DEVELOPMENT OF THE WIRELESS INSTRUCTOR
SYSTEM AND BLUETOOTH HANDOVER
TECHNOLOGIES FOR IMPROVED
VIRTUAL LABORATORY

APPLICATIONS

By
LYNN MOSES GEORGE
Master of Science
Oklahoma State University
Stillwater, Okiahoma

2003

Submitted to the Faculiy of the
Graduate College of the
Oklahoma State University
in partia} fulfillment of
the requirements for
the Degree of
MASTER OF SCIENCE
August, 2003

DEVELOPMENT OF THE WIRELESS INSTRUCTOR
SYSTEM AND BLUETOOTH HANDOVER
TECHNOLOGIES FOR IMPROVED
VIRTUAL LABORATORY

APPLICATIONS

Thesis Approved:

f %Eéls Aévior 5

/’ e

%%

Dean ofthe Graduate College

PREFACE

The thesis presents the details of features and implementations of the Virtual Lab
developed in the Telecommunication Laboratory (104 Gundersen Hall) of Oklahoma
State University using Bluetooth as the crucial wireless link between the Instructor and
the students. In a laboratory course where the lab is comprised of many rooms, the
essentiaj interactivity between students is lost as the Instructor needs to move between
rooms. The Instructor does not have the capability to Jecture and advice the students as
the exercises are being done. The lecture session and the exercise session need to be
separate. Moreover, distant students definitely need to travel to the campus to atiend the
Lab courses. These issues pertaining to a laboratory course were addressed and a
solution, that took the form, Virtual Lab, has been formulated and developed. The project
has been funded by the Departmert of Education for bringing up the interaction and
application of high end technology in education. The Instructor is given the capability of
moving around the roorns of a lab and always have contact with the students through the
Compaq 1IPAQ PocketPC, which has been enhanced to function as per the requirements
for the virtual lab through an application program developed for the purpose. The
imsuructor is capable of sending files to the students from any place in the tab and the
students are always aware of the Instructor’s location and could page the Instruclor with

text messages. Moreover the students have been provided the added advantage of being

i

able to see what the Instructor sees and listen to the lecture no matter which room the
Instructor is in,

The movement of the Instructor requires the wireless links to be checked for
guality as the Instructor moves from one room to another, tear down bad links and form
new stronger links. This procedure named Handover needs to be done in a manner that
the normal traffic is not affected. The virtual lab needed efficient and fast algonthms for
Handover and hence three new algorithms were developed and implemented and
analyzed for speed. The virtual lab has been equipped with a Handover mechanism for

switching for maintaining a strong link wherever the Instructor may move jn the Lab.

v

ACKNOWLEDGEMENT

This is my moment to thank the Almighty Lord for blessing me with more than

what [am worth and placing me in the right places and with the right people all my life.

[would like to take this opportunity to thank my advisor, Dr. Jong-Moon Chung
for his constant guidance, support and insight that he has offered devoid of which growth
would have been impossible. I would also like to thank my fellow members, Lijy
Kallidukil for her rolc with the ideas of Bluetooth Handover, Yuan Zhang for developing
the Tnstructor Access Management utility and Theepa Sudha Natarajan {or developing the
Configuration Utility and everyone jn Lhe Advanced Commumcation Systems
Engwineering Laboratory (ACSEL) and Oklahoma Communication Laboralory for
Nerworking and Bioengineering (OCLNB) who have made these 2 years a pleasant

experience.

Chapter Page
I. IMLrOAUCHION . . oo e]
1.1 Wireless Personal Area Networks............ccooviiiiiiiiien 3
1.2 Bluetooth. ... oo e 3
1.3 Virtual Lab.. ..o 4
1.4 Need foraVirtual Lab..................., 5
).5 Bluetooth Handowver.. cieen 6
1.6 Overview of existing Handover tcchnologles and the 7
improvements made in this thesis
1.7 Thesis Oulline. 8
I1. Literature review and Planning of Virtwal Lab................................ 10
2.1 Description of Bluetooth.. . D)
2.2 Physical Layer Spucmﬁcatlons of Bluetooth R B
2.3 Seolty FTP AP . oo 12
2.4 Some cnitical decisions for Vinal Lab.................... e 13
TIT. Features and the Implementation Specifics of the Virtual Lab.............. 15
3.1 Features of the Virtual Lab..................ooo e, 16
3.2 Folder Structure used on Server..................coi 18
3.3 Folder Structure used on the PocketPC.. : .. 20
3.4 Software Components of the Wireless Instluclor Sy‘;tem 21
3.5 Wireless Instructor Program Implementations.................. 25
3.6 Transfer of Audio and Video to students.................o..... 33
[V. Description and analysis of the new proposals for Bluetooth Handover. .. 34
4.1 Inittial Setup.o 35
4.2 Handover Proposals...........coooiiiiiiiii e 37
4.3 Analysisof Hanndover................... . 42
V. CoNCIUSION. ... oo e 47
REFERENCES e 49

Table of Contents

Vi

AP PEN DD X E S . e e Sl

APPENDIX A — Description of the Configuration Utility....... 52

APPENDIX B - Description of the Instructor Access............ 54
Management utility

APPENDIX C - Cade written for FTP connectvity over........ 58
Bluetooth

APPENDIX D - Code for the Wireless Instructor program......62
APPENDIX E — Code for the Configuration Utility.. 12§

APPENDIX F Code for the Instructor Access Management. .. 139
Utility

%)

Table

4.1

LIST OF TABLES

Predicted Handover Timings

Vit

LIST OF FIGURES

Figure Page
1L Virtual Lab Setup.o el
1.2 General procedure of Handover..............o i e e
2.1 Master-Slave Architecture of Bluetooth. ...
2.2 Physical Layer Specification of Bluetooth.............................o
3.1 Implementation of Virtual Lab..................
3.2 Wireless AV Headset Solution. ...
3.3 Folder SITUCILIE ON SeIVET. vt e e e v e
3.4 Folder structure on PocketPC..... ... e
3.5 The Wireless Instructor Program..............ooooieii oo e e
3.6 Login Window of the Wireless Instructor Progrant...............................
3.7 Procedure used by Wireless Instructor Program to pass BT Address...........
and to make connection

3.8 Flowchart of the Automatic Selection mode........................co. ..o,
3.9 Flowchart of Webpushing..........c..oooiiiiiiii e
3.10 Procedure for paging INSUrUCIOr. ..ot
4.1 The ideal arrangement of Base Stations for full coverage ofarea.
4.2 Innial Connection SEIUP. ...ttt
4.3 Handover according to Proposal 1....................o o
4.4 Handover according to Proposal 2..........
4.5 Handover according to Proposal 3...................... o,
4.6 Handover HysSteresiS. .o o i e e
5.1 The Wireless Instructor SYStem.
A.T Configuration Utility windoW.............oooo i

B.J [nstructor Access Management Utility Login window............................
B.2 Instructor Access Management Utility window — Edit................
B.3 Instructor Access Management Utlity window — After Edit................

B.4 Instruclor Access Management Utility window - After Add
B.5 Instructor Access Management Utility window — Afier Delele

Chapter 1

[ntroduction

Telecommunication brought the world closer and wireless communication is
poised to make the world move freely and it’s well on the way to achieve it. In the (uture,
users will no ‘onger have to constrain themselves to computers and telephones connected
1o a hub on the wall. From anywhere and at anytime, communication will be possible.
And wireless technologies that are strong in distance, data rate and security are being
built with a mind to the application area. Cellular technologies service subscribers with
voice and data comununication over distances in kilometers but with very low data rates.
Wireless Local Area Networks (WLAN) serve users with high data rate communjcation
over distances in the range of meters. And then there are the Wireless Personal Area
Networks (WPAN) that are of short range and are designed for low power consumption,
low price and for accommodating more users in a small area.

Wireless technology could be applicd lo the education system to enhance the
learming experience through application of the technology in areas (hat wherc
interactivity and closeness with the students are mhibited. One such application would be
in a Lab course in a Umversity. A lab course requires greater interactivity of the students
with the instructor, but a lab with many small rooms may reduce the interactivity to u
level lesser than that in a theory class. Moreover distant students are forced lo (ravel to
the campus in order to attend jab courses. All these problems have been addressed and a

solution that is named the Virtual Lab has becen developed, which is funded by the

Department of Education (DOE). The Instructor is connectcd with the students wheréver
he/she may be in the lab through the Compaq IPAQ PocketPC, that has been enhanced to
integrate as the main part of the Virtual Lab. This has been done by extensive
programming to create an application program that would run on the PocketPC. The
Instructor 1s now capable of sending files to the students and receiving instant texi
messages from them regardless of his/her location in the lab. The location of the
Instructor i1s made known to the students as well and this information is constantly
refreshed. All these tasks that are accomplished by the PocketPC are made possible
through the wireless Iink it makes with the wired network. The wireless technology used
here is Bluetooth and the PocketPC 1s a part of a WPAN. The Instructor is also equipped
with a wireless audio/video headset that would allow the students to lhisten to the
mstructor wherever he/she may be and see exactly whal the instructor sees. This could
help the Instructor in explaining exercises in a better manner,

As the Instructor moves, so should the wircless link, that is, a weaker link should
be torn down and a new stronger link needs to be created in ifs place with 2 nearby
Access point, This procedure is called Handover and the Virtual Lab needs a Handover
algonthm so that the Instructor would always be provided with a good qualily wireless
Jink always. The Handover procedure jiself should cause only minimum disturbance to
the normal waffic flow in the wireless link. Considering these facts, three new algorithms
for Bluetooth handover was developed and analyzed. The Virtual Lab 3s implemented
with a basic algorithm for Bluetooth handover.

The thesis provides details of the Virtual lab and the new algorithms for Blueiooth

Handover that can also aid the Virtua! Lab apphcation.

1.1 Wireless Personal Area Networks

Wireless Personal Area Networks are aimed at small mobile devices; mainly
Personal Digital Assistants (PDA), pagers, cell phones, and laptops which personalizes
the wireless connection to the network with the user’s information automatically or by
the user invoking it. The user may be uniquely identified by the connection and
personalized data could be downloaded. The main advantage of this type of wireless
network is the feature of the device automatically connecting to the network and
downloading or uploading personalized information, in the so called Personal Operating
Space (POS) surrounding the user which is usually a range of 10 meters or less. The user
may be able to connect 10 the outside world as well through the network but it may offer

a very low data rate.

1.2 Bluetooth

Bluelooth is a robust, low cost, low power short-range radio technology that
operates in the unlicensed Industrial, Scientific, and Medical (ISM) band at 2.4 GHz. The
Bluetooth system provides point-to-point connection or point-to-multipoint connection
over a scatternet, in which a frequency hopping channel is shared among several unils
through the time division duplex (TDD) multiplexing topology. Bluetooth systems apply
a versatile short-range WPAN technology that supports various rates of voice and data
communications. The specifications for Bluetooth were also adopted as the TEEE 802.15
standards. Such a network will have Basc Stations that will connect to the Bluctooth

devices and contribute to the flow of data between the devices and 1o the outside world.

17 Y Student 1
- i Desktop

« - -2) Student 2
- — - - c- 22 77 Desktop

Intructor f------ »>
| PocketPC

Server

Instructor - -
AudiofVideo ML
)

Student n
Deskdop |

— = Text messages

- ==~ Fiie Transfer
— Ayudio/Video

Fig. [.1. Virtual Lab setup.

1.4 Need for a Virtual Lab
Instructors handling lab courses where the labs have many rooms have many
challenges in lecturing and carrying on with the exercises. Many work-around solutions
are used by the instructors compromising on interactivity and time. The problems could

be fixed if technology could be pul (o use the right way.

1.4.1 Mobility of Instructor

In a Lab where there are many rooms, the Iastructor méy be constrained (o
instruct students in cach room separately. The instructor may have to rcpeat the same
instructions over again in each room or the students may have 10 gather in a bigger room
for a lecture session before the practical session. [t is difficult for the lecture and the
exercises to be camed on simultaneously. This scenario could be avorded by giving
mobihty 1o the Instructor so that the students can listen to the lecture evep as the

Instructor moves across the rooms.

1.4.2 Interactivity for Remote Students

For lab courses, remote students need to travel (o the location of the lab to attend
classes. Though theoretical classes are offered for Remote students audio-visually, lab
classes have been coustrained by the movement of the instructor and the need for
observation of the instruments and exercises in closer detail by the students. Moreover,
the interactivity of the remote students is lost when the Instructor has to move around the

rooms of the lab.

1.4.3 Ease of accessibility of Information for Instructor

The instructor has (0 be moving around the rooms of a lab to instruct the students
and when the students have 10 be distributed with the manuals ar some important files
need to be transterred to the students, the Instructor has to go to a desktop computer. The
instructor may also at times need to get information from the Internet for various
purposes. In this case too, the instructor needs to go back to a desktop computer. This
problem necds to be solved so that the instructor could be able (o access the [nternet as

well as distribute information (o the students from his/her location.

1.5 Bluetooth Handover
Handover in a wireless communicatiop is the flow of procedures that leads a
mobile device to detach from a central control systerm and connect to another due to the
growing distance with the former and the proximity with the latter. There are two types of

handovers — Hard and Soft. In a Hard Handover, the old link is broken before a new link

is formed and hence there is an interruption in the traffic while in Soft Handover, a new
link is first created before the old one is brought down and hence the flow of traffic 1s
almost undisturbed. Bluetooth is a small range radio network and hence handover
becomes a very important part when it is used in large areas. This report presents 3 new
algorithms for Hard as well as Soft Handover in Bluetooth. The general procedure of
Handover is depicted in Fig.1.2. When a certain device having a link with an Access
Point (AP) moves away and closer to another AP it detaches the old link and forms a new

one with the nearby AP,

B S/
Fig. 1.2 General procedure of Handover

1.6 Overview of existing Handover technologies and the improvements made in this
thesis

Bluetooth handover is made possible by measuring the received signa) strength

indicator (RSSI) value of the link. In [S] and [6]. the authors propose a handover

technique where the search for the new device to connect to 1s initiated once the link

signal quality goes down below a predelined threshold. The potential problem for this

approach of secarching for new devices when the signal quality goes down is that the
search process requires a Jot of time (in the order of seconds) which consequently
clongates the Handover delay. The handover methodologies proposed in this thesis
reduce the handover timing by removing this process out during handover. In [6] and [7,,
the authors discuss about hard handover approaches, in which the technique accomplishes
handover in the Internet protocol (IP) layer, which means that the handover process is
based on a connectionless path. The mobile handset looks for the IP address of the
strongest signal in the neighborhood and tries to connect to it. The hard handoff
procedures are supported by updaling the adjacent Bluetooth routing tables. The papers
also propose a technique where when a certain mobile device, say A, hands-over to a new
Base Station, another mobile device already a slave in the new Base station would act as
a repeater and serve the mobile handset, A till {he Handover is complete. This has the
disadvantage that any miobile device has to keep track of not only the nearby Base
stations but also the mobile devices associated with them to connect to during handover
and the serving mobile device has to be an active participant in two piconets during the
period. In [8], the re-routing in layer-3 during handover is explained, which could be used
regardless of the method of Bluetooth handover used in layer-2. Qur paper proposes three

methodologies to do Handover in Layer-2 which uses Bluetooth.

1.7 Thesis Outline
Chapter 1 has given a basic introduction and idea of whal to expect from the rest
of the thesis. Chapter 11 will present a Literature review of Bluetooth and the nceds of the

Virtual Lab. Chapter II presents the details of the features and implementations of the

Virtual Lab. Chapter IV presents the three new Bluetooth Handover Algorithms along
with the analysis of the timing for each algorithm. Chapter V sums up the work done in

each topic and the conclusions drawn from the analysis of the devefopmeénts.

Chapter IT

Literature Review and Overview of Existing Technologies

Ihis chapter gives a brief -eview of the architecture of Bluetooth and iis physical
layer properiics. This chapter also discusses the other possible ways in which the Virtual

Lab could have been implemented and further touches on why the 1deas were dropped.

2. 1 Description of Bluetooth
Bluetooth is a short range radio technology aimed at Personal Area Networking.
Each Bluetooth device could communicate with each other only afler forming a wireless

link with the device.

Slave 2 Slave 3 |

Master

T~

‘\\
: /l/ N
N
Slave 1 Slave 5 Slave 4

Piconet

L-h—_—_ﬁ’/

Fig 2 Master-Slave Architecture of Bluecooth

In Bluetooth, the devices need not have a direct connection with each other for
being able to communicate. Each device is linked or associated with a Mastey which is
able to control 7 other devices which are called Slaves as shown in Fig. 2.7 The trafﬁo‘
Now between the devices is controlled and regulated by the Master. Bluetooth devices are
classified into 3 classes namely Class 1, Class 2 and Class 3. Thesc classifications are
based on the maximum power of transmission and the power levels are 100 mW, 2.5 mW

and 1 mW for Class 1, Class 2 and Class 3 respectively.

2.2 Physical Layer Specifications of Bluetooth

Bluetooth is a Frequency Hopping Spread Spectrum technology in the physical
layer. This means the data is sent at a particular frequency for a certain period and then
switches 10 a difterent frequency, which can be delermined by different means. Bluctooth
hops around the [SM band of 2.4 GHz to 2.84 GHz 1600 uimes every second, which
means the frequency of transmission is changed 1600 Limes every sccond as shown in
Fig.2.2. Each hop or transmission is of a bandwidth of 1 MHz. The Frequency hopping
sequence 15 generated by using the Bluetooth Address and Bluelooth clock ol a device.
Bluetooth devices or slaves communicate with each other via the Master. The master and
slaves communicate with each other by TDD method. The master sends a “Poll’” packet
o, each slave and the slave responds with a data packet in response to it or a “Null”
packet if it has no data to send. Each time slot ts of 625 microscconds width and the
frequency of (ransmission is same for thc whole slot. The Master always sends its packet
i Lthe even slot and the stave responds in the subsequent slot which is odd. The master

and all its slaves form an entity termed as the piconet in Bluetooth. Al devices in

piconet follow the Frequency Hopping sequence generated using the Master’s Bluctooth

address and clock. In this way all the devices in a piconet are synchronized.

Frequency

Fig 2.2 Physical Layer Specification of I3 hietooth

2.3 Scotty FTP AP1

The Virtual Lab needed lot of file transfers tobe done from the PocketPC fo the
server. This was decided to be done using the File Transfer Protocol (FTP). The Wireless
Instructor System program on the PocketPC was programmed using the Application
Program Interface (API) provided by Microsoft for Windows CE. But the FTP functions
did not work and later it was found that the API’s had bugs that had not been fixed by
Microsoft yet. So, being in need of API's to implement the FTP functions, the internet
was searched and one Scotty FTP API was found that was provided by a company in
India named Ruksun Software. After talks with the company, the APl was donated to
Oklahoma State Umversity by Ruksun. The APl has been used in the Wireless Instruclor

Systém developed on the PocketPC and is working very well.

2.4 Some critical decisions for Virtual Lab
The Virtual Lab could have been designed in a different way than it had been
designed now. Various alternatives were weighed upon and the best decisions that suited

the cost and gave the best performance were chosen.

2.4.1 Why Bluetooth?

Bluetooth is a Personal Area Network technology which itself fits into the project
very well as the wireless technology to be used in the Vinual project needs to attach itself
to the network on its own, configure and personalize itself as well as download relevant
information. Bluctooth also allows the user to browse_i_nfmet and transfer files through
ETP. Bluetooth is cheaper than IEEE 802.11b. Though Bluetooth has a smaller data rate

than [EEE 802.11b considering cost and actual data rate needed by the instruclor,

Bluetooth fits Lhe role wel..

2.4.2 Reasons for rejecting Infrared from being used for Instructor location

The location of the Instructor in tie Jab could be traced by using many mcans.
One of the most considered was Infrared (IR). It was proposed that an IR receiver be
placed on the wall opposite every door and the PocketPC could be sending beams of IR
rays periodically. The IR rays have a particular code for the instructor who is carrying the
PocketPC. When the Instructor enters the room, the IR from the PocketPC could be
detected by the IR receiver which then sends electrical signals, according to the code in

the IR ray. to a compulter to which it has been wired. This information could be collected

in a server and thus the instructors could be located ai any time. The advantage of [R is

that it is highly directional and hence it would not go out of a room and hence there 1s No
possibility of locating the instructor wrongly. But, the directionality itself is the problem
too. Since IR rays are highly directional there is a possibility that the IR rays may miss
the receiver quite often. Not only this, the wiring to the computers from the recejver may
prove strenuous to maintain. So this idea was dropped and Bluetooth itself was

manipulated to be used for Instructor location.

2.4.3 Audio Video Headset compatibility with Bluetooth

The audio/video Headset plays a major role in the interactivity that the Virtual
L ab provides to the participants. Bluetooth functions in the 2.4 GHz ISM band. This band
1s a free band for developers and has minimum regulations. Most of the audio/video
transmitters were found to function in the same band. This 1s would pose a problem to the
reliability of the Bluetooth link as well as the quabty of the video transfer. So, lot of
audio/video transmitlers were found and apnalyzed and the best components thal were
both low in cost, good in performance and thal avoided the 2.4 GHz 1SM band were
chosen and were implemented. The components were purchased {rom the vendor,

Microtek, Inc. and the Transmitter/Receiver function at the [SM 900MHz band.

i4

Chapter 111

Features and the Implementatiou Specifics of the Virtual Lab

Virtual Lab is implemented by using Bluetooth along with the wired Ethernet
network. The Compaq iPAQ PocketPC is used for data transfer between the instructor
and the studenis and the Audio/Video device is used for transmission of Audio and Video
to the students. An intermediate server acts the part of organizing and distributing the
data between the instructor and the students.

3.1 Features of the Virtual Lab
Web Pushing:
Web Pushing is a feature on the PocketPC to transfer files to the server from

where the students could pick them. This has been implemented using FTP.

Instructor location:

Instructor location is a feature that would help students to locale the position of
he Instructor i the lab. This would also help them i controlling the camera in the
appropriate room so as to view the Instructor. The virtual lab 1s implemented as depicted

in Fig 3.1. and the information of the LAN Access Point to which the PocketPC is

attached to is passed to the scrver, and thereby the location of the Instructor is known.

I Preon-r-€ Ropm batiway
avalsl Lk

LAN P L E

Access a)umn‘umuuannumm

Poinl | g Requea o7 connies 1 in miip Preanet

R

< WD Srrar (oo jigad 1osm) Spnal mat b w3 e Lo e ReemE]

1 we/ b Room O e ——t {

& DAL Kefvre) AXIGNY N LY deuctor PonttD P
prioyiey

E o

LAN -
1. 3500 Al v mad e | AcCESS

loenot ® Rodm [y

Pony

Mmeam-C
LAN
Access
Poin(

Faorm [

Picgout B

LAN

| Accass
Poiat

[Fema A
[[fw
|| Azcuss
PFamnt
(lapm A

Farrane Nlotarus T

Fig 3.1. Implementation of Virtual lab.

Instant Text Messaging:
This feature allows the student to send text messages to the Instructor from his/her

desktop. The messages are displayed on the PockelPC carried by the Instructor.

Wireless AV Headset System:

The transter of real-time audio and video (AV) from the instructor to students will
be made possible by the development of the wireless AV headset for the instructor and is
implemented as shown in Fig. 3.2.

This WI AV system enables the instructor to show procedures and facilities that may not
be accessible to the students due to many rcasons, which may include:
e the facilities only allow a very small number of people to approach at a time, and

having all students come and see in turn may not be possiblie due to time limitations,

16

® the facility may be limited to trained or authorized personnel only,

® necessary changes/repairs o a systerm module were made which are currently a part of

the ongoing experiments that need to be urgently informed to the students

e and the obvious case where the DL students are remotely located from the actual lab

and ts faciljties.

Audia/Video Receiver placed in o
Audio/Video Encoder

Instructor's Headsel with a : ;
h) . the instruction lab
Camera, _M_n_ﬁ:rophone & Wireless transmitter Y and Data Compressor

' ' . | S Ci0m § 1 F -
f DUU
AUleNldeO

‘1
!
CCD Camera r Recelver
D data

Migsophone

Audio/NVideo

Wireless Link
Gateway

(nternet
Gateway

Transmitter and power
supply (with belt clip)

Internet

N Loptop computer Compuler Computar Compotor Computar Cornputer
Remote On sile
Students Students

Fig. 3.2, Wireless AV Headsel Solution.

17

3.2 Folder Structure used by the Wireless Instructor System on the Server

VLabPDA

[
1 .]

’ Mappirgs Locaton Logins |

Logins (st
Files with
rames of
\RELIUCIOS

o~

Foldurs wvith Alagpings 1

cames of
iestruclors

Fig 3 3. Folder structure on Server.

“VLabPDA" is the main folder on the server. Il holds all the subfolders that are
uscd by the Wireless Instructor System. This is the default name given 1o the Main folder
but it could be changed to any other name if the changes are also added in Configuration
utility.

The Main folder contains the folders “Files™”, “Mappings’, ‘“Locauon’ and
“Logins”, as shown in Fig. 3.3, and whose names should not be changed. The “Files”
folder contains subfolders which are named with the Instructors logged in at that instant.
Each folder contams the files pushed by that particular instructor for the students. The
“Mappings™ folder contlains a file called “Mappings.txt”, which contains information
mapping the Bluetooth address of each LAN access point with the room in which it is
placed. The “Locanon” folder consists of files named with the Instructors logged in at
that instant. These (iles contain the Bluetooth address of the LAN access point to which

the instructor 1s connected along with the room where the LAN access point is Jocated

18

and the TP address assigned to the PocketPC. The “Logins™ folder contains a file named
“Logins.txt”, which coutains names of instructors who have access to the Wireless
Instructor system along with their user names and passwords. This file is encrypted for

SECUrily purposes.

Files of significance on the server:
Tostructor Location files:

These files are located in the “Locations” subfolder and have names of the
Instructors who are currently logged into the Wireless Instructor System. These files have
the Bluetooth address of the LAN Access Point (LAP) 1o which the Instrucior’s
PocketPC is connected to and the room in which it is along with the IP Address assigned
to the PocketPC. The name of the Instructor is picked up from the *“‘Logins.txt” file and
the room name is picked up from the “Mappings.ixt” file.

Example:

Filename: Dr.Jong-Moon Chung

Contents:

0x004‘080588ba4 A 139.78.79.165

The server picks up information about the Instructor Locatioln from these files and
displays their location as dots on the map of the lab.

Mappings.txt:

This file holds information mapping the Bluetooth addresses of the LLAN Access
Points with the room in which they are present. The Addresses are listed one after other

following the format

19

<Bluetooth address in hexadecimal format> tab space <Room name>

Example:

0x00408c588ba4 A

0x00408c588b95 B

This information 1s used by the Wireless Instructor Program to get the room in
which the LAN Access Point to which it has made a connection is present. This

information is used in the Instructor location files.

Logins.txt:

This file has information of all the Instructors who have access to the Wireless
Instructor System. The information includes the Instructor's full name, user name and
user password used to login to the Wircless Instructor program. These data are stored in
the file in the following format

“"Instructor name> tab space <Username> tab space <Userpassword>
But all the information is encrypted by XOR-ing them with a parlicular code byte.

3.3 Folder Structure used by the Wireless Instructor System on the PocketPC

BTFOLLER
Filgs MARNgs Locason ’ Logins
e | _l___ I
/J Flesiobhe Lappgs by \L\ Lexpiesc 1oL
! sent 1o Temporary Y\
~= stodeit . .~ U Location ine‘j
,\Jl .
\'\._/‘_/

Fig 3.4, Folder structure on PocketPC.

20

This figure explains the folder structure used by the wireless mstructor
system on the PocketPC. “BTFOLDER” is the main folder on the server. 1t contains the
folders “Files”, “Mappings”, “Location” and “Logins” , as shown in Fig. 3.4 and the
names of these folders as well as the Main folder should not be changed. The “‘Files”
folder may be used by the Instructor to store files that are intended to be transferred to the
students. The “Mappings” folder contains a file called “Mappings.txt”, which contains
information mapping the Bluetooth address of each LAN access point with the room in
which it 1s placed. This file is downloaded from the server using the Configuration utility.
The “Location” folder is used to create the Location file locally named with the Instructor
who is logged into the Wireless Instructor program before sending it to the server, This
file contains the Bluetooth address of the LAN access point to which the instructor is
connected along with the room where the ILAN access point is located and the IP address
of the PocketPC. These files are [irsi created on the PDA and are then transferred to the
server by FTP. The “Logins” folder contains the file named “Logins.ixt”,which is
downloaded from the server and contains names of instructors who have access to the

Wireless Instructor system along with their user names and passwords. This file is

encrypted for security purposes.

3.4 Software Components of the Wireless Instructor System:

The Wireless Instructor system has three software components

1. Wireless Instructor Program

21

2. Instructor Access Management utilily
3. Configuration Utility

Wireless IDStl‘l.lc(or program:

o

N)) e |

rFiIe Transfer
| | Browse| [Send

theepa:How does Bluetooth work?
yuanz. What is Inguiry?

-Bluetooth———
[Inquiry| 'RSSI| [Auto | New
|Connect | [Disconnect| [Exit]

B~ |

Fig 3.5. The Wireless Instructor Program.

The Wireless Instructor program, the main window ol which s depicted in
Fig.3.5, is the main program which does Instructor Location, Wcb Pushing and
displaying paging messages to the Instructor and runs on the PocketPC. This program

/7

plays the role of managing the Wireless connection of the PocketPC with the LAN

Access Points and consequently with the LAN.

Not everybody has access to this program. “Logins.ixt” holds the Instructor
names, Login Names and passwords for the Instructors who have access. Orn starting the
program a login page, as shown in Fig. 3.6 opens up where the Login name and password

has to be entered. The program checks for the Login name and the corresponding

22

password In the “Logins.txt” flle and logs into the main window of the program only if

the information entered is present and valid.

Username: |1chung |

Password: ‘*******’1 _\

' Login_4| ‘ Cancel |

123[1]2[3]4[5]6]7][8][9]0]-
Tab afwlelr tly[ulilolp[I]
CAPIaIsIdIfIGlhIIIkIIL
shistfz[x[c[v][b][n]m],T.
culaal]\ | 4

Fig 3.6. Login Window of the Wireless Instructor Program,

The implementations of the functionalities of the program are explained in detail

1D the coming sections.

Instructor Access Management Utility:

This program 1s used to add, remove and edit Insiructors’ names, the usernames
and passwords and runs on the desktop only. Only those who know a certain Login name
and password - which is hard coded mto the program - can access this program. This
securily feature has been added so that not everybody can add or delete access, Only the

Instructors who are added by this utility will have access to the Wireless Instructor

23

program. The details of the Instructors who have access are placed in a file named
“Logins.txt” and the file is updated on the server in the location “\V LabPDA\Logins\™.
This file is encrypted by XOR-ing the information with a certain code. This file needs to
be downloaded to the PocketPC before the Wireless Instructor Program to update the
Login Information on the PocketPC. The file is downloaded by using the Configuration

Utihty. To know more about the utility please refer to Appendix B.

Configuration Utility:

This prograni is used to input all the basic information needed by the Wircless
[nstructor Program to perform its functions. All the information that is input is stored in a
file named “VLab Config.txt™ in the local folder, “\My Documents\BTFOLDER\
Configuration\”, The data that are wriiten to this file includes the TP Address of the
server, the login name, login password, the Main parent folder on the server for the
Wircless Instructor System which by defaull is “V[.abPDA” and the name of the
connection setting that should be used by the connection manager. Thie Wireless
Instructor Pr‘ogram picks up all these information from the file. In addition to the above
information that could be input, the program also downloads the files, “Mappings.txt”
and “‘Logins.txt” from the server locations, “\VLabPDA\Mappings\” and
“\VLabPDA\Logins\” respectively by using an FTP connection and places them in local
folders, *“‘\My Documents\BTFOLDER\Mappings\"* and “\My Documents\BTFOLDER\
Logins\™ respectively. These files are also used by the Wireless Instructor System and

hence the Configuration Utility needs to be run before swarting the Wireless [nstructor

24

Program if any changes have been done to Mappings.txt, Logins.txt or to the basic
information of the server mentioned carlier. Please refer to Appendix A for more details

on the Configuratton Utility,

3.5 Wireless Instructor Program [mplementations

Instructor location:

Instructor location is a feature in the Wireless Instructor system which gives
information on which room of the Lab the lnstructor is, at any instant. The Instructor
carries a Compaq 1PAQ PocketPC which is connected to the LAN wireless through
Bluetooth. Each room has a LAN Access Point (LAP) to which the PocketPC makes the

Bluetooth conncction.

A. text file on the Server contains information mapping the Bluctooth Addresses
of all the LAP's used in the 12b to the names of the corresponding rooms they are placed.
This file named “Mappings.txt” is located in the folder,”/VIabPDA/Mappings” on the
server. This file is to be downloaded into the PocketPC into the folder “My
Docurments\BTFOLDER\Mappings\'' before the Wirciess Instructor Program is started. A
soparate Configuration utility has been created which downloads the file automatically
from the server (o the PocketPC and places it in the folder specified above. Obviously
this utility has to be run before starling the Wireless Instructor program so that updated

information of ti:e mappings is available.

25

The Bluctooth Software Development Kit (SDK) and the associated host stack to
implement Bluetooth operations from the Wireless Instructor program were purchased
from a company named ImpulseSoft. It provides lot of APY’s that could be used for basic
Bluetooth operations but a TCP/IP connection may not be initiated with the API’s from

ImpulseSoft, Inc..

The Wireless [nstructor program could me made to run in a “Manual Selection

Mode’’ or “Automatic Selection Mode.”

In Manual Selection Mode the Instructor could inquire for all devices in the
locality by touching the button “Inquiry”. The program lists the Bluctooth Addresses of 3
nearby LAP’s along with the corresponding rooms they are Jocated. The Instructor has an
option to manually select each device and check for its Received Signal Strength
Indicator (RSSI) value by touching on the button named “RSSI”. The RSSI value gets
displayed beside each devicc thal was tested for RSSJ. Then the instruclor could select
the device that he/she wishes to connect and touch on “Connect”. The program wriles the
Bluetooth address and the Datu Link Channel (DLC) of the devi;e selected into the
“HKEY LOCAL MACHINE\Builtln\BTSerial CE2\BDAddr” and Channel (DLC) in
“HKEY_LOCAL_MACHINEBuiltin\BTSeria] CE2\DIc” keys of the registry
respectively. This change in the registry values should not be made ll the previous
connection is broken completely. Then the connection manager API is called to create a
Bluetooth connectionn with the selected LAP. Once the connecuion is established it creates

a file in the name of the Instructor who has logged into the program, Jocally in the folder

26

“My Documents\BTFOLDER\Location\”. The file contains the Bluetooth Device
address of the LAP (o which the connection has been made, the room at which the LAP is
present und the Current IP address assigned to the PocketPC. This file is sent to the
folder,”/VLabPDA/Location” on the server by creating an FTP connection to the server.
The Manual Selcction Mode could be used by the instructor if he/she is not going to

move oul of a patticular room.

The flow of procedures for making a Bluetooth connection is given i Fig 3.7.
The Wireless Instructor Application inquires for all the LAP’s nearby. When a particular
LAP is selected, the necessary changes are made in the registry as mnentioned carlier.
Windows CE provides a Connection manager which is capable of creating a TCP
connection over Bluetooth by using Point to Point Protocol (PPP). The Application
invokes the WinCE Connection Manager which dials out information for making the
connection through the Virtual Serial Port 8. These daia are captured by the Serial port
drniver and sent to the Bluetooth stack. The Bluetooth stack, on receiving the cotmmands
picks up the destination address, to which the connection is (o be made from the registry,
which was u;;dated by the Wircless Instructor Application. The Bluetooth stack then
invokes paging to make a connection with the destination LAP. On successful paging a
Bluetooth connection is made after a Master/Slave switch. “hen the PocketPC integrates

with the LAN through the Bluetooth connection with the LAP.

27

r\
VLAB Application —=2— Win CE Connecton

Manager

: L3

Seral Port COM 8
J 4

Reqistry Serial Driver

Jo 5

5 Bluetooth Stack

Fig 3.7. Procedure used by Wireless Instructor Program to pass BT Address and to make connection.

Procedures 3, 4 and 5 take place internally and are not controlled by the user
developed application.

The Automatic Selection Mode can be started by touching on the “Auto” button.
The Wireless Instructor program automatically inquires for all nearby JLAP’s once every
minute. Along with inquiry it also measures the RSSI vajues of the devices. And it
automatically connects with the LAP with the highest RSSI value by writing the
Bluetooth address and the Data Link Channel (DLC) of the device into the
“HKEY LOCAL MACHINEBuilUn\BTSerial CE2\BDAddr" and Channel (DL.C) in
“HKEY_LOCAL_MACHINE\BuiltIn\BTSerial CE2\DI¢™ keys of the registry
respeclively and calling the Connection manager APl to create a connection. On
connecting to the LAN, the PocketPC creates a file containing the Bluetooth Device
address of the LAP to which the connection has been made, the room at which the LAP is

present and the current [P address assigned to the PocketPC in the |ocal folder “‘My

28

Documents\BTFOLDER'Location\”. This file is sent to the folder,”/VLabPDA/Location”
on the server by creating an FTP connection to the server. The whole process described
above takes place once every minute. Thus the PocketPC refreshes its connection with

the nearest LAP and updates the Instructor location every minute. The procedure is

Run thnar for 1
minuts

v

[Incaire @l nearby dovices |

depicted as a flowchart in Fig. 3.8.

Mazcure RSS! of all
Inquirad davices

Write the Blustooth
address and DLC of
denice with highast RSSI

B!

Call the Connecticn
Meneger API 1o Imoka
connection with the device
with highest RS

v

Creats file in the name of the
Instrucior in the "My Documents)
BTFOLDER\Location\®

-

Creats the FTP
- Connaction with server

Fig 3.B. Flowchart of the Automatic Selection mode.

29

web Pushing:

The instructor could select a file and send it to a particular folder in the server
nsing the program. On touching the “Browse™ Buiton a File Browse Window is opened.
The Instructor is able 1o select the file to be transferred to the server by touching it. The
Browse Window closes once the file to be transferred is touched. The file name is
displayed in an Edit box. The “Send” button is touched fo send the file by creating a FTP
cormnection. The ScontyFTP API from Ruksun Software based in Pune, India is used for
programming the FTP operations.

The function ScottyFtpConnect is used to connect to the server which takes a FTP
handle and IP address of the server as inpults.

Afler this, ScottyFtpLogin is used to Jogin to the scrver by passing the login name
and password as inputs {o it.

ScottyFtpChangeDirectory s used to change the current directory to
“/V LabPDA/Files/<Instructor Name>"" on the server.

Then ScotlyFtpPutFile is used 10 transfer the selected file, by reading its name
from the Edit box mentioned earlier, to the ‘“/VLabPDA/Files/<[nstructor Nanie>"
directory on the server.

The FTP connection is disconnected using ScottyFipQuit.

The low of procedures for Web pushing is shown in Fig. 3.9.

30

name n
EdHi bax

/ Touch Send /

v

Pick fle name from
Edit bax

ScottyFipConnect - Connects to
the gerver

ScottyFiplogin - Logs into the
aasver with the usemame and
pessword passed

I

ScottyFipChangaDirectory - To
change to WVLabPDAFIjes\
dnstructor Name=\"

SoottyFtpPutlFie - Trensfer flie o
the sarver

Bootty-tpQuit - Goess FTP

' =)

Fig 3.9. Flowchart of Webpushing.

The actual codc implementation of the usage of the APL from Ruksun could be

looked up at Appendix C.

31

Paging of the Iostructor:

The webpage presented to the students is added with a space for the student LO
enter text messages ta be sent to the instructor. The student is able to select which
Iostructor the message 1S to be sent. The text message along with the student’s login name
is stored on the server. The Compaq iPAQ PocketPC connects to the server periodically
every 30 seconds and retrieves all text messages sent to a particular instructor. The
PocketPC makes a HTTP connection to the server and invokes a “php script” on the
server which filters out the messages for the particular instructor and sends them to the

PocketPC as shown in Fig. 3.10.

The messages are displayed on the Pocket PC in the
<Student Login name> : <Message>

format one after the other in an Edit box.

; | o |
StudentJf' > Server _ PocketPC }
LT_—/ - 2

Student ———
[]
[]
. 1 - Reauest mizssages for
. instructor
. 2 - Delvery of rnassages
. for Instructne

——

Fig 3 10. Pvocedure for paging Instructor

32

3.6 Transfer of Audio and Video to students

An Audio/Video Headset is to be worn by the Instructor which transmits data
wireless to the server which could then relay real-time video and audio on the webpage
for the Virtual Lab on demand. The Audio/Video transfer is accomplished by using the

following components from Microtck, Inc..

Color CCD Camera w:lh Pinhole Lens

. 500 mW, 900MHz, Audio/Video Transmitter and Receiver
. Mini Microphone with Built-in Amplifier

- 12V 8A A Battery Holder

- 2 Power Y™ Cables

as well as a Analog to USB converter named WinTV USB from Hauppage, Inc.
The Audio Video Headset transmits FM signais at 900MHz and hence 1t does not

interfere with Bluctooth that is used by the Pocke(PC to communicate with the LAN.

33

Chapter IV

Description and analysis of the new proposals for Bluetooth Handover

Support for Bluelooth devices is being provided in Airports and n big offices.
When the user moves around the place, uninterrupted traffic flow is to be provided which
can he accomplished only if the device is able to lose the weak links due to the user’s
mobility and create new stronger links with nearby Access Points. This chapter proposes
three ncw algorithms for Bluetooth Handover which have their own advantages and

disadvantages and each suitable for a certain situation or application.

4.1 Initial Setup

4.1.1 Arrangement of Base Stations

The important consideration as with any mobile wireless communication system
is to provide uninterrupted high quality conneclivily. Among many [(actors that help
towards this, the arrangement of the Base Stations is an essential parl (o be considered.
The Base Stations need 10 be arranged in such a way that no area is left uncovered by the
signal. The most famous arrvangecment of placing the Base Stations is in the middle of
imaginary hexagonal cells, tnto which a large area can be divided into multiple cells
based on the systems signal coverage range. This is the assumed model that will be
applied in this paper, which 18 shown in Fig. 4.1.

The Base Stations denoted by the ‘+” sign are arranged in such a way to form
imaginary hexagonal cells that cover the area required. The Additional Base Stations

denated by ‘x’ are added such that an extra number of devices could be served since each

34

Base Station can serve only a maximum of 7 slaves at anytime.

+ - Cellforming Base Stallon
X - Addstionad Base Station

Fig. 4.1. The ideal arrangement of Buse Stations for full coverage of area.

4.1.2 Features of the Base Statjon

For the handover operations to be possible using the Bluetooth technology, certain
features need to be accommodated into the design.

1y The Buse Stations have to be connected to a LAN/WAN network with

gateways [unctioning as an interface between the networks.

2) The Base Station needs to have the signal pocwer measuring feature to measure

the power level of the link between itself and a particular Slave which is denoted

by the RSS] variable, which is a feature in the Biuetooth specifications [3].

3) All Base Stations have (o penodically enter Inquiry scan amidst the traflic

between other slaves so as to be discoverable to new Bluctooth devices.

4) When a new link is brought up and traffic to a particular device is to be routed

through that link, from thev ou, the information should be updated in the galeway

such that al) other devices and the exiernal network can access the desired device.,

The above features are required such that the Base Stations can communicate betwech

themselves and assist the handover operations that are developed in this paper-

4.1.3 Inal Connection Setup

BT Device Base Station
P i TN
Inquiry
N Paping
— é
ACL Lnk
M | sistomet | S
. Switch Requgst |
& Pol: |
S DMt > M
) NP— e
M - Master
B - Blave
N - New Davice

Fig. 4.2 Initial Connection Scmu

A connection between the Base Station and the Bluetooth device could be
initiated by either system. [n the case where the Base Station inquires periodically to find
new Bluetooth devices in the piconet range, the Bluetooth devices need to wait until the
Base Station allots ttme f(or itself to enter the lnquiry stage while 11 has altcady engaged
in traffic transfer between slaves connected to 1t. This means that the user necds to wait
for quite a whilc betore getting connected to the Base Station. This is undesirable, thus an
alternative second option of the Bluetooth device initiating the connection to {he Base
Station is provided. In this option, the Base Station would become a slave to many
Bluctooth devices, which means it has to synchronize with each of them for cach slot it
communicates with a different slave. This requires additional sysiem operational features.
which most likely will result in a higher device cost. Thus, this option is not desired.
Therefore, a combination of both techniques is proposed and described beiow. The
procedurc is also depicted in Fig. 4.2,

1) The Bluetooth device is in an inquiry procedure when it is not connected to any

36

Master

2) When it enters a piconet range, the inquiry from the Bluetooth device would
evoke a response from the Base Station.

3) The Base Station responds with a frequency hopping sequence (FHS) packet,
which includes its Bluetooth address.

4) On receiving the FHS packet, the Bluetooth device then enters the Paging
mode and pages the Base Station with the address.

5) Once the Base Station responds 10 the page, a connection is setup between the
device and the Base Station.

6) Then, the Base Station transmits link management protocol (LMP) messages to
initiate the Master/Slave Switch.

7) The Slave and Master then switch roles and the Base Station becomes the

Master and the wireless Bluetooth device the Slave.

4.2 Handover Proposals

4.2.1 Proposal |

The first proposal is a procedurc where the Bluetooth device periodically inquires
while staying connected and maimntams a stack of nearby Base Stations and chooscs the

Base Station 1o connect to when Handover is initiated as shown in Fig. 4.3.

37

Base Slalien BT Davice New Base Sixlion
Y — —_—
Penodic inaulry s N Per |
2 erQOIC INgUr |
Paogdic ingulry P i i |
M P 2tio0ic WG Lrity Pengdit Inqul |
P_inir _pov
Pagig
< M
S
o ACL Link
M &—3 s
¢ SwichRequesi
<
E Poxl
M S | N o
) - -
- Maslar
S - Slaw

N- New Ovice

Fig. 4.3. Handover according to Proposal {.
1) The Bluetooth device is always in “Periodic Inquiry” mode with a higher
Inquiry period (say, 60.16 s) and looks for new Base Stations around when it is
connected 1o 4 Base Station as a Slave for an Inquiry length of say, 1.28s.
2) The Bluctooth device maintains a stack of the Base Station device addresses, it
had found in its vicinity.
3) The Base Station device addresses found in the latest inquiry are added and
arranged on top of the stack according to the RSSI values, the one with the
highest RSS1 valuc being the topmost.
4) When the RSSI of the link between the Bluetooth device and the current Base
Station to which 1t 1s connected falls below the lower threshold level, the Base
Station immediately sends a “LMP_incr power req” message (o the Slave.
S) On reception of the LMP message, the Slave either increases its power leve) or
in the case where 1 has already reached its maximum power level or if the feaiure
i$ nol supported, it starts paging the Basc Stations one by one using the siack of
Base Station addresscs starting with the topmost.

6) The device then connects to the first Base Siatjon (as a Slave), which responds

4.2.2

to the Paging. If a connection was not able to be made with the first device il will
choose the next one and so forth.

7) 1f none of the Base Stations in the stack of addresses respond, then the device
has to do an lnquiry and find a nearby Base Station and cornect to it. If a
connection 1s made, the mobile unit will be the Master and the Base Station will
be the Slave since the mobile unit initiated the Inquiry.

8) Then, the Base Station initiates a Master/Slave Switch after which the
Bluetooth device becomes a Slave to the new Base Station.

9) The Bluetooth device stays connected with both the Base Stations but uses the
new link for all traffic. It may start using the old link in case its RSSI value comes
over the threshold level and the new link’s RSSI value goes lower than the
threshold.

10) Tt disconnccts any one of the links when jts supervision timer times out.
Mostly, 1t is the unused link that 1s disconnected by the link supervision timeoul

as the active link is constantly monitored by using RSSI.

Proposal 2

In the second proposal, the Base Station keeps track of the RSSI1 of the Slave unit,

and when the RSSI goes below an acceplable level a request is nitiated to the nearby

Base Stations to connecl to the wircless device as shown in Fig. 4.4

1) The Base Station measures the RSS1 level at regular intervals.
2) When the RSSI value falls below the lower threshold level, the Base Station

sends "LMP_incr_power_req message lo the Bluetooth device.

35

3) This LMP message requests the device to increase its power level. If the device
is capable of that, it increases its power.

4) In case the device has reached its maximum power level or does not have the
capability to increase its power, it enters into the “Page scan” mode while
maintaining the traffic flow connecton (o the Basc Statjon.

5) The Base Station also requesis all nearby Base Stations, through the wired
network, to page the device. It also sends the device’s Bluetooth address and its
slot offset to speed up the paging process. It may achieve this by a broadcast of
the packet to all the Base Stations in the local physical network.

6) On detection by a new Base Station, the device gets connected 10 1t as a Slave
and uses the new link for all traffic until it is of good signail strength than the old

link and above the threshold level.

-
Bate Siation BY Device New Baté Slalion
—, G — R
i g N
| Tnraugn Wireg Natwork _fRequeslio page DT Dot
i r LMP _jncr_powor_ragq
. Faging | |
LNV (R A— J
Roy
M s v]
eyl |
. THUT o }
" - _J
M- WMaaler
S - Slave

N- New |L0vdace

Iig. 4.4. Flandover according to Proposal 2.
7) The device maintains both the hinks until either one of them disconnccts by a
link supervision timeout, Same as is in Proposal t, commonly itis the unosed link

that {s disconnected hy the link supervision timeout as the active link is constantly

monitored using the RSSI.

40

4.2.3 Proposal 3

The third proposal follows a very simple methodology of ensuring reliable
connectivity of the Bluetooth device through a backup link maintained with another Base
Statjon as shown in Fig. 4.5.

1) In the initial connection setup, while a Bluetooth device is newly introduced
into the Base Stations’ range, if the device finds two Base Stattons in the range it
conrnects with both immediately. If it finds more than two Base Stations it chooses
the two Base Stations that responded first.
2) At any time, one of the links acts as a medium of transfer of traffic while the
other is inactive. The inactive device could be just a active link that is not used for
traffic or it could also be placed in the park mode.
3) The Base Stations montor the RSSI level of all their connected links. When
the RSSI of any hnk falls below the lower threshold value, it informs the Slave
using an “LMP_incr_power_req” message.
4) If the Slave is capable of increasing its transmission power. it does that. 1{ 1t is
working in s full power or is not capable of increasing its power, il starts using
the other good Iink for traffic. If the backup link was in park mode, then it is
brought up to active link and this link is used for the traffic. The poorer quality
tink is discounected. The backup link is also constantly monitored and if the link
quality gets poor it is replaced with a bettes one.

5) The device goes into the “Periodic Inquiry™ mode with Inquiry length and

Inquiry period of say, 1.28 s and around 5.12 s, respectively. An allemative way

may be to perform inquiry when the amount traffic is low, assuming prior

4)

knowledge is obtained about it.

6) The Bluetooth Device inquires and connects as a Master with another new
Base Station, in addition to the curtently connected Base Station.

7) The newly selected Base Station then initiates a Master/Slave switch to make
the wireless Bluetooth device its Slave. The new link is kept inactive or 1s not

used for any traffic.

Bane Stsion FaseSld 217 8T Cewcs NewBise ShLe
(e a6 e S]
| ineemm aACL Unke
M M MP_ind bower it
X
Mrve A0, Unk S N
v Dustoanarl LRk
3 N Fextear v 2.y
M Peiadit -y
26y AL UrR P esvat tgury
Plgrag
| |
1 > M e €
i M
| A ¥ 77 N V." S N Bl ot i
| Swr:h Reauest
M Al AT LA S | nackuacene | o)y
|
— [/
[CRE 314
| 9 Blave

1. M.t Drncn

Fig. 4.5. Handover according (o Proposal 3.
8) The Bluetooth device maintains both the links until the signal quality of one ol
the links> degrades below the required threshold. Once one of the links ts
dropped, the device again performs procedures to selup an alternative

corresponding hink.

4.3 Analysis of Handover

The proposed handover technigues have been implemented and analyzed for their
timing performance. The timings for Inquiry and connection have been measured by
developing an application with capabihities to time the desired events. Further sofiware

has been developed which implements the handover topologies proposed and analyses

42

their performance.
4.3.1 Test Setup

Ericsson Bluetooth Development Kits™ were used as the Bluetooth Devices and
Base Statjons in building the Bluetooth wired and wireless network. The applications
were implemented over the Ericsson Bluetooth Protocol Stack™. The CATC Merlin
Bluetooth Protocol Analyzer™ was used to monitor the packet transfer between the
devices and the A gilent Technologies E1852B Bluctooth Test Set™ was used to measure

the signal quality.

4.3.2 The Timing Analysis

Handovers Teclmiq“ue. Hn_l.:c-l\o.\'e;' Tuums I __H;xld;\er_'f;nu_)g:]
(Raunge) (ing) ' {Averige) (msg)
Froposal 1 220.-—‘ 34.1 i T o _2:(l.“l _
Proposal 2 | 1o-190 | 172
Proposald | LEpS-250 j L.587

Table. 4 |. Mimimum Handover Tunings.

From the performed tests, the timing for [nquiry and connecting with a Service
Discovery was measured and recordcd. The fests were repeated 10 times and the time
was recorded for each cvent. The results arce represented in Table 4.1.

1) Range of time taken to discover a device: 481 — 4196 ms

2) Average timc taken 1o discover a device: 2339.6 ms

In Proposal 1, after the connection setup, a Master/Slave switch needs to be
conducted which takes 70 ms. The given timing is the minimum timing needed for
Handover and this could increase if a connection was not able to be made with the first

Base station jn the stack and more base stations are tried for connection. The handover

43

timings may also increase if the new Base Station has one or more SCO links which have
higher prjonty than page scan and can interrupt it. Proposal 2 does mnot require
Master/Slave Switch and is fastcr than proposal 1. The given timing is the minimum
handover timing and it would increase if the new Base Station had one or more slaves
with SCO links as they interrupt the paging. Morcover there may be delays with the Page
request message to be transmitted from the old Base Station 10 the new Base Station. In
the third proposal, a link already present is made active. So the transition is almost
instantaneous though a backup link will leisurely be established again commonly
occupying backup channel resources in support of the rapid handover. The timings given
are faken by assuming that as soon as the LMP message 1s received by the slave, it
changes 1ts clock to the new Base Station and inunediately recetves a POLL packet from
the new Base Station. Then it would respond in the immedijate slot and inform that it
would be i1ts new Master. But in reality, if there are many slaves with the new Base
Station the POLL packet to the slave would come later and hence the handover will be

delayed.
4.3.3 The Ping-Pong effect Analysis

When a device lies almost equidistant between 2 Base stations and the RSSI
balance between the two is fluctuating very rapidly — the Base station RSSls become
greater than each other alternately very rapidly — the handover procedure may be started
at each revenrsal of the RSSI values. This 1s called as the Ping-Pong effect,

The Bluetooth handover algorithms were implemented with code to counter the
Ping-[song effect. The Handover is not started until 10 continuous samples of the RSSI

value are below the threshold value that would start handover. The samples are taken

44

with a gap of | ms belween them. Apart from this, the measuring of RSS1 values after a
handover starts only after a timeout value, say | minute. After a handover takes place, the
timer is started and till then the measurement of the RSSI value is stopped and restarted at
the end of the timer. When 10 continuous samples of the RSSI value dip below the
threshold level, handover will be started. Thus the Ping-Pong effect is avoided.

The gencral method of Hysteresis that is used to avoid the Ping-Pong effect is also
applied as shown in Fig.4.6. The upper and lower threshold values for the Hysteresis
need to be found as per the requirements of the application. If a device is connected to,
say Base station | and is moving towards Base station 2 the Handover would take placc
from Base station | to Base station 2 when the signal level goes below the upper
threshold. If in case, the signal power of Base Station 1 becomes greater than Base station
2 in the course of time but still within the upper and lower threshold levels, the handover
will not take place. The handover from Base station 2 to Basc station 1 will start only
when the power level of Base station 2 drops below the lower threshold. Applying this

technique avoids the Ping-Pong effect. But appropriate threshold levels have to be chosen

\ "y per threshold /) -

for errorless functioning.

- A

< v

23 e

2 O f— = w

He - =B

T 2

%5 A\ Umg?

5(5 / Lowver threzhiold 2 =
T 3
LN

—y—

Distance

Ihg. 4.6. Handover Hysteresis.

45

4.3.4 Analysis of interruption to traffic:

In the proposal 1, Inquiry takes place periodically during normal operation of the
devices. The Inquiry 1s done by the slave so (here may be circumstances, where when the
master sends a packet, the slave may not receive it and respond 1o it. This could be
avoided by starting the Inquiry when there s no traffic from the slave to be transferred to
the master. When there is no data in the slave to be sent, a slave sends a NULL packetl in
response to the POLL packe! from the master. Periodically the slave checks itself if it has
data to send. If it has it waits till the master sends a POLL packet. In response to this, the
slave sends the data and then waits for the next time the master sends a POLL. If there is
no data it sends a NULL and ymmediately after that starts the Inquiry.

In proposal 2 and 3, there is no time lost in inquiry during traffic. In proposal 2,
the data to be sent to the slave from the old Base Station may be buffered and sent to the
new base station. Actually this data has to be sent to all the nearby Base Stations and the
one that has connection to the slave sends 1t to it. In proposai 3, both Base Stations have
knowledge of the other and hence when one the active link s broken, all the data from
that Base Stalion are sent to the new active Base Station thiough the wired link. And

hence there is no loss in traffic.

46

Chapter V

Couclusion

The Virtual lab was implemented successfully and the system has been
performing very well. The instructor has found new {reedom in moving around the rooms
of the lab and instructing. In every lab course, when a particular exercise needs to be
displayed, the students come in groups taking turns to view as to how it 1s done. The
Audio/Video headset reduces the time lost in such activities. The students are able to see
what the Instructor is working from their seats on their desktops. They could pose
questions to the instructor by typing text messages that are displayed on the [nstructor’s
PocketPC along with the student’s login 1d to the Vinual Lab. The instructor saves a lot
of time by being able to type in files and send them immediately to the students using (he
PocketPC. The primitive handover technology works without (ault and does not interrupt
during the presence of traffic. The Virtual Lab is a big step in infusing high-end
technology for aiding education in Oklahoma State University. The Wireless Instructor
system is shown in Fig. 5.1.

The first two proposals for Bluetooth Handover are techniques where the
discovery of the devices is avoided during the failure stage and conducted before the need
for handover arises. Although 1n the firs(proposal the traffic may be interrupted
periodically for a small time for inquiry. The second proposed method is (aster than the
furst as the Master/Slave swiich 1s nol required. The third proposed method is a technique

where a backup link 1s available to replace the faulty link. Though this might be th:¢

47

fastest way t0 conduct handover, this topology will lead to a larger number of Base
Stations in sUPPOrt of the same user popujation since cach device at any time needs 1o
maintain 2 links. The proposed techniques above can be used as a guideline to handover
development 10 Bluetooth systems. The individual parts of each technique may be
independently selected out and combined in establishing an improved handover technique
that may suit a particular application or Bluetooth network configuration. The technique
for handover may also be changed dynamically while roaming depending on the number
of Bluetooth devices or Base Stations that need 1o be interactively discovered and the

amount of traffic and the traffic scrvice requirenients.

Fig 5.1. The Wireless Instructor System

48

REFERENCES

(1)

[3]

[4]

[5]

(6]

[7]

(8]

(9]

(1]

[12]

C. C. Ko, B. M. Chen, S. H. Chen, V. Ramakrishnan, R. Chen, S.Y. Hu, and Y.
Zhuang,"A large scale web-based virtual oscilloscope laboratory experiment,”
IEE Engincering Science and Education Journal, Vol. 9, No. 2, pp. 69-76, April
2000.

C. C. Ko, B. M. Chen, S. Hu, V. Ramakrishnan, C. D. Cheng, Y. Zhuang, and J.
Chen,"A web-based virtual laboratory on a frequency modulation experiment,”
IEEE Trans. Systems, AMan und Cybernetics, part C, vol. 31, pp. 295 -303, Aug.
2001.

M. Serra, E. Wang, and J. C. Muzio,“A multimedia virtual Jab for digital logic
design,”in 1999 ZEEE Irit. MSE Conf., pp. 39-40.

C. Rohrig, and A. Jochheim,” The Virtual Lab for Controlling Real Experuments
via Intemet,” Proc. of I[EEE Int. Symposium, Aug. 22-27, 1999.

S. Baatz, M. Frank, R. Gopffarth, D. Kassatkine, P. Manini, M. Schetelig, A.
Vilavaara, “Handoff support for mobility with [P over Bluetooth,” Proc. IEEE
LCN 2000, pp. 143- 154, Tampa, Nov. 2000

D.J. Y. Lee and W. C. Y. Lee , “Ricocheting Bluetooth,” Proc. IEEE 2nd Int.
Conf. Microwave and Millimeter Wave Technology 2000, pp. 432-435, 2000.

D. Lee and W. Lee, "Integrating bluetooth with wireless and ricocheting,” Proc.
I1th IEEE PIMRC 2000, vol. 2, pp. 1310 -1314, 2000.

M Arbrecht, M Frank, P Martini, M Schetelig, A Vilavaara, and A Wenzel, "JP
Services over Bluetooth: Leading the Way to a New Mobility," Proc. [FEE
LCN'99, pp. 2-11, Oct. 1999.

J. Tourrilhes, Bluetooth Roaming Proposals. Basic Book/Monograph Online
Sources, Oct. 9, 2000 (http://www hpl.hp.com/personal/Jean_Tourrilhes/Papers/

apr-jt.ndf).

Bluetooth SIG, Specification of the Bluetooth System-Version | 1 Specification
volume 1, Feb. 2001.

J. Bray and C. F. Sturmman, Bluetooth Connect without cables. st ed., Upper
Saddle River, N.J.: Prentice Hall PTR, 2001.

P. Bhagwat and A.Segall, “A routing vector method for routing in Bluetooth

" scattemets,” Proc. Sixth 1EEE Intl. Workshop on Mobile Multimedia Commun.

1999, Nov. 1999,

[13] C. McDaid, Rouwting connections in Bluetooth. Basic Book/Monograph Online
Sources, Apr.2001 (http://www.palowireless.com/bluearticles/cc3 _handover.asp).

[14] A. Kansal, “Handoff in Bluetooth Public Access Networks,” unpublished.

(15] M. L: George, L. J. Kallidakil, and J.-M. Chung, "Bluetooth handowver control for
roaming system applications," Proc. of IEEE MWSCAS 2002, Tulsa, Oklahoma,
Aug. 4-7, 2002.

(16] Ruksun Software Technologies, Programmer’s Guide for Scotty FTP API for
Windows CE, Jan. 2001.

50

APPENDIX A

Description of the Configuration Utility

The Vlab configuration utility allows users to enter the Server [P Address, FTP
user name, FTP Password, Remote folder name and Connection name and these values
are stored on a file locally as well as download the Login and Mapping information. The
utility also has an option to load default values in case the user wants (o revert back to the

default values. These values can be changed and updated in the file.

This utility is necessary because it is possible that the list of users who are
given access to the Wireless Instructor system is prone to updating and so is the
placement of the LAN access points in the various rooms of ihe lab. The Server’s IP
address may change when the network is altered. For security purposes, the FTP
password may have to be changed. The Remote Folder Name and Connection Name may
also be updated. One method that may be used is to store all this information on the
server and update the PDA each time the application is used but is not possible to connect
to the web scrver without knowing the FTP User Name and FTP Password. So this
mnformation about the connection and location of the files on the server are given to the
PDA Jocally and the Login list and LAN Access Point-Room are updated manually when

neceded to.

The application updates the Pocket PC with the Login and Mapping files from the

remote web server which are transferred and stored locally through an FTP connection.

51

The Y-ogin file contains the names, user names and passwords of the instructors who have
access to the wireless instructor system. The Mapping file has information mapping
Bluetooth addresses of LAN access points to the rooms in which they are placed. The

Configuration Utility looks as shown in Fig. A.1.

Server IP Address

FTP User Name

Remote Folder Name |/VLabPOA

Connection Name viab

‘ Update | ‘Res,ture Default Vglues!

‘Restore Saved \Ia!ues‘ me‘ar Form '

ElA

Fig A.l. Configuration Utility window.

Server IP Address: This is the [P address of the web server in dotied decimal notation.

FTP User Name: This is the user namc used to access the web server using File Transfer

Protocol.

FTP Password: This is the password used to access the web server using File Transfer

Protocol.

Remote Folder Name: This is the name of the Main root folder on the web server where

all files related to the Wireless Instructor system are stored.

Counection Wame: This is the name of the connection setling, configured to connect
using Bluetooth Null Modem, used by the WinCE Connection Manager to

connect to the LAN Access Points.

‘Update’ button: This button saves all the information entered in the utility in a local
configuration file (“\My Documents\BTFOLDER\Configuration\VLab_Conf.1xt")

and also downloads the Login and Mapping information from the web server.

‘Restore Default Values’ button: This button Joads the default values onto the Edit

boxes 1n case the user wants to revert back to the default values.
‘Restore Saved Values®’ button: This button loads the values that have becn stored most
recently in the configuration file omo the Edit boxes. When the utihty is opened,

the saved values are loaded automatically.

‘Clear Form’ button: This button is used to clear all the entrics in the Edit boxes.

APPENDIX B

Description of the Instructor Access Mapagement utility

Introduction

This program is a part of the software of virtual lab project for managing user
accounts. It only permits administrator account login and does some operations for user
accounts, such as adding users, deleting users, changing password, etc.

It gets the users’ information from the FTP server, finishes the operation of
administrator and then updates the users’ information on the FTP server. [t can be used

on any desktop and 1s very easy 10 use.

How to use

1. Run the program, the login window will be showed first as in Fig. B. 1.

LoginName: |

Password: |

Fig 3 1. Instructor Access Management Utility Login window.

Type the login name and password. Click login to access the program, clicking cance!
will exitthe program.

The main window is as in Fig. B.2.

54

ﬂ’_ user_manage

Usermame Password Full Name

Username: |PUc‘mZ

Pass\woxd: |Jhunch

Full Name: |ML_Yuan_Zh;|:|§--

Update Add D elete Apply 1 oK Exit

Fig B.2. Instructor Access Management Utility window — Edil.

In the nght window, the first column is the usemare, the second one is the password,
and the third one is the full name of the user. Though the example shows names

separated by an underscore, the names can be separated by a space.

Choosing one user in the right window by clicking on it will show the information

individually on the Edit boxes. Change the item that you want (0 change and then

click update. The change made to that jtem is stored and is depicted in Fig. B.3.

55

-ri"r:, user_manage

Usernams Passward FulName
Username: | lonnrag-—----- ek -=erreee- Mt _Mases_George
yuanz:--------sludenl-----—Mr _Yuan_Zharg
theepa--------hpok—------Ms._Theepa_Natarajan
PassWard: |
Full Name:]
Add Delete Apply OK Ext

Fig B.3. Instructor Access Management Uulity window — After Edit.

3. Wnte the usemame, password and full name in the left windows, click aded/ and you

can add a new user account and it is depicted in Fig. B.4.

ﬂ"_ LSEN JnNanapge
Username Passwoid Ful Name
I sername: I lyrnnmg------- ~kick -------Mr _Mases_George
yuanz---------student------Mr _Yuan_Zhang
theepg------ hook:- -----Ms _Theepa_Nalarajan
ichurigs-+------ptofessy ------Dr _Jong-Moon_Chur

Password: r

Fuli Name: I

Update | [(BdT 7| Deete | Ay | 0K | Ea |

Fig B.4_ Instructor Access Management Uulity w ndow - After Add.

56

4. Choose one user account from the right window, and then click delere, you can delete

the user that you want as depicted in Fig. B.S.

&= user_manage

Userame Psassword Full Name
kick:-----Mr _Moses_Gearge

Useiname: I ri;'nnmg
puanz.---student-eeees Mr._Yuan_Zhang
ichung- === fo ! (-Na) EEESRES Di_Jong-Moon_Chu:

PassWoaid: |

Fui Name: | o

E xit

(Delefal] Apoly | OK

Update Add

Fig B.5. Instructor Access Management Utility window — Afier Delete.

When you click apply, the program will store all user accounts that are in the right

window to the FTP server. The directory 1s *“/VLabPDA/Logins/Logins.txt™,

When you click ok, the program will store all data to the FTP server and close the
program.

When you click exir, the program will be closed without saving any change.

57

APPENDIX C

Code written for FTP connectiviry over Bluetooth

/)h***************#**#*****-\:***

Function Name : FTPOpen

Description : This function opens the FTP connection and Jogs into the server
Input : |P Address of server, Username, Password

Returns : Boolean — True or False

oK e 3 o K e o ST RCR KRR R AR K o oK R R Ko ok 6 K5k Sk St K R o sk o o o Ko oo ok ok ok o ok OB ke ok ookl Ok
bool CUiDIg::FI'POpen()

{
bFileTransferProgress = TRUE;

FTPHandle = ScottyFtpCreate();
if(FTPHandle == NULL)
{
bFileTransferProgress - FALSE;
return FALSE;
!

if (ScottyFtpConnect(FTPHandle,Server 1P Address) <0)

{
bFileTransferProgress = FALSE;

return FALSE;
}

1€(ScottyFitpLogin(FTPHandle, FTP_UserName, FTP_Password) <0)

{
bFileTransferProgress - FALSE;

retumm FALSE;
}

bFileTransferProgress = FALSE;
b TPPresence = TRUE;

return TRUE;
)

/K %% s sk shook sk o koK sk o ok o sk sk ok kb ok R Kok ok oK K 56 i o ok ok e s ofe ok e T KR k6 k ok e siool st ok 3ok ok S RO ok o ke ok ok ke o e ok

Function Name : FTPSendFile

Description - This function sends a file to the server

Input : Remote Destination folder, Local file name, Destination file
name

Retumns : Boolean — True or False

58

’k*)K****JI(************************* **********************************/

bool CUIDIg::FTPSendFile()

¢
m_Edit Status.SetWindowText(_ T("Busy!"));
bFileTransferProgress = TRUE;

if (ScottyFtpChangeDirectory(FTPHandle, RemoteFolder) <0)

{
bFileTransferProgress = FALSE:
return FALSE;

)
s

1L (ScottyFtpPutFile(FTPHandle, LocalFile, RemoteFile) <0)
{

bFileTransferProgress = FALSE;

return FALSE;

}
m_Edit_Status.SetWindowText(_ T("Done!"));
bFileTransferProgress — FALSE;

retum TRUE;
}

/A e ok e e SRR HOR ol sk R sk HIOR R O sk o KR SKOR S ok o ok K TR KRR R ok A ok K b sk stk Sk ok stk ok K kokokok

Function Name : FTPGetFile

Description : This function gets a file (rom the server 1o a local folder

Input : Remote Source folder, Local Destination file name, Remote
Source file name

Returns : Boolean - True or False

)k****=K********************************A(********************************/

bool CUIDIg::FTPGetFile()

{
m_Edit Status.SetWindowText(T("Busy!"));
bFileTransferProgress = TRUE;

if (ScottyFtpChangeDirectory(FTPHandle, RemoieFolder) <0)
{

bFileTransferProgress = FALSE;

return FALSE;

}

if (ScottyFtpGetFile(FTPHandle, RemoteFile, LocalFile) <0)
{ AY
bFileTransferPragress = FALSE;

59

returm FALSE;
}

m_Edit_Status.SetWindowText(_T("Done!*));
bFileTransferProgress = FALSE;

returnr TRUE;
}

/74 KR o ok o o o ok o ke o o o R o e Sk Sk K KR kKoK KSR KK 0o s s AOR 3R i o o ke s HOR K R e o o e S o o

Function Name : FTPDeleteFile

Description : This function deletes a file on the server
Input : Remote folder, Remote file name
Retums : Boolean — True or False

*****-\k************************************1**********************’k*****/

bool CUiDIg::FTPDeleleFile()

{
bFileTransferProgress = TRUE;
if (ScottyFtpChangeDirectory(FTPHandle, RemoteFolder) <0)
{
bFileTransferProgress = FALSE,;
return FALSE;
}
tf (ScottyFtpDeleteFile(FTPHandle, RemoteFile) <0)
{
bFileTransferProgress : FALSE;
retum FALSE:
1
bFileTransferProgress = FALSL;
return TRUE;
h
7K ks s ok s sk o ok sk ok e ok b o i o o o o o e ok ok ke ok o 8 K R o Sk sk ok ok e e A8 K HOR CH R S AOHOK SOROR o e ok o Sk K OK ok s kR R ok
Function Name : FTPClose
Description : This function closes the FTP connectlion with the server
Input :
Relumns : Booiean — True or False

S 3k ok Rk e o kR R ok kK Sk ke ok 3k Sk ot K R e s e o ok o IOk sk ok Sk s ste ke ok K ok ofe o R ok 3O R i e i oA b ke e ok o Ok oK R K ******/

bool CUiDIlg::FTPClose()

1
ScotyFipQuit(FTPHandle);
ScottyFipDestroy(FTPHandle);

60

bFileTransferProgress — FALSE;
WETPPresence = FALSE;
return TRUE;

61

APPENDIX D

Code for the Wireless ¥nstructor program

Program Files:

Cl.oginDlg.cpp

// CLoginDlg.cpp : implementation file
/

Hinclude “stdafx.h"

#include "resource.h”

#include "CLoginDlg.h"

#include "uilDlg.h"

#ifdef DEBUG

fidefine new DEBUG_NEW
gundef THIS _FILE

static char THIS FILE[] - FILE ;
Hendif

fdefine DEFAULTLOGINNAME "admin"
#define DEFAULTPASSWORD "virtualblueiooth”

I 101112400010 1 2000001171171177
/7 CLoginDlg dialog

CLoginDlg::CLoginDIg(CWnd* pParent /*=NULL*/)
: CDialog(CLoginDlg::1DD, pParent)

{
/1{{AFX_DATA_INIT(CLoginDIg)

// NOTE: the ClassWizard will add member inttialization here

//}YAFX_DATA_INIT
}

BOOL CLoginDlg::OnInitDialog()
f

CDialog::OninitDialog();

7 TODO: Add extra initialization here

62

m_Edit_Password.SetPasswordChar(*');
" GerConfigData();

return TRUE; // return TRUE unless you set the focus to a control
1/ EXCEPTION: OCX Property Pages should return FALSE

void CLoginDlg::DoDataExchange(CDataExchange* pDX)

{
CDialog::DoDataExchange(pDX);
IH{{AFX_DATA_MAP(CLoginDlg)
DDX_Control(pDX, IDC_EDIT_USERNAME, m_Edit UserName);
DDX_Control(pDX, IDC_EDIT_PASSWORD, m Edit Password);
/Y YAFX DATA MAP

BEGIN MESSAGE MAP(CLoginDlg, CDialog)
/I{{AFX_MSG MAP(CLoginDlg)
ON BN CLICKED(IDC LOGIN, OnLogin)
ON_BN_CLICKED(IDOK, OnOK)
I/} AFX_MSG MAP
END_MESSAGE_MAP()

LI I il 005 0114001110721 001111100177)
// CLoginDlg message handlers

void CLoginDlg::OnLogin()

{
unsigned short *temp = new unsjgned short [LOGINLENGTH];
unsigned shori *templ = new unsigned short [PASSWORDLENGTH];
int i,length;
CString tempch;

m_Edit UserName.GetWindowTex((temp, LOGINLENGTH});
m_ldit Password GetWindowText(templ ,PASSWORDLENGTH);

for(i—0;i<LOGINL ENGTH;1++)
cLoginName[1] - templ[i};

for(i 0;i<PASSWORDLENGTH;1++)
cPassword[i] = temp 1 [i];

// Encryption of the login and pwd
_strlwr(cLoginName);
length = strlen(cLoginName);
for (1 = 0; i<length;i++)

cLoginName[i] » : ENCRYPTKEY;

fength = strlen(cPassword);

for (i = 0; i<length;i++)
cPassword[i] *: ENCRYPTKEY;

if($CheckLoginData())

{
MessageBox(_T("Try Again"), T("Error"), MB_ OK);,
ni_Edit_UserName.SetWindowText(_ T("")):
m_Edit_Password.SetWindowText(_T(""));
retum;
}
CDialog::OnOK();
}
void CLoginDIg::OnOK()
{
// TODO: Add extra cleanup here
CDialog::OnCancel();,
}
void CLoginDlIg::OnCancel()
{

/) TODO: Add extra cleanup here

CDialog::OnCancel();
1
s

bool CLoginDlg::CheckLoginData()
{
FI1.E *File_Data;
char *data - new char[120];
char *UName = new char[50];
char *Pwd -: new char[30];
char *FName = new char[30];
- ot length,i;

64

File_Data = fopen(LOCALLOGINSFILE, "r")
if(File_Data == NULL)
MessageBox(_T("Cannot find Login File"), _T("Error™),

b

MB_OK);

if(stremp(cLoginName, DEFAULTLOGINNAME) -: 0 &&
stremp(cPassword, DEFAULTPASSWORD): =0)

{
memcpy(cLoginName, "Admin”, 30);
retum TRUE;
}
while(!feof(File_Data))
{
fgets(data, 120, File_Data);
sscanf(data,"%s\%s\t%s", UName, Pwd, FName);
1f(stremp(cLoginName, UName)==0 && strcmp(cPassword,
Pwd)=-:0)
{
length = strlen(FName);
for (1 = 0; i<length;i++)
cLoginName[i] = FName[i] * ENCRYPTKEY;
cLoginName[i] ="\0’";
// MessageBox(L"ok"”,0,MB_OK);
/! memcpy (cLoginName, FName, 50);
/ MessageBox(L"ok1",0,MB_OK);
felose (File_Data);
returm TRUE;
}
}
fclose (File Dalta);
returmn FALSE;
B

65

RssiTest.c:

Kinclude "RssiTest.h"
//#include "Giobals.h"”

/**************** G]Obals****************** ************/

HCI_ Handle ghDefaultHandle = NULL;

HC1_Handle ghConnHandle = NULL;

HCI_Handle ghScoHandle = NULL;

hei Jink_type guScoLinkType = HCI_NO_LINK,
bt_ing_res gaulnquiryResultf HCI MAX NUM_INQ RES];
int giNumDevice = 0; -

bt device context ghDeviceContext;

bd_addr guBdAddr,

wt iDevicelndex;
bd_addr Devices BD_Addi[MAXNUMDEVICES];

uint16 giStatus;
HANDLE ghEvent;
uint8 bRssilnProgress = 0;

HANDLE ghWriteEvent;
HANDLE ghExitEvent;
HANDLE ghStopEvent ;

HANDLE ghWnteThread;

HANDLE ghRssiThread ;
app_hci_cmds guWriteCmd;

int giConnFlag;

int giProgressFlag;

MData MDummy;

MData* puMatchData=&MDummy;
umnt32 aiEventArray[MAX EVENTS];

char RemDummy[50];
char *RemoteName = RemDummy;
tnt 1ITotalDevijces;

R ok o ek o oK ok sk sk ook o o 8 R SRR R KRR R R DHOR A e SRR s ok Ok KK SO K o Sk o sk Kk sk

Function Name :HciTestIntitialise
Function Type :Intemal

66

Description :This is a main function which starts the
application.
Arguments
Input :

Returmns :none
she ok ke KoK oK oK ok OR sk o sk ok R R OR KOR ok Sk ke ok Ok sk ok ek ok ok s KRR HOK K s o o sk ke K ROK ok K ok ok o SR K

EXTERN int HeiTestIntitialise{void)
{

uint8 iEventCount;

long iIRetVal =0;

iEventCount = 0;
aiEventArray{iEventCountd -] : HCI_DIS_COM_EVN,;

if((ghDeviceContext = BT_OpenDevice(BLUE USB))==NULL)
{
printf(**Unable to open device \n™);
exit(1);
¥
/* Get a handle to HCI before executing any heci cormmand */
ghDefaultHandle = Bl HC1 GetHandle(ghDeviceContext HCI_DEFAULT),
if (!ghDefaultHandle)
{
printf("\n ");
exit(1);
1
s
BT HCI RegisterCallBack(ghDefaultHandle,aiEveniAiray,(hei_callback)APP_C
onnectionCallback,iEveniCount);

returmn |;

}

% 3 o i sk e 5Ok sk K ok ok ROR sk kR sk sk ke ok Sk ok s 3Ok ke ol ok ke KOk otk B YK ook ok e sk o o o ok e sk ok 3 oK i ol ke

Function Name :WriterThread
Function Type :Internal
Description :This is 2 Writer Thread's Function
Arguments
Input :LPVOID : ignored

Returns :DWORD

*******'—t*j‘ *********#************************’l******************/

DWORD WriterThread(LPVOID pVoid)

67

HciTestIntitialise();

while(1)

{
WaitForSingleObject(ghWriteEvent,INFINITE);

switch (guWriteCmd)

{

case HCI INQUIRY:
APP_HciTestCommands(HCI INQUIRY ,puMatchData);
break;

case HCI CONNECT:
APP_HciTestCommands(HCI CONNECT,NULL);
break;

case HCI DISCONNECT:
APP_HciTestCommands(HC! DISCONNECT,NULL);
break;

case HCI_READ_ RSSI:
APP HciTestCommands(HCI READ RSSIpuMatchData);
break;

case HCI READ REMOTE NAME:
APP HciTestCommands(HCl_READ_REMOTE_NAME,

NULL);
case EXIT:
BT Close(0);
SetEvent(ghExitEvent);
return 0;
b
}
return O;
H

/******************k****************’************************************

e K

Function Name : APP_HcilestCommands
Description : Function that issues various HCI commands
Argument

68

Input :
hHciHand)e,uEventld,pcData(EventData),iLength,pvMatchData

Qutput " None
Global " None.
Error Condition D -
Return :None

>k e o Sk > she oK K e e 3B e ke Ok Stk ke sk skl R K Sk i s sfe s e ok sk skt st sk e sk ol sk e sl sl foKoOR sk ok Sl ke Aok s o e ok 3 a0 R kR ke ke ok Kok A
4 sk ok k

EXTERN void APP HciTestCornmands(int iCmdType,void* pvMatchData)
{

hei_callback_info uCallBackInfo ;

switch(1CmdType)

{
case HCI_INQUIRY:
{
lower_bd_addr uLap;
uLap.iData[0]) = GIAC >> SHIFT 16;
uLap.iData{l} = GIAC >> SHIFT 8 & HCI LOWER_BYTE MASK;
uLap.iData[2] - GIAC & HCI_LOWER BYTE MASK;

uCallBackInfo.pfCallBack = (hec1_callback)APP_InquiryCallback;
uCallBacklInfo.pvMatchData = pvMatchData;

printf{*\n Issuing Inquiry Command ...");

giNumDevice = 0;

/1 Check giStatus before waiting on a event.
giStatus : BT HCI Inquiry(ghDefaultHandle,
uLap,
INQUIRY DURATION,
HCI_INQUIRY_ MAX_ RESPONSES,
uCallBackInfo) ;
if (giStatus - HC1_SUCCESS)
{
SetEvent(ghEvent);
}

break;
case HCT_CONNECT:
printf("n Issuing Connect Command ...");
uCallBackInfo.pfCallBack - (hci_callback)APP ConnectionCallback:
uCallBackInfo.pvMatchData - NULL :

ghCounHandle BT HCI GetHandle(ghDeviceContext,0);

69

casc

giStatus = BT_HCI_CreateConnection(ghConmHandle,

guBdAddr,
uCallBackInfo);
if (g1Status = HCI_SUCCESS)
{
SetEvent(ghEvent);
}
break;

HCI_DISCONNECT:

uint8 iReason = HCI_USER_TERMINATE;
uCallBack[nfo.pfCallBack = (hci_callback)APP_ConnectionCallback;
uCallBackInfo.pvMatchData = NULL ;

giStatus = BT _HCI_Disconnect(ghConnHandie,
iReason,
uCallBackInfo);

if (giStatus '= HCI SUCCESS)

{
SetEvent(ghEvent);

}
break;

case HCI READ RSSI:
{

printf("\n Issuing rssi Command ...");
uCailBackInfo.pfCallBack = (heci_callback)APP_ConnectionCallback;
uCallBackInfo.pvMatchData = pvMatchData ;
giStatus = BT HCI ReadRssi(ghConnHandle,
uCallBackInfo);
if (giStatus *— HCI SUCCESS)
{
ghStopFlag - TRUE;
SetEvent(ghEvent);
H
break;
!
case HCI READ REMOTE NAME:
{
MessageBox/NULL, T("asasas").NULL,MB_OK},
uCallBackIn(o.pfCallBack =

(hci__callback)APP_RemoteNameCallback;

uCallBuckInfo.pvMatchData = NULL;
giStatus BT HCI RemoteNameRequest{ghConnHandle,
gaulnquiryResult[iDevicelndex].uBdAddr,

70

gaulnquiryResult[iDevicelndex].iPageScanRepModes.,
gaulnquiryResult[iDevicelndex].iPageScanModes,
gaulnquiryResult[iDevicelndex].iClkOffset,
uCaliBackInfo);

if (giStatus == HCJ_FAILURE)

{
MessageBox(NULL, T("Stopped"),NULLMB_OK);
ghStopFlag = TRUE;
SetEvent(ghEvent);
t
break;
}
}

/9K 5 R ok ko e s o o s sk e ok R e e s Ok o ot s s stk o o g ok ok i ok sk skoR RO ol ook Stk e sofk S ROROK ke o R oK Kok

kK K ¥
Function Name : APP_InquiryCallback
Description : Callback function registered with HCI for inquiry
Argument
Input :
hHcirFHandle,uEventld,pcData(EventData),iLength,pvMatchDala
Output : None
Global : None.
Error Condition D -
Retum : None

K e Ok e sk Sk ok ke sk ok s ok MR 3k e Sk ok sk S SIOK K ol O R8¢ ok i sk ko sk ke 9 ok S 28 3 ofe sl ook ok ot ok o 3 i ke ok S AR SRR Sk K e o ok ¢ ke ok e ok ok ok

YT LY

void APP_InquiryCallback (HCI Handle hHciHandle,
uint32 uEventld,
uint8 *pcData,
uint32 iLength ,
void *pvMatchData)
{
it i;
static int 1Flag=0;
static count;
if (uEventld == HCI_INQ_RES EVN)
{
hci_ing res *pulnquiryResult;
pulnquiryResult = (heci_inq_res *)pcData;

71

iFlag=1;
/! for each Inquiry response
for (i=0 ; i<pulnquiryResult->INumResponses ; i++)

/* Store the inquiry result details */
gaulnquiryResult[giNumDevice] = pulnquiryResult->auBtIngRes(i];
giNumDevice++;

// added
memcpy((((MData*)pvMatchData)-
>uiBuf+BD_ADDR_SIZE*count),pulnquiryResult-
>auBtIngRes[i].uBdAddr.iData,BD_ADDR_SIZE);
((MData*)pvMatchData)->uiNumber=+-+count;
}
}
else 1f (uEventld = HCI TNQ _CMP EVN)
{
hci_ing _cmp *pulnquiryComplete;
pulnquiryComplete = (hci_inq_cmp *)pcData,
giStatus : pulnquiryComplete->iStatus;

/* Go back 1o main */
if ("1Flag)
{

}

coun(=0;
1Flag=0;

((MData*)pvMatchData)->uiNumber=0;

giProgressFlag=0;
SetEvent(ghEvent);
}
else 1f (uEventld = HC1 COM_STA EVN)
{
her_cmd_status_event *pulngStatus;
pulnqStatus = (hei_cmd_status_event *)pcData;
giStatus = pulngStatus->iStaius;
if (giStatus = HCI_SUCCESS)
{
giNumDevice =
SetEvent(ghEvent);

else if (uEventld == HCI_TIME_OUT_EVN)
{ .

72

/lerr

/s v s S o o s ok R RO e S o e S S O o o s AR OR K S ok ke sk sk ok ok Ao R s sk s ok o s e o e ook o S o oo ok ok

¢ ok ok

Function Name - APP_ConnpectionCallback
Description : Callback function registered with HCI for connection
Argument
Input :
hHciHandle,uEventld,pcData(EventData),iLength,pvMatchData
Output : None
Global : None.
Error Condition D
Return : None

o fe sk e ok sk e Sk sk ok ok sksk sk kol sk kol sk sk sk K ok ok SkOROk ko sie ae s sk iR i 3k sk kool ke sk sk kool ke e sk e ke sk sk ke e sk ke sk sk ik ik Ak ok sk sk sk ko ok ok

* ok Ak

void APP_ConnectionCallback(HCI Handle hConn,
vint32 uEventCode,
void *pcData,
uint32 iL.ength,
void *pvMartchData)
!
t
long iRetVal :0;
switch(uEventCode)
d

case HCI_COM_COM_EVN:
!

hei_cmd_comp_event *pukvent;
puEvent = (hci_cmd_comp_cvent *)pcDala;
if (puEvent->iCommandOpcode==HCI_READ_RSSI _CMD)
{
memepy(((MData*)pvMatchData)-=uiBuf.,puEvent-
>iReturnParams,60);
1
SetEvent(ghEvent);
break;
}
case HCI_ COM _STA EVN:
{/* Command Status Event */

73

hei_cmd_status_event ¥pulnqStatus;
pulngStatus = (hci_cmd._ status_event *)pcData;
giStatus = pulngStatus->iStatus;
if (giStatus = HCI_SUCCESS)
{
SetEvent(ghEvent);

)

break;

case HC1 CON _COM EVN:
{
hei_con_complete event *uConnlnfo;
uint16 iPacketType 0x0400;
uConnlnfo = (hci_con_complete_event *)pcData;
printf("\n HCI_CON_COM_EVN event");
if (uConnlnfo->iStatus — HCI_SUCCESS)
{
printf(*\n Connection is complete ");
if (uConninfo->uLinkType == HC1_ACL)
{
ghConnHandle = hConn;

N
s

else
{
ghScoHandle = hConn;
guScoLinkType = uConnlnfo->uLinkType;
}
// added this for RSS]
giConnFlag: [;

else

{
printf("\n Connection is incomplete ");
// added for RSSI
giConnFlag=0;

H
SetEvent(ghEvent);
break;

}

case HCI_DIS COM_EVN:

{
hci_discon complete _event *uDisconnlnfo;
uDisconninfo = (hci discon_complete_event *)pcData;

74

printf(* Disconnection occurred “);
// added for RSSI
giConnFlag=0;

SetEvent(ghEvent);
break;
}
default:
{
printf("Invalid Event");
}
}
returmn,;
h

R R o B o e s e sk e ook sk s o K SR o R R S 3ROSR S K ke e K R oK SR 3 o ok ok ok ok K R SR SRR 3k ok O o 3 3 oK o o o o ok oK ke

>k 5 %
Function Name : APP_RemoteNarmeCallback
Description : Callback function registered with HCI for Remote name
req
Argument
Input :
hHciHandle,uEventld,pcData(EvenData),iLength,pvMatchData
Output - None
Global : None.
Error Condition D -
Retumn : None

2h e 3k ek ok ofe ok sk ok ok e b Sk ok ok ok 3k ke ke S ok o ok e o R R of o sk sk e e K sk sk ok 3k Sk sk o sk ki koK sk ke ok sk ok sk sk K Kk sk sk K ok s sk R Sk NOR R

*****/

void APP_RenoteNameCallback(HCI Handle hConn,
uint32 uEventCode,
void *pcData,
uint32 1Length,

void *pvMaichData)

MessageBox(NULL, T("gone"),NULLMB_OK);
if (uEventCode == HCI REM_NAM_REQ_EVN)
{
hci_remote_name_req event *puRemoteNameEvi;
puRemoteNameEv((hei_remote name_req_event *)pcData;
memepy(RemoteName,
puRemoteNameEvi->uName.acData,

75

sizeof(puRemoteNameEvt->uName._acData));

}
SetEvent(ghEvent);

o e S oo e o o R oK o KR ok o Rk s KR KRR sk R KK KKk s s o K oo Kok oK sk R KR Kk

3 o ok
Function Name : Util_LogBdAddr
Description : Logs the given bdaddr into the specified file
Argument
Input : fPtr,uBdAddr
Output : None
Global : None.
Error Condition -
Retum : None

ke ok i K b ok o ke stk sk 3 3Kl SRk o oK oK ke e sk ok e ok o e ok 3k sk ok i 3¢ sk Y sk st 3k ke 5K S K Sk e K ol R e 3 K oK Sk o AR OR 3 s e ok 4 ok e s ke ok ok ok
void Util_LogBdAddr(FILE *fPtr,bd_addr uBdAddr)

int 1;
for(1=0 ; i<BD_ADDR_SIZE ; 1++)
{
printf("%x ",uBdAddr.iData[i]);
}

76

ui.cpp:

// mi.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"
#include "ui.h"
//Hinclude "Globals.h"
tanclude "uiDlg.h"
#include "RssiTest.h"
#include "CLoginDlg.h"

#ifdef DEBUG

#define new DEBUG _NEW

#undef THIS_FILE

static char THIS FILE[] = FILE ;
Hendif

LT T T T LT 11718
/7 CUrApp

BEGIN MESSAGE_MAP(CU1App, CWinApp)
/1{{AFX MSG MAP(CUApp)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!
/1Y YAFX _MSG
END MESSAGE MAP()

Y I T e e
/7 CUIApp construction

CUiApp::CUiIApp()

: CWinApp()
{

/1 TODO: add construction code here,

// Place all significant initialization in [nitlnstance
!

PIEIIITI I T 0 140 110100110011 1117111
// The one and only CUitApp ohject
CUiApp theApp;

// CULIApp mitialization

77

BOOL. CUiApp::InitInstance()
! /! Standard initialization
/! If you are not using these features and wish to reduce the size
// of your final executable, you should remove from the following
// the specific initialization routines you do not need.
cLoginName = new char[LOGINLENGTH];
cPassword = new char[PASSWORDLENGTH];
cLoginName = "Moses",;

int nResponse,

CLoginDlg LoginDlg;

nResponse = LoginDlg.DoModal();

if (nResponse == [DOK)

{
/ TODO: Place code here to handle when the dialog is
/- dismissed with OK

i
else if (nResponse == IDCANCEL)

{
delete cLoginName;
delete cPassword;
exit(0);

3

CUiDIg dlg;
m_pMainWnd = &dig;
nResponse = dlg.DoModal();
1f (nResponse == IDOK)
!
// TODO: Place code here to handle when the dialog is
/7 dismissed with OK
if(bRssiInProgress)
i
//SetEvent(ghStopEvent);
ghStopFlag=true;
Sleep(2000);

1
f

guWriteCmd=EXIT;

tAppFlag=1;

SetEvent{ghWriteEvent),

/! wailing for the exit event to complete
WaitForSingleObject(ghExitEvent, INFINITE);

78

else if (nResponse =+- [IDCANCEL)
{

// TODO: Place code here to handle when the dialog is
/1 dismissed with Cancel

}

// Since the dialog has been closed, return FALSE so that we exit the
// application, rather than start the applicatjon's message pump.
return FALSE;

79

uibDlg.cpp:

// uiDlg.cpp : implementation file
//

#Hinclude "stdafx.h"
#Hinclude "ui.h”
#include "uiDlg.h"
#include "RssiTest.h"
//Hinclude "Globals. h"
#include <winsock.h>
#include "ServDisc.h"
#include <winbase.h>
#include <Winreg.h>

//extern bt_dcvice_context ghDeviceContext;

#ifdef DEBUG

#define new DLEBUG NEW

#undef THIS FILE

static char THIS_FILE[]=_ FILE
#Hendif

int1AppFlag O;
BOOL ghStopFlag;
char *cLoginName;
char *cPassword;

//HANDLE ghStopCompleteEvent,

THITTITTTTIE DI 0011117111001 0017 1
// CUiDIg dislog

CUiDIg::CUiDIg(C'Wnd* pParent /*=NULL*/)
: CDialog(CUiDIg::IDD, pParent)
1
W{{AFX_DATA _INIT(CUiDIg)
m_BDAddr - T("");
m_RSSlval -~ T("");
/1Y YAFX_DATA INIT
// Note that Loadlcon does not require a subsequent Destroylcon in Win32
m_hlcon - AfxGetApp()->Loadlcon(IDR_ MAINFRAME);

/! m_Button NewMsgs . EnableWindow(FALSE);

bConnPresence = FALSE,;

-,

80

bAutoOn = FALSE;
bFileSelect — FALSE;
bProgramBegin -~ TRUE;
bETPPresence = FALSE;

ConnectionHandle = new HANDLE;

Connectionlnfo = new CONNMGR_CONNECTIONINFO;
DestinationInfo — new CONNMGR_DESTINATION INFO:
bFileTransferProgress = FALSE; B

cDevices BD_Addr[0] = new char[14];
cDevices_ BD_Addr{1]} = new char[14];
cDevices BD Addr{2] = new charl14];
cDevices BD Addr{3] = new char; 14];
cDevices BD Addr{4] = ncw char[14];

cRemoteNames[0] : - new char[20);
cRemoteNames[1] = new char[20];
cRemoteNames[2] = new char(20];
cRemoteNames[3] = new char[20};
cRemoteNames[4] = new char[20];
NumMessages = 0;
MessagesDisplayed = 0;

COM File = NULL;

for (int i -0; IKMAXNUMMESSAGES; i++)
Messages(i] = new char[100];

*ConnectionHandle = ConnMgrApiRead yEvent();
iDevicelndex = -1,

FFILE *File_Config;

File_Config = fopen(CONFIGFILE,"r");

if(File Config=—NULL)

{
MessageBox(_ T("Config File not found”),_T("Error”),MB_OK);
exit(0);

3

char temp[20];

fscanf(File_Config,"%s",temp);

81

1
1
7/

/lll

i
H

Server IP_Address = temp;

fscanf{File Config,"%s",temp);
FTP UserName = temp;

fscanf(File Config,"%s",temp),
FTP_Password = temp;
int length;

fscanf(File Config,"%s" temp);

length = strlen(temp);

if (temp[length-1]=="") temp[length - |] = "0,
MainRemoteFolder = temp;

fscanf(File_Config,"%s" temp);
DestinationConnection = temp,

felose (File_ Config),

BT _Sdap Handle = NULL;
Start. BTCMN(ghDeviceContext),
CreateServiceClass1D();

CString ch2;
ch2 = "lynnmg: How does Bluetooth work?";
m_List NewMsgs.SetWindowText(ch2);

void CUiDlg::DoDataExchange(CDataExchange* pDX)

{

¥

(CDialog::DoDataExchange(pDX),

/I{{AFX DATA MAP(CUiDlg)

DDX_Control(pDX, IDC_RSSI_LIST, m_RSSI_List);

DDX Control(pDX, IDC INQ LIST, m_IngList);
DDX_Control(pDX, IDC LIST MESSAGES, m_List_NewMsgs),
DDX Control(pDX, IDC NEWMSGS BUTTON, m_Button New Msgs);
DDX_Control(pDX, IDC_EDIT FILENAME, m_Edit_FileName):
DDX_Control(pDX, IDC_STATUS, m_Edit_Status);
DDX_Control(pDX, IDC_PROGRESS, m_InqProgress);
DDX_LBString(pDX, IDC_INQ_LIST, m_BDAddr),

DDX Text(pDX, IDC_RSSI_EDIT, m_RSSlval);

/Y YAFX _DATA MAP

BEGIN, MESSAGE_MAP(CUiDIg, CDialog)

82

H{{AFX_MSG_MAP(CUiDlg)
ON_BN_CLICKED(IDC_INQ BUTTON, OnlngButton)
ON_BN_CLICKED(IDC_RSSI_BUTTON, OnRssiButton)
ON_LBN_SELCHANGE(IDC INQ_LIST, OnSelchangelngList)
ON_BN_CLICKED(IDC_EXIT_BUTTON, OnExitButton)

ON WM CLOSE(Q)

ON BN CLICKED(IDC CONN BUTTON, OnConnButton)

ON BN CLICKEDUDC DISCONN_BUTTON, OnDisconnBuiton)
ON_BN CLICKED(IDC_AUTO_BUTTON, OnAutoButton)

ON WM_TIMER()

ON BN CLICKED(IDC_ FILESEND_BUTTON, OnFilesendButton)
ON_BN_CLICKED(IDC BROWSE_BUTTON, OnBrowseButton)
ON_LBN_SELCHANGE(IDC_RSSI_LIST, OnSelchangeRssiList)
ON BN CLICKED(IDC_NEWMSGS_BUTTON, OnNewmsgsButton)
/1y YAFX_MSG_MAP

END _MESSAGE_MAP()

N e e
// CUIDIg message handlers

BOOL CUiDlg::OnlnitDialog()

DWORD dwThreadlD;

CDialog::OninitDialog();

/f creartion of the events

ghEvent = CreateEvent(NULL,FALSE , FALSE NULL),
ghWriteEvent = CreateEvent(NULL,FALSE ,FALSE,NULL);
ghExitEvent = CreateEvent(NULL FALSE FALSE,NULL),
ghStopEvent = CreateEventNULL,FALSE FALSE,NULL);

ghStopFlag=false;

// miualisation of the globals

giConnFlag=0;
giProgressFlag=1;
m_BDAddr="",
m_InqProgress.SetRange(0,130);

// creation of the thread

if (NiAppFlag)
{

ghWriteThread = CreateThread (NULL, 0, WriterThread, NULL, 0,

&dwThreadlD);

~

if ({ghWriteThread)
{
// Could not create the read thread.
DWORD dwLastError=GetlastError();

)

// wait for initialisation to get complete

/ ‘WaitForSingleObject(ghEvent,INFINITE);
}

// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog

Setlcon(m hicon, TRUE); /! Set byg icon
Setlcon(m_hlcon, FALSE); // Set small icon
CenterWindow(GetDesktopWindow()); // center to the hpc screen

m_1AvgRssiVal = RSSI INVALID _VAILUE;
// TODQO: Add extra inttialization here
i f ('DestinationNetwork())

{
MessageBox(T("Connection Manager Destination not found"),
T("Emror"),MB_OK);
exit(0);
h

" m_Edit_ Messages.SetWindowText(_T(""this is a message new
messagekkkkkkkkkkkkkkkkkkkkkkkkidddekkkIdckkkkkkkkkkkkkkkkkkkkkkkk kkkkkkkk
kkkkkk kkkkikkkkkkkkkkkkkkkk"));// NULL,MB_OK);

GetDightem(IDC_CONN_BUTTON)->EnableWindow(FALSE);
GetDlgltem(]JDC_DISCONN BUTTON)->EnableWindow(F ALSE),
m_Button NewMsgs.EnableWindow(FALSE);

return TRUE; // return TRUE unless you set the focus to a control

}
UL D101 11

void CULiiDlg::OnlngButton()

{
/7 TODO: Add your control notification handler code here
uint8 szTemp[7];
int 1=0,iProgress=0;

sS4

CWnd* pcwListBox = this->GetDlgltem(IDC_INQ LIST);
m_Edit Status.SetWindowTexi(_T(*Busy!"});
m_RSSI_List.ResetContent();

1Devicelndex = 0;

1f(bRssilnProgress)
{

refurn ;
b

// vesetting intial values

giProgressFlag=1;

ListBox_ResetContent(pcwLisiBox->m_hwWnd);

m_RSSIval=_T(""),

CEdit * pcwEditBox = (CEdit *)this->GetDlgltem(IDC_RSSI _EDIT);
ncwEditBox->SetWindowText(m_RSSlval);

m_BDAddr "",

// setting the variables for inquiry &
// unblocking the write thread
guWriteCmd HCI_INQUIRY:;
SectEvent(ghWriteEvent);

// displaying the progress bar with the ime =13 sec (~1.28*10)
while (giProgressFlag)

Sleep(500);
iProgress+=35;
m_InqProgress.SetPos(iProgress);

}
WaitForSingleObject(ghEvent, INFINITE);

// checking for the number of values retumed
i1 ('(puMatchData->uiNumber))

{

MessageBox(L"No Devjces Within Range”,
L"Waming",
MB_OK|MB_ICONWARNING);

m_IngProgress.SetPos(0);

retum;

!

/1 displaying the results

AY

85

iTotalDevices = puMatchData->uiNymber;
for(i=0;1<i1TotalDevices;i++)

//GetRemoteName(i);

iDevicelndex =1,

memcpy(szTemp,(puMatchData->uiBu f+ BD_ADDR_SIZE*i),
BD ADDR _SIZE);

AddToListBox(szTemp),

m_RSSI List.InsertString(iDevicelndex, T("NA"));

}

1 if (bReceivedMapping)
AssignRemoteNames(),

iDevicelndex = -1;

// resetting the progress bar

m_IngProgress.SetPos(0);

f('bAutoOn)

GetDlgltem(IDC_CONN BUTTON)->EnableWindow(TRUE);
1f(!bAutoOn) m Edit_Status.SetWindowText(T("Done!"));

LI 01111

void CUiDlg::OnRssjButton()

{
DWORD dwThreadlD ;
char cTempVal[50];
/7 TODO: Add your control notification handler code here
// intial check for (he device

CWnd* pcwListBox = this->GetDIgliem(IDC_INQ_LIST),

CString TempRssi;

// CWnd* pcwListBox — this->GetDIgltem (IDC_INQ_LIST);

int nindex : ListBox_GetCurSel(pcw ListBox->m_hWnd),

if (iDevicelndex == -1)
{
MessageBox(L"Please Select the Device",
L"Error”,
MB_OK{MB_[CONERROR);

86

)

return ;

/* 1f RSSI is pressed twice , dont act */
if (bRssilnProgress == 1)

{

else

ghStopFlag=true;
GetDIgltem(IDC_RSSI_BUTTON)->SetWindowText(TEXT("RSSI));
GetDIgltem(IDC_INQ BUTTON)->EnableWindow(TRUE);
m_IngProgress.SetPos(0);

sprintf(cTempVal,"%d",this->m_JAvgRssiVal);
TempRss) —= cTempVal;

sprintf(cTempVal,"%d", this->m_i1AvgRssiVal);
m_RSSI List.DeleteString(nlndex);
m_RSSI_List.InsertString(nlndex, TempRssi);
m_Edit_Status.SetWindowText(_T("Done!"));
m_RSSival = ¢TempVal;

/7 displaying the rssi value
CEdit * pcwEditBox — (CLEdit *)GetDlgltem(IDC RSS! EDIT);
pcwEditBox->SetWindowText(m_ RSSlval),

GetDlgltem(IDC_RSS] BUTTON)->SetWindowText(TEXT("RSSI"));
GetDlgltem(IDC_INQ BUTTON)->EnableWindow(TRUE);
GetDlgltem(IDC_INQ_LIST)->EnableWindow(TRUE);
GetDIgltem(IDC_CONN_BUTTON)->EnableWindow(TRUE);
GetDIgltem(IDC_AUTO_BUTTON)->EnableWindow(TRUE);

return ;

this->m_i1AvgRssiVal = 0;

ghStopFlag=false;

m_RSSIval - “*;

CEdit * pcwEditBox = (CEdit *)GetDlgltem(IDC _RSSI_EDIT),
pewEditBox->SetWindowTex1(m RSSlval),

GetDlgltem(IDC_RSSI BUTTON)->SetWindowText(TEXT("Stop™));
GetDligltem(IDC_INQ BUTTON)->EnableWindow(FALSE);
GeiDigltem(IDC INQ_LIST)-EnableWindow(FALSE);
GetDigltem(IDC_CONN_BUTTON)->EnableWindow(FALSE);
GetDlgltem(IDC AUTO_BUTTON)->EnableWindow(FALSE);

87

ghRssiThread - Create Thread (NULL, 0, RssiThread, (LPVOID)this, 0,
&dwThreadlID);

m_Edit_Status.SetWindowText(_T("Busy!"));

LTI 27107510

void CUiDIg::AddToListBox(uint8* szBuf)
{
wchar t szBufW[14];
uint8 uiTemp =0x00;
int8* acTemp,*acTempBD[BDD ADDR_SIZE];
CString cb;

//get the control window
//set text to show in control
for(int 1=0;1<6;1+-+)
{
uiTemp=(szBufli] & 0x0)>>4,
_tow(uiTerp,&szBufW([2*i],16);
uiTemp= szBuf]i] & 0x Of;
_itow(uiTemp,&szBufW|[2¥i+1],16);
'
szBufWl12}="0";

for(i=0;1<13;i++)
cDevices BD Addr(iDevicelndex][i] = szBufW/i];

// ¢h = cDevices BD_Addr[iDevicelndex ;
/7 MessageBox(ch,NULL,MB OK);

for (i 0;;<BD_ADDR_SIZE;)++)

{
acTemp=(int8*)malloc(3*sizeof(1nt8)).
acTemp=(in(8)szBufW[2’];
*(acTemp~+1)=(int8)szBufW([2*1+1];
acTemp[2]=10";
acTempBD[i]=acTemp;

}

UTILS ExtractBdAddr(BD _ADDR SIZE,&acTempBD([0].&guBdAddr);

Devices_ BD_Addr[iDevicelndex] = guBdAddr,

88

//ListBox_AddString(pcwListBox->m_hWnd, szBufw);
ch = szBufW,;
m_InqList.InsertString(iDevicelndex, ch);

WD I T T 1111101117

void CUI1DIg::OnSelchangeingList()
{ // TODO: Add your control notification handler code here
TCHAR szBufW[14],
int nlndex=0;
*szBufw="\0";
CString c;

1f(COM_File = NULL)
CloseHandle(COM File);

// TODO: Add your control notification handler code here
// copying the selected value to m BDAddr
CWnd* pewListBox this->GetDlgltem(IDC_INQ LIST);
nlndex — ListBox GetCurSel(pcwListBox->m_hWnd);
iDeviceIndex = nlndex;
// ListBox_GetText(pcwListBox->m hWnd, nlndex,(LPTSTR)szButW);
/ m_BDAddr szBufW;

// resetting the RSST display

m_RSSlval-- T(");

CEdit * pcwEditBox = (CEdit *)this->GetDIgltem(IDC_RSS]_EDIT);
pcwEditBox->SetWindowText(m_ RSSlval);

m_RSSI[List.SetCurSel(nindex);

/* Start BTCMN();
SdapOpenConnection(ghDeviceContext, Devices_BD_Addr[iDevicelndex]);
MessageBox(L"Open", NULL, MB_OK);

/" CreatcServiceClassID();
7 MessageBox(L"Create”, NULL, MB OK);

DiscoverService();
MessageBox(L"Discover”, NULL, MB_OK);

-

89

/
V7

*/
/"

/1

/*

*/
1/

GetDLCQ);
MessageBox(L"DLC", NULL, MB_OK);

SdapCloseConnection();
MessageBox(L"Close", NUL.L, MB_OK);

Stop BTCMN();

SetRegistryValues();

MessageBox(L"Start",NULL,MB_OK);

if('CreateCOMPart())
MessageBox(L"Failure",NULLMB _OK);

MessageBox(L"End",NULL,MB_OK),
//CloseHandle(COM _File);

void CUhD)g::OnExitButton()

{

/,I

/1 TODQO: Add your control notjfication handler code here

/1 setting the variables for exit &
// unbJocking the write thread
DWORD Conn_ Status;
ConnMgrConnectionStatus(*ConnectionHandle, &Conn_Stalus);,
tf(Conn_Status '= CONNMGR_STATUS CONNECTED)
{
bConnPresence = FALSE;
bFTPPresence — FALSE;
¥

1f(bAutoOn) KillTimer(CONNREFRESHTIMERID);

1f(bConnPresence)
OnDisconnButton();

1f (bRssinProgress)
{
eghStopFlag = true;
Sleep(2000);
H
guWriteCmd=EXIT;
1AppFlag=1;
SetEvent(ghWritcEvent);

90

// waiting for the exit event to complete
WaitForSingleObject(ghExitEvent INFINITE);
ExitThread(0);

CDialog::OnClose();

void CUiDIg::OnClose()
// TODO: Add your message handler code here and/or call default
if(bAutoOn) KillTimer(CONNREFRESHTIMERID);

if(bConnPresence)
OnDisconnButton();

while(bRssiInProgress)
{

}
guWriteCmd=EXIT;

1AppFlag=1;

SetEvent(ghWriteEvent);

// waiting for the exit event to complcte
WaitForSingleObject(ghExitEvent,INFINITE);

SetEvent(ghStopEvent);

CDialog::OnClose();

DWORD RssiThread(LPVOID pvContext)

{
Int&* acTemp,*acTempBD[BD_ADDR_ SIZE’;
char cTempVal{30],cTempNum{4],
mt 1aProgress=0;
DWORD iStatus = STATUS TIMEOUT ;
CUiDig *puUIl (CUIiDig *)pvContcxt |

// converting the selected text to a valid BD _ADDR
A for (i=0;i<BD ADDR_SIZE;i++)
i
acTemp- (int8*)malloc(3 *sizeo f(in18)):
i (facTemp)
return 1;

91

*/

*ac Temp=(int8)(puUl->m_BDAddr)[2*i};
*(acTemp+1) (int8)(puUl->m_BDAddr)[2*i+1];
acTemp[2]="0";
acTempBD[i]=acTemp;
}
UTILS_ExtractBdAddr(BD_ADDR_SIZE &acTempBD[0],&guBdAddr);

guBdAddr = Devices BD Addr[iDevicelndex];

/I setting the variables for connect &
// unblocking the write thread
guWriteCmd=HC]I_CONNECT;
SctEvent(ghWnteEvent);

puUI->GetDigltem(IDC_RSSI_BUTTON)->EnableWindow(FALSE);

/! displaying the progress bar with the time ~ 1.3 * 5 sec
for (1I=0;1<14;i - +)
{
Sleep(100*5);
1Progress+=5;
puUI->in_IngProgress.SetPos(iProgress);

}
WaitForSingleObject(ghEvent,INFINITE);

puUl->GetDlgitem(1IDC_RSSI_BUTTON)->EnableWindow(TRUE);

//checking for the connection
f (! giConnFlag)
{
pulUJ]->MessageBox(L"Unable to Connect 10 Remote Device”,
[L"Error",
MB OKMB ICONERROR);
puUIl->m_IngProgress.SetPos(0);
bRssilnProgress = 0;
puUI->GelDlgltem(JDC RSS1 BUTTON)->SetWindowText(TEXT("RSSI™));
puUIl--GetDigltem(IDC_INQ BUTTON)->EnableWindow(TRUE);
puUI->GetDlgltem(1IDC INQ LIST)->EnableWindow(TRUE);

ExitThread(]);
return 1;

92

while (1ghStopFlag)

{

bRssilnProgress — 1;
// setting the variables for read rssi &
// unblocking the write thread
guWriteCmd=HCI READ_ RSSJ;
SetEvent(ghWriteEvent),
// displaying the progress bar with the time ~ 2.6 sec
for (i=0,iProgress=0;1<26;1++)
{
Sleep(100);
iProgress+=9;
puUl->m_InqProgress.SetPos(iProgress);
if (ghStopFlag)
{
1Progress=0;
puUI->m_InqProgress.SetPos(iProgress);
break;

}
WajtForSingleObject(ghEvent,INFINITE);
if (puMatchData->uiBuf[3] & 0x80)

{
pull->m 1AvgRssiVal += (int8)-((~puMatchData->uiBuf{3])+1) ;
'
else
{
puUl->m i1AvgRssiVal += (int8)(puMatchData->uiBuf{3}) ;
}
if ((puUI->m_RSSIval.Compare(_T(""))))
{
puUl->m iAvgRssiVal /= 2 ;
y
if ((puMatchData->uiBuf[3]} | 0x00))
{
//strepy(cTempVal,"Normal RSSI strength = ");
_itoa(puMatchData->uiBuf[3],cTempNum,10);
strepy(cTempVal,cTempNum);
}

93

else if ((puMatchData->uiBuf' 3] & 0x80))

{

else

}

int 1 Temp=0;
strepy(cTempVal,"-");
iTemp=puMatchData->uiBuf[3];
iTemp=~iTemp;

1 Temp&=0x00fT;

iTemp1=1;
_1itoa(iTemp,c’l'empNum, 1 0);
strecat(cTempVal,cTempNum);

/Istrepy(cTempVal," Above Normal = ");
_itoa(puMatchData->uiBuf]3],cTempNum, 10);
strepy(cTempVal,cTempNum);

// assigning the value to m_RSSIval
puUIl->m_RSSlval=cTempVal;

// displaying the rssi value

1€ ('ghStopFlag)

{

CEdit * pcwEditBox = (CEdit *)puUlI-

>GetDIgltem(IDC RSSt EDIT);

//
/"
/"
/Y
//

}

pcwEditBox->SetWindowText(puUI->m_RSSlval);
/fsprintf(chIingTemp,"%x - %s™ . Inqltem, cTempNum);
strepy(chingTemp L,chIngTemp);

strcat(chIngTemp | ,cTempNum);

CInqltem = chIngTempl ;
puUIl->m_IngList.DeleteString(index);
puUl->m_IngList.InsertString(index, Cingltem);

/1 resetting the progress bar
pulUI->m_IngProgress.SetPos(0);

// setting the vanables for disconnect &

// unblocking the write thread
guWriteCmd=HCI_DISCONNICT;
SetEveniy(ghWriteEvent),
WaitForSingleObject(ghEvent, INFINITE),
bRssilnProgress= 0,

1z

/! freeing the memory
for (1=0;i<BD_ADDR_SIZE;i++)
{

if (acTempBD[i])

free(acTempBDIi));

!
ExitThread(0);
return O ;

void CU1DIg::OnConnButton()

{

CString uErrorMsg = "Error in Connecting";
CString uSuccessMsg = "Success in Connecting";
DWORD *Conn_Status = new unsigned long;

m_ Edit_Status.SetWindowText(_ T("Busy!™):
int 1,iProgress=0;

DWORD iStatus = STATUS TIMEOUT;
/f converting the selected text to a valid BD _ADDR

'/ if (|CreateCOMPort())

7 MessageBox(L'" Error", NULL.,MB OK);
if (1iDevicelndex == -1)

i
MessageBox (L' Please Select the Device",
L"Ermor",
MB_OKMB_ICONERROR);
Teturn
’
GetDlgltem(IDC_RSS1_BUTTON)->EnableWimdow(FALSE);
GetDlgltem(IDC INQ _BUTTON)->EnableWindow(FALSE),

7/ GetDlgltem(IDC_CONN_ BUTTON)-=EnableWindow(FALSE);
GetDlgltem(IDC AUTO BUTTON)->EnableWindow(FALSE);
guBdAddr = Devices_ BD_Addr[iDevicelndex];

/! SetTimer{ CHECKMESSAGESTIMERID, CHECKMESSAGESTIMEOUT,

NULL),

bConnPresence = TRUE;

SetRegistryValues();

ConnMgrEstablishConnectionSync(Connection Info, ConnectionHandle,
CONNTIMEOUT, Comn_ Status);

bConnPresence = TRUE;
PrepareLocation();

/* if{ 'FTPOpen())
MessageBox(_T("Error in Opening FTP"), T("FTP"), MB_OK);
else if ('FTPSendFile())
MessageBox(_T("Error in Sending File™), T("FTP"), MB_OK):*/
/7 else (FTPClose());

I/)
/ SetTimer(CHECKMESSAGESTIMERID, CHECKMESSAGESTIMEOUT,
NULL);

GetDlgltem(IDC_DISCONN_BUTTON)->EnableWindow(TRUE);
m_Edit_Status.SetWindowText(T("Done!"));

void CUID!g::OnDisconnButton()

{
CString uErrorMsg = "Error in Disconnecting'';
CString uSuccessMsg = "Success in Disconnecting”;
char *ch = new char[12];
CSinngc;

m_Edit_Status.SetWindowText(T("Busy!")):
GetDIgltem(IDC DISCONN _BUTTON)->EnableWindow(FALSE);
/7 GetDligltem(IDC AUTO_BUTTON)->Enable Window(FALSE);

while(bRssilnProgress)
{
SetEvent(ghStopEvent);

}
// guWriteCmd =HCI_DISCONNECT;
7/ SetEvent(ghWriteEvent);
// WaitForSingleObject(ghEvent, INFINITE);

96

1
/
1

/>l=

while(bFileTransferProgress);
KiltTimer(CHECKMESSAGESTIMERID);

Preparel.ocation();
1f({FTPOpen())

MessageBox(_T("Error in Opening FTP"), T("FTP"), MB OK);

clse
if ({FTPDeleteFile())

MessageBox(_T("Error in Sending File"), T("FTP"), MB OK);

else (FTPClose());

ConnMgrReleaseConnection(*ConnectionHandle, FALSE):
Sleep(6000);

CloseHandle(ConnectionHandlc);
bConnPresence - FALSE;

1f{bAutoOn)
{
bAutoOn = FALSE;
KillTimer(CONNREFRESHTIMERID);
}

GetDlgltem(IDC_CONN BUTTON)->EnableWindow(TRUE);
GetDIgltem([IDC_DISCONN_BUTTON)->EnableWindow(FALSE);
GetDlgltem(IDC RSS1 BUTTON)->EnableWindow(TRUE);
GetDlgltem([DC_INQ_BUTTON)->EnableWindow(TRUE);
GetDigltem(IDC_AUTO_BUTTON)->EnableWindow(TRUE);

m_Edit_Status.SetWindowText(__T("Done!"));
CString ¢;

Start BTCMN(ghDeviceContext);
MessageBox(L"Start",NULL,MB_OK),

SdapOpenConnection(ghDeviceContext, Devices_BD_Addr[iDevicelndex]);

McssageBox(L"Open" NULL,MB_OK);
CreateServiceClassID();
MessageBox(L"Create", NULL,MB_OK);
1f (!DiscoverService())

{

¢ = szErrorString;
MessageBox(c,NULL,MB_OK);

97

else

MessageBox(L"Discover”", NULL MB OK);
SdapCloseConnection();
MessageBox(L"Close”",NULL,MB_OK);
Stop_BTCMN();

*/
*ConnectionHandle = ConnMgrApiReadyEvent();
¥
void CUiDIg::OnAutoBution()
{
/* for(i--0;i<(puMatchData->uiNumber);i++)

{
memcpy(szTemp,(puMatchData->uiBuf+
BD ADDR SIZE*i),BD_ADDR_SIZE);
AddToListBox(szTemp);
}

*/
bAutoOn: TRUE;
SetTimer(CONNREFRESHTIMERID, CONNREFRESHTIMEOUT, NULL);
/! SetTimer(CHECKMESSAGESTIMERID, CHECKMESSAGESTIMEOUT,
NULL);
GetDlgltem(IDC_CONN_BUTTON)->Enable Window(FFALSE),
GetDlgltem(IDC_RSS] BUTTON)->EnableWindow(FALSE);
GeDlgltem(IDC_INQ BUTTON)->EnableWindow (FALSE),
GetDigltem(1DC_AUTO_BUTTON)->EnableWindow(FAILSE);
if ('/bFileTransferProgress) AutoConnection():
’

void CUIDIg::OnTimer(UINT nIDEvent)
f
DWORD Conn_Status;
// TODO: Add your message handler code here and/or call default
ConnMgrConnectionStatus(*ConnectionHandle, &Conn Status);
1f{Conn_Status != CONNMGR_STATUS CONNECTED)
{
bConnPresence = FALSE;
bFTPPresence = FALSE;

98

Lf((nIDEvent -= CHECKMESSAGESTIM ERID) && bConnPresence &&
bETPPresence)

{
m_Edit_Status.SetWindowText(L"Busy'")
PrepareMessages();
FTPGetFile(),
GetMessages();
m_Edit_Status.SetWindowText(L"Done!")

»

}
else if (nIDEvent = CONNREFRESHTIMERID)
{

}

CDialog::OnTimer(nIDEvent);

if (bAutoOn && !bFileTransferProgress) AutoConnection();

void CUiD1g:: AutoConnection()

{
// int8* acTemp,*acTempBD(BD_ADDR_SIZE};

nti,J;

int cTempNum;

char ch[8];

CStnng chl;

int Rssif15};

CString cRssi;

int MaxRssi = 0;

DWORD *Conn_Status = new unsigned long;
HANDLE tempHandle;

TCHAR szBufW(14];
m_Edit Status.SetWindowText(T("Busy!"));

1f(bConnPresence)
{

KillTimer(CHECKMESSAGESTIMERID);
PrepareLocation();
if (\FTPDeleteFile())
MessageBox(T("Error inn Sending File™), _T("FTP"), MB_OK);
else (FTPClose());

ConnMgrReleaseConnection(*ConnectionHandle, FALSE),

99

}.

Sleep(6000);
CloseHandle(ConnectionHandle);

bConnPresence = FALSE;

*ConnectionHandle -: ConnMgrApiReadyEvent();

OnlngButton();
if (' TolalDevices—=0)

returm;

for (1 = 0; i<iTotalDevices; 1++)

{

guBdAddr - Devices BD_Addr{i];

guWriteCmd=HCI_CONNECT;
SetEvent(ghWriteEvent);

WaitForSingleObject(ghEvent,INFINITE);

guWriteCmd=HCI_READ_RSS};
bRssilnProgress: TRUE;
SetEvent(ghWriteEvent),

Waiti‘orSingleObject(ghEvent,INFINITE);
bRssiInProgress = FALSE:

if ({(puMatchData->uiBuf[31] 0x00))
{

}
elsc f ((puMatchData->uiBuf[3] & 0x80))

{

cTempNum = 0;

cTempNum=puMaichData->uiBuf[3];
¢TempNum=~cTempNum;
cTempNum&=0x00fT;
cTempNum-+=1;

cTempNum = -¢cTempNum:

else

cTempNum = puMatchData->uiBuf[3];

100

}

Rssi(i] = ¢cTempNum;

_itoa(cTempNum, ch, 10);
chl=ch;

m_RSSI1 _List.DeleteString(3);
m_RSSI_List.InsertStnng(i,chl);
//MessageBox{(chl, NULL, MB_OK);

guWriteCmd = HC[DISCONNECT;
SetEvent(ghWriteEvent);
WaitForSingleObject(ghEvent INFINITE);

if(iTotalDevices>0)

{

for (i=1;i<iTotalDevices;i++)

{
}

guBdAddr = Devices_ BD_ Addr[MaxRssi];

if (Rssi[1]>Rssi[MaxRssi]) MaxRssi = i;

tDevicelndex : MaxRssi;
SetRegistryValues();

ConnMgrEstabhishConnectionSync(Connectioninfo.

ConnectionHandle, CONNTIMEOUT, Conn_Status);

//

MB OK);

MB_OK):

if(*Conn_Status == CONNMGR_STATUS CONNECTED)
{

bConnPresence - TRUE;

PreparcLocation();

m InqList.SetCurSel(MaxRssi);

m_RSSI List.SetCurSel(MaxRsst);

1Nevicelndex - MaxRssi;

if('F1TPOpen())
MessageBox(_T("Error in Opening FTP"), T("FTP"),

else 1f ({FTPSendFile())
MessageBox(I'("Error i Sending File”), _T("FTP"),

GetDlgltem(IDC_CONN BUTTON)->EnableWindow (FALSE);

101

GetDlgItem(IDC_DISCONN_BUTTON)-
--EnableWindow(TRUE);
}
else
{
MessageBox(_T("Error in Connecting"), T("Error"),MB_OK);
bAutoOn = FALSE;
KillTimer(CONNREFRESHTIMERID);
GetDIgltem(IDC_CONN_BUTTON)->Enable Window(TRUE);
GetDlgltem(IDC_DISCONN_BUTTON)-
>EnableWindow(FALSE);
GetDlgltem(IDC_RSST BUTTON)->Enable Window(TRUE);
GetDIgltem(IDC_INQ_BUTTON)->EnableWindow(TRUE);
GetDIgltem(IDC_AUTO BUTTON)->EnableWindow(TRUE);
}

}
m_Edit_Status.SetWindowText(T("Done!")),

void CUiDIg::OnBrowseButton()
{
CFileDialog Browse Window(TRUE, NULL, NULL,
OFN_HIDEREADONLY, T("All Files (*.*)[*.*||"),this);
if (BrowseWindow.DoModa}() == IDOK)

m_Edit FileName.SetWindowText(BrowseWindow.GetPathName());
h

void CUiDIg::OnFilesendButton()

)
|\

unsigned short *¢h = new unsigned shorl [200];
CString temp;
int n,length,lengthl;

m_Edit FileName.GetWindowText(ch, 100);
LocalFile = c¢h;
// MessageBox(LocalFile, NULELMB OK);

length = LocalFile. GeiLength();
n = LocalFile.ReverseFind(\\'):

temp — MainRemoteFolder;

temp = temp + REMOTEFILESFOLDER;
/* Jengthl =temp.GetlLength();

H(temp.GelAt(lengthl -1) !1="/")

102

temp.SetAt(lengthl -1, /') ;

*/
RemoteFile -- temp + LocalFile.Right(length - n - 1);
RemoteFolder = MainRemoteFolder;
RemoteFolder += REMOTEFILESFOLDER;
/1 MessageBox(RemoteFile, NULL MB_QK);
/ if('FTPOpen())
/1 MessageBox(_T("Error in Opening FTP"), T("FTP"). MB_OK);
// clse

if (\FTPSendFile())

MessageBox(_T("Error in Sending File™), _T("FT'P"), MB_OK);
1/ else (FTPClose()):

delete ch;

}

bool CUIDIg::FTPOpen()

¢
bFileTransferProgress = TRUE;

FTPHandle = ScottyFtpCreate();
if(FTPHandle == NULL)

{
bFileTransferProgress = FALSE;
return FALSE;
}
/ MessageBox(_T("Create”),NULLMB_OK);

if (ScottyFtpConnect(FTPHandle,Server_[P_Address) <0)
{

bFuleTransferProgress = FALSE;

returmn FALSE;

3
// MessageBox(_T("Connect"), NULLMB_OK);

if (ScottyFipLogin(FTPHandle, FTP_UserName, FTP_Password) <0)
{

bFileTransferProgress = FALSE;

retum FALSE;
f

/7 MessageBox(_ T("Login"),NULLMB_OK);
bFileTransferProgress = FALSE;

103

bFTPPresence = TRUE;

return TRUE;

bool CUiDIg::FTPClose()

{
ScottyFtpQuit(FTPHandle);
ScottyFtpDestroy(FTPHandle);

bFileTransferProgress = FALSE;
bFTPPresence = FALSE,
return TRUE;

}

bool CUiDIg::FTPSendFile()

{
m_Edit_Status, SetWindowText(_ T("Busy!"));
bFileTransferProgress = TRUE;

if (ScottyFtpChangeDirectory(FTPHandle, RemoteFolder) <0)
{ _
bFileTransferProgress = FALSE,
return FALSE;
}

if (ScottyFtpPutFile(FTPHandle, LocalFile, RemoteFile) <0)
{

bFileTransferProgress = FALSE;

return FALSE;

i
m_Edit_Status.SetWindowText(_T("Done!"));
bFileTransferProgress = FALSE;

return TRUE;

bool CUiDIg::PrepareMessages()

{
RemoteFile = MainRemoteFolder;

RemoteFile += REMOTEMESSAGESFOLDER;
RemoteFolder = RemoteFile;

RemoteFile += cLoginName;

104

LocalFile = LOCALMESSAGESFOLDER;
LocalFile += cLoginName;
N MessageBox(LocalFile,L"Localfile",MB_OK);
1 MessageBox(RemoteFolder,L"RemFolder",MB_OK);
i MessageBox(RemoteFile,L"RemFile",MB_OK),
return TRUE;
}

bool CUiDIg::FTPGetFile()

{
m_Edit_Status.SetWindowText(_T("Busy!"));
bFileTransferProgress = TRUE;

if (ScottyFtpChangeDirectory(FTPHandle, RemoteFolder) <0)
{

bFileTransferProgress = FALSE,

return FALSE;

}

if (ScottyFtpGetFile(FTPHandle, RemoteFile, LocalFile) <0)
(.
bFileTransferProgress = FALSE,;
return FALSE,;
}

m_Edit Status.SetWindowText(_ T("Done!"));
bFileTransferProgress = FALSE;

return TRUE;

bool CUiDIg::FTPDeleteFile()

{
bFileTransferProgress = TRUE;

if (ScottyFtpChangeDirectory(FTPHandle, RemoteFolder) <0)

{
bFileTransferProgress = FALSE;
return FALSE;

}

if (ScottyFtpDeleteFile(FTPHandle, RemoteFile) <0)
{
bFileTransferProgress = FALSE,;

105

return FALSE;
}
bFileTransferProgress = FALSE;
return TRUE;

void CUiDlg::OnSelchangeRssiList()

{

}

int nindex;

nIndex = m_RSSI_List.GetCurSel();
m_IngList.SetCurSel(nIndex);

bool CUiDIlg::DestinationNetwork()

{

1/

int i;
HRESULT DestResult=1,
CString dest = DestinationConnection;

for(i=0;(DestinationInfo->szDescription != DestinationConnection) & &

(DestResult != NULL);i++)

1

i#

{

DestResult = ConnMgrEnumDestinations(i, DestinationInfo);
}
if (DestinationInfo->szDescription !'= DestinationConnection)

return FALSE;
MessageBox(DestinationInfo->szDescription, NULL; MB_OK);
ConnectionInfo->dwParams = 1;
ConnectionInfo->dwFlags = NULL;
ConnectionInfo->dwPriority = CONNMGR_PRIORITY USERINTERACTIVE;
ConnectionInfo->bExclusive = FALSE;
ConnectionInfo->bDisabled = FALSE;
ConnectionInfo->guidDestNet = DestinationInfo->guid;
FILE *fg;

fg = fopen("\My Documents\\BTFolder\\test.txt","a");

106

fprintfifg, "%]1d:%d:%d:" DestinationInfo->guid.Datal ,DestinationInfo-
>guid.Data2,
DestinationInfo->guid.Data3);
for (i=0;i<8;i++)
fprintf(fg, "%d:",DestinationInfo->guid.Data4[i]);

fprintf{fg,"\n");
fclose(fg);

*/

/! ConnMgrEstablishConnection(ConnectionInfo, ConnectionHandle);
return TRUE;

}

bool CUiDIg::GetRemoteNames()
{
char *TempBTAddr = new char[14];
char *TempRemoteName = new char{20];
FILE *fp;
int i;
unsigned short *tempch = new unsigned short [20];
CString temp;

temp = MainRemoteFolder;
temp += REMOTEMAPPINGFOLDER;
if (ScottyFtpChangeDirectory(FTPHandle, temp) <0)
{
bFileTransferProgress = FALSE;
return FALSE,

}

LocalFile = LOCALMAPPINGFILE;
RemoteFile = MainRemoteFolder,
RemoteFile += REMOTEMAPPINGFILE;
if (ScottyFtpGetFile(FTPHandle, RemoteFile, LocalFile) <0)
{
bFileTransferProgress = FALSE,
return FALSE.

}

fl bReceivedMapping = TRUE;
return TRUE;

107

bool CUiDIg:: AssignRemoteNames()
{
char *TempBTAddr = new char{14];
char *TempRemoteName = new char[20];
CStnng temp;
FILE *fp;
int i;
unsigned short *tempch = new unsigned short [20];

fp = fopen(LOCALMAPPINGFILE,"r");

if{ fp=NULL)
{
if(bProgramBegin)
{
MessageBox(_T("Mapping File not Found"), NULL,MB_OK),
bProgramBegin = FALSE,
i
return FALSE;
}
while(!feof(fp))
{

fscanf(fp,"%s%s", TempBTAddr, TempRemoteName),
/* temp = TempBTAddr,
MessageBox(temp, T("Address"),MB_OK);
temp = TempRemoteName;
MessageBox(temp,_T("Name"),MB_OK);
'
for (i=0, i<iTotalDevices; i++)
{
if(stremp(cDevices BD_Addr{i],Temp3TAddr)==0)
{
//temp = TempRemoteName;
//MessageBox(temp, NULL, MB_OK);
/fm_InqList.GetText(i, tempch);
strepy(cRemoteNames([i], TempRemoteName);
temp = cDevices_ BD_Addr(i];
temp =temp + " - ";
temp = temp + TempRemoteName;
m_InqList.DeleteString(i);
m_IngList. InsertString(i, temp);

108

fclose(fp);

delete TempBTAddr;
delete TempRemotleName;
returm TRUE;

void CUiDlg::PrepareLocation()

{
FILE *fp;

char *ch = new char [200];

char *cHostName = new char[80];

int length;

struct hostent *HostDetails;

CString temp;

char *Host_1P_ Address = new char [20];
struct in_addr address;

v cLoginName = “Moses”;
// bFileTransferProgress = TRUE;

LocalFile = LOCALLOCATIONFOLDER;
strepy(ch, LOCALLOCATIONFOLDERY);

length = LocalFile.GetLength();

if{ LocalFile.GetAt(length - 1) I="\")

|
LocalFile.SetAt(length - 1,"'\V) ;
streat(ch,"\\");

}

LocalFile = LocalFile + cloginName;
strcat(ch, cLoginName);

/! LocalFile = LocalFile 4 ".tx1";

/1 strcat(ch, ".(xt");

gethostname(cHostName, 80);
HostDetails = gethostbyname(cHostName);

r* for (int 1 = 0; HostDetaits->h_addr_list[1] != 0; i++)
{
/temp = HostDetails->h addr_hst{i];
memepy(&address, HostDetails->h_addr_list[i]}, sizeof(struct
n_addr));

109

chl = inet_ntoa(address);

temp = chl;

MessageBox(temp, NULL, MB OK);
}

memcpy(&address, HostDetails->h_addr list[0], sizeof{struct in_addr));
Host [P_Address = inet_ntoa(address);

1/ temp = Host_IP_Address;

1/ MessageBox(temp, NULL, MB_OK);

*/

fp = fopen(ch,"w");

fprintf{fp, "%s\t%s\t%s\n", cDevices BD Addr[iDevicelndex),
cRemoteNames[iDevicelndex],
Host [P_Address);

fclose(fp);

RemoteFile = MainRemoteFolder;
RemoteFile += REMOTELOCATIONTOLDER;
RemoteFolder — RemoteFile;

RemoteFile = RemoteFile + cLoginName;
/ RemoteFile = RemoteFile + ".txt";

delete ch;
24 delete cHostName;

bool CUIDIg::GetMessages()

i
FILE *Message File;
int LocalNumMessages = ();
char *ch = new char[100];
CSiring c;

strepy(ch, LOCALMESSAGESFOLDER);
strcat(ch,cLoginName);

¢ = ch;
2 MessageBox(c,NULL,MB_OK);

f\‘fessage_f:i[e = fopentch’ I!r+_n);

while(!feof(Message File))

110

J"’I

{

if (fgets(Messages[NumMessages+LocalNumMessages], 100,
Message_File) == NULL)

{
fclose(Message File);
NumMessages += LocalNumMessages;
if (LocalNumMessages==0) return FALSE;
return TRUE;
}

LocalNumMessages++;

}

NumMessages += LocalNumMessages;
fclose (Message_File);

c =ch;

DeleteFile(c);

_itoa(NumMessages, ch, 10);

¢ =ch;
C += II_II;
¢ +="New";

if(LocalNumMessages>0)
{
m_Button NewMsgs SetWindowText(c);
m_Button_NewMsgs EnableWindow(TRUE);
// MessageBox(L"button set",NULL,MB_OK);

MessageBeep(OxFFFFFFFF);
return LocalNumMessages;

void CUiDlg::OnNewmsgsButton()

{

it i;
CString ¢;

for(i=0; i<NumMessages; i++)
{

¢ = Messages[i];

m_List NewMsgs. InsertString(MessagesDisplayed + i, ¢);

111

MessagesDisplayed +=NumMessages;
NumMessages = 0;

m_Button NewMsgs. SetWindowText(L"New"),
m_Button NewMsgs.EnableWindow(FALSEY);

bool CUiDIg::CreateCOMPort()

/f
‘f*

7

i
*/

if(COM_File != NULL)
CloseHandle(COM_File);

COM_File = CreateFile(L"COMS:", GENERIC_READ | GENERIC_WRITE,
0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

SetCommParameters (CBR_19200, 8, NOPARITY, ONESTOPBIT);
SetupComm (COM_File, 16, 16);
COMMTIMEOUTS commTimeQOuts;
commTimeQOuts. ReadInterval Timeout = iRead Timeout;
commTimeQuts.Read Total TimeoutMultiplier = 0,
commTimeQOuts. Read TotalTimeoutConstant = 0O;
commTimeOuts. WriteTotalTimeoutMultiplier = 0;
commTimeQOuts. WriteTotalTimeoutConstant = Q;
SetCommTimeouts(COM File, &commTimeQOuts);
EscapeCommFunction (COM_File, CLRIR);

DCB dcb

dcb.DCBlength = sizeof(DCB) ;
GetCommState(COM_File, &dcb) ;

dcb.BaudRate = 19200;

dcb.ByteSize = 8,

dcb.Parity = 0,

dcb.StopBits = 0,

deb.fRtsControl = RTS_CONTROL_ENABLE;
deb.fDtrControl = DTR._ CONTROL ENABLE;
dcb.finX = FALSE;

dcb.fOutX = FALSE;

dcb.XonLim = 0;

deb. XoffLim = 0;

dcb.fBinary = TRUE;

dcb.fParity = TRUE;

SetCommState(COM_File, &dcb);

SetCommParameters (CBR_19200, 8 NOPARITY, ONES’]"OPBIT');

iffCOM_File == NULL)
return FALSE;

112

return TRUE;

bool CUiDIg::SetRegistryValues()

{

/!

/!
i

HKEY hKey;

int 1, length;

uint8 iDlc = 0x01;

bc_subscribe_service rsp data *puServiceRspData = NULL,;
char *ch = REGISTRYKEY;

unsigned short *IpSubKey = new unsigned short[50];

length = strlen(ch);

CString c;

for (1=0;1<=length;i++)
*(IpSubKey+i) = ch[i];
¢ = IpSubKey;
MessageBox(c,0,MB_0OK),
memcpy(lpSubKey, "Drivers\\BuiltIn\\BTSerialCe2", 50);

RegOpenKeyEx(HKEY LOCAL_MACHINE, ipSubKey, 0, 0, &hKey),

RegSetValueEx(hKey, L"BDAddr", NULL, REG _BINARY,

(uint8*)&Devices BD Addr[iDevicelndex], sizeof(bd_addr));

RegSetValueEx(hKey, L"Dlc", NULL, REG BINARY, (uint8*)&iDlc,

sizeof(uint8));

RegCloseKey(hKey);
RegCloseKey(HKEY LOCAL MACHINE);

delete IpSubKey;
delete ch;

return TRUE;

113

Header Files:
ClLoginDlg.h:

#Hif

tdefined(AFX_CLOGINDLG H_E215AB2A 6844 4CSD_94BC_87196396FD06__IN
CLUDED)

#define

AFX CLOGINDLG H_ E219AB2A 6844 4CSD_94BC_87196396FD06_ INCLUDE
D

#f _MSC_VER >= 1000
#Hpragma once

#endif / MSC_VER >= 1000
/f CLoginDlg.h : header file

’

/Mnclude "Globals h"

T T e L T i T T T R o
// CLoginDlg dialog

class CLoginDlg : public CDialog
{

/¢ Construction

public:
CLoginDlg(CWnd* pParent = NULL); //standard constructor
bool CheckLogin();
bool CheckLoginData();

/{ Dialog Data
//{{AFX_DATA(CLoginDlg)
enum { IDD = IDD LOGIN_DIALOG };
CEdit m_Edit UserName;
CEdit m_Edit Password;
/IYYAFX_DATA

// Overrides

/I ClassWizard generated virtual function overrides
M{{AFX VIRTUAL(CLoginDlg)
protected: '

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
/IYYAFX _VIRTUAL

114

// Implementation
protected:

// Generated message map functions
H{{AFX_MSG(CLoginDlg)
afx_msg void OnLogin();

virtual void OnCancel();

virtual void OnOKJ(),

virtual BOOL OnlnitDialog();

/I YAFX MSG

DECLARE _MESSAGE MAP()

i

//{{AFX_INSERT_LOCATION}}
/ Microsoft Visual C++ will insert additional declarations immediately before the
previous line.

#endif //

Idefined(AFX_CLOGINDLG H_ E219AB2A 6844 4C5D 94BC 87196396FD06_ IN
CLUDED)

115

RssiTest. h:

#ifndef RSSITEST_H
#define RSSITEST _H

//standard includes
#include <stdio.h>
#Hinclude <windows.h>
#include <memory.h>

// other includes

#Hinclude <BTDefines.h>
#include <UTILS Protos.h>
finclude <BTApi.h>
//8include "Globals.h"

// HCI specific Initialisation

#define MAX EVENTS 20

#define HCI_ DEFAULT 1

#define HC1 USER TERMINATE 0x13
#idefine INQUIRY DURATION 4//10*1.28s

#define GIAC 0x9e8b33

#define HCI_EVENTS REGISTERED 0x6
#define RSSI_TIMEOUT 2560
#define RSS1 INVALID VAILUE -128

Hdefine MAXNUMDEVICES 5

typedef enum
{
EXTI - 0,
HCI INQUIRY =
HCI_CONNECT ,
HCI_DISCONNECT,
HCI READ RSS],
HCI_READ REMOTE_NAME
Yapp_hci_cmds;

typedef hei_bandle HCI Handle;

116

typedef struct

{
nint8 wBuf[60];
uint® wiNumber;
y MDala;

/**#****#*******G]Obal Vaﬁables**##******¥******************#**#** *
EXTERN HCI Handle ghDefaultHandle;

EXTERN HCI Handle ghConnHandle;

EXTERN HCI Handle ghScoHandle;

EXTERN hci_link type guScoLinkType:

EXTERN bt_ing res gaulnquiryResul((HCl_MAX NUM INQ RES];

EXTERN int giNumDevice ; :

EXTERN bt_device context ghDeviceContext;

EXTERN bd_addr guBdAddr;

EXTERN char *RemoteName;

EXTERN int iDevicelndex;

EXTERN bd_addr Devices BD Addr{MAXNUMDEVICES];
EXTERN int iTotalDevices;

EXTERN uint16 giStatus;

EXTERN HANDLE ghEvent;
EXTERN HANDLE ghWriteEvent;
EXTERN HANDLE ghExitEvent;
EXTERN HANDLE ghStopEvent ;
EXTERN app_hci_cmds guWriteCmd;
EXTERN HANDLE ghWriteThread;
EXTERN HANDLE ghRssiThread,
EXTERN int giConnFlag;

EXTERN int giProgressFlag;
EXTERN MData* puMatchData,
EXTERN int iAppFlag;

EXTERN uint8 bRssilnProgress ;
EXTERN BOOL ghStopFlag,

f************#** Inter‘nal FUCtiOI’l Prot-:rlypes“** #********tt***#t***#t*!{
EXTERN int HeiTestIntitialise(void);
EXTERN void APP HciTestCommands(int iCmd Type,void* pvMatchData);

117

void APP_InquiryCallback(HCI_Handle hHciHandle, uini32 uEventld, uint8
=pcData,uint32 iLength, void *pvMatchData);

void APP_ConnectinnCaIIback(HC[_Handle hCOIm,uin[32 uEventCode,void
*pcData,uint32 iLength,void *pvMatchData);

void APP_RemoteNameCallback(HCI_Handle hConn,uint32 uEventCode,void
*pcData,uint32 iLength,void *pvMatchData);

void Util_LogBdAddr(FILE *fPtr,bd_addr uBdAddr);

EXTERN DWORD WriterThread(I.LPVOID pVoid);

EXTERN DWORD RssiThread(LPVOID pVoid);

#Hendif //RSSITEST_H

118

uyi-he

// ui.h : main header file for the Ul application
//

#if
tdefined(AFX_UT_H__CC175948_4700_4C97_8D84 92A8342AA1B3_ INCLUDED_)
#define AFX_UI_H__CC175%48 4700_4C97 8D84 92A8342AAIB3 INCLUDED_

#if MSC VER >= 1000
#pragma once
#endif // MSC_VER >= 1000

#ifndef AFXWIN_H
#error include 'stdafx.h' before including this file for PCH
Hendif

#include "resource.h” // maip symbols
#include <windowsx.h>
#include "Globals.h"

e I T T s et
// CUiApp:

// Sec ui.cpp for the implementation of this class
//

class CUiApp : public CWinApp
{
public:

CUIApPPO);

// Overr-des
/I ClassWizard generated virtual function overrides
T{{AFX_VIRTUAL(CUiApp)
public:
virtual BOOL InitInstance();
/1y AFX_VIRTUAL

// Implementation
I {AFX_MSG(CUiApp)

// NOTE - the ClassWjzard will add and remove membcr functions here.
'’ DO NOT EDIT what you see in these blocks of generated code !

119

INYAFX MSG
DECLARE MESSAGE_MAP()

;,’}//ﬁf//’/a’/m’/mﬁ/;‘,f;‘ff/ff.fM/fi/a‘!,-’fff.r’;’.fffff*f/f/,r‘ﬁﬁf!z’.’fﬁﬁff/!/!/
i 4 {AFX_INSERT LOCATION};
// Microsoft eMbedded Visual C++ will insert additional declarations immediately before

the previous line.

gendif//
1defined(AFX_UT_H__CC175948 4700 4C97 8D84 92A8342AA1B3_ INCLUDED)

120

uiDlg.h:

/{ uiDlg h : header file

i

/finclude "SDAP_IntemalTypes.h"

/#include "SdapStack. h"

/H#include "F:\\Moses\\Documents\DOE\\Programs\\PD A\\Includes\\Sdap_Precom.h"
#include "FTPAPLK"

f#fiinclude <connmgr.h=

#include "RssiTest.h"

#include "Globals.h"

#include "ServDisc.h"

#if

'defined(AFX_UIDLG H 6E8DF798 O0BA8_44A5_A421 _F2CC9D24432C__ INCLU
DED)

#define

AFX UIDLG H 6E8DF798 0BAS8_44A5 A421 F2CC9D24432C_ INCLUDED_

#if MSC_ VER >= 1000

fipragma once

flendif // _MSC_VER >= 1000

#define CONNREFRESHTIMERID 1
#define CONNREFRESHTIMEOUT 60000

#define CHECKMESSAGESTIMERID 2
#define CHECKMESSAGESTIMEOUT 30000

Hdefine FTPIPADDRESS "139.78.9.151"
#define FTPUSERNAME "vlab"
#define FTPPASSWORD "mstm"

#define CONFIGFILE "\\WMy Documents\BTFOLDER\Configuration\\VLab_ Conf txt"
#define LOCALFILESFOLDER "\\My Documents\\BTFolder\\Files\\"
#define REMOTEFILESFOLDER "/Files/"

#define REMOTEINSTRUCTORSFOLDER "/Instructors/"
#define REMOTELOCATIONFOLDER "/Location/"
#define LOCALLOCATIONFOLDER "\WMy Documents\\BTFolder\\Location\\"

#define REMOTEMAPPINGFOLDER "/Mapping/"
#define REMOTEMAPPINGFILE "/Mapping/Mapping.txt"
t#define LOCALMAPPINGFILE "\\My Documents\BTF older'\Mappingsh\Mapping.txt"

#define REMOTELOGINSFOLDER "/Logins/"

121

#define REMOTELOGINSFILE "/Logins/Logins.txt" _
#define LOCALLOGINSFILE "\\My Documents\\BTFolder\\Logins\\L.ogins.txt"

#define REMOTEMESSAGESFOLDER "/Messages/"
#define LOCALMESSAGESFOLDER "\My Documents\BTFOLDER\\Messages\\"

#define DESTCONNMANAGER "vlab"
#define CONNTIMEOUT 30000

#define LOGINLENGTH 30
#define PASSWORDLENGTH 30

#tdefine ENCRYPTKEY 173
#define MAXNUMMESSAGES 50

#define REGISTRYKEY "Driversi\BuiltIn\\BTSerialCe2"

EXTERN char *cLoginName;
EXTERN char *cPassword;

TR T LT T ELEE R BT
// CUiDIg dialog

class CUiDIg : public CDialog
{
// Construction
public:
CUiDIg(CWnd* pParent = NULL); //standard constructor
void AddToListBox(unsigned char* szBuf),
void AutoConnection();
bool FTPOpen();
bool FTPClose();
bool FTPSendFile();
bool ETPDeleteFile();
bool DestinationNetwork();
bool GetRemoteNames();
bool AssignRemoteNames();
void PrepareLocation();
bool PrepareMessages();
bool FTPGetFile(),
bool GetMessages(); '
bool CreateCOMPort();
bool SetRegistryValues();

122

i
/o

bool bConnPresence;

bool bAutaOn;

bool bFileSelect;

bool bFileTransferProgress;

bool bFTPPresence;

bool bProgramBegin;

CSruring LocalFile;

CString RemoteFile;

CString RemoteFolder;

CString MainRemoteFolder;

CSuring DestinationConnection;

HANDLE *ConnectionHandle;
CONNMGR_CONNECTIONINFEO *Connectionlnfo;
CONNMGR_DESTINATION INFO *Destinationnfo;
char *cDevices. BD_Addr{MAXNUMDEVICES];
char *cRemoteNames| MAXNUMDEVICES);
HFTP FTPHandle:

CString FTP_ UserName,

CString FTP_Password;

CString Server IP_Address;

int NumMessages;

char *Messagesl MAXNUMM ESSAGES];

int MessagesDisplayed;

HANDLE COM_File;

bt_device context BT Stack_Handle;
SDAP Handle BT Sdap Handle;

// Dialog Data

HTH{AFX DATA(CUIDIg)

enum { IDD = IDD U] DIALOG };
CListBox m_RSSI List;
CListBox m_InqList;

CListBox m_ Msgs List;
CListBox m_List NewMsgs;
CButton m_Button NewMsgs;
CEdit m_Edit_FileName;

CEdit in_Edit Status;
CProgressCtrl m IngProgress,

char m 1AvgRssiVal ;

CString m_BDAddr;

123

CString m_RSSlval;
i1y} AFX _DATA

// ClassWizard generated virtual function overrides

{{AFX_ VIRTUAL(CUiDlg)

protected:

virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
1} YAFX_VIRTUAL

// Implementation
protected:
HICON m_hlcon;

/f Generated message map functions
IT{{AFX_MSG(CUiDIg)

virtual BOOL OnlnitDialog(};
afx_msg void OnlnqButton();

afx msg void OnRssiButton();
afx_msg void OnExitButton();
afx_msg void OnClose();

afx_msg void OnConnButton();
afx_msg void OnDisconnButton();
afx_msg void OnAutoButton();
afx_msg void OnTimer(UINT nIDEvent);
afx_msg void OnFilesendButton();
afx_msg void OnBrowseButton();
afx_msg void OnSelchangeRssiList();
afx_msg void OnNewmsgsButton();
afx_msg void OnSelchangeInqList();
Y YAEX _MSG

DECLARE _MESSAGE MAP()

|

/1 {{AFX_INSERT_LOCATION}}
/{ Microsoft eMbedded Visual C++ will insert additional declarations immediately before
the previous line.

#endif //

'defined(AFX UIDLG H_ 6E8DF798 0BA8 44A5 Ad421 F2CC9D24432C_ INCLU
DED)

124

APPENDIX E

Code for the Configuration Utility

Program Files:
VLab_Config.cpp:

/1 VLab_Config.cpp : Defines the class behaviors for the application.
/

#include "stdafx.h"
#include "VLab_Config.h"
#include "VLab ConfigDlg.h"

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS FILE[]=_ FILE _;
#endif

T T e e
// CVLab_ ConfigApp

BEGIN_MESSAGE_MAP(CVLab_ConfigApp, CWinApp)
M {AFX_MSG _MAP(CVLab_ConfigApp)
/I NOTE - the ClassWizard will add and remove mapping macros here.
/DO NOT EDIT what you see in these blocks of generated code!
/1y }AFX MSG MAP
END_MESSAGE_MAP()

T L
// CVLab_ConfigApp construction

CVLab_ConfigApp::CVLab_ConfigApp()
: CWinApp()

{
// TODO: add construction code here,

// Place all significant initialization in InitInstance

}

T T T T LT e e
// The one and only CVLab_ConfigApp object

125

CVLab_ConfigApp theApp;

i e
// CVlab_ ConfigApp initialization

BOOL CVLab_ConfigApp::InitInstance()
{
// Standard initialization
// If you are not using these features and wish to reduce the size
/! of your final executable, you should remove from the following
/! the specific initialization routines you do not need.

CVLab ConfigDlg dlg;

m_pMainWnd = &dlg;

int nResponse = dlg.DoModal();

if (nResponse == [DOK)

{
// TODO: Place code here to handle when the dialog is
// dismissed with OK

}

else if (nResponse == IDCANCEL)

{
// TODO: Place code here to handle when the dialog is
! dismissed with Cancel

}

// Since the dialog has been closed, return FALSE so that we exit the
/! application, rather than start the application's message pump.
return FALSE;

126

VYLab_ConfigDlg.cpp:

// VLab_ConfigDlg.cpp : implementation file
/1

#include "stdafx.h"

#include "VLab_Config.h"
#include "VLab_ConfigDlg.h"
#include <stdio.h>

#include <string.h>

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS_FILE[]=__ FILE ;
#endif

#define LOCALFOLDER "\\My Documents"
#define FILENAME "\VLab Conf.txt"

T e
/{ CVLab_ConfigDlg dialog

CVLab_ConfigDlg::CVLab_ConfigDlg(CWnd* pParent /*=NULL*/)
: Chialog(CVLab_ConfigDlg::IDD, pParent)
{

/1{{AFX_DATA_INIT(CVLab ConfigDlg)

YYAFX DATA_INIT

// Note that Loadlcon does not require a subsequent Destroylcon in Win32
m_hlcon = AfxGetApp()->Loadlcon(IDR_MAINFRAME);

}

void CVLab_ConfigDlg::DoDataExchange(CDataExchange* pDX)

{
CDialog::DoDataExchange(pDX);

1{{AFX_DATA_MAP(CVLab ConfigDlg)

DDX_Control(pDX, IDC_EDITS, m_RemFolder);
DDX_Control(pDX, IDC _EDIT4, m_FTPPassword);
DDX_Control(pDX, IDC_EDIT3, m_FTPUser);
DDX_Control(pDX, IDC_EDIT1, m_IPAddress); '
Y FAFX_DATA_MAP

127

BEGIN_MESSAGE_MAP(CVLab_ConfigDlg, CDialog)
//{{AFX_MSG_MAP(CVLab_ConfigDIg)
ON_BN_CLICKED(IDC_BUTTON1, OnButton1)
ON_BN_CLICKED(IDC_BUTTON2, OnButton2)
ON_BN_CLICKED(IDC_BUTTON4, OnButtond)
/}YAFX_MSG_MAP

END MESSAGE MAP()

L
/{ CVLab ConfigDlg message handlers

BOOL CVLab_ConfigDlg::OnlnitDialog()

i
CDialog::OnlnitDialog();
// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog
Setlcon(m_hlcon, TRUE); /i Set big icon
Setlcon(m_hlcon, FALSE); f/ Set small icon
CenterWindow(GetDesktop Window()); // center to the hpc screen
/{ TODQO: Add extra initialization here
CVLab_ ConfigDlg::OnButtond();
relurn TRUE; // retum TRUE unless you set the focus to a control

i

void CVLab_ConfigDlg::OnButton1()
: int i;
unsigned short *IPAddr;
unsigned short *FTPUser;
unsigned short *FTPPassword,

unsigned short *RemFolder;

[PAddr = new unsigned short[20];

128

FTPUser = new unsigned short[20];
FTPPassword = new unsigned short[20];
RemFolder = new unsigned short[20];

i/ TODO: Add your control notification handler code here
//CreateFile (TEXT("\My Documents\CONFIGFILE.TXT"), // Open

CONFIGFILE.TXT
/7 GENERIC_READ, // Open for reading
/" FILE_SHARE_READ, /{ Share for reading
/H NULL, // No security
1 OPEN_EXISTING, /l Existing file only

i

/
1

FILE ATTRIBUTE NORMAL, // Normal file
NULL); // No template file

m_IPAddress.GetWindowText(IP Addr, 20);
m_FTPUser. GetWindowText(FTPUser, 20);

m_FTPPassword.GetWindow Text(FTPPassword, 20);
m_RemPFolder.GetWindowText(RemFolder, 20);

FILE *stream;

char *str;
str = new char{[20];

strepy(str, LOCALFOLDER);
strcat(str, FILENAME);

stream = fopen(str, "w"
if (stream == NULL) return;

MessageBox([PAddr, NULL, MB OK);

for (1=0; IPAddr{i]'=NULL ;i++)

fprintf(stream, "%c", IPAddr{i]);

fprintf{ stream, "\n");
for (1=0; FTPUser[1]!=NULL ,i++)

fprintf(stream, "%c", FTPUser[i]);

fprintf(stream, "\n"); '
for (1=0; FTPPassword[i]'=NULL ;i++)

fprintf{ stream, "%c", FTPPassword[i]);

129

/

¥

fprintf(stream, "\n");
for (i=0; RemFolder[i]'=NULL ;i++)

fprintf{ stream, "%c", RemFolder(i});

fputs(IPAddr, stream);

fclose(stream),

void CVLab_ConfigDlg::OnButton2(})

{

¥

// TODO: Add your control notification handler code here
CString IPAddr;

[PAddr ="";

m_IPAddress.SetWindowText(IPAddr);

CString FTPUser;
FTPUser ="";
m_FTPUser.SetWindowText(FTPUser),

CString FTPPassword;
FTPPassword ="";
m_FTPPassword.SetWindowText(FTPPassword);

CString RemFolder;
RemFolder ="";
m_RemFolder.SetWindowText(RemFolder);

void CVLab ConfigDlg::OnButton4()

{

// TODO: Add your control notification handler code here
FILE *stream;

char *IP;

IP = new char[20],

char *User;
User = new char[20];

char *Pass;
Pass = new char{ 20];

130

char *Rem;
Rem = new char[20];

char *str;
str = new char[20],

strepy(str, LOCALFOLDER);
streat(str, FILENAME);

stream = fopen(str, "r");
if (stream == NULL)
{
fclose(stream);
retum,

}

fscanf (stream, "%s", IP);

fscanf (stream, "%s", User);
fscanf (stream, "%s", Pass),
fscanf (stream, "%s", Rem);

felose(stream);

CString [PAddr;
IPAddr = [P,
m_ [P Address.SetWindowText(IPAddr);

CString FTPUser;
FTPUser = User;
m_FTPUser.SetWindowText(FTPUser);

CString FTPPassword;
FTPPassword = Pass;
m_FTPPassword.SetWindowText(FTPPassword),

CString RemFolder;
RemFolder = Rem;
m RemFolder.SetWindowText(RemFolder);

Header Files:
VLab_Config.h:

// VLab_ConfigDlg.cpp : implementation file
/

#include "stdafx.h"

#include "VLab_Config.h"
#include "VLab ConfigDlg h"
#hinclude <stdio.h>

#include <string.h>

#ifdef DEBUG

#define new DEBUG NEW

#undef THIS FILE

static char THIS _FILE{] = FILE_ ;
#endif

#define LOCALFOLDER "\My Documents"
#define FILENAME "\VLab Conf.txt"

T T T
// CVLab_ConfigDlg dialog

CVLab_ ConfigDlg::CVLab ConfigDlg(CWnd* pParent /*=NULL*/)
: CDialog(CVLab_ConfigDlg::IDD, pParent)
{
1{{AFX_DATA_INIT(CVLab_ConfigDlg)
{1} YAFX_DATA_INIT
// Note that LoadIcon does not require a subsequent Destroylcon in Win32
m_hlcon = AfxGetApp()-=Loadlcon(IDR_MAINFRAME),

b

void CVLab_ConfigDlg::DoDataExchange(CDataExchange* pDX)

{
CDialog::DoDataExchange(pDX);

IH{{AFX_DATA_MAP(CVLab_ConfigDlg)

DDX_ Control(pDX, IDC_EDITS, m RemFolder);

DDX_ Control(pDX, IDC_EDIT4, m_ FTPPassword); ;
DDX_Control(pDX, IDC_EDIT3, m_FTPUser),
DDX_Control(pDX, IDC_EDIT1, m_I[PAddress),

1Yy AFX_DATA_MAP

132

}

BEGIN_MESSAGE_MAP(CVLab_ConfigDlg, CDialog)
/I{{AFX_MSG MAP(CVLab_ConfigDlg)
ON BN CLICKED(IDC BUTTONI, OnButtonl)
ON_BN_CLICKED(IDC_BUTTON2, OnButton2)
ON_BN_CLICKED(IDC_BUTTON4, OnButton4)
/1Yy AFX_MSG_MAP

END MESSAGE_MAP()

I T T T
/1 CVLab_ConfigDlg message handlers

BOOL CVLab_ ConfigDlg::OnInitDialog()

{
CDialog::OnInitDialog();

// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog

Setlcon(m_hlcon, TRUE); // Set big icon
Setlcon(m_hlcon, FALSE); // Set small icon
CenterWindow(GetDesktop Window()); // center to the hpc screen

// TODO: Add extra initialization here
CVLab_ConfigDlg::OnButton4();

return TRUE; // return TRUE unless you set the focus to a control

void CVLab_ConfigDlg::OnButtonl()
{
int i;
unsigned short *]PAddr;
unsigned short *FTPUser;
unsigned short *FTPPassword;

unsigned short *RemFolder;

133

[PAddr = new unsigned short[20];
FTPUser = new unsigned short[20];
FTPPassword = new unsigned short[20];
RemFolder = new unsigned short[20];

// TODO: Add your control notification handler code here
//CreateFile (TEXT("™\\My Documents\CONFIGFILE.TXT"), // Open

CONFIGFILE. TXT
i GENERIC _READ, // Open for reading
" FILE_SHARE_READ, /! Share for reading
1 NULL, // No security
!/ OPEN_EXISTING, // Existing file only
7 FILE_ATTRIBUTE_NORMAL, // Normal file
i NULL); // No template file

1

m_IP Address.GetWindow Text(IPAddr, 20),
m_FTPUser.GetWindowText(FTPUser, 20);
m_FTPPassword. GetWindowText(FTPPassword, 20);
m_RemPFolder. GetWindowText(RemFolder, 20);

FILE *stream;

char *str;
str = new char[20],;

strepy(str, LOCALFOLDER);
strcat(str, FILENAME):

stream = fopen(str, "w");
if (stream == NULL) return;
MessageBox(IPAddr,NULL, MB_OK);

for (1=0; IPAddr[1]!=NULL ;i++)

fprintf(stream, "%c", IPAddi[i]);

fprintf(stream, "\n");
for (i=0; FTPUser[1]!=NULL :i++)

fprintf{ stream, "%c", FTPUser[1]);

fprintf(stream, "\n");
for (1=0; FTPPassword[1]'=NULL ;i++)

134

/

}

fprintf(stream, “%c", FTPPassword[i]);

fprintf(stream, "\n");
for 1=0; RemFolder[i]!=NULL ;1++)

fprintf{ stream, "%c", RemFolder[1]);

fputs(IP Addr, stream);

fclose(stream);

void CVLab_ConfigDlg::OnButton2()

{

}

/i TODO: Adad your control notification handler code here
CStning [PAddr;

IP Addr ="";

m_IPAddress.SetWindowText(IPAddr);

CString FTPUser;
FTPUser ="";
m_FTPUser.SetWindowText(FTPUser);

CString FTPPassword;
FTPPassword ="";
m_FTPPassword.SetWindowText(FTPPassword);

CString RemFolder;
RemFolder ="";
m_RemFolder.SetWindowText(RemFolder);

void CVLab ConfigDlg::OnButton4()

{

// ' TODO: Add your control notification handler code here
FILE *stream;

char *IP;

IP =~ new char[20];

char *User;
User = new char[20};

char *Pass;

135

Pass = new char{20];

char *Rem;
Rem = new char[20];

char *str;
str = new char{20};

strepy(str, LOCALFOLDER);
streat(str, FILENAME);

stream - fopen(str, "r"");
1€ (stream =— NULL)
t
fclose(stream);
return;

}

fscanf (stream, "%s", [P);

fscanf (stream, "%s", User);
fscanf (stream, "%s", Pass);
fscanf (stream, "%s", Rem);

fclose(stream);

CString 1P Addr;
IPAddr = 1P;
m_[PAddress.SctWindowTex{(TPAddr);

CString FTPUser;
FTPUser — User;
m_FTPUser.SetWindowText(FTPUser);

CString FTPPassword;
FTPPassword = Pass;
m_FTPPassword.SetWindow T'ext(FTPPassword);

CString RemFolder;
RemFolder = Rem;
m_RemFolder.SetWindowText(RemFolder);

VLab_ConfigDlg.h:

// VLab_ConfigDlg.h : header file

/!

Hif

Idefined(AFX_VLAB_CONFIGDLG H 2B083A20 8233 4982 B2C2_E0882CEED

AD4
#define

INCLUDED)

AFX_VLAB CONFIGDLG H 2B083A29_8233_4982_B2C2 B0882CEEDAD4__ [N
CLUDED _

#if MSC VER >= 1000
H#pragma once
#endif // _MSC_VER >- 1000

HUTTTTEHTTT T TN 1110011117111
/1 CVLlab ConfigDlg dialog

class CVLab ConfigDlg : public CDialog

{

// Construction

public:

CVLab_ConfigDlg(CWnd* pParent NULL); // standard constructor

// Dialog Data

H{{AFX_DATA(CVLab_ConfigDlg)

enum { IDD =IDD_VLAB CONFIG_DIALOG };
CEdit m_RemFolder,

CEdit m_FTPPassword;

CEdit m_FTPUser;

CEdit m_IPAddress;

I} }AFX_DATA

// ClassWizard generated virtual function overrides
H{{AFX_VIRTUAL(CVLab ConfigDlg)

protected:

virtual void DoDataExchange(CDataExchange* pDX);
/[}}AFX VIRTUAL

// Implementation
protectea:

HICON m_hlcon;

/I Generated message map functions

137

// DDX/DDV support

H{{AFX_MSG(CVLab_ConfigDlg)
virtual BOOL OnInitDialog();

afx msg void OnButtonl();
afx_msg void OnKillfocusEdit1();
afx_msg void OnChangeEdit1();
afx_msg void OnButton2();
afx_msg void OnButton4();

1}y AFX_MSG
DECLARE_MESSAGE_MAP()

¥

//{fAFX_INSERT LOCATION}}
// Microsoft eMbedded Visual C4++ will insert addilional declarations immediately before
the previous line.

Hendif //
tdefined(AFX_VLAB_CONFIGDLG H_ 2B083A29 8233 4982 B2C2_E0882CEED
AD4 _INCLUDED)

138

APPENDIX F

Code for the Iustructor Access Management Utility

Program Files:
LoginDialog.cpp

// LoginDialog.cpp : implementation file
//

#include "stdafx.h"
#include "user manage.h"
#include "LoginDialog.h"

#ifdef DEBUG

#define npew DEBUG NEW

#Hundef THIS_FILE

static char THIS FILE[] = __FILE
#Hendif

#Hdefine ADMINUSERNAME "admin"
#define ADMINPWD "virtnalbluetooth”

LTI T 1 017111
// CLoginDialog dialog

CLoginDialog::CLoginDialog(CWnd* pParent /*~NULL*/)
: CDialog(CLoginDialog::IDD, pParent)
{

I/{{AFX_DATA_INIT(CLoginDialog)
/NYAFX DATA_INIT

void CLoginDialog::DoDataExchange(CDataExchange* pDX)

{
CDialog::DoDataExchange(pDX);
/I{{AFX_DATA_MAP(CLoginDialog)
DDX_Control(pDX, IDC Login Pwd, m Login Pwd);
DDX_Control(pDX, IDC_Login Name, m_Login_Name),
INYAFX_DATA_MAP

139

BEGIN_ MESSAGE_MAP(CLoginDialog, CDialog)
//{ {AFX_MSG_MAP(CLoginDialog)
ON_BN_CLICKED(IDC_LOGIN, OnLogin)
/}}AFX_MSG_MAP

END_MESSAGE_MAP()

BOOL CLoginDialog::OnlnitDialog()

{
CDialog::OnlnitDialog();
m_Login Pwd.SetPasswordChar("™*');
retum TRUE;

}

N e T e L e
// CLoginDialog message handlers

void CLoginDialog::OnLogin()
{
// TODO: Add your control notification handler code here
LPTSTR chl = new char[20];
LPTSTR ch2 = new char[207];
m_Login Name.GetWindowText(ch1,20);
m_Login Pwd.GetWindowText{ch2,20);
CString a = ADMINUSERNAME;
CString b = ADMINPWD;
if ((chl == a) && (ch2 == b))
CDialog:OnOK();
else
{
MessageBox(_T("Login name or password is not correct.Please try
again!"), T("Error Message"),MB_OK);
m_Login_Name.SetWindowText(""};
m_Login_Pwd.SetWindow Text("™);

}
void CLoginDialog::OnCancel()
{
// TODO: Add extra cleanup here

CDialog::OnCancel();

140

user_manage.cpp:

// user_manage.cpp : Defines the class behaviors for the application.
//

#include "stdafx.h"

#include "user_manage.h"
#include "user manageDlg.h"
#include "LoginDialog.h"
#include <afxwin.h>

#ifdef DEBUG

#define new DEBUG_NEW

#undef THIS_FILE

static char THIS FILE[]=_FILE ;
#endif

LI T H I T LI
// CUser_manageApp

BEGIN_MESSAGE_MAP(CUser_manageApp, CWinApp)
{{AFX MSG_MAP(CUser_manageApp)
// NOTE - the ClassWizard will add and remove mapping macros here.
// DO NOT EDIT what you see in these blocks of generated code!
i1} }AFX_MSG
ON_COMMAND(ID HELP, CWinApp::OnHelp)
END_MESSAGE_MAP()

T T L
/{ CUser_manageApp construction

CUser_manageApp::CUser manageApp()

{
// TODO: add construction code here,
// Place all significant initialization in InitInstance

}

L Ly L L N R S IR
// The one and only CUser_manageApp object

CUser_manageApp theApp;

T LTI LT LT T T L R 1 11408 :
/f CUser_manageApp initialization

BOOL CUser manageApp::InitInstance()

141

if (VA fxSocketInit(}))

{
AfxMessageBox(IDP_SOCKETS_INIT_FAILED);
return FALSE;

}

AfxEnableControlContainer();

/1 Standard initialization

J/ If you are not using these features and wish to reduce the size

/1 of your final executable, you should remove from the following
/! the specific initialization routines you do not need.

#ifdef AFXDLL

DLL
#else

#endif

Enable3dConirols(); // Call this when using MFC in a shared

Enable3dControlsStatic(); // Call this when linking to MFC statically

int nRespounse;
CLoginDialog Logdlg;

nResponse = Logdlg. DoMoadal();

if (nResponse = IDOK)

{
// TODO: Place code here to handle when the dialog is
/! dismissed with OK

// MessageBox(NULL,_T("success"),0,MB OK);

)

else 1f (nResponse == IDCANCEL)

{
// TODO: Place code here 1o handle when the dialog s
// dismissed with Cancel
exi(0);

i

CUser_manageDlg dlg;

m pMainWnd = &dlg;

nResponse = dlg.DoModal();

if (nResponse — [DOK)

// TODO: Place code here to handle when the dialog is
// dismissed with OK

}
else if (nResponse == IDCANCEL)

// TODO: Place code here to handle when the dialog is
/1 dismissed with Cance]

}

// Since the dialog has been closed, return FALSE so that we exit the
// application, rather than start the application's message pump.
//return FALSE;*/

relurn FALSE;

143

user manageDlg.cpp:

/! user_manageDlg.cpp : implementation file
£l

#nclude "stdafx.h"

fAnclude "user_manage.h"

#include "user_manageDlg.h"
#include <afxinet.h>

#inchide <afxwin h>

#ifdef DEBUG

#define new DEBUG _NEW

#undef THIS FILE

static char THIS_FILE[]= _FILE ;
#endif

e e
/f CAboutDlg dialog used for App About

class CAboutDlg ; public CDialog
{
public:

CAboutDlg();

// Dialog Data
H{{AFX DATA(CAboutDlg)
enum { IDD =IDD ABOUTBOX };
//}YAFX_DATA

// ClassWizard generated wvirtual function overrides
H{{AFX VIRTUAL(CAboutDig)

protected:

virtual void DoDataExchange(CDataExchange* pDX}),
/P YAFX _VIRTUAL

// Implementation
protected:
H{{AFX_MSG(CAboutD1g)
I YAFX MSG
DECLARE MESSAGE MAP()

o

CAboutDIg::CAboutDIg() : CDialog(CAboutDlg:: IDD)

{
/1{{AFX_DATA_INIT(C AboutDlg)

//}}AFX_DATA_INIT

144

/I DDX/DDYV support

}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{
CDialog::DoDataExchange(pDX);
/I{{AFX_DATA_MAP(CAboutDlg)
/I}YAFX DATA MAP

}

BEGIN MESSAGE_MAP(CAboutDlg, CDialog)
//{{AFX_MSG_MAP(CAboutDlg)
// No message handlers
Y YAFX MSG_MAP
END MESSAGE MAP()

N L e e
// CUser manageDlg dialog

CUser_manageDlg::CUser_manageDIlg(CWnd* pParent /*=NULL*/)
: CDialog(CUser_manageDlg::IDD, pParent)
{
M{{AFX DATA INIT(CUser manageDlg)
1} YAFX_DATA INIT
// Note that Loadlcon does not require a subsequent Destroylcon in Win32
m_hlcon = AfxGetApp()->Loadlcon(IDR_MAINFRAMEL);
int 1;
for (1=0;1<=30;1++)
{
Namel[1] = new char [30];
Password[i] = new char [30];
Fullname[i] = new char [50];
}
n_users = 0;
selected_user = -1;

}

void CUser_manageDlg::DoDataExchange(CDataExchange* pDX)

{
CDialog::DoDataExchange(pDX);
I{{AFX_DATA MAP(CUser_manageDlg)
DDX Control(pDX, IDC_LIST, m_List_LoginList);
DDX_Control(pDX, IDC_ADD, m_Button Add), N
DDX_Control(pDX, IDC_EDIT_FULLNAME, m_ Edit FullName);
DDX_Control(pDX, IDC_EDIT PASSWORD, m_ Edit_PassWord),
DDX_Control(pDX, IDC_EDIT_USERNAME, m_Edit UserName);

145

/}YAFX_DATA_MAP
}

BEGIN _MESSAGE_MAP(CUser_manageDlg, CDialog)

1/ {{AFX_MSG_MAP(CUser_manageDlg)
ON_WM_SYSCOMMAND()
ON_WM_PAINT()
ON_WM_QUERYDRAGICON()
ON_BN_CLICKED(IDC_ADD, OnAdd)
ON_BN_CLICKED(IDC_DELETE, OnDelete)
ON_LBN_SELLCHANGE(DC_LIST, OnList)
ON_BN_CLICKED(IDC_OK, OnOk)
ON BN CLICKED(IDC_UPDATE, OnUpdate)
ON_BN _CLICKED(IDC_APPLY, OnApply)
ON_BN_CLICKED(IDC_EXIT, OnExit)
//}}AFX_MSG_MAP

END_MESSAGE MAP()

TN T T L
// CUser_ manageDlg message handlers

BOOL CUser_manageDlg::OnlitDialog()

{
CDialog::OnlnitDialog();

/{ Add "About..." menu itera {o system menu.

// IDM_ABOUTBOX must be in the system command range.
ASSERT((IDM ABOUTBOX & OxFFF0) == IDM ABOUTBOX);
ASSERT(IDM_ABOUTBOX < 0xF000);

CMenu* pSysMenu = GetSystemMenu(FALSE);
if (pSysMenu '=NULL)
t
CString strAbouiMenu;
strtAboutMenu.LoadString(IDS_ABOUTBOX);,
if (IstrAboutMenu.lsEmpty())
{
pSysMenu->AppendMenu(MF _SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, [DM_ABOUTBOX,
strAboutMenu);
3
¥

// Set the icon for this dialog. The framework does this automatically
// when the application’s main window is not a dialog

146

Setlecon(m_hlcon, TRUE); /7 Set big icon
Setlcon(m_hlcon, FALSE); // Set small icon

// TODO: Add extra initialization here

FtpConnection();
Display();

return TRUE; // return TRUE unless you set the focus to a control

}
void CUser_manageDIlg::OnSysCommand(UINT niD, LPARAM |Param)

if (nID & OXFFEQ) == IDM_ABOUTBOX)

{ CAboutDlg dlgAbout;
dlgAbout.DoModal();

}

else

{

CDialog::OnSysCommand(nID, |Param),

/7 If you add a minimize button to your dialog, you will need the code below
// to draw the icon. For MFC applications using the document/view model,
// this 1s automatically done for you by the framework.

void CUser_manageDIlg::OnPaint()

{
Lf (Islconic())

{

CPaintDC dce(this); // device context for painting

SendMessage(WM ICONERASEBKGND, (WPARAM)
dc.GetSafeHdc(), 0);

// Center icon in client rectangle

int cxlcon = GetSystemMetrics(SM._ CXICON);
int cylcon = GetSystemMetrics(SM_CYICON);
CRect rect;

GetClientRect(&rect);

mt x = (rect. Width() - cxIcon + 1)/ 2:

int y = (rect.Height() - cylcon + 1) / 2;

// Draw the icon

147

dc.Drawlcon(x, y, m_hlcon);

CDialog::OnPaint();

// The system calls this to obtain the cursor to display while the user drags
// the minimized window.

HCURSOR CUser_manageD]g::OnQueryDraglcon()
{

}

retun (HCURSOR) m_hlcon;

void CUser_manageD]g::FtpConnection()

{
int j=0;
int lengthl,length2,length3,total;
FILE *file;
char *templine = new char[256],
char *ServerAddr - new char{20];
LPCSTR User_Name = new char[20];
LPCSTR UserPwd = new char[20];
file fopen("C:\\serverinfo.txt","s");
fgets(templine,256,file);
sscanf(templine,”%s\t%s\t%s",ServerAddr,User_Name,UserPwd),
ClnternetSession CFTP;
CFtpConnection* FTP_ MSTM;

/] char *sfile;
CString s;
LPDWORD d;
char *line = new char[100];
char *show = new char[]];
d = new DWORD;
*d=250;
char *cha = new char{30];
CString des;

n users = 0;

FTP MSTM = CFTP.GetFtpConnection(ServerAddr, User Name, UserPwd, 21,
TRUE);)
/ FTP_MSTM->GetCurrentDirectory(s, d);

s="/VLabPDA/Logins/";

FTP_MSTM->SetCurrentDirectory(s);

148

CString gh ="/VLabPDA/Logins/Logins.txt";
des = "C:\\Logins.txt";
FTP_MSTM-
>GetFile(gh,des,FILE ATTRIBUTE_NORMAL,FTP TRANSFER TYPE BINARY,

DK
FTP_MSTM->Close();

if ((in_file = fopen("C:\\Logins.txt","r")) == NULL)
{
MessageBox(_T("No such file exists"),NULL,MB_OK),
returm,
}
/felse
/! MessageBox(T("File 1s opened"),NULL,MB_OK);

while (!feof(in_file))

{

if(fgets(line, 256, in_file) == NULL)

{
fclose(in_file);
MessageBox(_T("No user exits"), NULL,MB_ OK);
if (DeleteFile(des) == 0)

MessageBox(_T("Error"), NULL,MB_OK);

return,

}

sscanf(line, "%s\t%s\t%s", Name[n_users),
Password[n users],Fullname[n_users]);
/* if (*Name{0] == -51)
{

fclose(in_file);

MessageBox(_T("EOF"),NULL,MB_OK);

if (DeleteFile(des) == 0)

MessageBox(_ T("Error"),NULL,MB_OK);

return;
}
*/ lengthl = strlen(Name([n_users));
/* for (i=0;i<length1;i++)
{
//Name[n_users}[i] = Name[n_ users][i]”*encap;
*(Name[n_users]+i) = *(Name[n_users)+i);
}

length2 - strlen(Password[n users]);
for (1=0;i<length2;i++)

¢

149

//Password[n_users][i] = Password[n_users][i]*encap;
*(Password[n_users]+i) = *(Password{n_users]+i);
}
Jength3 = strlen(Fullname[n_users));
for (1=0;1<length3;i1++)
{
//Fullname[n_users)[1] = Fullname[n_users][i)"encap;
*(Fullname[n_users)+i) = *(Fullname[n_users]+);
}
*/
length2 = strlen(Password(n_users]);
length3 = strlen(Fullname[n_users));
total = sirlen(Name[n_users]) + strlen(Password[n_users]) +
strlen(Fullname[n_users]);
//*show line[total+17§;
/* while (ling[total+2] !="\n")

{
*(Fullname[n_users]+length3) = line[total+2];
total++;
length3++;

y*/

n_users++,

}

fclose(in_file);

DeleteFile(des),

delete line;
delete d;
delete cha;

}
void CUser_manageDlg::Display()
{
// Decrypt all data using EncryptAllData function and show all data as normal
// words, then encrypt data again.
it t;
// MessageBox(_T("encrypt),NULL,MB_ OK);
LPCTSTR temp_initial = new char [256];
/Hf (*Name{0] == -51) return;
EncryptAllData(); =
for (1=0;t< n_users;t++)
{

CString temp_initial = Name[t];

150

}

temp_initial+= "-——-eao—--";
temp_initial+= Password[t];
temp_itial+="-----—-— "
temp_initial+= Fullname(t];
m_List_LoginList.InsertString(t,temp_initial);
}
EncryptAllData(),

selected _user =-1;

void CUser_manageDlg::OnAdd()

{

/) TODO: Add your control notification handler code here
int 1=0;

int length=0,

LPTSTR ch = new charj20];

n_users++;

m_Edit UserName.GetWindowText(ch,20);
length = strlen(ch);

for (1=0;1<=length;i++)

{

}

//Name[n_users-1][1] = "0

m_Edit PassWord.GetWindowText(ch,50);
length = strlen(ch);

for (1=0;1<=length;1++)

{

}

//Password[n_users-1][i] = "0,

*(Name[n_users-1]+1) = ch[i],;

*(Password[n_users-1]+1) = chl[i];

m_Edit_FullName.GetWindowText(ch,50);
length = strlen(ch);

for (i=0;1<=length;i++)

{

j

/{Fullname[n_users-1][i] = "0";
CString temp;

temp = Name[n_users-1];
temp+="---—--—--- "

temp+=Password[n_users-1],

temp+="--mmmmm d

*(Fullname[n_users-1]+1) = ch[i];

151

temp+=Fullname[n_users-1];

m_List LoginList.InsertString(n_users-1,temp};
EncryptData(n_users-1);
/" EncryptData(n_users-1);

/! fprintf{in_file,"\n%s %s %s", Name[n_users],

Password[n_users],Fullnpame[n_users]);
m_Edit_UserName.SetWindowText("");
m_Edit_PassWord.SetWindowText("");
m_Edit FullName.SetWindowText("");

}

void CUser _manageDlg::OnDelete()

{ {/ TQDO: Add your control notification handler code here
;rf}(tsi:;lected_user = =-1)

MessageBox(_T("Selecting in error™),NULL,MB OK);,
char *temp name;
char *temp password;
char *temp fullname;
termp_name = Name[selected user],
temmp password = Password[selected_user];
temp fullname Fullname(selected user];

for (1—selected _user;i<n users-1;i++)

{
Fuliname[1] = Fullname[i+1];
Name[i] = Name[i+1];
Password([i] = Password[i+1];
}

Name([n_users-1] = temp_name;
Password[n_users-1] = temp_password;
Fullnamefn_users-1] = temp_fullname;
n_users =n users - 1;
//CUser_manageDlg::Display();
m_List_LoginList.DeleteString(selected user);
m_Edit_UserName.SetWindowText("");
m_Edit_PassWord.SetWindowText("");
m_Edit_FullName.SetWindowTex1("");

152

void CUser_manageDlg::OnList()
// show the selected user on the left list

selected_user = m_List_LoginList.GetCurSel();
if(selected_user == prev_selected_user)

{
m_List LoginList.SetCurSel(-1);// selected user, FALSE);
m_Edit_UserName.SetWindowText("");
m_Edit PassWord.SetWindowText("");
m_Edit_FullName.SetWindowText(""),
selected_user =-1;
prev_selected_user = -1;

h

else

!
EncryptData(selected user);
m_Edit_UserName.SetWindowText(Name[selected user]);
m_Edit_PassWord.SetWindowText(Password[selected user]);
m_Edit_FullName.SetWindowText(Fullname[selected user]);
EncryptData(selected user);
prev_selected user = selected user,

}

}

void CUser_manageDlg::0OnOk()
{
// TODO: Add your control notification handler code here
OnApply();
int i;
for (1=0;1<30;i++)
{
delete Name[i];
delete Password|[i];
delete Fullname(i];

}
exit(0);
}

void CUser manageDlg::OnUpdate()

{ -
/f TODO: Add your control notification handler code here
CString temp;
char* chl = new char[30];

153

}

char* ch2 = new char[30];

char* ¢h3 = new char[50];
m_Edit_UserName.GetWindowText(ch1,30);
memcpy(Name[selected_user], ch1,30);
m_Edit_PassWord.GetWindowText(ch2,30);
memcpy(Password[selected user], ch2,30);
m_Edit_FullName.GetWindowText(ch3,50);
memcpy(Fullname[selected _user], ch3,50);
temp = Name[selected user];
tempt+="-----——-- "
temp+=Password[selected_user];
temp+=""---------- "

temp+=Fullname([selected user];
m_List_LoginList.DeleteString(selected_user);
m_List LoginList.InsertString(selected _user,temp);
EncryptData(selected user);
m_Edit_UserName.SetWindowText("");

m_Edit PassWord.SetWindowText("");

m_Edit FullName.SetWindowText("");

void CUser_manageDlg::OnApply()

{

!

// TODO: Add your control notification handler code here
int1;
char *a;

if ((in_file = fopen("C:\\Logins.txt","w")) == NULL)

MessageBox(_T("File was not opened"),NULL,MB_OK);
//EncryptAllData();
for (1=0;1<n_users;i++)
{

if (i==(n_users - 1))

fprintf(in_file," %s\t%s\t %s",Name[i|,Password[i],Fullname[i]);
else
fprintf{in_file,"%s\%s\t%s\n" Name[i],Password[i],Fullname[i]);

H
fclose(in_file);
m_Edit_UserName.SetWindowText("");
m_Edit PassWord.SetWindowText("");
m_Edit_FullName.SetWindowText("");

FILE *file;

char *templine = new char[256];

char *ServerAddr = new char[20];
LPCSTR User_Name = new char{20];

154

LPCSTR UserPwd = new char[20];
file = fopen("C:\\serverinfo.txt","r");
fgets(templine,256,file);
sscanf(templine,”%s\t%s\t%s" ,ServerAddr,User_Name,UserPwd);
LPDWORD d;
CString s;//= new char{250];
CString des;//new char[250];

/ sfile - new char[250],
d :new DWORD;
*d=250;
ClInternetSession CFTP;
CFtpConnection* FTP MSTM,;

FTP MSTM = CFTP.GetFtpConnection(ServerAddr, User _Name, UserPwd, 21,
TRUE);
// FTP_MSTM->GetCurrentDirectory(s, d);
s="/VLabPDA/Logins";
FTP_MSTM->SetCurrentDirectory(s);
des = "/VLabPDA/Logins/Logins.txt";

CString h = "C:\\Logins.txt";
if (FTP_MSTM->PutFile(h,des,FTP. TRANSFER TYPE BINARY, 1) =0)
4
1
GetLastError();
MessageBox(_T("Error"),NULL MB OK);
}
ETP_MSTM->Close();
DeleteFile(l);

}

void CUser_manageDlg::EncryptAllData()

{
/! Encrypting all data using encrypting key
int length,1,j;

for(1=0;i<n_users;i++)

{
length = strlen(Name[i]);
for (j=0;)<length;j++)
{

}

length — strlen(Password[i]);
for)=0;j<length;j++)

¢

(Name[i]+)) = ((Name[i}+})) * EncryptKey;

(Password[i]+)) = ((Password[i]+})) ~ EncryptKey;

155

}
length = strlen(Fullnameli});

for (j--0; <length;j++)

{
(Fullname([1]+)) = ((Fullname(i}+j)) * EncryptKey;
}
}
}
void CUser_manageDlg::EncryptData(int ilndex)
{
int length,j;
length - strien(Name[ilndex]);
for (j=0;j<length:j++}
{
(Name[1Index]+y) = ((Name[iIndex]+})) * EncryptKey;
}
length = strlen(Password[iIndex]);
for j=0;)<length;j++)
{
(Password[ilndex]=j) = ((Password[iIndex]+j)) * EncrypiKey;
)
length — strlen(Fullname[ilndex]);
for (j=03<length;j++)
{
(Fullname[ilndex]+)) = ((Fullnamefilndex]+))) * EncryptKey;
}
t
void CUser_manageDlg::OnExit()
{
/"' TODO: Add your control notification handler code here
exit{0);
}

156

Header Files:
LoginDialog.h:

#if

tdefined(AFX LOGINDIALOG _H_ 9789D8F4_91E2_4F56_BF10_8A212C45C7CB__
INCLUDED)

ffdefine

AFX _LOGINDIALOG H_9789D8F4 91E2_4FS6 BF10_8A212C45C7CB__ INCLU
DED

#if MSC_VER > 1000
#pragma once

#endif // MSC VER > 1000
/ LoginDialog.h : header file
U

N
// CLoginDialog dialog

class CLoginDialog : public CDialog
{
// Constructiort
public:
CLoginDialog(CWnd* pParent = NULL); // standard constructor

/! Dialog Data
H{{AFX_DATA(CLoginDialog)
enum { IDD = IDD LOGIN DIALOG };
CEdit m_Login_Pwd;
CEdit m_Login_Name;
//}}AFX_DATA

// Overrides
// ClassWizard generated virtual function overrides
{{AFX VIRTUAL(CLoginDialog)
protected:
virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV support
Y} AFX_VIRTUAL

// Implementation
protected:

/I Generated message map functions
I {{ AFX_MSG(CLloginDialog)

157

virtual BOOL OninitDialog();
afx_msg void OnLogin();
virtual void OnCancel();

/ afx_msg void OnLogin();
//}}AFX MSG
DECLARE MESSAGE_MAP()

}s

N {{AFX_INSERT LOCATION}}
/] Microsoft Visual C++ will insert additional declarations immediately before the

previous line.
#endif //

tdefined(AFX_LOGINDIALOG_H_ 9789D8F4 91E2 4F56 BF10 8A212C45C7CB
INCLUDED)

158

user_manage.h:

// user manage.h : main header file for the USER_MANAGE application
/

#if

'defined(AFX USER MANAGE_H__ECD6D520_9B91_42C5_9BE2 8DAESBE2F4E4
_ INCLUDED_)

#define

AFX USER_MANAGE H_ECD6D520_9B91_42C5_9BE2_8DAES8E2F4E4__INCL

UDED _

#if MSC_VER > 1000

#pragma once
#endif // MSC_VER > 1000

#ifndef AFXWIN H
#terror include 'stdafx.h' before including this file for PCH
#endif

#include "resource.h” // main symbols

R T

// CUser_manageApp:

// See user_manage.cpp for the implementation of this class
/Y

class CUser_manageApp : public CWinApp
t
public:

CUser_manageApp();

// Overrides
// ClassWizard generated virtual function overrides
I1{{AFX_VIRTUAL(CUser_manageApp)
public:
virtual BOOL InitInstance();
/Y YAFX_VIRTUAL

// Implementation

HM{{AFX_MSG(CUser_manageApp) ~
/{ NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code !
//Y}AFX_MSG
DECLARE MESSAGE _MAP()

159

5

T L e e

//{{AFX INSERT LOCATION}}
// Microsoft Visual C++ will insert additional declarations immediately before the
previous line.

H#Hendif //

'defined(AFX_USER_MANAGE H ECD6D520 9B91_42C5 9BE2 SDAESSE2F4E4
__INCLUDED)

160

user_manageDlg.h:

// user manage.h : main header file for the USER. MANAGE application
/

inf

'defined(AFX_USER_MANAGE H__ECD6D520_5B91_42C5_9BE2_8DAESSE2F4E4
~_INCLUDED)

#define

AFX_USER MANAGE H ECD6D520 9B91_42C5_SBE2 8DAESSE2F4E4 INCL
UDED

#if MSC_VER > 1000

#pragma once
#endif// _MSC_VER > 1000

#ifndef AFXWIN H_
#Herror include 'stdafx.h' before including this file for PCH
#endif

#hinclude "resource.h" // main symbols

e e il

// CUser manageApp:

/I See user_manage.cpp for the implementation of this class
//

class CUser_manageApp : public CWinApp
{
public:

CUser_manageApp();

// Overrides
// ClassWizard generated virtual function overrides
I {{AFX_VIRTUAL(CUser manageApp)
public:
virtual BOOL InitInstance();
/I}YAFX VIRTUAL

// Tmplementation

" {{AFX MSG(CUser_manageApp) N
// NOTE - the ClassWizard will add and remove member functions here.
/- DO NOT EDIT what you see in these blocks of generated code !
//}}AFX_MSG
DECLARE_MESSAGE MAP()

161

}s

ST L T T T

//{{AFX INSERT LOCATION}}
// Microsoft Visual C+- will insert additional declarations imsmediately before the

previous line.
#endif //

ldefined(AFX_USER_MANAGE H ECD6D520 9B91 42C5 9BE2 SDAESSE2F4E4
___INCLUDED)

162

VITA
Lynn Moses George

Candidate for the Degree of Master of Science

Thesis: Development of the Wireless Instructor System and Bluetooth Handover
Technologies for Improved Virtual Laboratory Applications

Major Field: Electrical and Computer Engineering

Biographical:

Education: Received Bachelor of Engineering degree in Electrical and Electronics
Engineering from Madurai Kamaraj University, Tamilnadu, India in May 2000.
Completed the requirements for the Master of Science degree with a major in
Electrical and Computer Engineering at Oklahoma State University in August,
2003.

Experience: Graduate Research Assistant in Electrical and Computer Engineering
Department, Oklahoma State University, Stillwater, Oklahoma, August 2001 to
July 2003,

System Design Engineer in GDA Technologies, Chennai, India, June 2000 to July
2001.

Professional Membership: IEEE - Student Member

