A STUDY OF A REDUNDANT MEMORY REPAIR

ALGORITHM

By
SONG GAO
B;xchelor of Medicine
Beijing Medical University
Beijing, P. R. Cinna

1999

Snbmitted to the Faculty of Lhe
Graduatc College of the
Oklahama Statc University
in parual fulfillmenlt of
the requrements for
the Duegree of
MASTER OF SCIENCE
May 2003

A STUDY OF A REDUNDANT MEMORY REPAIR

ALGORITHM

Thesis Approved:

Pttt

Thesis Advisor

%{Wu
ﬂ-zw

724 b O

\'Bﬁgm :ﬁhe Graduate College

ACKNOWLEDGMENTS

I wish to express my sincere appreciation to my major advisor, Dr.
Nohpill Park for his intelligent supervision, constructive guidance, inspiration
and friendship. My sincere appreciation extends to my other committee
members Dr. J. P. Chandler and Dr. G. E. Hedrick, whose guidance,

asslstance, encouragement, and friendship are also invaluable.

More over, | wish to express my sincere gratitude to those who

provided suggestions and assistance for this study: Ms. Nin Jing, Ms. Lingyan

Li, Mr. LingFa Kong and Mr. Zou Zhen.

Finally, | would lka to thank the Department of Computer Science for

the excellent advanced education.

in

TABLE OF CONTENTS

Chapter Page
. INTRODUCTIONccvvieiriniesiee e s eeeet e ae et t
W, LITERATURE REVIEW.......ccooiiiiiiiiiiiieiiie e eee e, 3
2.1 Memory redundancy architecture................ooooiieii 3
2.2 Memory redundancy repair algorithms.,................cooo i, 5

2.3 Memory defect Models.ccouiu i >

L. PRELIMINARIES.o.veeeoteeeseeeeoseeeee oo oo 8
3.1 Existing base algorithmS.coeriieieee i ee e e 8
31 REPAIFEMOSE. .o, 8

3.1.2 Heuristic Approximation Algorithm............................. 9

3.1.3 Exhaustive algomnithm...............cooivuivi v e 10

3.2 Proposed algorithim. ...t e L

IV. PRELIMINARY SIMULATION RESULTS..........ccooeiiieeienn, L 25
V. CONCLUSION. ... 29
REFERENCE.00 oiiiiii oot e 45
APPENDIXES. ... ooiii ottt et e 47

LIST OF FIGURES

Figure Page
1. Repair-Most algonthm. ... 14
2. Repair Most Algorithm Repair Process...........ccoceiiiiii e, 15
3. Heuristic approximatian algorithrn................co 16
4, Bipartite graph reprasentation of the memory faulty pattern................. 17
5. Heuristic Approximation Algorithm Repair Process..................co. ... 18
6. Random Fault Distribution-Map (Random Distribution)....................... 19
7. Clustered Fault Distribution Map (Negative Binomial Distribution).........20
8. Two-Dirmmensional Array of Linked List Representation of the

10.

11.

f2.

13.

14,

Memory faulty patterm ... 2]
Modified Heuristic Approximation Algorithm for repairing large

Size of MemMOry. (Part 1) ... e, 22
Modified Heuristic Approximation Algorithm for repairing large

SiZze of MeMOTY. (PAM 2) .o e 23
Proposed Algorithm Repair ProCesSS.. .. ocvvvvvieiiiii i 24
Yield Analysis of Repair Most Vs. Proposed Repair Algorithm

on Redundant Mamory with Random Fault Distribution..................... 31
Accumulated Average Yield Analysis of Repair Most Vs. Proposed
Repair Algorithm on Redundant Memory with Random Fault

Distribution
Yield Analysis of Repair Most Vs. Proposed Repair Algorithm

on Redundant Memory with Clustered Fault Distribution..................... 33

15.

16.

17.

18.

19.

20.

21

22,

23.

24.

25.

Accumulated Average Yield Analysis of Repair Most Vs. Proposed
Repair Algorithm on Redundant Memory with Clustered Fault

DIStADULION. ... e 34
Yield Analysis of Repair Most Vs. Proposed Repair Algorithm on
Redundant Memory with ldentical Random Fault Distribution

P At IS e e e e 35
Yield Analysis of Repair Most Vs. Proposed Repair Algorithm on
Redundant Memory with Identical Clustered Fault Distribution

=Y 4 0= V- 36
Running Time Analysis of Repalr Most Vs. Proposed Repair

Algorithm on Differant size‘s of Redundant Memories with Fixed

Defects and Spare LiNeS........... oo i e 37
Theoretical Repair Process Memory Utilizaltion Analysis of Repair

Most Vs. Proposed Repair Algorithm on Different sizes of Redundant
Memories with Fixed Defects and Spare Lines....................ooooeiil. 38
The influence of Defect Number's on Repair Yield............................. 39
Yield enhancement of the proposed algorithm in contrast with repair
MOSt AlGOrItRmM. ... e 40
Yield analysis results of Repair-Most with different size of memory

and different repair redundancy under random fault Distribution.......... 41

Yield analysis results of Repair-Most with different size of memory

and different repair redundancy under clustered fault Distribution. 412
Relationship between Repair Redundancy and Repalr Yield............... 43
Relationship between Memory Size and Repair Yield........................ 44

vi

Chapter |

Introduction

As VLSI technology advances, the number of devices per chip and the
chance of having device failures on the chip increases dramatically. Including
redundant rows and columns that can be used to replace defective rows or
columns, so-called row/column deletion technique, is a standard practice to
enhance memory yield substantially. However, the overhead of utilization of
redundant elements and its cost-benefit is still an open problem due to its high
computational complexity.

The problem, repairing recanfigurable memory array with optimal spare
rows and spare columns, is NP-complete [7]. There have been extensive
researches on the redundant memory repair algorithms, such as repair-most
[12], polynomial approximation algorithm [7} and comprehensive approaches
[2]. However, none of them can generate an optimal repair solution [7,12,2).
Due to time and space limitation of the testing equipment, the polynomial
approximation algorithm and comprehensive algorithm are also not time-
efficient [7].

in this thesis, we propose a new two-dimensional array of linked list
representation of defective memory cells to implement an approximation
algorithm, which will greatly decrease the space required to represent the
memory cells. Also, we will modify the polynomial approximation algorithm [9]

and use it for our memory-repair yield estimation. Comparing with Kuo and

Fuchs’ algorithm [7], our proposed algorithm is easier to implement and saves
computational spaces by about one half.

The objective of this thesis is to use our proposed repair algorithms to
study the relationship among memory size, repair redundancy and fault rates.
Also, we will study the impact of different fault models such as random
distribution model and negative binomial distribution model on memory yield.

This proposal is organized as follows. In the following section, literature
review related to this research work will be given. In section)l and IV,
preliminary results and conclusions are addressed. Section V summarizes the

proposed work and points out its future application,

Chapter Il

Literature Review

2.1 Memory redundancy architecture

Memory plays an important role in today's computer systems. With the
advent of deep submicron technology and system-on-chip (SoC) design
methodology, heterogeneous cores from different sources can be integrated
in a single chip that contains multi-million gates (1]. Embedded memory is one
of the most widely used cores for SoC, and memory cores usually dominate
the silicon arsa and yield of the chip [1]. Increasing the memory on a SoC
adds layers, complicates the manufacturing processes, and increases cell
density [14,13]. In fact, because of their high cell density, embedded
memories are more prone to defects than any other component on the chip
[14].

One solution to minimizing the occurrences of faults is to improve the
manufacturing and testing processes (faulf-avoidance technique) [1]. However,
this can't be considered as a viable alternative because it can be very costly
and alsa quite difficult (or even impossible) to implement. On the other hand,
we can now afford to put redundancies on the IC to make fault-tolerant design
viable by setting aside some of the chip/wafer area to this purpose (fault-

tolerance technique) [12].

There are several redundancy architectures existing in large memory
cores to facilitate repair and maintain an acceptable manufacturing yield to
date, such as spare rows, columns, and/or banks,

In addition to the traditional spare rows/columns configuration of memory
arrays, Park and Lombardi {10] have proposed the laser physical culting of
spare rows/columns, thus increasing the spare units and the yield without
increasing spare redundancy.

Moreover, multichip module technology [16] has also employed
redundancy techniques. However, conventional redundancy methods cannot
always generate acceptable repair solutions for multichip memones. For
example, in order to decrease the current and reduce the access time by
shortening the length of the bit and word lines [16], the large size of the
memory array are often partitioned into several sub-arrays. Using the
conventional redundancy methods, each sub-array will have its own
redundant rows and columns, leading to situations where one sub-array has
an insufficient number of spare lines to handle local defects while others still
have several unused redundant lines. Also, the higher density of the new sub-
micron memory ICs drastically decreases the yield loss due to chip-kill defects,
e.g., defects in core circuits like sense ampliers and line drivers, while the
conventional technique using spare rows and columns is incapable of dealing
with such defects [17].

Koren et al (5] proposed a Hybrid defect-tolerance scheme for high-
density memory ICs by using smaller sub-array redundancy containing
modules. Kikuda et al [4] introduced the failure-related yield model, based on

which they generated an optimized redundancy scheme for 64-Mb DRAM. It

shows that memory with 1-MB or smaller subblocks containing more than two
spare rows and two spare columns in each subbiock can increase yield
greatly.

2.2 Memory redundancy repair algorithms

The redundancy analysis algorithm also has been addressed extensively.

The algorithm proposed by Day [2] is an exhaustive search algorithm
that generates the entire tree of all possible solutions. This approach is not
acceptable when the array size is large.

The repair-most algorithm [12] proposed by Tam et al. is a greedy
method, which repetitively choose the row or column that has the most
number of faulty cells. Though the repair-most algorithm is simple and easy to
implement, its yield calculation is far more than satisfactory. For example, it
may not generate a solution for a theoretically repairable defective array [2];
also the salution it generated may not be optimal [7].

Kuo and Fuchs [7] have stated that the problem is NP-complate and
proposed a branch-and-bound algorithm which is actually a modified
comprehensive algorithm and a heuristic polynomial approximation atgorithm.
The branch-and-bound approach is not efficient as the problem becomes
large. The heuristic polynomial approximation algorithm [7] and its modified
version [9] suffer from implementation cornplexity. However, they are the most
accurate approximation algorithms for yield improvement of reconfigurable
arrays to date.

2.3 Memory defect models
Not onfy the algorithms are important for yield estimation, the faulty

memory cell distribution models also play an important role. In order to

evaluate the manufacturing yield of fault-tolerant VLSI chips. different defect
models have been proposed.

Because of the inherent fluctuations in an IC fabrication process, defects
may be independently introduced during any of the many processing steps
that a VLS! chip undergoes. Thus, chip yield is the product of the yields of the
individual processing steps. The random defect model (The Flat(Uniform)
Distribution. p(x) dx = (1 \over {b-a)} dx, f a <= x < b and 0 otherwise) [14]
assumes that defects occur randomly on a wafer. This yleld model observes
the Poisson random variable distribution. However, simple random defect
model is widely criticized as being too pessimistic for single chips {1], because
the defects are often not rando-mly distributed across a wafer, but rather are
clustered in certain regions.

Fault clusters in integrated circuits can be roughly categorized into four
classes [1]. The first class is that the fault clusters must be larger than the
chip size (large-size clustering); the second class is that the fault clusters
must be smaller than the chip size {small-size clustering); the third class is
that the fault clusters must be with the same dimension as that of the chip
area (medium-size clustering); and the fourth class is that the clusters vary in
dimension.

To account for nonrandom defect distributions, different models have
been proposed for the first three classes of fault clusters. The unified negative
binomial distribution model(p(k) = {\Gamma(n + k) ‘\over \Gamma(k+1)
\Gamma(n) } p*n (1-p)*k) proposed by Koren et al [6}], the model of compound
Poisson distribution with gamma function, is the best fit for the expsrimental

data in the case of large-size fault clustering, medium-size fault clustering as

well as small-size fault clustering [1). It proposed that the number of faulls in a
block has the negative binomial distribution, while the defects in each block is
distributed randomly. This block-sized negative binomial distribution model
has three parameters: the average number of faults A, the clustering

parameter o, and the block size B.

Chapter Il

Preliminaries

3.1 Existing base aigorithms: There are three kinds of algorithms exist to
date, however, none of them has a good performance when repairing a

large size of redundancy memory.
3.1.1 Repair-Most (12, Figure 1, Figure 2]: Repetitively chooses and
replaces the row or column that has the most number of faulty

cells to cover.

1) Computational Time Complexity: O(M+N) where M is the
number of rows that have defects and N is the number of
columns that have defects. Proof: as each time, the process will
repair one row or one column, there are at most (M+N) iterations,
so the computational time complexity is O(M+N).

2) Computational Space Complexity: O(R*C) where R is the
number of rows of the memory, and C Is the number of columns
of the memory. Proof: because the aigorithm is using array
[Figure 3b] to represent the defective memory, and the array has
C columns and R rows, so the computational time complexity is

O(R"C).

3) Yield Optimization: Not optimal. Proof: some defective memory
patterns can't be repaired by using this algorithm but can be
repaired by using optimal algorithm.

4) Implementation: Easy. Proof: the implementation is
straightforward, and we only need to keep the number of
defective cells in each row and in each column.

5) Repair Process: greedy method, repeatedly choose the row or
column that has the most number of faulty cells.

8) Disadvantage: It may not generate a solution for a theoretically
repairable defective memory array (2], also the solution they
generated may not be optimal [7]). lts yield is far more than

satisfactory.

3.1.2 Heuristic Approximation Algorithm [7, Figure 3, Figure 5}
Optimally finds and replaces the defect that has only one defect in
a particular row or column. If there is no single defect in a row or
column, it finds and replaces the row or column that has the

greatest repair effect.

1) Computational Time Complexity: O((SR+SC)*(M+N)) where M is
the number of rows that have defects, and N is the number of
columns that have defects. SR is the number of spare rows, and
SC is the number of spare columns. Proof: as there are only SR
spare rows and SC spare columns, there are at most O(SR+SC)
iterations. For each ileration, the algorithm will search all the

rows and columns that have defedts to decide which one to be

2)

3)

4)

5)

replaced, and there are (M+N) rows and columas to be
compared. So the total computational time complexity is
O((SR+SC)*(M+N)).

Computational Space Complexity: O(R+C+2E), where R is the
number of rows of the memory, C is the number of columns of
the memory, and E is the number of defects in the memory.
Proof: the algorithm is using bipartite graph [Figure 3a] to
represent the defective memory, that is, it needs row array of
linked list and column array of linked list. For row array of linked
list, we need a row array (size R) and R linked lists. The total
number of nodes of R linked lists is the total number of defective
memory cells represented as edges. The column array of linked
list is represented similarly. So the total computational space
complexity is O(R+C+2E).

Yield Optimization: Not optimal, however, optimal salutions have
been generated for most of cases [7]. Proof; in Fuchs' paper [7].
there are comparisons between exhaustive algorithm and the
approximation algosithm, and for most case, the approximation
algorithm can generated optimal solutions.

Implementation: complex. Proof: as the algorithm uses set and
graph theory, it is difficult to be understood and implemented.
Repair Process: greedy method, repetitively chooses the row or

column that has the greatest repair effects.

10

6)

Disadvantage: |t may not generate a solution for a theoretically
repairable defective memory array (2]. also the solution they

generated may not be optimal [7).

3.1.3 Exhaustive algorithm ([2]: Generates a tree of all possible

solutions and finds the optimal repair solution.

1)

3)

Computational Time Complexity: NP-complete [7]. Proof: Fuchs
has proved that the problem is NP-complete [7].

Computational Space Complexity: O(R+C+2E), where R is the
number of rows of the memory, C is the number of columns of
the memory, and .E is the number of defects in the memory.
Proof: the algorithm is using biparite graph [Figure 3a] to
represent the defective memory, that is, it needs row array of
linked list and column armay of linked list. For row array of linked
list, we need a row array (size R) and R linked lists. The total
number of nodes of R linked lists is the total number of defectiva
memory cells represented as edges. The column array of linked
list is represented similarly. So the total computational space
complexity is O(R+C+2E).

Yield Optimization: Optimal. Proof: the algorithm generates all
the repair solutions and finds the optimal.

Implementation: Hard. Proof: the algorithm uses set and graph
theory, and generates all the possible combinations of spare
rows and spare colurmnns, it is difficult to be understood and

implemented.

5) Repair Process: Exhaustively test all the possible spare row and
column repair combinations to find the optimal one.
6) Disadvantage: Time inefficient (as the problem is NP-complete,

it is not efficient far even moderate size of memory).

3.2 Proposed algorithm: We propose the two-dimensional array of linked

fist representation of the memory with defects. Our proposed algorithm

searches the two-dimensional array of linked list represented memory

repeatedly to repair the row or column that has the greatest repairing

effects. The algorithm we propose in this thesis shows both

computational space and tigne efficiency [Figure 7, Figure 8, Figure 11].

1

Computational Time Complexity: O((SR+SC)*(M+N)} where M is
the number of rows that have defects, and N is the number of
columns that have defects. SR is the number of spare rows, and SC
is the number of spare columns. Proof. as there are only SR spare
rows and SC spare columns, there are at most O(SR+SC) iterations.
Far each iteration, the algorithm will search all the rows and
columns that have defects to decide which one to be replaced, and
there are (M+N) rows and columns to be compared. So the total
computational time complexity is O((SR+SC)*(M+N)).

Computational Space Complexity: O(R+C+E), where R is the
number of rows of the memory, C is the number of columns of the
memory, and E is the number of defects in the memory. Proof: the
algorithm is using Two-dimensional array of finked list [Figure 6] to
represent the defective memory, that is, each defective memory cell

is only represented once. In addition, the algorithm needs one row

12

3)

4)

5)

6)

array of size R, and one column array of size C. As there are total E
defective memory cells, the total computational space complexity is
O(R+C+E).

Yield Optimization: Not optimal, however, optimal solutions can be
generated for most of cases. Proof: this feature is tested and
conformed by expenments.

Implementation: the proposed algorithm is not as simple as the
repair-most algorithm to be implementad. However, it is easier to
implement than comprehensive and heuristic approximation
algorithms. Proof: the algorithm uses two-dimensional array of
Iinked fist to représent the defective memory, and this
rapresentation requires only constant time to access each defective
memory cell's defective neighbors. For heuristic approximation
algorithm and exhaustive algorithm, i will search all the
corresponding linked lists to find and update its neighbors' cost and
degree.

Repair Process: greedy method, repetitively chooses the row or
column that has the greatest repairing effects.

Disadvantage: It may not generate a solution for a theorstically
repairable defective memory array; also the solution they generated

may not be optimal.

. Fori=0 to Row

Save the number of Faults in Row j in RowCount[i]
For j=0 to Column
Save the number of Faults in Column j in ColCount]j)
. Find the row | or column j that have the biggest number of faults.
. If(SR>0 and RowCount][i] is the biggest) Then
Repair the Memory with a Spare Row;
Update RowCount[] and ColCount(];
SR;=SR-1;
Else Repair The Memory With a Spare Column
Update RowCouni[l and ColCount[};
SC:=8C-1;
. Repeat step one until no spares or faults remain.
. If (SR=0 and SC=0 and faults remain), then this device cannot be
repaired uslng this algorithm.

. If no fault remains, then the device can be repaired.

Figure 1. Repair-Most algorithm [1].

Row:
b3
39
43"
72

SR=3
SC 2

i_ j}l
A N
Column
=2

321
34> 3¢
"1
22

S S S S S

Row
3131

: Column:

I>1

4234 321

122

432
71
9> 1

SR=2
$C=3

Row: Column:

321 12>

7920 43
9>)

SR
SC=3

— = 9o

Row: Column:
Do
191 I1>1*

SR=0
§C=3

Figure 2. Repair Most Algorithm Repair Process

ne

15

Begin
Begin
For each vertex v in row vertices A and column vertices B
Calculate the cost cc(v) and degree dc(v).
End
Success .= false;
While defects exist and (SR>0 or SC>0) do Begin
If there are nodes with degree one and it is selectable, then
Select the vertex v with the minimum cc{v)/dc(v);
Else
Select the selectable vertex v with minimum oc(v)/dc(v) over all
vertices
If v e A and SR>0 then Begin
Success = true;
SR = SR-1,
For each (u,v) € E do Begin
cc(u) = cc(u) ~- 1;
dc(u) ;= dc(u) -1;
End;
End; .
Else {f v ¢éB and SC>0 then Begin
Success := true;
SC = 8C-1;
For each (u,v) €E do
Begin
cc(u) ;= cc(u) - 1;
dc(u) = dec(u) -1;
End;
End;
If Success then Begin
ce(v) =0, add v to repair-solution Rh,
delete v, all incident edges to v, and resulting isolated
vertices.
Success = false;
End;
Else if v e A then
Mark the remaining verlices in A unselectable.
Eise mark the rermaining vertices in B unselectable
End;
If there are sfill defects then
Retum fail;
Else return Rh;
End;

Figure 3. Heuristic approximation algorithm [8].

(2)

- ®
*®
T
(b)

Figure 4. Bipartite graph (a) representation of the memory

faulty pattern (b).

Row: Column:

1:232 1111
3:221 3:321
4:122% 4:2]
7:22>1 7:3>1

9:2>1
SR=3

SC=3

=

©
®

&) @) €D
© ®) ©
&) @) O ®
E>@ @ [f) @ Q@
® @) & © &
&9 &9
@3 © & ©
® © ®
6 D

Row: Column: Row: Column: Row: Column: Done

11253 1:1—)1'-d 1122 4:2->2E>7:1—>2*4:191 'j
3:2>1 4:2991 7:22>2 9:2>2 9: 1> 1
7239 9.2

SR=2 SR=2 SR=1
SC=3 SC=2 SC=2

Figure 5. Heuristic Approximation Algorithm Repalr Process

SC

Blojelejalslelele)

I
[N

18

*e

Fig. 6 Random Fault Distribution Map (Random Distribution)
with Row :Column=128, Faulty Rate=1%

10

N] a

. \." /-' .

- e —
‘ -
g .

e !) \. .

' A » /'--—-- . ‘ .

b - o Y.)

Fig. 7 Clustered Fault Distribution Map (Negative Binomial distribution) with
Row=Column=128, Faulty Rate=1%, 0=3.8274, A=1.934.

20

Bl T =TeT=Ts
T : /é)..

Figure 8. Two-Dimensional Array of Linked List (a)
Representation of the memory faulty pattem (b).

21

Begin
For each row vin R orcolumn vin C
Calculate cost cc(v), degree dc(v), and counter n(v);
End;
Success := false;
While defects exist and (SR>0 or SC>0) do Begin
If there is row or column v with cc(v)=1, then Begin
For all rows and columns with cc(v)=1,
Seleact the row/column v with maximum n(v);
If more than one maximum n{v) exist, then
Select v with the maximum dc(v);
End;
Else Begin
Select the selectable row or column v with minimum cc(v);
If more than one minimum cc(v) exist, then Begin
Select the row/column v with maximum n(v) and minimum
cc(v);
If more than one maximum n(v) exist, then
Select v with the maximum dc{v);
End:
Eng;
If ve R and SR>0 then Begin
Success = true;
SR ;= SR-1;
Foreach u in v do Begin
dc(u) = dc(u) -1,

de(v) :=0;
if(n(v) = cc(u)) then Begin
n(u) :=n{u)- 1,

Recalculate cc(u);

Figure 9. Modified Heuristic Approximation Algorithm for repairing large
size of memory. (part 1)

22

End,
End;
End;
Else if ve C and SC>0 then
Begin
Success = true;
SGC := SC-1;

Foreach uinvdo

Begin
dc(u) := de(u) -1;
dc(v) :=0;
if(n(v) = cc(u)) then Begin
n(u) := n{u) — 1,
Recalculate bc(u);
End;
End;
Eng;

If Success then
Begin
cc(v) :=0, add v to repair-solution Rh,
delete v, all uin v
Success = false;
End;
Else if v €R then
Mark the remaining vertices in R unselectable.
Else mark the remaining vertices In C unselectable
End;
If there are sfill defects then
Return fail;
Else return Rh;

Figure 10. Modified Heuristic Approximation Algorithm for repairing large

size of memory. (part 2)

@

7 T4 131 T'T_T_i_
k'li,‘h}_; F'I{':‘P—""_’_'"_‘@I’
1 |
o [=
Y .-.-tw:m-—-'}'_h .

f '
sl
Row: Column:
0:22 D121 |:>

2:21 2:312)
32 1291
6:231 6:321
8:21

SR=3

S¢ 2

(WINEEsNERENTIAE b I RIBFES N TR N MARSIE RN LAY A Th IT

ad Ak : e
3 |:>] | y 3
— - | — —
b A | L I
1 | i ¥ i 5 | |5|
l ! . Lo ; -
& s o ___‘{t.;- .“.-F—'—'— —ip.] iﬁ-lp—.q = Bl [
12l a 7 ?
Row: Column: . Row: Columon: Row: Column-
Done
0:293 0:]‘)|‘C> 0:2>2¢ 3:292 E> 6122 311
.21 3:290 6:222 B:2>2 g: 121 l:>
6:22 821
SR=2 SR=2 SR=0 SC 2
SC 3 SC=2 SC

Fiaure 11. Prooosed Alaarithm Rebpair Process

24

Chapter IV

Preliminary Simulation Results

Theoretically, the algorithm we propose will reduce either time or space
requirement to generate the repair solution. We will justify this by comparing it
with the Repair-Most algorithm, which is still one of the widely used algorithms.
The exhaustive search algorithm surely will be the best algorithm to generate
the repair solutions, however, it is not practical for repairing even moderate
size of memories. Moreover, it is difficult to implement. Our proposed
algorithm is based on the same logic as the heuristic approximation algorithm
but with different memory representations to generate repair solutions, thus,
the yield of our proposed algornthm will be exactly the same as the vyield
generated by the heuristic approximation algorithm. While the Repair-Most
algorithm is using different approaches to address this issue, it will be mors
practical to do comparison with Repair-Most algorithm.

1. Our proposed algorithm can repair the redundant memory effectively.

{Figure 12, Figure 13, Figure 14, Figure 15}.

Figure 12 and 14 show that the yields of our proposed algorithm have
nearly the same yields as the Repair Most algorithm no matter the
faults are randomly distributed or clustered. Sometimes, Repair Most
algorithm has higher yield than our proposed algorithm. This is

because that the faults in memories are randomly generated, so the

defect numbers and positions are not constant. The higher yield
generated by Repair Most algorithm on some cases does not indicate
that the same defect patterns repaired by our proposed algorithm will

generate lower yield.

. For the same fault pattern, the yield generated by proposed algorithm
is nearly always higher than the one generated by Repair Most
algorithm [Figure 16, Figure 17]). However, on some fault patterns,
Repair Most algorithm will generate higher yield than our proposed
algorithm. In our test cases of randomly distributed fault patterns, only
2% of memories will get higher yield when they are repaired by
Repair Most algorithm rather than our proposed algorithm [Figure 16].
it is around 4% higher when the faults are clustered [Figure 17].

. Statistically, our proposed algorithm will generate higher yield than
Repair Most algorithm [Figure 13, Figure 15]. Figure 13 shows that
for memories with randomly distributed faults, the yield repaired by
our proposed algorithm is around 4% higher the yield repaired by
Repair Most algorithm. For memories with clustered fault distribution,
the yield increase is about 2.5% [Figure 15].

. Our proposed algorithm is more time efficient than Repair Most
algorithm when the memory size is large (Figure 18]. When the
memory size is small, the Repair Most algorithm is more efficient than
our proposed algorithm, However, when the memory size is large, the
Repair Most algorithm is extremely insfficient. In our test cases, we
randomly distribute 9000 faults in redundant memories with 100

spare rows and spare columns each. When the memory size is

26

bigger than 168Mb, it is terribly siow, as in this stage, the testing
equipment has run out of real memory, and the slow accessing time
of disk (as virtual memory) compared with the fast access time of real
memory i8 the confounding factor that account for the slowness.
When the memory size is bigger than 379Mb, it can allocate enough
memory on the testing equipment to generate the repair solution. Our
proposed algorithm can efficiently generate solution for memaries up
to 4.31Gbs. Since the running time complexity of our proposed
algorithm is O((M+N)*(SR+SC)), and in this test case, we fixed the
SR and SC, the time complexity will be only affected by M and N,
which is the number of rt'st and the number of columns that has
defects in the memory respectively. As there are fixed 9000 defects in
the simulated memory, and M and N will increase as the memory size
increase. However, there are at most 9000 defective rows and 9000
defective columns, which means that the upper bound of M and N are
9000, this upper bound is corresponded to the stable stage in figure
18.

. Our proposed algorithm repair process will use less memory than
repair most algorithm [Figure 19]. Figure 19 shows the theoretical
memory requirement of repair most process and proposed process.

. The simulation results under different fault models and different
conditions [Figure 20, Figure 21, Figure 22, Figure 23, Figure 24,
Figure 25] show that the proposed algorithm nearly always has higher

yield than repair mast algorithm.

27

7. Theoretically the proposed algorithm will have the same yield as
heuristic approximation aigorithm, however, the space it required
reduces about one half.

8. As the proposed algorithm is a polynomial approximation algorithm
and its computational time complexity is O((SR+SC)*(M+N)), it is
more efficient than the exhaustive algorithm whose computational

time complexity is NP-complete.

Yield

andom Faull Distibution Yield Analywz of Proposed Algonthm Vs, Repair Most Algorithm

Proposed Algo“rithm ----- Rq!:;i-l-.f-k'losl Algorithm [

[1Y ESEE———— — — - —————-—]

04 +— e e S S S

03— — = - —_—

024 —— - S ST S

0 R PR RE DT R T PRI T R IR NN IR EUENEES DI N B N B YRR UD

V5 9 13 17 21 25 29 133 37 d4) 45 49 S3 57 61 05 6% 73 77 8\ %< 89 93 97 10|

Sany; lc Space(n)

Figure 12. Yield Analysis of Repair Most Vs. Proposed Reapair
Algorithm on Redundant Memory with Random Fault Distribution
(Row=Column=100, Spare Row=Spare Column=20, P=0.6%)

29

Random Fault Distmbution Accumulated Avenige Yield Analvs
of Repair Most Algorithm Vy, Proposed Algorithm

[———Proposed Algorithm = - = = - - Repair Most Algorithm |

0.64

e
wi
x

0.56 13— » r

Accumulated Averge Yield

o
L
|
|

0.32 - — o

0.5

0.48 T TS TS e RS SN O NS VI NN AU RO

FEBFEVENES NN PO RV PV P U T

RSN TN T SRR D]

15 9 13 17 20 25 29 33 37 4) 45 49 53 57 63 65 69 73 77 8] K5 39 93 97

Sample Space(n)

Figure 13. Accumulated Average Yield Analysis of Repair Most Vs.
Proposed Repair Algorithm on Redundant Memory with Random

Fault Distribution (Row=Column=100, Spare Row=Spare
Column=20, P=0.6%)

30

Yicld

Cluster Fauh Dastribution Yield Analyos of Proposed Algonthm Vs, Repair Most Algonibn

Proposed Algorithm - - - - -

Repair Most Algorithm

0.7

0.6

0.5 + i e

03—

02 {——

o1 - - —

L e f a0y

I 5 9 13 17 21

25 29 33 17 4)

45 39 S} 57 &l 65 69 73 77 81 85 89 93 97

Sample Syace(n)

Figure 14. Yield Analysis of Repair Most Vs. Proposed Repair
Algorithm on Redundant Memory with Clustered Fault Distribution

(Row=Column=100,
0=3.8274, 1=1.934)

Spare Row=Spare Column=20, P=0.6%,

31

Chodter Fnait Distribution weamslated Average Yicld Analyss
vi Pmpoiind Algorthm Vs Repatr Most Algonthm

;uposcd Al_uc;il;z_m ----- _Rrpah Most :\I;m?a;m E

0.87 = r— i d Pt

0.%6
085 1

0.84

|
|

ow-_—_;_ o N SRS RLL S M - axa? hd

Accumulaicd Average Yield

0.81 - — -

08 — ——— S

0.79

0.78 SRR RS TS S DU PRI G S Wi INEEENPEEE FRES YN B M R T R SR RN S ST ST

1 5 9 13 17 21 25 Z% 33 37 41 45 49 S3 57 61 65 69 7)Y 27 BlI 85 9 93 97
S.ample Spice(n)

Figure 15. Accumulated Average Yield Analysis of Repair Most Vs.
Proposed Repair Algorithm on Redundant Memory with Clustered
Fault Distribution (Row=Column=100, Spare Row=Spare
Column=20, P=0.6%, a=3.8274, 7.=1.934)

32

Yiweld

Repaire Yickt Analyxis of Repar Musi V. Proposed Algonthn
on Idenhicat Randomly Distributed Fault Panernx

—-:-—-_Propos-l:d -.-K]p_-u_rllhm ----- i_{cp:iir Muost Algonithm

0.X

0 4 — ————————— e ——

02 | - — - — —

0 NI T G I R U PR i ITEBSYRRPRWOES FE U K PR el A

1 6 1M 16 21 26)M 36 41 46 53 Sa 6 oOb 71 70 ¥l 86 9) 96
Samplc Spuce(n)

Figure 16. Yield Analysis of Repair Most Vs. Proposed Repair
Algorithm on Redundant Memory with Identical Random Fault
Distribution Patterns (Row=Column=100, Spare Row=Spare
Column=20, P=0.6%)

33

Repaire Yield Analysis of Repan Most Vs, Proposed Algonithm
on Identical Clustered Fault Paitemns

Propused Algonthm - - - - -

Repair Most Algorithm
09YSs

0.9 e

=
K3 '
= s
015 +——— — - SIS e —
07 - — ——_ — —
065 AAAAA PRSI § TS R SRR YN Wy il
1 [I 16 21 26 3} 36 41 46 351 S6 61 66 N 76 R %6 91 96
Saruple Space{ny

Figure 17. Yield Analysis of Repair Most Vs. Proposed Repair

Algorithm on Redundant Memory with Identical Clustered Fault
Distribution Patterns (Row=Column=100, Spare Row=Spare
Column=20, P=0.6%, a=3.8274, >.=1.934)

34

Running Time(Secands)

Running Time Anmalysis of Repair Most Algorithm Vs Proposed Algorithm

- 1
t Proposed Adgonthm = == » -+ RepaitMost Algorithm |

ZOO S it P - ___:. —_—

(3U e S

140 ==

30

20 T

Log2(MemorySize)

Figure 18. Running Time Analysis of Repair Most Vs. Proposed
Repair Algorithm on Different sizes of Redundant Memories with
Fixed Defects and Spare Lines. (Defects=9000, Spare Row=Spare
Column=100)

Repair Process Memory Uttiization(Mb)

Theuretical Mamony Qnilization of Repaie-Muost Algonthos Vs Prosoecd Adgonthm

""" Reparr Most Algotiti:m Proposcd Algorithgm
o A e ek — i —
0p-—— - o e -
8 -— -- . e
6 — — il
4 —— -
:
2 = ~-- = TR e
- - i ’
0 P) : L - B ' ' 1 " . 1 1 ' 1 L i

2 3 4 5 6 7 8 910 11 1213 1435 16 17 18 v 20 21 22 23 24 25 In 27
Log{Mecmory Size)

Figure 19. Theoretical Repair Process Memory Utilization Analysis
of Repair Most Vs. Proposed Repair Algorithm on Different sizes of
Redundant Memories with Fixed Defects and Spare Lines.
(Defects=28000, Spare Row=Spare Column=100)

Repair Yield

Defects Number's influcnee e Repan Yicid

Random Deste-Proposed = = =~ - Random I)is!n-kcpailMost|
e (lustered Distri-Proposed @ = = Cluster Drsin-RepairMaost

09

08 L — —

074

06

04 |—-

03

0.2 A

0.

[I E—

30

Figure 20. The influence of Defect Numbers on Repair Yield.
(Random Distribution Parameter: Row=Column=100, SR=SC=20;
Clustered Distribution Parameter: Row=Column=100, SR=SC=20,

40

Number of defects(ny

a=3.8274, 1.=1.934)

(98}
-3

r

Yicld enhance s

Yaeht knlunceinent of Proposed Alg Vo Ropaar Most Ay warh Random and Clusicred Fault
Distnbution

T = Random bss-mb_mmn Clustered Digtribution

uo?
'

006 ﬂ‘ _.
0.05 - o S ——
0.04 AR e
003
002 —3
0.0} —_—

0 +~ : —1

20 40 LU 80 100 i
0.0}
Defect Numbereisi)

Figure 21. Yield enhancement of the proposed algorithm in contrast

with

repair-most aigorithm (Random Distribution Parameter:

Row=Column=100, SR=SC=20; Clustered Distribution Parameter:
Row=Caolumn=100, SR=SC=20, a=3.8274, A1=1.934)

)

Yield(

100

90

RO

70

6

50

40

30

20

Mcemory Sieg and Repan Redundaney's Influcnce oo Reparr Yicld Under Fandoa: Fault
Drstnibution with Repair Most Algorithm and Proposed Alponthm (P-0.5%0)

— — — Repair Mist with 9% Redundancy === - 4 Reparr Most with 12%Redundancy
v = = = =Repair Jinst with 163 Redundancy — - - —Repau Most with 25 aRedundancy
| — == Propoxed with P4Redunduncy = = = Proposed with 12%Redundancy
. == = Propusel with |&%Redundancy = = Pigposed with 205 Redundancy

=]

TN

-, \l I \‘\ ‘\ - ——
N b v\ A .
o PRV S \ B o
\‘ B ‘\ \ \ R AY

W o\

\‘ ~ = A —_—

*) v \ \

\-\‘! l‘\\ \‘ E\ \ ‘\'. ___7.¥ _ PP

U W e

A Y
\
£}
N \ N [y
. A

\
"

\ o \ - -_ ;_ __‘ —\

0 50 100 150 200 250 300 150
Memory Size(Xb)

Figure 22. Yield analysis results of Repair-Most with different size of
memory and different repair redundancy under random fault

Distribution. (P - 0.5%)

4010

NMemery Szv a2 Repa Redundincy's Influence en Reparr Yield Under Clusiored Lanlt
Distuibunion wirh Repair Most Algonthm and Proposed Algor (e (P (F 5%

— — — Repr - Mot warth 9%Redundancy T
— - — -Repair Most winh 16%Redundancy

“Linp. 1 Most with | 2%Redundancy
= ==Proposad Repatr with 9%.Redundancy

1
I
— - - —Repan Must with Z0%Redundancy J
= & = Proposd Repair with 12%Redundancy Il
| = = Proposcd Repar with 16%Redandancy = = Propascd Repayr with 20%Redundancy |
160 = T Y
AN N .
90

\ N N
U
1 RN

|
. S S T B -
R
/1 0 S— _! \; 1 \ A3 [
¥ ' R . .
\ y ‘\ ' \. \
A\ ' . N \ _ - e
s B o : .
= | I \ ‘ '
S os0 b— L ‘-\‘ ! R s s
: [\ DT ' \
& lt\ ?) \' ‘
10 | — 3 L —_ . M e e e e
: T PO \
“ A Il‘ . \
\ : . \ .
19 4 — rk_-_!. e — W :
N e \
\‘) \A \
20— 4\ i A s 2 .
i N | ’ N
\ \ . \\ \
10 - N aa \\ 3 2 \
AR ™~ : Ny
\\L - . ~ v
9 ¥ . b —— o
[100 200 200 400 500 600
Memory Size(Kb)

Figure 23. Yield analysis results of Repair-Most with different size of
memory and different repair redundancy under clustered fault
Distribution. (P=0.5%)

40

Redasan=hip Boelween Repar Redundancy Apd Yield i 0 374

1 JEE— RL—'p_rur Most, 10X Memorysize Random -—== Repain Most. 40K Mcmo:,\'irc, Random

I Proposed, 10K Mowvurvsize, Haidomy == Proposed, 40K Memorysize, Kandom
----- Rerau Mokt 10K Meaiamiysue Clugered = = == = Repair Most, 40K Memorys:»:, Clustered

] = = = Proposed, 10K Memorysize, { lustered == = _Proposed. 40K Memorysize, Clustered)

T, 0T

)

3
=

Yield(

<
(9]
G
Ay
=
:'
s

Spare Redundzane y(%aMemorysize)

Figure 24. Relaticnship between Repair Redundancy and Repair
Yield, (P=0.5%)

41

Yield(%u}

kol enship Between Memonye size and Repair Yield (P-0 %)

""" Repalr]\‘lés-l-Rauao:r; — — — Proposed-Random
+ T T T RepacdesiCludter T iirpomd Chser
1o ~— - -
X \.\
aa _.—"-- N - - S .
el o\
\
1 \
Yoy — \Z\ . — . N
¢\
4 - _KW_‘_.___.__} A . B
Vo
v
60 - - - .__L‘_ ______ At - —

Voot
04— - - —
v\
\
wlhoo - };_ ___“ - e R
W =2
b
|\ L3
a0 - — 1\\ .__d___.,_..,,.ﬁ B ———
A\
A\ -
. A\
20 {-- - -
AU
N \ — %
A - - “\\ “-_-h‘-*‘____q
..‘\
\‘-.
0 =, S -
0 10 20

Memory Size{Kb)

Figure 25. Relationship between Memory Size and Repair Yield.
(P=0.5% SR-SC=1%MemorySize)

42

Chapter V

Conclusion

The algorithm presented in this thesis is efficient and effective by using
two-dimensional array of linked list to represent the memory with defects. The
algorithm also employs a greedy approach to repeatedly find and repair the
row or column for the greatest yield. The computational space complexity of
the proposed algorithm is O(R+C+E), (where R and C are the number of rows
and columns of redundancy memory, respectively, and £ is the number of
nodes, or the number of edges in graph representation). This shows that the
computational space is bounded cither on the number of defects on the
memory when the memory cell defective rate is not very small (i.e. E>>R+C);
or is bounded on the sum of the number of rows and columns when the
memory cell defective rate is small (R+C>>E). Even though the solution
generated by the proposed algorithm is not always optimal, its computational
time complexity is O((SR+SC)*(M+N)) (where SR or SC are the number of
spare rows or spare columns respectively, and M or N are the number of rows
or columns that have faulty memory cells, respectively). Hence, the proposed
algorithm can compute the repair process in polynomial time, which is a great
accomplishmen(compared with the conventional NP-complete exhaustive
algorithms. The proposed algorithm has revealed a significant yield
improvement by up to 5% compared with another polynomial approximation

algorithm, the repair-most algorithm.

When there are spare rows or spare columns, and there are defective
memory cells, the proposed algorithm greedily finds the rows or columns in

polynomial time for the greatest repair yield without checking whether the

solution is optimal or not.

44

Reference

[

(2]

[3]

(4]

(3]

[6]

[7]

{8

Ciciani, B., “Manufacturing yield evaluation of VLSI/WSI systems” |[EEE
Computer Society Press, Los Alamitos, CA, 1995.

Day, J., "A Fault-Driven Comprehensive Redundancy Aigorithm,"” Design
& Test of Computers, IEEE, vol. 2, pp. 35-44, Jun. 1985.

Ernst, R., P. Nowottnick, "Fault Tolerant VLSI Design With Functional
Block Redundancy”, Computer Design: VLS| in Computers and
Processors, 1991, ICCD '91. Proceedings., 1991 IEEE International
Conference on, Cambridge, MA, USA, pp 432 436, 1991.

Kikuda, S., et al., “Optimized Redundancy Selection Based on Failure-
Related Yield Model for 64Mb DRAM and Beyond”, Solid-State Circuits
Conference, 1981. Digest of Technical Papers. 38th ISSCC., 1981 IEEE
International, San Francisco, CA, USA, Feb. 1991.

Koren I., and Z. Koren, “Analysis of a Hybrid Defect-Tolerance Scheme
for High-Density Memory (cs”, Proceedings of the 1997 Workshop on
Defect and Fault-Tolerance in VLS| Systems, Mar. 1997.

Koren I.. et al.,, "A Unified Negative Binomjal Distribution For Yield
Analysis of Defect Tolerant Circuits.” IEEE Trans. Computers, Vol. 42,
No. 6, pp: 724-733, June 1993,

Kuo, S.Y. and W. K. Fuchs, "Efficient Spare Allocation for Reconfigurable
Arrays,” Design & Test of Computers, IEEE, vol 4, pp.24-31, Jan. 1987,
Kuo, S.-Y., W. K. Fuchs, "Modelling and Algorithms for Spare Allocation
in Reconfigurabie VLSIL." Computers and Digital Techniques, IEE

Proceedings, Vol 139, pp: 323 —328, July 1992.

45

(€]

(10]

(1)

[12]

[13]

[14]

[15]

Kuo, S.-Y.. and W. K. Fuchs, "Modelling and Algorithms for Spare
Allocation in Reconfigurable VLSI." Computers and Digital Technigues,
IEE Proceedings, Vol.139, pp.323-328. July 1992.

Park, N., E. Lombardi, "Repair of Memory Arrays by Cuiting,” Mamory
Technology, Design and Testing, pp. 124 —~130, Aug. 1998

Park, N., F. Lombardi, V. Piuri, "Testing and Evaluating the Quality-level
of Stratified Multichip Module Instrumentation,” IEEE Transactions on
Instrumentation and Measurement, Vol 50, pp. 1615 -1624, Dec. 2001.
Tarr, M., D. Boudreau, and R., Murphy, "Defect Analysis System Speeds
Test and Repair of Redundant Memories," Electronics, pp.175-179, Jan.
1984.

Timothy M., et al., *“A Discussion of Yield Modeling With Defect
Clustering, Circuit Repair, and Circuit Redundancy.” IEEE Trans.
Semiconductor Manufacturing, vol. 3, pp.116-127, Aug. 1990

Wamer R. M., "Applying a Compoesite Model lo The IC Yield Problem.”
IEEE J. Solid-State Circuits, vol. SC-9, pp.86-95, June 1974.

Wey, C.L., and F. Lombarrdl,"On The Repair of Redundant RAMs," IEEE

Trans. Computer-Aided Design, pp.222-231, Mar. 1987.

[16) Yamagata T. et al, “A Distributed Globally Replaceable Redundancy

(17]

Scheme for Sub-Half-micron ULSI Memories and Beyond,” Solid-State
Circuits, |IEEE Journal of, vol. 31, pp.195-201, Feb. 1996.

Yoo J-H. et al,, “A 32-Bank 1Gb Self-Strobing Synchronous DRAM with
1GB/s Band-width,” Solig-State Circuits, IEEE Journal of, vol. 31, pp.

1635-16423, Nov. 1998.

46

Appendix

/
All the programs are coded in C++ and can be compiled by Visual C++ 6.0
and Visual C++ in Visual studio.net. All the simulations in this thesis are
running under the following conditions. Platform: Command Prompt of
Windows 2000 Professional with SP3. When the program is running, no other
activities are perdformead until the test process is done.

*/

= Main Procedure “main.cpp”
* by Song Gao
Graduate Student
= Computer Science Department
x QOklahoma State University
Stillwater, OK, 74075
*/
#include "iostream.h’
fHinclude "fstream.h”
/lofstream outpul("output txt” ios::outfios::app);
#include "demo.h”
/* See the file README.ixt for information on compiling this program */
#include "math.h"

#include "stdlib.h"

47

‘nt main(int argc, char *argv(])

{

unsigned long R,C,SR,SC,seed,count1,count2;

float P;

if(argc<5) { cout<<"Command Line Parameter Error!"<<endl; exit(2);}
R=strtoul(argv(1],NULL,10);

C=strtoul(argv(2].NULL,10);

SR=strtoul(argvi3],NULL, 10);

SC=strioul(argv[4),NULL,10);

P=atof(argv([5]),

seed=strtoul(argv[6],NULL,10);

ArrayOfLinkedList *Matrix1=new ArrayOfLinkedList(R,C,SR,SC,P);
if((Matrix1==NULL))
{

cout<<"Qut of Memory"<<endl,

exit(2);
}
Matrix 1->DefectGeneration(0,sead);
Matrix1->DsfectParaminitialization();
Matrix->MemoryDefectDisplay();/
count1=Matrix1->ProposedRepairSolution();
delete Matrix1;

MemoryArray *Matrix2=new MemoryArray(R,C,SR,SC,P);

18

f((Matrix2==NULL))

{

cout<<"Out of Memory"<<endl,

exit(2);
)
RepairMost Solution;
Matrix2->DefectGeneration(0,5eed);
/*Matrix->DensityMap();*/
HMaftrix2->MemoryDefectDisplay();
Solution.Initialization(*Matrix2);
count2=Solutlon.RepairMostSolution(*Matrix2);

return count1*10+count2;

+ Header File "header.h”

+ by Song Gao

= (Graduate Student

= Computer Science Department
+ Oklahoma State University

+ Slillwater, OK, 74075

#define NULL O
#include <stdlib.h>

#include <stdio.h>

49

#include "iostream.h"

#include “fstream.h”
#include <list>
#include <vector>

using namaspace std;

class IndexCount

{

public:
IndexCount(void);
~IndexCount{voidj;
unsigned long Index;
unsigned long Count;

unsigned long Sub;

class Node
{
public:
Node(unsigned long x,unsigned long v),
~Node(void);
Node* Left;
Node* Right;
Node* Up;

Node* Down;

50

unsigned jong x;

unsigned long v;

Node{void);

class ArrayOfLinkedList
{
public:
ArrayOfLinkedList(unsigned long x,unsigned long y,unsigned long
sr,unsigned long sc, float p);
~ArrayOfLinkedList(void),
void DefectGenaration(int mode, unsigned long seed),
indexCount® FindMinimallndex(unsigned long index, int mode),
int MatrixAddNode (unsigned long x, unsigned long y).
int MatrixDelColNode(unsigned long Col, list<unsigned long> & DOR),
int MatrixDelRowNode(unsigned long Row, list<unsigned long>&
DOC),
int MemoryDefeciDisplay(void);
unsigned long Row;
unsigned {ong Col,
unsigned long SR;
unsigned long SC:
float Rate;
unsigned long*RowArray;

unsigned long*ColArray;

5]

Node* Rowlist;

Node* ColList,

list<unsigned long> DOR;
list<unsigned tong> DOC,;

int DefectParaminitialization(void);
/ List tterator

list<unsigned long>::iterator cl;

// Proposed Reapir Solution

int ProposedRepairSolution(void);

class MemoryArray

(

public:
MemoryArray(unsigned long R,unsigned long C,unsigned long

SR,unsigned long SC.float P),

~MemoryArray(void);

public:
// Memory Representation
unsigned long**MemoryMatrix;
/{ Number of Rows of the memory
unsigned long Row;
/t Number of Columns of memory
unsigned long Columns;

/I Row Array of defective cells counter

52

public:

unsigned long *RowArray:;

// Column array of defective cell counter
unsigned long *ColAmray;

// Spare row redundancy

unsigned long SpareRow;

// Spare Column Redundancy

unsigned long SpareColumn;

// Defective rate

float Rate;

// Generate the memory defect pattern.

int DefectGeneration(int mode, unsigned long seed);
void MemoryDefectDisplay(void);

void Reset(void};

void DensityMap(void);

class RepairMost

{

public:

RepairMost(void);

~RepairMost(void);

protected:

// Rows that have defects

list<unsigned long> DOR,;

83

/[Columns that have defects

list<unsigned long> DOC:

list <unsigned long>::iterator cl;

public:
/f Initialization of Row and Column defective array
void Initialization(MemoryArray &Matrix);
/I Repair Most Soution of Defective Memory
int RepairMostSolution(MemoryArray& Matrix);
7
/

* Implementation file “procedure.cpp”

* by Song Gao

* Graduate Student
Computer Science Department
Oklahoma State University

= Stillwater, OK, 74075

¥/

#include "iostream.h"

#include "fstream h"

ofstream out("out.ixt"ios::outfios::app);

ftinclude "demo.h”

#include <time.h>

finclude <stdio.h>

#include <math.h>

#include <gsl/gsl_mg.h>

#include <gsl/gs! randist.h>

Node::Node(unsigned tong a,unsigned long b)
- Left(NULL)

. Right(NULL)

, Up(NULL)

, Down(NULL)

» X(a)

 y(b)

{

}

Nods::~Node(void)

Node::Node(void)
: Left(NULL)

, Right(NULL)

, Up{NULL)

, Down(NULL)

IndexCount::IndexCount(void)

- Index(0)
, Count{0)
- Sub(0)

{

}

indexCount::~IndexCount(void)

ArrayOflinkedList::ArravOfLinkedList(unsianed lona x,unsigned long
y.unsigned long sr,unsigned long sc, float p)

- Row(x)

, Col(y)

. SR(sr)

, SC(sc)

Rate(p)

-

RowArray=new unsigned long [x];
for(unsigned long i=0;i<x;i++)
RowArray[i}=0;
ColArray=new unsigned long [y];
for(unsigned long j=0;j<y;j++)

ColArray/(j]=0;

56

RowList=new Node [x];

ColList=new Node [y]:
if(RowArray==NULL||ColArray==NULL||RowList==NULL||ColList=-

NULL)

cout<<"Memory Allocation Error!“<<andj;

exit(2);

ArrayOfLinkedLisi::~ArrayOfLinkedList{void)

{
delete {] RowArray;
delete {] ColArray,
delete [] RowList;
delete [] ColList;

}

void ArrayOflinkedList::DefectGeneration(int mode, unsigned long seed)

{

if(mode==0)//Rondom Distribution

{

//Sampling from a random number generator

/fRandom: double gsl_mg uniform {const gsl_rng *r)

57

J/This functicn returns a double precision ftoating point number
fluniformly distributed in the range (0.1]. The range includes 0.0 hut
lexcludes 1.0. The value is typically obtained by dividing the result of
f1gsl. rng_get(r) by gsl_rng. max(r) + 1.0 in double precision. Some
{/generators compute this ratio internally so that they can provide
/ffloating point numbers with maore than 32 bits

f/of randomnass (the maximurmn number of bits that can be portably

//represented in a single unsigned long int).

I*srand(seed);
for(unsigned long i=0;i<this->Row;i++)
for(unsigned j=0;j<this->Col;j++)
if(rand()%10000<this->Rate*10000)
this->MatrixAddNode(i,j);*/
const gsl_rng_type * T;
gsl_rng ™ r;

/* create a generator chosen by the environment variable

GSL_RNG_TYPE ¥/
srand(seed);
gsl_mg_env_setup();

T = gsl_rng_default;
r = gsl_rng_alloc (T);
gsl_rng_set(r,rand(});

double u;

for(unsigned tong i=0;i<this->Row;i++)

38

for(unsigned long ;=0;j<this->Col;j++)
{
u = gsl_rng_uniform (r):
if(L*10000<this->Rate*10000)
this->MatrixAddNode(i,j);
}

gsl .mg free (r);

else *Random Fault Cluster Distribution: unsigned int
gsl_ran_negative_binomial {(const gsl_mg *r,
double p, double n) This function returns a random integer from the
negative binomial distribution, the number of failures occurring before
n successes in independent trials with probability p of success. The
probability distribution for negative binomial variates is, p(k) =
{\Gamma(n + k) \over \Gamma(k+1) \Gamma(n) } p*n (1-p)*k Note
that n is not required to be an integer. This routine is from The GNU
Scientific Library (GSL). Version 1.1, March 2000 Copyright ? 2000
Fres Software Foundation, Inc. 59 Temple Place, Suite 330, Boston,
MA 02111-1307, USA */
{
const gsl_rng_type * T:
gsl.rng*r,
/* create a generator chosen by the environment variable
GSL_RNG_TYPE */

srand(seed);

gs! rng env_setup();

T = gsl_rng_default;
7 r=gsl mg_alloc (T);

gsl_rng_set(r.rand());

double p.n,alpha,lamda;

lamda=1,2934;

alpha=3.8274;

inty;

unsigned long a,b;

p=alpha/(alpha+lamda);

a=(unsigned long)(floor(sqrt{lamda/this->Rate)));
b=(unsigned long){ceil(sgrt{lamda/this->Rate)));
n=alpha;

unsigned long i j;

for(i=0:i<(unsigned long){this->Row/a);i++)

for(j=0;j<(unsigned long)(this->Col/b);j++)

{

y=gsl_ran_negative_binomial(r,p,n);

int m=0,n=0;

for(m=0;m<a;m++)

for(n=0;n<b;n++)
if((gs!_rng_uniform(s)*(a*b))<y)
this->MatrixAddNode(a*i+m,b*j+n);

}

60

IndexCount* ArrayOfLinkedList::FindMinimallndex(unsigned long index, int

mode)

IndexCount *ldxCnt=new (ndexCouni();

if(IdxCnt==NULL)

{
cout<<"Memory Allocation Error!"<<endl;
exit(2);

}

l[dxCnt->Sub=index;

Node *p;

if{mode==0)

{
idxCnt->Index=this->ColArray[this->RowList[index].Right->y];
ldxCnt->Count=1;
p=this->RowList[index].Right;
p=p->Right;
while(p)

{

if(this->ColArray[p->y]<IdxCnt->Index)

{
(dxCnt->Index=this->ColArray[p->y],

61

oise

IdxCnt->Couni=1;

}

else if(this->ColArray[p->y}= :ldxCnt->Index)
IdxCnt->Count+=1;
p=p->Right;
}

return 1dxCnt;

p=this->ColList[index].Down;
ldxCnt->Index=this->RowArray[p~->x];

IdxCnt->Count=1;

p=p->Down;
while(p)
{
if(this->RowArray[p->x]<ldxCnt->Index)
{
[dxCnt->Index=this->RowArray(p->x],
1dxCnt->Count=1,
}

else if(this->RowArray[p->x]<ldxCnt->Index)
{dxCnt->Count+=1;

p=p->Down;,

return dxCnt;

int ArrayOfLinkedList::MatrixAddNode(unsigned long x. unsigned long y)
{
Node *p=new Node(x,y);
if(p==NULL)
{
cout<<"Memory Allocation Errorl"<<end};
exit(2);
}
this->ColArray[y]+=1;
this->RowArray(x]+=1;

if(this->RowList[x]. Right==NULL)

{
this->RowList(x].Right=p;
p->Left=&this->RowList[x];
}
else
{

p->Right=this->RowList[x].Right;
this->RowList[x}.Right->Left=p;
this->RowList[x).Right=p;

p->Left=&this->RowList(x];

63

}

if(this->ColList[y). Down==NULL)

{
this->ColListly].Down=p;
p->Up=&this->ColList[y];

)

else

{
p->Down=this->ColLisl{{y). Down;
this->ColList{y].Down->Up=p;
this->ColList[y].Down=p;
p->Up=&this->ColList[y);

}

reium 0;

int ArrayOfLinkedList::MatrixDelGolNode(unsigned long Col, list<unsigned

long> & DOR)

this->ColArray[Col]=0;

Node *N;

Node *p=this->ColList[Col}. Down;
while(p)

{

64

if(p->Down==NULL)

{

this->ColLis{{Col].Down=NULL;

else

this->ColList[Col].Down=p->Down;
p->Down->Up=&this->ColList[Co!];
3

if(p->Right==NULL)

.

1

p->Left->Right=NULL;

}

else

{
p->Left->Right=p->Right;
p->Right->Left=p->Left;

}

this->RowArray[p->x]-=1;

if(this->RowArray[p->x]==0)
DOR.remove(p->x);

N=p;

p=p->Down;

delete N:

(5

return O;

int ArrayOfLinkedList::MatrixDelRowNode(unsigned Jong Row, list<unsigned

long>& DOC)

this->RowArray[Row}=0;
Node *p,*N;
p=this->RowLisl[Row}.Right;

while(p!=NULL)

{
if(p->Right==NULL)
{
this->RowList[Row].Right=NULL;
}
else
{
this->RowlList{Row].Right=p->Right;
p->Righl->Left=&this->RowLisi(Row];
}
if(p->Down==NULL)
{
p->Up->Down=NULL;
}
else

66

p->Up->Down=p->Down;

p->Down->Up=p->Up;

this->ColArray(p->y]-=1;
if(this->ColArray|p->y]==0)

DOC.remove(p->y):

N=p;
p=p->Right;
delete N;

}

return O;

int ArrayOfLinkedList::MemoryDefectDisplay(void)
{

unsigned long count=0;

unsigned long i;

Node *p;

for(i=0;i<this->Row;i++)
if{this->RowArray[i])
{

p=this->RowList[i).Right;

LY

while{p)

{
aute<"("<<p->x <" <<y <)
count++;
p=p->Right;

}

out<<end|

}

for(i=0;i<this->Row;i++)
out<<this->RowArray[i]<<" ";

out<<endl:

for(i=0;i<this->Col;i++)
out<<this->ColArray[i)<<" "

out<<endi<<end);

return 0O;

int ArrayOfLinkedList:: DefectParaminitialization(void)

{

unsigned long i

for(i=0;i<this->Row;i++)
if(this->RowArray(i]) this->DOR .push_back(i),
for(i=0;i<this->Row;i++)
if(this->ColAcray[i]) this->DOC.push _back(i):

return O;

68

/] Proposed Reapir Solution

int ArrayOfLinkedList::ProposedRepairSolution{void)
{
IndexCount *RowCount, “ColCount, *Rtemnp;
while(this->DOR.size())
{
RowCount=this->FindMinimallndex(*DOR.begin(),0);
for(cl=DOR.begin(};cl'=DOR.end();cl++)
{
Rtemp=this->FindMinimallndex(*cl,0),

if(Rtemp->Index<RowCount->Index)

{
RowCount->Index=Rtemp->Index;
RowCount->Count=Rtemp->Count;
RowCount->Sub="ct;

}

else if(Rtemp->Index= :RowCount->index}
{
if(Rtemp->Caount>RowCount->Count)

{

RowCount->Index=Rtemp->Index;
RowCount->Count=Rtemp->Count;

RowCount->Sub=*cl:

69

}
ColCouni=this->FindMinimalindex(*DOC.begin(),1);

for(cl=DOC.begin();cl'=DOC.end();cl++)

{
Rtemp=this->FindMinimalindex(*cl,1);
if(Rtemp->Index<ColCount->Index)
{
ColCount->Index=Riemp->Index;
ColCount->Count=Rtemp->Count;
ColCount->Sub="cl;
}
else if(Rtemp->Index==ColCount->Index)
{
if(Rtemp->Count>ColCount->Count)
{
ColCount->Index=Rtemp->Index;
ColCount->Count=Rtemp->Count;
ColCount->Sub=*c};
}
}
}

If{(RowCount->Index<ColCount->Index)||(RowCount->

Index==ColCount->Index)&&(RowCount-> Count>=

70

ColCount->Count))

{

if(this->SR>0)

{
/{fcout<<"Row:"<<RowCount->Sub<<endl.
this->SR-=1;
this->MatrixDelRowNode(RowCount->Sub,DOC);
DOR.remove(RowCount->Sub);

}

else if(DOC size()<=this->SC)

{
for(cl=DOC.begin();cl'=DOC.end();cl++)

this->MatrixDelColNode(*cl,DOR);

DOC .clear();
DOR.clear();
return 0;

)

else

for(cl=DOC.begin();cl'=DOC.end();cl++)
this->MatrixDelColNode(*cl,DORY);

DOC.clear();

DOR.clear();

return 1;

else

if(this->SC>0)

{
Jlcout<<"Col:"<<ColCount->Sub<<end];
this->SC-=1;
this->MatrixDetColNode(ColCount->Sub,DOR);
DOC.remove(ColCount->Sub),

}

else

if(DOR .size()<=this->SR)

{
for(cl=DOR.begin();cl'=DOR.end();cl++)
this->MatrixDelRowNode(*cl,DOC);
DOC.clear();
DOR.clear();
return 0,
}
else
{

for(cl=DOR.begin();cl'=DOR.end();cl++)
this->MatrixDelRowNode(*cl. DOC);
DOC.clear();

DOR.clear();

72

| return 1;

}

return O;

RepairMost::RepairMost(void)

RepairMost::~RepairMost(void)

r
..

// Initialization of Row and Column defective array
void RepairMost::Initialization(MemoryArray &Matrix)
{
for(unsigned long i=0;i<Matrix.Row;i++)
if(Matrix RowArray[i]} DOR push_back(i);
/ffor(cl = DOR.begin(};cll=DOR.end();cl++)
/1 out<<"Row Defect array”"<<*cl<<endl;
for(unsigned long j=0;}<Matrix.Columns;j++)

if(Matrix.ColArray(j]) DOC.push_back(j);

/ifor(cl= DOC.begin();cl'=DOC.end();cl++)

73

/I out<<"Column Defect Array"<<*cl<<endl;

I/ Repair Most Soution of Defective Memory
int RepairMost::RepairMostSolution(MemoryArray& Matrix)
{
vector<unsigned fong> R V;
Hout<<"Repair Solutiecn"<<endl:
unsigned long i=0,j=0;
while(DOR .size())
{
i=0;j=0;
for(cl = DOR.begin();cll=DOR.end();cl++)
{

if(Matrix. RowArray[*cl}>Matrix.RowArray[i]) i=*cl;

for(cl= DOC.begin();cl!=DOC.end():cl++)
{
if(Matrix.ColArray{*cl}>Matrix.ColArrayl[j]) j=*cl;
}
if(Matrix. RowArray|i]>=Matrix.ColArray/[j])
{
if(Matrix.SpareRow=0)

{ /* out<<endl<<"Row "<<i<<" ";*/

74

Matrix. SpareRow-=1;

for(cl= DOC.begin();cil=DOC.end();ci-+)

{
if(Matrix. MemoryMatrix[i][*cl})
{
Matrix. MemoryMatrix{i][*cl]=0;
Matrix.ColArray[*cl]-=1;
if(Matrix.ColArray[*cl]==0)
{
R V.push_back(“cl);
}
)
}
while(R_V.size())
{
DOC.remove(R_V.back()):
R_V.pop_back();
}

Matrix.RowArray{i]=0;

DOR.remove(i);

}

else if(DOC.size()<=Matrix. SpareColumn)

{

Matrix.SpareColumn-=DOC size(};

DOC .clear();

75

DOR.clear();

return 0;
}
else
{
DOR.clear();
DOC.clear();
return 1;
}
}
else

if(Matrix.SpareColumn=>0)
{ /* out<<endl<<"Col “<<j<< ¥/
Matrix.SpareColumn-=1;
for(cl= DOR.begin();cl'=DOR.end();cl++)
{
if(Matrix.MemoryMatrix{*cI][j])
{
Matrix. MemoryMatrix(* ch[j]=0;
Matrix.RowArray[*cl]-=1;
if(Matrix. RowArray[*cl]==0)
{

R V.push back{*cl);

76

}

while(R_V size())

{
COR.remove(R_V.back()).
R V.pop_back();

)

l/out<<end);

Matrix. ColArrayl[j|=0;

DOC.remove()).

}
eise if(DOR.size()<=Matrix.SpareRow)
(
Matrix. SpareRow-=DOR .size();
DOR.clear();
DOC.clear();
return 0;
}
else
{
DOR.clear();
DOC clear();
return 71;
}

77

}

return 0;

MemoryArray::MemoryArray(unsigned long R,unsigned long C,unsigned
long SR,unsigned long SC float P)
‘Row(R)
, Columns(C)
., SpareRow(SR)
, SpareColumn(SC)
, Rate(P)
{
this->RowArray=new unsigned long [R];
if(this->RowArray==NULL)
{
cout<<"Out of Memory"<<end!;
axit(2);
}
for(unsigned fong i=0;i<R;i++)
this->RowArrayl[i]=0:
this->ColArray=new unsigned long [C}
if(this->ColArray==NULL)
{
cout<<"Qut of Memory"<<endl;

exit(2);

78

}

for(unsigned long j=0;j<C;j++)

this->ColArray{j]=0;
MernoryMatrix=new unsigned long * [R];

if(MemoryMatrix==NULL)

{
cout<<"Qut of Memory"<<endl;
exit(2);
}
for(unsigned long k=0;k<R;k++)
{
this->MemoryMatrix[k]=new unsigned long [C];
if(this->MemoryMatrix[k]==NULL)
{
cout<<"Out of Memory”<<end|;
exit(2);
}
}

for(unsigned long 1=0;I<Row;|++)

for(unsigned long p=0;p<Columns;p++)

this->MemoryMatrix[[)[p]=0:

fMiemoryArray::~MemoryArray(void)

{

79

delete [] this->ColArray;

delete [) this->RowArray;

for(unsigned long i=0;i<this->Row;i++)
delete (] this->MemoryMatrix[i];

delete [] this->MemoryMatrix;

/l Generate the memory defect pattern.
int MemoryArray:; DefectGeneration(int mode,unsigned long seed)
{
if(mode==0)//Rondom Distribution
{
//ISampling from a random number generator
/IRandom: double gsl_rng_uniform (const gsl_rng * r)
//This function returns a double precision floating point number
fluniformly distributed in the range [0,1]. The range inctudes 0.0
fibut excludes 1.0. The value is typically obtained by dividing the
/iresult of gsl_rng_get(r) by gsl_rng_max(r) + 1.0 in double
/Iprecision. Some generators compute this ratio internally so that
/ithey can provide floating point numbers with more than 32 bits
/lof randomness (the maximum number of bits thal can be
{Iportably represented in a single unsigned long int).
| const gsl_rng_type * T;

gsi_rng " r;

&0

> create a generator chosen by the
environment variable GSL_RNG_TYPE =)
srand(seed);

gsl_mg_env_setup():

T = gsl_mg_default;

r = gsl_mg_alloc (T);
gsi_mg_set(r,rand()):

double vu;

/lcout<<gsl_rng_uniform (r)<<end;
for(unsigned long i=0;i<Row;i++)

for(unsigned long j=0;j<Columns;j++)

{
u = gsi_mg_uniform (r);
if(u*10000<this->Rate*10000)
{
this->MemoryMatrix(i][j]=1;
this->ColArray[j]+=1;
this->RowArray(i]+=1;
}
else
{
this->MemoryMatrixi]{j}=0;
}
}

gsl_rng_free (r);

B1

else

return O;

*Random Fault Cluster Distribution: unsigned int
gsl_ran_negative_binomial (const gsi_mg * r, double p, double n)
This function retums a random integer from the negative binomial
distribution, the number of failures occurring before n successes in
independent trials with probability p of success. The probabllity
distribution for negative binomial variates is, p(k) = \Gamma(n + k)
\over \Gamma(k+1) \Gamma(n) } p*n (1-p)*k Note that n is not
required to be an integer. This routine is from The GNU Scientific
Library (GSL). Version 1.1, Marc.h 2000 Copyright ? 2000 Free
Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111-1307, USA %/

{
const gsl_rng_type * T;

gsl_mg*r;

I~ create a generator chosen by the
environment variable GSL_RNG_TYPE */
srand(seed);

gsl_rng_anv_setup();

T = gsl_mg_default;

r = gsl_rng_alloc (T);

gsl_rng_set(r,rand());

82

double p,n,alpha,lamda;

lamda=1.2934,

alpha=3.8274;

inty;

unsigned long a,b;

p=alpha/(alpha+tamda);

a=(unsigned long)(floor(sqri(lamda/this->Rate)));
b=(unsigned long)(ceil(sari{lamda/this->Rate))):
n=alpha;
Hlcout<<gsl_ran_negative_binomial(r,p,n)<<endl;
unsigned [ong i,j;

for(i=0;i<(unsigned long)(this->Row/a);i++)

for(j=0;j<(unsigned long)(this->Columns/b);j++)

y=gsl_ran_negative_binomial(r,p,n);
int m=0,n=0;
for(m=0;m<a;m++)

for(n=0;n<b;n++)

{
if((gsi_mg_unifarm(r)*(a*b))<y)
{
this->MemoryMatrix[a“i+m]{b"j+n}=1;
this->ColArray[b*j+n]+=1;
this->RowArray[a*“i+m]+=1;
}

83

else this->MemoryMatrix[a*i+m][b"}+n]=0;

)
gsl_mg_free (r):

return O;

void MemoryArray::MemoryDefectDisplay(void)
{ unsigned long count=0;

for(unsigned long i=0;i<this->Row;i++)

{
for(unsigned long j=0;j<this->Columns;j++)
if(this->MemoryMatrix{i][j]==1)
{
out(("("<<i<<""'<<j(<")"<<" “:
count++;
}
if(this->RowArrayf[i]) out<<endl,
}

/*for(unsigned long i=0;i<this->Row;i++)
out<<this->RowArrayfi]<<endI;

out<<endl|z<end!;

for(unsigned long i=0;i<this->Columns;i++)

out<<this->ColArrayfil<<endl;*/

84

out<<count<<gndi<<endl,

void MemoryArray::Reset(void)

{
for(unsigned long i=0;i<this->Row;i++)
this->RowArray[i]=0;
for(unsigned long j=0;j<this->Columns;j++)
this->ColArray{jl=0:
for(unsigned long k=0;k<Row;k++)

for(unsigned long 1=0;1<Cotumns; |++)

this->MemoryMatrix{k]{!]=0;

void MemoryAmray::DensityMap(void)
{
for(unsigned long i=0;i<this->Row;i++)
{
for{unsigned long j=0;j<this->Columns;j++)
if(this->MemoryMatrix(i]{j}==1)
out<<"™";
else out<<" "
out<<end];

}

out<<endl<<"End of One Map"<<end;

RS

» One of the Test Procedure “test.cpp”
*+ by Song Gao
* Graduate Student
+ Computer Science Department
* Oklahoma State University
+ Stillwater, OK, 74075
*!
#include <procass.h>
#include <stdlib.h>

#include <stdio.h>

#include “IOSTREAM.H"
#include "fstream.h"
#include "time.h"
ofstream output(“Yield.txt",ios::outlios::app);
void main(int arge, char* argv(])
{
long sr,r=0,count,i,j;
int a;

srand(time(NULL));

for(r=10;r<100;r+=10)

{

sr=r*0.1;

86

for(1=0;1<10;i++)

{
count=0;
for(j=0:j<100;j++)
{
char buff{128];

sprintf(buff,"%s %d %d %d %d 0.005 %d",argv[1],r,r.sr.sr.rand()):
a=system(buff);
if(a==0) count++;
if(@a==2)
{
cout<<"Error occured"<<endl;
exit(1);
}
}
output<<count<<endi;

sr+=r"0.05;

§7

G

VITA

Song Gao

Candidate for the Degree of

Master of Science

Thesis: A STUDY OF A REDUNDANT MEMORY REPAIR ALGORITHM

Major Field: Computer Science

Biographical:

Education: Received Bachelor of Medicine degree in Basic Medicine
from Beijing Medical University, Beijing, China in July 1999.
Completed the requirements for the Master of Science degree

with a major in Computer Science at Oklahoma State University
in May 2003,

