
DEVELOPMENT OF THE WIRELESS INSTRUCTOR

SYSTEM AND BLUETOOTH HANDOVER

TECHNOLOGIES FOR IMPROVED

vmTUALLABORATORY

APPLICATIONS

By

LYNN MOSES GEORGE

Master of Science

Oklahoma State University

Stillwater, Oklahoma

2003

Submitted to the Faculty of the

Graduate College of the

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of

MASTER OF SCIENCE

August, 2003

DEVELOPMENT OF THE WIRELESS INSTRUCTOR

SYSTEM AND BLUETOOTH HANDOVER

TECHNOLOGIES FOR IMPROVED

VIRTUAL LABORATORY

APPLICATIONS

Thesis Approved:

Dean of the Graduate College

II

PREFACE

The thesis presents the details of features and implementations of the Virtual Lab

developed in the Telecommunication Laboratory (l04 Gundersen Hal)) of Oklahoma

State University using Bluetooth as the crucial wireless link between the Instructor and

the students. In a laboratory course where the lab is comprised of many rooms, the

essential interactivity between students is lost as the Instructor needs to move between

rooms. The Instructor does not have the capability to lecture and advice the students as

the exercises are being done. The lecture session and the exercise session need to be

separate. Moreover, distant students definitely need to travel to the campus to attend the

Lab courses. These issues pertaining to a laboratory course were addressed and a

solution, that took the form, Virtual Lab, has been fonnulated and developed. The project

h.as been funded by the Department of Education for bringing up the interaction and

application of high end technology in education. The Instructor is given the capability of

moving around the rooms of a lab and always have contact with the students through the

Compaq iPAQ PocketPC, which has been enhanced to function as per the requirements

for the virtual lab through an application program developed for the purpose. The

instructor is capable of sending files to the students from any place in the lab and the

students are always aware of the InstlUctor's location and could page the Instructor with

text messages. Moreover the students have been provided the added advantage of being

llJ

able to see what the Instructor sees and listen to the lecture no matter which room the

Instructor is in.

The movement of the Instructor reqmres the wireless links to be checked for

quality as the Instructor moves from one room to another, tear down bad links and form

new stronger links. This procedure named Handover needs to be done in a manner that

the normal traffic is not affected. The virtual lab needed efficient and fast algorithms for

Handover and hence three new algorithms were developed and implemented and

analyzed for speed. The virtual lab has been equipped with a Handover mechanism for

switching for maintaining a strong link wherever the hlstructor may move in the Lab.

IV

ACKNOWLEDGEMENT

This is my moment to thank the Almighty Lord for blessing me with more than

what I am worth and placing me in the right places and with the right people all my life.

I would like to take this opportunity to thank my advisor, Dr. long-Moon Chung

for his constant guidance, support and insight that he has offered devoid of which growth

would have been impossible. I would also like to thank my fellow members, Lijy

Kallidukil for her role with the ideas of Bluetooth Handover, Yuan Zhang for developing

the Instructor Access Management utility and Theepa Sudha Nataraja.n for developing the

Configuration Utility and everyone in the Advanced Communication Systems

Engineering Laboratory (ACSEL) and Oklahoma Communication Laboratory for

Networking and Bioengineering (OCLNB) who have made these 2 years a pleasant

expenence.

v

Table of Contents

I. Introduction. 1

1.1 Wireless Personal Area Networks 3

].2 Bluetooth 3

1.3 Virtual Lab 4

1.4 Need far a Virtual Lab 5

1.5 Bluetaoth Handover. 6

1.6 Overview of existing Handover tec1mologies and the 7

improvements made in this thesis

1.7 Thesis Outline 8

II. LIterature review and Planning of Virtual Lab.. 10

2.1 Description of Bluetooth 11

2.2 Physical Layer Specifications of Bluetooth 11

2.3 Scotty FTP API. 12

2.4 Some critical decisions for Virtual Lab 13

III. Features and the Implementation Specifics of the Virtual Lab 15

3.1 Features of the Virtual Lab 16

3.2 Folder Structure used on Server 18

3.3 Folder Structure used on the PocketPC. 20

3.4 Software Components oftbe Wireless lnstruc.tor System 21

3.5 Wireless Instructor Program Implementations 25

3.6 Transfer of Audio and Video to students 33

IV. Description and analysis of the new proposals for Bluetooth Handover. .. 34

4,.1 Ini tial Setup 35

4.2 Handover Proposals 37

4.3 Analysis ofI-Iandover .42

V. Conclusion 47

'R.EFERENCES 49

VI

..
,~

APPENDIXES 51

Management utility

Bluetooth

Utility

APPENDIX A - Description of the Configuration Utility 52

APPENDIX B - Description of the Instmctor Access. 54

APPENDIX C - Code written for FTP connectivity over '" 58

APPENDIX D - Code for the Wireless Instructor program 62

APPENDIX E - Code for the Configuration Utility '" 125

APPENDIX F - Code for the Instructor Access Management. .. 139

VIJ

LIST 0 F TABLES

Table Page

4.1 Predicted Handover Timings 43

Vlll

LIST OF FIGURES

Figure	 Page

1.1	 Virtual Lab Setup 5

1.2	 General procedure of Handover _ 7

2.1	 Master-Slave Architecture ofBluetooth 10

2.2	 Physical Layer Specification of Bluetooth.... 12

3.1	 Implementation of Virtual Lab 16

3.2	 Wireless AV Headset Solution 17

3.3	 Folder structure on Server ,] 8
3.4	 Folder structure on PocketPC 20

3.5	 The Wireless Instructor Program 22

3.6	 Login Window of the Wireless Instructor Program 23

3.7	 Procedure used by Wireless Instructor Program to pass BT Address 28

and to make connection

3.8	 Flowchart of the Automatic Selection mode 29

3.9	 Flowchart of Webpushing 31

3.10 Procedure for paging Instructor. 32

4.] The ideal arrangement of Base Stations for full coverage of area 35

4.2	 Initial COlmection Setup , 36

4.3	 Handover according to Proposal 1. 38

4.4	 Handover accordi.ng to Proposal 2 .40

4.5	 Handover according to Proposal 3 42

4.6	 Handover Hysteresis .45

5.1	 The Wireless Instructor System 48

A. I Configuration Utility window	 52

B.l Instructor Access Management Utility Login window	 54

B.2 Instructor Access Management Utility window - Edit.	 55

B.3 Instructor Access Management Utility window - After Edit.	 56

B.4 Instructor Access Management Utility window - After Add. 56

B.5 Instructor Access Management Utility window - After Delete	 57

IX

Chapter I

Introduction

Telecommmucation brought the world closer and wireless commUlucation is

poised to make the world move freely and it's well on the way to achieve it. In the future,

users will no longer have to constrain themselves to computers and telephones connected

to a hub on the wall. From anywhere and at anytime, communication will be possible.

And wireless technologies that are strong in distance, data rate and security are being

built with a mind to the application area. Cellular technologies service subscribers with

voice and data communication over distances in kilometers but with very low data rates.

Wireless Local Area Networks (WLAN) serve users with high data rate communicati.on

over distances in the range of meters. And then there are the Wireless Personal Area

Networks (WPAN) that are of short range and are designed for low power consumption,

low price and for accommodating more users in a small area.

Wireless technology could be applied to the education system to enhance the

learning experience through application of the technology Il1 areas that where

interactivity and closeness with the students are inhibited. One such application would be

in a Lab course in a University. A lab course requires greater interactivity of the students

with the instructor, but a lab with many small rooms may reduce the interactivity to a

level lesser than that in a theory class. Moreover distant students are forced to travel to

the campus in order to attend lab courses. A II these problems have been addressed and a

solution that is named the Virtual Lab has been developed, which is funded by the

Department of Education (DOE). The Instmctor is connected with the students wherever

he/she may be in the lab through the Compaq IPAQ PocketPC, that has been enhanced to

integrate as the main part of the Virtual Lab. This has been done by extensive

programming to create an application program that would nlll on the PocketPC. The

Instructor is now capable of sending files to the students and recelvmg instant text

messages from them regardless of his/her location in the lab. The location of the

Instmctor is made known to the students as well and this information is constantly

refreshed. All these tasks that are accomplished by the PocketPC are made possible

through the wireless link it makes with the wired network. The wireless technology used

here is Bluetooth and the PocketPC is a part of a WPAN. The Instructor is also equipped

with a wireless audio/video headset that would allow the students to listen to the

instructor wherever he/she may be and see exactly what the instructor sees. This could

help the Instructor in explaining exercises in a better manner.

As the Instructor moves, so should the wireless link, that is, a weaker link should

be torn down and a new stronger link needs to be created in its place with a nearby

Access point. This procedure is called Handover and the Virtual Lab needs a Handover

algorithm so that the Instructor would always be provided with a good quality wireless

link always. The Handover procedure itself should cause only minimum disturbance to

the normal traffic flow in the wireless link. Considering these facts, three new algorithms

for Bluetooth handover was developed and analyzed. TIle Virtual Lab is implemented

with a basic algorithm for Bluetooth handover.

The thesis provides details of the Virtual lab and the new algorithms for Bluetooth

Handover that can also aid the Virtual Lab application.

2

J..l Wireless Personal Area Networks

Wireless Personal Area Networks are aimed at small mobile devices; mainly

Personal Digital Assistants (PIDA), pagers, cell phones, and laptops which personalizes

the wireless connection to the network with the user's information automatically or by

the user invoking it. The user may be uniquely identified by the connection and

personalized data could be downloaded. The main advantage of this type of wireless

network is the feature of the device automatically connecting to the network and

downloading or uploading personalized information, in the so called Personal Operating

Space (POS) surrounding the user which is usually a range of 10 meters or less. The user

may be able to connect to the outside world as well through the network but it may offer

a very low data rate.

1.2 Bluetooth

Bluetooth is a robust, low cost, Jaw power short-range radio technology that

operates in the unlicensed Industrial, Scientific, and Medical (ISM) band at 2.4 GHz. The

Bluetooth system provides point-to-point connection or point-to-multipoint connection

over a scattemet, in which a frequency hopping channel is shared among several units

through the time division duplex (TDD) multiplexing topology. Bluetooth systems apply

a versatile short-range WPAN technology that supp0l1s various rates of voice and data

communications. The specifications for Bluetooth were also adopted as the IEEE 802.15

standards. Such a network will have Base Stations that will connect to the Bluetooth

devices and contribute to the flow of data between the devices and to the outside world.

3

' .. ­ .

•••

-

Student 1
DesktopIntructor
Student 2PocketPC Desktop

SelYer ••
Instructor ••AudiolVideo •

Student n
Desktop

- . _. Text messages

File Transfer
AudioNideo

Fig. 1.1. Virtual Lab setup.

1.4 Need for a Virtual Lab

Instructors handling lab courses where the labs have many rooms have many

challenges in lecturing and carrying on with the exercises. Many work-around solutions

are used by the instructors compromising on interactivity and time. The problems could

be fixed if technology could be put to use the right way.

1.4.1 Mobility of Instructor

In a Lab where there are many rooms, the Instructor may be constrained to

instruct students in each room separately. The instmctor may have to repeat the same

instructions over again in each room or the students may have to gather in a bigger room

for a lecture session before the practical session. It is difficult for the lecture and the

exercises to be carried on simultaneously. This scenario could be avoided by giving

mobility to the Instructor so that the students can listen to the lecture even as the

instructor moves across the rooms.

5

1.4.2 Interactivity for Remote Students

For lab courses, remote students need to travel to the location of the lab to attend

dasses. Though theoretical classes are offered for Remote students audio-visually, lab

classes have been constrained by the movement of the instructor and the need for

observation of the instmments and exercises in closer detail by the students. Moreover,

the interactivity of the remote students is lost when the Instmctor has to move around the

rooms of the lab.

1.4.3 Ease of accessibility of Information for Instrudor

The instlUctor has to be moving around the rooms of a lab to instruct the students

and when the students have to be distributed 'rvith the manuals or some important files

need to be transferred to the students, the Instructor has to go to a desktop computer. The

instructor may also at times need to get information from the Internet for various

purposes. In this case too, the instructor needs to go back to a desktop computer. This

problem needs to be solved so that the instmctor could be able to access the Internet as

well as distribute information to the students from his/her location.

1.5 Bluetooth H andover

Handover in a wireless communication is the flow of procedures that leads a

mobile device to detach from a central control system and connect to another due to the

growing distance with the fOffiler and the proximity with the latter. There are two types of

handovers - Hard and Soft. In a Hard Handover, the old link is broken before a new link

6

is formed and hence there is an interruption in the traffic while in Soft Handover, a new

link is first created before the old one is brought down and hence the flow of traffic is

almost undisturbed. Bluetooth is a small range radio network and hence handover

becomes a very important part when it is used in large areas. This report presents 3 new

algorithms for Hard as well as Soft Handover in Bluetooth. The general procedure of

Handover is depicted in Fig.l.2. When a certain device having a link with an Access

Point (AP) moves away and closer to another AP it detaches the old link and fonns a new

one with the nearby AP.

Fig. 1.2 General procedure of I-landover

1.6 Overview of existing Handover technologies and the improvements made in this

thesis

Bluetooth handover is made possible by measuring the received signal strength

indicator (RSSI) value of the linJe In [5] and [6], the authors propose a handover

technique where the search for the new device to connect to is initiated once the link

signal quality goes down below a predefined threshold. The potential problem for this

7

approach of searching for new devices when the signal quality goes down is that the

search process requires a lot of time (in the order of seconds) which consequently

elongates the Handover delay. The handover methodologies proposed in this thesis

reduce the handover timing by removing this process out during handover. In [6] and [7],

the authors discuss about hard handover approaches, in which the technique accomplishes

handover in the Int,emet protocol (IP) layer, which means that the handover process is

based on a connectionless path. The mobile handset looks for the IP address of the

strongest signal in the neighborhood and tries to connect to it. The hard handoff

procedures are supported by updating the adjacent Bluetooth rOLlting tables. The papers

also propose a technique where when a certain mobile device, say A, hands-over to a new

Base Station, another mobile device already a slave in the new Base station would act as

a repeater and serve the mobile handset, A till the Handover is complete. This has the

disCl.dvantage that any mobile device has to keep track of not only the nearby Base

stations but also the mobile devices associated with them to connect to during handover

and the serving mobile device has to be an active participant in two piconets during the

period. In [8], the re-routing in layer-3 during hanclover is explained, which could be used

regardless of the method of Bluetooth handover used in layer-2. Our paper proposes three

methodologies to do Handover in Layer-2 which uses Bluetooth.

1.7 'Thesis Outline

Chapter 1 has given a basic introduction and idea of what to expect from the rest

of the thesis. Chapter II will present a Literature review of Bluetooth and the needs of the

Virtual Lab. Chapter III presents the details of the features and implementations of the

8

Virtual Lab. Chapter IV presents the three new Bluetooth Handover Algorithms along

with the analysis of the timing for each algorithm. Chapter V sums up the work done in

each topic and the conclusions drawn from the analysis of the developments.

9

Chapter II

Literature Review and Overview of Existing Technologies

This chapter gives a brief review of the architecture of Bluetooth and its physical

layer properties. This chapter also discusses the other possible ways in which the Virtual

Lab could have been implemented and further touches on why the ideas were dropped.

2. 1 Description of Bluetooth

Bluetooth is a shOli range radio technol~imed at Personal Area Networking.

Each Bluetooth device could communicate with each other only after forming a wireless

link with the device.

ISlave 2 ~
~

~,~
I SIave41

Piconet

Fig 2.1 Master-Slave Architecture of Bluetooth

10

In Bluetooth, the devices need not have a direct connection with each other for

being able to communicate. Each device is linked or associated with a Master which is

able to control 7 other devices which are called Slaves as shown in Fig. 2.1. The traffic

flow between the devices is controlled and regulated by the Master. Bluetooth devices are

classified into 3 classes namely Class 1, Class 2 and Class 3. These classifications are

based on the maximum power of transmission and the power levels are 100 mW, 2.5 mW

and 1 mW for Class 1, Class 2 and Class 3 respectively.

2.2 Physical Layer Specifications of Bluetootb

Bluetooth is a Frequency Hopping Sprea~ectrum technology in the physical

layer. This means the data is sent at a particular frequency for a certain period and then

switches to a different frequency, which can be detennined by different means. B luetooth

hops around the ISM band of 2.4 GHz to 2.84 GHz 1600 times every second, which

means the frequency of transmission is changed 1600 times every second as shown in

Fig.2.2. Each hop or transmission is of a bandwidth of 1 MHz. The Frequency hopping

seque.p.ce is generated by using the Bluetooth Address and Bluetooth clock of a device.

Bluetooth devices or slaves communicate with each other via the Master. The master and

slaves communicate with each other by TDD method. The master sends a "Poll" packet

to, each slave and the slave responds with a data packet in response to it or a "Null"

packet ifit has no data to send. Each time slot is of 625 microseconds width and the

frequency of transmission is same for the whole slot. The Master always sends its packet

in the even slot and the slave responds in the subsequent slot which is odd. The master

and all its slaves form an entity tenned as the piconet in Bluetooth. All devices in a

II

piconet foHow the Frequency Hopping sequence generated using the Master's Bluetooth

address and clock. In this way aU the devices in a piconet are synchronized.

l;?tt-=.--:.--=.--=.--=.--=.--=.-:A--=.--=.--=- -=.--=.~-:.--=.-il--=.--=.~--=.--=. -=---~
2400 Frequency 2483.5
MHz MHz

Fig 2.2 Physical Layer Specification of B1uetooth

2.3 Scotty FTP API

The Virtual Lab needed lot of file transfers 1:t:Jtre done from the PocketPC to the

server. This was decided to be done using the File Transfer Protocol (FTP). The Wireless

Instructor System program on the PocketPC was programmed using the Application

Program Interface (API) provided by Microsoft for Windows CEo But the FTP functions

d.id not work and later it was found that the API's had bugs that had not been fixed by

Microsoft yet. So, being in need of API's to implement the FTP functions, the internet

was searched and one Scotty FTP API was found that was provided by a company in

India named Ruksun Software. After talks with the company, the API was donated to

Oklahoma State University by Ruksun. The API has been used in the Wireless Instructor

System developed on the PocketPC and is working very well.

12

I •.J .
"

2.4 Some critical decisions for Virtual Lab

The Virtual Lab could have been designed in a different way than it had been

designed now. Various alternatives were weighed upon and the best decisions that suited

the cost and gave the best perf0l111anCe were chosen.

2.4.1 Why Bluetooth?

Bluetooth is a Personal Area Network technology which itself fits into the project

very well as the wireless technology to be used in the Virtual project needs to attach itself

to the network on its own, configure and personalize itself as well as download relevant

information. Bluetooth also aHows the user to browse~met and transfer files through

FTP. Bluetooth is cheaper than IEEE 802.1 lb. Though Bluetooth has a smaller data rate

than IEEE 802.11 b considering cost and actual data rate needed by the instructor,

Bluetooth fits the role well.

2.4.2 Reasons for rejecting Infrared from being used for Instructor location

The location of the Instructor in the lab could be traced by using many means.

One of the most considered was Infrared (IR). It was proposed that an IR receiver be

placed on the wall opposite every door and the PocketPC could be sending beams of rR

rays periodically. The IR rays have a particular code for the instructor who is carrying the

PocketPC. When the Instructor enters the room, the 1R from the PocketPC could be

detected by the IR receiver which then sends electrical signals, according to the code in

the IR ray, to a computer to which it has been wired. This information could be collected

in a server and thus the instructors could be located at any time. The advantage of IR is

13

that it is highly directional and hence it would not go out of a room and hence there is no

possibility of locating the instructor wrongly. But, the directionality itself is the problem

too. Since IR rays are highly directional there is a possibility that the IR rays may miss

the receiver quit,e often. Not only this, the wiring to the computers from the receiver may

prove strenuous to maintain. So this idea was dropped and Bluetooth itself was

m.anipulated to be used for Instructor location.

2.4.3 Audio Video Headset compatibility with BIuetootb

The audio/video Headset plays a major role in the interactivity that the Virtual

Lab provides to the participants. Bluetooth functions in the 2.4 GHz ISM band. This band

is a free band for developers and has minimum regulations. Most of the audio/video

transmitters were found to function in the same band. This is would pose a problem to the

rdiability of the Bluetooth link as wen as the quality of the video transfer. So, lot of

audio/video transmitters were found and analyzed and the best components that were

both low in cost, good in performance and that avoided the 2.4 GHz ISM band wel-e

chosen and were implemented. The components were purchased from the vendor,

Microtek, Inc. and the Transmitter/Receiver function at the ISM 900MHz band.

]4

Chapter III

Features and tbe Implementation Specifics of the Virtual Lab

Virtual Lab is implemented by llsing Bluetooth along with the wired Ethemet

network. The Compaq iPAQ PocketPC is used for data transfer between the instructor

and the students and the Audio/Video device is used for transmission of Audio and VideD

to the students. An intermediate server acts the part of organizing and distributing the

data between the instructor and the students.

3.1 Features of the Virtua.' Lab

Web Pushing:

Web Pushing is a feature on the PocketPC to transfer files to the server from

where the students could pick them. This has been implemented lllsing FTP.

Instructor location:

Instructor location is a feature that would help students to locate the position of

the instructor in the lab. This would also help them in controlling the camera in the

appropriate room so as to view the Instructor. The viliual lab is implemented as depicted

in Fig 3.1. and the infonnation of the LAN Access Point to which the PocketPC is

attached to is passed to the server, and thereby the location of the Instructor is known.

15

o4 'llUob s_r , ..celvu ~'QMl t"o-m
""'."t lfl R90m 0
~. V'*b 'IltJVIer:IIS:5'igI'lSIn. 1I'Hil:f1JClOI

C~~~~::~~ol;ICIoCa'Of lD Room 0 n,-

Roome

Roome

ROXImA

Fig 3.1. Implementation of Virtual Lab.

Instant Text Messaging:

This feature allows the student to send text messages to the lnstmctor from hisfheI"

desktop. The messages are displayed on the PocketPC carried by the Instructor.

Wireless AV Headset System:

The transfer of real-time audio and video (AV) from the insllCuctor to students will

be made possible by the development of the wireless AV headset for the instructor and is

implemented as shown in Fig. 3.2.

This WI AV system enables the instructor to show procedures and facilities that may not

be accessible to the students due to many reasons, which may include:

• the facilities only allow a very small number of people to approach at a time, and

having all students come and see in tum may not be possible due to time limitations,

16

• the facility may be limited to trained or authorized personnel only,

• necessary changes/repairs to a system module were made which are currently a part of

the ongoing experiments that need to be urgently informed to the students,

• and the obvious case where the DL students are remotely located from the actual lab

and its facilities.

AudioNideo Receiver placed in . .
Instructors Headset with a the instruction lab AudloNldeo Encoder

Camera, Microphone & Wireless transmitter and Data Compressor n
t:. .;~'

(/~ll AudioNideoCCD Camera Receiver data.,'/
Microphone

Internet~
Gateway

TransmiU>er and power

supply (with belt clip)

o D o
Computer Computer Compuler

Laptop compu!er Computer Computer

Remote On site
Students S~udents

Fig. 3.2. Wireless AV Headset Solution.

17

3.2 Folder Structure used by the Wireless Instructor System on tbe Server

VLal>PDA

Files

lappimgs.txl Loglns.txl

Fig 3.3. Folder structure on Server.

"VLabPDA" is the main folder on the server.' It holds all the subfolders that are

used by the Wireless Instructor System. This is the default name given to the Main folder

but it could be changed to any other name if the changes are also added in Configuration

utility.

The Main folder contains the folders "Files", "Mappings", "Locati.on" and

"Logins", as sbown in Fig. 3.3, and whose names should not be changed. The "Files"

folder contains subfolders which are named with the Instructors logged in at that instant.

Each folder contains the files pushed by that particular instructor for the students. The

"Mappings" folder contains a file called "Mappings. txt", which contains infOlwation

mapping the Bluetooth address of each LAN access point with the room in which it is

placed. The "Location" folder consists of files named with the Instructors logged in at

that instant. These files contain the Bluetooth address of the LAN access point to which

the instructor is connected along with the room where the LAN access point is located

18

and the IP address assigned to the PocketPC. The "Logins" folder contains a file nauled

"Logins.txt", which contains names of instructors who have access to tllle Wireless

Instructor system along with their user names and passwords. This file is encrypted for

security purposes.

Files of significance on the server:

Instructor Location files:

These files are located III the "Locations" subfolder and have names of the

Instructors who are currently logged into the Wireless Instructor System. These files have

the Bluetooth address of the LAN Access Point (LAP) to which the Instructor's

PocketPC is connected to and the room in which it is along with the IP Address assigned

to the PocketPC. The name of the Instructor is picked up from the "Logins. txt" file and

the room name is picked up [Tom the "Mappings.txt" file.

Example:

Filename: DrJong-Moon Chung

Contents:

Ox00408c588ba4 A 139.78.79.165

The server picks up information about the Instructor Location from these files and

displays their location as dots on the map of the lab.

Mappings. txt:

This file holds information mapping the Bluetooth addresses of the LAN Access

Points with the room in which they are present. The Addresses are listed one after other

following the format­

19

<Bluetooth address in hexadecimal format> tab space <Room name>

Example:

Ox00408c588ba4 A

Ox00408c588b95 B

This infonnation is used by the Wireless Instructor Program to get the room in

which the LAN Access Point to which it has made a connection is present. This

infonnation is used in the Instructor location files.

Logius.txt:

This file has infonnation of all the Instructors who have access to the Wireless

Instructor System. The infonnation includes the Instructor's full name, user name and

user password used to login to the Wireless Instructor program. These data are stored in

the file in the following [onnat

<lnstmctor name> tab space <Usemame> tab space <UseqJassword>

But all the information is encrypted by XOR-ing them with a particular code byte.

3.3 Folder Structure used by tbe Wireless Instructor System on the PocketPC

BTFOLDER

"",­ Login .IXlFiles to be ")

\ sent to I Temporary

'--. studerrtsj"" " Localion file

,~ '\..-../o.J

Fig 3.4. Folder structure on PocketPC.

20

----...._-----------------­

This figure explains tbe folder structur'e used by the wireless instructor

system on the PocketPC. "BTFOLDER" is the main folder on the server. It contains the

folders "Files", "Mappings", "Location" and "Logins" , as shown in Fig. 3.4 and the

names of these folders as well as the Main folder should not be changed. The "Files"

folder may be used by the Instructor to store files that are intended to be transferred to the

students. The "Mappings" folder contains a file called "Mappings. txt", which contains

information mapping the Bluetooth address of each LAN access point with the room in

which it is placed. This file is downloaded from the server using the Configuration utility.

The "Location" folder is used to create the Location file locally named with the Instructor

who is logged into the Wireless Instructor program before sending it to the server. This

file contains the Bluetooth address of the LAN access point to which the instructor is

COllilected along with the room where the LAN access point is located and the IF address

of the PocketPC. These files are first created on the PDA and are then transferred to the

server by FTP. The "Logins" folder contains the fi]e named "Logins.txt",which is

downloaded from the server and contains names of instructors who have access to the

Wireless Instructor system along with their user names and passwords. This file is

encrypted for security purposes.

3.4 Software Components of the Wireless Instructor System:

The Wireless Instructor system has three software components

] . Wireless Instructor Program

21

2. Instructor Access Management utility

3. Configuration Utility

Wireless Instructor program:

Devices and RSSI ---------,
•• • a.'

00408c588b95 - atrc233 -6

I CJ IDone!1

Ci1e Transfer ~
!I ~ IBrowsel ~

theepa:How does Bluetooth work?
yuanz:What is Inquiry?

Bluetooth -------,
I New IIInquiry I~~

IConnect I IDisconnectl IExit I I

Fig 3.5. The Wireless Instructor Program.

The Wireless Instructor program, the main window of which is depicted in

Fig.3.5, is the main program which does Jnstructor Location, Web Pushing and

displaying paging messages to the Instructor and runs 011 the PocketPC. This program
/

plays the role of managing the Wireless connection of the PocketPC with the LAN

Access Points and consequently with the LA .

Not everybody has access to this program. "Logins.txt" holds the [nstructor

names, Login Names and passwords for the Instructors who have access. On starting the

program a login page, as shown in Fig. 3.6 opens up where the Login name and password

has to be entered. The program checks for the Login name and the corresponding

22

-..........--------------­

password in the "Logins.txt" file and logs into the main window of the program only if

the infonnation entered is present and valid.

W!B Dialog -4 E8:08 ~

Username: bchung I
Password: 1>1<*>1<>1<*>1<*"1 I

login CancelI I I

Fig 3.6. Login Window of the Wireless Instructor Program.

The implementations of the functionalities of the program are explained in detai I

in the coming sections.

Instructor Access Management Utility:

This program is used to add, remove and edit Instructors' names, the llsernames

and passwords and mns on the desktop only. Only those who know a certain Login name

and password - which is hard coded into the program - can access this program. This

security feature has been added so that not everybody can add or delete access. Only the

Instructors who are added by this utility will have access to the Wireless Instructor

23

program. The details of the InstlUctors who have access are placed in a file named

"Logins.txt" and the file is updated on the server in the location "\VLabPDA\Logins\'~.

This file is encrypted by XOR-ing the infonnation with a certain code. This file needs to

be downloaded to the PocketPC before the Wireless Instructor Program to update the

Login lnfon-nation on the PocketPC. The file is downloaded by using the Configuration

Utility. To know more about the utility please refer to Appendix B.

Configuration Utility:

This program is used to input all the basic information needed by the Wireless

Instructor Program to perfonn its functions. All the infonnation that is input is stored in a

file named "VLab_Config.txt" in the local folder, "\My Documents\BTFOLDER\

Configuration\". The data that are written to this file includes the IP Address of the

server, the login name, login password, the Main parent folder on the server for the

Wireless Instructor System which by default is "VLabPDA" and the name of the

connection setting that should be llsed by the cOlmection manager. The Wireless

Instructor Program picks up all these information from the fi.le. In addition to the above

information that could be input, the program also downloads the files, "Mappings.txt"

and "Logins.txt" from the server locations, "\VLabPDA\Mappings\" and

"\VLabPDA\Logins\" respectively by using an FTP connection and places them in local

folders, "\My DocUlments\BTFOLDER\Mappings\" and "\My Documents\BTFOLDER\

Logins\" respectively. These files are also used by the Wireless Instructor System and

hence the Configuration Utility needs to be run before starting the Wireless Instmctor

24

.'

Program if any changes have been done to Mappings.txt, Logins.txt or to the basic

information of the server mentioned earlier. Please refer to Appendix A for more details

on the Configuration Utility.

3.5 Wireless Instructor Program Implementations

Instructor location:

Instructor location is a feature in the Wireless Instructor system which gwes

information on which room of the Lab the Instructor is, at any instant. The Instructor

carries a Compaq iPAQ PocketPC which is connected to the LAN wireless through

Bluetooth. Each room has a LAN Access Point (LAP) to which the PocketPC makes the

Bluetooth connection.

A text file on the Server contains information mapping the Bluetooth Addresses

of all the LAP's used in the lab to the names of the conesponding rooms they are placed.

This file named "Mappings.txt" is located in the folder,"/VlabPDNMappings/" on the

server. This - file is to be downloaded into the PocketPC into the folder "\My

Documents\BTFOLDER\Mappings\" before the Wireless Instructor Program is started. A

separate Configuration utility has been created which downloads the file automatically

from the server to the pocketPC and places it in the folder specified above. Obviously

this utility has to be run before starting the Wireless Instructor program so that updated

infOlmation of the mappings is available.

25

~......_------------------­

The Bluetooth Software Development Kit (SDK) and the associated host stack to

implement Bluetooth operations from the Wireless Instructor program were purchased

from a company named ImpulseSoft. It provides lot of API's that could be used for basic

Bluetooth operations but a TCP/lP connection may not be initiated with the API's from

ImpulseSoft, Inc ..

The Wireless Instructor program could me made to run in a "Manual Selection

Mode" or "Automatic Selection Mode."

In Manual Selection Mode the Instructor could inquire for all devices in the

locality by tOllching the button "Inquiry". The program lists the Bluetooth Addresses of 3

nearby LAP's along with the corresponding rooms they are located. The Instructor has an

option to manually select each device and check for its Received Signal Strength

Indicator (RSSI) value by touching on the button named "RSSI". The RSSI value gets

displayed beside each device that was tested for RSSI. Then the instmctor could select

the device that he/she wishes to connect and touch on "Collnect". The program writes the

-
Bluetooth address and the Data Link Channel (DLC) of the device selected into the

4<HKEY LOCAL MACHINE\BuiltIn\BTSeriaICE2\BDAddr" and Channel (DLC) in

"HKEY LOCAL MACHINE\BuiltIn\BTSeriaICE2\Dlc" keys of the registry

respectively. This change in the registry values should not be made till the prevIOUS

connection is broken completely. Then the connection manager API is called to create a

Bluetooth connection with the selected LAP. Once the connection is established it creates

a file in the name of the Instructor who has logged into the program, locally in the folder

26

"\My Documents\!3TFOLDER\Location\". The file contains the BJuetooth Device

address of the LAP to which the connection has been made, the room at which the LAP is

present and the current IP address assigned to the PocketPC. This file is sent to the

folder:'NLabPDNLocation" on the server by creating an FTP cOlmection to the server.

The Manual Selection Mode could be used by the instructor if he/she is not going to

move out of a particular room.

The flow of procedures for making a Bluetooth connection is given in Fig 3.7.

The Wireless Instructor Application inquires for all the LAP's nearby. When a particular

LAP is selected, the necessary changes are made in the registry as mentioned earlier.

Windows CE provides a Connection manager which is capable of creating a TCP

connection over Bluetooth by using Point to Point Protocol (PPP). TIle Application

invokes the WinCE Connection Manager which dials out information for making the

connection through the Virtual Serial Port 8. These c1ata are captured by the Serial port

driver and sent to the Bluetooth stack. The Bluetooth stack, on receiving the commands

picks up the destination address, to which the connection is to be made from the registry,

which was updated by the Wireless Instructor Application. The Bluetooth stack then

invokes paging to make a connection with the destination LAP. On successful paging a

Bluetooth connection is made after a Master/Slave switch. Then the PocketPC integrates

with the LAN through the Bluetooth connection with the LAP.

27

2 '\ Win CE Connection
VLAB Appli cati 011

Manager

3~ 1
Seri al Port COM 8

\/
J/ 4

Serial Driver Registry

J.,,5

5 Bluetooth Stack J

/1

Fig 3.7. Procedure used by Wireless Instructor Program to pass BT Address and to ITIake connection.

Procedures 3, 4 and 5 take place internally and are not contra lied by the user

developed application.

The Automatic Selection Mode can be statied by touching 011 the "Auto" button.

The Wireless Instructor program automatically inquires for all nearby LAP's once every

minute. Along with inquiry it also measures tbe RSSJ values of the devices. And 11

automatically connects with the LAP with the highest RSSI value by writing the

Bluetooth address and the Data Link Channel. (DLC) of the device into the

"HKEY LOCAL MACHINE\BuiltIn\BTSeriaICE2\BDAddr" and Channel (DLe) in

"HKEY_LOCAL_MACHTNE\BuiIHn\BTSeriaICE2\Dlc" keys of the registry

respectively and calling the Connection manager API to create a connection. On

cOimecting to the LAN, the PocketPC creates a file containing the Bluetooth Device

address of the LAP to which the connection has been made, the room at which the LAP is

present and the current IP address assigned to the PocketPC in the local folder "\My

28

~....._---- -- -----:-------------­
. "

Documents\BTFOLDER\Location\". This file is sent to the folder,"/VLabPDAJLocation"

on the server by creating an FTP connection to the server. The whole process described

above takes place once every minute. Thus the PocketPC refreshes its connection with

the nearest LAP and updates the Instructor location every minute. The procedure is

depicted as a flowchart in Fig. 3.8.

Wrtt& tOO 811JEl'IOOth
address arld OLC or

C8'lll.C8 with t11l1-t R8S1

CalIIt1. ea.-.tiot1
MBr1eger API 10 Invoke

connedion wtth lt1e ~evIc::&

'NIh hIgt..t.RSSI

creete fll& In the name at 11'10
mtruc!l:lf ., lt1e W/y ~

BTFOLDERILocaUon'·

N

Fig 3.B. Flowchart of the Automatic Selection mode.

29

-.......-.._-------------------- -----­

Web Pnshing:

The instructor could select a file and send it to a particular folder in the server

using the program. On touching the "Browse" Button a File Browse Window is opened.

The Instructor is able to select the file to be transferred to the server by tOllching it. The

Browse Window closes once the file to be transferred is touched. The file name is

displayed in an Edit box. The "Send" button is touched to send the file by creating a FTP

cormection. The ScottyFTP API fi:om Ruksun Software based in Pune, India is used for

programming the FTP operations.

The function ScottyFtpConnect is used to connect to the server which takes a FTP

handle and IP address of the server as inputs.

After this, ScottyFtpLogin is used to login to the server by passing the login name

and password as inputs to it.

ScottyFtpChangeDirectory lS used to change the current directory to

"/VLabPDNFiles/<Instructor Name>" on the server.

Then ScottyFtpPutFile is used to transfer thE selected file, by reading its name

from the Edit 'box mentioned earlier, to the "!VLabPDAfFiles!<Instructor Name>"

directory on the server.

The FTP connection is disconnected using ScottyFtpQuil.

The flow of procedures for Web pushing is shown in Fig. 3.9.

30

SmttyFtpLogin - LogB into Itw
eervertMlh me uaemame BOO

~.pessed

SooayFlpCh8ngeC~- To
ctlBnge 10 ,,\1l..sbFOA\Rlea\

<1ns1ruetor NBfn&Yr."

SOOt¥"tPPutFIe - Transfer file to
me server

ScaUyFtpQult • Closes F1P
CDI"IrtBdion

Fig 3.9. flowchart of Webpushing.

The actual code implementation of the usage of the API from Ruksun could be

looked up at Appendix C.

31

Paging of the Instructor:

The webpage presented to the students is added with a space for the student to

enter text messages to be sent to the instructor. The student is able to select which

Instructor the message is to be sent. The text message along with the student's login name

is stored on the server. The Compaq iPAQ PocketPC connects to the server pefiodically

every 30 seconds and retrieves all text messages sent to a particular instructor. The

PocketPC makes a HTTP connection to the server and invokes a "php script" on the

server which filters out the messages for the particular instructor and sends them to the

PocketPC as shown in Fig. 3.10.

The messages are displayed on the Pocket PC in the

<Student Login name> : <Message>

fonnat one after the other in an Edit box.

1

PocketPCStudent Server .I.,
2

-
Student

•

•
•
• 1 - Request messages for
• Instructor•
• 2 - Delivery of. messages
• for Instructor •

Student

Fig 3.10. Procedure for pagll1g lnstruetor.

32

3.6 Transfer of Audio and Video to students

An AudioNideo Headset is to be worn by the Instructor which transmits data

wireless to the server which could then relay real-time video and audio on the webpage

for the Vi.rtual Lab on demand. The Audio/Video transfer is accomplished by using the

following components from Microtek, Inc..

• Color CCD Camera with Pinhole Lens

• 500 mW, 900MHz, Audio/Video Transmitter and Receiver

• Mini Microphone with Built-in Amplifier

• 12V 8AA Battery Holder

• 2 Power "Y" Cables

as well as a Analog to USB converter named WinTV USB from Hauppage, Inc.

The Audi.o Video Headset transmits FM signals at 900MHz and hence it does not

interfere wi th B luetooth that is used by the PocketPC to communicate with the LAN.

33

.-..-.------------------ ­
..

CbapterIV

Description and analysis of the new proposals for Bluetooth Handover

Support tor Bluetooth devices is being provided in Airports and in big offices.

When the user moves around the place, uninterrupted traffic flow is to be provided which

can be accomplished only if the device is able to lose the weak links due to the lIser's

mobility and create new stronger links with nearby Access Points. This chapter proposes

three new algorithms for Bluetooth Handover which have their own advantages and

d.isadvantages and each suitable for a certain situation or application.

4.1 Initial Setup

4.1.1	 Arrangement of Base Stations

The important consideration as with any mobile wireless communication system

IS to provide uninterrupted high quality connectivity. Among many factors that help

towards this, the an-angement of the Base Stations is an essential part to be considered.

The Base Stations 11eed to be an-anged in such a way that no area is left uncovered by the

signal. The most famous arrangement of placing the Base Stations is in the middle of

imaginary hexagonal cells, 111to which a large area can be divided i.nto multiple cells

based on the systems signal coverage range. This is the assumed model that will be

applied in this paper, which is shown in Fig. 4.1.

The Base Stations denoted by the '+' sign are arranged in such a way to fOl'm

i.maginary hexagonal cells that cover the area required. The Additional Base Stations

denoted by 'x' are added such that an extra number of devices could be served si.nce each

34

Base Station can serve only a maximum of 7 slaves at anytime.

+ - Cell formlrg Base Station
)(- Additional Base Station

Fig. 4.1. The ideal arrangement of Base Stations for full coverage of area.

4.1.2 Features of the Base Station

For the handover operations to be possible using the Bluetooth technology, certain

features need to be accommodated into the design.

1) The Base Stations have to be connected to a LAN/WAN network with

gateways functioning as an interface between the networks.

2) The Base Station needs to have the signal power measuring feature to measure

the power level of the link between itself and a particular Slave. which i.s denoted

by the RSSI variable, which i.s a feature in the Bluetooth specifications [5].

3) All Base Stations have to periodically enter Inquiry scan amidst the traffic

between other slaves so as to be discoverable to new Bluetooth devices.

4) When a new link is brought up and traffic to a particular device is to be routed

through that link, from then on, the information should be updated in the gateway

such that all other devices and the external network can access the desired device.

The above features are required such that the Base Stations can communicate between

35

themselves and assist the handover operations that are developed in this paper.

4.1.3 Initial COlUlection Setup

BTDevice e ••• station
,.--... ,......--....

/nqul'Y
N Paging

"CLUnk
I"­

M S/a1 O1I'set S
S1ooiI1b:: h Reau Itst

Poll

S
Null M

'--"' '-----"

M - Master
S- SlONe
N- New Device

Fig. 4.2 Initial COlUlection Setup.

A connection between the Base Station and the Bluetooth device could be

initiated by either system. In the case where the Base Station inquires peliodically to find

new Bluetooth devices in the piconet range, the Bluetooth devices need to wait until the

Base Station allots time for itself to enter the Inquiry stage while it has already engaged

in traffic transfer between slaves connected to it. This means that the user needs to wait

for quite a while before getting connected to the Base Station. This is undesirable, thus an

alternative second option of the Bluetooth device initiating the connection to the Base

Station is provided. In this option, the Base Station would become a slave to many

Bluetooth devices, which means it has to synchronize with each of them for each slOl it

communicates with a different slave. This requires additional system operational features,

which most likely will result in a higher device cost. Thus, this option is not desired.

Therefore, a combination of both techniques is proposed and described below. The

procedure is also depicted in Fig. 4.2.

1) The Bluetooth device is in an inquiry procedure when it is not connected to any

36

Master

2) 'When it enters a piconet range, the inquiry from the Bluetooth device would

evoke a response from the Base Station.

3) The Base Station responds with a frequency hopping sequence (FHS) packet,

which includes its Bluetooth address.

4) On receiving the FRS packet, the Bluetooth device then enters the Paging

mode and pages the Base Station with the address.

5) Once the Base Station responds to the page, a connec6on is setup between the

device and the Base Station.

6) Then, the Base Station transmits link management protocol (LMP) messages to

initiate the Master/Slave Switch.

7) The Slave and Master then switch roles and the Base Station becomes the

Master and the wireless Bluetooth device the Slave.

4.2 Haodover Proposals

4.2.1	 Proposal 1

The first proposal is a procedure where the Bluetooth device periodically inquires

while staying connected and maintains a stack of nearby Base Stations and chooses the

Base Station to connect to when Handover is initiated as shown in Fig. 4.3.

37

j

Sase Station 8TOevice New Base SlaUon
,--, ,--, ,--,

Periodic Inquiry S N Periodic Inoui'"

>PeriOdic InQuhy p.rlodlc I,aul",

M Periodic Inquiry Periodic Inquiry

_MP incl Dower rea

Paalna

I,k

,,- ACl LInK

S M
N°"

<:lnI01l,.'M S
Sw.8ch Reauest

Poll

M S Null M

'--------- '-- ­

M· Maslsr
S - Slave
N· New O...lc.

Fig. 4.3. Handover according to Proposal L

1) The Bluetooth device i.s always in "Periodic Inquiry" mode with a higher

Inquiry period (say, 60.16 s) and looks for new Base Stations around when it is

connected to a Base Station as a Slave for an Inquiry length of say, 1 .28 s.

2) The Bluetooth device maintains a stack of the Base Station device addresses, it

had found in its vicinity.

3) The Base Station device addresses found in tbe latest inquiry are added and

arranged on top of the stack according to the RSSI values, the one with the

highest RSSI value being the topmost.

4) When the RSSI of the link between the Bluetooth device and the cunent Base

Station to which it is connected falls below the lower threshold level, the Base

Station immediately sends a "LMP_incryower_reg" message to the Slave.

5) On reception of the LMP message, the Slave either increases its power level or

in the case where it has already reached its maximum power level or jf the feature

is not supported, it starts paging the Base Stations one by one using the stack of

Base Station addresses starting with the topmost.

6) The device then COlU1ects to the first Base Station (as a Slave), which responds

38

-

to the Paging. If a connection was not able to be made with the first device it will

choose the next One and so forth.

7) If none of the Base Stations in the stack of addresses respond, then the device

has to do an Inquiry and find a nearby Base Station and connect to it. If a

connection is made, the mobile unit will be the Master and the Base Station will

be the Slave since the mobile unit initiated the lnquiry.

8) Then, the Base Station irutiates a Master/Slave Switch after which the

Bluetooth device becomes a Slave to the new Base Station.

9) The Bluetooth device stays connected with both the Base Stations but uses the

new link for aU traffic. It may start using the old link in case its RSSI value comes

over the threshold level and the new link's RSSI value goes lower than the

threshold.

10) It disconnects anyone of the links when its supervision timer times out.

Mostly, it is the unused link that is disconnected by the link supervision timeout

as the active link is constantly monitored by using RSSI.

4.2.2	 Proposal 2

In the second proposal, the Base Station keeps track of the RSSI of the Slave unit,

and when the RSST goes below an acceptable level a request is initiated to the nearby

Base Stations to connect to the wireless device as shown in Fig. 4.4.

1) The Base Station measures the RSSI level at regular intervals.

2) When the RSS I value faHs below the lower threshold level, the Base Station

sends '"LMP_incr-power_req" message to the Bluetooth device.

39

3) This LMP message requests the device to increase its power level. If the device

is capable of that, it increases its power.

4) In case the device has reached its maximum power level or does not have the

capability to increase its power, it enters into the "Page scan" mode while

maintaining the traffic flow connection to the Base Station.

5) The Base Station also requests aU nearby Base Stations, through the wired

network, to page the device. It also sends the device's B~uetooth address and its

slot offset to speed up the paging process. It may achieve this by a broadcast of

the packet to all the Base Stations in the local physical network.

6) On detection by a new Base Station, the device gets connected to it as a Slave

and uses the new link for all traffic until it is of good signal strength than the old

link and above the threshold level.

Base Stallon BT DeVice New Base Slatlon
~

,~

S~N

Through Wired Network ReQue.11o page ElT DevlC~
M

LFIIP _'ncr_power reQ

Paging

ACL Link ACL Link

Poll
M S Iv1

Null

,~ '-'

"'4- Master
S· Slave
N· New Delfice

Fig. 4.4. Handover accordi.ng to Proposal 2.

7) The device maintains both the links until either one of them disconnects by a

link supervision timeout. Same as is in Proposal 1, commonly it is the unused link

that ms disconnected by the link supervision timeout as the active link is constantly

monitored Llsing the RSSI.

40

"'---------­

4.2.3	 Proposa.l 3

The third proposal fol1ows a very simple methodology of ensuring reliable

connectivity of the Bluetooth device through a backup link maintained with another Base

Station as shown in Fig. 4.5.

1) In the initial connection setup, while a Bluetooth device is newly introduced

into the Base Stations' range, if the device finds two Base Stations in the range it

connects with both immediately. If it finds more than two Base Stations it chooses

the two Base Stations that responded first.

2) At any time, one of the links acts as a medium of transfer of traffic while the

other is inactive. The inactive device could be just a active link that is not used for

traffic or it could also be placed in the park mode.

3) The Base Stations monitor the RSSI level of all their connected links. When

the RSSI of any link fans below the lower threshold value, it infonns the Slave

using an "LMP_incryowerJeq" message.

4) If the Slave is capable of increasing its transmission power, it does that. if it is

working in its full power or is not capable of increasing its power, it starts using

the other good link for traffic. If the backup link was in park mode, then it is

brought up to active link and this link is used for the traffic. The poorer quality

link is discon.nected. The backup link is also constantly monitored and if the link

quality gets poor it is replaced with a better one.

5) The device goes into the "Periodic lnquiry" mode with U:lquiry length and

Inquiry period of say, 1.28 s and around 5.12 s, respectively. An alternative way

may be to perform inquiry when the amount traffic is low, assuming prior

41

-

knowledge is obtained about it.

6) The Bluetooth Device inquires and connects as a Master with another new

Base Station, in addition to the currently connected Base Station.

7) The newly selected Base Station then initiates a Master/Slave switch to make

the wireless Bluetooth device its Slave. The new bnk is kept inactive or i.s not

used for any traffic.

BaaeSt~onl SaseSt4l1cm2' rBTDb1Clt New8ueSt;,Uon
r-

,.-- AtlM!ACL.UAk" S-. N r ­

'naelM ACL Unll

M

AtllYllAClLJnJ(
 S N

M Oluonll!:ulLJnk

M jclnS
M PetlOclic InQ.VlfI'

A(!J'IIeACLLJnk Petlodlclnqul!y

P.illlnll

MS SAClUllk

M
Ac1J'lleAClLJI'II\ SIOIOllnl

Swrtlh R'e~uQ.1

M r'_--""'=""':.:.;:'O:.:.:"::::;ln,+-+ -1" S In.actl'.-eIiCLl...tnk M

- IlII-MaSll3f
9·SIM:
H·New O:e'o'!ce

Fig. 4.5. Handover according to Proposal 3.

8) The Bluetooth device maintains both the links until the signal quality of one of

the links' degrades below the required threshotd. Once one of the links is

dropped, the device again performs procedures to setup. an alternative

corresponding link.

4.3 Analysis of Handover

The proposed handover teclmiques have been implemented and analyzed for their

timing performance. The timings for Inquiry and connection have been measured by

developing an application with capabilities to time the desired events. Further software

has been developed which implements the handover topologies proposed and analyses

42

their performance.

4.3.1 Test Setup

Ericsson Bluetooth Development Kits™ were used as the Bluetooth Devices and

Base Stations in building the Bluetooth wired and wireless network. The applications

were implemented over the Ericsson Bluetooth Protocol Stack™. The CATC Merlin

Bluetooth Protocol Analyzer™ was used to monitor the packet transfer between the

devices and the Agilent Technologies E 1852B Bluetooth Test Set™ was used to measure

the signal quality.

4.3.2 The Timing Analysis

Handovef Ted:utique Ho.fld~)\'ef Timillg Halldove, Timing

(Ro.slge) (ms) (Avel1lge) (illS)

Propo~1 I 220 - 2,11 2:'l1.2

Pmpoml2 170 - I~O 172

Pn>p<lsal :- 1.875 -2.5JXJ 1.887

Table. 4.1. Minimum Handover Timings.

From the performed tests, the timing for Inquiry and connecting with a Service

Discovery was n1.easured and recorded. The tests were repeated 10 times and the time

was recorded for each event. The results are represented in Table 4.1.

1) Range of time taken to discover a device: 481 - 4196 ms

2) Average time taken to discover a device: 2339.6 ms

In Proposal 1, after the connection setup, a Master/Slave switch needs to be

conducted which takes 70 ms. The given tim]ng is the minimum timing needed for

Handover and this could increase if a connection was not able to be made with the first

Base station in the stack and more base stations are tried for connection. The handover

43

till1ings may also increase if the new Base Station has one or more sea links which have

higher priority than page scan and can intelTupt it. Proposal 2 does not require

Master/Slave Switch and is faster than proposal 1. The given timing is the minimum

handover timing and! it would increase if the new Base Station had one or more slaves

with sea links as they interrupt the paging. Moreover there may be delays with the Page

request message to be transmitted from the old Base Station to the new Base Station. In

the third proposal, a link already present is made active. So the transition is almost

instantaneous though a backup link will leisurely be established again commonly

occupying backup channel resources in support of the rapid handover. The timings given

are taken by assuming that as soon as the LMP message is received by the slave, it

changes its clock to the new Base Station and immediately receives a POLL packet from

the new Base Station. Then it would respond in the immediate slot and infonn that it

would be its new Master. But in reality, if there are many slaves with the new Base

Station the POLL packet to the slave would come later and hence the handover wi fl be

delayed.

4.3.3	 The Ping-Pong effect Analysis

When a device lies almost equidistant between 2 Base stations and the RSSI

balance between the two is fluctuating very rapidly - the Base station RSSls become

greater than each other altemately very rapidly - the handover procedure may be started

at each reversal of the RSSI values. This is called as the Ping-Pong effect.

The Bluetooth handover algoritluns were implemented with code to counter the

Ping-Pong effect. The Handover is not started until 10 continuous samples of the RSSI

value are below the threshold value that would start handover. The samples are taken

44

with a gap of 1 ms between them. Apart from this, the measuring of RSSI values after a

handover starts only after a timeout value, say 1 minute. After a handover takes place, the

timer is started and till then the measurement of the RSSI value is stopped and restarted at

the end of the timer. When 10 continuous samples of the RSSI value dip below the

threshold level, handover will be started. Thus the Ping-Pong effect is avoided.

The general method of Hysteresis that is used to avoid the Ping-Pong effect is also

applied as shown in Fig.4.6. The upper and lower threshold values for the Hysteresis

need to be found as per the requirements of the application. If a device is connected to,

say Base station 1 and is moving towards Base statjon 2 the Handover would take place

from Base station 1 to Base station 2 when the signal level goes below the upper

threshold. If in case, the signal power 0 f Base Station 1 becomes greater than Base station

2 in the course of time but still within the upper and lower threshold levels, the handover

will not take place. The handover from Base station 2 to Base station 1 will start only

when the power level of Base station 2 drops below the lower threshold. Applying this

technique avoids the Ping-Pong effect. But appropriate threshold levels have to be chosen

for errorless functioning.

Distance

Fig. 4.6. Handover Hysteresis.

45

-~...._-------------­

4.3.4	 Analysis of interruption to traffic:

In the proposal 1, Inquiry takes place periodically during nonnal operation of the

devices. The Inquiry is done by the slave so there may be circumstances, where when the

master sends a packet, the slave may not receive it and respond to it. This could be

avoided by starting the Inquiry when there is no traffic from the slave to be transferred to

the master. When there is no data in the slave to be sent, a slave sends a NULL packet in

response to the POLL packet from the master. Periodically the slave checks itself if it has

data to send. If it has it waits till the master sends a POLL packet. In response to thiB, the

slave sends the data and then waits for the next time the master sends a POLL. If there is

no data it sends a NULL and immediately after that starts the Inquiry.

In proposal 2 and 3, there is no time lost in inquiry during traffic. In proposal 2,

the data to be sent to the slave from the old Base Station may be buffered and sent to the

new base station. Actually this data has to be sent to al1 the nearby Base Stations and the

one that has connection to the slave sends it to it. In proposal 3, both Base Stations have

knowledge of the other and hence when one the active link is broken, a.ll the data from

that Base Station are sent to the new acti ve Base Station through the wired link. And

hence there is no loss in traffic.

46

Chapter V

Conclusion

The Virtual lab was implemented successfully and the system has been

performing very well. The instructor has found new freedom in moving around the rooms

of the lab and instructing. In every lab course, when a part.icular exercise needs to be

displayed, the students come in groups taking turns to view as to how it is done. The

Audio/Video headset reduces the time lost in such activities. The students are able to see

what the Instructor is working from their seats on their desktops. They could pose

questions to the instructor by typing text messages that are displayed on the Instructor's

PocketPC along with the student's login id to the Virtual Lab. The instructor saves a lot

of time by being able to type in files and send them immediately to the students using the

PocketPC. The primitive halldover technology works without fault and does not interrupt

during the presence of traffic. The Virtual Lab is a big step in infusing high-end

technology for aiding education in Oklahoma State University. The Wireless Instructor

system is shown in Fig. 5.1.

The first two proposals for Bluetooth Handover are techniques where the

discovery of the devices is avoided during the failure stage and conducted before the need

for handover arises. Although in the first proposal the traffic may be interrupted

periodically for a small time [or inquiry. The second proposed method is faster than the

first as the Master/Slave switch is not required. The third proposed method is a technique

where a backup link is available to replace the faulty link. Though this might be the

47

~..._----------­

fastest way to COnduct handover, this topology will lead to a larger number of Base

Stations in SUppOrt of the same user population since each device at any time needs to

maintain 2 links. The proposed techniques above can be used as a guideline to handover

development in Bluetooth systems. The individual parts of each technique may be

independently selected out and combined in establishing an improved handover technique

that may suit a particular apphcation or Bluetooth network configuration. The technique

for handover may also be changed dynamically while roaming depending on the number

of Bluetooth devices or Base Stations that need to be interactively discovered and the

amount of traffic and the traffic service requirements.

Fig 5.1. The Wireless Instructor System.

48

REFERENCES

[1]	 C. C. Ko, B. M. Chen, S. H. Chen, V. Ramakrishnan, R. Chen, S.Y. Bu, and Y.
Zhuang,"A large scale web-based virtual oscilloscope laboratory experiment,"
lEE Engineering Science and Education Journal, Vol. 9, No.2, pp. 69-76, April
2000.

[2]	 C. C. Ko, B. M. Chen, S. Bu, V. Ramakrishnan, C. D. Cheng, Y. Zhuang, and J.
Chen,"A web-based Virtual laboratory on a frequency modula6on experiment,"
IEEE Trans. Systems, Man and Cybernetics. part C, vol. 3], pp. 295 -303, Aug.
2001.

[3]	 M. Serra, E. Wang, and J. C. Muzio,"A multimedia virtual lab for digital logic
design,"in 1999 IEEE Int. MSE ConJ, pp. 39-40.

[4]	 C. Rohrig, and A. Jochheim," The Virtual Lab for Controlling Real Experiments
via Internet," Proc. ofIEEE Int. Symposium, Aug. 22-27, 1999.

[5]	 S. Baatz, M. Frank, R. Gopffarth, D. Kassatkine, P. Martini, M. Schetelig, A.
Vilavaara, "Handoff support for mobility with IP over Bluetooth," Proc. IEEE
LCN 2000, pp. 143- 154, Tampa, Nov. 2000

[6]	 D. J. Y. Lee and W. C. Y. Lee , "Ricocheting BI.uetooth," Proc. IEEE 2nd Int.
ConJ Microwave and Millimeter Wave Technology 2000, pp. 432-435, 2000.

[7]	 D. Lee and W. Lee, "Integrating bluetooth with wireless and ricocheting," Proc.
11th IEEE PIMRC 2000, vol. 2, pp. 1310 -1314, 2000.

[8]	 M Arbrecht, M Frank, P Martini, M Schetelig, A Vilavaara, and A Wenzel, "IP
Services over Bluetooth: Leading the Way to a New Mobility," Proc. iEEE
LCN'99, pp. 2-11, Oct. 1999.

[9]	 J. Tourrilhes, Bluetooth Roaming Proposals. Basic Book/Monograph Online
Sources, Oct. 9, 2000 (http://www.hpl.hp.com/personal/Jean Tourrilhes/Papersl
apr-jt.pdf).

[10]	 Bluetooth SIG, Specification of the Bluetooth System- Version J. J. Speci fication
volume 1, Feb. 2001.

[11]	 J. Bray and C. F. Sturman, Bluetooth Connect without cables. 1st ed., Upper
Saddle River, N.J.: Prentice Hall PTR, 2001.

[12J P. Bhagwat and A.Segall, "A routing vector method for routing in Bluetooth
" scattemets," Proc. Sixth IEEE Int!. Workshop on Mobile Multimedia Commun.

1999, Nov. 1999.

49

l
[13]	 C. McDaid, Routing connections in Bluetooth. Basic BookIMonograph Online

Sources, Apr.2001 (http://www.palowireless.comlbluealiicles/cc3_ h andover.asp).

[14]	 A. Kansal, "Handoffin Bluetooth Public Access Networks," unpublished.

[15]	 M. L. George, L. J. Kallidukil, and J.-M. Chung, "Bluetooth handover control for
roaming system applications," Proc. of IEEE MWSCAS 2002, Tulsa, Oklahoma,
Aug. 4-7,2002.

[16]	 Ruksun Software Technologies, Programmer's Guide for Scotty FTP API for
Windows CE, Jan. 2001.

50

APPENDIX A

Description of the Configuration Utility

The Vlab configuration utility allows users to enter the Server IP Address, FTP

user name, FTP Password, Remote folder name and Connection name and these values

are stored on a file locally as well as download the Login and Mapping infonnation. The

utility also has an option to load default values in case the user wants to revert back to the

default values. These values can be changed and updated in the file.

This utility is necessary because it is possible that the list of users who are

gIven access to the Wireless Instmctor system i.s prone to updating and so is the

placement of the LAN access points in the various rooms of the lab. The Server's IP

address may change when the network is altered. For secUlity purposes, the FTP

password may have to be changed. The Remote Folder Name and COIUlection Name may

also be updated. One method that may be used is to store all this infonnation on the

server and update the PDA each time the application is used but is not possible to connect

to the web server without knowing the FTP User Name and FTP Password. So this

infonnation about the cOlmection and location of the files on the server are gi ven to the

PDA locally and the Login list and LAN Access Point-Room are updated manuaUy When

needed to.

Tile application updates the Pocket PC with the Login and Mappi.ng files from the

remote web server which are transferred and stored locally through an FTP connection.

51

-

The Login file contains the names, user names and passwords of the instructors who have

access to the wireless instructor system. The Mapping file has information mapping

Bluetooth addresses of LAN access points to the rooms in which they are placed. The

Configuration Utility looks as shown in Fig. A.I.

Server IP Address lilUJ#i!il!ilill
FTP User Name Ivlab

FTPPassword I_m_st_m -'

Remote Folder Name !/VLabPO.B.

Connection Name I_vl_ab ---'

I Update IIRestore Default Values I
IRestore Saved valuesll Clear Form I

Fig. A. 1. Configuration Utility window.

Server IP Address: This is the IP address of the web server in dotted decimal notation.

FTP User Name: This is the user name used to access the web server using File Transfer

Protocol.

FTP Password: This is the password used to access the web server using File Transfer

,
Protocol.

52

Remote Folder Name: This is the name of the Main root folder on the web server where

all files related to the Wireless Instructor system are stored.

Connection N arne: This is the name of the connection setting, configured to connect

using Bluetooth Null Modem, used by the WinCE Connection Manager to

connect to the LAN Access Points.

'Update' button: This button saves all the information entered in the utility in a local

configuration file ("\My Documents\BTFOLDER\Configuration\VLab_Conf.txt")

and also downloads the Login and Mapping information from the web server.

'Restore Default Values' button: This button loads the default values onto the Edit

boxes in case the user wants to revert back to the default values.

'Restore Saved Values' button: This button loads the values that have been stored most

recently in the configuration file onto the Edit boxes. When the utility is opened,

the saved values are loaded automatically.

'Clear Form' button: This button is used to clear all the entries in the Edit boxes.

53

r
 -

APPENDIXB

Description of the Instructor Access Management utility

Introduction

This prograrn is a part of the software of virtual lab proj ect for managing user

accounts. It only permits administrator account login and does some operations for user

accounts, such as adding users, deleting users, changing password, etc.

It gets the users> information from the FTP server, finishes the operation of

administrator and then updates the users' information on the FTP server. It can be used

on any desktop and is very easy to use.

How to use

1. Run the program, the login window will be showed first as in Fig. B.1.

LoginName:

Password:
Login

Cancel

fig B. 1. Instructor Access Management Utility Logill window.

TyPe the login name and password. Click login to access the program, clicking cancel

will exitthe program.

The main window is as in Fig. B.2.

54

Full Name

Username: Iyuanz Moses Gear e .	 .
, theepa··....····hook·····..···Ms._Theepa_Natarajan

PassWord: Ipunch

Update I Add I Delete I Apply I OK Exit

Fig B.2. Instmctor Access Management Utility wi.ndow - Edit.

In the right window, the first column is the username, the second one is the password,

and the third one is the full name of the user. Though the example shows names

separated by an underscore, the names can be separated by a space.

2.	 Choosing one user in the right window by clicking on it will show the information

individually on the Edit boxes. Change the item that you want to change and then

click update. The change made to that item is stored and is depicted in Fig. B.3.

55

~~-~---;---------------

~"'----~-"""'''''~-''-:~'''''''''''-'''"''-T~ ~

~~J~~O!~~~.!.v>......'-"'-"'" .,,,.,.... '~"'~ •.,"'~ ~ ...""', J"'I<..,. <= L'''' """"~.-"'>.,""",,,,L;]lf2-I~

Username: r Username Password Full Name

lynnmg··········kick···......·Mr._Moses_George
yuanz···· ..····student·..•····..Mr._Yuan_Zhang
theepa·..·· ..··-hook·..···....Ms._Theepd_Natarajan

PassWord:

Full Name:.

Add Delete 1 Apply I OK

Fig D.3. Instructor Access Management Utility window - After Edit.

3. Write the usemame, password and full name in the left windows, click add and you

can add a new user account and it is depicted in Fig. BA.

Username Password Full Name

Username: r	 lynnmg········ ..kick·...... ···Mr...Moses..George
yuanz· ··.. ·student..·· Mr._Yuan_Zhang
theepa ·-·· ..hook·· ..· -tv1 sooT heepaJlataraian
ichung··· ·····-·profeswJ· ·····D r._Jong·Moon..[hul

PassWord:

Full Name:

Update I 1r::::AQi~L~ Delete J	 P,pply I OK Exit J

Fig DA. Instructor Access Management Utility window - After Add.

56

--............._---------

Ii Ii .•

. " ..
J

4.	 Choose one user account from the right window, and then click delete, you can delete

the user that you want as depicted in Fig. B.5.

Username Password Full Name

Username: lynnmg····.kick.····..·.·Mr._Moses_George
.Yuanz··········student··········Mr._Yuan_Zhang
ichung··········professor··········Dr._Jong·Moon_Chul

PassWord:

Full Name:

Update I Add J ILP.:~!~~~::JI Apply I OK J Exit j

Fig B.5. Instructor Access M.anagement Util.ity window - After Delete.

5.	 When you click apply, the progral1:l will store aU user accounts that are in the right

window to the FTP server. The directory is "/VLabPDAlLogins/Logins.txt".

6.	 When you click ok, the program will store all data to the FTP server and close the

program.

7.	 When you click exit, the program will be closed without saving any change.

57

~-------------------
I.

APPENDIX C

Code written for FrP connectivity over Bluetootb

/***
Function arne : FTPOpen
Description : This function opens the FTP connection and logs into the server
Input : IP Address of server, Username, Password
Returns : Boolean ­ True or False
***/
bool CUiDIg::FTPOpenO
{

bFileTransferProgress = TRUE;

FTPHandle = ScottyFtpCreateO;

if(FTPHandle = NULL)

{

bFileTransferProgress = FALSE;
retum FALSE;

}

if (ScottyFtpConnect(FTPHandle,Server_IP_Address) <0)
{

bFileTransferProgress = FALSE;
return FALSE;

}

if(ScottyFtpLogin(FTPHandle, FTP_UserName, FTP_Password) <0)
{

bFileTransferProgress = FALSE;
return FALSE;

bFileTransferProgress = FALSE;
bFTPPresence = TRUE;

return TRUE;
}

/***
Function Name : FTPSendFile
Description : This function sends a fi Ie to the server
Input : Remote Destination folder, Local file name, Destination file
name
Returns : Boolean - True or False

58

r~---------------­

** ** ** ******************************* *************************** ** * ****/

bool CUiDIg: :FTPSendFileO
{

m_Edit_Status.SetWindowTextLT("Busy! "»;
bFileTransferProgress = TRUE;

if(ScottyFtpChangeDirectory(FTPHandle, RemoteFolder) <0)
{

bFileTransferProgress = FALSE;

retum FALSE;

}

if (Scot1yFtpPutFiJe(FTPHandle, LocalFile, RemoteFile) <0)
{

bFileTransferProgress = FALSE;

retum FALSE;

}

rn_Edit_Status.SetWindowTextLT("Done!");

bFileTransferProgress = FALSE;

return TRUE;
}

/***
Function Name : FTPGetFile
Description : This function gets a fi Ie £l'om the server to a local folder
Input : Remote Source folder, Local Destination file nal1'le, Remote
Source file name
Returns : Boolean -- True or False

>I< ** * >I< * **** *************************** ********** *************** >I< >I< ** *****/

bool C·UiDlg::FTPGetFileO
{

ffi_Edit_Status.SetWindowTextLT("Busy! "»;
bFileTransferProgress = TRUE;

if (ScottyFtpChangeDirectory(FTPHandle, RemoteFolder) <0)
{

bFiJeTransferProgress = FALSE;

retum FALSE;

}

if (ScottyFtpGetFile(FTPHandle, RemoteFile, LocalFile) <0)

{

bFileTransferProgress = FALSE;

59

J .' .

return FALSE;
}

ffi_Edit_Status.SetWindowTextLT(lDone!"»;
bFileTransferProgress = FALSE;

return TRUE;
}

1***
Function Name : FTPDeleteFile
Description : This function deletes a file on the server
Input : Remote folder, Remote file name
Returns : Boolean ­ True or False
***/

boo1CUiDlg::FTPDeleteFileO
{

bFileTransferProgress = TRUE;
if (ScottyFtpChangeDirectory(FTPHandle, RernoteFolder) <0)
{

bFileTransferProgress = FALSE;
return FALSE;

}

if (ScottyFtpDeleteFile(FTPHandle, RemoteFi Ie) <0)
{

bFileTransferProgress = FALSE;
return FALSE;

}
bFileTransferProgress = FALSE;
return TRUE;

}

/***
Function Name : FTPClose
Description : This function closes the FTP connection with the server
Input
Retums : Boolean - True or False
***/

bool CUiDIg: :FTPCloseO
{

ScottyFtpQuit(FTPHandle) ;
ScottyFtpDestroy(FTPHandle) ;

60

-

bFileTransferProgress = FALSE;
bFTPPresence = FALSE;
retumTRUE;

}

J ~...._--------­

"

61

APPENDIXD

Code for the Wireless Instructor program

Program Files:

CLoginDlg.cpp

// CLoginDlg.cpp : implementation .file
//
#include "stdafx.h"
#include "resource.h"
#include "CLoginDIg.h"
#include "uiDIg.h"

#ifdef DEBUG
#define new DEBUG NEW
#Undef THIS FILE
static char THIS_FILE[] = _FILE_;
#endif

#define DEFAULTLOGINNAME "adrnin"
#define DEFAULTPASSWORD "virtualbluetooth"

/III/III///////////////III/II//////1/1/1/////////1/////// 1/////////1/1///////
// CLoginDlg dialog

CLoginDlg::CLoginDlg(CWnd* pParent /*=NULL*/)
: CDialog(CLoginDlg: :IDD, pParent)

{
//{ {AFX_DATA_INIT(CLoginDlg)

// NOTE: the ClassWizard will add member j,nitialization here
II} }AFX_DATA_INIT

BOOL CLoginDlg::OnInitDialogO
{

CDialog: :OnlnitDialogO;

// TODO: Add extra initialization here

62

II
m_Edit_Password.SetPasswordChar('*')~

GetConfigDataO;

}

return TRUE~ II return TRUE unless you set the focus to a control
II EXCEPTION: OCX Property Pages should return FALSE

void CLoginDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog::DoDataExchange(pDX);

II{ {AFX_DATA_MAP(CLoginDlg)

DDX_Control(pDX, IDC_EDIT_USERNAME, m_Edit_UserName)~

DDX_Control(pDX, IDC_EDIT_PASSWORD, m_Edit_Password);

II} }AFX_DATA_MAP

BEGIN_MESSAGE_MAP(CLoginDlg, CDialog)
II {{AFX_MSG_MAP(CLoginDlg)
ON_BN_CLICKED(IDC_LOGIN,OnLogin)
ON_BN_CLICKED(IDOK, OnOK)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

1/11/1111IIIIII/11111111111111111111111111111IIIII/IIIIIIIIIIIIIIIIIIIIIIIIII
II CLoginDlg message handlers

void CLoginDlg::OnLoginO
{

unsigned short *temp = new unsigned short [LOGINLENGTH];
unsigned short *templ == new unsigned short [PASSWORDLENGTH];
int i,length;
CString tempch;

ill Edit UserName.GetWindowText(temp,LOGINLENGTH);
m=Edit=Password.GetWindowText(temp 1,PASSWORDLENGTH);

for(i=O;i <LOGINIENGTH; i++)
cLogin ame[i] = temp[i];

for(i=O;i<PASSWORDLENGTH; i++)
cPassword[i] = templ[i];

63

~......_------- ­

II Encryption of the login and pwd

_strlwr(cLoginName);

length = strlen{cLoginName);

for (i = 0; i<length;i++)

cLogin ame[i) A= ENCRYPTKEY;

length = strlen(cPassWord);

for Ci = 0; i<length;i++)

cPassword[i) "= ENCRYPTKEY;

if(! CheckLoginDataO)
{

MessageBoxLT("Try Again"), _TC"Error"), MB_OK);
m_Edit_UserNam.e.SetWindowTextLT(""»);
ID_Edit_Password.SetWindowTextLTC""»;
return;

}

CDialog: :OnOKO;
}

void CLoginDlg::OnOKO
{

II TODO: Add extra cleanup here

CDialog::OnCancelO;

void CLoginDlg: :OnCancelO
{

II TODO: Add extra cleanup here

CDialog::OnCanceIO;
}

bool CLoginDlg: :CheckLoginDataO
{

FILE *File_Data;

char *data = new char[120);

char *UName = new char[50);

char *Pwd = new char[30);

char *FName = new char[30);

int length,i;

64

i---............ _
....__­

File_Data = fopen(LOCALLOGINSFILE, "r");
if(File_Data == NULL)

MessageBoxLT("Cannot find Login File"), _T("Error"),
MB_OK);

if(strcmp(cLoginName, DEFAULTLOGINNAME) = 0 &&
strcmp(cPassword, DEFAULTPASSWORD)==O)

t
memcpy(cLoginName, "Admin", 30);
Tetum. TRUE;

}

whil,e(! feof(File_Data))
{

fgets(data, 120, File_Data);
sscanf(data,"%s\t%s\t%s", UName, Pwd, FName);
if(strcmp(cLoginName, UName)=O && strcmp(cPassword,

Pwd)=O)
{

length = strlen(FNarne);
for (i = 0; i<length;i++)

cLoginName[i] = FName[i] A ENCRYPTKEY;
cLoginName[i] = '\0';

II MessageBox(L"ok" >O,MB_OK);
II memcpy (cLoginName, FName, 50);
II MessageBox(L"ok1",O,MB_OK);

fclose (File_Data);
return TRUE;

}
}
fclose (File_Data);

return FALS E;
}

65

............_------ ­

RssiTest.c:

#include "RssiTest.h"

//#include "Globals.h"

/**************** Globals******************************/

HCCHandie ghDefaultHandle = NULL;

HCI_Handle ghConnHandle = NULL;

HCI_Handle ghScoHandle = NULL;

hei_Iink_type guSeoLinkType = HCI_NO_LINK;

bt_in~res gauInquiryResult[HCI_MAX_NUM_IN~RES];

int giNumDevice = 0;

bt_device_context ghDeviceContext;

bd_addr guBdAddr;

int iDeviceIndex;

bd_addr Devices_BD_Addr[MAXNUMDEVICES];

uint16 giStatus;

HANDLE ghEvent;

uint8 bRssilnProgress = 0;

HANDLE ghWriteEvent;

HANDLE ghExitEvent;

HANDLE ghStopEvent;

HANDLE ghWriteThread;

HANDLE ghRssiThread ;

app_hci_cmds guWriteCmd;

int giConnFlag;

int giProgressFlag;

MData MDummy;

MData* puMatchData=&MDummy;

uint32 aiEventArray[MAX_EVENTS];

char RemDummy[50];

char *RemoteName = RemDummy;

int iTotalDevices;

/***

Function Name :HeiTestIntitialise

Function Type :IntemaJ

66

-

Description :This is a main function which starts the
application.

Arguments
Input

Retums :none
***/

EXTERN int HciTestIntitialise(void)
{

uint8 iEventCount;
long iRetVal = 0;

iEventCount = 0;
aiEventArray[iEventCount++] = HCI_DIS_COM_EVN;

if«ghDeviceContext = BT_OpenDevice(BLUE_USB))=NULL)
{

printf("Unable to open device \nil);
exit(1);

}
/* Get a handle to HCI before executing any hci command */

ghDefaultHandle = BT_HCI_GetHandle(ghDeviceContext,HCI_DEFAULT);
if (!ghDefaultHandle)
{

printf("\n ");
exit(I);

}
BT_HCI_RegisterCalIBack(ghDefaultHandle,aiEventAITay,(hci_callback) APP_C

onnectionCalIback,iEventCount);

rdum 1;
}

/***
Function Name :WriterThread
Function Type :Internal
Description :This is a Writer Thread's Function
Arguments

Input :LPVOID: ignored

Retums :DWORD
*********~***/

DWORD WriterThread(LPVOID pYoid)

67

- -

{

HciTestIntitialise();

while(l)
{

WaitForSingleObject(ghWriteEvent,INFINITE);

switch (guWriteCmd)
{
case HCI_INQUIRY:

APP_HciTestCommands(HCCINQUIRY,puMatchData);
break;

case HCI CONNECT:
APP_HciTestCommands(HCI_CONNECT,NULL);
break;

case HCI DISCONNECT:
APP_HciTestCommands(HCI_DISCONNECT,NULL);
break;

case HCI READ RSSI:
APP_HciTestCommands(HCCREAD_RSSI,puMatchData);
break;

case HCI- READ
-

REMOTE
-

NAME:
APP_HciTestCommands(HCI_READ_REMOTE_NAME,

NULL);
case EXIT:

BT_Close(O);
SetEvent(ghExitEvent) ;
retum 0;

}
}
return 0;

/***

Function Name : APP HciTestCommands
Description : Function that issues various HC] commands
Argument

68

~.._--------- ­

- - -

Input
hHciHandl e,uEventId,pcData(EventData) ,iLength,pvMatchData

Output : None
Global : None.
Error Condition
Return : None

**
*****1

EXTERN void APP_HciTestCommands(int iCmdType,void* pvMatchData)
{

hci_callback_info uCallBacklnro ;
switch(iCmdType)
{
case HeI_INQUIRY:

{
lower_bd_addr uLap;
uLap.iData[O] = GIAC» SHIFT_16;
uLap.iData[l] = GIAC» SHIFT_8 & HCI_LOWER_BYTE_MASK;
uLap.iData[2] = GIAC & HCI LOWER BYTE MASK;

uCallBackInfo.pfCallBack = (hci_callback)APP_lnquiryCallback;

uCallBacklnfo.pvMatchData = pvMatchData;

printf("\n Issuing Inquiry Command ... ");

giNumDevice = 0;

II Check giStatus before waiting on a event.
giStatus = BT_HCI_lnquiry(ghDefaultHandle,

uLap,
INQUIRY_DURATION,
HCCINQUIRY_MAX_RESPONSES,
uCallBacklnfo) ;

if (giStatus != HCr_SUCCESS)
{

SetEvent(ghEvent);
}

break;
}

case HeI CONNECT:
{

printf("\n Issuing Connect Command ... ");

uCallBackInfo.pfCallBack = (hci_callback)APP_ConnectionCallback;

uCallBackInfo.pvMatchData = NULL;

ghConnHandle = BT_HCJ_GetHandle(ghDeviceContext,O);

69

~....--------------_...---- ­

giStatus = BT_HCI_CreateConnection(ghComiliandle,
guBdAddr,
uCallBackInfo);

if(giStatus!= HCI_SUCCESS)
(

SetEvent(ghEvent);

}

break;

}

case HCI DISCONNECT:
{

uint8 iReason = HCI_USER_TERMINATE;
uCallBacklnfo.pfCallBack = (hci_callback)APP_ConnectionCallback;
uCallBackInfo.pvMatchData = NULL;

giStatus = BT_HCl_Disconnect(ghConnHandle,
iReason,
uCallBackInfo);

if(giStatus != HCCSUCCESS)
{

SetEvent(ghEvent);
}

break;
}

case HCI READ RSSI:
{

printf("\n Issuing rssi Command ...");

uCallBackInfo.pfCallBack = (hci_callback)APP_ConnectionCallback;

uCallBackInfo.pvMatchData = pvMatehData ;

giStatus = BT_HCCReadRssi(ghConnHandJ e,

uCaliBacklnfo);
if(giStatus != HCCSUCCESS)

{
ghStopFlag = TRUE;

SetEvent(ghEvent);

break;
}

case HCI_READ_REMOTE_NAME:
{

MessageBox(NULL,_T("asasas"),NULL,MB_OK);
uCallBackInfo.pfCallBaek =

(hei_callbaek)APP_RemoteNameCallbaek;
uCallBaekInfo.pvMatchData = NULL;
giStatus = BT HCI RemoteNameRequest(ghConnHandle,

gauInq~jryResult[iDevieeIndex].uBdAddr,

70

~....._-------- ­

gauInquiryResult[iDeviceIndex]. iPageScanRepModes,
gauInquiryResult[iDevicelndex]. iPageScanModes,
gauInquiryResult[iDeviceIndex]. iClkOffset,
uCallBacklnfo) ;

if (giStatus == HCCFAILURE)
{

MessageBox(NULL,_T("Stopped"),NULL,MB_OK);
ghStopFlag = TRUE;

SetEvent(ghEvent);
}

break;
}

}

}

/***

Function N arne : APP_ InquiryCallback
Description : Callback function registered with HCI for inquiry
Argument

Input
hRciHandle,uEventId,pcData(EventData),iLength,pvMatchData

Output : None

Global : None.

Error Condition

Return : None

**

*****/

void APr_lnquiryCallback (HCI_Handle hHciHandle,

uint32 uEventId,

uint8 *pcData,

uint32 iLength ,

void *pvMatchData)
{

int i;

static int iFlag=O;

static count;

if (uEventId == HCI_IN~RES_EVN)
{

hci_inq_res *puInquiryResult;

puInquiryResult = (hci_inCLres *)pcData;

-

71

iFlag=l;

II for each inquiry response

for (i=O ; i<pulnquiryResult->iNumResponses ; i++)

{

1* Store the inquiry result details *1
gauInquiryResu1t[giNumDevice] = pulnquiryResult->auBtInqRes[i];
giNumDevice++;

II added
mem.cpy(«((MData*)pvMatchData)­

>uiBuf+BD_ADDR_SIZE*count),puInquiryResult ­
>auBtInqRes[i].uBdAddr.:iData,BD_ADDR_SIZE);

«(MData*)pvMatchData)->uiNumber=++count;
}

}

else if(uEventId == HCI_lNQ_CMP_EVN)

{

hei_in~cmp *pulnquiryComplete;

puInquiryComplete = (hei_in~cmp *)pcData;

giStatus = pulnquiryComplete->iStatus;

1* Go back to main *1

if(!iFlag)

{

«MData*)pvMatchData)->uiNuinber=O;
}
count=O;
iFlag=O;

giProgressFlag=O;
SetEvent(ghEvent);

}

else if (uEventId = HCI_COM_STA_EVN)

{

hei_cmd_status_event *puInqStatus;

puInqS tatus = (hci_cmd_status_event *)pcData;

giStatus = pulnqStatus->iStatus;

if (giStatus != Her SUCCESS)

{ ­

giNumDevice = 0;

SetEvent(ghEvent);

}
}

else if (uEventId = HeI_TIME_OUT_EVN)

{

72

- -

Ilerr
}

}

1***

Function Name : APP_ConnectionCallback
Description : Callback function registered with HCr for connection
Argument

Input
hHciHand1e,uEventId,pcData(EventData),iLength,pvMatchData

Output : None�
Global : None.�
Error Condition�
Return : None�

**
*****1

void APP_ConnectionCallback(HCI_Handle hCOlID,
uint32 uEventCode,
void *pcData,

uint32 iLength,
void *pvMatchData)

{
long iRetVal = 0;�

switch(uEventCode)�
{�

case HCl COM COM EVN:
{

hci_cmd_comp_event *puEvent;
puEvent = (hci_cmd_comp_event *)pcData;
if (puEvent->iCommandOpcode==HCI_READ_RSSI_CMD)
{

memcpy(«MData*)pvMatchData)->uiBuf,puEvent­
>iReturnParams,60);

}�
SetEvent(ghEvent);�
break;�

}
case HeI COM STA EVN:�

{/* Command Status Event */�

73

- -

hci_cmd_status_event *puInqStatus;�
puInqStatus = (hci_cmd_status_event *)pcData;�
giStatus = puInqStatus->iStatus;�
if(giStatus != HCr_SUCCESS)�

{
SetEvent(ghEvent);�

}�
break;�

}
case HCI CON COM EVN:�

{�
hci_con_complete_event *uConnInfo;�

uint16 iPacke1i:Type = Ox0400;�
uConnInfo = (hci_con_complete_event *)pcData;�

printfC"\n HCI_CO _COM_EVN event");�
ifCuConnrnfo->iStatus == HCr_SUCCESS)�
{�

printf("\n Cormection is complete ");�
if (uConnInfo->uLinkType = HCCACL)�
{�

ghConnHandle = hConn;�
}�
else�
{�

ghScoHandle = hCoun;�
guScoLinkType = uConnlnfo->uLinkType;�

}
II added this for RSSI
giConnFlag= I;

else
{

printf("\n Connection is incomplete fl);�
II added for RSSl�
gi ConnFlag=O;�

}
SetEvent(ghEvent) ;�
break;�

}�
case HCr DIS COM EVN:�

{
- ­

hci_discon_complete_event *uDisconnlnfo;
uDisconnInfo = (hci_discoo_complete_eveot *)pcData;

74

~----------

printf('" Disconnection occurred ");�
II added for RSSI�
giConnFlag=O;�
SetEvent(ghEvent);�
break;�

}�
default:�

{
printf("lnvalid Event");�

}�
}
return;

}

/***

Function Name : APP_RemoteNameCaliback
Description : Callback function registered with HCI for Remote name

l"eq
Argument

Input
hHciHandle,uEventId,pcData(EventData),iLength,pvMatchData

Output : None�
Global : None.�
Error Condition�
Return : None�

**
*****/

void APP_RemoteNameCallback(HCI_Handle hConn,
uint32 uEventCode,
void *pcData,

uint32 iLength,
void *pvMatchData)

{
MessageBox(NULL,_T("gone"),NULL,MB_OK);�
if (uEventCode == HCI_REM_NAM_REQ_EVN)�
{�

hci_remote_name_reG-event *puRemoteNameEvt;
puRemoteNameEvt = (hci_remote_oame_reCLevent *)pcData;
memcpy(RemoteNarne,

puRemoteNameEvt->uName.acData,

75

-�r

sizeof(puRemoteNameEvt->uName.acData));
}
SetEvent(ghEvent);

}

1***�

Function Name : Util_LogBdAddr
Description : Logs the given bdaddr into the specified file
Argument

Input : fPtr,uBdAddr
Output : None

Global : None.
Error Condition
Return : None

**
*****1
void Util_LogBdAddr(FILE *fPtr,bd_addr uBdAddr)
{

int i;
for(i=O; i<BD_ADDR_SIZE ; i++)
{

printf("%x ",uBdAddLiData[i]);
}

}

76�

~----------- ­

II

ui.cpp:

II ui.cpp : Defines the class behaviors for the application.

#include "stdafx.h"
#include "ui.h"
I I#include "Globals.h"
#include "uiDlg.h"
#include "RssiTest.h"
#include "CLoginDlg.h"

#ifdef DEBUG
#define new DEBUG NEW
#undef THIS_FILE
static char THIS_FILE[] = _FILE_;
#endif

1//IIIIIII111111111111///1/1/1111111111111111/11111111111111111IIIIII IIIIIIII
II CUiApp

BEGIN_MESSAGE_MAP(CUiApp, CWinApp)
II{ {AFX_MSG_MAP(CUiApp)

II NOTE - the ClassWizard will add and remove mapping macros here.
II DO NOT EDIT what you see in these blocks of generated code!

II} }AFX_MSG
END_MESSAGE_MAPO

/1/11//11IIIIIIIIIIIIIIIIIIIIIII///1/11/IIIII/IIIIIIIIIIIIII1111//111/1/11III
1/ CUiApp construction

CUiApp::CUiAppO
: CWinAppO

{
II TODO: add construction code here,�
II Place all significant initialization in InitInstance�

}�

1/1/1111I /IIIII1/IIIIIII/I/IIIIIIIIIIIIIIIIIIIIIIIIIII/IIIIIIIIIIIII//111111I
1/ The one and only CUiApp object

CUiApp theApp;

1/1111111/1/111111111/111111/111111/111111111111/1111111111/11111/1/1//1/1111
/1 CUiApp initialization ,

77�

BOOL CUiApp::InitInstanceO
{

II Standard initialization
II If you are not using these features and wish to reduce the size
II ofyour final executable, you should remove from the following
II the specific initialization routines you do not need.

cLoginName = new char[LOGINLENGTH];�
cPassword = new char[PASSWORDLENGTH];�
cLoginName = "Moses";�

int nResponse;

CLoginDlg LoginDlg;�
nResponse = LoginDlg.DoModaIO;�
if (nResponse == IDOK)�
{�

II TOnO: Place code here to handle when the dialog is
II dismissed with OK�

}�
else if (nResponse = IDCANCEL)�
{�

delete cLoginName;�
delete cPassword;�
exit(O);�

}

CUiDlg dlg;�
ill'yMainWnd = &dlg;�
nResponse = dlg.DoModalO;�
if (nResponse == IDOK)�
{�

II TODO: Place code here to handle when the dialog i.s
II dismissed with OK
ifebRssilnProgress)
{

IISetEvent(ghStopEvent);
ghStopFlag=true;
Sleep(2000);

}�
guWriteCmd=EXIT;�
iAppFlag= 1;�
SetEvent(ghWriteEvent);�
II waiting for the exit event to complete�
WaitForSingleObject(ghExitEvent,INFINITE);�

78

else if (nResponse == IDCANCEL)
{

II TODO: Place code here to handle when the dialog is
II dismissed with Cancel

}

II Since the dialog has been closed, retUIn FALSE so that we exit the
II application, rather than start the application's message pump.
return FALSE;

}

79�

uiDIg.cpp:

II uiDlg.cpp : irn.plementation file
II

#include "stdafx.h"
#include "ui.hIt

#include "uiDIg.h"
#include "RssiTest.h"
II#include "G!obals.h"
#include <winsock.h>
#include "ServDisc.h"
#include <winbase.h>
#include <Winreg.h>

Ilextem bt_device_context ghDeviceContext;

#ifdef DEBUG
#define new DEBUG NEW
#undef THIS FILE
static char THIS_FILE[] = _FILE_;
#endif

int iAppFlag=O;
BOOL ghStopFlag;
char *cLoginNarne;
char *cPassword;

IIHANDLE ghStopCompleteEvent;

III1IIII//1111111111III
II CUiDlg dialog

CUiDIg: :CUiDlg(CWnd* pParent I*=NULL*/)
: CDialog(CUiDlg: :IDD, pPm-ent)

{
II{ {AFX_DATA_INIT(CUiDlg)�
rn_BDAddr = _TC"');�
rn_RSSIval = _T("");�
II} }AFX_DATA_INIT�
II Note that LoadIcon does not require a subsequent DestroyIcon in Win32�
rn_hIcan = AfxGetAppO->Loadlcon(IDR_MAIJ"..,lFRAME);�

II m_Button_NewMsgs.EnableWindow(FALSE);

bConnPresence = FALS E;

80�

bAutoOn = FALSE;�
bFileSelect = FALSE;�
bProgramBegin = TRUE;�
bFTPPresence = FALSE;�

Cannectiol1Handle = new HANDLE;�
CannectionInfo = new CONNMGR_CONNECTIONINFO;�
DestinationInfo = new CONNMGR DESTINATION INFO·�

- -'
bFileTransferProgress = FALSE;

cDevices_BD_Addr[O] = new char[14];
cDevices_BD_Addr[l] = new char[14];
cDevices_BD_Addr[2] = new char[14];
cDevices_BD_Addr[3] = new char[14];
cDevices_BD_Addr[4] = new char[14];

cRemoteNames[O] = new char[20];
cRemoteNames[1] = new char[20];
cRemoteNames[2] = new char[20];
cRemoteNames[3] = new char[20];
cRemoteNames[4] = new char[20];

NumMessages = 0;
MessagesDisplayed = 0;
COM_File = NULL;

for (int i=O; i<MAXNUMMESSAGES; i++)
Messages[i] = new chafE 100];

*ConnectionHandle = ConnMgrApiReadyEventO;

iDevicelndex = -1;

FILE *File_Config;

File_Config = fopen(CONFIGFlLE,"r");

if(File_Config == NULL)
{

MessageBoxLT("Config File not found"),_T("Error"),MB_OK);
exit(O);

}

char temp[20];

fscanf(File_Config,"%s",temp);
~

81

~...~-------- ---------....­

Server_IP_Address = temp;

fscanf(File_Config,"%s",temp);
FTP_UserName= temp;

fscanf(File_Config,"%s",temp);
FTP_Password = temp;
int length;

fscanf(Fil e_Config, "%s",temp);
length = strlen(temp);
if (temp[length-l]='1') temp[length - 1] = '\0';
MainRemoteFolder = temp;

fscanf(File_Config,"%8",temp);
DestinationConnection = temp;

fclose (File_Config);

II
II
II

BT_Sdap_Handle = NULL;
Start_BTCMN(ghDeviceContext);
CreateServiceClassIDO;

1*

*1
}

CString ch2;
ch2 = "lynmng: How does Bluetooth work?";
m_List_NewMsgs.SetWindowText(ch2);

void CUiDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog: :DoDataExchange(pDX);
II {{AFX_DATA_MAP(CUiDlg)
DDX_Control(pDX, IDC_RSSI_LlST, m_RSSCList);
DDX_Control(pDX, IDC_INQ_LIST, ill_IngList);
DDX_Control(pDX, IDC_LIST_MESSAGES, m_List_NewMsgs);
DDX_Control(pDX, IDC_NEWMSGS_BUTTON, m_Butlon_NewMsgs);
DDX_Control(pDX, IDC_EDIT_FILENAME, m_Edit_FileName);
DDX_Control(pDX,IDC_STATUS. rn_Edit_Status);
DDX_Control(pDX, IDC_PROGRESS, m_InqProgress);
DDX_LBString(pDX, IDC__LN<LLIST, m_BDAddr);
DDX_Text(pDX, IDC_RSSI_EDIT, m_RSSlva]);
II} }AFX_DATA_MAP

}

BEGlN!-MESSAGE_MAP(CUiDIg, CDialog)

82

// {{AFX_MSG_MAP(CUiDIg)�
ON_BN_CLICKED(IDC_IN<LBUTTON,OnInqButton)�
ON_BN_CLICKED(IDC_RSSCBUTTON, OnRssiButton)�
ON_LBN_SELCHANGE(IDC_IN~LIST,OnSelchangelnqList)�
ON_BN_CLICKED(IDC_EXIT_BUTTON,OnExitButton)�
ON_WM_CLOSEO�
ON_BN_CLICKED(IDC_CONN_BUTTON, OnCorn-illutton)�
ON_B _CLICKED(IDC_DISCONN_BUTTON,OnDisconnButton)�
ON_BN_CLICKED(IDC_AUTO_BUTTO ,OnAutoButton)�
ON_WM_TIMERO�
ON_BN_CLICKED(IDC_FILESEND_BUTTON, OnFilesendButton)�
ON_BN_CLICKED(IDC_BROWSE_BUTTON, OnBrowseButton)�
ON_LBN_SELCHANGE(IDC_RSSI_LIST, OnSelchangeRssiList)�
ON_BN_CLICKED(IDC_NEWMSGS_BUTTON,OnNewmsgsButton)�
II} }AFX_MSG_MAP�

END_MESSAGE_MAPO

/ / // //11///
// CUiDig message handlers

BOOL CUiDIg::OnIl1itDialogO
{

DWORD dwThreadID;

CDialog: :OnlnitDialogO;

/ / creartion of the events
ghEvent = CreateEvent(NULL,FALSE,FALSE,NULL);
ghWriteEvent = CreateEvent(NULL,FALSE,FALSE,NULL);
ghExitEvent = CreateEvent(NULL,FALSE,FALSE,NULL);
ghStopEvent = CreateEvent(NULL,FALSE,FALS E,NULL);

ghStopFlag=false;

// initialisation of the globals
giCorrnFlag=O;
giProgressFla~l;

111 BDAddr=.... · - ,�
m_InqProgress.SetRange(O,130);�

// creation of the thread
if (!iAppFlag)
{

ghWriteThread = CreateThread (NULL, 0, WriterThread, NULL, 0,�
&dwThreadID);�

83

if (!ghWriteThread)�
{�
II Could not create the read thread.�
DWORD dwLastError=GetLastErrorO;�

}

II wait for initialisation to get complete�
II WaitForS ingleObj ect(ghEvent,INFINITE);�

}

II Set the icon for this dialog. The framework does this automatically
I I when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE); II Set big icon
SetIcon(rn_hlcon, FALSE); II Set small icon
CenterWindow(GetDesktopWindowO); II center to the hpc screen

II TODO: Add extra initialization here

if (!DestinationNetworkO)
{

MessageBoxLT("Connection Manager Destination not found"),
_T(IError"),MB_OK);

exit(O);
}

II m_Edit_Messages.SetWindowTextLT(ffthis is a message new
messagekkkkkkkkkkkkkkkkkkkkkkkkk:kkkkk.kk.kkkkkkkkkkkkkkkkkkkkkkkkkl<.kkkkkk
kkkkkkkkkkkld<kkkk.l<.kkkkkkkkk"»;/I ,NULL,MB_OK);

GetDlgltem(IDC_CONN_BUTTON)->EnableWindow(FALSE);
GetDIgItem(IDC_DISCONN_BUTTON)->EnableWindow(FALSE);
m _Button_NewMsgs.EnableWindow(FALSE);

return TRUE; II return TRUE unless you set the focus to a control
}

IIIIIIIIIII I II

void CUiDIg: :OnInqButtonO
{

II TODO: Add your control notification handler code here�
uint8 szTemp[7];�
int i=O,iProgress=O;�

84

~...._------­

- -

CWnd* pcwListBox = this->GetDlgltem(IDC_IN~LIST);

m_Edit_Status.SetWindowTextLT("Busy!"»;

m RSSI List.ResetContentO;

iDevicelndex = 0;

if(bRssih1Progress)�
{�

return ;�
}�

II resetting intial values�
giProgressFlag=I;�
ListBox_ResetContent(pcwListBox->rn_hWnd);�
ffi_RSSlval=_TC'"');�
CEdit * pcwEditBox = (CEdit *)this->GetDIgltem(IDC_RSSCEDIT);�
pcwEditBox->SetWindowText(m_RSSlval);�
ffi_BDAddr='''';�

I I setting the variables for inquiry &�
II unblocking the write thread�
guWriteCrnd=HCI_INQUIRY;�
SetEvent(ghWriteEvent);�

II displaying the progress bar with the time = 13 sec (-1.28* 10)�
while (giProgressFlag)�
{�

Sleep(500);�
iProgress+=5;�
m_InqProgress.SetPos(iProgress);�

}�
W aitForSingleObj ect(ghEvent,INFINITE);�

II checking for the number of values returned�
if (' (puMatchData->uiNumber»�
{

MessageBox(L"No Devices Within Range",
L"Warning",
MB_OKIMB_ICONWARNING);

In_ InqProgress.SetPos(O);�
return;�

}�

1/ displaying the results

85

-�----....._~----------

iTotalDevices = puMatchData->uiNumber;�
for(i=O;i<iTotalDevices;i++)�
{�

IIGetRemoteNarne(i);
iDevicelndex = i;�
memcpy(szTemp,(puMatchData->uiBuf+ BD_ADDR_SIZE*i),�

BD_ADDR_SIZE);
AddToListBox(szTemp);
m_RSSI_List.InsertString(iDeviceIndex, _T("NA"));

}

I I� if (bReceivedMapping)
AssignRemoteNamesO;

iDevicelndex = -1 ;

II resetting the progress bar�
m_InqProgress.SetPos(O);�
if(!bAutoOn)�
GetDlgltem(IDC_CONN_BUTTON)->EnableWindow(TRUE);�
if(!bAutoOn) ill_ Edit_Status.SetWindowTextLT("Done! "));�

}

I I IIIIIIIIIII/IIII /II/III/I/IIIII//111111III//1111111/ //111/1111

void CUiDlg: :OnRssiButtonO
{

DWORD dwThreadID;
char cTempVal[50];
II TODO: Add your control notification handler code here
II intial check for the device

CWnd* pcwListBox = this->GetDlgItem(IDC_IN~L1ST);

CString TempRssi;
II CWnd* pcwListBox = this->GetDIgltem(IDC_IN~LIST);

int nlndex = ListBox_GetCurSel(pcw ListBox->m_hWnd);

if (iDevicelndex = -1)�
{�

MessageBox(L"Please Select the Device",�
L"Error",�
MB OKIMB_ICONERROR);�

86

--------~

- -

return ;

}

/* IfRSSI is pressed twice, dont act */
if (bRssilnProgress = 1)
{

ghStopFlag=true;
GetDlgItem(IDC_RSSI_BUTTON)->SetWindowText(TEXT(nRSSr")};
GetD19Item(IDC_IN<LBUTTON)->EnableWindow(TRUE);
m_InqProgress.SetPos(O);

sprintf(cTempYal,"%d",this->mjAvgRssiVal);�
TempRssi = cTempYal;�
sprintf(cTempYal,l%d", this->m_iAvgRssiVal);�
m_RSSCList.DeleteString(nIndex);�
m_RSSI_List.lnsertString(nlndex, TempRssi);�
rn_Edit_Status.SetWindowTextLT("Done! n);�
rn_RSSlval = cTempVal;�

II displaying the rssi value
CEdit * pcwEditBox = (CEdit *)GetDlgItem(IDC_RSSl_EDIT);
pcwEditBox->SetWindowText(m_RSSlval);

GetDlgltem(IDC_RSSCBUTTON)->SetWindowText(TEXT("RSSI");
GetDlgItem(IDC_IN<LBUTTON)->EnableWindow(TRUE);
GetDlgltem(IDC_IN<LLIST)->EnableWindow(TRUE);
GetDJgItem(IDC_CONN_BUTTON)->EnableWindow(TRUE);
GetDlgItem(IDC AUTO BUTTON)->EnableWindow(TRUE);

return ;
}
else
{

this->m_iAvgRssiVal = 0;
ghStopFlag=false;
rn_RSSlval = "";
CEdit * pcwEditBox = (CEdit *)GetDlgItem(IDC_RSSI_EDlT);
pcwEditBox->SetWindowText(m_RSSlval);

GetDlgItem(IDC_RSS I_BUTTON)->SetWindowText(TEXT(nStop"»;
GetDlgltem(lDC_IN<LBUTTON)->EnableWindow(FALSE);
GetDlgItem(IDC_INQ_LIST)->EnableWindow(FALSE);
GetDlgltem(IDC_CONN_BUTToN)->EnableWindow(FALSE);
GetDlgItem(IDC_AUTO_BUTTO)->EnableWindow(FALSE);

87�

- -

ghRssiThread = CreateThread (NULL, 0, RssiThread, (LPVOID)this, 0,
&dwThreadID);

rn_Edit_Status.SetWindowTextLT(IBusy!"»);
}

}

//I1///11///////

void CUiD1g: :AddToListBox(llint8* SZBllf)
{

wchar_t szBufW[14];
uint8 uiTemp=OxOO;
int8* acTernp,*acTempBD[BD_ADDR_SIZE];
CString ch;

Ilget the control window
Iiset text to show in control�

for(int i=0;i<6;i++)�
{�

uiTemp=(szBuf[i] & OxfD»>4;
_itow(uiTemp,&szBufW[2*i],16);
uiTemp=szBu:f[i] & OxOf;
_itow(uiTemp,&szBufW[2*i+1],16);

}
szBu:fW[12]='\0';

for(i=O;i<13 ;i++)�
cDevices_BD_Addr[iDevicelndexl[i] = szBu.fW[i];�

/1 ch = cDevices_BD_ Addr[iDevicelndex];
/1 MessageBox(ch,NULL,MB_OK);

for (i=O;i<BD ADDR SIZE;i++)
{

acTemp=(int8*)malloc(3 *sizeof(int8»;
*acTemp=(int8)szBufW[2*i];
*(acTemp+1)=(int8)szBufW[2*i+1];
acTemp[2]='\0';
acTempBD[i]=acTemp;

}
UTILS_ExtractBdAddr(BD_ADDR_SrZE,&acTempBD[O],&guBdAddr);

Devices_BD_Addr[iDevicelndex] = guBdAddr;

88

--
, .

/IListBox_AddString(pcwListBox->m_hWnd, szBufW);�
ch = szBufW;�
m _ InqLisLInsertString(iDeviceIndex, ch);�

}

II1/11IIIIIIIIIIIIIIIIIIII11//1111111111111111IIIIIII1111//111II

void CUiDlg: :OnSelchangeInqListO
{

1/ TODO: Add your control notification handler code here
TCHAR szBufW[14];
int nlndex=O;
*szBufW='\O';
CString c;

if(COM_File != NULL)�
CloseHandle(COM_File);�

I I TODO: Add your control notification handler code here�
II copying the selected value to rn_BDAddr�

CWnd* pcwListBox = this->GetDlgItern(IDC_IN~LIST);

nIndex = ListBox_GetCurSel(pcwListBox->lTI_hWnd);�
iDevicelndex = nIndex;�

II ListBox_GetText(pcwListBox->rn_hWnd, nIndex,(LPTSTR)szBufW);
II m_BDAddc=szBufW;

I I resetting the RSSI display�
m_RSSlval=_T("");�
CEdit * pcwEditBox = (CEdit *)this->GetDlgltern(IDC_RSSJ_EDIT);�
pcwEditBox->SetWindowText(m_RSSJval);�
n1_RSSI_LisLSetCurSel(nlndex);�

1*� Start_BTCMNO;
SdapOpenConnection(ghDeviceContext, Devices_BD_Addr[iDevicelndex]);
MessageBox(L"Open", NULL, MB_OK);

II CreateServiceClassIDO;�
II MessageBox(L"Create", NULL, MB_OK);�

DiscoverServiceO;�
MessageBox(L"Discover", NULL, MB_OK);�

89

- --

II GetDLCO;
II MessageBox(LIDLC", NULL, MB_OK);

SdapCloseConnectionO;
MessageBox(L"Close", NULL, MB_OK);

Stop_BTCMNO;
*1
II SetRegistryValuesO;

I I MessageBox(L"Start" ,NULL,MB_OK);
1* if(!CreateCOMPortO)

MessageBox(LIFailure",NULL,MB_OK);
*1
II MessageBox(L"End",NULL,MB_OK);

IICloseHandle(COM_File);
}

void CUiDlg: :OnExitButtonO
{

II TODO: Add your control notification handler code here

II setting the variables for exit &�
II unblocking the write thread�
DWORD Conn_Status;�
ConnMgrConnectionStatus(*CormectionHandle, &COTIJ1_Status);�
if(COIID Status != CONNMGR STATUS CONNECTED)�
{

bConnPresence = FALSE;
II bFTPPresence = FALSE;

}

i f(bAutoOn) KillTimer(CONNREFRESHTIMERID);

i f(bCormPresence)
OnDisconnButtonO;

if (bRssiInProgress)
{

ghStopFlag = true;
Sleep(2000);

}
guWriteCmd=EXIT;
iAppFlag= I;
SetEvent(ghWriteEvent);

90

~...._-~------ -

II waiting for the exit event to complete�
WaitForSingleObject(ghExitEvent,INFfNITE);�
ExitThread(O);�
CDialog:: OnCloseO;�

}

void CUiDlg: :OnCloseO
{

II TODO: Add your message handler code here andlor call default

if(bAutoOn) KillTimer(CONNREFRESHTIMERID);

if(bConnPresence)�
OnDisconnButtonO;�

while(bRssiInProgress)�
{�

SetEvent(ghStopEvent);�
}�
guWriteCmd=EXIT;�
iAppFlag=1;�
SetEvent(gbWriteEvent);�
II waiting for the exit event to complete�
WaitForSingleObject(ghExitEvent,INFINITE);�

CDialog: :OnCloseO;
}

DWORD RssiThread(LPVOID pvContext)
{

int8* acTemp,*acTempBD[BD_ADDR_SIZE};�
char cTempVal[30],cTempNum[4];�
int i,iProgress=O;�
DWORD iStatus = STATUS_TIMEOUT;�
CUiDlg *puUI = (CUiDlg *)pvContext ;�

II converting the selected text to a valid BD_ADDR�
1* for (i=O;i<BD_ADDR_SIZE;i++)�

{
acTemp=(int8*)malloc(3 *sizeof(in t8»;
if (!acTemp)

return 1;

91

*acTemp=(int8)(puUI->m_BDAddr)[2*i];�
*(acTemp+1)=(int8)(puUI->m_BDAddr)[2*i+1];�
acTemp[2]='\O';�
acTempBD[i]=acTemp;�

}
UTILS_ExtractBdAddr(BD_ADDR_SlZE,&acTempBD[O] ,&guBdAddr);

*1
guBdAddr = Devices_BD_Addr[iDevicelndex];

II setting the variables for cormect &�
II unblocking the write thread�
guWriteCmd=HCI_CONNECT;�
SetEvent(ghWriteEvent);�

puUI->GetDIgItem(IDC_RSSI_BUTT01\T)->EnableWindow(FALSE);

II displaying the progress bar with the time ~ 1.3 * 5 sec�
for (i=0;i<14;i++)�
{

Sleep(lOO*5);�
iProgress+=5 ;�
puUI->m_InqProgress. SetPos(iProgress);�

}

WaitForSingleObject(ghEvent,.INFINITE);

puUI->GetDIgltem(IDC_RSSI_BUTTON)->EnableWindow(TRUE);

IJchecking for the connection�
if (! giConnFlag)�
{�

puUI->MessageBox(L"Unable to Connect to Remote Device",
L"ElTor",
MB_OKIMB_ICONERROR);

puUI->m_InqProgress.SetPos(O);�
bRssilnProgress = 0;�

puUI->GetDlgltem(lDC_RSSCBUTTON)->SetWindowText(TEXT("RSSI"));
puUI->GetDlgltem(IDC_IN~BUTTON)->EnableWindow(TRUE);

puUI->GetDlgltem(IDC_INQ_UST)->EnabIeWindow(TRUE);

ExitThread(l);�
return 1;�

92

~----------- -~-------
I,

}

while (! ghStopFlag)
{

bRssiInProgress = 1;�
II setting the variables for read rssi &�
II unblocking the write thread�
guWriteCrnd=HCI_READ_RSSI;�
SetEvent(ghWriteEvent);�
II displaying the progress bar with the time ~ 2.6 sec�
for (i=O,iProgress=O;i<26;i++)�
{

Sleep(100);�
iProgress+=5 ;�
puUl->m_InqProgress's'etPos(iProgress);�
if (ghStopFlag)�
{

iProgress=O;
puVI->m_IngProgress.SetPos(iProgress);
break;

}

}�
WaitForSingleObject(ghEvent,INFINITE);�
if (puMatchData->uiBuf[3] & Ox80)�
{�

puVI->rn_iAvgRssiYal += (int8)-«~puMatchData->uiBuf[3])+I) ;
}
else
{

puUI->rn_iAvgRssiYal += (int8)(puMatchData->uiBufT3]) ;
}

if «puUI->rn_RSS IvaI. CornpareLT(""»))
{

puVI->m_iAvgRssiYal/= 2 ;

if (!(puMatchData->uiBufT3] I OxOO»
{�

Ilstrcpy(cTempYal,"Nonnal RSSI strength = If);�
_itoa(puMatchData->uiBufI3] ,cTempNum, I0);�
strcpy(cTempYal,cTempNurn);�

93

else if (puMatchData->uiBuf[3] & OX80))
{

int iTemp=O;
strcpy(cTernpVal,"_");
iTemp=puMatchData->uiBuf{3];
iTemp=-iTemp;
iTemp&=OxOOff;
iTemp+=l;
_itoa(iTemp,cTempNum, 10);
strcat(cTempVal,cTempNum);

}
else
{

Ilstrcpy(cTempVal,"Above Nom1al = ");

_itoa(puMatchData->uiBuf{3],cTempNum, 10);
strcpy(cTempVal,cTempNurn);

}

II assigning the value to m_RSSIval
puUI->m_RSSlval=cTempVal;
II displaying the rssi value
if (! ghStopFlag)
{

CEdit * pcwEditBox = (CEdit *)puUI­
>GetDlgltem(IDC_RSSI_EDIT);

pcwEditBox->SetWindowText(puUI->lTI_RSSlval);
Ilsprintf(chInqTemp,"%x - o;(ls",lnqItem, cTempNum);

II strcpy(chlnqTemp 1,chlnqTemp);
II strcat(chlnqTemp1,cTempNum);
II ClnqHem = chlnqTempl;
II puUl->m_InqList.DeleteString(index);
II puUI->m_InqList.lnsertString(index, ClnqJtem);

}

II resetting the progress bar
puUI->m_lnqProgress.SetPos(O);

}

II setting the variables for disconnect &�
II unblocking the write thread�
guWriteCmd=HCI DISCONNECT;�
SetEvent(ghWriteEvent);�
WaitForSingJeObject(ghEvent,TNFlNITE);�
bRssiInProgress= 0;�

94

- -

II freeing the memory
for (i=O;i<BD_ADDR_SIZE;i++)
{

if (acTempBD[i])
free(acTempBD[]]);

}
ExitThread(O);
return 0 ;

}

void CUiDlg::OnConnButtonO
{

CString uErrorMsg = "Error in Connecting";
CString uSuccessM.sg = "Success in Connecting";
DWORD *Conn_Statlls = new unsigned long;

m_ Edit_Status.SetWindowTextLT("Busy! ");

int i,iProgress=O;
DWORD iStatus = STATUS_TIMEOUT;
II converting the selected text to a valid BD_ADDR

1/
II

if (!CreateCOMPort())
MessageBox(L"'Error",NULL,MB_OK);

if (iDevicelndex = -1)
{

MessageBox(L"Please Select the Device",
L"Error",
MB_OK1MB_ICONERROR);

return ;

GetDlgItem(IDC_RSSl_BUTTON)->EnableWindow(FALSE);
GetDlgltem(IDC_IN~BUTTON)->EnableWindow(FALSE);

/1� GetDlgItem(IDC_CONN_BUTTON)->EnableWindow(FALSE);
GetDlgItem(IDC__AUTO_BUTTO)->EnableWindow(FALSE);

guBdAddr = Devices BD Addr[iDevicelndex];

II SetTimer(CHECKMESSAGESTIMERID, CHECKMESSAGESTLMEOUT,
NULL);

bConnPresence = TRUE;

95

~...._---------------­

SetRegistryValuesO;

ConnMgrEstablishConnectionSync(Connectionlnfo, ConnectionHandle,
CONNTIMEOUT, Conn_Status);

bConnPresence = TRUE;

PrepareLocationO;

1*

II

if(!FTPOpenO)
MessageBox(_T("ElTor in Opening FTP"), _T("FTP"), MB_OK);

else if (!FTPSendFileO)
MessageBox(_T("Error in Sending File"), _T("FTP"), MB_OK);*I

else (FTPCloseO);

II }

II SetTimer(CHECKMESSAGESTIMERID, CHECKMESSAGESTIMEOUT,
NULL);

GetDlgltem(IDC_DISCONN_BUTTON)->EnableWindow(TRUE);
m_Edit_Status.SetWindowTextCT("Done1"));

}

void CUiDlg: :OnDisconnButtonO
{

CString uErrorMsg = "En"or in Disconnecting";
CString uSuccessMsg = "Success in Disconnecting";
char *ch = new char[12];
CString c;

m_Edit_Status.SetWindowTextCT("Busy! "));
GetDIgltem(IDC_DISCONN_BUTTON)->EnableWindow(FALSE);

II GetDlgltem(IDC_AUTO_BUTTON)->EnableWindow(FALSE);

while(bRssiInProgress)
{

SetEvent(ghStopEvent);
}

II guWriteCmd=HCI_DISCONNECT;�
II SetEvent(ghWriteEvent);�
II WaitForSingleObject(ghEvent,INFINITE);�

96

- - -

while(bFileTransferProgress);

KillTimer(CHECKMESSAGESTIMERID);

PrepareLocationO;
II if(!FTPOpenO)
II MessageBox(_T("Error in Opening FTP"), _T("FTp"), MB_OK);
II else

if (!FTPDeleteFileO)
MessageBox(_T("Error in Sending File"), _T("FTptl), MB_OK);

else (FTPCloseO);

ConnMgrReleaseConnection(*ConnectionHandle, FALSE);�
Sleep(6000);�

CloseHandle(ConnectionHandle) ;

bConnPresence = FALSE;

if(bAutoOn)
{�

bAutoOn = FALSE;�
KillTimer(CONNREFRESHTIMERlD);�

}

GetDIgltem(IDC_CONN_BUTTON)->EnableWindow(TRUE);
GetDIgltem(IDC_DISCONN_BUTTON)->EnableWindow(FALSE);
GetDIgItem(IDC_RSSI_BUTTON)->EnableWindow(TRUE);
GetDlgItem(IDC_INQ_BUTTON)->EnableWindow(TRUE);
GetDIgItem(IDC_AUTO_BUTTON)->EnableWindow(TRUE);

m Edit Status.SetWindowText(T("Done!"»;

/*� CString c;
Start_BTCMN(ghDeviceContext);
MessageBox(L"Start" ,NULL,MB_OK);
SdapOpenConnection(ghDeviceContext, Devices_BD_Addr[j Devicelndex]);
MessageBox(L"Open",NULL,MB_OK);
CreateServiceClassIDO;
MessageBox(L"Create" ,NULL,MB_OK);
if (!DiscoverServiceO)
{

c = szErrorString;�
MessageBox(c,NULL,MB_OK);�

}�

97

- --

else
MessageBox(LlDiscover",NULL,MB_OK);�

SdapCloseConnectionO;�
MessageBox(LlClose",NULL,MB_OK);�
Stop_BTCMNO;

*1
*ConnectionHandle = ConnMgrApiReadyEventO;

}

void CUiDlg::OnAutoBuUonO
{

/* for(i=O;i<(puMatchData->uiNumber);i++)
{

memcpy(szTemp,(puMatchData->uiBuf+
BD_ADDR_SIZE*i),BD_ADDR_SIZE);

AddToListBox(szTemp);
}

*1
bAutoOn = TRUE;

SetTimer(CONNREFRESHTIMERID, CONNREFRESHTlMEOUT, NULL);
/1 SetTimer(CHECKMESSAGESTIMERID, CHECKMESSAGESTIMEOUT,
NULL);

GetDlgltem(IDC_CONN_BUTTON)->EnableWindow(FALSE);
GetDIgltem(IDC_RSSI_BUTTON)->EnableWindow(FALSE);
GetDlgItem(IDC_INQ_BUTTON)->EnableWindow(FALSE);
GetDIgltem(IDC_AUTO_BUTTON)->EnableWindow(FALSE);

i.f (!bFileTransferProgress) AutoConnectionO;
}

void CUiDIg: :OnTimer(UINT nIDEvent)
{

DWORD Conn_Status;�
II TODO: Add your message handler code here and/or call default�
ConnMgrConnectionStatus(*ConnectionHandle, &Conn_Status);�
if(Conn Status != CONNMGR STATUS CONNECTED)�
{�

bConnPresence = FALSE;�
bFTPPresence = FALSE;�

}

98

- -

if((nIDEvent = CHECKMESSAGESTlMERID) && bConnPresence &&
bFTPPresence)

{�
m_Edit_Status.SetWindowText(L"Busy! ");�
PrepareMessagesO;�
FTPGetFileO;�
GetMessagesO;�
m_Edit_Status.SetWindowText(L"Done!");�

}�
else if (nIDEvent = CONNREFRESHTIMERID)�
{�

if (bAutoOn && !bFileTransferProgress) AutoConnectionO;
}

CDialog: :OnTimer(nIDEvent);
}

void CUiDlg: :AutoConnectionO
{
II int8* acTemp,*acTempBD[BD_ADDR_SIZE];

int i, j ;�
int cTemp urn;�
char ch[8];�
CString ch1;�
int Rssi[15];�
CString cRssi;�
int MaxRssi = 0;�
DWORD *Conn_Status = new unsigned long;�
HANDLE tempHandle;�

TCHAR szBuf\V[14];

m_Edit_Status.SetWindowTextCT("Busy!"»);

if(bConnPresence)
{

KillTimer(CHECKMESSAGESTIMERID);�
PrepareLocationO;�
if (!FTPDeleteFileO)�

MessageBox(_T("Error in Sending File"), _T("FTpII), MB_OK);
else (FTPCloseO);

ConnMgrReleaseConnection(*ConnectionHandJe, FALSE);

99

Sleep(6000);

CloseHandle(ConnectionHandle);

bConnPresence = FALSE;
}

*ConnectionHandle = ConnMgrApiReadyEventO;

OnlnqButtonO;
if (iTotaIDevi.ces==O)

return;

for (i = 0; i<iTotaIDevices; i++)
{

guBdAddr = Devices_BD_Addr[i];

guWriteCmd=HCI_CONNECT;
SetEvent(ghWriteEvent);

WaitForSingleObj ect(ghEvent,INFINITE);

guWriteCmd=HCI_READ_RSSI;
bRssiInProgress = TRUE;
SetEvent(ghWriteEvent);

WaitForSingleObject(ghEvent,lN FINITE);
bRssiInProgress = FALSE;

if(!(puMatchData->uiBuf£3] 10xOO»
{

cTempNum = 0;
}
else if ((puMatchData->uiBufT3] & Ox80»
{

cTempNum=puMatchData->uiBufT3] ;�
cTempNum=~cTempNurn;�
cTempNum&=OxOOff;�
cTempNum+=l ;�
cTempNum = -cTempNum;�

}
else
{

cTempNurn = puMatchData->uiBu:fI3];

100

--- ------------.�

Rssi[i] = cTempNum;

_itoa(cTempNum, ch, 10);�
chl=ch;�

m_RSSI_List.DeleteString(i);�
m_RSSI_List.InsertString(i,chl);�
IIMessageBox(chl, NULL, MB_OK);�

guWriteCmd = HCI_DISCONNECT;
S<etEvent(ghWriteEvent);
WaitForSingleObject(ghEvent,£NFINITE);

}

if(iTotalDevices>O)
{

for (i=1 ;i<iTotalDevices;i++)
{

if (Rssi.[i]>Rssi[MaxRssi]) MaxRssi = i;
}

guBdAddr = Devices_BD_Addr[MaxRssi];

iDeviceIndex = MaxRssi;�
SetRegi.stryValuesO;�

ConnMgrEstablishConnectionSync(Connectionlnfo,
ConnectionHandle,CONNTLMEOUT, Conn_Status);

if(*Conn_Status == CONNMGR_STATUS_CONNECTED)
{

bConnPresence = TRUE;
PrepareLocati0 nO;
m_Inq List. SetCurSel(MaxRssi);
m RSSI LiSl.SetCurSel(MaxRssi);

/1
- ­

iDevicelndex = MaxRssi;

if(!FTPOpenO)
MessageBox(_T("Error in Opening FTP"), _TC"FTp U

),

MB_OK);
el.se if (!FTPSendFileO)

MessageBox(_T("Error in Sending File"),_T(,'FTp"),

GetDlgItem(IDC_CONN_BUTTON)->EnableWindow(FALSE);

101

-� -�

- -

II

GetDIgItem(IDC_DISCONN_BUTTON)_
7EnableWindow(TRUE);

}
else
{

MessageBoxCT("Error in Connecting"),_T("Error"),MB_OK);�
bAutoOn = FALSE;�
KillTiJmer(CONNREFRESHTIMERID);�
GetDIgltem(IDC_CONN_BUTTON)->EnableWindow(TRUE);�
GetDIgltem(IDC_DISCONN_BUTTON)­

:::>EnableWindow(FALSE);
GetDlgltem(IDC_RSSI_BUTTON)->EnableWindow(TRUE);
GetDlgItem(IDC_IN<LBUTTON)->EnableWindow(TRUE);
GetDlgItem(IDC_AUTO_BUTTON)->EnableWindow(TRUE);

}�
}�
m_Edit_Status.SetWindowTextCT("Done!"»;�

}

void CUiDIg::OnBrowseBuUonO
{

CFileDialog BrowseWindow(TRUE, NULL, NULL,
OFN_HIDEREADONLY,_T("All Files (*. *)1*. *1I"),this);

if(BrowseWindow.DoModalO == IDOK)
ill Edit FileName.SetWindowText(BrowseWindow.GetPathNaIneO);

}

void CUiDlg::OnFilesendButtonO
{

unsigned ShOli *eh = new unsigned short [200];�
CString temp;�
int n,length,length 1;�

m_Edit_FileName.GetWindowText(eh, 100);�
LoealFile = eh;�
MessageBox(LocalFile,NULL,MB_OK);�

length = LoeaIFile.GetLengthO;�
n = LoealFile.ReverseFind("");�

temp = MainRemoteFolder;�
temp = temp + REMOTEFILESFOLDER;�

1* length 1 = temp.GetLengthO;�
if(temp.GeIAt(lengthl -1) '='1')�

102

temp.SetAt(lengthl -I, 'I');
"-'I

RemoteFile = temp + LocaIFile.Right(Iength - n - 1);�
RemoteFolder = MainRemoteFolder;�
RemoteFolder += REMOTEFILESFOLDER,�

II MessageBox(RemoteFile,NULL,MB_OK);

II if(!FTPOpenO)
II MessageBox(_T("Error in Opening FTP"), T("FTP"), MB OK);- -
II else

if (!FTPSendFileO)
MessageBox(_T("Error in Sending File"), _T("FTP"), MB_OK);

II else (FTPCloseO);

delete ch;
}

bool CUiDIg: :FTPOpenO
{

bFileTransferProgress = TRUE;

FTPHandie = ScottyFtpCreate();
if(FTPHandJe = NULL)
{

bFileTransferProgress = FALSE;
return FALSE;

}

II� MessageBoxLT("Create"),NULL,MB_ OK);

if (ScottyFtpConnect(FTPHandle,Server_IP_Address) <0)
{

bFileTransferProgress = FALSE;
return FALSE;

1/� MessageBoxLT("Connect"),NULL,MB_OK);

if (ScottyFtpLogin(FTPHandle, FTP_UserName, FTP_Password) <0)
{

bFileTransferProgress = FALSE;
return FALSE;

1/� MessageBoxLT("Login"),NULL,MB_OK);
bFileTransferProgress = FALSE;

103

(.

bFTPPresence = TRUE;

return TRUE;
}

bool CUiDlg: :FTPCloseO
{

ScottyFtpQuit(FTPHandle);�
ScottyFtpDestroy(FTPHandle);�

bFileTransferProgress = FALSE;�
bFTPPresence = FALSE;�
return TRUE;�

}

bool CUiDIg::FTPSendFileO
{

m_Edit_Status.SetWindowTextLT("Busy! "»);
bFileTransferProgress = TRUE;

if (ScottyFtpChangeDirectory(FTPHandle, RemoteFolder) <0)
{�

bFileTransferProgress = FALSE;�
return FALSE;�

}

if(ScottyFtpPutFile(FTPHandle, LocalFiJe, RemoteFile) <0)
{�

bFileTransferProgress = FALSE;�
return FALSE;�

}
m_Edit_Status.SetWindowTextLT("Done!"»;�
bFileTransferProgress = FALSE;�

return TRUE;
}

boo~ CUiDIg: :PrepareMessagesO
{

RemoteFile = MainRemoteFolder;
RemoteFile += REMOTEMESSAGESFOLDER;
RemoteFolder = RemoteFile;

RemoteFile += cLoginName;

104

LocalFile = LOCALMESSAGESFOLDER;
LocalFile += cLoginName;

II MessageBox(LocalFile,L"Localfile",MB_OK);
II MessageBox(RemoteFolder,L"RemFo~der",MB_OK);
II MessageBox(RemoteFile,L"RemFile",MB_OK);

return TRUE;
}

bool CUiDlg: :FTPGetFileO
{

m_Edit_Status.SetWindowTextLT("Busy! ");
bFileTransferProgress = TRUE;

if (ScottyFtpChangeDirectory(FTPHandle, RemoteFolder) <0)
{

bFileTransferProgress = FALSE;
return FALSE;

}

if(ScottyFtpGetFile(FTPHandle, RemoteFile, LocalFile) <0)
{ .

bFileTransferProgress = FALSE;
return FALSE;

}

m_Edit_Status.SetWindowTextLT("Done! "»;
bFileTransferProgress = FALSE;

return TRUE;
}

bool CUiDIg:~FTPDeleteFileO

{
bFileTransferProgress = TRUE;
if (ScottyFtpChangeDirectory(FTPHandle, RemoteFolder) <0)
{

bFileTransferProgress = FALSE;
return FALSE;

}

if (ScottyFtpDeleteFile(FTPHandle, RemoteFile) <0)
{

bFileTransferProgress = FALSE;

105

return FALSE;
}�
bFileTransferProgress = FALSE;�
return TRUE;�

}

void CUiDlg: :OnSelchangeRssiListO
{

int nIndex;

nindex = m_RSSI_List.GetCurSelO;
m_InqList.SetCurSel(nIndex);

}

boo1CUiDlg::DestinationNetworkO
{

int i;
HRESULT DestResult = 1;

II CString dest = DestinationConnection;

for(i=O;(DestinationInfo->szDescription != DestinationConnection) &&
(DestResult != NULL);i++)

{
DestResult = ConnMgrEnumDestinations(i, DestinationInfo);

}

if (DestinationInfo->szDescription != DestinationConnection)�
return FALSE;�

II MessageBox(DestinationInfo->szDescription, NULL, MB_OK);

ConnectionInfo->dwParams = 1;�
ConnectionInfo->dwFlags = NULL;�
ConnectionInfo->dwPriority = CONNMGR_PRIORITY_USERINTERACTIVE;�
ConnectionInfo->bExcIusive = FALSE;�
ConnectionInfo->bDisabled = FALSE;�
ConnectionInfo->guidDestNet = DestinationInfo->guid;�

1* FILE *fg;

fg = fopen("\\My Docwnents\\BTFolder\\test.txt","a");

106�

fprintf(fg, U%ld:%d:%d:" ,Destinationlnfo->guid.Data1,Destinationlnfo­
>guid.Data2,

Destinationlnfo->guid.Data3);
for (i=0;i<8;i++)

fprintf(fg, "%d: u ,DestinationInfo->guid.Data4[i]);
fprintf(fg, "\n");

fclose(fg);

*1
II

}

ConnMgrEstablishConnection(Connectionlnfo, ConnectionHandle);
return TRUE;

bool CUiDlg::GetRemoteNamesO
{

char *TempBTAddr = new char[14];�
char *TempRemoteName = new char[20];�
FILE *fp;�
int i;�
unsigned short *tempch = new unsigned short [20];�
CString temp;�

temp = MainRemoteFolder;
temp += REMOTEMAPPINGFOLDER;

if (ScottyFtpChangeDirectory(FTPHandle, temp) <0)
{

bFileTransferProgress = FALSE;
return FALSE;

}

LocalFile = LOCALMAPPlNGFILE;�
RemoteFile = MainRemoteFolder;�
RemoteFile += REMOTEMAPPlNGFILE;�
if (ScottyFtpGetFile(FTPHandle, RemoteFile, LocalFile) <0)�
{

bFileTransferProgress = FALSE;
return FALSE;

}

bReceivedMapping = TRUE;.
return TRUE;

}

107

II

bool CUiDIg::AssignRemoteNamesO
{

char *TernpBTAddr = new char[14];
char *TempRemoteName = new char[20];
CString temp;
FILE *fp;
int i;
unsigned short *tempch = new unsigned short [20];

fp = fopen(LOCALMAPPINGFILE,"r");�
if(fp = NULL)�
{�

if(bProgramBegin)
{

MessageBoxLT("Mapping File not Found"),NULL,MB_OK);
bProgramBegin = FALSE;

}
return FALSE;

}

while(! feof(f])))
{

fscanf(fp,"%s%s", TempBTAddr, TempRemoteName);
/*� temp = TempBTAddr;

MessageBox(temp,_T("Address"),MB_OK);
temp = TempRemoteNarne;
MessageBox(temp,_T("Name"),MB_OK);

*/�
for (i=O; i<iTotalDevices; i++)�
{

if(strcmp(cDevices_BD_Addr[i],Temp3TAddr)==0)
{

//temp = TempRemoteName;
//MessageBox(temp, NULL, MB_OK);
//m_InqList.GetText(i, tempch);
strcpy(cRemoteNames[i], TempRemoteName);
temp = cDevices_BD_Addr[i];
temp = temp + " - ";
temp = temp + TempRemoteName;
m_InqList.DeleteString(i);
m_InqList. InsertString(i, temp);

}�
}�

}

108

fclose(fp);�
delete TempBTAddr;�
delete TempRemoteName;�
return TRUE;

}

void CUiDlg: :PrepareLocationO

{
FILE *fp;

char *ch = new char [200];�
char *cHostName = new char[80);�
int length;�
stmct hostent *HostDetails;�
CString temp;�
char *Host_IP_Address = new char [20];�
stmct in_addr address;�

II� cLoginName = "Moses";

bFileTransferProgress = TRUE;II

LocalFile = LOCALLOCATIONFOLDER;
strcpy(eh, LOCALLOCATIONFOLDER);

length = LoeaIFile.GetLengthO;
if(LocalFile.GetAt(length - 1) != '\\')
{

LoealFile.SetAt(length - 1, '\\') ;
strcat(eh,"\\");

}

LocalFile = LocalFile + cLoginName;
strcat(ch, cLoginName);�

II LocalFile = LocalFile + ".txt";�
/1 strcat(eh, ".txt");�

gethostname(eHostName, 80);�
HostDetails = gethostbyname(eHostName);�

1*� for (int i = 0; HostDetails->h_addr_list[i] != 0; i++)�

{�
Iitemp = HostDetails->h_addr_list[i];�
memcpy(&address, HostDetaj 15->h_addr_Ii 5t[i], 51 zeof(struct�

109�

chi = inet_ntoa(address);
temp = chI;
MessageBox(temp, NULL, MB_OK);

*1

II
II

memcpy(&address, HostDetails->h_addr_list[0], sizeof(struct in_addr));
Host_IP_Address = inet_ntoa(address);
temp = Host_IP_Address;
MessageBox(temp, NULL, MB_OK);

fP = fopen(ch,"w");

fprintf(fp, "%s\t%s\t%s\n", cDevices_BD_Addr[iDevicelndex],
cRemoteNames[iDeviceIndex] ,
Host IP Address);

fdose(fp);

RemoteFile = MainRemoteFolder;
RemoteFile += REMOTELOCATIONFOLDER;
RemoteFolder = RemoteFile;

II
RemoteFile = RemoteFile + cLoginName;
RemoteFile = RemoteFile + ".txt";

II
}

delete ch;
delete cHostName;

bool CUiDlg: :GetMessages()
{

FILE *Message_File;
int LocalNumMessages = 0;
char *ch = new char[lOO];
CString c;

strcpy(ch, LOCALMESSAGESFOLDER);
strcat(ch,cLoginName);

c = ch;
MessageBox(c,NULL,MB_OK);

Message_File = fopen(ch, "r+");

while(!feof(Message_File))

I10

II

II

{
if (fgets(Messages[NumMessages+LocaINurnMessages), 100,

Message_File) ==NULL)
{

fclose(Message_File);
NumMessages += LocalNumMessages;
if (LocaINumMessages=O) return FALSE;
return TRUE;

}
LocaINumMessages++;�

}�

NumMessages += LocalNumMessages;�
fclose (Message_File);�
c=ch;�
DeleteFile(c);�

_itoa(NumMessages, ch, 10);

c =ch;�
c += "_";�
c += "New";�

if(LocalNumMessages>O)
{�

ffi_Button_NewMsgs.SetWindowText(c);�
m_Button_NewMsgs.EnableWindow(TRUE);�

II MessageBox(L"button set",NULL,MB_OK);
}

MessageBeep(OxFFFFFFFF);�
return LocalNumMessages;�

}

void CUiDlg::OnNewffisgsButtonO
{

int i;
CString c;

for(i=O; i<NumMessages; i++)
{

c = Messages[i];�
ffi_List_NewMsgsJnsertString(MessagesDisplayed + i, c);�

}

111

MessagesDisplayed +=NumMessages;
NumMessages = 0;
m_Button_NewMsgs.SetWindowText(L"New");
m_Button_NewMsgs.EnableWindow(FALSE);

}

bool CUiDIg: :CreateCOMPortO
{

if(COM_File != NULL)
CloseHandle(COM_File);

COM_File = CreateFile(L"COM8:", GENERIC_READ IGENERIC_WRITE,
0, NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);

II SetCommParameters (CBR_19200, 8, NOPARITY, ONESTOPBIT);
1* SetupComm (COM_File, 16, 16);

COMMTWEOUTS commTimeOuts;
II commTimeOuts.ReadIntervalTimeout = iReadTimeout;

commTimeOuts.ReadTotalTimeoutMultiplier = 0;
commTimeOuts.ReadTotalTimeoutConstant = 0;
eommTimeOuts.WriteTotalTimeoutMultiplier = 0;
eommTimeOuts.WriteTotalTimeoutConstant = 0;
SetCommTimeouts(COM_File, &commTimeOuts);
EscapeCommFunction (COM_File, CLRIR);
DCB deb;
dcb.DCBlength = sizeof(DCB) ;
GetCommState(COM_File, &deb) ;
deb.BaudRate = 19200;
deb.ByteSize = 8;
deb.Parity = 0;
deb.StopBits = 0;
dcb.fRtsControl = RTS_CONTROL_ENABLE;
deb.fDtrControl = DTR_CONTROL_ENABLE;
deb.flnX = FALSE;
dcb.fOutX = FALSE;
dcb.XonLim = 0;
deb.XoffLim = 0;
dcb.fBinary = TRUE;
dcb.tParity = TRUE;
SetCommState(COM_File, &dcb);

,
SetCommParameters (CBR_19200, 8, NOPARITY, ONESTOPBIT);

*1
if(COM_File = NULL)

return FALSE;

112

II

return TRUE;
}

bool CUiDlg: :SetRegistryValuesO
{

HKEYhKey;
int i, length;
uint8 iDlc = OxO1;

/1� bc_subscribe_serviceJSP_data *puServiceRspData = NULL;
char *ch = REGISTRYKEY;
lillsigned short *lpSubKey = new unsigned short[50];
length = strlen(ch);
CString c;

for (i=O;i<=length;i++)�
*(lpSubKey+i) = ch[i];�

c = IpSubKey;
II MessageBox(c,O,MB_OK);
II memcpy(lpSubKey, "Drivers\\BuiltIn\\BTSerialCe2", 50);

RegOpenKeyEx(HKEY_LOCAL_MACHINE, IpSubKey, 0, 0, &hKey);

RegSetValueEx(hKey, L"BDAddr", NULL, REG_BINARY,
(uint8*)&Devices_BD_Addr[iDevicelndex], sizeof(bd_addr));

RegSetValueEx(hKey, L"DIc", NULL, REG_BINARY, (uint8*)&iDJc,
sizeof(uint8));

RegCloseKey(hKey);�
RegCloseKey(HKEY_LOCAL_MACHINE);�

delete IpSubKey;�
delete ch;�

return TRUE;
}

.j

113�

- -

- -

Header Files:

CLoginDig.h :

#if
!defined(AFX_CLOGINDLG_H_E219AB2A_6844_4C5D_94BC_87196396FD06_1N
CLUDED~

#define
AFX_CLOGINDLG_H_E219AB2A_6844_4C5D_94BC_87196396FD06_INCLUDE
D

#if MSC VER >= 1000
#pragma once
#endif II MSC VER >= 1000
1/ CLoginDlg.h : header file
II

/I#include "Globals.h"

IIIIIIIIIIIIIIIIIII1111/11111IIIII111/111111IIIIIIIIIIIIIIIIIII111/1111IIIIII
II CLoginDlg dialog

class CLoginDlg : public CDialog
{
II Construction
public:

CLoginDlg(CWnd* pParent = NULL}; II standard constructor
bool CheckLoginO;
bool CheckLoginDataO;

II Dialog Data
II{ {AFX_DATA(CLoginDlg)
enum {IDD= IDD_LOGIN_DIALOG};
CEdit rn_Edit_UserName;
CEdit illydit_Password;
II} }AFX_DATA

II Overrides�
II ClassWizard generated virtual function overrides�
II{{AFX_VIRTUAL(CLoginDlg)�
protected:�
virtual void DoDataExchange(CDataExchange* pOX); II DDX/DDV support�
II} }AFX_VIRTUAL�

114

- -

I I Implementation
protected:

II Generated message map functions
II { {AFX_MSG(CLoginDlg)
afx_msg void OnLoginO;
virtual void OnCance10;
virtual void OnOKO;
virtual BOOL OnInitDialogO;
II} }AFX_MSG
DECLARE MESSAGE MAP()

};

/I{ {AFX_INSERT_LOCATION}}�
II Microsoft Visual C++ will insert additional declarations immediately before the�
previous line.�

#endif II�
!defined(AFX_CLOGINDLG_H_E219AB2A_6844_4C5D_94BC_87 196396FD06_IN�
CLUDED~

115

- -

- -

- -

RssiTest.h:

#ifndef RSSITEST_H�
#defme RSSITEST_H�

Iistandard includes�
#include <stdio.h>�
#include <windows.h>�
#include <memory.h>�

II other includes�
#include <BTDefines.h>�
#include <UTILS_Protos.h>�
#include <BTApi.h>�
I/#include "Globals.h"�

II HCI specific Initialisation�

#define MAX EVENTS 20�
#define HCI_DEFAULT 1�
#define HCI USER TERMINATE Ox13�
#define INQUIRY_DURATION 4//10 * 1.28s�
#define GIAC Oxge8b33�
#define HCI EVENTS REGISTERED Ox6�
#define RSSI TIMEOUT 2560�
#define RSSI INVALID VALUE -128�

#define MAXNUMDEVICES 5

typedef enum
{�

EXIT 0,�
HCCINQUlRY t,�
HCI_CONNECT�
HCI_DISCONNECT,�
HCI_READ_RSSI,�
HCCREAD_REMOTE_NAME�

}app_hei_cmds;

typedefhci_handle HCI_Handle;

116�

typedef struct
{

uint8 uiBu:tI60];
uint8 uiNumber;

} MData;

/*** ****** ******Global Variables**** *** *** **** ***** **** **** **** **** */�
EXTERN HCI_Handle ghDefaultHandle;�
EXTERN HCCHandle ghConnHandle;�
EXTERN HCI_Handle ghScoHandle;�
EXTERN hci_link_type guScoLinkType;�
EXTERN bt_in~res gaulnquiryResult[HCI_MAX_NUM_IN<LRES};�
EXTERN int giNumDevice;�
EXTERN bt_device_context ghDeviceContext;�
EXTERN bd_addr guBdAddr;�

EXTERN char *RemoteName;�
EXTERN int iDevicelndex;�
EXTERN bd_addr Devices_BD_Addr[MAXNUMDEVICES];�
EXTERN int iTotalDevices;�

EXTERN uintl6 giStatus;�
EXTERN HANDLE ghEvent;�
EXTERN HANDLE ghWriteEvent;�
EXTERN HANDLE ghExitEvent;�
EXTERN HANDLE ghStopEvent ;�
EXTERN app_hci_cmds guWriteCmd;�
EXTERN HANDLE ghWriteThread;�
EXTERN HANDLE ghRssiThread;�
EXTERN int giConnFlag;�
EXTERN int giProgressFlag;�
EXTERN MData* puMatchData;�
EXTERN int iAppFlag;�
EXTERN uintS bRssilnProgress ;�
EXTERN BOOL ghStopFlag;�

/*************** Internal Fuction Prototypes*************************/�
EXTERN int HciTestIntitialise(void);�
EXTERN void APP_HciTestCommands(int iCmdType,void* pvMatchData);�

117�

void APP_InquiryCallback(HCI_Handle hHciHandle,uint32 uEventId, uint8
*pcData,uint32 iLength, void *pvMatchData);�
void APP_ConnectionCallback(HCCHandle hConn,uint32 uEventCode,void�
*pcData,uint32 iLength,void *pvMatchData);�
void APP_RemoteNameCallback(HCI_Handle hConn,uint32 uEventCode,void�
*pcData,uint32 iLength,void *pvMatchData);�
void Util_LogBdAddr(FILE *fPtr,bd_addr uBdAddr);�
EXTERN DWORD WriterThread(LPVOID pYoid);�
EXTERN DWORD RssiThread(LPVOID pYoid);�

#endif /IRSSITEST_H�

118�

........._------- --------­

lli.b:

II ui.h : main header file for the U1 application

II

#if
!defined(AFX_UI_H_CC175948_4700_4C97_8D84 92A8342AAIB3 INCLUDED~
#define AFX_UI_H_CC175948_4700_4C97_8D84_92A8342AA1 B3_INCLUDED_

#if _MSC_VER >= 1000
#pragma once
#endifll _MSC_VER >= 1000

#ifudef AFXWIN_H_�
#error include 'stdafx.h' before including this file for PCR�

#endif

#inc1ude "resource.h" II main symbols�
#include <windowsx.h>�
#include "Globals.h"�

I I I IIII IIIIII //1/1///11///11/1//1II///111//11////1111///////II/11II/IIII /1//1

II CUiApp:�
I I See ui.cpp for the implementation of this class�
II�

class CUiApp : public CWinApp�
{�
public:�

CUiAppO;

II Oven-ides�
1/ ClassWizard generated virtual function overrides�
I/{ {AFX_VIRTUAL(CUiApp)�
public:�
virtual BOOL InitInstanceO;�
II} }AFX_VIRTUAL

II Implementation

/1 {{AFX_MSG(CUiApp)
/1 NOTE - the ClassWizard will add and remove member functions here.
// DO NOT EDIT what you see in these blocks of generated code!

119

II} }AFX_MSG�
DECLARE_MESSAGE_MAPO�

If/ // /11//1111111IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII!II/ IIIIIIIIIIIIII!IIIIIIII

II { {AFX_INSERT_LOCATION} }
/1 Microsoft eMbedded Visual C++ will insert additional declarations immediately before
the previous line.

#endifll
!defined(AFX_DI_H_CC175948_4700_4C97_8D84_92A8342AA 1B3_INCLUDED~

r-----~ ---__..._--
120

- ------­

- -- - - - - - -

- -

- -

uiDI.g.h:

II uiDlg..h : header file�
//�
II#include "SDAP_IntemalTypes.h"�
I/#include "SdapStack.h"�
//#inc1ude "F:\\Moses\\Documents\\DOE\\Programs\\PDA\\Includes\\Sdap_Precom.h"�
#include "FTPAPLh"�
#include <connmgr.h>�
#include "RssiTest.h"�
#inc1ude "Globals.h"�
#include "ServDisc.h"�

#jf�
!defined(AFX_UIDLG_H_6E8DF798_0BA8_44A5_A421_F2CC9D24432C_INCLU�
DED~

#define
AFX UIDLG H 6E8DF798 OBA8 44A5 A421 F2CC9D24432C INCLUDED

#if MSC VER >= 1000
#pragrna once
#endif/I MSC VER >= 1000
#define CONNREFRESHTIMERID 1
#define CONNREFRESHTIMEOUT 60000

#define CHECKMESSAGESTIMERID 2�
#define CHECKMESSAGESTIMEOUT 30000�

#define FTPIPADDRESS "139.78.9.151"�
#define FTPUSERNAME "vlab"�
#define FTPPASSWORD "mstm"�

#define CONFIGFILE "\\My Documents\\BTFOLDER\\Configuration\\VLab_Conftxt"�
#define LOCALFILESFOLDER "\\My Documents\\BTFolder\\Files\\"�
#define REMOTEFILESFOLDER "/Files/"�

#define REMOTEINSTRUCTORSFOLDER "/Instructors/"�
#define REMOTELOCATIONFOLDER "/Location/"�
#define LOCALLOCATIONFOLDER "\\My Documents\\BTFo1der\\Location\\"�

#define REMOTEMAPPINGFOLDER "/Mapping/"�
#define REMOTEMAPPINGFILE "/MappingIMapping.txt"�
#define LOCALMAPPINGFILE "\\My Documents\\BTFolder\\Mappings~\Mapping. txt"�

#define REMOTELOGINSFOLDER "/Logil1sl"�

121

#defme REMOTELOGINSFILE "/Logins/Logins.txt"
#defme LOCALLOGINSFILE "\\My Documents\\BTFolder\\Logins\\Logins.txt"

#define REMOTEMESSAGESFOLDER "/Messages/"
#define LOCALMESSAGESFOLDER "\\My Documents\\BTFOLDER\\Messages\\"

#define DESTCONNMANAGER "vlab"
#defme CONNTIMEOUT 30000

#define LOGINLENGTH 30
#define PASSWORDLENGTH 30

#defme ENCRYPTKEY 173

#define MAXNUMMESSAGES 50

#define REGISTRYKEY "Drivers\\BuiltIn\\BTSerialCe2"

EXTERN char *cLoginName;
EXTERN char *cPassword;

IIIIIIIIIIIIIIIIIIIIIIIIIIII1/11/II/IIIIIII1/111III1/1111IIIIIIIIIIIIIIIIIIII
II CUiDlg dialog

class CUiDlg : public CDialog
{
II Construction
public:

CUiDlg(CWnd* pParent = NULL); II standard constructor
void AddToListBoX(ullsigned char* szBuf);
void AutoConnectionO;
bool FTPOpenO;
bool FTPClose();
boolFTPSendFileO;
bool FTPDeleteFileO;
booI DestinationNetworkO;
bool GetRemoteNamesO;
bool AssignRemoteNamesO;
void PrepareLocationO;
bool PrepareMessagesO;
booI FTPGetFileO;
bool GetMessagesO;
bool CreateCOMPortO;
bool SetRegistryVa}uesO;

122

bool bConnPresence;
bool bAutoOn;
bool bFileSelect;
bool bFileTransferProgress;
bool bFTPPresence;
bool bProgramBegin;
CString LocalFile;
CString RemoteFile;
CString RemoteFolder;
CString MainRernoteFolder;
CString DestinationConnection;
HANDLE *ConnectionHandle;
CONNMGR_CONNECTIONINFO *Connectionlnfo;
CONNMGR_DESTINATION_INFO *Destinationlnfo;
char *cDevices_BD_Addr[MAXNUMDEVICES];
char *cRemoteNarnes[MAXNUMDEVICES];
HFTP FTPHandle;
CString FTP_UserName;
CString FTP_Password;
CString Server_IP_Address;
int NumMessages;
char *Messages[MAXNUMMESSAGES];
int MessagesDisplayed;
HANDLE COM_File;

II bt_device_context BT_Stack_Handle;
II SDAP_Handle BT_Sdap_Handle;

II Dialog Data
II{ {AFX_DATA(CUiDlg)
enum {IDD = IDD_UI_DIALOG };
CListBox rn_RSSI_List;
CListBox m_InqList;
CListBox m_Msgs_List;
CListBox m_List_NewMsgs;
CButton rn_Button_NewMsgs;
CEdit m_Edit_FileName;
CEdit lTI_Edit_Status;
CProgressCtrl rn_InqProgress ;
char m_iAvgRssiVal ;
CString m_BDAddr;

123

- -- - - - - -

CString m_RSSlval;�
II} }AFXJ)ATA�

II ClassWizard generated virtual function overrides
II{ {AFX_VIRTUAL(CUiDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDXlDDV support
II} }AFX_VIRTUAL

II Implementation
protected:

HICON m_hlcon;

II Generated message map functions�
II{ {AFX_MSG(CUiDlg)�
virtual BOOL OnInitDialogO;�
afx_ffisg void OnlnqButtonO;�
afx_msg void OnRssiButtonO;�
afx_msg void OnExitButtonO;�
afx_msg void. OnCloseO;�
afx_msg void OnConnBuUonO;�
afx_rnsg void OnDisconnButtonO;�
afx_msg void OnAutoButtonO;�
afx_msg void OnTimer(UINT nIDEvent);�
afx_ffisg void OnFilesendButtonO;�
afx_msg void OnBrowseButtonO;�
afx_msg void OnSeichangeRssiListO;�
afx_ffisg void OnNewmsgsButtonO;�
afx_msg void OnSelchangelnqListO;�
II} }AFX_MSG�
DECLARE_MESSAGE_MAPO�

};

II {{AFX_INSERT_LOCATION}}�
II Microsoft eMbedded Visual C++ will insert additional declarations immediately before�
the previous line.�

#endif/I
!defmed(AFX UIDLG H 6E8DF798 OBA8 44A5 A421 F2CC9D24432C INCLU
DED.J

124�

APPENDIXE�

Code for the Configuration Utility

Program Files:

VLab_Config.cpJl:

II VLab_Config.cpp : Defines the class behaviors for the application.�
II�

#include "stdafx.h"�
#include "VLab_Config.h"�
#include "VLab_ConfigDlg.h"�

#ifdef DEBUG�
#define new DEBUG NEW�
#undef THIS_FILE�
static char THIS_FILE[] = _FILE_;�
#endif�

1/111IIIIIIIIIIIIIIIIIIIIIIII11111/1111111/11I1111/1111III/1/IIIIIIIIIII111II
II CVLab_ConfigApp

BEGIN_MESSAGE_MAP(CVLab_ConfigApp, CWinApp)
II{{AFX_MSG_MAP(CVLab_ConfigApp)

II NOTE - the ClassWizard will add and remove mapping macros here.
II DO NOT EDIT what you see in these blocks of generated code!

II} }AFX_MSG_MAP
END_MESSAGE_MAP0

I11111/11IIIIIIII1111/1/11IIIIIIIIIII1I1IIIIIIIIIIIIIIIIIIIIIIIIIIIII111/1/11
II CVLab_ConfigApp construction

CVLab_ConfigApp: :CVLab_ConfigAppO
: CWinApp()

{
II TODO: add construction code here,
II Place all significant initialization in InitInstance

}

II1111/11IIIIIIIIIIII1111111111
II The one and only CYLab_ConfigApp object

125�

CVLab_ConfigApp theApp;

//1/1///////1//1111/11IIII/1111IIIII/IIII111//11111//11IIIIIIIIIIIIIIII11/1//
/ / CVLab_ConfigApp initialization

BOOL CVLab_ConfigApp: :InitlnstanceO
{

II Standard initialization
/I If you are not using these features and wish to reduce the size
II of your final executable, you should remove from the following
II the specific initialization routines you do not need.

CVLab_ConfigDlg dIg;�
myMainWnd = &dlg;�
int nResponse = dlg.DoModalO;�
if (nResponse == IDOK)�
{�

II TODO: Place code here to handle when the dialog is
II dismissed with OK

}�
else if (nResponse = IDCANCEL)�
{�

II TODD: Place code here to handle when the dialog is
II dismissed with Cancel

}

II Since the dialog has been closed, return FALSE so that we exit the
II application, rather than start the application's message pump.
return FALSE;

}

126�

VLab_ConfigDlg.cpp:

II VLab_ConfigDlg.cpp : implementation file�
1/�

#include "stdafx.h"�
#include "VLab_Config.h"�
#include "VLab_ConfigDlg.h"�
#include <stdio.h>�
#include <string.h>�

#ifdef DEBUG�
#define new DEBUG NEW�
#undef THIS FILE�
static char THIS_FILE[] = _FILE_;�
#endif�

#define LOCALFOLDER "\\My Documents"�
#define FILENAME "\\VLab Conf.txt"�

IIII/II
II CVLab_ConfigDlg dialog

CVLab_ConfigDlg::CVLab_ConfigD'lg(CWnd* pParent I*=NULL*I)
: CDialog(CVLab_ConfigDlg: :IDD, pParent)

{
II{ {AFX_DATA_INIT(CVLab_ConfigDlg)
II} }AFX_DATA_INIT
II Note that LoadIcon does not require a subsequent DestroyIeon in Win32
ill_hleon = AfxGetAppO->LoadIcon(IDR_MAINFRAME);

}

void CVLab_ConfigDlg: :DoDataExehange(CDataExchange* pDX)
{

CDialog::DoDataExehange(pDX);

II ({AFX_DATA_MAP(CVLab_ConfigDlg)�
DDX_Control(pDX, IDC_EDITS, m_RernFolder);�
DDX_Control(pDX, IDC_EDIT4, m_FTPPassword);�
DDX_Control(pDX, IDC_EDIT3, rn_FTPUser);�
DDX_Control(pDX, IDC_EDITl, ffi_IPAddress);�
II} }AFX_DATA_MAP�

}

127

BEGIN_MESSAGE_MAP(CVLab_ConfigDlg, CDialog)
II{ {AFX_MSG_MAP(CVLab_ConfigDlg)
ON_BN_CLICKED(IDC_BUTTONI , OnButtonl)
ON_BN_CLICKED(IDC_BUTTON2, OnButton2)
ON_BN_CLICKED(IDC_BUTTON4,OnButton4)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

/ II/IIIII/III/jill///////////1//111/////////////////////////////////II/IIjill
// CVLab_ConfigDlg message handlers

BOOL CVLab_ConfigDlg::OnlnitDialogO
{

CDialog: :OnlnitDialogO;

// Set the icon for this dialog. The framework does this automatically
// when the application's main window is not a dialog
Setlcon(m_hIcon, TRUE); // Set big icon
SetIcon(m_hIcon, FALSE); // Set small icon

CenterWindow(GetDesktopWindowO); // center to the hpc screen

// TODD: Add extra initialization here

CVLab_ConfigDlg: :OnButton40;

return TRUE; // return TRUE unless you set the focus to a control

}

void CVLab_ConfigDlg::OnButtonIO
{

int i;

unsigned short *IPAddr;

unsigned short *FTPUser;

unsigned short *FTPPassword;

•
I

unsigned short *RemFolder;�

IFAddr = new unsigned short[20];�

128�

FTPUser = new unsigned short[20];�
PTPPassword = new unsigned short[20];�
RemFolder = new unsigned short[20];�

II TODO: Add your control notification handler code here
IICreateFile (TEXT("\\My Documents\\CONFIGPILE.TXT"), II Open

CONFIGPILE.TXT
II GENERIC_READ, II Open for reading
II FILE_SHARE_READ, II Share for reading
II NULL, II No security
II OPEN_EXISTING, II Existing file only
II FILE_ATTRIBUTE_NORMAL, II Nonnal file
II NULL); II No template me

m_lPAddress.GetWindowText(IPAddr, 20);�
m_FTPUser.GetWindowText(PTPUser, 20);�
m_FTPPassword.GetWindowText(FTPPassword, 20);�
m_RernFolder.GetWindowText(RernFolder, 20);�

PILE *stream;

char *str;�
str = new char[20L�

strcpy(str,LOCALFOLDER);�
strcat(str,PILENAME);�

stream = fopen(str, "w");�
if (stream == NULL) return;�

II MessageBox(IPAddr,NULL, MB_OK);

for (i=O; IPAddr[i]!=NULL ;i++)�
fprintf(stream, "%c", IPAddr[i]);�

fjJrintf(stream, "\n");�
for (i=O; PTPUser[i]!=NULL ;i++)�

fprititf(stream, "%C", FTPUser[i]);�

:tprintf(stream, "\nil); ,I

for (i=0; PTPPassword[i]!=NULL ;i++)
fprintf(stream, "%c", PTPPassword[i]);

129

/1

fprintf(stream, "\n");�
for (i=O; RemFolder[i] !=NULL ;i++)�

fprintf(stream, "%c", RemFolder[i]);�

fputs(IPAddr, stream):;�
fclose(stream);�

}

void CVLab_ConfigDlg: :OnButton20
{

II TODO: Add your control notification handler code here�
CString IPAddr;�
IPAddr ='''';�
ffi_IPAddress.SetWindowText(IPAddr);�

CString FTPUser;�
FTPUser="";�
m_FTPUser.SetWindowText(FTPUser);�

CString FTPPassword;�
FTPPassword ="";�
m_FTPPassword.SetWindowText(FTPPassword);�

CString RemFolder;�
RemFolder ='''';�
ill_ RemFolder.SetWindowText(RemFolder);�

}

void CVLab_ConfigDlg::OnButton40
{

II TODO: Add your control notification handler code here

FILE *stream;�
char *IP;�
lP = new char[20];�

char *User;�
User = new char[20];�

char*Pass;�
Pass = new char[20];�

130

char *Rem;�
Rem = new char[20];�

char *str;�
str = new char[20];�

strcpy(str, LOCALFOLDER);�
strcat(str, FILENAME);�

stream = fopen(str, "r");�
if (stream = NULL)�
{�

fclose(stream);
return;

}

fscanf (stream, "%s", IF);�
fscanf (stream, "%s", User);�
fscanf (stream, II~YoS", Pass);�
fscanf (stream, "%s", Rem);�

fclose(stream);�

CString IFAddr;�
IPAddr = IP;�
m_IFAddress.SetWindowText(lPAddr);�

CStri ng FTPUser;�
FTPUser = User;�
m_FTPUser.SetWindowText(FTPUser);�

CString FTPPassword;�
FTPPassword = Pass;�
m_FTPPassword.SetWindowText(FTPPassword);�

CString RemFolder;�
RemFolder = Rem;�
m_RemFolder.SetWindowText(RemFolder);�

}

131

-�

II

Header Files:

VLab_Config.h:

II VLab_ConfigDlg.cpp : implementation file

#include "stdafx.h"�
#include "VLab_Config.h"�
#include "VLab_ConfigDlg.h"�
#include <stdio.h>�
#include <string ..h>�

#ifdef DEBUG�
#define new DEBUG NEW�
#undef THIS FILE�
static char THIS_FILE[] = _FILE_;�
#endif�

#define LOCALFOLDER "\\My Documents"�
#define FILENAME"\\VLab Conf. txt"�

IIIIIIIIIIIIIII11//11IIIIIIIIIIIIIIIIII1/111IIIIIII/IIIIIIIIIIIIIIIIIIIIIIIII
II CVLab_ConfigDlg dialog

CVLab_ConfigDlg::CVLab_ConfigDlg(CWnd* pParent I*=NULL*I)
: CDialog(CVLab_ConfigDlg::IDD, pParent)

{
II{ {AFX_DATA_INIT(CVLab_ConfigDlg)
II} }AFX_DATA_INIT
II Note that LoadIcon does not require a subsequent DestroyIcon in Win32
m_Wcan = AfxGetAppO->LoadIcon(IDR_MAINFRAME);

}

void CYLab_ConfigDlg: :DoDataExchange(CDataExchallge* pDX)
{

CDialag::DoDataExcha:llge(pDX};

II{ {AFX_DATA_MAP(CYLab_ConfigDlg)
DDX_Control(pDX, IDC_EDITS, ffi_RemFolder);
DDX_Control(pDX, IDC_EDIT4, m_FTPPassword); .I
DDX_Control(pDX, IDC_EDIT3, ffi_FTPUser);
DDX_Control(pDX, IDC_EDITl, m_IPAddress);
II}}AFX_DATA_MAP

132

}

BEGIN_MESSAGE_MAP(CVLab_ConfigDlg, CDialog)
II{ {AFX_MSG_MAP(CVLab_ConfigDlg)
ON_BN_CLICKED(IDC_BUTTONI, OnButton1)
ON_BN_CLICKED(IDC_BUTTON2, OnButton2)
ON_BN_CLICKED(IDC_BUTTON4, OnBurton4)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

11111/11/1111111111111//////11///1/
/1 CVLab_ConfigDlg message handlers

BOOL CVLab_ConfigDlg: :OnInitDialogO
{

CDialog: :OnInitDialogO;

1/ Set the icon for this dialog. The framework does this automatically
II when the application's main window is not a dialog
SetIcon(m_hIcon, TRUE); /1 Set big icon
SetIcon(m_hIcon, FALSE); II Set small icon

CenterWindow(GetDesktopWindowO); // center to the hpc screen

/1 TODD: Add extra initialization here

CVLab_ConfigDlg: :OnButton40;

return TRUE; II return TRUE unless you set the focus to a control

}

void CVLab_ConfigDlg::OnButtonlO
{

int i;�

unsigned short *IPAddr;�

unsigned· short *FTPUser;�

unsigned short *FTPPassword;�

unsigned short *RernFolder;�

133�

IPAddr = new unsigned short[20];�
FTPUser = new unsigned short[20];�
FTPPassword = new unsigned short[20];�
RemFolder = new unsigned short[20L�

II TODO: Add your control notification handler code here
IICreateFile (TEXT("\\My Documents\\CONFIGFILE.TXT"), II Open

CONFIGFILE.TXT
II GENERIC_READ, II Open for reading
II FILE_SHARE_READ, II Share for reading
II NULL, II No security
II OPEN_EXISTING, II Existing file only
II FILE_ATTRlBUTE_NORMAL, II Normal file
II NULL); II No template file

m_IPAddress.GetWindowText(IPAddr, 20);�
m_FTPUser.GetWindowText(FTPUser, 20);�
m_FTPPassword.GetWindowText(FTPPassword, 20);�
myemFolder.GetWindowText(RemFolder, 20);�

FILE *stream;

char *str;�
str = new char[20];�

strcpy(str,LOCALFOLDER);�
strcat(str,FILENAME);�

stream = fopen(str, "w");�
if (stream == NULL) return;�

II MessageBax(IPAddr,NULL, MB_OK);

for (i=O; IPAddr[i].!=NULL ;i++)�
fprintf(stream, "%C", IPAddr[i]);�

fprintf(stream, "\n");�
for (i=O; FTPUser[i]!=NULL ;i++)�

fprilltf(stream, "%C", FTPUser[i]);�

fprintf(stream, "\n");�
far (i=O; FTPPassward[i]!=NULL ;i++)�

134�

II

fprintf(stream, n%c", FTPPassword[i])~

fprintf(stream, "\n")~

for (i=O; RernFolder[i]!=NULL ;i++)�
fprintf(stream, "%c", RemFolder[i]);�

fputs(IPAddr, stream);�
fclose(stream);�

}

void CVLab_ConfigDlg: :OnButton20
{

II TODO: Add your control notification handler code here�
CString IPAddr;�
IPAddr =""~

m_IPAddress.SetWindowText(IPAddr)~

CString FTPUser~

FTPUser =1II1~

m_FTPUser.SetWindowText(FTPUser);�

CString FTPPassword~

FTPPassword ="";�
m_FTPPassword.SetWindowText(FTPPassword)~

CString RernFolder;�
RemFolder ="";�
ffi_RemFolder.SetWindowText(RemFolder);�

}

void CVLab_COllfigDlg: :OnButton40
{

II TODO: Add your control notification handler code here

FILE *stream;�
char *IP;�
tp = new char[20];�

char *User;�
User = new char[20];�

char *Pass;

135

Pass = new char[20];

char *Rem;�
Rem = new char[20];�

char *str;�
str = new char[20};�

strcpy(str, LOCALFOLDER);�
strcat(str, FILENAME);�

stream = fopen(str, "r");�
if (stream == NULL)�
{

fclose(stream);�
return;�

}�

fscanf (stream, "%s", IP);�
fscanf(stream, "%s", User);�
[scanf (stream, "%s", Pass);�
[scanf (stream, "%s", Rem);�

fclose(stream);�

CString IPAddr;�
IPAddr = IP;�
m_IPAddress.SetWindowText(IPAddr);�

CStrlng FTPUser;�
FTPUser = User;�
m_FTPUser.SetWindowText(FTPUser);�

CString FTPPassword;�
FTPPassword = Pass;�
m_FTPPassword.SetWindowText(FTPPassword);�

CString RemFolder;�
RemFolder = Rem;�
m_RemFo1der.SetWindowText(RemFolder);�

}

136�

- -

- -

II

VLab_ConfigDlg.h:

II VLab_ConfigDlg.h: header file

#if
!defined(AFX_VLAB_CONFIGDLG_H_2B083A29_8233_4982_B2C2_E0882CEED
AD4_INCLUDED-1
#define
AFX_VLAB_CONFIGDLG_H_2B083A29_8233_4982_B2C2_E0882CEEDAD4_IN
CLUDED

#if MSC VER >= 1000
#pragma once
#endif/I MSC VER>= 1000

II1//11IIIIIIIIIIIIIIIIIIIIIIIIIIII
II CVLab_ConfigDlg dialog

class CVLab_ConfigDlg : public CDialog
{
II Construction
public:

CVLab_ConfigDlg(CWnd* pParent = NULL); II standard constructor

II Dialog Data
II{{AFX_DATA(CVLab_ConfigDlg)
enum {IDD = IDD_VLAB_CONFIG_DlALOG};
CEdit l11_RemFolder;
CEdit m_FTPPassword;
CEdit m_FTPUser;
CEdit m_IPAddress;
II} }AFX_DATA

II ClassWizard generated viliuaJ function overrides
II{ {AFX_VIRTUAL(CVLab_ConfigDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDX/DDV support
II} }AFX_VIRTUAL

II Implementation
protected:

HICON m_hIcon;

II Generated message map functions

137

- -
L

II { {AFX_MSG(CVLab_ConfigDlg)�
virtual BOOL OnInitDialogO;�
afx_ffisg void OnButlonlO;�
afx_ffisg void OnKillfocusEditlO;�
afx_msg void OnChangeEditlO;�
afx_ffisg void OnButton20;�
afx_ffisg void OnButton40;�
II} }AFX_MSG�
DECLARE MESSAGE MAPO�

//{ {AFX_INSERT_LOCATION}}�
1/ Microsoft eMbedded Visual C++ will insert additional declarations immediately before�
the previous line.�

#endif II�
!defined(AFX_VLAB_CONFIGDLG_H_2B083A29_8233_4982_B2C2_E0882CEED�
AD4_INCLUDED~

138�

APPENDIXF

Code for the Instructor Access Management Utility

Program Files:

LoginDialog.cpp

II LoginDialog.cpp : implementation file
II

#include "stdafx.h"
#include "us,er_manage.hl!
#include "LoginDialog.h"

#ifdef DEBUG
#define new DEBUG NEW
#Undef THIS FILE
static char THIS_FILE[] = _FILE_;
#endif

#defme ADMINUSERNAME "admin"
#defme ADMINPWD "virtualbluetooth"

1////1/11IIIIIIIIIIIII11111I1I11I1I111I1IIIIII111IIIIIIIIIIIIII111II1111I111I
II CLoglnDialog dialog

CLoginDialog: :CLoginDialog(CWnd* pParent I*=NULL*/)
: CDialog(CLoginDialog::IDD, pParent)

{
II {{AFX_DATA_INIT(CLoginDialog)�
II} }AFX_DATA_INIT�

}

void CLoginDialog::DoDataExchange(CDataExchange* pDX)
{

CDlalog: :DoDataExchange(pDX);�
II{ {AFX_DATA_MAP(CLoginDialog)�
DDX_Control(pDX, IDC_Login_Pwd, ffi_Login_Pwd);�
DDX_Control(pDX, IDC_Login_Name, m_Login_Name);�
II} }AFX_DATA_MAP�

}

139

- -

BEGIN MESSAGE MAP(CLoginDialog, CDialog)
Ii {{AFX-:MS-G_MAP(CLoginDialog)
ON_BN_CLICKED(IDC_LOGIN,OnLogin)
II} }AFX_MSG_MAP

END MESSAGE MAPO

BOOL CLoginDialog: :OnInitDialogO
{

CDialog: :OnInitDialogO;�
m_Login_Pwd.SetPasswordCharC*');�
return TRUE;�

}

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIJIjIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
II CLoginDialog message handlers

void CLoginDialog: :OnLoginO
{

II TODO: Add your control notification handler code here
LPTSTR chI = new char[20];
LPTSTR ch2 = new char[20];
ill_Login_Name.GetWindowText(ch1,20);
m_Login_Pwd.GetWindowText(ch2,20);
CString a = ADMINUSERNAME;
CString b = ADMINPWD;
if((chl = a) && (ch2 == b»
CDialog:OnOKO;
else
{

MessageBoxLTC'Login name or password is not con-ecLPlease try
again! "),_T("Error Message"),MB_OK);

m_Login_Name.SetWindowText("Il);
ill_Login_Pwd.SetWindowText("");

}
}

void CLoginDialog::OnCanceIO
{

II TODO: Add extra cleanup here

CDialog:: OnCancelO;
}

140�

II

user_manage.cpp:

II user_manage.cpp : Defines the class behaviors for the application.�

#include "stdafx.h"�
#include "user_manage.h"�
#include "user_manageDlg.h"�
#include "LoginDialog.h"�
#include <afxwin.n>�

#ifdef DEBUG�
#define new DEBUG NEW�
#undef THIS FILE�
static char THIS_FILE[] = _FILE_;�
#endif�

1/1IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII1111/1111111IIIIIIIIIIIIIIIIIIIIIIIII
II CUser_manageApp

BEGIN_MESSAGE_MAP(CUser_manageApp, CWinApp)
II {{AFX-,MSG_MAP{CUser_manageApp)

II NOTE - the ClassWizard will add and remove mapping macros here.
II DO NOT EDIT what you see in these blocks of generated code!

II} }AFX_MSG�
ON_COMMAND(ID_HELP, CWinApp::OnHelp)�

END_MESSAGE_MAP0

I IIIIIIIIIIIIIIIIIIIIIIIIII1/111III
II CUser_manageApp construction

CUser_manageApp::CUser_manageAppO
{

II TODO: add construction code here,�
II Place aU significant initialization in InitInstance�

}

I II/1/11IIIIIII1111/11/11I111//I11/
II The one and only CUser_manageApp object

CUser_manageApp theApp;

II1/1IIIIII11//IIIIIIIIIIIIIII/IIIIII/IIIIIIIIIIII/IIIIIIIIII1111/1/11/1IIIII
II CUser_manageApp initialization

BOOL CUser_manageApp::InitInstanceO

141

{

if (!AfxSocketlnit(»)
{

Af:xMessageBox(IDP_SOCKETS_INIT_FAILED);
return FALSE;

}

AfxEnableControlContainerO;

II Standard initialization
II If you are not using these features and wish to reduce the size
/I of your [mal executable, you should remove from the following
II the specific initialization routines you do not need.

#ifdef _AFXDLL
Enable3dControlsO; II Call this when using MFC in a shared

DLL
#else

Enable3dColltrolsStaticO; II Call this when linking to MFC statically
#endif

int nResponse;

CLoginDialog Logdlg;

nResponse = Logdlg.DoModalO;�
if (nResponse == IDOK)�
{�

II TODO: Place code here to handle when the dialog is
II dismissed with OK

II MessageBox(NULL,_T("success"),O,MB_OK);
}
else if (nResponse == mCANCEL)
{

II TODO: Place code here to handle when the dialog is
II dismissed with Cancel
exit(O);

}

CUser_manageDlg dIg;
m-pMainWnd = &dlg;
nResponse = dlg.DoModalO;

/* if (nResponse == IDOK)

142

{
II TODD: Place code here to handle when the dialog is
II dismissed with OK

}
else if (nResponse == IDCANCEL)
{

II TODO: Place code here to handle when the dialog is
II dismissed with Cancel

}

II Since the dialog has been closed, return FALSE so that we exit the
II application, rather than start the application's message pump.
Ilreturn FALSE;*I
return FALSE;

}

143�

II

nser_manageDlg.cpp:

II user_manageDlg.cpp : implementation file

-#include ttstdafx.h"�
#include t'user_manage.h"�
#include "user_manageDlg.h"�
#include <afxinet.h>�
#include <afxwin.h>�
#ifdef DEBUG�
#define new DEBUG NEW�
#undef THIS FILE�
static cbar THIS_FILED = _FILE_;�
#endif�

IIIIIIIIIIIII/IIIII!II/11IIIIIIIII1II1111111111//IIIIIIII11111111//I11111//II�
II CAboutDlg dialog used for App About�

class CAboutDIg : public CDialog
{
public:

CAboutDlgO;

II Dialog Data
II {{AFX_DATA(CAboutDlg)
enum { IDD = IDD_ABOUTBOX };
II} }AFX_DATA

II ClassWizard generated virtual function overrides
II{ {AFX_VIRTUAL(CAboutDlg)
protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDXIDDV support
II} }AFX_VIRTUAL

II Implementation
protected:

II {{AFX_MSG(CAboutDlg)
II} }AFX_MSG
DECLARE_MESSAGE_~O

} ;

CAboutDlg::CAboutDlgO : CDialog(CAboutDlg::IDD)
{

II{ {AFX_DATA_INIT(CAboutDlg)�
II} }AFX_DATA_INIT�

144

- -

}

void CAboutDlg::DoDataExchange(CDataExchange* pDX)
{

CDialog: :DoDataExchange(pDX);�
II{ {AFX_DATA_MAP(CAboutDlg)�
II} }AFX_DATA_MAP�

}

BEGIN_MESSAGE_MAP(CAboutD1g, CDialog)
II{ {AFX_MSG_MAP(CAboutDlg)

II No message handlers
II} }AFX_MSG_MAP

END MESSAGE MAP0

III/IIIIIIIIIIIIIIIIIII
II CUser_manageDlg dialog

CUser_manageDlg::CUser_manageDlg(CWnd* pParent I*=NULL*/)
: CDialog(CUser_manageDlg::IDD, pParent)

{
II {{AFX_DATA_INIT(CUser_manageDlg)
II} }AFX_DATA_INIT
II Note that Loadlcon does not require a subsequent DestroyIcon in Win32
ill~hIcon = AfxGetAppO->Loadlcon(IDR_MAINFRAME);
int i;
for (i=O;i<30;i++)
{�

Name[i] = new char [30];�
Password[i] = new char [30];�
Fullname[i] = new char [50];�

}
n users = O·- ,�
selected_user = -1;�

}

void CUser_manageDlg: :DoDataExchange(CDataExchange* pDX)
{

CDialog: :DoDataExchange(pDX);
II{ {AFX_DATA_MAP(CUser_manageDIg)
DDX_Control(pDX, IDC_LIST, m_List_LoginList);
DDX Contro1(pDX, IDC ADD, m Button Add);- - - -

DDX_Control(pDX, IDC_EDIT_FULLNAME, ffi_Edit_FullName);
DDX_Colltrol(pDX, IDC_EDIT_PASSWORD, m_Edit_PassWord);
DDX_Control(pDX, IDC_EDIT_USERNAME, m_Edit_UserName);

145�

BEGIN_MESSAGE_MAP(CUser_manageDlg, CDialog)
II {{AFX_MSG_MAP(CUser_manageDlg)
ON_WM_SYSCOMMANDO
ON_WM_PAINTO
ON_WM_QUERYDRAGICONO
ON_BN_CLICKED(IDC_ADD,OnAdd)
ON_BN_CLICKED(IDC_DELETE, OnDelete)
ON_LBN_SELCHANGE(IDC_LIST, OnList)
ON_BN_CLICKED(IDC_OK, OnOk)
ON_BN_CLICKED(IDC_UPDATE, OnUpdate)
ON_BN_CLlCKED(IDC_APPLY,OnApply)
ON_BN_CLICKED(IDC_EXIT,OnExit)
II} }AFX_MSG_MAP

END_MESSAGE_MAPO

IIIIIIIIIIIIIIIIIIIIII11/1/1IIII111/1/1I1/1111IIIIIIIIII1/111II/II11/1/11/111
II CUser_manageDlg message handlers

BOOL CUser_manageDlg::OnInitDialogO
{

CDialog: :OnInitDialogO;

II Add "About..." menu mtem to system menu.

II IDM_ABOUTBOX must be in the system command range.
ASSERT«IDM_ABOUTBOX & OxFFFO) == IDM_ABOUTBOX);
ASSERT(IDM_ABOUTBOX < OxFOOO);

CMenu* pSysMenu = GetSystemMenu(FALSE);�
if (pSysMenu != NULL)�
{

CString strAboutMenu;
strAboutMenu. LoadString(IDS_ABOUTBOX);
if (1 strAboutMenu.IsEmptyO)
{

pSysMenu->AppendMenu(MF_SEPARATOR);
pSysMenu->AppendMenu(MF_STRING, IDM_ABOUTBOX,

strAboutMenu);
}

}

II Set the icon for this dialog. The fTamework does this automatically
II when the application's main window is not a dialog

146

SetIcon(m_Wcon, TRUE); II Set big icon
Setlcon(m_hleon, FALSE); II Set small icon

II TODO: Add extra initialization here

FtpConnectionO;�
DisplayO;�

return TRUE; II retum TRUE unless you set the focus to a control
}

void CUser_manageDIg::OnSysCommand(UINT nID, LPARAM IParam)
{

if «nID & OxFFFO)= IDM_ABOUTBOX)
{

CAboutDlg dlgAbout;
dlgAbout.DoModaIO;�

}�
else�
{

CDialog: :OnSysCommand(nID, lParam);
}

}

II Ifyou add a minimize button to your dialog, you will need th.e code below
II to draw the icon. For MFC applications using th.e document/view model,
II this is automatically done for you by the framework.

void CUser_manageDlg::OnPaintO
{

if (IsIconic())
{

CPaintDC dc(this); II device context for painting

SendMessage(WM_ICONERASEBKGND, (WPARAM)
dc.GetSafeHdcO, 0);

II Center icon in client rectangle�
int cxlcon = GetSystemMetrics(SM_CXICON);�
int cyIcon = GetSystemMetrics(SM_CYICON);�
CRect rect;�
GetClientRect(&rect);�
illt x = (reet.WidthO - cxIcon + 1) I 2;�
int y = (reet.HeightO - cylcon + 1) I 2;�

II Draw the icon�

147

dc.DrawIcon(x, y, ill_Wcon);�
}�
else�
{�

CDialog::OnPaintO;
}

}

II The system calls this to obtain the cursor to display while the user drags
/1 the minimized window.
HCURSOR CUser_manageDlg: :OnQueryDragIconO
{

return (HCURSOR) rn_hlcon;
}

void CUser_manageDlg: :FtpConnectionO
{

int i=O;�
int length1,length2,length3,total;�
FILE *file;�
char *templine = new char[256];�
char *ServerAddr = new char[20];�
LPCSTR User_Name = new char[20];�
LPCSTR UserPwd = new char[20];�
file = fopen(IC:\\serverinfo.txt l ,lr ");�
fgets(templine,256,file);�
sscanf(templine,l%s\t%s\t%s",ServerAddr,User_Name,UserPwd);�
CIntemetSession CFTP;�
CFtpConnection* FTP_MSTM;�

1/� char *sfile;
CString s;
LPDWORDd;
char *line = new char[lOO];
char *show = new char[1] ;
d = new DWORD;
*d=250;
char *cha = new char[30];
CString des;

n users = o·- ,

FTP_MSTM = CFTP.GetFtpCOlmection(ServerAddr, User_Name, UserPwd, 21,
TRUE);
II FTP_MSTM->GetCurrentDirectory(s, d);

s="NLabPDA/Loginsl";�
FTP_MSTM->SetCurrentDirectory(s};�

148

I'~~~~~~~~---------------.(

CString gh = "NLabPDNLogins/Logins.txt"~

des = "C:\\Logins.txt"';�
FTP MSTM­

>GetFile(gh,des,FILE_ATTRIBUTE_NORMAL,FTP_TRANSFER_TYPE_BINARY,
1);

FTP_MSTM->CloseO;

if«in_file = fopen("C:\\Logins.txt","r")) == NULL)
{

MessageBoxLT("No such file exists"),NULL,MB_OK);
return;

}
Ilelse�
II MessageBoxLT(f1File is opened"),NULL,MB_OK);�

while (!feof(in_fiIe»)�
{�

iff fgets(1iine, 256, inc-file) == NULL)�
{

fclose(iu_file);�
MessageBox(J("No user exits"),NULL,MB_OK);�
if (DeleteFile(des) == 0)�

MessageBoxLT("Error"),NULL,MB_OK);
retum~

}

sscanf(line, "%s\t%S\t%S", Name[l1_LlSers],
Password[n_users] ,FuUname[n_users])~

1* if(*Name[O] == -51)
{�

fclose(in_file);�
MessageBoxCT("EOF"),NULL,MB_OK);�
if (DeleteFile(des) = 0)�

MessageBoxLT("Error"),NULL,MB_OK);

retum~

}
*1 lengthl = strlen(Name[n_users]);
1* for (i=O;i<lengthl~i++)

{
IlName[n_users][i] = Name[n_users][]]"'encap;
*(Name[n_users]+i) = *(Name[n_usersJ+i)~

}
length2 = strlen(Password[n_users])~

for (i=O~i<length2~i++)

{�

149

/lPassword[n_users][i] = Password[n_users][i]"encap;
*(Password[n_users]+i) = *(Password[n_users]+i);

}
length3 = strlen(Fullnarne[n_usersl);�
for (i=O;i<length3 ;i++)�
{

I/Fullname[n_users][i] = Fullname[n_users][i]"encap;
*(Fullname[n_users]+i) = *(Fullname[n_users]+i);

}
*/

length2 = strlen(Password[n_users]);
length3 = strlen(Fullname[n_users]);
total = strlen(Name[n_users]) + strlen(Password[n_users]) +

strlen(Fullname[n_users]);
11* show = linertotal+ 1];

1* while (line[total+2] != '\n')
{

*(Fullname[n_users]+length3) = line[total+2];�
tota1++;�
length3++;�

}*/
n_users++;�

}�
fc1ose(in_file);�

DeleteFile(des);

delete line;�
delete d;�
delete cha;�

}
void CUser~manageDIg: :DisplayO
{

II Decrypt all data using EncryptAHData function and show all data as normal�
/1 words, then encrypt data again.�
int t;�
MessageBoxLTC'encrypt"),NULL,MB_OK);�
LPCTSTR temp_initial = new char [256];�
Ilif (*Name[O] = -51) return;�
EncryptAllDataO;�
for (t=O;t< n_users;t++)�
{

CString temp~nitial = Name[t];

150

II

temp_initial+= "'----------";�
temp_initial+= Password[t];�
temp_initia1+= ,, If;�

temp_initial+= Fullnarne[t];�
m_List_LoginList.InsertString(t,temp_initial);�

}�
EncryptAllDataO;�
selected_user =-1;�

}
void eDser_manageDIg: :OnAddO
{

II TODO: Add your control notification handler code here�
int i=O;�
int length=O;�
LPTSTR eh = new char[20];�
n_users++;�

m_Edit_UserName.GetWindowText(eh,20);�

length = strlen(eh);�

for (i=O;i<=length;i++)�
{�

*(Name[n_users-l]+i) = ch[i];�
}
/lName[n_users-I][i] = '\0';�
m_Edit_PassWord.GetWindowText(ch,50);�
length = strlen(eh);�
for (i=O;i<=length;i++)�
{�

*(Password[n_users-l]+i) = ch[i];�
}�
IIPassword[n_users-ll[i] = '\0';�

m_Edit_FullName.GetWindowText(eh,50);�
length = strlen(ch);�
for (i=O;i<=length;i++)�
{

*(Fullname[n_users-I]+i) = eh[j];�
}�
IIFullname[n_users-l][i] = '\0';�
eString temp;�
temp = N ame[n_users-I];�
temp+="----------" ;�
temp+=Password[n_users-I] ;�
temp+=" ";

151

r�

temp+=Fullname[n_users-I];

m_List_LoginList.fusertString(n_users-1 ,temp);
EncryptData(n_users-I);

II EncryptData(n_users-1);

II fprintf(in_file,"\n%s %s %s", Name[n_users],
Password[n_users],Fullname[n_users]);

m_Edit_UserName.SetWindowText("");
m_Edit_PassWord.SetWindowText("I1);
m_Edit_FullName.SetWindowText("");

}

void CDser_manageDIg: :OnDeleteO
{

II TOnO: Add your control notification handler code here
int i;
if(se1ected_user == -1)

MessageBoxLT("Selecting in error"),NULL,MB_OK);
char *temp_name;
char *temp""'password;
char *temp_fu1lname;
temp_name = N ame[selected_user];
temp""'password = Password[selected_user];
temp_ful1name = Fullname[selected_user];

for (i=selected_user;i<n_users-1 ;i++)
{�

Fullname[i] = Ful1name[i+l];�
Name[i] = Name[i+l];�
Password[i] = Password[i+1];�

}�
Name[n_users-l] = temp_name;�
Password[n_users-1] = tempyassword;�
Fullname[n_users-I] = temp_fullname;�
n_users = n_users - 1;�
IleDser_manageDlg::DisplayO;�
m_List_LoginList.DeleteString(selected_user);�
m_Edit_DserName.SetWindowText("");�
m_Edit_PassWord.SetWindowText("");�
m_Edit_FullName.SetWindowText("");�

}

152�

- -

void CUser_manageDIg::OnListO
{

II show the selected user on the left list

selected_user = m_List_LaginList. GetCurSelO;�
if(selected_user = prev_selected_user)�
{�

m_List_LoginList.SetCurSel(-I);/I selected_user, FALSE);�
m_Edit_UserName.SetWindowText("");�
m Edit PassWord.SetWindowText("");�
m_Edit_FullName.SetWindowText("");�
selected_user = -1;�
prey_selected_user = -1;�

}
else
{

EncryptData(selected_user);�
m_Edit_UserName.SetWindowText(Name[sdected_user]);�
m_Edit_PassWord.SetWindowText(Password[selected_user]);�
m_Edit_FullName.SetWindowText(Fullname[selected_user]);�
EncryptData(selected_user);�
prev_selected_user = selected_user;�

}

}

void CUser_manageDIg::OnOkO
{

II TODO: Add your control notification handler code here�
OnApplyO;�
int i;�
for (i=O;i<30;i++)�
{

delete Name[i];�
delete Password[i];�
delete Fullname[i];�

}
exit(O);

}

void CUser_manageDIg::OnUpdateO
{

II TODO: Add your control notification handler code here�
CString temp;�
char* chI = new char[30];�

153

- -

- -
- -

char* ch2 = new char[30];�
char* ch3 = new char[50] ~

lTI_Edit_UserName.GetWindowText(chl,30);�
memcpy(Name[selected_user], chl,30);�
m_Edit_PassWord.GetWindowText(ch2,30);�
memcpy(password[selected_user], ch2,30);�
m_Edit_FullName.GetWindowText(ch3,50);�
memcpy(Fullname[selected_user], ch3,50);�
temp = Name[selected_user];�
temp+=" It;

temp+=Password[selected_user];
temp+="----------";
temp+=Fullname[selected_user];
m_List_LoginList.DeleteString(selected_user);
m_List_LoginList.InsertString(selected_user,temp);
EncryptData(selected_user);
m Edit UserName.SetWindowText("");
m Edit PassWord.SetWindowText(''''}~

m Edit FullName.SetWindowText("");
}

void CUser manageDlg: :OnApplyO _
{

II TODO: Add your control notification handler code here
int i;

II char *a;

if «in_file = fopen("C:\\Logins.txt","wlt» = NULL)
MessageBoxCT("File was not openedlt),NULL,MB_OK);

IIEncryptAllDataO;
for (i=O;i<n_llsers;i++)
{

if(i = (n_users - 1)
fprintf{in_file, II%s\t%s\t%sIt ,Name[i),Password[i],Fullname[i));

else
fprintf(in_file,lt%s\t%s\t%s\nIt,Name[i],Password[i),Fullname[i]);

}
fc1ose(in_file);
III_ Edit_UserName.SetWindowText("");
m,-Edit_PassWord.SetWindowText("It);
m_Edit_FullName.SetWindowText("It);

FILE *file;�
char *templine = new char[256];�
char *ServerAddr = new char[20];�
LPCSTR User_Name = new char[20];�

154

LPCSTR UserPwd = new char[20];�
file = fopen("C:\\senrerinfo.txt","r");�
fgets(templine,256,file);�
sscanf(templine,"%s\t%s\t%s",ServerAddr,User_Name,UserPwd);�
LPDWORDd;�
CString s;/I= new char[250];�
CString des;llnew char[250];�

II� sfile = new char[250];
d = new DWORD;
*d=250;
ClntemetSession CFTP;
CFtpConnection* FTP_MSTM;

FTP_MSTM = CFTP.GetFtpConnection(ServerAddr, User_Name, UserPwd, 21,
TRUE);
II FTP MSTM->GetCurrentDirectory(s, d);

s="NLabPDA/Logins";�
FTP_MSTM->SetCurrentDirectory(s);�

des = "NLabPDA/Logins/LoginsJxt";�

CString h = "C:\\Logins.txt";
if(FTP_MSTM->PutFi1e(h,des,.FTP_TRANSFER_TYPE_BINARY, 1)=0)
{

GetLastErrorO;�
MessageBoxLT("Error"),NULL,MB_OK);�

}
FTP_MSTM->C1oseO;�
De1eteFile(h);�

}

void CUser_manageDIg: :EncryptAllDataO
{

II Encrypting all data using encrypting key�
int length,i,j;�

for(i=O;i<n_users;i++)
{�

length = stden(Name[i]);�
for (j=O;j<length;j++)�
{�

(Name[i]+j) = ((Name[i]+j» /\ EncryptKey;
}
length = strLen(Password[i]);
for (j=O;j<length;j++)
{

(Password[i]+j) = ((Password[i]+j) /\ EncryptKey;

155�

}
length = strlen(Fullname[i]);�
for (j=O;j<length;j++)�
{

(Fullname[i]+j) = ((Fullname[i]+j)) I\. EncryptKey;
}

}
}

void CUser_manageDIg: :EncryptData(int iIndex)
{

int length,j;�
length = strlen(Name[ilndex]);�
fOT (j=0;j<length;j++)�
{

(Name[iIndex]+j) = ((Name[iIndex]+j) A EncryptKey;
}
length = strlen(Password[iIndex));
for (j=O;j<length;j++)
{

(Password[iIndex]+j) = ((Password[iIndex]+j» EncryptKey;A

}�
length = strlen(Fullname[iIndex]);�
for (j=O;j<length;j ++)�
{

(Fullname[iIndex}+j) = ((Fullname[iIndex]+j)) I\. EncryptKey;
}

}

void CUser_manageDlg::OnExitO
{

II TODG: Add your control notification handler code here
exit(O);

}

156�

- -

- -

Header Files:

LoginDialog.h:

#if
!defined(AFX_LOGINDIALOG_H_9789D8F4_9lE2_4F56_BFI0_8A212C45C7CB_
INCLUDED~

#define
AFX_LOGINDIALOG H 9789D8F4_9tE2_4F56_BFIO_8A212C45C7CB_INCLU
DED

#if MSC VER > lOOO
#pragrna once
#endifll MSC VER > 1000
II LoginDialog.h : header file
II

IIIIIIIIIIIIIIIIIIIIIIIIIIII1111111111/1111II11111/111IIIIIIIIIIIIIIIIIIIIIII
II CLoginDialog dialog

class CLoginDialog : public CDialog
{
II Construction
public:

CLoginDialog(CWnd* pParent = NULL); II standard constructor

II Dialog Data
II{ {AFX_DATA(CLoginDialog)
enum {IDD = IDD_LOGIN_DIALOG};
CEdiit m_Login_Pwd;
CEdit m_Login_Name;
II} }AFX_DATA

II Overrides
II ClassWizard generated virtual function overrides
II {{AFX_VIRTUAL(CLoginDialog)
protected:
virtual void DoDataExchange(CDataExchange* pDX); II DDXlDDV support
II} }AFX_VIRTUAL

II Implementation
protected:

II Generated message map functions�
II{{AFX_MSG(CLoginDialog)�

157

virtual BOOL OnInitDialogO;
afx_msg void OnLoginO;
virtual void OnCancelO;

II afx_Illsg void OnLoginO;
II} }AFX_MSG
DECLARE_MESSAGE_MAPO

};

II{{AFX_INSERT_LOCATION}}�
II Microsoft Visual C++ will insert additional declarations immediately before the�
previous line.�

#endif II�
!defmed(AFX_LOGINDlALOG_H_9789D8F4_91E2_4F56_BFIO_8A212C45C7CB_�
INCLUDED~

158

1

- -

- -

- --

user_ma.D age.h:

II user_manage.h : main header file for the USER_MANAGE application�
II�

#if
!defined(AFX_USER_MANAGE_H_ECD6D520_9B91_42C5_9BE2_8DAE88E2F4E4

INCLUDED-l
#define
AFX_USER_MANAGE_H_ECD6D520_9B91_42C5_9BE2_8DAE88E2F4E4_INCL
UDED

#if MSC VER > 1000�
#pragma once�
#endif II MSC VER > 1000�

#ifndef AFXWIN R
#error include 'stdafx.h' before including this file for PCR

#endif

#include "resource.h" II main symbols

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII11//111IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
II CUser_manageApp:
II See user_manage.cpp for the implementation of this class
II

dass CUser_rnanageApp : public CWinApp
{
public:

CUser_manageAppO;

II Overrides
II ClassWizard generated virtual function overrides
II{ {AFX_VIRTUAL(CUser_manageApp)
public:�
virtual BaaL InitInstanceO;�
II} }AFX_VIRTUAL�

II Implementation

II { {AFXflSG(CUser_manageApp) ,
II NOTE - the ClassWizard will add and remove member functions here.
II DO NOT EDIT what you see in these blocks of generated code!

II} }AFX_MSG
DECLARE_MESSAGE_MAPO

159

- -

};

111111111111111111/1/111111111111111//1111/1/11/111111111III1111I1IIIIIIIIIII

II{{AFX INSERT LOCATION}}�
II Microsoft Visual C++ will insert additional declarations immediately before the�
previous li.ne.�

#endif II
!defined(AFX_USER_MANAGE_H_ECD6D520_9B91_42C5_9BE2_8DAE88E2F4E4
_INCLUDED->

160�

r�

- -

- -

user_manageDlg.h:

II user_manage.h : main header file for the USER_MANAGE application
II

#if
!defined(AFX_USER_MANAGE_H_ECD6D520_9B91_42C5_9BE2_8DAE88E2F4E4
_INCLUDED~

#define
AFX_USER_MANAGE_H_ECD6D520_9B91_42C5_9BE2_8DAE88E2F4E4 INCL
UDED

#if MSC VER> 1000
#pragma once
#endif/I MSC VER> 1000

#ifndef AFXWIN H
#error include 'stdafx.h' before including this file for PCH

#endif

#include "resource.htl II main symbols

1111I111111111111111111I11111I1111I1111111111I111111111111II1111111111I1111I1
II CUser_manageApp:�
II See user_manage.cpp for the implementation ofthis class�
II

class CUser_manageApp : public CWinApp
{
public:

CUser_manageAppO;

II Overrides
II ClassWizard generated virtuai function overrides
II ({AFX_VIRTUAL(CUser_manageApp)
public:
virtual BaaL InitInstanceO;
II} } AFX_VIRTUAL

II Implementation

II{ {AFX_MSG(CUser_manageApp) _
II NOTE - the ClassWizard will add and remove member functions here.
II DO NOT EDIT what you see in these blocks ofgenerated code!

II} }AFX_MSG�
DECLARE_MESSAGE_MAP0�

161

- - -- - - - -

} ;

II/II

II {{AFX_INSERT_LOCATION}}�
II Microsoft Visual C++ will insert additional declarations immediately before the�
previous line.�

#endif II
!defined(AFX USER MANAGE H ECD6D520 9B91 42C5 9BE2 8DAE88E2F4E4
_INCLUDED~

162�

~/

@�
VITA

Lynn Moses George

Candidate for the Degree ofMaster of Science

Thesis: Development of the Wireless Instructor System and Bluetooth Handover
Technologies for Improved Virtual Laboratory Applications

Major Field: Electrical and Computer Engineering

Biographical:

Education: Received Bachelor of Engineering degree in Electrical and Electronics
Engineering from Madurai Kamaraj University, Tamilnadu, India in May 2000.
Completed the requirements for the Master of Science degree with a major in
Electrical and Computer Engineering at Oklahoma State University in August,
2003.

Experience: Graduate Research Assistant in Electrical and Computer Engineering
Department, Oklahoma State University, Stillwater, Oklahoma, August 2001 to
July 2003.
System Design Engineer in GDA Technologies, Chennai, India, June 2000 to July
2001.

Professional Membership: IEEE - Student Member

