use of an N-rich 

strip and a check will allow them to adjust for temporal variability, and large-scale 

variability (by field). This will help to improve their NUE over current N 

management practices. 

Averaged over all nine sites, treatment four had the highest profitability 

(Table 10). This is important to note because it reflects the ability of a single 

application of N mid-season and that it recovered 100 percent of maximum yield. 

Because this treatment was essentially double that of treatment three, but using 

a nitrogen use efficiency factor of 35 percent instead of 70 percent, respectively, 

it supports that assuming the need for decreasing nitrogen use efficiency 

actually. Topdress N applications have a more realistic nitrogen use efficiency 

near 50 percent or less. 

For non-N-responsive sites NUE is generally pOOT. Simply because the 

crop did not utilize the additional N, thus reducing NUE. However, at two 

responsive sites increased NUE was observed with small amounts topdress N 

(Efaw upland 2001-2002, and Perkins 2002-2003). Both of these sites had NUE's 

above 100 percent for treatments that received less than 15 kg N ha-1 N applied 

topdress (Figures 6 and 7). This is somewhat consistent with the priming effect, 

in which small amounts of fertilizer can encourage N mineralization in field 

conditions, as was also observed by Westerman and Kurtz, (1973) and Ma, B.L. 

et. al (1999). These two papers demonstrated that additions of fertilizer N 
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enhance the mineralization process. It was believed to be the increased microbial 

activity in the soil, which contributed to increased N mineratization 

(Franzluebbers et. al. 1994). 

NUE of a flat rate of N applied either preplant or topdress is thought to 

increase as a site's responsiveness to N increases (Johnson and Raun, 2003). 

This is based on the idea that as plant demand for N becomes greater the use 

efficiency of the N applied will increase. This relationship was observed for the 

90 kg N ha-1 preplant, 45 kg N ha-1 preplant and 45 kg N ha-1 topdress (Figures 8 

thru 10). The NUE's increased from 0 to 40 percent with increasing RIHARVEST 

values from 1.0 to -1.5 and the percent increase in grain yield of 0 to 68 percent 

for 90 kg N ha-1 preplant. Then there is not an increase in NUE between 

RIHARVEST values 1,.5 to nearly 3.0. Yet, there was nearly a 200 percent 

increasing in grain yield. 

The same effect is observed for the 45 kg N ha-1 applied preplant 

treatment across RIHARVEST except for the Perkins site. At this site NUE reached 

its maximum value of 51 percent at the RlHARVEsT value of 1.26., then declined 

and leveled off between RIHARVEST values of 1.5 and 3.0 with NUE around 30 

percent. NUE of 45 kg N ha-1 applied topdress leveled off at 45 percent with an 

increase in grain yield from 55 to 125 percent (Figure 11). This can be exp.lained 

by the fact the increase in grain yield is offset by a decrease in the amount of N 

in grain (Tables 11 and 12). On average, the NUE of the 45 kg N ha-1 applied 

topdress is slightly higher than of the same amount of N applied preplant. 
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The unaccounted for N could have been subject to losses of 

denitrification, immobilization, volatilization, or by the plant itself. The plant itself 

is extremely inefficient in translocating N from vegetative parts of the plant to 

grain, even when itis showing a strong response in terms of grain yield. Plant 

inefficiencies have been well documented by other researchers (Reddy and 

Reddy, 1993; Kanampiu et.al., 1997; Francis et. at, 1993; Thomason W.E., 

1996). Reddy and Reddy reported that N unaccounted for in the soil-plant system 

was nearly three times higher when fertilizer N application increased from 100 to 

200 kg N ha-1 for maize. They concluded that the unaccounted N was lost to 

leaching below the root zone or by denitrification. Even so, they indicated that 

they had to irrigate the crop three times during the growing season due to 

drought conditions. Thus, it is hard to believe that the N was actuaUy moved 

below the root zone. However, they did illustrate that only 9 to 17 percent of the 

labeled 15N in various plant parts was translocated into the grain and that NUE 

ranged from 43 to 57 percent for maize in the Piedmont region. Francis et. al. 

(1993) reported that nearly S2 to 73 percent of the unaccounted for N using 15N 

could be attributed to plant loss after anthesis in maize. 

Kanampiu et. al (1997) found that in winter wheat, loss of N by the plant 

was greatest for a period between anthesis and 14 days after anthesis. 

Kanampiu et. al. estimated that N losses from the amount accumulated in plants 

at anthesis and that amount still remaining at harvest ranged from 7.7 to 59.4 

percent over a two year period, two locations and different N rates. Thomason 

(1996) reported that the NUE of applying 90 kg N ha-1 preplant for a forage 
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production system using winter wheat was 77 percent, with the NUE at harvest 

for the grain production system was only 31 percent. 

Increasing the amount of N applied decreased NUE, even though there 

was a response increase in grain yield. As N rate increased, NUE went down 

when method of application (either all preplant or all topdress) were the same 

(Figures 7,8,12). An example of this is the response of treatment four at the 

Lake Carl Blackwell site, which received 119 kg N ha-1 topdress only. This N rate 

resulted in an increase in grain yield of 81 percent and the NUE was 40 percent. 

At the same site 45 and 65 kg N ha-1 topdress only, had the same percent 

increase in grain yield yet, the NUE was the same as the 119 kg N ha-1 topdress 

only treatment. More over, the Efaw upland site for the 2002-2003 was the most 

responsive encountered in this study. Even at this site, with a RIHARVEST of 2.99, 

applying 93 kg N ha-1 topd ress increased grain yield over 180 percent and had 

the same NUE as applying 23 and 45 kg N ha-1 in a topdress application. This 

supports the fact that N in grain decreases as grain yields increases (Tables 11 

and 12). 

Knowing that plant N losses could be a large source of unaccounted for N 

in N budgets, even when there is a large response to additional N, total N uptake 

by the plant could be quite higher than what was reported by NUE. Future 

eva(uati,ons made about trying to increase NUE by N management should also 

take into consideration that plant losses of N could be very substantial. This 

could be accomplished by taking a forage sub-sample of a respective treatment 

at the time of anthesis and measuring total N uptake in above ground biomass. 
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Or, by a non-destructive method Using sensors to estimate total N uptake, which 

would allow for a reliable to measure total N uptake by the plant (Stone et al 

1996 a, b; Sembiring et. al. 1998; Osborne et. al. 2002). In addition, a harvest 

soil sample of the rooting depth to account for residual soil organic and inorganic 

N. By doing so would allow for determination as to which part of the system 

(either the plant or the soil) is the causing the greatest decrease in nitrogen use 

efficiency. 

CONCLUS10N 

The driving factor for adaptation of this technology will be profitability and 

the risk for reliance on topdress application of the crop N needs. With review of 

work previously done by Boman et. aI., which showed that the optimum time for 

applying N is January to February in this region (Oklahoma). Even when 

delaying N application till early to mid March, the Efaw upland site for both years 

treatment 4 (2 x Grain NFOA) was able to obtain maximum grain yields with 

applying all N in a slingle topdress application. At this site treatment four had the 

highest grain yield in 2001-2002 and was not significantly less than the highest 

grain yielding (treatment six) for 2002-2003 (p value ~ 0.05). This Wustrates that 

maximum yields can be achieved by delaying N applications of N stressed winter 

wheat till Feekes 6. This should reduce producers risk exposure with respect to 

yield loss by early season N stresses and delaying N application till later in the 

growing season. 

By including costs for both traditional N management and sensor-based 

technology for N management, comparison showed the sensor-based technology 
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N management schemes performed as well if not better then traditional N 

management. The sensor-based technology could have saved producers from 

incurring additional N cost when there would not have been an economical 

response to the additional N on three non-responsive sites. Averaged over 9 

sites treatment four recovered 100 percent of yield and achieved the highest 

profitability. This supports the idea that sensor based approaches to N 

management perform as well as traditional N management schemes. 

The major reason that the grain NFOA only (treatment 3) at responsive 

sites failed to reach maximum yield and profitability was due to the under 

prediction of RIHARVEsT and over estimating the use efficiency of fertilizer N. 

Under estimating the actual response to N and/or over estimating the use 

efficiency of fertilizer N is a critical error in this N management system for 

achieving maximum grain yield with zero preplant. With review of the data 

obtained in this study. when a site is highly responsive to additional N, NUE of 

economical yield levels was under 50 percent, indicating that N 

recommendations should divided by an efficiency factor ~ 0.5 instead of 0.7. 

This implies that the use efficiency will only be 50 percent. Timely N applications 

and improvements in the ability to predict RIHARVEsT, and using a use efficiency 

that does not over estimate the actual fertilizer N use efficiency, will greatly 

enhance the effectiveness of this approach for N management to achieve 

maximum yield and profitability. 

RINDVI was related to RIHARVEsT over 9 locations and two years, Use of the 

response index will allow producers to move away from reliance on prepl,ant 
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application of N and to start managing N based on the likelihood of achieving an 

economical response to N fertilizer. This can only be done when a non-N-limited 

area is installed and the N manag,ement practice allows for N rates to be 

adjusted by season and location. 

RlplANTHEIGHT can be a very useful tool for smatl farmers in developing 

countries, managing small tracts or those in developed countries managing 

larger tracts of land, that cannot or do not want to initially undergo the cost of a 

handheld sensor, till the producer becomes comfortable with this style of N 

management. Furthermore, RlpLANTHEIGHT should continue to be evaluated as a 

potential aid when using Rlwovl. An example could be at a site where RINoVi has 

indicated that it would be marginal in its response to addlitional N, could be 

confirmed with the RlpLANTHEIGHli. The fact that RlpLANTHEIGHT was strongly 

correlated with RIHARVEsT indicates that it can be used instead of RINoVi. Yet, the 

N recommendations used in this study rely sole,ly on information derived from the 

sensors to generate NDVI. Thus, RINovl is still a reliable tool that should be used 

because the measurements easy and rapid. For a, producer that has many fields 

to evaluate in a short time, taking 40 to 50 plant measurements per site, with a 

meter stick, and then calculating averages from the data collected could take up 

valuable time and labor. 

Rlsv should not be used to determine RINoVi or RIHARVEsT. Of the three 

response indices for predicting a site's potential responsiveness to N this was I 

the poorest. Part of the problem in this study was possible lack of data collected 

to obtain enough samples ofthe total population with the field. Also, this 
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response index assumes that the variability measured by the sensor is due to N 

status of the soil alone. That can be a -risky assumption when all the possible 

factors that could be affecting the measured variability are examined. 

The algorithms used in this study looked only at maximizing yiefd and not 

on maximizing profitability. The current algorithms could be retro fitted to 

recommend N not based on maximizing yield but maximizing profitability. 

Assuming that the value of the marginal increase in grain yields at YPN is less 

than the marginal-increase in the cost of additional N needed to reach YPN, then 

maximum profitability would lie between the range ofYPo and YPN. Then the 

fertilizer N recommendation for a site would be where the estimated value of the 

increase in the grain yield equals the value of the additional cost of N needed to 

reach that increase in yield (YPPROFIT). This is based on the economical principle 

of law of diminishing returns; where input should be add till the value of each 

additional output unit equals the cost of the each additional unit of input. The N' 

recommendation would then be (grain N uptake at YPPROFIT minus the grain N 

uptake at YPo) I (fertilizer N use efficiency factor». This would base N rate 

recommendations based on maximizing net return instead of yield. 
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Table 1: Surface (0-15 cm) soil test data by location for 2001-2003 prior to 
experiment establishment. 

Marshall 
Classification: Kir

Location 

8 12 20 
kland silt loam; Fine, mixed, thennic. Vertic Paleustolls 

2001-2002 crop year sites 

----------1mgkg-'----
273 

K pH 

5.6 

Hennessey 6 20 35 199 5.5 
Classification: Pond Creek silt loam 1-3% slopes; Fine silty, mixed, thermic, Udic Argiustolls 

Kingfisher 6 17 41 292 5.8 
Classification: fine, mixed, thennic, Vertic Paleustolls 

Efaw upland 8 13 26 164 5.4 
Classification: Norge soil series: Fine-silty, mixed, thennic Udic Paleustolls 

Efaw Bottom 7 39 36 186 6.3 
Classification: Easpur soil series: Fine -Loamy, mixed, thermic Fluventic Haplustolls 

2002-2003 crop year 
pH 

-------mg kg-1 

Tipton 5 9 24 324 6.36 
Classification: Tipton silt loam: fine-loamy, mixed,thennic, Pachic Urgiustoll 

Perkins 3 12 15 146 5.47 
Classification: Teller sandy loam: fine-loamy, mixed, thermic Udic Argstoll 

Lake Carl 
3.35 10 18 107 5.28Blackwell 

Classification: Port-oscar: silt loam, fine-silty, mixed, super active, thennic Cumulic Haplustolls 
t Composite soil samples were taken at random from the site area before any fertilizer was 

applied 
+: NH4 -N and N03-N - 2 M KCI extraction 
§ P and K - Mehlich III extraction 
# pH - 1:1 soil:water 

36� 



Table 2: Dates offield activities, seeding rates and varieties planted for 2001·2002 crop year. 

Pre-Plant Fertilization Date 
Planting Date (ddlmmlyear) 
Variety 
(Seeding Rate Lbs-1ac) 
Sensing Date 
Days from Planting to Sensing 
(GOD> 0) 
Topdress Fertilization Date 
Harvest Date 

c..> 
---J 

Efaw Upland 

24/09/01 
01/10/01 
Jagger 

(90 kg-1ha) 
11/03/02 

109 

13103/02 
07/06/02 

Efaw Bottom 

28/09/01� 
04/10/01� 
Custer� 

(90 kg-1ha)� 
11/03/02� 

106 

13103/02 
07/06/02 

Location 

Hennessey 

20/09/01 
19/10/01 
Jagger 

(90 kg-1ha) 
28/03/02 

101 

29/03/02 
07/06/02 

Marshall 

20/09/01 
19/10/01 
Jagger 

(90 kg-1ha) 
28/03/02 

101 

29/03/02 
07/06/02 

Kingfisher 

20/09/01 
01/10/01 
Jagger 

(100 kg-1ha) 
28/03/02 

124 

29/03102 
07/06/02 

Table 3: Dates of field activities, seeding rates and varieties planted for 2002-2003 crop year. 

Pre-Plant Fertilization Date� 
(ddlmmlyear)� 
Planting Date (ddlmmlyear)� 
Variety� 
(Seeding Rate Lbs-'ac)� 
Sensing Date (ddlmmlyear)� 
Days from Planting to Sensing� 
(GOD> 0)� 
Topdress Fertilization Date� 
Harvest Date� 

Location 

Efaw Upland Tipton Perkins Lake Cart Blackwell 

04/09/02 17/09/02 12109/02 05/09/02 

05110/02 26/09/02 14/10/02 01/10/02 
2174 

(90 kg-1ha) 
Custer 

(80 kg-1ha) 
Jagger 

(90 kg-1ha) 
Jagger 

(90 kg-1ha) 
07/03/03 06103/03 12103/03 07/03103 

92 115 91 99 

07/03103 06/03/03 12103/03 07/03/03 
30/05/03 29/05/03 30/05/03 26/05/03 



Table 4: Yield and nitrogen use efficiency at five sites for 2001-2002. 
Location 

Efaw upland Efaw bottom Hennessy Marshall Kingfisher 

Grain Grain Grain Grain Grain
Preplant Topdress NUE NUE NUE NUE NUEYield Yield Yield Yield YieldN N 

Trt # ------kg ha"-- kg ha" % kg ha-' % kg ha-' % kg ha" % kg ha-' % 

1 0 0 1305 2361 2467 2792 3167 

Forage2 0 1710(13) 101 2618(14) 56 2255 (14) 0 2134 (2) 0 2785 (0) 0NFOA 

Grain3 0 1877 (10) 118 1831 (4) 0 2406 (12) 0 2285 (3) 78 2391 (1) 0NFOA 

2X Grain4 0 2633 (61) 52 2508 (69) 9 2860 (66) 8 2800 (29) 17 3076 (65) 9NFOA
VJ 
()) 

5 0 45 2013 38 2554 22 2452 0 2694 5 3072 5 

6 45 45 2508 25 2656 8 2599 7 2981 6 3133 9 

7 45 0 1986 27 2421 15 2134 0 2981 13 3360 26 

8 90 0 1573 7 2482 10 2255 2 2921 5 2962 4 

Grain
9 45 1986(11) 24 2452 (4) 20 2785 (12) 14 2331 (3) 4 2894 (1) 5NFOA 

SED 245 24 172 13 173 4 264 33 211 8 
RIPLANT HEIGHT 1.15 1.21 1.08 1.03 1.01 
RINOVl 1.27 1.06 1.23 1.11 1.01 
Rlsv 1.41 1.14 1.37 1.4 1.04 
RIHARVEST '1.57 1.06 0.92 1.07 1.06 

t Numbers in parentheses indicates the average amount of topdress N applied in kg-1 ha. 
t NUE is calculated as: (Grain N uptake of N treatment - Grain N uptake + Straw N uptake of check) / (Total amount of N applied). 
§ SED- Standard error of the difference between two equally replicated means 
11 RlpALNT HEIGHT =Response index measured in-season using mean canopy height (Plant height of treatment 8/ Plant height of treatment 1) 
# RINoVl =Response index measured in-season using NDVI readings (NOVI treatment 8 / NDV! treatment 1) 
it Rlsv =Response index measured in-season using NOVI readings of treatments 1 thru 5 «mean NDV! + 1 SED) / (mean NDVl-1SED» 
:j::I: RIHARVEST=Response index measured using highest grain yield of a preplant N treatment only divided by grain yield of treatment 1 
§§ NFOA- Nitrogen Fertilizer Optimization Algorithm 



Table 5: Economical analysis of nitrogen management at five sites for 2001-2002. 
Location 

Efaw upland Efaw bottom Hennessy Marshall Kingfisher 

Net Net Net Net
Cost of Cost of Cost of Net Ret. Cost of Cost of N

Preplant Ret. N Ret. N Ret. N Ret. N 
Topdress N N Mgt. N Mgt. N Mgt. N Mgt N Mgt. Mgt.

N Mgt Mgt Mgt Mgt 
-------kg ha" --Trt # $ ha" $ ha" $ ha" $ ha" $ha" $ ha-' $ ha" $ ha" $ ha" $ ha" -

1 0 0 144 0 260 0 272 0 308 0 349 0 
Forage

2 0 169 19 268 20 228 20 222 13 294 12
NFOA 

3 0 Grain NFOA 189 18 187 14 246 19 238 14 251 13 
2X Grain 

4 0 244 46 226 50 266 49 280 28 291 48
NFOA 

5 0 45 189 32 249 32 238 32 264 32 306 32 

w 6 45 45 217 60 232 60 227 60 269 60 285 60 
<.D 7 45 0 191 28 238 28 207 28 301 28 342 28 

8 90 0 130 43 230 43 206 43 279 43 284 43 
9 45 Grain NFOA 173 46 227 42 260 46 215 41 278 40 

SEO 26 3 19 2 19 2 29 1 23 1 

RIPtANTHEIGHT 1.15 1.21 1.08 1.03 1.01 
RINOVI 1.27 1.06 1.23 1.11 1.01 
Rlsv 1.41 1.14 1.37 1.4 1.04 

RIHARVEST 1.57 1.06 0.92 1.07 1.06 

t Net Return on N Management: assumed ($0.11 kg" wheat - Cost of N Management).� 
:t: Cost of N Management assumed: Preplant N of $0.33 kg-' with $12.35 ha-' application cost and 2.5% interest on preplant costs. Topdress N� 

assumed $0.55 kg" with application costs of $7.41 ha·'. Treatments with variable rates assumed an additional technology fee of $4.94 ha-'. 
§ SED- Standard error of the difference between tY.U equally replicated means 
~  RlpALNT HEJGHT =Response index measured in-season using mean canopy height (Plant height of treatment 8 I Plant height of treatment 1) 
# RINOVI = Response index measured inseason using NOVI readings (NOVI treatment 8/ NOV! treatment 1) 
tt Rlsv = Response index measured in-season using NOV) readings of treatments 1 thru 5 «mean NOV! + 1 SED) / (mean NOV! - 1SED» 
U RIHARVEST ;: Response index measured using highest grain yield of a preplant N treatment only divided by grain yield of treatment 1 
§§ NFOA- Nitrogen Fertilizer Optimization Algorithm 



Table 6: Yield and nitrogen use efficiency at four sites for 2002-2003, 

Location 
Efaw Tiptont Perkins Lake Carl Blackwell 

Preplant Topdress Grain Grain Grain Grain
Trt #� NUE NUE NUE NUE

N N Yield Yield Yield Yield 
----------kg ha,1___ kg ha-1 % kg ha-1 % kg ha'1 % kg ha'1 % 

1 0 0 830 698 2757� 2435 

2 0 Forage NFOA 1848 (59) 33 978 (54) 16 3363 (47) 40 3530 (65) 36 

3 0 Grain NFOA 1223 (23) 37 735 (7) 20 3235 (4) 285 3117(22) 31 

2X Grain
4 0� 2355 (93) 40 1326 (72) 25 3330 (71) 31 4417 (119) 41NFOA 

5 0 45 1845 43 958 16 3393 40 3605 45 
~ 

0 6 45 45 2900 43 1260 17 3698 33 4143 35 

7 45 0 1613 29 793 6 3583 51 3037 20 

8 90 0 2480 32 630 0 3480 23 4083 36 

9 45 Grain NFOA 2457 (31) 39 750 (7) 3 3373(4) 28 3503 (24) 27 

SEO 158 7 103 7 242 68 190 8 

RI PlANT HEIGHT 1.65 1.18 1.02 1.12 
RIND\I1 1.48 1.15 1.06 1.27 

Rlsv 1.39 1.52 1.7 1.25 

RIHARVEST 2.99 0.90 1.26 1.68 

t� Tipton site experienced a late freeze on April 9, 2003 

* Numbers in parentheses indicates the average amount of topdress N applied for variable rate treatments 
§� NFOA- Nitrogen FertHizer Optimization Algorithm� 

SED- Standard error of the difference between ~ equally replicated means� ~  

# NUE is calculated as: (Grain N uptake of N treatment - Grain N uptake of check) / (Total amount of N applied).� 
tt RlpALNT HEIGHT =Response index measured in-season using mean canopy height (Plant height of treatment 8 / Plant height of treatment 1)� 
:j::J: RI ND \I1 = Response index measured in-season using NOVI readings (NOVI treatment 8/ NOVI treatment 1)� 
§§ Rlsv = Response index measured in-season using NOVI readings of treatments 1 thru 5 «mean NOV! + 1 SED) / (mean NDVI-1SED))� 
mJ RIHARVEST =Response index measured using highest grain yield of a preplant N treatment only divided by grain yield of treatment 1� 
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Table 7: Economical analysis of nitrogen management at four sites for 2002-2003. 
Location 

Efaw Tipton Perkins Lake Carl Blackwell 

Trt# 

1 

Preplant Topdress N 
N ,1 

--------kg ha 

o o 

Net Ret. 

$ ha'1 

91 

Cost 

$ ha'l 

o 

Net Ret. 

$ ha'1 

77 

Cost 

$ ha'1 

o 

Net Ret. 

$ha'1 

303 

Cost 

$ ha,1 

o 

Net Ret. 

$ ha'1 

268 

Cost 

$ ha,1 

o 
2 o Forage NFOA 158 45 66 42 332 38 340 48 

3 a Grain NFOA 109 25 65 16 341 14 319 24 

4 a 2X Grain 
NFOA 

195 64 94 52 315 51 408 78 

~ 

->. 5 o 45 171 32 73 32 341 32 364 32 

6 

7 

8 

45 

45 

90 

45 

o 
o 

259 

149 

230 

60 

28 

43 

79 

59 

26 

60 

28 

43 

347 

366 

340 

60 

28 

43 

396 

306 

406 

60 

28 

43 

9 45 Grain NFOA 213 57 38 41 328 43 332 53 

SED 17 1 11 2 27 0.3 21 0.6 

RIPlANT HEIGHT 1.65 1.18 1.02 1.12 
RI/lVVl 1.48 1.15 1.06 1.27 
Rlsv 1.39 1.52 1.7 1.25 

RIHARVEST 2.99 0.90 1.26 1.68 
t NFOA- Nitrogen Fertilizer Optimiiation Algorithm *Net Retum on N Management: assumed ($0.11 kg'1 wheat - Cost of N Management) 
§ Cost of N Management assumed: Preplant N of $0.33 kg·1with $12.35 ha·1application cost and 2.5% interest on preplant costs. Topdress N 

assumed $0.55 kg,1 with application costs of $7.41 ha'1. Treatments with variable rates assumed an additional technology fee of $4.94 ha·1 

~ SED- Standard error of the difference between two equally replicated means 
# RlpAlNT HEIGHT =Response index measured in-season using mean canopy height (Plant height of treatment 8 I Plant height of treatment 1) 
tt RINDVl = Response index measured inseason using NDVI readings (NDV! treatment 8/ NOVI treatment 1) 
:1=t: R1sv = Response index measured in-season Using NDVI readings of treatments 1 thru 5 «mean NDV! + 1 SED) I (mean NDVI-1SED)) 
§§ RIHARVEST =Response index measured using highest grain yield of a preplant N treatment only divided by grain yield of treatment 1 



Table 8: Plant height at Feekes 4-6 and response indices at five locations for 2001-2002. 

Location 

Preplant 
N Topdress N 

Trt 
# 

-.-----kg ha-1 

1 0 0 

2 0 Forage 
NFOA 

3 0 Grain NFOA 

~ 

'" 
4 0 

2X Grain 
NFOA 

5 0 45 

6 45 45 

7 45 0 

8 90 0 

9 45 Grain NFOA 

SEO 

RI PlANT HEIGHT 
RII'l)Vl 
Rlsv 

RIHARVEST 

Efaw Upland Efaw Bottom Marshall Hennessey Kingfisher 

Plant Height Plant Height Plant Height Plant Height Plant Height 

em 

9.50 

8.85 

em 

13.40 

14.60 

em 

9.85 

9.85 

em 

13.15 

13.25 

em 

18.10 

17.25 

10.25 13.70 9.15 13.55 17.40 

9.70 14.30 11.35 13.60 17.25 

9.30 14.45 10.35 14.35 17.80 

9.40 

12.40 

10.95 

10.70 

1.6 

15.88 

15.75 

16.15 

15.50 

1.7 

11.45 

11.20 

10.10 

11.10 

1.6 

14.60 

13.85 

14.15 

13.90 

1.4 

18.00 

18.40 

18.25 

19.00 

1.5 

1.15 
1.27 
1.41 

1.57 

1.21 
1.06 
1.14 
1.06 

1.03 
1.11 
1.4 

1.07 

1.08 
1.23 
1.37 

0.92 

1.01 
1.01 
1.04 

1.06 

t RlpALNTHEIGHT = Response index measured in-season using mean canopy height (Plant height of treatment B/ Plant height of treatment 1) 
:t: RINDVl = Response index measured in-season using NOVI readings (NOVI treatment 8/ NOV! treatment 1)� 
§ Rl sv =Response index measured in-season using NOVI readings of treatments 1 thru 5 «(mean NOVI + 1 SED) / (mean NOVI - 1SED»� 
11 RIHARVEsT = Response index measured using highest grain yield of a preplant N treatment only divided by grain yield of treatment 1� 
# SED- Standard error of the difference between two equally replicated means� 
tt NFOA- Nitrogen Fertilizer Optimization Algorithm� 



Table 9: Plant heights at Feekes 4-6 and response indices at four locations for 2002-2003. 

Location 

Preplant N Topdress N 

Trt# -------kg ha"l_-__ 

1 0 0 

2 0 Forage NFOA 

~ 

(;.) 

3 

4 

5 

0 

0 

0 

Grain NFOA 

2X Grain 
NFOA 

45 

6 45 45 

7 45 0 

8 90 0 

9 45 Grain NFOA 

SED 

RIPt.ANT HEIGHT 

RINOVl 
Rlsv 

RIHARVEST 

Efaw Upland Tipton Perkins Lake Carl Blackwell 

Plant Height Plant Height Plant Height Plant Height 

em 

6.20 

6.20 

em 

14.95 

16.10 

em 

15.90 

15.90 

em 

12.25 

12.10 

6.05 15.7 15.95 12.40 

6.50 15.3 15.30 11.65 

7.35 14.75 14.95 12.85 

9.10 

8.90 

10.20 

8.60 

1.11 

16.75 

16.00 

17.65 

15.9 

1.3 

16.50 

16.10 

16.25 

15.90 

1.25 

12.80 

12.55 

13.70 

13.05 

1.0 

1.65 
1.48 
1.39 
2.99 

1.18 
1.15 
1.52 
0.90 

1.02 
1.06 
1.7 

1.26 

1.12 
1.27 
1.25 
1.68 

t RlpALNT HEIGHT = Response index measured in-season using mean canopy height (Plant height of treatment 8 / Plant height of treatment 1)� 
~ RI NDVl =Response index measured in-season using NDVI readings (NDVI treatment 8/ NDVI treatment 1)� 
§ Rl sv =Response index measured in-season using NDVI readings of treatments 1 thru 5 «mean NDVI + 1 SED) / (mean NDVI-1SED»� 
1l RIHARVEST =Response index measured using highest grain yield of a preplant N treatment only divided by grain yield of treatment 1� 
# SED- Standard error of the difference between two equally replicated means� 
tt NFOA- Nitrogen Fertilizer Optimization Algorithm� 
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Table 10: Averages across all nine locations and two years. 

Grain
Preplant N Topdress N NUE Net Ret. Cost Grain N 

Yield 

Trt# .~----k.g  ha-'--- kg ha-1 % $ ha,1 $ ha" N g kg'1 

1 0 0 2002 220 a 21.4� 
Forage�

2 0 2328 (30) 31 227 30 22.1
NFOA 

Grain
3 0 2073 (10) 68 211 18 21.0

NFOA 

2X Grain 
4 0 2813 (72) 25 258 52 23.4

NFOA 

~  

~ 5 0 45 2473 24 240 32 21.9 

6 45 45 2874 20 256 60 22.4� 

7 45 0 2363 20 232 28 21.7� 

8 90 0 2608 14 244 43 22.2� 

Grain9 45 2499 (~1)  18 229 46 22.1
NFOA 

SEO 272 35 29 4.12 1.21� 

t Numbers in parentheses indicates the average amount of topdress N applied for variable rate treatments� * Net Return on N Management: assumed ($0.11 kg-1 wheat - Cost of N Management) 
1 1§ Cost of N Management assumed: Preplant N of $0,33 kg- with $12.35 ha- application cost and 2.5% interest on preplant costs. Topdress N 

assumed $0.55 kg'1 with application costs of $7.41 ha-'. Treatments with variable rates assumed an additional technology fee of $4.94 ha" 
~ NUE is calculated as: (Grain N uptake of N treatment) - (Grain N uptake of check» I (Total amount of N applied). 
# SED- Standard error of the difference be~n  two equally replicated means 
tt RlpALNT HEIGHT = Response index measured in-season using mean canopy height (Plant height of treatment 8/ Plant height of treatment 1) 
:t::t: RINOy! =Response index measured inseason using NOVI readings (NOVI treatment 8/ NOVI treatment 1) 
§§ Rlsv = Response index measured in-season using NOVI readings of treatments 1 thru 5 «mean NOVI + 1 SEO) I (mean NOVl- 1SEO» 
1m RIHARVEST =Response index measured using highest grain yield of a preplant N treatment only divided by grain yield of treatment 1 
## NFOA- Nitrogen Fertilizer Optimization Algorithm 



Table 11: Grain N and harvest index at five sites for 2001-2002. 

Location Efaw Upland Efaw Bottom Marshall Hennessey Kingfisher 

GrainGrain N Grain N Grain N Grain NPreplant N Topdress N N 
Trt -------kg ha-'---- g kg-' g kg-' g kg" 9 kg-1 9 kg,1
# 

1 0 0 17 21 22 25 29 

2 0 Forage NFOA 19 21 20 23 30 

3 0 Grain NFOA 19 21 21 22 28 

4 0 2X Grain NFOA 21 21 21 24 32 

,f).. 
(J1 5 0 45 20 22 22 23 31 

6 45 45 18 20 23 25 31 

7 45 0 17 21 22 23 31 

8 90 0 18 23 22 24 31 

9 45 Grain NFOA 18 23 22 25 31 

SED 1 1 1 2 1 

RIPl.ANT HEIGHT 1.15 1.21 1.03 1.08 1.01 
RI NDVI 1.27 1.06 1.11 1.23 1.01 
Rlsv 1.41 1.14 1.4 1.37 1.04 

RIHARVEST 1.57 1.06 1.07 0.92 1.06 
t RlpAlNT HEIGHT =Response index measured in-season using mean canopy height (Plant height of treatment 8/ Plant height of treatment 1) 
:t: RI NDVI =Response index measured in-season using NOVI readings (NOVI treatment 8/ NOVI treatment 1) 
§ Rlsv =Response index measured in-season using NDVI readings of treatments 1 thru 5 «mean NOV! + 1 SED) / (mean NOV! - 1SED» 
1l RI HARVEST =Response index measured using highest grain yield of a preplant N treatment only divided by grain yield of treatment 1 
# SED- Standard error of the difference between two equally replicated means 
tt NFOA- Nitrogen Fertilizer Optimization Algorithm 



Table 12: Grain N and harvest index at four sites for 2002-2003. 

Location Efaw Upland Tipton Perkins Lake Carl Blackwell 

Preplant N Topdress N Grain N Grain N Grain N Grain N 

Trt # ------kg ha'1______ g kg-1 9 kg-1 9 kg-1 g kg-1 

0 0 20 22 21 17 

2 0 Forage NFOA 19 25 23 18 

3 0 Grain NFOA 20 22 21 15 

2X Grain4 0 23 25 24 20
NFOA 

~ 5 0 45 19 24 23 17 m 

6 45 45 19 25 24 17 

7 45 0 18 23 23 17 

8 90 0 18 22 23 18 

9 45 Grain NFOA 19 22 21 17 

SED 1 1 1 1 
RIPl.ANT HEIGHT 1.65 1.18 1.02 1.12 

RINDVI 1.48 1.15 1.06 1.27 
Rlsv 1.39 1.52 1.7 1.25 

RIHARVEsT 2.99 0.90 1.26 1.68 

t RlpALNT HEIGHT = Response index measured in-season using mean canopy height (Plant height of treatment 8/ Plant height of treatment 1)� 
t RI NDVI = Response index measured in-season using NOVI readings (NOVI treatment 8/ NOVI treatment 1)� 
§ Rlsv =Response index measured in-season using NOVI readings of treatments 1 thru 5 ((mean NOVI + 1 SED) I (mean NOV! - 1SED»� 
~ RIHARVEST :: Response index measured using highest grain yield of a preplant N treatment only divided by grain yield of treatment 1� 
# SE~ Standard error of the difference between two equally replicated means� 
tt NFOA- Nitrogen Fertilizer Optimization Algorithm� 



Figure 1: RINDVI at Feekes 4-6 versus RIHARVEST at nine sites for 2001-2003 
crop years 
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Figure 2: RIPlantheight at Feekes 4-6 versus RIHARVEST at nine sites for 2001-2003 
crop years 
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Figure 3: Rlplantheight at Feekes 4-6 versus RINOVI at nine sites for 2001-2003 
crop years. 
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Figure 4: R1sv at Feekes 4-6 versus RIHARVEST at nine sites for 2001-2003 
crop years 
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Figure 5:� Rlsv at Feekes 4-6 versus RINDVl at nine sites for 2001-2003 
crop years 
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Figure 6: NUE of topdress N rates by RIHarvest at four N responsive sites for 2001-2003 crop years. 
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Figure 7: Percent increase in grain yield of topdress N rates by RIHarvesl at four N responsive sites for. 
2001-2003 crop years 
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Figure 8: Relationship of winter wheat grain yield and nitrogen use efficiency to response index when 90 kg ha-1 is 
applied preplant (2001-2003). 
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Figure 9: Relationship of winter wheat grain yield and nitrogen use efficiency to response index when 45 kg ha-1 is 
applied preplant (2001-2003). 
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Figure 10: Relationship of winter wheat grain yield and nitrogen use efficiency to response index when 45 kg ha-1 is 
applied topdress (2001-2003). 
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Appendix A 

Analysis of variance of four non-N-responsive sites 2001-2002. 
Location: --- - Efaw Bottom -

Grain Yield 
kg ha,1 

Ret. On N Mgt. 
$ ha" 

Cost of N Mgt. 
$ ha" 

Grain N 
9 kg" 

Harvest Index 
% 

Source of variation df - Mean squares----
Replication 3 412265*" 4780.... 6.27 28 ** 16 

N Treatment 8 177863* 1595 1181.25** 3 14 
Residual error 18 59215 685 5.64 2 14 

SED 172 19 2 1.0 3 
Location: - -Marshall 

Grain Yield 
kg ha,1 

Ret. On N Mgt. 
$ ha" 

Cost of N Mgt.
$ ha,1 

Grain N 
g kg,1 

Harvest Index 
g kg" 

Source of variation df Mean squares
U'1 
(» Replication 3 344958 3944 3.27 14** 747 

N Treatment 8 310892 2833 912.32"* 2 1363* 
Residual error 15 139395 1646 3.95 1 461 

SED 264 29 1 1 15 
Location: Hennessey 

Grain Yield 
kg ha,1 

Ret. On N Mgt. 
$ ha" 

Cost of N Mgt. 
$ha" 

Grain N 
g kg" 

Harvest Index 
g kg" 

Source of variation df Mean squares 
Replication 3 80104 892 0.98 8 8 

N Treatment 8 198256" 2000" 123.06** 5 11 
Residual error 19 59972 728 9.11 5 6 

SED 173 19 2 2 2 
Location: Kingfisher 

Grain Yield 
"kg ha,1 

Ret. On N Mgt. 
$ha·1 

Cost of N Mgt. 
$ha" 

Grain N 
g kg,1 

Harvest Index 
g kg" 

Source of variation df ---Mean squares-
Replication 3 65716 756 1.44 12.... 82** 

N Treatment 8 237953* 3385" 1388.97"· 4* 19 
Residual error 20 88769 1090 1.69 1 17 

SED 211 23 1 1 3 

.. Significant at the 0.05 probability level, t SED- Standard error of the difference between two equally replicated means 
** Significant at the 0.01 probability level, 



Appendix B 

Analysis of variance of one N responsive site 2001-2002. 
Location: - -----Efaw Upland 

Grain Yield Ret. On N Mgt. Cost of N Mgt. Grain N Harvest Index 
kg ha-1 $ ha-1 $ ha-1 9 kg-1 % 

-----------Meansquares------------
Source of variation df 
Replication 3 38301 406 34.86 1 114 
N Treatment 8 631587** 4023* 1218.16** 4 72 
Residual error 19 119756 1387 20.75 3 53 

SED 245 26 3 1 5 

* Significant at the 0.05 probability level,� 
** Significant at the 0.01 probability level,� 

c.n t SED- Standard error of the difference between two equally replicated means 
(0 



Appendix C� 

Analysis of variance of four sites for 2002-2003.� 
Location: ---- Efaw Upland--·--------------

Grain Yield 
kg ha-1 

Ret. On N Mgt. 
$ ha,1 

Cost of N Mgt. 
$ ha-1 

Grain N 
9 kg" 

Harvest Index 
g kg'1 

Source of variation df -Mean squares--
Replication 3 217687* 2686* 6.08 7** 15 
N Treatment 8 1535000** 10186** 1551.35** 7** 64 
Residual error 21 49744 580 l~ 1 ~ 

SED 158 17 115 
Location: Tipton 

Grain Yield 
kg ha-1 

Ret. On N Mgt. 
$ ha'1 

Cost of N Mgt. 
$ ha,1 

Grain N 
9 kg-1 

Harvest Index 
9 kg-1 

Source of variation df -Mean squares-----
m 
o 

Replication 
N Treatment 

3 
8 

48976 
162393** 

637 
964" 

5.50 
1206.02** 

1 
6** 

81** 
24* 

Residual error 20 21017 229 4.61 1 8 
SED 103 11 2 1 2 

Location: Perkins 
Grain Yield 

kg ha'1 
Ret. On N Mgt. 

$ ha'1 
Cost of N Mgt. 

$ ha-1 
Grain N 
9 kg'1 

Harvest Index 
9 kg'1 

Source of variation df ----------IMean squares---------
Replication 3 38813 463 0.19 6· 65 
N Treatment 8 206273 967 1169.96 4 19 
Residual error 19 117067 1425 0.17 2 43 

SED 242 27 0.3 1 5 
Location: Lake Can Blackwell 

Grain Yield 
kg ha'l 

Ret. On N Mgt. 
$ ha'1 

Cost of N Mgt. 
$ ha'1 

Grain N 
g kg'1 

Harvest Index 
9 kg-1 

Source of variation df Mean squares-------··--
Replication 3 79009 975 0.59 0.3 10 
N Treatment 8 1275080** 7837** 1726.05 6** 35* 
Residual error 18 72177 862 0.73 1 10 

SED 190 21 0.60 1 2 
* Significant at the 0.05 probability level 
"* Significant at the 0.01 probability level 
t SED- Standard error of the difference between two equally replicated means 



Appendix D� 

Analysis of variance of NIUE at five sites 2.001-2002.� 

Location: Efaw bottom 
NUE 

% 
Source of variation df Mean squares 

Replication 3 1478
N Treatment 7 960* 

Residual ,error 16 313 
SED 13 

Location: Marshall 
NUE 

% 
Source of variation df Mean squares 

Replication 3 4677 
N Treatment 7 1970 

Residual error 14 2097 
SED 33 

Location: Hennessey 
NUE 

% 
Source of variation df Mean squares 
Replication 3 27 
N Treatment 7 84* 
Residual error 17 33 

SED 4 

Location: Kin Isher 
NUE 

% 
Source of variation df Mean squares 
Replication 3 106 
N Treatment 7 244 
Residual error 17 141 

SED 8 

Location: Efaw Upland 
NUE 

Source of variation df Mean squares 
Replication 3 1591 
N Treatment 7 ~2* 

Residual error 15 1183 
SED 2.4 

• Significant at the 0.05 probability level,*. Significant at the 0.01 probability level, 
t SED- Standard error of the difference between two equally 

replicated means 
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Appendix E� 

Analysis of variance of NUE at four sites for 2002-2003.� 

Location: Efaw Upland 
NUE 

Source of variation df Mean squares 
Replication 3 108 

N Treatment 7 102 
Residual error 18 94 

SED 7 

Location: Tipton 
NUE 

Source of variation df Mean squares 
Replication 3 298 

N Treatment 7 156 
Residual error 17 103 

SED 7 

Location: Perkins 
NUE 

Source of variation df Mean squares 
Replication 3 11685 

N Treatment 7 28573* 
Residual error 17 9326 

SED 68 

Location: Lake Carl Blackwell 
NUE 

Source of variation df Mean squares 
Replication 3 37 

N Treatment 7 193 
Residual error 15 113 

SED 8 
* Significant at the 0.05 probability level 
** Significant at the 0.01 probability level 
t SED- Standard error of the difference between two equally 

replicated means 
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Appendix F� 

Analysis of variance for 2001-2002 plant height of five sites.� 

Location: 

Source of variation 
Replication 

N Treatment 
Residual error 

Location: 

Source of variation 
Replication 
N Treatment 
Residual error 

Location: 

Source of variation 
Replication 
N Treatment 
Residual error 

Location: 

Source of variation 
Replication 
N Treatment 
Residual error 

Location: 

Source of variation 
Replication 
N Treatment 
Residual error 

--Efaw Bottom-
Plant Height 

cm 
df Mean Squares 
3 80.15*" 
8 19.81'" 

168 5.83 
SED 1.7 
--Marshall-

Plant Height 
Cm 

df Mean Squares 
3 18.56* 
8 13.31" 

168 5.43 
SED 1.6 
--Hennessey-

Plant Height 
Cm 

df Mean Squares 
3 9.23 
8 4.75 

168 3.94 
SED 1.4 
--Kin Isher-

Plant Height 
Cm 

df Mean Squares 
3 65.35** 
8 6.81 

168 4.65 
SED 1.5 

-Efaw Upland-
Plant Height 

Cm 
df Mean Squares 
3 83.26"* 
8 24.01"* 

168 5.00 
SED 1.6 

* Significant at the 0.05 probability level 
*. Significant at the 0.01 probability level 
t SED- Standard error of the difference between two equally 

replicated means 
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Appendix G� 

Analysis of variance for 2002-2003 plant height of four sites.� 

Location:� 

Source of variation� 
Replication� 

N Treatment� 
Residual error� 

Location:� 

Source of variation� 
Replication� 

N Treatment� 
Residual' error� 

Location:� 

Source of variation� 
Replication� 

N Treatment� 
Residual error� 

Location:� 

Source of variation� 
Replication� 
N Treatment� 

Residual error� 

EfawUpland 

df� 
3� 
8� 

168� 
SED� 

df� 
3 
8 

24 
SED 

df 
3 
8 

168 
SED 

Plant Height� 
em� 

Mean Squares� 
29.41**� 
48.10*·� 

2.48� 
1.11� 

Tipton 
Plant Height 

Cm 
Mean Squares� 

4.07� 
16.15....� 

3.36 
1.30 

Perkins 
Plant Height 

Cm 
Mean Squares 

7.07 
4.43 
3.11 
1.25 

Lake Carl Blackwell 
Plant Height 

em 
df Mean Squares 
3 7.87.... 
8 7.08.... 

24 1.51 
SED 1.0 

.. Significant at the 0.05 probability level 

.... Significant at the 0.01 probability level 
t SED- Standard error of the difference between two equally replicate 
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Appendix H 

Grain yield of preplant, topdress and split application N rates at Efaw Upland 
2001-2002. 
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Appendix I 

NUE of preplant, topdress and split application N rates at Efaw Upland 2001
2002. 
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Appendix J 

Grain yield of preplant, topdress and split application N rates at Efaw Upland 
2002-2003. 
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Appendix K 

NUE of preplant, topdress and split application N rates at Efaw Upland 2002
2003. 
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Appendix L 

Grain yield of preplant, topdress and split application N rates at Lake Carl 
Blackwell 2002-2003. 
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Appendix M� 

NUE of preplant. topdress and split N rates at Lake Carl Blackwell 2002-2003.� 
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Appendix N 

Grain yield of preplant, topdress and split application N rates at Perkins 
2002-2003. 
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Appendix 0� 

NUE of preplant, topdress and split application N rates at Perkins 2002-2003.� 
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Appendix P 

Percent increase in grain yield by preplant Nand RINDVI of four N responsive sites for 2001-2003 crop years. 
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Appendix Q 

Soil test data taken at harvest of check plots at four sites during 2002-2003. 

2002-2003 crop year 
Location NH4-N K pH 

Tipton 
0-15 ern 

15-30 cm 
Classification: Ti

8 
8 

pton silt loam: fin

1 
1 

e-loamy, mixed, 

12 
11 

21 
21 

thermic, Pachic Argiustoll 

7.00 
7.42 

Perkins 
0-15cm 
15-30 em 

7 
8 

3 
1 

22 
8 

26 
8 

5.98 
5.33 

Classification: Teller sandy loam: fine-loamy, mixed, thermic Udic Argstoll 

Lake Carl 
Black'Ne1l 
0-15 cm 7 30 31 5.72 
15-30 em 8 1 15 14 6.14 
Classification: Port-oscar: silt loam, fine-silty, mixed, super active, thermic Cumulic Haplustolls 

EfawUpland 
0-15 em 8 20 21 6.18 
15-30 em 6 1 7 4 6.82 
Classification: Norge soil series: Fine-silty, mixed, thermic Udic Paleustolls 

t NH4-N and N03-N - 2 M KGI extraction 
+P and K - Mehlich III extraction 
§ pH - 1: 1 soil:water 
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Appendix R 

Relationship between RINDVI measured between Feekes 4-6 and RIHARVEST over 62 different locations and six years 
(1998-2003) . 
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