
REGISTER RE AMING ALGORITHM FOR

FAST BRANCH MISPREDI TIO

RECOVERY IN SUPERSCALAR

PROCESSOR

BY

BALACHANDERGANESAN

Bachelor ofEngineering

University of Madras

Chennai india

2001

Submitted to the faculty of the
Graduate College of the

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of

MASTER OF SCIE CE

December, 2003

REGISTER RENAMING ALGORITHM FOR

FAST BRANCH MlSPREDI TION

RECOVERY IN SUPERSCALAR

PROCESSOR

Thesis Approved:

~.~
Thesi{Advisor

~ ~........~------~- T =-~

~~~ 
~~. 
~the Graduate College 

11 



ACKNOWLEDGEMENTS 

My smcere gratitude is due to my advisor Dr. Louis G. Johnson for his 

inspiration, guidance and continuous encouragement throughout my thesis. The presented 

work is the result of his support and motivation. I also thank Dr. Yumin Zhang and 

Dr Weili Zhang for serving as my committee members. Their comments and suggesti.ons 

are greatly appreciated. I extend my thanks to Anshuman Anand, for his valuable 

contributions to this thesis. My heartfelt thanks to my family members for their extreme 

love and continuing support. Finally, I would. like to thank my friends for their 

encouragement and moral support. 

III 



TABLEOFCONTE TS 

Chapter Page 

I INTRODUCTION. . . . . . . . . . . . . .. . . .. . . .. .. . .. . . . . .. . . . . . . . .. 1
 

1.1 Problem Statement. '" .. .. .. . .. . .. . .. .. 2
 
1.2 Previous Work 5
 
1.3 Design Approach , , .. . . ... . . . 8
 
1.4 Contributions to Thesis 11
 

II ARCHITECTURE OVERVIEW AND ORGANlZATION. 12
 

2.1 Fetch 13
 
2.1.1 Fetch Limitation : 13
 
2.1.2 Instruction Cache Organization 17
 
2.1.3 Branch Prediction " " .. 18
 
2.1.4 Branch Target Buffer 19
 
2.1.5 Branch Prediction Buffer. 20
 

2.2 Decode 20
 
2.3 Register Renaming Scheme 21
 
2.4 Dynamic Scheduling 26
 
2.5 Execution and Write Back. 28
 
2.6 Cornn1it. " 30
 

III DESIGN AND IMPLEMENTATION 33
 

3.1 Reorder Buffer. 33
 
3.2 Status Bits 40
 
3.3 Dispatch 43
 
3.4 Reservation Station 45
 
3.5 Execution Units 49
 

3.5.1 Multiply Divide Unit. 50
 
3.5.2 Load Store Unit. 50
 

3.6 Write Back 52
 

IV 



IV VERIFICATION AND RESULTS 54
 

4.1 Simulation Environment 54
 
4.1.1 SDE-MIPS Tool Kit. 54
 
4.1.2 Verilog Simulation '" , , 56
 

4.2 Design Verification 58
 
4.3 Perfonnance Data Collection 63
 

V CONCLUSION , 68
 

REFERENCES 69
 

APPENDICES 70
 

APPENDIX A - Design Verification of Virtual Registers 70
 

APPENDIX B - Bubble Sorting Execution 94
 

APPENDIX C - Squared Series Sum Execution 95
 

v 



Figure 

1.1 

1.2 

1.3 

2.1 

2.2 

2.3 

2.4 

2.5 

2.6 

3.1 

3.2 

3.3 

3.4 

3.5 

3.6 

3.8 

3.9 

3.10 

3.11 

LIST OF FIGURES
 

Page
 

Dependency Elimination. . .. . .. .. .. .. . .. .. .. .. .. . 4
 

I1lustration-1 ofRegister Renaming. .. . .. 9
 

Illustration-2 of Register Renaming. .. .. .. . . . . . .. . . . .. .. . . . .. . . . .. . .. . 10
 

Microarchitecture ofthe Processor............................................... 12
 

Four-Bank Direct Mapped Instruction Cache..... .. .... .. ... ... 18
 

Decode Output Format " '" .. . .. . .. . . 21
 

Register Renaming in Issue and Dispatch. . . . . . . . . . . . . .. .. .. . .. 25
 

Data Flow Graph , 27
 

Instruction Commit Organization " . . . 31
 

FIFO Reorder Buffer................................................................. 34
 

ROB Field Format. , 35
 

RTL Design of a ROB Cell. '" .. .. . . . . .. .. . .. . .. 36
 

ROB Write Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .. . . . . .. . . . . .. 37
 

Issue Counter State Transition Diagram 38
 

ROB Read and Commit Operations , 39
 

Status Bits '" '" " 42
 

Dispatch Organization 44
 

Reservation Station Allocate and Wait 46
 

Bypass and Issue Logic 48
 

VI 



Figure Page 

3.12 Issue Logic Timing 49
 

3.13 Load Store Unit Organization 51
 

3.14 Write Back Organization 53
 

4.1 SDE-MIPS: Program MernoryMap 56
 

4.2 Top-Down Design Hierarchy 58
 

VB 



LIST OF TABLES 

Table Page 

2.1 Instruction Fetch Limitation '" " '" . .. .. 16
 

3.7 Status Bits Description........................................ 41
 

4.1 Performance on Bubble Sorting.. ... .. . ... .. . .. . .. . .. . .. . .. . . . . . . . .. 66
 

4.2 Performance on Squared Series Sum..... .. .. .. 67
 

Vlll 



Chapter 1. 

Introduction 

The ever increasing demand for more computing power has led to research on ways to 

improve processor performance. Instructions per Clock (]PC) is considered as one of the 

most significant perfonnance metrics. For a processor executing a program, IPC is the 

average number of instructions which is executed in one clock cycle. Performance is 

given by, 

fPC
Performance = . 

IC*r 

Where, IC is the instruction count and T is the clock period. 

Thus, improving IPC can result m improved perfonnance. Development of linear 

pipelined processors, which had higher throughput compared to their un-pipellned 

counterparts, was the first step towards meeting the delTIand for more computing power. 

Although IPC for linear pipelined processor handling one instruction per stage is ideally 

one, practically it can never reach its ideal limit. This is due to the various pipeline stalls 

which occur due to data hazards and control hazards [9]. Because of the problem of 

limited IPC in a linear pipelined processor due to various hazards, alternate architectures 

handling multiple instructions in a pipeline stage, with potentially higher IPC were 

proposed and successfully implemented. They are the Very Long Instruction Word 

(VLIW) architecture and the Superscalar architecture. The fundamental idea behind these 



architectures is to take advantage of the inherent Instruction Level Parallelism (ILP) 

present in the program, by executing multiple instructions simultaneously using parallel 

functional units. 

VLIW architecture relies heavily on compilers to identify and encode instructions in a 

way suitable for parallel execution by the functional units. Hardware is simplified 

considerably, because the compiler does the instruction scheduling. If the compiler 

cannot find an instruction to fill a slot, it inserts NOPs, thereby increasing the code size. 

In the superscalar approach, hardware has inbuilt scheduling logic, to identi fy and 

execute instructions in parallel. The responsibility of keeping the functional units busy is 

assigned to the dynamic scheduling unit [9]. To realize the perfonnance improvement 

from processing multiple instructions, a good dynamic scheduling logic which detects 

and issues instructions (possibly out-of order) is imperative. The scheduling is normaJIy 

based on availability of the required source data required to start execution and also the 

instruction's order in the program. 

1.1 Problem Statement 

Assuming multiple copies of functional units are available, multiple instructions can be 

fetched and executed simultaneously, as long as there are no dependencies among the 

fetched instructions. These dependencies may be caused by the lack of physical registers 

to store data (name dependency) or due to the prOducer-consumer relationship (true data 

2
 



dependency) among instructions. Hence, to mcrease the number of executable 

instructions, some of these dependencies must be removed. Register renaming is the 

process by which such name dependencies are removed. This is accomplished by 

allocating a different physical register to store data for the logical destination register in 

an instruction. This mapping is stored in a mapping table (MT), so that, later instructions 

with that logical destination register as a source register, can read the data from the 

physical register. Figure 1.1 illustrates the various dependencies and the elimination of 

name dependency by register renaming. In the figure, the logical source registers are 

assumed to have been already renamed to some physical register. Also, Figure l.} shows 

the mapping of logical registers to physical registers after the execution of ADD and SUB 

instructions. 

Another glaring problem is the presence of control dependent instructions in the multiple 

instructions fetched to execute in parallel. To sustain a good fetch rate, branch prediction 

has been successfully implemented to determine the next fetch address and also predict if 

the control dependent instructions must be executed. If a branch prediction is later 

realized to be wrong, the speculatively executed instructions must be cancelled before 

updating the system state. 

3
 



a) True Data Dependency _R_e_gt_'s_te_r_R_en_a_mm_'_g_-1~~ a) True Data Dependency 

Initial ADD SUBADDRI RO,R2 ADD PI PO, P2
RO PO PO PO 

SUB R4 RI, R3 SUB P4 PI, P3RI PI PI 
R2 P2 P2 P2 
R3 P3 P3 P3 
R4 P4 

b) Name Dependency (WAR) _______Register Renaming -.~ b) Dependency Eliminated 

Initial ADD SUBADDRI RO, R2 ADD PI PO, P2
RO PO PO PO 

SUB R2 R4, R3 SUB P5 P4, P3RI PI PI 
R2 P2 P2 P5 
R3 P3 P3 P3 
R4 P4 P4 P4 

c) Name Dependency (WAW) _______Register Renaming ---I~~ c) Dependency Eliminated 

Initial ADD SUBADD RI RO, R2 ADDPI PO,P2
RO PO PO PO
 

SUB RI R4, R3 RI Pi P5 SUB P5 P4, P3
 
R2 P2 P2 P2
 
R3 P3 P3 P3
 
R4 P4 P4 P4
 

Figure 1.1 Dependency Elimination 

When register renaming, dynamic scheduling and branch prediction are present in an 

implementation, the process of recovery from a branch misprediction or exception is 

challenging. This is because of the possible out-of order execution of instructions and 

also the need to restore the mapping table (MT) to a state it would have been in, if the 

speculated instructions were not executed. This restoration phase can potentially take 

multiple cycles of operation resulting in an increased penalty for branch rniprediction. 

4
 



1.2 Previous Work 

This section summarizes the previous work done in register renaming and means to 

exploit ILP. The study done in [7] showed the instruction fetch limitation due to control 

dependent instructions in the fetch group. The paper argues that, regardless of scheduling, 

the average number of instruction that can be fetched and executed per cycle cannot 

exceed lip, where p is the probability of a taken branch or jump instruction. They 

proposed dual port BTB (DBTB) and dual port instruction cache (organized as a memory 

bank) as means to overcome this fetch limitation. The DBTB can provide target address 

for the next two fetches, which are simultaneously read using the dual port instruction 

cache [7]. This increases the average number of instructions fetched. There is one main 

concern about this scheme. Because of the sequential nature of operation of the proposed 

DBTB, for a large BTB the lookup time can be very large and can possibly affect the 

clock time. 

Work presented in [2] gives an overall picture on register renaming and classifies it based 

on the type of rename buffer (split or merged) and the kind of register mapping (Mapping 

Table or mapping in the rename buffer) used. It points out, for a merged implementation 

of the rename buffer, there is no need for data transfer, and hence, hardware is simplified. 

It also suggested the following guideline for choosing the size of storage modules 

(rename buffer, ROB, dispatch window) involved in register renaming. 

wdw< rb< rob 

5
 



where, wdw is the width of the dispatch window, rb is total number of rename buffers 

and rob is size of reorder-buffer. 

To reduce the number of read ports in the rename buffer, a scheme called dispatch bound 

operand read is suggested in [2], in which data is read only for the dispatched 

instructions. Since the number of dispatched instructions is generally less than the 

number of issued instructions, one can have less read ports in the register file [2]. 

All the work summarized below focuses on efficient usage of rename registers as means 

to reduce the size of the rename buffer. In [3] a hardware scheme is proposed for efficient 

usage of rename registers through early register release. They claim this can result in 

reduced number of rename registers and hence a faster clock rate, assuming that the 

register file is in the critical timing path for clock period. In the proposed scheme, a 

rename register is scheduled for early release if it is identified that there are no more 

pending reads from that rename register [3]. It uses a Last Use Table (LUT) and extend d 

ROB fields to keep track and identify registers for early release. The LUT needs to be 

heavily ported (32 read and 24 writes) for an 8-wide superscalar processor. Although 

perfonnance improvement of 3% to 6% was reported for numerical programs, cost 

effective implementation of such a heavily ported LUT is questionable. 

In a conventional register renaming scheme, a physical register is allocated during decode 

and reclaimed when another instruction with the same logical destination commits. In 

such a scheme, the physical register is allocated for a time which is more than required 

6
 



[4]. The physical register is wasted (contains no value) from the time it is allocated 

(during instruction decode) until execution is completed. This increases the need for more 

physical registers. The proposed scheme in [4] allocates a physical register for a much 

shorter time than the conventional scheme, thereby, reducing the need a for large physical 

register file. During decode, virtual tags (which does not address storage locations) are 

assigned to the logical destination registers. These tags are stored in a General Map Table 

(GMT) [4]. These virtual tags address another table Physical Map Table (PMT) which 

stores the corresponding physical register address. A physical register is allocated only 

when the instruction completes and at that time, the PMT is updated. Misprediction 

recovery in such a scheme requires the sequential popping out of instruction form the 

ROB to set up values in GMT and PMT. Potentially this may take several cycles, 

increasing the branch misprediction penalty. 

Another attempt to achieve efficient register usage, by reusing a physical register for 

storing the result of two instructions is summarized below. In this scheme, a physical 

register is reused whenever it is detected that an incoming instruction is likely to produce 

the same result as one of the previously completed instruction [5]. For example, a 'move' 

instruction just transfers data from one register to another. The logical destination 

register's entry in the mapping table for such 'move' instructions is updated with the 

previously allocated physical register's address, holding the same value. A counter 

corresponding to that physical register is incremented, indicating that the physical register 

is shared by two logical destination registers [5]. This scheme enables the removal of 

7
 



'move' instructions from execution, thereby reducing the dependency latencies of 

instructions following the 'move' instruction. 

1.3 Design Approach 

This design is focused on designing a register renaming and scheduling scheme aimed 

towards fast misprediction and exception recovery. Fast recovery from branch 

misprediction or exception will reduce the penalty involved with those events and hence 

can result in an improved IPc. 

The design uses a merged physical register file holding both correct and speculated data. 

This approach is advantageous in the sense that data transfers between register files can 

be eliminated, resulting in a simpler hardware. There are two mapping tables (MT) whose 

content addresses the physical register file. These mapping tables are indexed using the 

logical register numbers appearing in the instruction. The content of the first mapping 

table (lP) is updated speculatively at the time of decode. The second mapping table (CP) 

is updated when the instruction commits. Thus, CP always has the correct mapping for 

the logical registers to the physical register file, where the data is stored. During a branch 

misprediction recovery sequence or exception, the contents of CP are copied into IP 

through a special internal port. IP and CP are designed as an integrated unit with the 

internal port to simultaneously copy contents of CP to IP during restore. This can be 

accomplished in one cycle. Figure 1.2 is an illustration of the register renaming scheme. 

8
 



In Figure 1.2, A, V, C are used to indicated if the physical register file is allocated, if its 

data is valid (finished execution) and if it has been committed, respectively. The figure 

shows the state of MT, physical register file and status bits after a fetch group has been 

decoded and dispatched. As seen from Figure 1.2, the allocated physical register file 

locations are set to '1', preventing future allocation of that location as a rename register 

until that location is reclaimed. The Reorder Buffer (ROB) holds the logical register 

number and rename register number for all instructions, in program order. 

Fetch Group IP Mapping CP Commit ROB 

ADD! RI, RO, 5 RO PO 
Table 

PO 
Counte 

RI PI 
XORI R2, RI, 6 RI PI R2 P2 
SLTI R3, R2, 4 
SUB R2, RI, R3 R2 P4 R3 P3 

R3 P3 Issue R2 P4 

Rename Registers 
Counte 

0 
Assigned 

RI .. PI R31 0 

R2 .. P2 

R3 .. P3 
VB (Physical Register File) A V 

R2 .. P4 
PO () 1 I I 

PI 1 0 0 
~--------i 

P2 I 0 0 

P3 I 0 0 
1--------1 

P4 1 0 0 

r 

P63 

Figure 1.2 IIlustration-1 of Register Renaming 

Figure 1.3 shows the state of modules after ADDI and XORI have committed, SLTI has 

finished execution but not committed and SUB is still waiting to be executed. For 

9
 



instructions which have fmished execution and written results to VB, V is set to 'l'. For 

instructions which have committed, C is set to '1' and CP is updated with the assigned 

rename register's address. The ROB in Figure 1.3, has committed the first two 

instructions (ADDI and XORI) and has updated the corresponding CP mapping table 

with the rename register assigned for that instruction. The Commit Counter now points to 

an uncommitted instruction in the ROB. A Detailed explanation on the design of the 

Status Bits and the ROB is presented in Chapter 3. 

Fetch Group lP Mapping CP ROB 
Table 

ADDI Rl, RO, 5 
RO PO PO 0 RI PI ... 

XORl Rl, Rl, 6 Rl PI PI ommitc 0 R2 P2 ... 
SLTI R3, R2, 4 
SUB R2 Rl, R3 R2 P4 P2 

ountel. ... c 
I R3 P3 ... 

R3 P3 Issue 1 R2 P4 ... 

Rename Registers 
ounter;,. ... c 

0, 
Assigned 

RI 

R2 

R3 

R2 

• Pi 

• P2 

• P3 

• P4 
PO 

Pi 

0 

5 

VB (Physical Register File) 

R31 

A 

J 

J 

V 

1 

I 

C 

0 

I 

1 

1) 
2) 

ADDI, XORI conunitted. 
SLTI finished execution. 

P2 

P3 

I 3 

I 

J 

1 

1 

I 

1 

0 
3) SUB yet to be executed P4 I 0 0 

P63 

Figure 1.3 Illustration-2 of Register Renaming 

10
 



1.4 Contributions to Thesis 

This design was a joined project with Anshuman. RTL design of Branch Target Buffer 

(BTB), Branch Prediction Buffer (BPB), Mapping Table (IP/CP), Priority Encoder, 

Decode, Over write Logic, ALU and Branch Execution Logic was done in [12]. Refer to 

[12] for detailed implementation details about those modules. 

11
 



Chapter 2
 

Architecture Overview and Organization 

This chapter introduces the various pipeline stages and their roles in the superscalar 

processor. The various stages are Fetch, DecodelIssue, Dispatch, Reservation Station 

Execution, Write Back, Commit-l and Cornrnit-2. The process of register renaming is 

accomplished in the Issue and Dispatch stages. Figure 2.1 shows the microarchitecture of 

the processor. 

IFIID 

IDIDISP 

ROB 

R ...	 Re ervalion 
Station 

sa ...	 Slore Buffer Figure 2.1 Microarchitecture ofthe Processor 

12 



2.1 Fetch 

Fetch is the first stage of the architecture. Its primary role is to fetch and provide a 

predetermined number of instructions (fetch group) for processing. The size of the fetch 

group is chosen depending on available Instruction Level Parallelism (ILP) and 

willingness to incur an extra cost of hardware for performance improvement (cost 

increases approximately as square of the number of ports in the register file). The primary 

limitation to ILP is due to dependencies between instructions. In the fetch stage, the ILP 

is bmited by control dependent instructions (instructions occurring in the shadow of 

branch/jump). In a fetch group, instructions following a taken branch/jump should not be 

executed. Thus, the actual number of executable instructions fetched, is lesser than the 

size of fetch group [7]. For a larger fetch group, the probability of occurrence of a taken 

branch or jump is larger. So, the average percentage of executable instructions in such a 

fetch group will be less. 

2.1.1 Fetch Limitation 

In the MIPS-lISA, branch and jump instructions have a delay slot which must be 

executed irrespective of the action of the branch/jump instruction. The following analysis 

shows that, the average number of executable instructions of a fetch group, will be higher 

than an ISA without a branch delay slot. It is assumed that a comp'iler always fills the 

delay slot with a useful instruction that is not another branch, the branch and its delay slot 

instruction are always kept in the same fetch group, fetch stage can always predict if 

13
 



branch is taken and the fetch group size is greater than two. Let's' be the size of the fetch 

group and 'p' be the probability of a taken branch/jump. 

Average Executable Instructions (No delay slot): 

l-(l-p)S
S E = ."p"--­

Since p < 1, for very large values of's', SE saturates to lip. Therefore, the maximum 

number of executable instructions in this case is lip [7). 

Average Executable Instructions (Branch Delay Slot): 

The average executable instructions is calculated by the weighted sum of all the possible 

fetch cases [7]. The probability of fetching only one <?xecutable instruction in a fetch 

group is zero. This is because, even if tbe first instruction is a branch, we can execute it 

along with its delay slot instruction. 

The probability of fetching only two executable instructions in a fetch group is 'p'. This 

can occur if the first instruction is a taken branch or jump. Hence it has a probability of 

'p'. 

P1 =p 

The probability of fetching only three executable instructions in fetch group is '(l-p)p'. 

This can occur if the second instruction is a taken branch/jump and the first instruction is 

not a taken branch/jump. 

P3 = (l-p)p 

14
 



The probability of fetching only four executable instructions in fetch group is '(1_p)2p'. 

This can occur if the third instruction is a taken branch or jump and the first two 

instructions are not taken branches or jumps. 

This continues until a taken branch/jump does not occur until the third to last instruction 

of the fetch group. Hence, 

,1(s-4)P(s-2) = (1 -p/ p. 

The probability of fetching only (s-1) executable instructions is as shown below. The first 

tenn occurs. from the case that the first (s-3) instructions are not taken branches or jumps 

and the next instruction is a taken branch or jump. The second tenn occurs when a taken 

branch or jump ]s in the last position of the fetch group and aU other instructions are not a 

taken branch or jump. This requires the branch to be cancelled and re-fetched in the next 

cycle to keep the delay slot instruction in the same fetch group as the branch/jump. 

PrS-I) = (I_p/s-3) P + (i_p/s-I) P 

The probability of fetching's' executable instructions is as shown below. The first tenn 

occurs when there are no taken branches or jumps in the fetch group and the second tenn 

comes if the branch/jump occurs in the second to last position with its delay slot in the 

last posit.ion of the fetch group. 

Ps = (i-p) s + (i-p) (s-2) P 

15
 



All the probabilities developed above are under the assumption that a previous fetch did 

not have a branch in the last position. If the previous fetch had a branch in the last 

position then, the number of instructions fetched is two. Therefore, the average number of 

executable instructions in a fetch group with branch delay slot is given as follows: 

SE = (1- (1- p)(s-I) p)(l.PJ + 2.P2 + 3.P3 + ..... + s.Ps) + 2(1- p)(s-I) P 

On simplifying the above equation, 

SE = 1- (1- p y + pC(1- p) 2. - 1) + P 2 ((1 - p)' - 1) + P 3 ((1 - p) 2. + 1) 
pep _1)2 

Typically p = 0.1 for general purpose streams. Table 2.1 shows the improvement in SE 

when the branch delay (BD) slot is bandIed as described above. Using the above scheme 

can result in improvement of up to 7% in fetching executable instructions. 

S SE SE S SE SE 

(ND) (BD) (ND) (BD) 

3 2.710 2.752 10 6.513 6.889 

4 3.440 3.517 11 6.861 7.287 

5 4.095 4.217 12 7.175 7.647 

6 4.685 4.856 13 7.458 7.973 

7 5.217 5.439 14 7.712 8.269 

8 5.695 5.969 15 7.941 8.536 

9 6.125 6.452 16 8.146 8.778 

Table 2.1 Instruction Fetch Limitation 

16
 



2.1.2 Instruction Cache Organization 

The Fetch stage is comprised of a Program Counter (PC), which is a 10adable register 

updated every cycle, an instruction cache, Branch Target Buffer (BTB), Branch 

Prediction Buffer (BPB) and fetch control logic. The program counter is used to index an 

instruction cache which is organized as a four-bank memory with each memory bank 

itself being a direct mapped cache. Since fetch has to provide four instructions every 

cycle to the next stage, the instruction cache must be wide enough to provide them [7]. 

The instruction cache used in this architecture provides four instructions every cycle 

without any misses. The Instruction cache must arso have the ability to provide 

instructions when the fetch group spans across two cache blocks. For sustained fetch 

bandwidth, cache must be able to provide instructions in such cases, without additional 

clock cycles. This problem is resolved by organizing the instruction cache as a four-bank 

memory [11] as in Figure [2.1]. For a read operation, PC [3:2] is used to identify the first 

instruction's bank. The rest of the bits of the PC are used as index and tag, for generating 

the read/write select lines and tag match, respectively for each bank. If the addresses 

cross the four word boundary, the input to the decoder, "index", is appropriately 

incremented to index the next row in the bank, shown as "OJ logic". The output of the 

four banks are reordered using an instruction reordering network to get the original 

program order, before being passed to Decode/Issue stage. 

17
 



PC = 1000...00001100 
L-,r-lI 

~ Bank Number 

Index 

~ + ~ 
I •DI DI DI Decode
 

Logic Logic Logic
 

I , I .. 
~I I I ... ~ 

0 ...... 0 ...... 
0 CI:l -< 0 CI:l <t:: ...... CI:l -< CI:l -<-0 E-< 0 E-< 0 E-< 0 E-< 
~ -< -< ~ -< <t:: ~ -< § -< « 
~ ~ E-< Q E-< Q ;5 Cl E-< QCQ CO CQ CO 

,Ir ,Ir ,Ir 

Instruction Reordering Network 

~ ~ ~~ 
Instruction - 1 Instruction - 2 Instruction - 3 In truction - 4 

Figure 2.1 Four-bank Direct Mapped Instruction Cache 

2.1.3 Branch Prediction 

Conditional and unconditional branches Uumps) cause problems for sequential fetching 

of instructions. Without branch prediction, fetch has to wait till the branch target address 

is evaluated, which may be several stages down the pipeline, depending on the addressing 

scheme followed in the Instruction Set Architecture (ISA). This contributes to stalls 

occurring due to branches and jumps. The impact of these stalls is more severe in 

superscalar architectures, since the actual branch penalty is the number of stalls 

18
 



multiplied by the size of fetch group, as compared to branch penalty being equal to 

number of stalls in scalar pipelines. 

To improve performance, control dependent instructions can be allowed to execute as 

long as they do not change the state of the machine (no unrecoverable update to system 

register or memory). When the branch is evaluated, if the speculation is correct, useful 

work is done and the branch penalty is not incurred. Only when the speculation is 

incorrect, we have to recover and fetch correct instructions and we incur the branch 

penalty. This prediction is done depending on the history of a branch instruction. The 

prediction bits are store in Branch Prediction Buffer (BPB) and the target address is 

stored in Branch Target Buffer (BTB). 

2.1.4 Branch Target Buffer (BTB) 

The BTB is used to store the target address of the taken branches and jump instructions, 

so that when those instructions are executed again (for example, a branch instruction 

evaluating the condition of termination of a loop is executed several times), we have the 

target address readily available. The PC is used to index the BTB. It is also organized as a 

four-bank memory similar to instruction cache and it gives the target address of the 

branch or jump instruction nearest to PC. The target address of a taken branch/jump is 

written into the BTB at the time the brancbfjump is committed. The BTB can either read 

or write in one cycle. So whenever a target address is written into the BTB, fetch needs to 

be stalled as we cannot do the look up for the target address for the fetched group. 

19
 



I 

2.1.5 Branch Prediction Buffer (BPB) 

BPB, also organized as a four-bank memory, stores the prediction bits for all jumps and 

branches. Initially all branches are predicted not taken and updated at commit time using 

the two bit correlating algorithm. PC is updated to the branch target address only if the 

branch/jump being fetched has an entry in the BTB and the BPB entry for that branch 

predicts it to be taken. 

2.2 Decode 

Decode is the second stage of the pipeline. It decodes the instructions fetched and 

generates internal codes for instructions depending on the functional unit. The standard 

decode output format is as shown Figure 2.2. 

The "Codes" for vanous functional units are Co-Processor Zero Unit (CPO) - 001, 

Multiply Divide Unit (MDU) - 010, Arithmetic Logic Unit (ALU) - 011, Branch Jump 

Unit (BJU) - 100, Load Store Unit (LSD) - 101. The "OpCode" contains the code for 

identifying the function of the instruction. Since the execution units are simulated in the 

highest level of abstraction, the "Opcode" is not decoded. For Link instructions, the 

"Dest" fi.eld contains 11111 so that the return address is written into R31, a requirement 

in the MIPS architecture. 

20
 



Register Write Instruction 

Code OpCode Dest Sl S2 Shift Amount Immediate 
3 ---l~1-- O---.t~-,) .:>--.....5-I~r-- 5 ---I~-16 

Branch / Jump Instruction 

Code OpCode Dest Sl S2 0000000000 Offset 

Code OpCode Dest Sl Instruction Index 

Figure 2.2 Decode Output format 

Decode also generates the control signals of a NOP indicator, a branch or jump indicator 

and a non-register write instruction indicator. Decode has logic built in to cancel branch 

or jump instructions occurring at the fourth slot of the fetch group. All instructions 

following the delay slot instruction of a branch/jump predicted as 'taken' and branches in 

the shadow of a branch/jump predicted as 'not-taken' are also canc lied. This is b cause 

the prediction for the second branch in the fetch group is not avai table since BPB can do 

a lookup of prediction bits for only one branch per cycle. 

2.3 Register Renaming Scheme 

Register renaming enables the removal of name dependencies in the fetch group by 

increasing the number of physical registers internal to the processor. This will result in 

more Instruction Level Parallelism (ILP). The hardware involved in the register renaming 

scheme are Issue Pointer Buffer (IP), Commit Pointer Buffer (CP), Prioritizer, Value 

Buffer (VB), Allocate Bits, Valid Bits, Commit Bits and Reorder Buffer (ROB). IP, CP, 

21
 



VB are all multiported static RAM type memory elements capable of doing a read and a 

write in one clock cycle. Brief descriptions ofthe role of these modules are given below. 

Issue Pointer Buffer (IP): IP is a mapping table which maps the logical registers in the 

program to locations in the Value BUffer, where the data is stored. Read from IP is done 

in the second half of the "Issue" stage and Write is done in the first half of the "Dispatch" 

stage. 

Value Buffer (VB): It stores the result of the instruction after it is calculated and written 

back. "Data" for source operands are read in the second half of "Dispatch" and computed 

"data" is written into "VB" in the first half of "Write Back" stage. 

Commit Pointer Buffer (CP): It is also a mapping table, which maps the logic.al registers 

in the program to the physical register, Value Buffer, similar to IP. The diffi rence 

between IP and CP is that the CP is the mapping table for instruction which have 

completed, whereas, IP is the mapping table for newly (possibly speculatively) fetched 

instructions. Read is done in the first half of "Commit-2" and Write is done in the second 

half of "Commit-2". 

The logical register, appearing in the program code, addresses the IP, which holds the 

"pseudo-pointers". These pseudo-pointers in turn address a VB location where data is 

stored. The logical register number is 5 bits wide (in MIPS ISA), capable of addressing 

22
 



32 IP locations. The pseudo-pointer stored in IP is 6 bits wide, capable of addressing 64 

VB locations. Thus, the actual locations where data can be stored are increased internally. 

In the second half of the Issue stage, the pseudo-pointers for the source registers 

appearing in the program are read from the lP and in first half of Dispatch, source 

overwrite logic (SOW) processes them and then they are decoded as shown in Figure 2.3. 

These decoded values index the corresponding locations in VB for data read in second 

half of Dispatch. SOW replaces the source pseudo-pointers with the corresponding newly 

picked destination pseudo-pointers, if there are RAW dependencies within a fetch group. 

The number of comparisons required is given by S2_S, where 's' is the fetch group size 

[9]. This square dependence can result in high hardware cost for large fetch groups. 

All "register-write" instruction's logical destination registers In the fetch group are 

allocated new destination registers, pseudo-pointers, in the Issue stage. These pseudo­

pointers are written into the lP in fLrst half of Dispatch so that instructi.ons in the next 

fetch group can read them from IP. Before they are written into IP, destination overwrite 

logic (DOW) checks for WAW dependencies within a fetch group and if any exist, it 

replaces the earlier destination pseudo-pointer with a later one. This enables instructions 

fetched in the subsequent cycles to read the latest source pseudo-pointer from IP. The 

prioritizer generates the pseudo-pointers by doing a priority encoding of the available 

'Allocate Bits'. 

23
 



Allocate Bits, Valid bits and Commit Bits are the status bits used for book keeping 

purposes in the register renaming scheme. There are as many status bits of each type as 

the number of VB locations. Status bits have one to one correspondence with VB 

locations. 

Allocate Bits indicate if the VB location is free for allocation as an interna.l destination 

location for an instruction (indicated by '0'), or if it is currently being used by some 

instruction (indicated by '1 '). If the Prioritizer picks a VB location's address as a 

"pseudo-pointer" during the Issue stage, the corresponding Allocate Bit is set to 'I ' at the 

beginning of the Dispatch stage. The Allocate Bit is reset to '0' when a la.ter instruction 

with the same logical destination register commits. This is the process of de-allocation of 

internal registers for future instructions. 

24� 



Issue I Decode 

WD 

SD 

}Vrite Select Lines 

kead Select Lines 

F 
E 
T 
C 
H 

D 
E 
C 
o 
D 
E 

Priority Encoder 

, 

AlIrcate Bits 

Dispatch 

R 
E 
S 
E 
R:;.:l 

0 
I» 
0-

V 
C/) A0 
r;­
~ T 

I 
0 
N 

D S 
0 T 
W A 

T 
I 
0 
N 

ew allocate bits 

Figure 2.3 Register Renaming in Issue and Dispatch 

25� 



Valid Bits indicate if the instruction, for which the VB location was assigned has 

completed writing back the result (indicated by '1 '), or if it is still being evaluated in 

some pipeline stage (indicated by '0'). In the Dispatch stage, the valid bits of the VB 

locations, from which source operands are read, are checked. If the Valid Bit is '1', then 

the operand is ready. Tfthe Valid Bit is '0', the pseudo-pointer is passed to the reservation 

station in place of the read operand. The instruction waits in the reservation station and 

snoops common data bus for data. Valid Bit is reset to '0' when that VB location is 

allocated as a new destination for a logical register. 

Commit Bits indicate if the instruction for which that VB location was assigned has been 

determined to be a correct instruction and if its pseudo-pointer has been written into CP 

buffer (indicated by '1 ').. Therefore, during an exception (for example: branch 

misprediction), only the data with commit bits set to '1', need to be preserved. During a 

restore (recovery from branch misprediction), the Commit Bits are copied into Allocate 

bits and Valid Bits, as means of restoring status bits. The Commit Bit of a VB location is 

reset to '0' when a later instruction with the same logical destination register completes. 

2.4 Dynamic Scheduling 

Given unlimited machine resources, the "Data flow limit" is a measure of the 

performance limit of a processor executing a program [11] . RAW hazards (data 

dependencies) in the code causes the fundamental limit to 'data flow', as those 

instructions have to wait until the instruction providing its source operand finishes 

26� 



execution. A Data flow graph (DFG) is used to graphically represent the dependencies 

among instructions, as in Figure 2.4. The arrows between instructions indicate the data 

dependency along with the execution latency of the instruction providing the data. The 

cumulative latency of the longest dependence chain gives the data flow limit in clock 

cycles [11]. 

The DFG assumes an execution latency of one clock cycle for ALU instructions and three 

clock cycles for multiply instruction. The data flow limit for the fragment of code is 6 

clock cycles and there are 6 instructions. Hence the maximum IPC possible is 6/6 = I 

instruction per clock. 

it: move Svl,Sto� 
i2: move $a3, Stl� 
i3: Iw Sa2,O(Sa3)� 
i4: addiu $al, $vl, I� 
i5: 511 $vO, $al, Ox2� 
i6: mult $tl, $31, $vO� 

Figure 2.4 Data Flow Graph 

Scheduling is one way to leverage ILP to improve overall performance by scheduling 

instructions with ready operands for execution ahead of data dependent instructions. In 

dynamic scheduling the hardware decides the order in which the instructions are executed 

while the program is being run rather than static scheduling by compiler. The primary 

27� 



objective of the 'Dynamic Schedule' unit is to determine which instructions can proceed 

to execution at the beginning of the next cycle. In this architecture, the reservation 

station's issue logic does the scheduling. 

'Dispatch' writes instructions into RS, based on the availability of slots in RS. Dispatch, 

stalls the pipeline until all instructions in a fetch group have been written into the RS. 

Instructions wait in the RS until all operands required for execution are available. 

Instructions with ready source operands immediately proceed to execution [11]. This can 

occur even if it results in out of order execution. If multiple instructions have operands 

ready, RS prioritizes and schedules the earlier instruction for execution. RS efficiently 

handles RAW hazards, by snooping the Common Data Bus (CDB) for their operands. A 

detailed explanation of implementation of dynamic scheduling using RS is given in the 

next chapter. 

2.5 Execution and Write Back 

The choice of the type of execution units is based on the ISA. For the MIPS-l ISA, with 

only integer operations allowed the instruction type's fractions are as follows. About 40% 

of the instructions form the ALU instructions, 22% are Branch/Jump instructions, 15% 

are Multiply/Divide instructions and the rest 23% are Load/Store instructions. 

Multiply/Divide instructions require optimized hardware for good performance and the 

pipeline latency for these instructions tend to be greater than other instructions (latency of 

28� 



3 in this architecture). Hence MultiplylDivide instructions are processed by a separat 

functional unit (MDU). Load/Store instructions require two pipeline stages (address 

generation and memory access) for their execution. Latency of ALU and Branch/Jump 

instructions are reduced by not forcing them to go through the memory access stage 

required for Load/Store instructions. Hence, Load/Store instructions are processed by a 

separate function unit (LSU). 

For a typical program approximately 40% of the instructions are ALU instructions, 20% 

are Branch/Jump instructions and 40% are Load/Store instructions [11]. Hence, for a four 

wide superscalar processor we will have, 1.6 ALU instructions, 0.80 Branch/Jump 

instruction, and 1.6 Load/Store instructions. A single Load/Store Unit (LSU) is used 

instead of two LSU because of the complexity of designing multiple data memory 

interfaces [11]. Hence, we have 2 Arithmetic and Logic Units (ALU), 1 Branch /Jump 

Unit (BJU), 1 Load /Store Unit (LSD) and 1 Multiply /Divide Unit (MOU). 

During the Write Back stage, the functional units write their results in the common data 

bus (CDB), broadcast it to the snooping RS for a tag match and also update the Value 

Buffer (VB) with the data. Depending on instruction mix and data dependency variation 

during the program execution, the contention for the COB will vary over the duration of 

program execution. These CDBs are loaded heavily by the snooping RS. Hence, they 

need to be carefully designed so that the 'Write Back' stage does not become the 

bottleneck for clock speed. The optimum number of CDBs can be determined by 

performance simulations and analyzing the average percentage utilization of CDB over 

29� 



the simulation of the program. In this design two CDBs are provided to write back the 

results of two instructions simultaneously. 

2.6 Commit 

Instructions finish execution out of order and wait m the ROB until all preVIOUS 

instructions are committed. Commit handles instructions in program order. It is 

accomplished by implementing the Reorder Buffer (ROB) as a first-in first-out (FIFO). 

All fetched instructions, excluding NOPs, are written into ROB during the second half of 

the Dispatch stage. The valid bit for the corresponding ROB location is set to '1 '. This 

valid bit indicates if the ROB content is a valid instruction. 

In the first half of every cycle, ROB reads the first four instructions in the queue. For 

register write instmctions, the commit logic checks the valid bit of the instruction's 

pseudo-pointer indexed VB location, as shown in Figure 2.5, to determine if that 

instruction has completed. For non-register write instructions like store and branch, ROB 

itself has a completion bit indicating if it has completed. Non-register write instructions 

update the completion bit in ROB upon execution. Implementation details of the ROB are 

presented in the next chapter. 

An instruction read from the ROB is determined to be complete if the valid bit of that 

instruction and all instructions preceding it in the commit group are set to '1'. Figure 2.5 

shows a commit group size of two for simplicity. The same organization will apply for a 

30� 



commit group of fOUf by adding extra read and write ports to the modules. Once an 

instruction is determined to have been completed, the CP is updated with the new 

pseudo-pointer of the completing instruction, if it is a register write instruction. This is 

done in 'Commit-2' stage. De-allocation of registers must take place in this stage. The 

pseudo-pointers which are being replaced, "Old pseUdo-pointers", are read from CP and 

those locations in VB are de-allocated and de-committed (allocate and commit bits set to 

'0' respectively). 

Write Back Commit -1 Commit-2 

c 
o 
M 

P eudo-p inlers 

R 

Decoded Desti.natiQ S 

Read Old pseudo-pointers 

De-allocate 

Allocate Bits 

De-eommit 

COB- J Commit Bits 
COB·2 

M
I
T 

c
o
U
N 
T 
E� 

Figure 2.5 Instruction Commit Organization 

31� 



Commit Logic checks for branch misprediction among the instructions read from ROB. If 

it encounters a mispredicted branch which has completed, it waits till its delay slot 

instruction completes and other instructions in the fetch group updates the CP with the 

new pseudo pointer and then it initiates recovery by signaling a 'Restore'. 

During the 'Restore' cycle, the contents of CP are copied into IP through a special 

intemal write port. The valid bits of all ROB locations are reset (set to '0') preventing 

incorrect instructions from updating CPo Thus, instructions executed due to wrong 

speculation never update the CP (incorrect instructions not allowed to update the system 

state). CP may be considered as the mapping table for correctly executed instructions. 

32� 



Chapter 3 

Design and Implementation 

This chapter discusses the vanous implementation details of the hardware modules 

involved in the register renaming and dynamic scheduling schemes. 

3.1 Reorder Buffer (ROB) 

The ROB maintains the sequential ordering of the instructions as appearing m the 

program code, which allows updating the machine state in program order. All fetched 

instructions are assigned a location in the ROB in the order they appear in the program. 

As the processor speculatively fetches and executes control dependent code (instructions 

fetched after branch or jump), speculated instructions must not change the state of the 

machine (system registers and memory) until it is ensured that the branch or jump 

instruction was predicted correctly. To accomplish this, we wait until the branch / jump 

condition is resolved and when the branch / jump commits, a misprediction bit (set in the 

ROB) is checked. If a misprediction is detected, all instructions following that branch / 

jump's delay slot instruction are cancelled. If the speculation is correct the subsequent 

instructions proceed to commit. 

The ROB is implemented as a circular buffer implementing a FIFO queue. The Issue 

Counter adds the fetched instructions to the end of the queue and the Commit Counter 

33� 



commits instructions from the beginning of the queue. By the process of committing, 

Commit Logic frees up locations in ROB for new instructions fetched by issue. Figure 

3.1 shows the functional operation of the ROB implementing a FIFO queue. 

...Commit Counter .. tl Oldest Instruction 
(Commits lnstruc lions) ... 

12 

13 

14 

15 

Issue Counter ..... IG Latest Instruction 
(Adds Instruction s) ... 

Figure 3.1 FIFO Reorder Buffer 

If the Issue Counter or Commit Counter reaches the end of the ROB it wraps around and 

starts adding or committing instmctions from the beginning of the ROB respectively. At 

any point of time during a program run, the number of occupied ROB locations 

detennines the number of instructions in flight. This number is called the Instruction 

Window. Ideally, it should be greater than the sum of reservation station entries, latencies 

of the individual execution pipelines, size of the store buffer and size of the dispatch 

buffer [2]. The number of reservation station entries is 20. The sum of latency of all 

execution pipelines is 8. The size of the store buffer is 10. The size of the dispatch buffer 

is 4. The number ROB entries must be greater than 42. In this design, the ROB size is 64. 

Every ROB entry has the fields shown in the Figure 3.2. The valid bit 'Y'. is set to 'I' 

when an instruction is issued and reset to '0' during restore. 'Code' identifies the type of 

34� 



instruction as, Register write: 000, Non-register write: 00 1, Link instruction: a10, 

Branch/Jump: 100, Store: 111. This is required by the commit logic to determine the 

condition of completion. 'Pred', holds the 2-bit prediction bits for branch/jump 

instructions, set at the time of completion of branch/jump instruction. The value of 'Pred' 

is 00, for non branch/jump instructions, 11, for jump instructions and is whatever the 

prediction algorithm generates, for branch instructions. The 'Logical Dest', is required to 

select the 'CP' location to write the destination pseudo-pointer. The 'Rename-Pointer', is 

the rename register number given to the destination register of the instruction. 'DS' is set, 

if the branch/jump instruction had a delay slot instruction. 'BA' and 'BTA' holds the 

branch instruction's address and target address respectively. 'M' is set, if the branch/jump 

instruction is mispredicted. The 'C' is set at the time of completion of non-register write 

instructions and link instructions. 

v Pred Code Logical Dest Rename-Pointer DS SA BTA M 

3 5 6 

Figure 3.2 ROB Field Format 

The ROB is organized as a multiported SRAM with 4 read / write and 3 write ports. ROB 

'read' is in the first half and 'write' is in the second half of clock cycle. The number of 

write ports is determined by the size of the fetch group (to write all fetched instructions 

into the ROB) and the number of execution units handling non-register write, 

branch/jump instructions (to set C, Pred in ROB). The number of read ports is determined 

by the maximum number of instructions designed to be committed per cycle. To avoid 

35� 



frequent stalls due to lack of space in the ROB the number of instructions processed for 

commit must be at least equal to the size of the fetch group. 

Figure 3.3 shows one ROB cell modeled as a latch in the RTL description of the design. 

The buses Il_Bus, I2_Bus, I3_Bus, I4_Bus are time multiplexed Read / Write buses and 

B_Bus, M_Bus, L_Bus are write buses required to set the complete, misprediction, target 

address, prediction fields in the ROB, for branch/jump, multiply/divide and load/store 

instructions respectively. 

WM WL 
W2 W3 

WI W4 

(WI I W21W31 W4I1 WM IW~ IW )&wr 

R2&rd RJ &ru 

Rl &rd R4 &rd 

Figure 3.3 RTL Design of a ROB Cell 

The functional organization of ROB and Commit logic is described in the following 

paragraphs. The 'Issue Counter' IC, is used to generate the write decode lines of WI 

W2, W3, W4 (four consecutive locations of ROB) in the 'Decode/Issue' stage. These 

36� 



decoded lines are used to select the ROB locations, in the second half of the 'Dispatch', 

The 'Issue Counter' is incremented by the number of instructions (NI) fetched 

determined by the Instruction Set Architecture Decode (ISAD). The Figure 3.4 shows the 

write operation of ROB for two cycles of instruction fetches. 

CLK 

Instruction Block -1 

ROB 
Write 

Instruction Block-2 

FETCH - 2 DISPATCH -2 
.•....•........•...•_ .••.. -••..••.•••.••.•....•....... ·t·· _ ••••••••••••••.•.••••...•..•...•_ ..•••.•.•.•.••••••.••••••.••.•••.• , .•..•.•.••.•..•...••.•.•. _ .•••. _.� 

Figure 3.4 ROB Write Operation 

The 'Issue Counter' is implemented as a Finite State Machine (FSM) governed by the 

state transition diagram shown in Figure 3.5. The four states are Reset State (RS), 

Increment State (IS), Restore State (ReS), Stall State (SS). In the 'RS' state IC is reset to 

O. In the 'IS' state, Ie is incremented by the number of instructions fetched (N!). In the 

'Res' state, IC is set to the Commit Counter (CC). This results in the canceling of 

uncommitted instructions between IC and CC. A stall occurs, when the number of 

instructions fetched, is more than the space available in ROB. When staU occurs, ROB 

37� 

http:��������������.�.����...�..�...�_..���.�.�.�.������.������.��.���.�,.�..�.�.��.�..�...��.�.�._.���
http:�....�........�...�_.��..-��..��.���.��.�....�


waits for instructions to commit to free up space in the ROB. In this state, IC remains 

same value until the stall condition is resolved. 

Stall = I Restore = 0 & Reset = 0 & Stall = 0 

Figure 3.5 Issue Counter State Transition Diagram 

The ROB read operation for committing instructions JS very similar to the write 

operation. The Commit Counter (CC) is used to select four consecutive instructions for 

commit, every cycle. The Commit Logic checks the valid bits for these instructions and 

determines the number of consecutive instructions that can be committed (NC). CC is 

incremented by the value of NC. If 'Restore' occurs, CC remains the same value. On 

'Reset', CC is reset to '0' and all valid bits are reset to '0'. The functional operation of 

the process of commit is shown in Figure 3.6. Decode pre-decodes eight select lines for 

38� 



read. Depending on NC, the 8 to 4 multiplexer selects four consecutive decoded lines for 

the read operation in the next cycle. 

C 
0 
M 

P 
I 
P 

Valid 
Bits 

c 
0 
M 

p 

I 
P 

M E M E 
Reset IC I 

T 

C 

D 
E 
C 
0 

8:4 

M 
u 
x 

I 

L 
I 
N 
E 

ROB 
Read 

I ,.... 
T 

..····h..·· ..... 

L 
I 
N 
E 

u 
r 
0 
A 
T 
E 

0 D ,.....0..... ..... c 
-U­ E R G R r 

N E I E 
T N G C G 
E 
R 

CL c L 
NC 

Figure 3.6 ROB Read and Commit Operations 

The Commit logic generates NC based on the number of consecutive instructions read 

from valid ROB locations which have completed execution. If a mispredicted branch is 

detected in the middle of a commit group, Commit Logic generates control signals to 

cancel instructions after the mispredicted branch, and keep them from updating CP in the 

next cycle. Also, Commit has built in logic to allow only one branch to commit in a 

commit group. This is because the BPB has one write port to update the prediction bit of 

branch / jump. 

39� 



The wrap around behavior of the ROB occurs naturally with this scheme, as long as the 

size of the ROB is some power of 2 .. In this design, the ROB size is 26 
= 64. The size of 

the Issue Counter and Commit Counter is 6 bits. With finite, 6 bits for representing a 

value between 0 to 63, once the value crosses 63 the overflow bit is ignored and the 

values wraps around to O. 

3.2 Status Bits 

The 'Status Bits' are comprised of Allocate bits, Valid Bits and Commit Bits. Each of 

these Status Bits has one to one correspondence to a Value Buffer location and is used for 

bookkeeping purposes in the register renaming scheme. Allocate Bits indicate, whether a 

VB location is free to be assigned as a rename-pointer to the destination register of an 

instruction in the fetch group. Valid Bits indicate if that VB location contains valid data. 

Commit Bits indicate whether the instruction for which the rename-pointer was assigned, 

has been committed. Table 3.7 describes the possible states which the VB location can 

take. 

Each Status Bit is modeled as a I-bit loadable register with decode and write/read 

operations done in a half clock cycle. This enables simultaneous read / write operations to 

many bits. In the Allocate Bits, every cycle some bits are allocated (set to '1 '), depending 

on instructions fetched and some are de-allocated (set to '0'), depending on instructions 

committing. It is guaranteed that allocation and de-allocation will be for different bits 

since, only already de-allocated bits will be considered for allocation. 

40 



negative clock edge. The Logic detennines the value to be loaded into the register 

depending on the various conditions discussed above. 

53 [0] 54 [0] R3 [OJ R4 [OJSet Bit 
Reset Bit ,---_~A'-_ ____.. 52 [0] ......L..-.1...., R2 [OJ A__--.( , 

51 [0] RJ [0] ( \
Rename-po~.nterI . 

~ Rename-pointer 5 6-bits D� 
Sl [63: 0) R I [63: OJ ~ 6-bils� 

Reset 

Rename -po~.ntcr2 . 
6-bits D o ~ Rename-pointer 6 

52 [63: OJ R2 [63: OJ ~ 6-bi! 

Rename -po~.nter3 
6-bils D Rename-pointer 7 

53 [63: OJ R3[63:0JB- 6-bils 

eLK 
Rename -po~.nter4 

6-bils D Rename-pointer 8 
54 [63: OJ 6-bilsR~[63:0jB-

Figure 3.8 Status Bits 

The 'Logic' sets or resets the status bit depending on the decoder's output. During Resel, 

all status bits are set to '0', except the first Allocate bit and Valid Bit which are always 

set to 'I'. During 'Restore', the value of the corresponding Commit Bit is copied to the 

Allocate and Valid Bits. All Decoders have a disable signal which drives its output to all 

zeros. There is external logic (not shown) which controls this disable signal, if the 

number of bits to be set or reset is less than four. For Allocate Bits, the set logic is 

replaced by pre-computed allocate bits generated by the priority encoder. 'Logic' selects 

this value to be clocked in every clock. 

42� 



3.3 Dispatch 

Dispatch is the stage in the p.ipeline where the instructions are assigned a Reservation 

Station (RS). The read for source operands from the Value Buffer (VB) is done before 

writing the instructions into the RS. Since a distributed RS scheme is chosen (reason 

explained in next section), dispatch has to decide the RS to which instructions must be 

forwarded, depending on the type of instruction and availability of space in the RS. If 

dispatch cannot assign a RS for all the instruction in that group, it stalls the pipeline until 

a RS is assigned to all instructions. Since RS has one write port, only one instruction can 

be dispatched into the RS in a cycle. 

The organization of 'Dispatch' is as shown in the Figure 3.9. The register renamed 

instructions (RR_Il .....RR_I4) are allowed to enter the 'Dispatch' if all instructions in 

the previous fetch have been assigned a RS. Every register renamed instruction has 

functional unit code (fu_code), operands and their valid bits (apI, vI, op2, and v2), 

execution code (exe), pseudo-pointer (dest), reorder-buffer position (reo) and dispatched 

bit (disp). The 'disp' bit indicates if the instruction has been dispatched. initially when a 

new fetch group is processed, 'disp' is set to '0' for all instructions. Every cycle, 

depending on instructions being written to RS, the 'disp' bit is set to '1' by the 'Update 

Pending' (UP) logic, as shown in Figure 3.9 .. Only instructions with 'disp' set to '0' are 

considered for dispatch into RS by the dispatch logic. 

43� 



LK 

II, 12. 13, 14 

(LS • BJU) 

II 12 l3 14 fI 12 13 [4 [I (2 13 /4 

.. t 'f. til t t t t w .. 't t t w
I MDU MUle f.-- a- I ALU-I MUll f. ~ I ALU-2 MUll f. ~ 

t t 'f ..... 
MDU Disp ALU-l Disp ALU-2 Disp 

Figure 3.9 Dispatch Organization 

Every functional unit has a 'Match and Pending Logic' (MPL), 'Zero Count' (Z ), '3-bit 

Subtractor' (Sub) and 'Controller' (C). The MPL identifies the instructions which belong 

to that functional unit which are waiting to be dispatched and indicates those instructions 

by a '0' in its output. The ZC logic counts the zeros and gives a 3-bit value. Controller 

detemlines if an instruction can be assigned a RS by checking the busy bits of the RS. It 

sets the 'load' signal to '1', if there is an instruction for that functional unit which is 

waiting to be dispatched and if there is an empty slot in the RS for that functional unit. 

The 'Sub' subtracts those values and its output value is registered in a negative edge 

44� 



sensitive register, 'Counter'. at the middle of clock. In the second half of clock cycle the 

'Counter's' value is the number of instruction to be dispatched in the next cycle for that 

functional unit. 

The 'Stall Logic' issues a dispatch stall if all functional Wlits counter value is not zero. 

This results in the reprocessing of the same group of instructions next cycle. Since the 

'UP logic' sets the 'disp' bits of already dispatched instructions to '1', those are not 

considered for dispatch when they are processed again due to a dispatch stall. 

3.4 Reservation Station 

The Reservation Station (RS) is the critical hardware component to incorporate dynamic 

scheduling in high performance processors. RS may be considered as a temporary storage 

for instructions, until their source operands become available. As soon as an instruction's 

operands are available it can be scheduled for execution. By this behavior, RAW hazards 

are efficiently handled by the RS. The are two major schemes of implementing a RS are 

distributed and central reservation stations. In the distributed reservation station scheme, 

every ftmctional unit has its own dedicated RS (smaller number of entries)~ whereas in 

the centralized scheme, a common RS (larger number of entries) is used for holding the 

instructions of all functional units. The distinct advantage of a distributed RS (used in this 

design) is that, the complexity of the issue logic, which decides the next instruction to be 

executed from a pool of instructions, is reduced, as the decision is made from a smaller 

pool of instructions [9]. Also, since the determination of where the instruction needs to be 

45� 



executed is already done in the dispatch stage, the speed and simplicity of distributed RS 

is advantageous compared to the centralized scheme. The main advantage of the 

centralized RS over distributed RS is that the RS space is more efficiently utilized. Since 

no entry of the centralized RS is permanently reserved for a type of instruction, 

centralized RS handles the variation in instruction mix better than a distributed RS, and 

so can reduce dispatch stalls, occurring due to the non-availability ofRS entries. 

Load & 
elect[O):: : : ..···1"···,··· .... ············000····· ..················1·····...••.........� 

j ::: :: 
COO -1 
DE T-l 

COB - 2 
DEST- 2 

81 B2 BJ ~4 

l 
o 
a 
d 

AlB CID elect [3 : 0 J 

OP2 V2 eLK 

Figure 3.10 Reservation Station Allocate and Wait 

46� 



RS must allocate an entry for the instruction, wait until its operands are ready, issue an 

instruction whose operands are ready and free up the entry for future instntctions. A RS 

entry has a busy bit 'B', operands and valid bits (OPI, VI, OP2 and V2), rename-pointer 

(Dest), execution code (Exe) and the instruction's position in ROB (Reo). Figure 3.10 

shows the implementation of the allocate and wait circuitry of the reservation station. 

'Allocate Logic' checks the busy bits of all the entries. If 'load' signal is set to '1' by 

dispatch, it selects the earliest non-busy RS entry for writing the instruction. The busy bit 

'B' is set to '1' when an instruction is written into the RS, and it remains the same until it 

is issued for execution. A RS entry must be retained until a new instruction is written in 

that location. RS entry must also check all the common data buses (CDB) for operands. 

This is done my comparing the source rename-pointer (last 6 bits of OP) with the 

destination rename-pointer broadcasted along with the' data in the CDB's. If there is a 

match ofrename-pointers and if RS entry is busy and waiting for operands, data is copied 

from the CDB into the RS entry and the corresponding valid bit is set to ' I ' . 

The issue logic has the task of selecting one instruction for execution from all instructions 

in the RS. Only instructions with ready operands can be considered for issue. If multiple 

instructions have operands ready, then the earliest instructions among them is scheduled 

for execution. Since the ROB is a wrap around buffer, one cannot readily identify the 

earliest instruction using the position of an instruction in the ROB. While writing 

instructions into the ROB, if the Issue Counter (IC) wraps around, then later instructions 

in that fetch group will be allocated a lower ROB position compared to the earlier ones in 

the fetch group. To solve this problem, the Commit Counter (CC) position is used as a 

47� 



reference and then the relative displacement of the instructions with respect to CC is 

found by subtracting every eligible instruction's 'Reo' from 'CC'. In unsigned binary 

subtraction with finite bits for output representation, subtracting a larger value (>CC) 

from an original value (CC) gives a reSUlt, which is greater than the result obtained when 

subtracting a smaIler value «CC) from that original value (CC). Thus, the position of the 

greatest of the subtracted results will give the position of the instruction to be scheduled 

for execution at the beginning of next clock cycle, as shown in Figure 3.11. Also, if all 

entries of RS are empty and an incoming instruction has all operands ready, issue logic 

directly issues the incoming instruction for execution without aLLocating an entry in RS. 

This is done by adding a second level of multiplexers to choose the incoming instruction 

and canceling the internal 'Load' signal for the'Allocate Logic'. 

Commit Counter 

Res -A 

Greatest 
Position 
Encoder 

B\ 82 83 B4 Load 

Bypass '---------v--------/ 
Issue Logic 

Figure 3. I I Bypass and Issue Logic 

Due to the delay in the issue logic instructions are issued into a functional unit delayed by 

one clock, from the cycle it had both the operands ready. This is shown in Figure 3.12. 

48� 



eLK I _I I 
X Res A, B, C, D xResA,B,C,D X~ _ 
~ Issue ~lssue 
\. y--------) 

Issue Logic Delay 

~~_FU~l_n__-JX FU ill 

Figure 3.12 Issue Logic Timing 

3.5 Execution Units 

As mentioned in the previous chapter, this architecture has one MDU, two ALUs, one 

BJU and one LSU. All the execution units are simulated at a high level of abstraction. 

The MDU is a three stage pipeline with results in the HILO buffer. The LSU is a two 

stage pipeline and has a store buffer and a data memory interface. All other execution 

units are single stage. The instructions are provided to the execution units every cycle by 

the issue logic of the reservation station. A typical input to an execution unit consists of 

the two source operands and the execution code 'exe' which indicates the operation to be 

done with the operands. For some instructions like Jump and Link (JAL), the MIPS lSA 

computes the target address using an immediate 26-bit instruction index. In those cases, 

the reservation station has additional storage space for the instruction index and provides 

it to the execution unit when the instruction is issued. 

49� 



3.5.1 Multiply and Divide Unit (MOU) 

The MDU is simulated as a three stage pipeline and the computed 64-bit result is written 

into a wrap around buffer called the HILO buffer. As the ROB does not store the result of 

MDU, this HILO buffer is required to recover from a wrongly speculated multiply or 

divide instruction. In the MIPS-lISA, only MFHI and MFLO instructions write results to 

the general purpose registers (transfers 32-bit data from HILO to GPR). Other MDU 

instructions write result to HILO Buffer. When the MDU instruction commits, the 

corresponding entry in the HILO buffer is set to complete and all other entries are 

invalidated. If restore occurs due to branch misprediction, all entries except the currently 

valid and completed entry in the HILO buffer are invalidated. 

3..5.2 Load and Store Unit (LSD) 

The LSU is a two stage pipeline, the fIrst stage being the address generation stage and the 

second stage being the memory access stage. The loads and stores to memory are done in 

program order by issuing the instructions in program order into the LSU execution 

pipeline. This is done to avoid data hazards for memory which might result from out-of 

order issue. If Load and Store instructions have the same memory reference address, and 

if load is supposed to read the data put in memory by store, an out-of order issue of load 

ahead of store would result in a wrong data being read from memory. Hence the issue 

logic of the LSD reservation station needs to work differently from the issue logic of 

other reservation stations. Stores write data into the Store Buffer. The store buffer helps 

50� 



to cancel the wrongly speculated stores (updates to memory). Since the ROB cannot 

handle non-register updates, the store buffer is needed to maintain integrity of the 

program sequence being run. [f the store buffer is full and if there is a store pending to be 

written into it, the LSU pipeline controller stalls the pipeline and waits till an entry is 

freed in the store buffer. Figure 3.] 3 shows the organization of the LSD pipeline. 

... 
Isul_Slal1• 

MUX ­
I 

." 

Pipeline Register ClKr 
I 

." 

Address 
Generation 

+
I 

." 
lsu2_stall LSU 

MUX - Controller""".. 
Pipeline Register CLKI 

I sb_hit... Data 

• 
~ Memory Load Memory 

Access ­

~ Store R"­
IOTC ---. Buffer ~ 

LSU Result I 
(For Write Back) R 

Figure 3.13 Load Store Unit (LSD) Organization 

When a store instruction is detennined as completed in the ROB, the store buffer 

controllers set the commit bit in the store buffer for that instruction. Committed stores are 

written to memory when no load or store instructions are present in the second stage of 

the LSU. All loads try to read the data from the store buffer. If that address is not present 

in store buffer it reads it from the memory. Store buffer can be implemented as a small 

5]� 



fully associative cache. In this design the store buffer and memory, along with its 

interface, are implemented in high level Verilog as arrays. 

3.6 Write Back 

The responsibility of the write back logic is to allocate the common data bus for 

functional units, to write results back into the physical register file (Value Buffer). If 

multiple functional units compete for the CDB the write back logic prioritizes and 

allocates the CDB to the earliest instruction. The prioritization logic is the same as 

discussed in 'Dispatch'. If a functional unit was not allotted the CDB in a cycle, the 

pipeline for that functional unit is stalled, and the instruction is processed for allocation in 

the next cycle. Other pipelines operate as nonnal during that stall. Write back logic works 

in the last stage of the functional unit pipeline. Write back also pre-decodes the write 

select lines for the destination rename-pointers. All register-write instructions have a 

write back bit (WB) initially set to '1'. This means the instruction is waiting for COB 

allocation. Write back logic considers only those instructions whjch have WB set to 'I' 

for prioritization. Figure 3.14 shows the organization of Write back with all its 

components. 

52� 



M AI A2 B L 

M AI A2 B L 

Write Back� 
Controller� 

M Al A2 B L M Al A2 B L 

CDB-I SEL 

CDB-I CDB-I 

Figure 3.14 Write Back Organization 

In Figure 3.14 M, AI, A2, B, L are the results which have the fields 'reo' (r order buffer 

position), 'wb-dest' (pre-decoded write select lines), 'data', 'dest' (rename-pointer 

assigned to the instruction), 'wb' (write back bit). The write back controller prioritizes 

using the 'reo' of all instructions and allots the COB to the two earliest instructions 

waiting for write back. The write back controller generates the stall signal if an 

instruction waiting for write back is not allotted the common data bus (CDB). UP logic 

sets the 'wb' bit to '1' if the pipeline is stalled. 

53� 



Chapter 4 

Verification and Results 

4.1 Simulation Environment 

This section describes the simulation environment and the tools involved in the 

simulation of the architecture. The tools involved in the simulation are the SDE-MIPS 

tool kit and Verilog. 

4.1.1 SDE-MIPS Tool Kit 

The SDE-MIPS tool kit is a GNU C cross-development compiler for MIPS CPUs. It also 

has a MIPS Simulator with a graphic interface, which can be used for debugging 

purposes. The SDE-MIPS tool is used for instruction code generation i.e., compiling 'C' 

programs into assembly level code targeted for the MIPS-liSA. The tool kit generates an 

executable file, compiled into the virtual address space. The command for compiling the 

program into MIPS-l ISAis "sde-make SBD= GSlM1B". Compiler flags for code 

optimizations and turning off floating point instructions can be set in the 'makefile', 

associated with the 'C' program being compiled. Refer to [13] for more infonnation on 

compiling in the SDE-MIPS tool kit. The tool kit compiles the executable code in the 

Executable and Linkable fonnat (ELF) and the executable file has the following sections: 

54� 



a) .text holds the executable instructions of the program. 

b) .data contains initialized program data. 

c) .rodata: contains read-only data (strings, constants) of program. 

d) .sdata : contains initialized data of size less than 'n bytes'. Set by (-0 n) flag. 

The tool kit also has an 'object dump' utility for ASCII output of executable binaries. The 

commands for using this utility are "sde-objdump --d exefile » dump", for disassembly 

of '.text' and "sde-objdump -s exefile » datadump", for' .data' section. The' .text' 

section consists of a 'main' subroutine (compiled program), '_start' (initialization 

routine) and various other C routines provided by the run-time system. 

In the MIPS architecture, sp-relative (stack pointer) addressing is used for accessing local 

variables in a subroutine's stack. Hence, the initialization routine must initialize the'sp' 

register to an upper limit (word aligned) address before running 'main'. The '_start' 

module is modified to allocate stack space for a program by initializing the sp register to 

the upper (word aligned) memory address and then making a jump and link (JAL) to 

'main'. If the program is self contained for its data (No I/O) and the -0 option is turned 

off, this initialization is enough to start executing the program [10]. Refer to [10] for 

requirements on starting an application in the MIPS environment. Figure 4.1 shows the 

memory map layout of a C program compiled using the SDE-MIPS tool kit. The PC is 

initialized to the beginning of a modified 'start' routine in the .text segment. 

55� 



PC = Ox8000041 0 ... 

.text 

Tool kit specific sections 

Generated by 
compiling system 

< .rodata 

t Lower 

.data 
emory Address M 

, .sdata .. Higher 

\. 

heap 

~ Managed by 
runtime system 

stack 

SP = Ox801FFFE8 

Figure 4.1 SOE-MIPS: Program Memory Map 

4.1.2 Verilog Simulation 

Verilog is an event driven simulator used for hardware description and verification. It 

supports structural simulation and behavior simulation. Structural simulation is usually 

done for timing verification and it is mapped to a technology library. Behavior simulation 

is done for functionality verification and is independent of technology. Formal 

56� 



verification of this design is done both structurally and behaviorally. Structural 

verification is done for individual modules to meet timing requirements and the overall 

integrated design is simulated behaviorally for functional verification. After obtaining the 

assembly code from the compiled binary using the 'sde-objdump' utility, it is converted 

to an ASCII binary file so that it can be loaded into a memory array in verilog. Two 

separate C programs 'iparser.c' and 'dparser.c' are written to do this conversion. The 

steps to generate the ASCII binary files are as follows: 

1)� Compile and run 'iparser.c' with the 'dump' file in the same directory to generate 

ASCII. binary files 'imem' and 'opcode'. These files are to be placed in the 

'Binaries' folder in the Fetch directory. 

2)� If the program does not make any reference to contents in .rodata, .sdata or .data 

sections during program run, the .files 'dmem' and 'data' in the D-MEM folder in 

the LSU directory can be initiahzed with data memory' addresses till stack pointer 

and zeros respectively. if not, compile and run 'dparser.c' with the 'datadump' 

file to generate ASCII binary files 'dmem' and 'data'. 

Verilog has an inbuilt function '$readmemb' to load memory arrays from ASCII binary 

files. Using this function, the arrays are initialized at the beginning of the simulation 

using an 'initial' block in verilog. The memory arrays constitute the instruction cache 

(icache) and data cache to which the memory operations take place. The icache and data 

cache supply the instructions and data to the processor during program execution. 

57� 



The program end is reached when the control. is transferred back to the '_start' routine 

from the 'main' after stack unwinding. A veriLog test file provides the clock and reset 

signals to the processor. The clock period is IOns (100 MHz). This clock period is limited 

by the worst case delay of 8us in the priority encoder circuit. 

4.2 Design Verification 

Design verification was carried out at different levels in the top-down hierarchy. Figure 

4.2 shows the components in the three levels of hierarchy. The approach followed for 

verification was to integrate the modules and then verify functional behavior by 

simulating the design with a handwritten test bench. Although handwritten test files are 

inefficient, it enables one to check specific cases to expose design or implementation 

flaws. Verifications done at the top two levels of hierarchy are described below. 

Processor 

Execution Virtual Fetch 
Core Registers 

a) Dispatch a} ROB a) BTB 
b) Reservation Station b) IP/CP b) BPB 
b) Functional Units c) VB c) P _Logic
c) Write back d) Status Bits d) Restore_Address 

e) Priority Encoder e) Icache 

Figure 4.2 Top-Down design hierarchy 

58� 



Virtual Registers consist of modules involved in register renaming. The objective of this 

simulation is to verify register renaming in the 'IssuelDecode and 'Dispatch' stages and 

register de-allocation and restoring logic in the 'Commit-I' and 'Commit-2' stages. All 

modules listed under Virtual registers in Figure 4.2 are simulated. The test bench 

simulates the function of the rest of the processor. Since fetch is not simulated in the 

hardware for this simulation, the test bench provides Fetch's output to the virtual 

registers. Refer to Appendix A, for the code which is executed to verify register 

renaming. In this code fragment, the JAL instruction at 80000424 is mispredicted when it 

is fetched for the first time since there is no entry in the BTB. Since ten instructions 

(including the jump delay slot of JAL) have been committed at the time of restoring, 

Issue Counter and Commit Counter must have the value "001010" immediately after 

restore. Since there are only six non-identical general purpose registers used as 

destination registers in the code fragment, in the cycle after restore, status bits must have 

only those six bits set to '1' apart from the always set bit of first location of VB. Refer to 

Appendix A, for a cycle by cycle debug trace of the simulation and the snap shots of the 

ROB outputs leading to 'Restore', due to the misprediction of the JAL in truction. 

Design verification of the execution core module is also done. It consists of dispatch 

logic, reservation stations, functional units and write back logic. The code fragment used 

to verify Virtual Registers is again used in the execution core's verification. The 

dynamic scheduling logic must issue the earliest instruction among the ones which have 

ready data into the execution unit. This can be verified by observing the contents of the 

reservation station for two successive cycles. The issued instruction's entry in the 

59� 



reservation station will be invalidated by setting the 'Busy' bit to zero. This must be done 

for the earliest entry which has all source operands ready. Also, instructions in 

reservation stations snoop the CDB for data. Proper implementation of this scheme can 

be verified by setting of the valid bit to 'I' for the waiting instructions, when the 'Dest' 

tag of CDB matches the lower six bits of the operand field of the instruction. 

For functional verification of the complete architecture, system states (registers, program 

stack) are checked for correct data after program execution. It is guaranteed that, if 

system states have the correct (expected) data after program execution, the program was 

properly executed. 

A 'Bubble Sorting' program was run till completion and system states were checked, as 

means of functional verification. 'Bubble sorting' is used to sort a list of data in 

ascending or descending order. Every iteration of the list, results in one sorted value. 

Typically, the number of checks required to determine the condition for sorting is 

proportional to n2
, where n is the number of data being sorted. Data to be sorted are 

loaded into an array. All data loaded into the array are stored in the 'main' subroutine's 

stack (meant for local variables). Read and update to those data are done using load and 

store operations. Due to the nature of the bubble sorting algorithm, data dependencies 

exist in the machine level code, which reduces the possibility of parallel execution of 

subsequent iterations of loop. Refer to Appendix B for the C code for sorting. 

60� 



A loop carried dependency is said to exist, if a load from an array depends on a store to 

that array location from previous iterations of the loop [9]. In the main' function of 

'bubble.c', the condition of "if (a [i) < a [j+1])" can be resolved onJy after the execution 

of the previous iteration of the "for" loop. This is because a[i] set in the previous loop 

iteration is required to resolve the condition. Thus loop carried dependency exists in the 

code. Two differently compiled versions of the same 'bubble.c' program are used for 

verification. The first version is compiled with the (-03) loop-unrolling option and the 

other is compiled with (-02) loop-unrolling turned off. Since loop carried dependency 

exist, we cannot expect any significant improvement in perfonnance due to loop-

unrolling. 

The program has a routine which checks the correctness of sorting and returns 'I' upon 

correct sorting. This value is loaded in the last position of the sorted value. The snap shot 

of the contents of the program stack before and after the sorting i shown below: 

a) Main subroutine 'stack' data before sorting 

Address: 801FFFBO Data: 00000000000000000000000000000000 
Address: 801FFFB4 Data: 00000000000000000000000000000000 
Address: 801FFFB8 Data: 00000000000000000000000000000000 
Address: 801FFFBC Data: 00000000000000000000000000000000 
Address: 801FFFCO Data: 00000000000000000000000000000000 
Address: 801 FFFC4 Data: 00000000000000000000000000000000 
Address: 801FFFC8 Data: 00000000000000000000000000000011 
Address: 801FFFCC Data: 00000000000000000000000000010000 
Address: 801FFFDO Data: 00000000000000000000000000000100 
Address: 801FFFD4 Data: 00000000000000000000001010011110 
Address: 801FFFD8 Data: 00000000000000000000000000111011 
Address: 801FFFDC Data: 00000000000000000000000000000000 
Address: 801FFFEO Data: 10000000000000000000010000010000 
Address: 801FFFE4 Data: 00000000000000000000000000000000 

61� 



Address: 80lFFFE8 Data: 00000000000000000000000000000000 

b) Main subroutine 'stack' data after sorting 

Address: 801 FFFBO Data: 00000000000000000000000000000000 
Address: 80lFFFB4 Data: 00000000000000000000000000000000 
Address: 80lFFFB8 Data: 00000000000000000000000000000000 
Address: 801 FFFBC Data: 00000000000000000000000000000000 
Address: 80lFFFCO Data: 000000000000000000000000000000 II 
Address: 80lFFFC4 Data: 00000000000000000000000000000000 
Address: 80lFFFC8 Data: 00000000000000000000001010011110 
Address: 80lFFFCC Data: 00000000000000000000000000111011 
Address: 80lFFFDO Data: 00000000000000000000000000010000 
Address: 801FFFD4 Data: 00000000000000000000000000000100 
Address: 801FFFD8 Data: 00000000000000000000000000000001 
Address: 80lFFFDC Data: 00000000000000000000000000000000 
Address: 801FFFEO Data: 100000000000000000000I0000010000 
Address: 801FFFE4 Data: 00000000000000000000000000000000 
Address: 801FFFE8 Data: 00000000000000000000000000000000 

As seen from the snap shot of the program stack, the values are sorted to descending 

order correctly, and the result module returned '1' which is loaded in the address 

801FFFD8, the last location in the array, proving the functional correctness of the 

architecture and its implementation. Table 4.1 presents the perfonnance data collected 

from the simulation. 

The second perfonnance test done is to highlight the potential improvement in 

perfonnance that can be attained in the presence of parallelism in an executing code 

fragment. The program computes the sum of the square of numbers in a continuous 

series. Refer to 'Appendix C' for the C code. Because there is no loop carried 

dependency in the subsequent iterations of the loop, parallelism exists among instructions 

62� 



of different loop iterations. This program was executed with an IPC >1. This performance 

improvement cannot be achieved without register renaming and dynamic scheduling. In a 

simple linear pipeline, the presence of WAR and WAW hazards due to register name 

dependency will slow down the processor. Table 4.2 presents the performance data 

collected from the simulation. 

4.3 Performance Data Collection 

The performance metrics used for evaluation are Instructions Per Clock (IPC), 

Misprediction Rate (MR) and Average Percentage Utilization (APU). A Verilog module 

"data_collector.v" is written to collect and determine these metrics during the program 

run. In a superscalar processor, because of the parallel pipelines, it is difficult to represent 

individual stalls in the IPC equation. Moreover, because of speculation, we cannot be 

sure if those stalls are caused by real or specuiated instructions. Hence, IP can only be 

determined by the average number of instructions completing from the ROB over the 

duration df program execution. Since the instructions completing from ROB are all real 

instructions, we get an accurate estimate oflPC. Therefore IPC is given as follows: 

Ie 

LNCi 
fPC = --=-i=-=-l__ 

tc 

Where, NCi -- number of instruction commits in the cycle 

tc -- total number of clock cycles. 

63� 



The Range of NC is from 0 to commit group size. Typically, commit group size is made 

the same as the fetch group size. IPC cannot possibly exceed the average number of 

instructions fetched. Hence, the maximum IPC which one can acbieve is the size of fetch 

group. 

The Misprediction Rate (MR) gives an estimate of bow often branch or jump instructions 

are wrongly speculated. Since no useful processing is done with the speculated 

instructions after a mispredicted branch or jump, IPC is reduced. This is because the 

average number of correct instructions completing decreases, due to the need for a 

restore .. Restore flushes all the instructions in the pipeline, and hence NCj for many 

cycles after restore is '0', until correct instructions fill up the pipeline and start to 

complete. The Misprediction rate (MR) is estimated as follows: 

Ie 

LRSj 
MR = ....:.;-:=1,--_ 

Ie 

LBJi 
i=l 

Where, RSj -- Indicates Restore. RS; is '1' if Restore = 1 else '0'. 

BJ,. -- Indicates Branch or Jump instructi.on complete. 

BJ,. is determined from completing branches and jumps, so that, speculated branch and 

jumps do not account for MR. Lower MR is required for high IPC. This MR is affected 

by the efficiency of the branch prediction algorithm. 

The Average Percentage Utilization (APU) is a metric which can be used for 

optimization purpose. It indicates the utilization of a hardware module during a program 

64� 



run. Here, APU for ALU reservation station (ALU_RS) and Common Data Buses (CDB) 

are calculated. There are 2 ALU_RS with four entries each and 2 CDR The APU of 

ALU_RS, CDB are calculated as follows: 

te 

L(NABi/8) 
i=1APUALU RS=--:..:....;=---------­

te 

Where, NAB, -- Number of busy ALU RS entries. 

tc -- total number of clock cycles. 

Ie 

~ (Xi) {I, PWbi ~ 2 
APUCDB = 1-1 ; Xi = 

te nwb, / 2, PWbi < 2 

Where, X, -- Percentage of CDB utilized. 

pwbi -- Number of Pending write-backs. 

nwb, -- Number of write-backs. 

tc -- total number of clock cycles. 

Table 4.1 summarizes the above discussed perfonnance metrics of the implemented 

architecture for the programs run to gather perfonnance data. All simulations were run 

until the completion of the program (i.e., until the PC jumps back to the' start' routine). 

The information required to compute the performance metrics are probed at the middle of 

the second half of the clock, every cycle. The lower IPC in the 'Bubble' program is due 

to the inherent loop level dependency in the code. Higher than nonnal MR are registered 

for 'Bubble' program because, many branch decisions are based on the data being sorted 

and hence tough to predict. Considerable improvement in IPC is registered for 'SSS' 

65� 



compared to what would have been achieved if run on a linear pipelined processor. This 

is due to the register renaming and dynamic scheduling implemented in this architecture. 

Metric Bubble (-03) Bubble (-02) 

Total clock cycles (tc) 311 360 

No ofDispatch Stalls 134 152 
I 

Average No. Commits (!PC) 0.5980 0.5401 

Misprediction Rate (MR) 42.42% 52.77% 

Average RS occupancy (ALU) 35.04% 23.23% 

Average RS occupancy (LSD) 50.88% 38.50% 

CDB contention Stalls 4 4 

Average CDB Utili.zation 36.97% 34.62% 

Table 4.1 Perfonnance on Bubble Sorting 

66� 



Metric� 

Total clock cycles (tc)� 

No of Dispatch Stalls� 

Average No. Commits (!PC)� 

Misprediction Rate (MR)� 

Average RS occupancy (ALU)� 

Average RS occupancy (LSD)� 

CDB contention Stalls� 

Average CDB Utilization� 

SSS (-03) SSS (-02) 

126 148 

38 35 

1.103 1.114 

26.66% 14.28% 

33.63% 45.52% 

2.57% 2.91% 

2 24 

44.44% 41.21 % 

Table 4.2 PerfaImance on Squared Series Sum. 

67� 



Chapter 5 

Conclusion 

A register renaming algorithm and scheduling unit for a four wide superscalar processor, 

for fast misprediction recovery and efficient hardware level implementation was 

proposed and successfully implemented. Perfonnance results show that, this scheme can 

yield higher IPC compared to a linear pipelined processor, for programs with inherent 

parallelism. 

Future improvements to this work can focus on extending the design and simulation 

environment to run longer benchmark programs. This would require, figuring out ways of 

handling I/O operations in the design and during simulati.on. A cost-perfonnance tradeoff 

study for additional Common Data Buses (CDB), write ports in Reservation Station (RS) 

will also be interesting. For reducing the branch penalty still further, modifications to tbe 

current register renaming scheme, for an early update of PC with the correct target 

address can also be explored. 

68� 



REFERENCES 

1.� James E. Smith and Gurindar S. Sohi, "The Microarchitecture ofSuperscalar 
Processors" in Proceedings of the IEEE. Vol 83, o. 12, December 1995. 

2.� Dezso Sima, Budapest Polytechnic, "The Design Space ofRegister Renaming 
Techniques" in IEEE Micro, 2000. 

3.� Teresa Momeal et aI., "Hardware Schemes for Early Register Release" in 
Proceedings ofthe International Conference on parallel Processing (ICPP'02) 

4.� Antonio Gonzalez et aI., "Virtual Physical Registers" in High-Perfonnance 
Computer Architecture (HPCA), February 1998. 

5.� Stephan Jourdan et aI., "A Novel Renaming Scheme to Exploit Value 
Temporal Locality through Physical Register Reuse and Unification", in IEEE 
1998. 

6.� Mayan Moudgill et al., "Register Renaming and Dynamic Seculation: an 
Alternate Approach", in IEEE 1993. 

7.� Steven Wallace and Nader Bagherzadeh, "Instruction Fetching Mechallism 
for Superscalar Microprocessors", University of California, Irvine, USA. 

8.� Mansur H. Samadzadeh and Loai E. Garalnabi, "Hardware/ Software Cost 
Analysis ofinterrupt Processing Strategies", in IEEE Micro, Jun 2001. 

9.� David A. Patterson, John L. Hennessy, David Goldberg "Computer 
Architecture: A Quantitative Approach" 2nd Edition, Morgan Kaufman 
Publishers, January 1996. 

10.� Dominic Sweetman, "See MIPS Run", Morgan Kaufmann; 1st edition, April 
1999. 

J1. John Paul Shen. and Milum H. Lipasti, "Modern Processor Design: 
Fundamentals ofSuperscalar Processors", Beta Edition, McGraw Hill, 2003. 

12.� Anshuman Anand, ECEN, Oklahoma State University, "Architecture 
Verification offour-wide superscalar Processor", Masters Thesis, December 
2003. 

13.� Algorithrnics SDE-MIPS/Free GNU toolkit 4.0 c, "Programmer's Guide", 
Revision: 1.42, 2001 Algorithmics Ltd. 

69� 



Appendix A 
Design Verification of Virtual Registers 

CODE FRAGMENT 

This code fragment is used to verify the register renaming scheme. When JAL instruction at 80000424 is 
fetched for the first time, there are no entries in the BTB and BPB. Hence it will be predicted as not taken. 
But when the JAL is evaluated in the execution unit, it wiU be realized that it was mispredicted. Moreover, 
since it is a link type unconditional jump with a delay slot, the restore must occur only after the delay slot 
instruction and all instructions above it have fInished execution. 

Pseudo-pointer assigned for instructions (3) (5),(7),(9) will be de-allocated when instructions 
(4),(6),(8),(11) are committed respectively. Hence after restore, only six pseudo-pointers will remain 
allocated and will have valid data. This can be verified by the debug trace printed after simulation of the 
virtual registers. Data of correct instructions which have completed must be preserved after restore for read 
by future instructions. The source operand read of instructions (36 to 39) must read the latest values written 
to those registers by instructions before JAL. This can be verified by their source values in the dispatch 
stage in the last cycle of simulation. 

Result Pseudo-pointer 
1) 80000400: 0000d025 move $kO,$zero $kO = 00000000; I 
2) 80000404: 00000000 nop 
3) 80000408: 3clc8001 lui $gp,Ox8001 $gp = 80010000; 2 
4) 8000040c: 279cfSde addiu $gp,$gp,-2S94 $gp = 8000FSDE; 3 
5) 80000410: 3c088001 lui $tO,Ox8001 $tO = 80010000; 4 
6) 80000414: 2S08a4c8 addiu $tO,$tO,-23352 $tO = 8000A4C8; 5 
7) 80000418: 24 Idfff8 Ii $sp,-8 Ssp = FFFFFFF8; 6 
8) 8000041 c: 0llde824 and $sp,$tO,$sp Ssp = 8000A4C8; 7 
9) 80000420: 3c048000 lui $aO,Ox8000 SaO = 80000000; 8 
10) 80000424: OcOOOl23 jal 8000048c $ra = 8000042C; 9 
11) 80000428: 24846dl4 addiu $aO,$aO,27924 SaO = 80006D14; a 
12) 8000042c: 039d282a sIt $a1,$gp,$sp $al = 00000000; 
13) 80000430 10050004 beq $zero,$a l,x4 
14) 80000434 00000000 nop 
15) 80000438 3c058000 lui $al,Ox8000 $al = 80000000; 
16) 8000043c 00000000 nop 
17) 80000440 00000000 nop 
18) 80000444 24040001 Ii $aO,1 SaO = 00000001; 
19) 80000448: 3c058000 lui $a.l,Ox8000 $al = 80000000; 
20) 8000044c: 24a56d08 addiu $al,$al,27912 $al = 80006d08; 
21) 80000450: 3c068000 lui $a2,Ox8000 $a2 = 80000000; 
22) 80000454: 24c66dlO addiu $a2,$a2, 27920 $a2 = 80006dlO; 
23) 80000458: nop 
24) 8000045c: nop 
25) 80000460: nap 
26) 80000464: nop 
27) 80000468: nop 
28) 8000046c: nop 
29) 80000470: nop 
30) 80000474: nop 
31) 80000478: nap 
32) 8000047c: nop 
33) 80000480: nop 
34) 80000484: nop 

70� 



35) 80000488: nop� 
36) 8000048c: 001a2825 move Sal,SkO $a I = 00000000;� 
37) 80000490: 00lc3025 move $a2,Sgp $a2 = 8000F5DE;� 
38) 80000494: 001d3825 move Sa3,$sp $a3 = 8000A4 8'� 
39) 80000498: 00084025 move $a4,StO $a4 = 8000A4C8'� 
40) 8000049c: nop� 

TEST BENCH 

The test bench provides the control signals for the design under test. Fetch and rest of the processor's 
behavior is simulated by the test bench. The test vectors listed under 'Fetch Outputs' is given to the input of 
'lssuelDecode' stage. These vectors are chosen to simulate the behavior of Fetch Logic. The test vectors 
listed under 'ExeCore Outputs' are chosen to simulate the behavior of dispatch, reservation station, 
execution units and write back stage. 

.timescale 1ns/1 Ops 
module VRc-testbench(); 

reg elk;� 
reg reset;� 

II Fetch Outputs� 
reg[l:O] pred, strnyred[O:l9];� 
reg[3l:0] pred_addr, strn-pred_addr[0:19];� 
reg[31:0] pc, stm-pc[0:19]; II Address from which instruction block is fetched.� 
reg[127:0] instr_block, strn_instr_block[0:19]; IIlnstruction block fetched for execution� 

II ExeCore Outputs� 
reg disp_stall, stm_disp_stall[O: 19]; II Dispatch stall� 
reg[3:0] dispatched, stm_dispatched[0:19]; II Indicates instruction yet to be dispatched by '0'� 
reg[101:0] cdb1, stm_cdbl[0:19]; II Common data bus� 
reg[101:0] cdb2, strn_cdb2[0:19];� 
reg[63:0] brdest, stm_brdest[O: 19]; II Decoded write address in ROB� 
reg[63:0] wsm, stm_wsm[0:19J;� 
reg[63:0] ws1, strn_ws1[0:19];� 
reg(70:0] brdata, strn_brdata[0:19]; II Branch units output to ROB.� 
reg[70:0] mbus, stm_mbus[O: 19];� 
reg[70:0] tbus, stnUbus[O: 19];� 

II VR's output 
wire restore; 
wire vr_stall; 
wire rob_stall; 
wire bj4; 
wire restore_nc; 
wire[5:0] no_commit; 
wire[3 :0] rob_valid; 
wire[3 :0] rob_complete; 
wirer5:0] issuecounter; 
wire[5 :0] commitcounter; 
wire[3l :0] bj4yc; 
wire[44:0] II; II Decode output for instruction 1 
wire[44:0] 12; II Decode output for instruction 2 

71� 



wire[44:0] 13; II Decode output for instruction 3 
wire[44:0] 14; II Decode output for instruction 4 
wire[63:0] allocatebits· 
wire[63:0] commitbits; 
wire[63:0] validbits; 
wire[70:0] II Bus' II ROB read/write Busl 
wire[70:0] I1Bus; II ROB read/write Bus2 
wire[70:0] BBus; II ROB read/write Bus3 
wire[70:0] I4Bus; II ROB read/write Bus4 
wire[85:0] brinfo_disp; 
wire[103:0] IT_i1; 
wire[103:0] IT_i2; 
wire[I03:0] IT_i3; 
wire[I03:0] IT_i4; 

integer k, dummy; 

VR dut (cLk reset, instr_block, pc, pred, pred_addr, disp_stall, dispatched, cdbl, cdb2, brdest, brdata, 
Yf_stall, restore, restore_nc, issuecounter, commitcounter, IT_ii, IT_i2, IT_i3, rr_i4, IlBus, UBus, L3Bus, 
14Bus, no_commit, rob_valid, rob_complete, mbus, Ibus, wsm, wsl, rob_stall, bj4, bj4--.pc, brinfo_disp, 
allocatebits, commitbits, validbits, II, 12, 13, 14); 

initial begin 
$timefonnat(-9,1, "ns",12); 

II disp_stall = I implies pipeline content in dispatch stage must be retained next cycle� 
II contents in issue stage is also retained if number of instructions in issue stage is != O.� 

II Cycle 20� 
strn--'pred[O] = 2'bOO;� 
stm--'pred_addr[O] = 32'hOOOOOOOO;� 
stm--.pc[0] = 32'hOOOOOOOO;� 
strn_instr_block[O] = 128~OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO;
 

stm_disp_stall[O] = I 'bO;� 
strn_dispatched[O] = 4'bOOOO;� 
strn_cdb1[O] = 102'hOOOOOOOOOOOOOOOOOOOOOOOOOO;� 
strn_cdb2[O] = 102'hOOOOOOOOOOOOOOOOOOOOOOOOOO;� 
stm_brdest[O] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsm[O] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsl[O) = 64'hOOOOOOOOOOOOOOOO;� 
strn_brdata[O] = 7I'hOOOOOOOOOOOOOOOOOO;� 
stm_mbus[O] = 71'hOOOOOOOOOOOOOOOOOO;� 
strn_lbus[O] = 71'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 30� 
II First fetch group enters 'lssueIDecode' stage.� 
113 ALU instructions and I Nap.� 

strnyred[ IJ = 2'bOO;� 
strnyred_addr[l] = 32'h00000000;� 
strnyc[l] = 32'h80000400;� 
strn_instr_block[ I] = I28'hOOOOd025000000003c1c800 1279cf5de;� 
strn_disp_stall[l] = l'bO;� 
stm_dispatched[ I] = 4'bOOOO;� 
strn_cdbl [I] = 102'hOOOOOOOOOOOOOOOOOOOOOOOOOO;� 
strn_cdb2[1] = 102'h00000000000000000000000000;� 

72� 



strn_brdest[ 1] = 64'hOOOOOOOOOOOOOOOO; 
strn_wsm[ 1] = 64'hOOOOOOOOOOOOOOOO' 
strn_wsI[ 1] = 64'hOOOOOOOOOOOOOOOO; 
stm_brdata[ 1] = 7I'hOOOOOOOOOOOOOOOOOO; 
stm_mbus[l] = 71 'hOOOOOOOOOOOOOOOOOO; 
stm_lbus[1] = 71 'hOOOOOOOOOOOOOOOOOO; 

II Cycle 40 
II 'Dispatch Stall = l' due to 3-ALU instructions in dispatch stage.� 
II Second fetch group enters 'IssuelDecode' stage.� 
II 4 alu instructions.� 

stmyred[2] = 2'bOO;� 
stmyred_addr[2J = 32'hOOOOOOOO;� 
stmyc[2] = 32'h8000041 0;� 
strn_instt_block[2] = 128'h3c0880012508a4c8241 dfff8011 de824;� 
strn_disp_stal1[2] = l'bl;� 
stm_dispatched[2] = 4'b10l0;� 
stm_cdb 1[2J = I02'hOOOOOOOOOOOOOOOOOOOOOOOOOO;� 
stm_cdb2[2] = 102'hOOOOOOOOOOOOOOOOOOOOOOOOOO;� 
stm_brdest[2] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsm[2] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsI[2] = 64'hOOOOOOOOOOOOOOOO;� 
stm_brdata[2J = 71 'hOOOOOOOOOOOOOOOOOO;� 
strn_mbus[2J = 71 'hOOOOOOOOOOOOOOOOOO;� 
stm_lbus[2J = 71 'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 50� 
II Second fetch group processed again in 'lssueIDecode' stage.� 
II All first fetch group instructions dispatched� 

stmyred[3] = 2'bOO;� 
stmyred_addr[3] = 32'hOOOOOOOO;� 
Slmyc[3] = 32'h80000410;� 
stm_instr_block[3] = 128'h3c0880012508a4c8241dfff8011de824;� 
Slm_disp_stal1[3] = l'bO;� 
stm_dispatched[3] = 4'bOOOO;� 
strn_cdbl [3] = l02'hOOOOOOOOOOOOOOOOOOOOOOOOOO;� 
stm_cdb2[3J = l02'hOOOOOOOOOOOOOOOOOOOOOOOOOO;� 
stm_brdest[3] = 64'hOOOOOOOOOOOOOOOO;� 
strn_wsm[3] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsl[3] = 64'hOOOOOOOOOOOOOOOO;� 
stm_brdata[3] = 71'hOOOOOOOOOOOOOOOOOO;� 
stm_mbus[3] = 71'hOOOOOOOOOOOOOOOOOO'� 
stm_lbus[3] = 71'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 60� 
II 'Dispatch Stall = I' due to 4-alu instructions in dispatch stage.� 
II Third fetch group enters 'IssueIDecode' stage.� 
II 3 ALU instructions and 1 JAL.� 
II Instructions (1) and (3) write back result in CDB.� 

stmyred[4] = 2'bOl;� 
strDyred_addr[4] = 32'hOOOOOOOO;� 
Slmyc[4] = 32'h80000420;� 
stm_instr_block[4] = 128'h3c0480000c00012324846d14039d282a;� 

73� 



stm_disp_stall[4] = I'bl;� 
stm_dispatched[4] = 4'b1100;� 
stm_cdb1[4] = {64'h0000000000000002,32'hOOOOOOOO,6'hO I};� 
stm_cdb2[4] = {64'h0000000000000004,32'h800 IOOOO,6'h02};� 
strn_brdest[4] = 64'hOOOOOOOOOOOOOOOO;� 
strn wsm[4] = 64'hOOOOOOOOOOOOOOOO;� 
stm=wsl[4] = 64'hOOOOOOOOOOOOOOOO;� 
strn_brdata[4] = 7I'hOOOOOOOOOOOOOOOOOO;� 
stm_mbus[4] = 71 'hOOOOOOOOOOOOOOOOOO;� 
stm_Ibus[4] = 71'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 70� 
II Third fetch group processed again in 'JssuefDecode' stage� 
II All second fetch group instructions dispatched� 

stmJ'red[5] = 2'bOl;� 
stroJ'red_addr[5] = 32'hOOOOOOOO;� 
stm..Jlc[5] = 32'h80000420;� 
stm_instr_block[5] = 12 8'h3c0480000cOOO 12324846dI4039d282a;� 
stm_disp_stall[5] = l'bO;� 
strn_dispatched[ 5] = 4'bOOOO;� 
stm_cdb I [5] = {64'hOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO} ;� 
stm_cdb2[5] = {64'hOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO};� 
stm_brdest[5] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsm[5] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsl[5] = 64'hOOOOOOOOOOOOOOOO;� 
stm_brdata[5] = 71'hOOOOOOOOOOOOOOOOOO;� 
strn_mbus[5] = 71 'hOOOOOOOOOOOOOOOOOO;� 
stm_Ibus[5] = 71'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 80� 
II 'Dispatch Stall = l' due to 3-alu instructions in di 'patch stage.� 
II Fourth fetch group enters 'JssuefDecode' stage.� 
II 1 BJU and I ALU instruction.� 

stID_pred[6] = 2'bOI;� 
strnyred_addr[6] = 32'hOOOOOOOO;� 
strnyc[6] = 32'h80000430;� 
stm_instr_block[6] = 128'h10050004000000003c05800000000000;� 
stm_disp_stall[6] = l'bl;� 
strn_dispatched[6] = 4'blllO;� 
strn_cdb1[6] = {64'hOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO);� 
strn_cdb2[6] = {64'hOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO};� 
strn_brdest[6] = 64'hOOOOOOOOOOOOOOOO;� 
strn_wsm[6] = 64'hOOOOOOOOOOOOOOOO;� 
strn_wsl[6] = 64'hOOOOOOOOOOOOOOOO;� 
strn_brdata[6] = 71'hOOOOOOOOOOOOOOOOOO;� 
strn_mbus[6] = 71'hOOOOOOOOOOOOOOOOOO;� 
strn_lbus[6] = 71 'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 90� 
II Fourth fetch group processed again in 'Issue/Decode' stage� 
II All Third fetch group instructions dispatched� 
II Instruction (4) completes and writes data. in CDB.� 

74� 



stmyred[7] = 2'b01;� 
strnyred_addr[7] = 32'hOOOOOOOO;� 
strnyc[7] = 32'h80000430;� 
stm_instr_block[7] = 128'h10050004000000003c05800000000000;� 
sOn_disp_stall[7] = l'bO;� 
strn_dispatched[7] = 4'bOOOO;� 
sOn_cdb 1[7] = {64'h0000000000000008,32'h8000f5de,6'h03}'� 
stm_cdb2[7] = {64'hOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO} ;� 
stm_brdest[7] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsm[7] = 64'hOOOOOOOOOOOOOOOO;� 
strn_wsI[7] = 64'hOOOOOOOOOOOOOOOO;� 
stm_brdata[7] = 71 'hOOOOOOOOOOOOOOOOOO;� 
stm_rnbus[7] = 71'hOOOOOOOOOOOOOOOOOO;� 
stmJbus[7] = 7l'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 100 
II Instruction (5) and (10) complete and write result in CDB. 
II JAL instruction writes branch target address and other information 
II in the location allocated for JAL in ROB 

stmyred[8] = 2'bOO;� 
stmyred_addr[8] = 32'hOOOOOOOO;� 
stmye[8] = 32'h80000440;� 
strn_instr_block[8] = 128'h00000000240400013c05800024a56d08;� 
stm_disp_stall[8] = 1'b0;� 
stm_dispatched[8] = 4'bOOOO;� 
stm_cdbl [8] = {64'hOOOOOOOOOOOOOOl0,32'b80010000,6'h04};� 
stm_cdb2[8] = {64'h0000000000000200,32'h8000042c,6'h09};� 
stm_brdest[8] = 64'hOOOOOOOOOOOOO 100;� 
stm_wsm[8] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsl[8} = 64'bOOOOOOOOOOOOOOOO;� 
stm_brdata[8] = {2'b11,3'bOlO,5'bI 1111,6'h09,I'bl,20'h00424 32'h8000048c,2'bll};� 
sOn_mbus[8] = 71'hOOOOOOOOOOOOOOOOOO;� 
stm_lbus[8] = 71'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 110� 
II Instruction (7) completes and WIites result to COB.� 
stmyred[9] = 2'bOO;� 
stmyred_addr[9] = 32'hOOOOOOOO;� 
stmyc[9] = 32'h80000450;� 
stm_instr_block[9] = 128'h3c06800024c66d100000000000000000;� 
stm_disp_stall[9] = l'bl;� 
stm_dispatched[9] = 4'bOllO;� 
stm_cdb1[9] = {64'h0000000000000040,32'hfffffffB,6'h06};� 
strn_cdb2[9] = {64'bOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO};� 
stm_brdest[9] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsm[9] = 64'hOOOOOOOOOOOOOOOO;� 
strn_ws1[9] = 64'hOOOOOOOOOOOOOOOO;� 
strn_brdata[9] = 7l'bOOOOOOOOOOOOOOOOOO;� 
strn_mbus[9] = 71'hOOOOOOOOOOOOOOOOOO;� 
s~lbus[9] = 71'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 120� 
stmyred[10] = 2'bOO;� 
stmyred_addr[10] = 32'hOOOOOOOO; 
stmyc[10] = 32'h80000450; 

75� 



stm_instr_block[ lO] = 128'h3c06800024c66d100000000000000000­�
stm_disp_stall[lO] = l'bO;� 
stm dispatched[lO] = 4'bOOOO;� 
stm- cdb1[10] = {64'hOOOOOOOOOOOOO I00 32'h80000000,6'h08};� 
stm- cdb2[10] = 102'hOOOOOOOOOOOOOOOOOOOOOOOOOO;� 
stm=brdest[lO] = 64'hOOOOOOOOOOOOOOOO­
stm wsm[10] = 64'hOOOOOOOOOOOOOOOO;� 
stm=wsl[lO] = 64'hOOOOOOOOOOOOOOOO;� 
stm_brdata[10] = 71'hOOOOOOOOOOOOOOOOOO;� 
stm_mbus[ 10] = 71'hOOOOOOOOOOOOOOOOOO;� 
stm_lbus[lO] = 71'hOOOOOOOOOOOOOOOOOO;� 

/1 Cycle 130� 
stm-pred[ll] = 2'bOO;� 
stm-pred_addr[11] = 32'hOOOOOOOO;� 
stm-pc[11] = 32'h80000460;� 
stm_instr_bJock[ 11] = 128'hOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO­�
stm_disp_stall[ll] = 1'b0;� 
stm_dispatched[ll] = 4'bOOOO;� 
stm_cdb I [11] = {64'h0000000000000020,32'h8000a4c8,6'h05};� 
stm_cdb2[11] = {64'hOOOOOOOOOOOOl 000,32'h80000000,6'hOc};� 
stm_brdest[ 11 J = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsm[11] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsl[ 11] = 64'hOOOOOOOOOOOOOOOO;� 
stm_brdata[ 11] = 71 'hOOOOOOOOOOOOOOOOOO;� 
stm_mbus[ll] = 71'hOOOOOOOOOOOOOOOOOO;� 
stm_lbus[ll] = 71'hOOOOOOOOOOOOOOOOOO;� 

1/ Cycle 140� 
stm-pred[12] = 2'bOO;� 
stm-pred_add.r[12] = 32'bOOOOOOOO;� 
stm-pc[12J = 32'h80000470;� 
stm_instr_block[l2] = J28'hOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO;� 
stm_disp_stalJ[12] = l'bO;� 
stm_dispatched[l2] = 4'bOOOO­
stm_cdb 1[12J = {64'h0000000000002000,32'hOOOOOOOl,6'hOb};� 
stm_cdb2[12] = {64'h0000000000004000,32'h80000000,6'hOe};� 
stm_brdest[12] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsm[12] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsJ[ 12] = 64'hOOOOOOOOOOOOOOOO;� 
stm_brdata[ 12] = 71'hOOOOOOOOOOOOOOOOOO;� 
stm_mbus[12] = 71'hOOOOOOOOOOOOOOOOOO;� 
stm_lbus[ 12] = 71 'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 150� 
/1 Branch Delay-Slot instruction completes and write data to CDB.� 

stm-pred[ 13J = 2'bOO;� 
stm-pred_addr[13] = 32'hOOOOOOOO;� 
stm-pc[13] = 32'h80000480;� 
stm_imtr_block[l3] = 128'hOOOOOOOOOOOOOOOOOOOOOOOOOO 1a2825;� 
stm_disp_stan[ 13] = 1'bO;� 
stm_dispatched[13] = 4'b0000;� 
stm_cdb1[13] = {64'h0000000000000400,32'h80006d14,6'hOa} ;� 
stm_cdb2[13] = {64'hOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO};� 
stm_brdest[13] = 64'hOOOOOOOOOOOOOOOO;� 

76� 



stm_wsm[13] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsl[ 13] = 64'hOOOOOOOOOOOOOOOO;� 
stm_brdata[13] = 71 'hOOOOOOOOOOOOOOOOOO;� 
strn_mbus[13] = 71 'hOOOOOOOOOOOOOOOOOO;� 
stnl_Ibus[13] = 71 'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 160� 
II Instruction (8) writes result to CDB.� 

stm-pred[14] = 2'bOO'� 
stm-pred_addr[14] = 32'hOOOOOOOO;� 
stm-pc[14] = 32'h80000490;� 
stm_instr_block(14J= 128'hOOI c302500 Id38250008402500000000;� 
strn_disp_stall[14] = 1'bO;� 
stm_dispatched[ 14] = 4'bOOOO;� 
stm_cdb 1[14] = {64'h0000000000000080,32'h8000a4c8,6'h07};� 
strn_cdb2[14] = {64'h0000000000000004,3 2'h80000000,6'h02} ;� 
strn_brdest[14] = 64'hOOOOOOOOOOOOOOOO;� 
strn_wsm[14] = 64'hOOOOOOOOOOOOOOOO;� 
strn_wsl(l4] = 64'hOOOOOOOOOOOOOOOO;� 
stm_brdata[14] = 7l'hOOOOOOOOOOOOOOOOOO;� 
stm_mbus[ 14] = 71 'hOOOOOOOOOOOOOOOOOO;� 
stm_Ibus[ 14] = 71 'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 170� 
II Misprediction is detected� 

strn-pred[15] = 2'bOO;� 
strn-pred_addr[ 15] = 32'hOOOOOOOO;� 
strn-pc[15] = 32'b800004aO;� 
strn_instr_ block[15] = 128'hOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO;� 
strn_disp_staU[15] = I'bl;� 
stm_dispatcbed[15] = 4'bOOOO;� 
stm_cdb 1(15] = {64'h0000000000008000,32'h80006d08,6'hOfj;� 
stm_cdb2[ 15] = {64'hOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO};� 
stm_brdest[15] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsm[ 15] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsl[ 15] = 64'hOOOOOOOOOOOOOOOO;� 
stm_brdata(15] = 71'hOOOOOOOOOOOOOOOOOO;� 
stm_mbus[15] = 71'hOOOOOOOOOOOOOOOOOO;� 
stm_Ibus[15] = 71'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 180� 
II 'Restore' occurs in this cycle.� 
II Since all pipelines registers are asynchronously reset during 'Restore', all vectors are zero.� 

stm-pred[16] = 2'bOO;� 
stm-pred_addr[ 16] = 32'hOOOOOOOO;� 
stmyc[16] = 32'hOOOOOOOO;� 
stm_instr_block[16] = 128'hOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO;� 
stm3isp_stall[16] = l'bO;� 
stm_dispatched[ 16] = 4'bOOOO;� 
strn_cdbl [16] = {64'hOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO};� 
stm_cdb2[ 16] = {64'hOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO};� 
strn_brdest[ 16] = 64'bOOOOOOOOOOOOOOOO;� 
stm_wsm[16] = 64'hOOOOOOOOOOOOOOOO;� 

77 



stm_wsl[16] = 64'hOOOOOOOOOOOOOOOO;� 
stm_brdata[16] = 7] 'hOOOOOOOOOOOOOOOOOO;� 
stm_mbus[16] = 71'hOOOOOOOOOOOOOOOOOO;� 
stm_lbus[ 16] = 7l'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 190� 
II Fetch starts fetching from correct Fetch stream (800048C).� 

stmyred[17] = 2'bOO;� 
stmyred_addr[17] = 32'hOOOOOOOO;� 
stmyc[17] = 32'hOOOOOOOO;� 
stm_instr_block[ 17] = 128'hOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO;� 
stm_disp_stall[17] = l'bO;� 
stm_dispatched[17] = 4'bOOOO;� 
stm_cdbl[17] = {64'hOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO};� 
stm_cdb2[ 17] = {64'hOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO};� 
stm_brdest[17] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsm[ 17] = 64'hOOOOOOOOOOOOOOOO;� 
stm_wsl[17] = 64'hOOOOOOOOOOOOOOOO;� 
strn_brdata[17] = 7] 'hOOOOOOOOOOOOOOOOOO;� 
stm_mbus[17] = 71'hOOOOOOOOOOOOOOOOOO;� 
stm_lbus[17] = 71 'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 200� 
II New fetch stream enters 'lssuelDecode' stage.� 

stmyred[18] = 2'bOO;� 
stmyred_addr[l8] = 32'hOOOOOOOO;� 
stmyc[18] = 32'h8000048c;� 
strn_iostr_block[18] = 128'hOOla2825001c302S001 d382500084025;� 
strn_disp_stall[18] = l'bO;� 
stm_dispatched[l8] = 4'bOOOO;� 
stm_cdb1[18] = {64'hOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO};� 
strn_cdb2[ 18] = {64'hOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO};� 
stm_brdest[18] = 64'hOOOOOOOOOOOOOOOO;� 
strn_wsm[18] = 64'hOOOOOOOOOOOOOOOO;� 
strn_wsl[ 18] = 64'hOOOOOOOOOOOOOOOO;� 
stm_brdata[18] = 71'hOOOOOOOOOOOOOOOOOO;� 
stm_mbus[ 18] = 71'hOOOOOOOOOOOOOOOOOO;� 
stm_lbus[ 18] = 71'hOOOOOOOOOOOOOOOOOO;� 

II Cycle 210� 
II New Fetch stream enters Dispatch stage and reads source data from VB� 

stmyred[19] = 2'bOO;� 
stmyred_addr[19] = 32'h00000000;� 
stmyc[19] = 32'h8000049c;� 
stm_instr_block[19] = 128'hOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO;� 
stm_disp_stall[] 9] =] 'b1;� 
stm_dispatched[19] = 4'bOOOO;� 
stm_cdb1(19] = {64'bOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO};� 
strn_cdb2[19] = {64'hOOOOOOOOOOOOOOOO,32'hOOOOOOOO,6'hOO};� 
strn_brdest[19] = 64'hOOOOOOOOOOOOOOOO;� 
strn_wsm(19] = 64'hOOOOOOOOOOOOOOOO;� 
strn_wsl[19] = 64'hOOOOOOOOOOOOOOOO;� 
stm_brdata[19] = 71'hOOOOOOOOOOOOOOOOOO;� 

78� 



stm_rnbus[19] = 71 'h000000000000000000; 
stm_lbus[19] = 71'bOOOOOOOOOOOOOOOOOO; 

end 

always #5 clk = -elk; II clock toggles every 5 ns. Clock period is IOns. 

initial begin 

clk = 1;� 
reset = 1;� 
disp_stall = 0;� 
instr_block = 128'hOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO;� 

#20� 
reset = 0; II reset is held high for 20 ns. (2 cycles)� 

for (k = 0; k <= 19; k = k+l) begin 
1/ test vectors are assigned to the input 
1/ ports of the design under test. 

pred = strn--'pred[k);� 
pred_addr = stm--'pred_addr[k];� 
pc = sttu...J>c[k];� 
instr block = strn_instr_block[k);� 
cdbl = stm_cdbl [k);� 
cdb2 = stm_cdb2[k];� 
brdest = stm_brdest[k];� 
wsm = stm_wsm[k];� 
wsl = stm_wsl[k];� 
brdata = stm_brdata[k];� 
mbus = stnunbus[k];� 
Ibus = stm_lbus(k];� 
#5� 
dispatched = strn_dispatehed[k);� 
disp_stalJ = stm_disp~stall[k):
 
#5;� 

end� 

instr block = 128'hOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO;� 
pc = 32'hOOOOOOOO;� 
pred = 2'bOO;� 
#10;� 
$finish; II ends simulation.� 

end 

always begin 
#6 

$display("········**·····**Time = $realtime)'%t.···.·········..."
$display('tt'); , , 

$display(" AlIocate = %b", allocatebits); 
$display(" Valid = %b", validbits); 
$display(" Commit = %b", commitbits); 

$display(""); 

79� 



$display(" IssueCounter = %b", issuecounter);� 
$display(" ComrnitCounter = %b", commitcounter);� 
$display("");� 
$display(" Disp Stall = %b", disp_stalI);� 
$display(" Restore = %b", restore);� 
$display("");� 
$display("Stage - 2 : Issue/Decode");� 
$display(" Decode Out - I = %b", II);� 
$display(" Decode Out - 2 = %b", 12);� 
$display(" Decode Out - 3 = %b", 13);� 
$display(" Decode Out - 4 = %b", 14);� 
$display("");� 
$display("Stage - 3: Dispatch");� 

$display(" II: Fu_Code=%b Opl=%h Vl=%b Op2=%h V2=%b Exe=%h Des -%h Reo=%h Disp=%b", 
IT_il[87:85], IT_il[84:53], IT_il[52], IT_il[5l:20], IT_il[19], IT_il[18:13], IT_il[12:7], IT_il [6: 1), IT_il[O]); 

$display(" 12: Fu_Code=%b Opl=%h Vl=%b Op2=%h V2=%b Exe=%h Dest=%h Reo=%h Disp=%b", 
IT_i2[87:85], IT_i2[84:53], IT_i2[52], IT_i2[5l:20], rr_i2[19], rr_i2[18:13], rr_i2[12:7], rr_i2[6:1], IT_u[O]); 

$display(" 13: Fu_Code=%b Opl=%h Vl=%b Op2=%h V2=%b Exe=%h Dest=%h Reo=%h Disp=%b", 
IT_i3[87:85], IT_i3[84:53J, IT_i3[52], IT_i3[51:20], rr_i3[19], rr_i3[18:13], IT_i3[12:7], IT_i3[6:1], rr_i3[0]); 

$display(" 14: Fu_Code=%b Opl=%h Vl=oOlob Op2=%h V2=%b Exe=%h Dest=%h Reo=%h Disp=%b", 
IT_i4[87:85], rr_i4[84:53], rr_i4[52], rr_i4[51:20], IT_i4(19], rr_i4[18:13], rr_i4[12:7], rr_i4[6:1], rr_i4[0]); 

$displayC"'); 
#4., 
end 

endmodule 

SIMlJLATION OUTPUT 

The simulation was run till the restoration process initiated by the misprediction of JAL completes. The� 
successful simulation of this code fragment verifies the correctness of the proposed register renaming� 
scheme. It also shows that, the restore cycle is only one cycle and hence, system recovery can be achieved� 
without much performance penalty. In the final Dispatch stage, the source operand values are the ones� 
written by the last correct instruction with that register as the logical destination register. This prove that,� 
the updates to registers done by correct instructions are preserved after 'Restore'. Comments are inserted� 
before each cycle's trace with the hope that the reader can understand the simulation output better.� 

Highest level modules:� 
VR testbench� 
II Reset cycle� 
*****************Time = 6.005*****************� 

Allocate = xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 
Valid = 0000000000000000000000000000000000000000000000000000000000000001 
Commit = xxxxxxxxxxxxxxxxx.xx,xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

IssueCounter = xxxxxx� 
CommitCounter = xxxxxx� 

80� 



Disp Stall = 0� 
Restore = x� 

Stage - 2 : IssueiDecode 
Decode Out - 1 = 000000000000000000000000000000000000000000000 
Decode Out - 2 = 000000000000000000000000000000000000000000000 
Decode Out - 3 = 000000000000000000000000000000000000000000000 
Decode Out - 4 = 000000000000000000000000000000000000000000000 

Stage - 3: Dispatch 
RR II: Fu_Code=OOO Opl=OOOOOOOO Vl=1 Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 12: Fu_Code=OOO Opl=OOOOOOOO Vl=1 Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 13: Fu_Code=OOO Opl=OOOOOOOO Vl=1 Op2=00000000 V2=1 Exe=OO Des -00 Reo=OO Disp=O 
RR I4: Fu_Code=OOO Opl=OOOOOOOO Vl=l Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 

ii Reset cycle� 
······******··*··Time = 16.0ns·*···············� 

Allocate = 0000000000000000000000000000000000000000000000000000000000000001 
Valid = 0000000000000000000000000000000000000000000000000000000000000001 
Commit = 0000000000000000000000000000000000000000000000000000000000000000 

IssueCounter = 000000� 
CommitCounter = 000000� 

Disp Stall = 0� 
Restore = 0� 

Stage - 2 : IssueiDecode 
Decode Out - 1 = 000000000000000000000000000000000000000000000 
Decode Out - 2 = 000000000000000000000000000000000000000000000 
Decode Out - 3 = 000000000000000000000000000000000000000000000 
Decode Out - 4 = 000000000000000000000000000000000000000000000 

Stage - 3: Dispatch 
RR II: Fu_Code=OOO Opl=OOOOOOOO Vl=1 Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR I2: Fu_Code=OOO Opl=OOOOOOOO Vl=1 Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 13: Fu_Code=OOO Op 1=00000000 Vl=l Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 14: Fu_Code=OOO Opl=OOOOOOOO VI=l Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 

ii Instructions of the first fetch group being fetched in 'Fetch' stage. 
*•••••••*••••••• ·Time = 26.0ns················* 

Allocate = 0000000000000000000000000000000000000000000000000000000000000001 
Valid = 0000000000000000000000000000000000000000000000000000000000000001 
Commit = 0000000000000000000000000000000000000000000000000000000000000000 

IssueCounter = 000000� 
CommitCounter = 000000� 

Disp Stall = 0� 
Restore = 0� 

Stage - 2 : IssueiDecode 
Decode Out- 1 = 000000000000000000000000000000000000000000000 
DecodeOut-2 = 000000000000000000000000000000000000000000000 

81� 



Decode Out - 3 = 000000000000000000000000000000000000000000000� 
DecodeOut-4 = 000000000000000000000000000000000000000000000� 

Stage - 3: Dispatch 
RR 11: Fu Code=OOO Opl=OOOOOOOO Vl=1 Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 12: Fu=Code=OOO Op 1=00000000 Vl=1 Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 13: Fu_Code=OOO Op I=00000000 Vl=1 Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RRI4: Fu_Code=OOO Opl=OOOOOOOO Vl=1 Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 

II First fetch group in Decode stage. 
·········*····*··Time = 36.00s···*············· 

Allocate = 0000000000000000000000000000000000000000000000000000000000000001 
Valid = 0000000000000000000000000000000000000000000000000000000000000001 
Corrunit = 0000000000000000000000000000000000000000000000000000000000000000 

IssueCounter = 000000� 
CommitCounter = 000000� 

Disp Stall = 0� 
Restore = 0� 

Stage - 2 : IssuelDecode 
Decode Out - 1 = 011100101110100000000000000000000000000000000 
DecodeOut-2 = 000000000000000000000000000000000000000000000 
Decode Out - 3 = 0110011111 I 100000000000000000I00000000000000 1 
Decode Out - 4 = 0 II 00 100111 10011100000000000011110101110111 10 

Stage - 3: Dispatch 
RR 11: Fu_Code=OOO Op1=00000000 Vl=l Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 12: Fu_Code=OOO Op1=00000000 VI = 1 Op2=00000000 V2=1 Exe=OO Des -00 Reo=OO Disp=O 
RR 13: Fu_Code=OOO Op 1=00000000 Vl=l Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Di p=O 
RR 14: Fu_Code=OOO Opl=OOOOOOOO V1=1 Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 

II First Fetch group in Dispatch stage.� 
II Allocate bits updated for the assigned physical registers.� 
II Issue Counter incremented as instructions are written into ROB.� 
II Dispatch stall = 1. 3 ALU instructions. But only 2 ALU instructions can be dispatched.� 

·*·····**····****Time = 46.00s*···*··*·········� 

Allocate = 0000000000000000000000000000000000000000000000000000000000001111 
Valid = 0000000000000000000000000000000000000000000000000000000000000001 
Conunit = 0000000000000000000000000000000000000000000000000000000000000000 

IssueCounter = 000011� 
CommitCounter = 000000� 

Disp Stall = 1� 
Restore = 0� 

Stage - 2 : IssuelDecode 
Decode Out - 1 = 011001111010000000000000000001000000000000001 
Decode Out - 2 = 011001001010000100000000000001010010011001000 
Decode Out - 3 = 011001001111010000000000000001111111111111000 
Decode Out - 4 = 011100100111010100011101000000000000000000000 

82� 



Stage - 3: Dispatch 
RR 11: Fu Code=Oll Opl=OOOOOOOO Vl=1 Op2=OOOOOOOO V2=1 Exe=25 Dest=Ol Reo=OO Disp=O 
RR 12: Fu- Code=OOO Op 1=00000000 VI = 1 Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 13: Fu-Code=Oll Opl=OOOOOOOO Vl=1 Op2=O0008001 V2=1 Exe=OfDest=02 Reo=Ol Disp=O 
RR 14: Fu=Code=011 Opl=00000002 Vl=O Op2=0000f5de V2=1 Exe=09 Dest=03 Reo=02 Disp=O 

II non-dispatched instructions dispatched this cycle.� 
II issue counter does not increment. Due to dispatch stall.� 
·················Time = 56.0ns·················� 

Allocate = 0000000000000000000000000000000000000000000000000000000000001111 
Valid = 0000000000000000000000000000000000000000000000000000000000000001 
Commit = 0000000000000000000000000000000000000000000000000000000000000000 

IssueCouuter = 000011� 
CommitCounter = 000000� 

Disp Stall = 0� 
Restore = 0� 

Stage - 2 : IssuelDecode 
Decode Out - 1 = 011001111010000000000000000001000000000000001 
Decode Out - 2 = 011001001010000100000000000001010010011001000 
Decode Out - 3 = 011001001111010000000000000001111111111111000 
Decode Out - 4 = 011100100111010100011101000000000000000000000 

Stage - 3: Dispatch 
RR II: Fu_Code=O 11 Op1=00000000 VI =1 Op2=00000000 V2=1 Exe=25 Dest=O1 Reo=OO Disp= I 
RR [2: Fu_Code=OOO Op 1=00000000 Vl=1 Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 13: Fu_Code=011 Opl=OOOOOOOO Vl=1 Op2=O0008001 V2=1 Exe=OfDes -02 Reo=OI Di'p=1 
RR 14: Fu_Code=Oll Opl=00000002 Vl=O Op2=0000f5de V2=1 Exe=09 Dest=03 Reo=02 Di. p=O 

II Second fetch group enters dispatch.� 
114 ALU instructions. Hence it has to stall.� 
II Issue counter incremented by four from previous cycle.� 
II Instructions (1) and (3) completes and sets corresponding valid bits to 'I '.� 

·················Time = 66.0ns···········*····· 

Allocate = 0000000000000000000000000000000000000000000000000000000011111111 
Valid = 0000000000000000000000000000000000000000000000000000000000000111 
Conunit = 0000000000000000000000000000000000000000000000000000000000000000 

IssueCounter = 0001 11� 
CommitCounter = 000000� 

Disp Stall = 1� 
Restore = 0� 

Stage - 2 : IssuelDecode 
Decode Out - 1 = 011001] 11001000000000000000001000000000000000 
Decode Out - 2 = 100000011111110000000000000000000000000000000 
Decode Out - 3 = 011001001001000010000000000000110110100010100 
Decode Out - 4 = 011101010001011110011101000000000000000000000 

83� 



Stage - 3: Dispatch 
RR 11: Fu_Code=011 Opl=OOOOOOOO VI=1 Op2=OOO08001 V2=1 Exe=OfDest=04 Reo=03 Disp=O 
RR 12: Fu_Code=Oll Opl=00000004 VI=O Op2=OOOOa4c8 V2=1 Exe=09 Des =05 Reo=04 Disp 
RR 13: Fu_Code=Oll Opl=OOOOOOOO VI=I Op2=0000fff8 V2=1 Exe=09 Des -06 Reo=05 Disp=O 
RR 14: Fu_Code=011 Opl=O0000005 VI=O Op2=O0000006 V2=0 Exe=24 Des -07 Reo=06 Disp=O 

II (1) and (3) committed in this cycle. 
II Commit Counter incremented. 

*****************Time = 76.0ns***************** 

Allocate = 0000000000000000000000000000000000000000000000000000000011111111 
Valid = 0000000000000000000000000000000000000000000000000000000000000111 
Commit = 0000000000000000000000000000000000000000000000000000000000000000 

IssueCounter = 000 II 1� 
CommitCounter = 0000 I0� 

Disp Stall = 0� 
Restore = 0� 

Stage - 2 : IssueIDecode 
Decode Out - 1 = 011001111001000000000000000001000000000000000 
Decode Out - 2 = 100000011111110000000000000000000000000000000 
Decode Out - 3 = 011001001001000010000000000000110110100010100 
Decode Out - 4 = 011101010001011110011101000000000000000000000 

Stage - 3: Dispatch 
RR 11: Fu_Code=OII Opl=OOOOOOOO Vl=1 Op2=O0008001 V2=1 Exe=OfDest=04 Reo=03 Disp=l 
RR 12: Fu_Code=Oll Opl=0000OO04 V1=0 Op2=OOOOa4c8 V2=1 Exe=09 Dest=05 Reo=04 Disp=1 
RR 13: Fu_Code=Oll Opl=OOOOOOOO V1=1 Op2=O000fff8 V2=1 Exe=09 Dest=06 Reo=OS Disp=O 
RR 14: Fu_Code=OII Opl=OOOOOOOS Vl=O Op2=00000006 V2=0 Exe=24 Des 7 Reo=06 Disp=O 

II (1) and (3) updates CP and hence Commit Bit is updated for the corresponding locations.� 
II Third fetch group enters Dispatch.� 
II Issue Counter incremented.� 

*****************Time = 86.00s***************** 

Allocate = 0000000000000000000000000000000000000000000000000000111111111111 
Valid = 0000000000000000000000000000000000000000000000000000000000000111 
Commit = 0000000000000000000000000000000000000000000000000000000000000110 

IssueCounter = 00 I0 II� 
CommitCounter = 000010� 

Disp Stall = I� 
Restore = 0� 

Stage - 2 : IssueIDecode 
Decode Out- 1 = 100000100000000000000101000000000000000000100 
DecodeOut-2 = 000000000000000000000000000000000000000000000 
Decode Out - 3 = 0110011110010 I0000000000000001000000000000000 
DecodeOut-4 = 000000000000000000000000000000000000000000000 

Stage - 3: Dispatch 

84 



RR 11: Fu_Code=011 Opl=OOOOOOOO VL=1 Op2=O0008000 V2=1 Exe=OfDest=08 Reo=07 Disp=O� 
RR 12: Fu_Code=100 Opl=O0000123 Vl=1 Op2=00000000 V2=1 Exe=03 Des -09 Reo=08 Disp=o� 
RR 13: Fu_Code=OII Opl=O0000008 Vl=O Op2=00006d14 V2=1 Exe=09 Des -Oa Reo=09 Disp=O� 
RR 14: Fu_Code=OII Opl=O0000003 Vl=O Op2=00000007 V2=0 Exe=2a Dest=Ob Reo=Oa Disp=O� 

II Instruction (4) writes back and bence, valid bit is set. 
·················Time = 96.0ns················· 

Allocate = 0000000000000000000000000000000000000000000000000000111111111111 
Valid = 000000000000000000000000000000000000000000000000000000000000111L 
Commit = 0000000000000000000000000000000000000000000000000000000000000110 

IssueCounter = 001011� 
CommitCounter = 000010� 

Disp Stall = 0� 
Restore = 0� 

Stage - 2 : Issue/Decode 
Decode Out - ] = LOOOOOLOOOOOOOOOOOOOOI0LOOOOOOOOOOOOOOOOOOI00 
Decode Out - 2 = 000000000000000000000000000000000000000000000 
Decode Out - 3 = 011001LI1001010000000000000001000000000000000 
Decode Out - 4 = 000000000000000000000000000000000000000000000 

Stage - 3: Dispatch 
RR II: Fu_Code=011 Opl=OOOOOOOO Vl=l Op2=00008000 V2=1 Exe=pfDest=08 Reo=07 Disp=l 
RR 12: Fu_Code=IOO Opl=00000123 VI=l Op2=00000000 V2=1 Exe=03 Dest=09 Reo=08 Disp=1 
RR 13: Fu_Code=011 Opl=00000008 VI=o Op2=00006d14 V2=1 Exe=09 Dest=Oa Reo=09 Disp=l 
RR 14: Fu_Code=011 Opl=8000fSde Vl=1 Op2=00000007 V2=O Exe=2a Dest=Ob Reo=Oa Disp=O 

II Instructions (5) and (10) finish execution and set valid bits. JAL writes correct target addre s into ROB.� 
II Commit counter incremented due to commit of instruction (4).� 
·················Time = 106.0ns·················� 

Allocate = 0000000000000000000000000000000000000000000000000001111111111111 
Valid = 0000000000000000000000000000000000000000000000000000001000011111 
Commit = 0000000000000000000000000000000000000000000000000000000000000110 

IssueCounter = 001101� 
CommitCounter = 000011� 

Disp Stall = 0� 
Restore = 0� 

Stage - 2 : ]ssue/Decode 
Decode Out- 1 = 000000000000000000000000000000000000000000000 
DecodeOut-2 = 01]001001001000000000000000000000000000000001 
Decode Out - 3 = 011001111001010000000000000001000000000000000 
Decode Out - 4 = 01100100 LOO 10100to 100000000000110 11 0 t 0000 1000 

Stage - 3: Dispatch 
RR 11: Fu_Code=100 Op1=00000000 VI =1 Opl=OOOOOOOb V2=O Exe=04 Dest=OO Reo=Ob Disp=O 
RR 12: Fu_Code=OOO Opl=OOOOOOOO Vl=1 Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 13: Fu_Code=Otl Opl=OOOOOOOO Vl=1 Op2=00008000 V2=1 Exe=OfDest=Oc Reo=Oc Disp=O 
RR 14: Fu_Code=OOO Op 1=00000000 Vl=l Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 

85� 



II Instruction (4) updates CP and hence commit bit for that VB location is set to '1 '.� 
II Allocate bit and Valid bit of the VB location, indexed by the previous content ofCP (2) is set to '0'.� 
II physical register number 2 is reclaimed for future allocation.� 
·················Time = 116.00s·················� 

Allocate = 0000000000000000000000000000000000000000000000001111111111111011 
Valid = 0000000000000000000000000000000000000000000000000000001001011111 
Commit = 0000000000000000000000000000000000000000000000000000000000001010 

IssueCounter = 010000� 
CommitCounter = 000100� 

Disp Stall = 1� 
Restore = 0� 

Stage - 2 : IssuelDecode 
Decode Out - 1 = 011001111001100000000000000001000000000000000 
Decode Out - 2 = 011001001001100011000000000000110110100010000 
Decode Out - 3 = 000000000000000000000000000000000000000000000 
Decode Out - 4 = 000000000000000000000000000000000000000000000 

Stage - 3: Dispatch 
RR 11: Fu_Code=OOO Op 1=00000000 VI =1 Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 12: Fu_Code=011 Opl=OOOOOOOO V1=1 Op2=00000001 V2=1 Exe=09 Dest=Od Reo=Od Disp=O 
RR 13: Fu_Code=OII Opl=OOOOOOOO Vl=1 Op2=O0008000 V2=1 Exe=OfDest=Oe Reo=Oe Disp=O 
RR 14: Fu_Code=OII Op1=0000000e V1=0 Op2=00006d08 V2=1 Exe=l?9 Dest=OfReo=OfDisp=O 

·*·····*·***·****Tirne = 

Allocate = 0000000000000000000000000000000000000000000000001111111111111011 
Valid = 00000000000000000000000000000000000000000000000000000011010111.11 
Commit = 0000000000000000000000000000000000000000000000000000000000011010 

IssueCounter = 010000� 
CommitCounter = 000100� 

Disp Stall = 0� 
Restore = 0� 

Stage - 2 : IssuelDecode 
Decode Out - 1 = 011001111001100000000000000001000000000000000 
Decode Out - 2 = 011001001001100011000000000000110110100010000 
Decode Out - 3 = 000000000000000000000000000000000000000000000 
Decode Out - 4 = 000000000000000000000000000000000000000000000 

Stage - 3: Dispatch 
RR 11: Fu_Code=OOO Op 1=00000000 VI=1 Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 12: Fu_Code=Oll Opl=OOOOOOOO Vl=1 Op2=OOOOOOOl V2=1 Exe=09 Dest=Od Reo=Od Disp=1 
RR 13: Fu_Code=O 11 Op 1=00000000 VI = 1 Op2=O0008000 V2=1 Exe=Of Dest=Oe Reo=Oe Disp=1 
RR 14: Fu_Code=OII Op1=OOOOOOOe Vl=O Op2=00006d08 V2=1 Exe=09 Dest=OfReo=OfDisp=O 

***···***********Time = 136.0ns*·*******··**·*·* 

Allocate = 0000000000000000000000000000000000000000000000011111111111111111 
Valid = 0000000000000000000000000000000000000000000000000001001101111011 
Commit = 0000000000000000000000000000000000000000000000000000000000011010 

86� 



IssueCounter = 010010� 
CommitCounter = 000100� 

Disp Stall = 0� 
Restore = 0� 

Stage - 2 : IssueIDecode 
Decode Out - 1 = 000000000000000000000000000000000000000000000 
Decode Out - 2 = 000000000000000000000000000000000000000000000 
Decode Out - 3 = 000000000000000000000000000000000000000000000 
Decode Out - 4 = 000000000000000000000000000000000000000000000 

Stage - 3: Dispatch 
RR 11: Fu_Code=O11 Op1=00000000 VI = 1 Op2=00008000 V2=1 Exe=Of Dest=02 Reo=10 Disp=O 
RR 12: Fu Code=011 Op1=00000002 Vl=O Op2=O0006d10 V2=1 Exe=09 Dest=10 Reo=11 Disp=O 
RR 13: Fu=Code=OOO Opl=OOOOOOOO Vl=l Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 14: Fu_Code=OOO Op 1=00000000 V1=1 Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 

*****************Time = 146.0ns***·*·······*··*· 

Allocate = 0000000000000000000000000000000000000000000000011111111111L11111 
Valid = 0000000000000000000000000000000000000000000000000111001101111011 
Commit = 0000000000000000000000000000000000000000000000000000000000011010 

IssueCounter = 010010� 
CommitCounter = 000110� 

Disp Stall = 0� 
Restore = 0� 

Stage - 2 : Issue/Decode 
Decode Out - 1 = 000000000000000000000000000000000000000000000 
Decode Out - 2 = 000000000000000000000000000000000000000000000 
Decode Out - 3 = 000000000000000000000000000000000000000000000 
Decode Out - 4 = 000000000000000000000000000000000000000000000 

Stage - 3: Dispatch 
RR 11: Fu_Code=OOO Opl=OOOOOOOO V1=1 Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 12: Fu_Code=OOO Opl=OOOOOOOO V1=1 Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 13: Fu_Code=OOO Op1=OOOOOOOO V1=1 Op2=00000000 V2=1 Exe=OO Des 0 Reo=OO Disp=O 
RR 14: Fu_Code=OOO Op1=00000000 V1=1 Op2=00000000 V2=1 Exe=OO Des -00 Reo=OO Disp=O 

II Branch delay slot instruction (11) writes back and sets valid bit to '1'. 
·····*···********Time = 156.0ns·*****·*·······** 

Allocate = 0000000000000000000000000000000000000000000000011111111111101111 
Valid = 0000000000000000000000000000000000000000000000000111011101111011 
Commit = 0000000000000000000000000000000000000000000000000000000001101010 

IssueCounter = 010010� 
CommitCounter = 000110� 

Disp Stall = 0� 
Restore = 0� 

87� 



Stage - 2 : IssuelDecode 
Decode Out - 1 = 000000000000000000000000000000000000000000000 
DecodeOut-2 = 000000000000000000000000000000000000000000000 
DecodeOut-3 = 000000000000000000000000000000000000000000000 
Decode Out - 4 = 011100101001010000011010000000000000000000000 

Stage - 3: Dispatch 
RR 11: Fu Code=OOO Opl=OOOOOOOO VI=l Op2=00000000 V2=1 Exe=OO Des =00 Reo=OO Disp=O 
RR 12: Fu:Code=OOO Opl=OOOOOOOO VI=1 Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 13: Fu_Code=OOO Opl=OOOOOOOO Vl=1 Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 14: Fu_Code=OOO Opl=OOOOOOOO Vl=1 Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 

II Branch Mispredition is detected by commit logic. 
•• ... ·········*****Time = 166.0ns···*···*······*··· 

Allocate = 0000000000000000000000000000000000000000000000011111111111111111 
Valid = 0000000000000000000000000000000000000000000000000111011111101111 
Commit = 0000000000000000000000000000000000000000000000000000000001101010 

IssueCounter = 010011� 
CommitCounter = 00011 0� 

Disp Stall = 0� 
Restore = 0� 

Stage - 2 : IssuelDecode 
Decode Out - 1 = 011100101001100000011100000000000000000000000 
Decode Out - 2 = 0111001010011100000III 01000000000000000000000 
DecodeOut-3 = 011100101010000000001000000000000000000000000 
DecodeOut-4 = 000000000000000000000000000000000000000000000 

Stage - 3: Dispatch 
RR 11: Fu_Code=OOO Op I=00000000 VI=1 Op2=OOOOOOOO V2=1 Exe=OO De -00 Re -00 Disp=O 
RR 12: Fu_Code=OOO Op 1=00000000 Vl=l Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 13: Fu_Code=OOO Opl=OOOOOOOO VI=l Op2=00000000 V2=1 Exe=OO Des =00 Reo=OO Disp=O 
RR 14: Fu_Code=011 Op 1=00000000 VI=I Op2=00000000 V2=1 Exe=25 Dest=04 Reo=12 Disp=O 

II Four instructions (8, 9, 10, 11) commit. Conunit counter incremented by fOUf from previous cycle. 
*·**... ··**······**Time = 176.0ns*······**·*·**·** 

Allocate = 0000000000000000000000000000000000000000000011111111111111111111 
Valid = 0000000000000000000000000000000000000000000000001111011111101111 
Commit = 0000000000000000000000000000000000000000000000000000000001101010 

IssueCotmter = 010110� 
ConunitCounter = 001010� 

Disp Stall = 1� 
Restore = 0� 

Stage - 2 : IssuelDecode 
Decode Out- 1 = 000000000000000000000000000000000000000000000 
DecodeOut-2 = 000000000000000000000000000000000000000000000 
DecodeOut-3 = 000000000000000000000000000000000000000000000 
DecodeOut-4 = 000000000000000000000000000000000000000000000 

88 



Stage - 3: Dispatch 
RR II: Fu Code=OII Opl=OOOOOOOO VI=1 Op2=8000fSde V2=1 Exe=25 Des -II Reo=13 Disp=O 
RR 12: Fu- Code=OII Opl=OOOOOOOO VI=1 Op2=8000a4c8 V2=1 Exe=25 Dest=12 Reo=14 Disp=O 
RR l3: Fu- Code=Oll Opl=OOOOOOOO Vl=1 Op2=8000a4c8 V2=1 Exe=25 Des -13 Reo=15 Di p=O 
RR 14: Fu=Code=OOO Opl=OOOOOOOO Vl=1 Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 

II Commit Bits of VB locations whose address is stored in CP is set to 'I'.� 
II Restore is set to '1'.� 
II CP contents are copied to IP internally.� 
··········*···*··Tirne = 186.0ns·····"········*·*� 

AHocate = 0000000000000000000000000000000000000000000011111111111010111111 
Valid = 0000000000000000000000000000000000000000000000000000011010101011 
Commit = 0000000000000000000000000000000000000000000000000000011010101010 

IssueCounter = 010 I 10� 
CommitCounter = 001010� 

Disp Stall = 0� 
Restore = 1� 

Stage - 2 : IssuelDecode 
Decode Out - I = 000000000000000000000000000000000000000000000 
Decode Out - 2 = 000000000000000000000000000000000000000000000 
Decode Out - 3 = 000000000000000000000000000000000000000000000 
Decode Out - 4 = 000000000000000000000000000000000000000000000 

Stage - 3: Dispatch 
RR 11: Fu_Code=OOO Opl=OOOOOOOO VI=1 Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 12: Fu_Code=OOO Op I=00000000 Vl=l Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 13: Fu_Code=OOO Op I=00000000 V1=1 Op2=00000000 V2=1 Exe 0 Des -00 Reo=OO Disp=O 
RR 14: Fu_Code=OOO Opl=OOOOOOOO Vl=1 Op2=00000000 V2=1 Exe- 0 Dest=OO Reo=OO Di p=O 

II Commit Bit's values are copied to Allocate and Valid bits. To clear the change done to allocate and� 
II valid bits by speculated instructions.� 
····**····*···*·*Time = 196.0ns·*····*·**·**··*·� 

Allocate = 0000000000000000000000000000000000000000000000000000011.010101011 
Valid = 0000000000000000000000000000000000000000000000000000011010101.011 
Commit = 0000000000000000000000000000000000000000000000000000011010101010 

IssueCounter = 001010� 
CommitCounter = 001010� 

Disp Stan = 0� 
Restore = 0� 

Stage - 2 : IssuelDecode 
Decode Out - 1 = 000000000000000000000000000000000000000000000 
Decode Out - 2 = 000000000000000000000000000000000000000000000 
Decode Out - 3 = 000000000000000000000000000000000000000000000 
Decode Out - 4 = 000000000000000000000000000000000000000000000 

Stage - 3: Dispatch 
RR II: Fu_Code=OOO Opl=OOOOOOOO Vl=1 Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 12: Fu_Code=OOO Opl=OOOOOOOO VI=1 Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 

89� 



RR 13: Fu Code=OOO Op1=00000000 V1=1 Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O� 
RR 14: Fu=Code=OOO Op I=00000000 V1=1 Op2=00000000 V2=1 Exe=OO Dest=OO Reo=OO Disp=O� 

*****************Time = 206.005***************** 

Allocate = 0000000000000000000000000000000000000000000000000000011010101011 
Valid = 0000000000000000000000000000000000000000000000000000011010101011 
Commit = 00000000000000000000000000000000000000000000000000000\\010101010 

1ssueCounter = 00 1010� 
CommitCounter = 00 I0 I0� 

Disp Stan = 0� 
Restore = 0� 

Stage - 2 : IssuelDecode 
Decode Out - 1 = 011100101001010000011010000000000000000000000 
Decode Out - 2 = 011100101001100000011100000000000000000000000 
Decode Out - 3 = 011100101001110000011101000000000000000000000 
Decode Out - 4 = 011 10010101000000000 1000000000000000000000000 

Stage - 3: Dispatch 
RR I1: Fu_Code=OOO Op 1=00000000 V1=1 Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 12: Fu_Code=OOO Opl=OOOOOOOO VI=I Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 13: Fu_Code=OOO Opl=OOOOOOOO Vl=1 Op2=OOOOOOOO V2=1 Exe=OO Dest=OO Reo=OO Disp=O 
RR 14: Fu_Code=OOO Opl=OOOOOOOO Vl=1 Op2=OOOOOOOO V2=1 EX~=OO Dest=OO Reo=OO Disp=O 

II Instructions fetched from the jumped location enters dispatch. OP2 has the values computed by� 
II instructions before the mispredicted JAL. Thus values in register computed by correct instructions� 
II are preserved during restore, proving COrrect operation.� 
*********** ******Time = 216.0ns*****************� 

Allocate = 00000000000000000000000000000000000000000000000000000\111\11111\ 
Valid = 0000000000000000000000000000000000000000000000000000011010101011 
Commit = 0000000000000000000000000000000000000000000000000000011010101010 

IssueCounter = 00 1110� 
CommitCounter = 0010 10� 

Disp Stall = I� 
Restore = 0� 

Stage - 2 : IssuelDecode 
Decode Out - 1 = 000000000000000000000000000000000000000000000 
Decode Out - 2 = 000000000000000000000000000000000000000000000 
Decode Out - 3 = 000000000000000000000000000000000000000000000 
Decode Out - 4 = 000000000000000000000000000000000000000000000 

Stage - 3: Dispatch 
RRIl: Fu_Code=011 Opl=OOOOOOOO Vl=l Op2=00000000 V2=1 Exe=25 Dest=02 Reo=Oa Disp=O 
RR 12: Fu_Code=011 Opl=OOOOOOOO VI=l Op2=8000f5de V2=1 Exe=25 Dest=04 Reo=Ob Disp=O 
RR 13: Fu_Code=Oll Opl=OOOOOOOO Vl=l Op2=8000a4c8 V2=1 Exe=25 Dest=06 Reo=Oc Disp=O 
RR 14: Fu_Code=Oll OpI=OOOOOOOO VI=l Op2=8000a4c8 V2=1 Exe=25 Dest=08 Reo=Od Disp=O 

90� 



*·**·*·*·**·***·*TUne= 226.0ns·*****·**·****·** 

AIlocate = 0000000000000000000000000000000000000000000000000000011111111111 
Valid = 0000000000000000000000000000000000000000000000000000011010101011 
Commit = 0000000000000000000000000000000000000000000000000000011010101010 

IssueCounter = 00 1110� 
CommitCounter = 001010� 

Disp Stall = I� 
Restore = 0� 

Stage - 2 : IssuelDecode 
Decode Out - I = 000000000000000000000000000000000000000000000 
Decode Out - 2 = 000000000000000000000000000000000000000000000 
Decode Out - 3 = 000000000000000000000000000000000000000000000 
Decode Out - 4 = 000000000000000000000000000000000000000000000 

Stage - 3:. Dispatch 
RR 11: Fu_Code=011 Opl=OOOOOOOO VI=I Op2=00000000 V2=1 Exe=25 Dest=02 Reo=Oa Disp=O 
RR 12: Fu_Code=OII Opl=OOOOOOOO VI=I Op2=8000f5de V2=1 Exe=25 Dest=04 Reo=Ob Disp=O 
RR 13: Fu_Code=011 Opl=OOOOOOOO VI=l Op2=8000a4c8 V2=J Exe=25 Dest=06 Reo=Oc Disp=O 
RR 14: Fu_Code=O'11 Opl=OOOOOOOO Vl=1 Op2=8000a4c8 V2=1 Exe=25 Dest=08 Reo=Od Disp=O 

lA22 "YR.test.v": $finish at simulation time 230.0ns 
osimulation events (use +profile or +listcounts option to count) + 469470 accelerated events + 338686 
timing check events 
CPU time: 1.4 sees to compile + 5 LO secs to link + 78.2 secs in simulation 
End of VERILOG-XL 2.8.s008 Oct 20,2003 21:02:02 

91� 



---

SIGNAL SCAN 

1) Verification of Virtual Registers Cycles (0-50) 

1 eA: 0 yO 
Cursor2 : 0 ps

d : "la, 300 p~ 

: -145, ~30 p' 0 JO,OOO ~lj.OOG ~,OOO 40 000 50,OCO . 
J 

ell : 0 I I I I I I I I I I I 

me':: 0 I 

lmt Jlockl1 OOOOOOOOOOOOOOOOOOOOGOOOOOOOOOO[ 10000D025000000003C*13C088001250BMC8241Dm8011Oi824 

l~UeCCU!ltu 00 103-
rlB\!': b 00 100000000~0000000: 100000000000000000· 100000000000000000' 100000000000000000' 100000110100000010· 100000lW 

r2Bus : 'b 00 100000000~0000000t 100000000000000000. 100000000000000000' 100000000000000000+ 100000111000000100* 100000111* 

:3Bus: b 00 100000000~OOOOOOOt 100000000000000000. 100000000000000000' 100000000000000000+ 10000011100:]~00110' 100000~1~ * . 
-

ABus: b 00 lOOOOOOOO~OOOOOOOt 100000000000000000* 100000000000000000' 100000000000000000* 10000011' 100000000'10000011' 
-

rob_co lete I i 0000 

flO_CO 1:15 0 00 

co ltcounter DO 
-

restore: 0 
-

2) Verification of Virtual Registers Cycles (60-110) 

m: (O)p, 
: 230,000 ps� 

: -14~, 430 ps ;c, 040� 70,000 80 :00 JO 000 'OG, DUO ~10,OOO 

ell : 0 I I I I I I I I I I 

rese" : 0 

Mtr_block 11 3CG4&0000COOO12324846D14039D2B2A 110050004000000003C05800000000000 IOOOOOOOO24lk400013C'13c06BOO024C66DlOOO' 

S3ue ounter 07 lOB iOO 110 
lBu· : '0 00 000omo-10000001- 4QOOOOlll+IOOOOOOl- 100000111+10000000+ 100000111+10000000' ~OOOOOOlO' 10010000' 100000010' looooooe' 

12Bue : '0 00 00000111'10000001' ~0000001Q+ 10000001* 100000010+10001011- 100000010*10001011*~UOOUOOI0' 10000000* 400000111*10000000* 

!3Bu, : 'b 00 000001UZ 100[10011- «10000010* 10000011. 1000000JOt10000000* 100000010.10000000' ~00000111·IOOOOOOOO*100000111 *10000000* 
14,Bl.'8 : '0 00 00000000'10000011*~00000111 *10000011' IOe000111+10000000' 100000111 '10000000' ~000001l1· 100000000"00000001*10000000­

cob_co plete ( 0000 111100 10000 11000 10000 11000 11)000 moo 
roc J,:IS r 00 102 100 101 100 101 1100 

co : unter 00 102 103 104 
restore: n 

92� 



3) Verification of Virtual Registers Cycles (I 20-170) 

~. = 0 0) p: : ursor1 = 152 060 p 
,

d = 2 0.000 p~
 

= -152,060 p. :20 150 130 000 40.0 a 5� 

elk = 1 

r':5 et = a 1;:;;;;;;;;;;:;;;:;::;;;;;:::;;;:;;:;;:;;:;;;:;;::;;:;;::;;;.;;::;;;;;;;;;;;:;;:;;;;;==:;;;,;;;;;:;;;;;;:;;:;;:;;:;;::;:;;;;;;;;;;;;;;;:;;::;:;;;;; 
in. tr_block[l r:;3C;:0::6S::0::00::24::C::66::D:::10::0::*;.:;============~====:::;~====~ 
lssuecountec 10 

IlBus = 'b 00 0000001*� 
EBU!. = •b 00 ~00~00~0~1l;"~~;;;~~;;;~~~~~~~~;;;:;::;;;';;;;~~;;;~~~:;:;;;;;;;::;
 
13Bu5 = 'b 11 0000011* 

14~us = 'b 00 0000000* 

rob_co pletel 0000 

no_comklt[5 a 00 

CO~ltcounter 04 

restore = a 

4) Verification of Virtual Registers Cycles (180-230) 

lite1l = 0(0) pa :~ursor1 = 185,040 pe 
, 
, 

= -lBS, 040 ~~ iO 110 180.000 , J90 000 .200 000 ,210.000 J 220~ 000 ~ 

d = 230.000 )S , 

I 
, 
,c:X. 0 I I 
I I I I I I I I I 

I 
r set = 0 , 

lnstrJI cki1 00000000000000000000000000000000 1001A2B25001~00OooooOOOOOOOOOOOOOOOOOOooOOOOD , 
lis!Ut Q ter 16 , 

lOA lUf 

IlSU5 = 'h ~z 00000001" 0000000+ 100000000+ 100000000+ 100000000+ 100000001010000100+ 10000000+-
II2Bus = 'b rr 00100000+ 10000000+ 100000000' 100000000+ 100000000* 100000001100001UOO' 10000000' 

- -I3Bus = 'b Z~ 00000001'10000001' 100000000+ 100000000+ JOOOOOOOO* 100000001110001100* loom 00 • I 

-1411us • 'b zz 00000001*100000000+ 100000000' 100000000+ ~OOOOOOOO' 10000001000001001J0' 10000U01' 
r~b_(o ple -I 1110000 10011 .0000 , 

,, 
M_CQ :tlS 0 00 , 

,CT 1 ow:te OA 

Ie.t~re = 1. I I 
I 

93� 



Appendix B� 
Bubble Sorting Execution� 

The following C program is a 'Bubble Sorting' program, which sorts a five element array i.n de cending 
order of its contents. Due to the inherent loop carried dependency in this algorithm, instruction lev I 
paralleHsm is limited. 

mainO 
{ 

int i, j, k; 
int correct; 
int a[5]; 
int resu1t(int, int, int, int, int); II fun.ction declaration. 

i = 0;� 
j =0;� 
correct = 0;� 

II Load Values in array� 
a[O] = 3;� 
a[l] = 16;� 
a[2] = 4;� 
a[3] = 670;� 
a[4] = 59;� 

II Bubble sort� 
while(i <= 4){� 

forU = i;j <4;j= j+l){� 
II check if the present element is greater than� 
II the next element. If so, swap the elements.� 
if (a[i] < a[j+l]){� 

k=a[j+1];� 
a[j+ I] = a[i];� 
a[i] = k;� 

} 
}� 

i = i+l;� 
}� 

correct = result(a[O], a[1], a[2], a[3), a[4]); 

II returned value is loaded into last array position 
a[4] = correct; 

} 

II Subroutine checks for the correct sorting and� 
II returns 1 if correctly sorted.� 
int result(int a, int b, int c, int d, int e)� 
{� 
it{a > b && b > c && c > d && d > e)� 

retum(l);� 
else� 

return(O);� 

94� 



Appendix C� 
Squared Series Sum Execution� 

The following C program is a 'squared series sum' program, which squares and sums a series using a loop. 
Notice that, successive iterations of the loop can execute independent of the previous iteration's result. 
Hence, instruction level parallelism exist. 

mainO{ 

int i sum;� 
int a[2];� 

i = sum = 0; 

II square and sum 
while (i <= 25) {� 
sum = sum + (i"'i);� 
i = i+l;� 

} 

II store the fmal value� 
II in an array.� 
a[O] = sum;� 

} 

95� 



VITA 

Balachander Ganesan 

Candidate for the Degree of 

Master of Science 

Thesis: REGISTER RENAMING ALGORITHM FOR FAST BRANCH 

MISPREDICTION RECOVERY IN SUPERSCALAR PROCESSOR 

Major Field: Electrical and Computer Engineering 

Biographical: 

Personal Data: Born in Trichy~ Tamil Nadu, India on May 21, 1980 the 
son ofMr. T.R .Ganesan and Mrs. S. Lalitha. 

Education: Received Bachelor ofEngineering in Electrical and Electronics 
Engineering from the University of Madras, Chennai, .India in May, 2001. 
Completed the requirements for the Master of Science degree with a major 
in Electrical and Computer Engineering at Oklahoma State University in 
December, 2003. 

Professional Experience: January 2002 - March 2003: VB Programmer, College 
OfBusiness Administration, Oklahoma State University, Stillwater.. 
August 2002 - May 2003: Teaching Assistant, Department of Electrical 
Engineering, Oklahoma State University, Stillwater. 




