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CHAPTER ONE 

INTRODUCTION 

Problem and Importance 

Iron status is a dichotomous nutritional dilemma. Iron deficiency anemia is the 

most common nutritional deficiency disease worldwide, while increased food 

fortification and supplement use have raised concern regarding the potential for a higher 

incidence of iron overload (Roughead, et a1. 1999). 

Anemia affects approximately 4.1 million Americans, and of these cases, 

approximately 60% of those affected are less than 45 years of age. Anemia is more 

prevalent in female populations. In 1995, anemia affected 55 women out of every 1000 

less than 64 years of age, whereas only 9 per 1000 men of the same age group were 

affected (Vital and Health Statistics Series 10, No. 199, 1995). Anemia has been found 

consistently in the NHANES studies from 1983 through the present. Meyers et al (1983) 

examined NHANES 1data to determine the prevalence of anemia in women in the United 

States. They found iron deficiency to be the primary cause of anemia and that the disease 

predominates in African American women versus Caucasian. Using a hemoglobin "cut 

off' value of 12 gldL to classify anemia, they estimated that approximately 4% of 

Caucasian study participants and 20% African American study participants were anemic 

(Meyers, et a1. 1983). Dallman et al (1984) examined NHANES 1I data to estimate the 

prevalence of anemia in that study population. Classification of anemia was based on 

hemoglobin values below the 95th percentile reference ranges. In women aged 18-64, this 

value was 11.7 mgldL, and the greatest prevalence of anemia was found in women aged 



25-44 (5.8%). They concluded, as did Meyers and his colleagues, that iron deficiency 

was the primary cause of anemia (Dallman, et a1. 1984). Analysis ofNHANES ill data 

found that dietary iron intake was related to iron status and that low iron stores were 

found in approximately 8% and 17% of non-Hispanic white (NHW) women and Mexican 

American (MA) women, respectively (Ramakrishanan et al 2002). NHANES ill data 

was also analyzed to estimate the prevalence of iron deficiency, anemia, and iron 

deficiency anemia in 12-39 year old NHW and MA females. Mexican American females 

had much higher rates of iron deficiency, anemia, and iron deficiency anemia (16.6%, 

10.1 %, and 6.2%, respectively) than the NHW females (6.1%, 6.6%, and 2..3%, 

respectively). Collectively, over one third of the females with iron deficiency 

concomitantly had anemia (Frith-Terhune et ai, 2000). A comparison ofNHANES I, II 

and III data regarding the prevalence of anemia in Caucasian females shows a gradual 

rise from 1971 to 1994. The approximate prevalence percentages increased from 4% in 

NHANES I to 5.8% in NHANES II to 6.6% in NHANES III (Meyers et a11983, 

Dallman, et a1. 1984, Frith-Terhune et ai, 2000). 

The Food and Nutrition Board of the Institute of Medicine published the Dietary 

Reference Intakes (DRls), which is a comprehensive report of reference intake values for 

essential nutrients and dietary components. The DRIs are composed of reference values 

for the Recommended Daily Allowances (RDA), Estimated Average Requirements 

(EAR), Adequate Intakes (AI), and Tolerable Upper Intake Levels (UL) (lOM 2001). 

The reference values published in this document are useful for comparing with estimates 

of nutrient intakes of specific populations to assess the adequacy of that populations' 

intake. Alaimo et al (1994) found that the average daily iron intake of females 12-49 
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years of age was approximately 12.40 mg,. which is consistently below the RnA of 15 

mg/day for females 14-18 years and 18 mg/day for females 19-50 years (10M, 2001). 

Cusatis et al (2000) examined stability versus variability in nutrient intakes of adolescent 

females 12-18 years of age. A cohort of 81 females was divided into quartiles based on 

weight, and for each variable, the quartiles were compared. At the beginning of the study 

period, mean dietary iron intake ranged from 9.4-16.6 mg, which is well above the RDA 

of 8 mg/day for adolescents 9-13 years of age. However, longitudinal linear analyses 

revealed a significant decrease (p=0.0411) in iron intake over time in the 4th quartile, and 

that the mean iron intake of females in the 2nd and 3rd quartiles did not change 

significantly from 10.4 and 12.5 mg/day, respectively, both of which are below the RDA 

for females 14-18 years (Cusatis et a12000, 10M 2001). Dietary iron intake, as it is 

affected by dieting, was examined by Mulvihillet al (2002). Sixty-four females 14-18 

years of age were classified at low, medium, or high levels of dietary restraint, and were 

found to have average dietary iron intakes of9.59, 9.46, and 9.46 mg/day, respectively. 

The differences in dietary iron intakes among groups were not significant but failed to 

meet the RDA of 15 rng/day (lOM 2001, Mulvihill et aI2002). The RDAs are set at 

levels that will ensure the nutrient needs of 98% of the healthy population are met. 

Conversely, the EARs are estimates of average requirements resulting in meeting the 

approximate nutrient needs of 50% of the healthy population. The EAR of iron is 

5.7mg/d for adolescent females 9-13 years, 7.9 mg/d for women 14-18 years, 8.1 mg/d 

for women 31-50 years, and 5 mg/d for females over age 50 (10M 2001). When 

compared to the EARs, the findings ofAlaimo et al (1994), Cusatis et al (2000), and 

Mulvilhill et al (2002), meet or exceed the EAR. Dietary iron needs decrease for women 
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over 51 years of age (RDA=8 mg/day and EAR=5 mg/day (10M 2001». The average 

daily dietary iron intake of this population was found by Alaimo et al (1994) to be 12.35 

mg/day. Ervin and Kennedy-Stephenson (2002) assessed the iron intakes of elderly 

adults (>60 years of age) who participated in NHANES III. Female participants whose 

iron was supplied solely from diet had mean iron intakes of 11.4 mg/day (Ervin and 

Kennedy-Stephenson 2002). The findings of both Alaimo et al (1994) and Ervin and 

Kennedy-Stephenson (2002) indicate that the iron intakes of females greater than 50 

years of age well exceed both the RDA and EAR for this population (10M 2001). 

Supplement use is a popular habit among Americans, with usage rates being 

greater in women than men (Bender et al 1992, Messerer et a12001, Stewart et a11985, 

Subar and Block 1990). Bender et al (1992) examined rates of supplement usage and 

perceptions about the health benefits of supplements and found that supplement usage 

correlated with perceptions of health and number of self-reported health conditions. 

They found usage to be highest among survey respondents with greater than three self

reported health conditions as well as among those who perceived their health to be "very 

good" or "excellent." Blendon et al (2001) also examined Americans' views on 

supplements and found that some survey respondents would continue to take dietary 

supplements even if clinical research found that they were of no health benefit. 

Popularity of dietary supplements has increased considerably over the past two 

decades, as evidenced most notably by the increase in sales. In 1981, sales were 

estimated at 1.7 billion (Stewart et al 1985), in 1988 2.7 billion (Bender et aI1992), in 

1992 3.7 billion (Slesinski et al 1995), and 11.75 billion in 1997 (Naylor and Gleich, 

1999). As the supplement market continues to grow, the percentage of the population 
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that consumes dietary supplements on a daily basis may also grow. Currently it is 

estimated that 42% of Americans consume dietary supplements on a daily basis (Liebman 

and Schardt, 2001). Ervin and Kennedy-Stephenson (2002) observed a similar 

percentage of supplement use in females over age 60 who participated in NHANES ill. 

Mean daily iron intakes of these supplement users was detennined to be 23.6 mg/day, 

which far exceeds the RDA and EAR, but is less than the tolerabk upper limit of 45 

mg/day (Ervin and Kennedy-Stephenson 2002, 10M 2001). However, the increasing 

popularity of supplements coupled with regular consumption of iron-fortified foods may 

increase the incidence of iron overload, especially in the elderly population. 

The trace elements iron, copper, and zinc are known to interact resulting in 

alterations in absorption. Hill and Matrone (1970) attribute trace element interactions to 

"similarities in the physicochemical properties of their ions, and that ions with similar 

valence shell electronic structures are likely to be antagonistic." However, the specific 

interactions among these trace minerals when any or all are consumed in varying 

amounts have yet to be clearly delineated (Rodriquez-Matas, et a1. 1998). Therefore, not 

only do excessive and insufficient iron intakes have serious consequences in and of 

themselves, but they may also adversely affect zinc and copper utilization. 

Yokoi et al (1991) examined the effects of an iron deficient diet on tissue stores of 

minerals in rats. The iron deficient experimental group consumed a diet providing 

approximately 5.9 ~g Fe/g of diet for three weeks which resulted in decreased 

concentration of iron and increased concentration of copper in the liver and spleen, with 

no effect on zinc concentrations in either tissue. In a study examining the effects of 

excessive and deficient dietary iron on copper status, Yu and his colleagues (1994) found 
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that high dietary iron (389 mg Felkg diet) significantly increased concentrations of iron in 

the liver and the spleen as compared to the tissue concentrations of the animals fed the 

normal iron diet (40 mg Felkg diet). High dietary iron intake also resulted in 

significantly lower copper concentrations in the kidney and heart as compared to the 

tissue concentrations of the normal iron controls. Low dietary iron intake (7 mg Fe/kg 

diet) produced the opposite effects, specifically that iron concentrations in the liver, 

spleen, kidney and heart were significantly lower than that of the animals in the normal 

iron group and that the liver copper concentration was significantly greater than that of 

the animals in the normal iron group (Yu, et a1. 1994). Storey and Greger (1987) 

assessed the interactions between iron, copper, and zinc in rats consuming adequate and 

excess amounts of iron and zinc and they found that the animals that consumed excess 

dietary iron exhibited lower zinc concentrations in their kidneys when compared to the 

pair fed control animals. Furthermore, tissue copper concentrations were also influenced 

by excessive dietary iron with the animals consuming excessive dietary iron exhibiting 

significantly lower concentrations of copper in their kidneys and liver than the pair-fed 

controls. The results described illustrate the interactions that occur with insufficient or 

excessive intakes of dietary iron and the ultimate effects on the tissue concentrations of 

iron, copper, and zinc in rats. 

Larsen and Sandstrom (1992) examined trace mineral tissue stores as an indicator 

of trace mineral absorption in male rats fed varying levels of calcium, copper, and zinc. 

Dietary iron content was constant in all experimental diets (99 mg/kg dry matter). Their 

findings are based on the statistical probability that absorbed trace minerals affect the 

trace mineral content of tissues. They found that zinc absorption was inversely correlated 
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with iron deposition and that increased zinc absorption contributed to greater zinc 

concentration of the spleen, kidney, heart and liver. They concluded that the inverse 

relationship between zinc absorption and iron deposition in tissues was the result of an 

interaction between the two minerals before uptake by the intestinal mucosal cells, and 

that "increased zinc absorption also inhibits iron storage via a post-absorptive action" 

(Larsen and Sandstrom 1992). With respect to zinc and copper, Larson and Sandstrom 

(1992) found that increased copper and zinc absorption increased kidney copper 

concentration, while kidney zinc concentrations were inversely related to copper 

absorption. They concluded that the inverse relationship between zinc concentration of 

the kidneys and copper absorption indicated the interactions between these two minerals. 

The results of Larsen and Sandstrom's research serve as an illustration of both the 

relationship between trace mineral tissue storage and absorption and the interactions that 

occur between iron, copper, and zinc. 

Alterations in the absorption of trace minerals, specifi.cally iron, copper, and zinc, 

due to antagonistic interactions can subsequently hinder the normal physiological 

processes requiring these nutrients. Trace element interactions hindering the absorption 

of iron may impede the oxygen-carrying capacity of hemoglobin, may lead to the 

development of iron-deficiency anemia (Sherman 1992; Abdel-Mageed and Oehme 

1990), may compromise immune function, may cause aberrant serum lipid levels, and 

may hinder both the physical and mental maturity of children (Castillo-Duran and 

Cassorla, 1999). Clinical studies examining iron overload diseases such as 

hemochromatosis have found that increased susceptibility to infection, cirrhosis, cancer, 

and excessive iron deposition in the tissues were common manifestations of such 
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diseases. Consequently, trace mineral interactions that may induce excessive iron 

absorption may also result in the aforementioned consequences (Abdel-Mageed and 

Oehme, 1990; Sherman, 1992). Interactions inducing copper deficiency may alter the 

immune response, affect the functioning of copper metalloenzymes, lead to anemia 

secondary to reduced levels of ceruloplasmin, cause skeletal abnormalities, and induce 

hypercholesterolemia. Research examining copper toxicity in animals found that 

excessive copper may increase copper deposition in tissues as well as induce a number of 

maladies including renal tubular and liver necrosis, jaundice, and hemosiderosis (Abdel

Mageed and Oehme, 1990). Trace mineral interactions affecting zinc absorption may 

cause growth retardation, delay puberty and psychomotor development, suppress immune 

function, and impair protein, glucose, and insulin metabolism (Abdel-Mageed and 

Oehme, 1990; Castillo-Duran and Cassorla, 1999; Sherman, 1992). Anemia and growth 

retardation have been found to occur in rats consuming excessive dietary zinc (Abdel

Mageed and Oehme, 1990). In humans, both acute and chronic zinc toxicity resulted in 

gastrointestinal complications (Abdel-Mageed and Oehme, 1990). The severity of the 

potential consequences described resulting from iron, copper, and zinc deficiencies and 

toxicities necessitate the need to determine the interactions among these nutrients. 

Purpose 

The purpose of this study was to determine the effect of varying intakes of dietary 

iron on the tissue concentTations of iron, zinc, and copper and to determine if tissue 

concentrations differed in young mature and sham-operated or ovariectomized female 

rats. 
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Two experiments were perfonned to address the question, and, overall, there were 

eight experimental diets and three treatment groups. The diets were prepared according 

to AIN-93 guidelines for growth and maintenance of rodents. In the growth and 

maintenance diet fonnulations there were four iron concentrations each. The calculated 

concentrations of iron in these experimental diets were from very low to high (6, 12, 35, 

and 150 mg/kg diet). The three treatment groups included young mature, sham-operated, 

and ovariectomized animals. The young mature animals did not undergo any surgical 

treatments. In order to control for the stress of the ovariectomy surgery, the sham 

animals had their ovaries exposed outside the body and then replaced. 

Experiment one involved the young mature rats only and these animals consumed 

the experimental diets for approximately 15 weeks (7 weeks growth and 8 weeks 

maintenance) and were then killed. Their tissues were harvested and trace mineral 

analyses were perfonned on the liver, kidney, spleen, and heart using atomic absorption 

spectroscopy. Experiment two involved the sham-operated and ovariectomized rats, and 

these animals consumed the experimental diets for approximately 27 weeks (7 weeks 

growth and 20 weeks maintenance) and then were killed. As in the young mature rats, 

their tissues were harvested and trace mineral analyses were perfonned on the liver, 

kidney, spleen, and heart using atomic absorption spectroscopy. 

The rationale for experiment one was the prevalence of iron deficiency anemia in 

female adolescent and pre-menopausal human populations. The rationale for experiment 

two was the increased potential for iron overload in female post-menopausal human 

populations due to reduced iron needs and a tendency for increased supplement use. 
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It is currently not known if storage of trace minerals varies during different stages 

of the female lifespan, or if it is affected by the presence or absence of ovarian hormones. 

The tissue mineral analyses ofthe animals in both experiments were compared to 

detennine if differences occurred in trace mineral storage at different stages of maturity 

and/or during ovarian hormone deficiency. 

Hypotheses 

The aim of this study was to discern what effects, if any, dietary iron would have 

on the tissue content of iron, copper, and zinc in female rats across the life span. 

The following hypotheses were developed for this study: 

1.	 There will be no statistically significant differences in the tissue iron 

concentrations of young mature rats due to varying levels of dietary iron. 

2.	 There will be no statistically significant differences in tissue copper 

concentrations of young mature rats due to varying levels of dietary iron. 

3.	 There will be no statistically significant differences in tissue zinc 

concentrations of young mature rats due to varying levels of dietary iron. 

4.	 There will be no statistically significant interactions among iron, copper, and 

zinc in young mature rats due to varying levels of dietary iron. 

5.	 There will be no statisticaUy significant differences in the tissue iron
 

concentrations of mature rats due to varying levels of dietary iron.
 

a.	 There will be no statistically significant differences in the tissue iron 

concentrations of tbe sham-operated animals due to varying levels of 

dietary iron. 
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b.	 There will be no statistically significant differences in the tissue iron 

concentrations ofthe ovariectomized animals due to varying levels of 

dietary iron. 

c.	 There will be no statistically significant differences in tissue iron 

concentrations between the sham-operated and ovariectomized animals. 

6.	 There will be no statistically significant difference in tissue copper 

concentrations of mature rats due to varying levels of dietary iron. 

d.	 There will be no statistically significant differences in the tissue copper 

concentrations ofthe sham-operated animals due to varying levels of 

dietary iron. 

e.	 There will be no statistically significant differences in the tissue copper 

concentrations of the ovariectomized animals due to varying levels of 

dietary iron. 

f.	 There will be no statistically significant differences in tissue copper 

concentrations between the sham-operated and ovariectomized animals. 

7.	 There will be no statistically significant differences in the tissue zinc 

concentrations afmature rats due to varying levels of dietary iron. 

g.	 There will be no statistically significant differences in the tissue zinc 

concentrations of the sham-operated animals due to varying levels of 

dietary iron. 

h.	 There will be no statistically significant differences in the tissue zinc 

concentrations of the ovariectomized animals due to varying levels of 

dietary iron. 
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1.	 There will be no statistically significant differences in tissue zinc 

concentrations between the sham-operated and ovariectomized animals. 

8.	 There will be no statistically significant interactions among iron, copper, and 

zinc in mature rats due to varying levels of dietary iron. 

J.	 There will be no statistically significant interactions among iron, copper, 

and zinc in sham-operated rats due to varying levels of dietary iron. 

k.	 There will be no statistically significant interactions among iron, copper, 

and zinc in ovariectomized rats due to varying levels of dietary iron. 

l.	 There will be no statistically significant interactions among iron, copper, 

and zinc between sham-operated and ovariectomized rats due to varying 

levels ofdietary iron. 

Assumptions 

1.	 The housing conditions (i.e .. light cycle, humidity, temperature, etc) were identical 

in both rooms and, therefore, did not affect eating patterns of the animals. 

2.	 The procedure of pair feeding to the lowest weight gain did not result in growth 

retardation due to insufficient nutrient intake. 

3.	 The deionized water provided ad libitum to the animals was not contaminated 

with trace minerals. 

4.	 The extremes in dietary iron intake will not be enough to significantly affect body 

or organ weight. 
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Limitations 

Although the ovariectomized rat model is considered acceptable for studies 

regarding menopause, the extrapolation of these findings to humans will be limited due to 

physiological and dietary differences between the two species. 
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CHAPTER TWO 

LITERATURE REVIEW 

Iron 

Physiological Roles 

The essentiality of iron is apparent by its prominent presence in living matter and 

its significant physiological functions in the human body (Morris, 1987; Prasad, 1978). 

Within the body there exist two iron compartments, the primary being the functional 

compartment and the secondary being the storage compartment (Cook 1990). The 

functional compartment accounts for 75% of the total amount of iron in the body (Lynch 

1984). It consists of protein bound iron complexes, or functional compounds, that 

perform vital physiological functions throughout the body. Iron binds to proteins and 

forms these functional compounds because of its ability to exist in more than one 

oxidation state. When these compounds are formed, iron becomes a component of the 

prosthetic group at its active site; therefore, iron is not only vital to structure, but function 

as well (Prasad, 1978). 

The iron-protein complexes are classified as either heme- or non-heme 

compounds. The heme compounds include hemoglobin, myoglobin, and the 

cytochromes; whereas transferrin, ferritin, and hemosiderin constitute the non-heme 

protein complexes (Morris, 1987). A small percentage, less than 1%, of the body"s iron 

are contained in enzymes and these enzymes fall into one of three categories: heme 

protein enzymes, iron-flavoproteins, and enzymes requiring iron as a cofactor (Morris 
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1987, Prasad 1978). Although enzymatic iron is the smallest faction of the body's total 

iron pool, it is quite significant as the iron containing enzymes are vital to energy 

production and other physiological processes (prasad, 1978). 

The remaining 25% of the body's iron is in the storage compartment (Lynch 

1987). Stored iron is found throughout the body, with the primary storage sites being the 

reticuloendothelial cells in the bone marrow, the liver, and the spleen (Cook 1990). The 

kidney, heart, skeletal muscles, pancreas, and brain also serve as iron storage sites, but to 

a much lesser extent. Combined, these organs store one-half to one-tenth the amount of 

iron found in the liver and spleen (Prasad, 1978). Iron is stored in one of two forms: 

ferritin or hemosiderin (Morgan and Walters, 1963). Overall, a greater proportion of iron 

is stored as ferritin, but most sites contain a combination ofboth forms (Morris, 1987; 

Prasad, 1978). Stored iron functions as a reserve and it is mobilized when the iron levels 

in the functional compartment become dep}eted (Cook 1990). 

Functional Compounds. The oxygen-requiring production of energy, the citric 

acid cycle as it known today, evolved with the generation of oxygen by photosynthesis. 

Aerobic generation of energy required substances that could reversibly bind with oxygen, 

and so emerged the specialized iron-protein complexes, the cytochromes. Iron's ability 

to serve as both an electron donor and acceptor allows the cytochromes, in conjunction 

with the copper-dependent enzyme cytochrome c oxidase, to transport electrons, and thus 

generate energy, in the citric acid cycle. Iron plays multiple roles in the citric acid cycle, 

as 24 enzymes that facilitate oxidative phosphorylation require iron as a cofactor or it is 

present in their active sites (Morris, 1987; Prasad, 1978). 
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With the evolution of the aerobic production of energy, a need for molecules to 

carry oxygen to the cells evolved as well. The iron-protein complexes, hemoglobin and 

myoglobin, met this need (prasad 1978). Hemoglobin is composed of a globin protein 

and four ferroprotoporphyrin, or heme, compounds. The molecule is generated in the 

bone marrow during the last stages ofred cell development. The function of hemoglobin 

is to transport oxygen and carbon dioxide in the blood. It is capable of performing this 

function because the structure of the hemoglobin molecule permits the reversible binding 

of both molecules (Morris 1987). Blood hemoglobin levels vary throughout the life span 

and between sexes. These levels are also affected by a number of other factors, mcluding 

diet, disease, and altitude (Morris 1987, Prasad 1978). Myoglobin is the less prominent 

heme protein and, makes up only 8% of total body iron whereas hemoglobin makes up 

approximately 60% of total body iron (Lynch 1984). The structure of myoglobin is less 

complex than hemoglobin but very similar. It is made up of one globin protein and only 

one ferroprotoporphyrin, or heme, compound. The role of myoglobin in oxygen transport 

is limited to the muscles. It stores oxygen in the muscle until it is needed, at which point 

myoglobin will mobilize the oxygen needed for muscle contractions (Morris 1987, Prasad 

1978). 

The formation of hemoglobin and myoglobin in the bone marrow requires that 

molecules of iron be tTansported to the bone marrow. Transferrin or siderophilin, a noo

heme iron-protein complex, serves as the primary iron transport protein. There are two 

forms of transferrin involved in iron transport: mucosal and apomucosal transferrin. 

Mucosal transferrin is involved in transmucosal iron transport and apomucosal transferrin 

transports iron between cells and the brush border of the small intestine. Transferrin is 
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composed of a glycoprotein with two iron-binding sites each capable of carrying one 

atom of ferric iron. Given its role in iron transport, transferrin functions in iron 

metabolism. For instance, transferrin carries ferric iron to the bone marrow where it is 

reduced to the ferrous fonn. It then is detached from the transferrin molecule and 

attached to a protoporphyrin molecule, thus making ferroprotoporphyrin, the heme 

compound ofhemoglobin. The body's immune system also depends on transferrin for 

efficient functioning (Morris 1987). Transferrin plays a role in the formation of 

lymphocytes, B cells, and antibodies as well as the efficient functioning of natural killer 

and phagocytic cells (Farthing 1989). 

Total iron binding capacity (TIBC) refers to the body's full iron transport 

capabilities. In normal, healthy adults, only 30-40% of transferrin is "saturated" or 

actively transporting iron. The remaining transferrin is collectively referred to as the 

body's latent iron binding capacity. Total and latent iron binding capacity as well as the 

percent of saturated transferrin varies with stage oflife and disease (Morris 1987, Prasad 

1978). Lactoferrin is another, although less predominant, iron binding transport protein 

(Prasad 1978). As its name implies, lactoferrin is found in milk, but it is also found in 

other body fluids including saliva and sweat. Iron binds similarly to transferrin and 

lactoferrin, but these two molecules differ with respect to their amino acid and peptide 

make-up, immunological functions, and mechanism ofmobility (Morris 1987). 

There are a number of iron-proteins that perform functions that are not intimately 

related to either energy production or iron transport and storage. As with the functional 

compounds discussed, these, too, are vital to the efficient functioning of the body, but in 

a different manner. Hemopexin and haptoglobin are iron-containing glycoproteins that 

17 



function in iron conservation. They are secreted by the liver due to a receptor-mediated 

signal induced by the presence of free hemoglobin and heme in the blood following 

hemolysis. The free heme and hemoglobin are bound by the hemopexin and haptoglobin, 

respectively, and delivered to the liver for recycling (Morris 1987). Catalase and 

peroxidase are two heme enzymes responsible for protecting the cells from damage by 

hydrogen peroxide. These enzymes function by breaking down the hydrogen peroxide 

compound. Peroxidase digests hydrogen peroxide into water and a dehydrogenated 

product, whereas the end products of catalase activity are water and oxygen (Lynch 

1984). Collagen proline hydroxylase is not an iron-containing enzyme, but it requires 

iron, as well as ascorbic acid and alpha-ketogluturate, to function. Collagen synthesis 

requires the hydroxylation of proline and lysine into hydroxyproline and hydroxylysine 

and the enzyme collagen proline hydroxylase mediates this conversion (Prasad 1978). 

Storage Compounds. The body's demands for iron are great, and when there is 

insufficient iron available for incorporation into the aforementioned functional 

compounds, the body's iron reserves are mobilized. The liver, bone marrow, and spleen 

are the predominant iron storage sites, but other tissues, including the heart and kidney, 

store iron as well (Morris 1987, Prasad 1978). Ferritin and hemosiderin are the two 

forms of storage iron, and although they perform the same function, they are very 

different molecules. The ferritin molecule is water-soluble, can contain up to 20% iron, 

and is found in both the serum and the tissues. Hemosiderin is an insoluble molecule 

fonned from ferritin that can contain up to 35% iron and is found only in tissues (Richter 

1984, Morris 1987). Both ferritin and hemosiderin are available for use when the need 

for mobilization of i.ron stores arises (Morgan 1961 a, 1961 b 1962). 
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The factors that have been found to be detenninants of iron storage as ferritin or 

hemosiderin are the concentration of iron stored, the rate of administration, and the fonn 

of iron that is administered (Morris 1987, Prasad 1978, Shoden and Sturgen 1958,1960, 

1962).	 Morgan and Walters (1963) found in their examination of iron storage in disease 

states, that a greater percentage of iron is stored in the ferritin fonn when iron stores are 

less than 500 Ilg/g tissue whereas, the hemosiderin fonn predominated when tissue iron 

concentrations exceeded 1000 J.lg/g tissue. Furthennore, they found that the percentage 

of iron stored as ferritin and hemosiderin were similar when iron stores were between 

500-1000 f.lg/g of tissue (Morgan and Walters 1963). They also observed that 

hemosiderin storage will dominate when iron is administered at a high velocity or ifit is 

in a fonn of iron that is easily removed from the serum, such as saccharated iron. 

Conversely, iron stored in the ferritin fonn will dominate when iron is infused slowly or 

if it is in a form that stays in the serum for an extended time, such as iron dextran or 

dextrose (Morris 1987, Shoden and Sturgen 1960, 1962). Aside from tissue stores of 

iron, ferritin is present in the serum, and the levels of serum ferritin have been positively 

correlated with the body's stored iron reserves (Cook et al 1974). 

This brief discussion of the physiological roles of iron illustrates its vitality to life 

It also illustrates the significant and far reaching effects of iron deficiency and excess. In 

/	 iron deficiency states, tissue stores will be exhausted to meet the iron demands of the 

functional compounds, which aid in the maintenance ofnonnal physiology. Conversely, 

the presence of excessive iron may overload the tissue storage sites, which may adversely 

affect tissue functioning and overall physiology. 
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Absorption 

The human body's need for iron will dictate absorption because excretion of iron 

is limited (Kinney et al 1949). Nonnal iron excretion rates, determined using radioiron 

studies, range from 0.2-0.5 mg/day. Iron deficiency or overload alters excretion with 

rates seen as low as 0.03-0.06 mg/day and as high as 6.5 mg/day (Morris 1987). Iron 

requirements to meet the physiological demands of age, gender, and disease states 

influence iron absorption. Iron stores have also been shown to affect iron absorption, but 

the exact mechanism of how these are related remains controversial (Gavin et al 1994, 

Conrad et al 1994). Dietary composition, specifically the presence of certain food 

components at the time of iron consumption, influences iron absorption by either 

enhancing or inhibiting iron absorption. The fonn of iron ingested also influences 

absorption, as some fonns are more readily absorbed than others (prasad 1978, Morris 

1987). 

Estimated Adequate Requirements of Iron. 

The amount ofiTOn estimated to meet the body's needs throughout the lifespan 

and between the sexes significantly influences iron absorption. The Dietary Reference 

Intakes, published by the Institute of Medicine, defme requirement as "the lowest 

continuing intake level of a nutrient that will maintain a defined level ofnutriture in an 

individual (lOM, 2001, P 29)." The DRIs are a compilation of the RDAs, EARs, ULs, 

and Als (included only when a nutrient does not have an RDA), which delineates vitamin 

and mineral intake ranges to address the nutrient needs of the healthy population, such 

that the adverse effects of deficiency or excess are prevented (10M, 2001,p 2-7, 29-30). 
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The iron requirements of women are greater than those of men due primarily to 

losses from menstruati.on and to meet the demands of pregnancy. Throughout the life 

span of healthy adult males (age 19+), the RDA for iron is 8 mg/day. In healthy adult 

females aged 19-50, the RDA for iron is significantly greater than that for males at 18 

mg/day. After age 50, the iron RDA for women decreases to that of adult males. The 

EARs are lower than the RDAs, as they are designed to address the iron requirements of 

50% of the healthy population for a given age and gender. The EAR of iron for females 

14-18 years and 19-50 years are 7.9 and 8.1 mg/day, respectively. For the remainder of 

the female lifespan, the EAR is 5mg/day. The UL of iron for all adults is 45 mg/day 

(10M, 2001, pI8-19, 375). 

There is no difference in the RDA for iron between the sexes up through 13 years 

of age, whereas the EAR is the same in both sexes only through 8 years of age. Infants 

and children have significant iron requirements relative to their body size in order to meet 

the demands of growth. The RDA for iron for infants 7-12 months is 11 mg/d, for 

children 1-3 years is 7mg/day, and for children 4-8 years, 10 mg/d. During early 

adolescence (9-13 years), the RDA of iron decreases to 8 mg/day, as growth rates have 

slowed. The EARs for iron for the same age groups through 8 years of age are 6.9 mg, 

3.0 mg, and 4.1 mg per day, respectively. The EAR for iron in adolescent males and 

females 9-13 years are 5.9 mg and 5.7 mg/day, respectively. The divergence in the RDA 

for iron between sexes is seen at 14 years, at which point it increases to 11 mg/day for 

males and 15 mg/day for females. The EAR for iron for males and females in the same 

age group is 7.7 and 7.9 mg/day, respectively. The UL for iron for infants and children 

up to 13 years of age is 40 mg/day and that for adolescents 14-18 years is 45 mg/day 
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(lOM, 2001, p 18-19,376). The iron requirements of females will continue to exceed 

that of males until age 50, at which point, the RDA becomes the same for both sexes at 

8mg/day and the EAR is 6mg/day for males and 5mg/day for females. Pregnancy, like 

infancy and childhood, dramatically increases the body's iron requirements. The RDA 

for pregnant women of all ages is 27 mg/day. The EARs for pregnant women 14-18 

years and 19-50 years are 23 and 22 mg/day, respectively. Iron requirements during 

lactation are significantly less that that ofpregnancy and are even less than that of non

lactating women. The RDAs for lactating women 14-18 and 19-50 years are 10 and 9 

mg/day, respectively. The EARs for lactating women 14-18 and 19-50 years are 7 and 

6.5 mg/day, respectively. The UL for both pregnant and lactating women is 45 mg/day, 

which is the same as that for all adults (10M, 2001, p 18-19,375). 

Absorption Process. 

The amount of iran absorbed is dictated by physiological need, storage reserves, 

and gastrointestinal factors, the latter ofwhich involves regulation at the absorption site, 

namely the small intestine. The mechanism of the regulation of iran absorption in the 

small intestine has been researched extensively, but has yet to be clearly determined 

(Conrad et aI, 1994, Gavin et aI, 1994, Hoglund and Reizenstein, 1969) 

The most active site of iron absorption is the duodenum (Brown and Justus 1958). 

Iron is also absorbed in the jejunum, ileum, stomach and colon but to a much lesser 

extent. Iron is absorbed and enters circulation via a two-step process. The initial rapid 

phase involves the absorption of iron from the intestinal lumen by the mucosal cells. 

Subsequently, the iron is transported through the cells and across the cell membrane into 
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circulation (Carpenter and Ummandi 1995, Rhodes et al 1968, Hahn et al 1945, Wheby 

1966, Chraisiri and lzak 1966, Wheby et al 1964, Manis and Schachter 1962). 

Availability of Dietary Iron for Absorption 

Iron needs, dictated by age, sex, disease, and iron status, will influence the 

amount of iron absorbed from food. When iron stores are maximized and iron status is 

not compromised, between 5-10% of the iron available in the food supply will be 

absorbed; however, when iron status is compromised and stores are depleted, absorption 

increases to 10-20% of available dietary iron (Prasad 1978). There are two main types of 

iron found in food sources: heme and non-heme (Monsen et at 1978). Hemoglobin and 

myoglobin supply the highly available heme-iron to the diet, and foods of animal origin, 

specifically meats, are the primary sources of this form of iron. In western countries, in 

which meat is a more prominent constituent ofthe typical diet, heme iron makes up 10

15% of dietary iron, which provides the average healthy adult with nearly one-third of 

their iron requirement (Cook I990, Bjorn-Rasmussen et al 1974). Heme iron does not 

require modification to be absorbed and as such the mucosal cells assimilate it as an 

intact molecule. After absorption, heme oxygenase liberates the iron from the porphyrin 

complex and it subsequently becomes part of the available iron pool (Cook 1990, Raffin 

et al 1974). Dietary heme iron is highly available because its porphyrin "shell" protects 

the iron molecule from the components of the diet that inhibit absorption (Cook 1990, 

Bjorn-Rasmussen et aI, 1974). Non-heme iron is the most abundant fonn of dietary iron, 

and it is found primarily in foods of plant origin, which are the foundation ofmost diets 

around the world. Non-heme iron is in the ferric (Fe+3) fonn and is not readily 
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assimilated by the mucosal cells; therefore, to be absorbed non-heme iron must be 

reduced to the ferrous (Fe+2
) fonn (Fritz et al1970, Hallberg and Solve111967, Jacobs 

and Miles 1969). This reduction is facilitated by gastric juices and takes place in the 

duodenum, as this is a more acidic region of the intestines, and in this locale, iron is at its 

greatest solubility (Cook 1990). Absorption of non-heme iron is quite variable, as 

simultaneous intake of certain dietary components win either enhance or inhibit its 

absorption (Layrisse et al 1968). 

Dietary Inhibitors ofAbsorption. The dietary components that inhibit iron 

absorption are numerous and, in countries where these inhibitors are staples of the native 

diet, the effect on the iron status of the population is detrimental. Phytates, a phosphorus 

storage compound in plants, are potent inhibitors of iron absorption. Specific phytate

rich foods observed to inhibit absorption include wheat germ and bran, beans, brown and 

green lentils, and nuts (Cook 1990, Gillooly et al 1983). The phytates bind iron to form 

an insoluble complex that is not available for absorption (Hussain and Patwardhan, 

1959). The decreased iron absorption seen in humans when phytate-rich foods or sodium 

phytate are added to a meal is not seen in rats (Cowan et al 1966, Sharpe et aI, 1950). 

Coffee and tea, which are customarily consumed with meals throughout the 

world, inhibit iron absorption with tea being the more significant inhibitor of the two 
/ 

(Morek et al1983, Disler et al 1974). The adverse effects of tea on iron absorption are 

attributed to the tannins in tea, which form a complex with iron rendering it insoluble 

and, thus, unavailable for absorption (Disler et al 1974). Disler et al (1974) examined the 

effect oftea on the absorption ofnon-heme and hemoglobin iron and found that tea 

significantly inhibited non-heme iron absorption, as wen as absorption ofhemoglobin 
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iron, but only if the food source (i.e. meat) was uncooked. It was postulated that tannins 

inhibit uncooked heme iron absorption by "tanning" the globin protein, which hinders the 

digestive proteolytic enzymes from breaking down the protein and, hence, liberating the 

iron for subsequent absorption. Meat is almost exclusively consumed cooked; therefore, 

this inhibitory effect of tea on the absorption of uncooked heme iron is not as relevant to 

iron status as is its inhibitory effect on non-heme iron absorption (Disler et al 1974). 

Morek et al (1983) examined coffee's effect on iron and found that it has an inhibitory 

effect but to a lesser extent than that of tea. Specific variables of their study were coffee 

concentration and time of coffee consumption relative to meal intake. They found that 

the concentration of the coffee was inversely related to iron absorption and that coffee 

consumed up to one hour after a meal inhibited absorption to the same degree as coffee 

consumed with the meal (Morek et al 1983). Phosphorus, both alone and in conjunction 

with calcium has been linked to decreased iron absorption. Phosphorus is thought to be 

such a strong inhibitor that it may prevent iron absorption almost completely; however, 

studies have shown that the combined presence of calcium and phosphorus in a meal 

hinders iron absorption to a greater degree than either mineral alone (Morris 1987). High 

or low calcium diets supplemented with 1000 mg phosphorus resulted in increased fecal 

loss of iron. This suggests that phosphorus, like the other absorption inhibitors previously 

/ mentioned, binds with iron making it unavailable for absorption (Morris 1987). 

Dietary Enhancers of Absorption. The dietary components that have been shown 

to enhance iron absorption include meat, vitamin C, and certain organic acids, amino 

acids, and carbohydrates. The meat content of a meal, also known as the "meat factor" or 

MFP, has a positive influence on the amount of iron absorbed from a meal of both heme 
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and non-heme iron food sources. The mechanics of the absorption enhancing effects of 

meat have not been concretely determined, but it is thought that meat or the amino acids 

in meat facilitate the transport or act as the transporter of iron across the mucosal cell 

membrane. Furthermore, the enhanced absorption of iron from vegetable foods 

consumed with meat in the presence ofknow absorption inhibitors has led researchers to 

postulate that meat prevents the binding of iron to compounds that would prevent its 

absorption (Layrisse et a1 1984, Bjorn-Rasmussen and Hallberg 1979, Monis 1987). 

Studies utilizing radio-iron labeled foods have found that the amount of iron 

absorbed from vegetables is greater when the vegetables are consumed with meat then if 

they are consumed alone. Layrisse et al (1968) conducted one of the earliest studies of 

iron absorption in foods of animal and plant origin consumed alone and together in a 

meal, and they found that the amount of iron absorbed from corn and black beans 

increased significantly when these foods were consumed with veal (p<O.Ol and p<O.OOl, 

respectively). They also found that iron absorption from black beans increased 

significantly (p<O.OOl) when consumed with a solution of amino acids and Img ferrous 

sulfate (Layrisse et aI, 1968). Layrisse and colleagues (1984) later examined the effects 

of amino acids on iron absorption from vegetables and compared it with the absorption 

enhancing effects of beef. Although not statistically significant, they observed a similar 

/	 trend in percent of iron absorbed from com consumed with cysteine, reduced glutathione, 

or beef. They concluded that the absorption enhancing effects of meat may be 

attributable to cysteine, and that the end products of protein breakdown prevent the 

complexing of iron such that it is rendered insoluble (Layrisse et a1 1984). In their 

studies examining the effects of animal proteins on iron absorption, Bjorn-Rasmussen 
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and Hallberg (1979) found that beef, chicken, and fish increased iron absorption from an 

iron-fortifi.ed maize porridge, whereas egg protein failed to produce such absorption 

enhancing effects. They also found that beef consumed concomitantly with solutions of 

inorganic iron salts or inorganic iron salts plus sodium phytate enhanced the absorption 

of iron from these solutions (Bjorn-Rasmussen and Hallberg, 1979). They speculated 

that meat facilitates the uptake of iron by the mucosal cell, as well as blocking the action 

of compounds that inhibit iron absorption. 

Organic acids are another meal component that is associated with increased iron 

absorption. The most notable absorption enhancing organic acid is ascorbic acid or 

vitamin C (Gillooly et aI, 1983, Cook and Reddy, 2001). Ascorbic acid is able to chelate 

iron as well as reduce ferric iron into the ferrous fonn, both ofwhich facilitate absorption 

of iron by the mucosal cells. It is also thought that ascorbic acid facilitates iron 

absorption by keeping iron soluble when the pH in the duodenum rises. In order for 

ascorbic acid to be effective, it must be consumed with the meal and be supplied by fruits 

and vegetables or a vitamin C supplement in crystalline form. The absorption enhancing 

effect of ascorbic acid is diminished when it is exposed to heat for an extended period of 

time because the acid is destroyed by beat. Therefore, the longer a meal is exposed to 

heat, the less ascorbic acid is present to enhance iron absorption (Morris 1987). The 

/	 other organic acids that have been shown to facilitate iron absorption include lactic, 

citric, malic, pyruvic, tartaric and succinic acids, which are founds in certain vegetables. 

In their examination of the effects oforganic acids on iron absorption, Gillooly et al 

(1983) found that the bioavailability of iron was higher in vegetables rich in ascorbic 

malic, and/or citric acids. They also observed that the amount of iron absorbed from a 
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typically low iron meal of rice was increased with the addition of ascorbic, citric, L-

malic, or tartaric acid to the meal (Gillooly et aI, 1983). 

Carbohydrates, in various forms, have been shown to exert a positive effect on 

iron absorption (Morris 1987). Lactose, sucrose, glucose and starch were found to 

enhance iron absorption with lactose exhibiting the greatest effect and starch the least 

(Amine and Hegstead 1971). Garretson and Conrad (1967) came to the same conclusion 

with respect to lactose and glucose, but not starch and sucrose. Research has also found 

that sorbitol and fructose enhance iron absorption (Morris 1987). One such study 

examined the effect of ferric fructose, a complex of ferric iron and fructose, on iron 

absorption and retention. Ferric fructose enhanced iron absorption and retention, and it 

was found to be more effective than iron sulfate, which is the most common form of 

supplemental iron (Bates et a11972). 

Iron Absorption in Disease. 

Disease and deficiency states have been shown both to increase and decrease iron 

absorption. Increased absorption is usually seen in disease and deficiency as the body is 

either trying to meet the iron demands induced by the disease or it is trying to correct the 

nutritional deficiency (Morris 1987). 

/ The disease that will increase iron absorption to the greatest extent is idiopathic 

hemochromatosis. This disease is caused by a genetic abnormality and it is characterized 

by unregulated iron absorption that leads to excessive iron deposition in the tissues 

(Lynch 1984). Diseases that cause blood loss, such as hookworm or schistosomiasis 

infections and malignancies, will iocrease iron absorption in attempts to replenish the lost 
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iron (Lynch 1984, Morgan and Walters 1963). Aplastic and hemolytic anemia, two types 

of anemia not associated with a nutritional deficiency, have been shown to stimulate 

dietary iron absorption as well (Monis 1987). Morgan and Walters (1963) examined iron 

storage in disease states and found that total storage iron concentrations were increased in 

aplastic 'anemia, multiple myeloma, and leukemia, and they attributed this in part to 

increased dietary iron absorption. Diseases associated with decreased iron absorption 

include polycythemia vera and transfusional polycythemia (Morris 1987). Morgan and 

Walters (1963) found that their subjects with polycythemia vera had diminished iron 

stores, as did those with rheumatic heart disease and myelofibrosis. These results suggest 

that the latter two diseases may decrease iron absorption similarly to polycythemia vera. 

The most prominent nutritional deficiency disease associated with increased iron 

absorption from food is iron deficiency anemia. Standard absorption of iron from food in 

normal, healthy adults ranges from 5-15%. In iron deficiency states, this absorption 

percentage range increases to 20-60%, depending on the severity of the deficiency. 

Pernicious anemia, which is caused by reduced absorption ofvitamin B 12 due to lack of 

intrinsic factor, and pyridoxine deficiency are two other nutritional deficiencies that have 

also been associated with increased iron absorption (Morris 1987). 

This brief overview of iron absorption and the factors that influence it either 

/ positively or negatively illustrates the complexity of the process, which helps explain 

why iron deficiency anemia is such a prevalent nutritional disease throughout the world. 
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Adequacy of Dietary Iron Intake of Females 

The DRIs are the standards by which adequacy of dietary intake is measured. 

Until recently, the Recommended Dietary Allowances (RDA) were commonly used to 

assess adequacy of intake ofpopulations as well as individuals. These guidelines are set 

to meet the needs of97% ofhealthy individuals. The RDAs have been the guidelines by 

which adequacy ofnutrient intakes has been measured since 1943 and they are 

periodically re-evaluated and updated based on research. The most recent revision of the 

RnA guidelines was released in 2001. In the 2001 edition, the iron recommendations for 

infants, children, and female adolescents either stayed the same or decreased slightly. 

However, the iron recommended for females age 19-50 increased significantly from 

15mg/day to 18mg/day (10M 2001, National Research Council, 1989). The RDA 

values are, in part, based on the assumption that 10% of dietary iron is absorbed (Raper et 

al 1984). Therefore, in order to meet the RDA for iron, it is recommended that the diet 

include 30-90g of meat, which provides the readily available heme iron, or that 25-75 mg 

ascorbic acid be consumed with non-heme iron sources to enhance the iron absorption 

from such foods (Food and Nutrition Board 1989, p 6). Research examining the total 

iron content and percentage of available iron ofdiets of the US population have found 

/	 that children and women typically consume less iron than the amount necessary to meet 

the RDA. Raper et al (1984) utilized the 1977-1978 Nationwide Food Consumption 

Survey data to quantify the average dietary iron intake of approximately 9500 US citizens 

one year of age and older and then compared this intake data to the 1980 RDA values. 

They found that children 1-2 years and 3-5 years consumed, on average, only 51 % and 
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77% of the RDA for iron, respectively. The average intakes of adolescent girls and 

women of childbearing age were also found to be inadequate with intakes ranging from 

only 55-61% ofthe RDA. Raper et al (1984) also examined the percentage of iron 

available in the foods consumed, and it was determined that the percent of iron available 

for absorption was less than the 10% needed to meet the RDA. In children ages 1-8 

years, 6.5-7.5% of iron was found to be available, and in all females age 9 years and 

older, only 7.4-8.2% of iron was found to be available (Raper et al 1984). The Total Diet 

Study is conducted by the Food and Drug Admin.istration and the Department of 

Agriculture to assess the core diet of the United States population to estimate the average 

intake of eleven major nutrients, including iron, and to detennine if there are changes in 

intake of these nutrients over time. Specifically, the core foods determined by the 

USDA's Nationwide Food Consumption Survey are used for the FDA's Total Diet Study, 

which estimates nutrient availability for eight age-sex groups (Pennington et al 1989, 

Pennington and Young 1991, Pennington and Schoen 1996). Yearly examinations of 

adequacy ofnutrient intakes from 1982-1991 have found that children and females 

consistently consumed less than the 80% ofthe RDA for iron. The specific age groups 

affected and their average intake expressed as percent RDA from 1982-1991 are as 

follows: 2 yrs (57%), 14-16yrs (61%),. and 25-30 yrs (56%). In the 1982-91 Total Diet 

/ Study, the average iron intakes were compared to the 9th Edition RDA values. The 

results of the 1991-1996 Total Diet Study were compared to the 10lh edition RDA values 

that were published in 1989. This examination of the population's nutrient intake also 

found that adolescent females and women of childbearing age had inadequate intakes of 

iron (Egan et aI, 2002). There was a slight improvement in percent RDA intake from the 
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1982-91 findings, but average intake in mg/day decreased in girls 14-16 years and 

women 25-30 years (Egan et a12002, Pennington and Schoen 1996). The improvement 

seen in percent RDA intake was due to the changes in the RDA values. The average 

intakes of 14-16 year old girls, 25-30 and 40-45 year old women were 73%, 61 %, and 

60% of the RDA, respectively. The most significant change seen in average intakes from 

the 1982-91 Total Diet Study to the 1991-96 was in the infants 6-11 months old. From 

1982-91, this population group consumed an average of 11.9 mg iron per day, whereas 

from 1991-96, their average intake decreased to 7.9 mg/day (Egan et a12002, Pennington 

and Schoen 1996). Egan et al (2002) failed to give an explanation for the decrease in 

average iron intakes. 

The Total Diet Study also assessed the percentage of a nutrient provided by each 

of twelve food groups for each age group. In both of the Total Diet Studies discussed, 

grain products provided between 35-65% ofthe daily iron intakes of children, adolescent 

females, and women of childbearing age. Meat, fish, and poultry, which are the richest 

sources of the highly available heme iron, provided only 9-23% of average daily iron 

intake (Egan et al 2002, Pennington and Young 1991). The chronically insufficient iron 

intakes ofchildren, teenage girls, and women of childbearing age coupled with the 

primary contribution of non-heme iron to total dietary iron intake, may help to explain 

/ 
the high rates of iron deficiency anemia in these age groups (Pennington and Schoen 

1996, Pennington et al 1989, Expert Scientific Working Group 1985). 
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Iron Deficiency 

Iron deficiency is a prevalent nutrition problem throughout the world (CDC 

2002). It is estimated that approximately 30% of the world's population is anemic and 

that nutritional iron deficiency is the primary cause (Baynes and Bothwell t 990). 

Children, women of childbearing age, and persons living in third world countries are 

most affected, but this nutritional deficiency is a problem for men and persons living in 

developed countries as well (Holst and Lozoff 1998., Finch and Cook 1984). 

Iron deficiency does not occur all at once, but rather in three stages. The first two 

stages, iron depletion and latent iron deficiency (iIon deficient erythropoiesis) do not 

result in anemia as does the third, overt iron deficiency (Herbert 1987, Holst and Lozoff 

1998). Each iron deficiency stage is characterized by changes in hematological 

parameters. Persons with depleted iron stores will exhibit only decreased plasma ferritin 

levels. Latent i.ron deficiency will cause an increase of transferrin iron binding capacity 

(TIDC) out of the nonnal range, a greater decrease in plasma ferritin from that seen in 

iron depletion, a significant decrease in plasma iron and transferrin saturation, and an 

increase in red cell protoporphyrin. The decreased transferrin saturation levels found in 

this stage are consistent with a diminished supply of iron to the bone marrow for 

/	 erythropoiesis which helps explain the increased levels of erythrocyte protoporphyrin as 

it replaces iron in the erythrocyte (Finch and Cook 1984, Cook 1990, Herbert 1987). In 

both iron depletion and latent iron deficiency, the erythrocytes are not affected. Overt 

iron deficiency, which results in microcytic hypochromic anemia, is characterized by 

elevated TIBC and red cell protoporphyrin as well as depressed plasma ferritin, plasma 

iron, and transferrin saturation. At this stage of deficiency, the erythrocytes become 
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small and pale in color, hence the name for this type of anemia (Herbert 1987, Cook 

1990). 

Diagnosis of iron deficient erythropoiesis and iron deficiency an.emia are based on 

change in the aforementioned parameters in addition to changes in hemoglobin and 

hematocrit. Iron sufficient status is characterized by normal hemoglobin levels and up to 

three of the following four iron parameters within normal limits: serum ferritin, 

transferrin saturation, erythrocyte protoporphyrin, and mean corpuscular volume. 

Nonnal hemoglobin levels concomitant with aberrant values of three of the four iron 

parameters previously listed characterize iron defi.cient erythropoiesis. The diagnostic 

criteria for iron deficiency anemia are the same as that for iron deficient erythropoiesis 

except that instead ofnonnal hemoglobin, iron deficiency anemia is accompanied by 

hemoglobin or hematocrit levels more than two standard deviations below the reference 

range (Holst and Lozoff 1998. Finch and Cook, 1984). 

Iron plays a prominent role in a number of physiological processes, and, as such, 

the physiological manifestations of iron deficiency anemia are numerous and far 

reaching. Some of the initial overt signs and symptoms include weakness, fatigue, and 

impaired tolerance to cold temperatures (Morris 1987, Sato 1991). The physical signs 

associated with, but not exclusive to, latent and overt iron deficiency include dry brittle 

/ 
hair, hair loss, koilonychia (thin, flat, convex nails), lesions in the mouth and on the 

tongue, generalized itching, and blue sclera (Sato 1991). Chronic iron deficiency bas also 

been shown to adversely affect immunity, metabolism, and enzyme function, as well as 

behavioral and physical development in children (Cook 1990, Finch and Cook 1984, 

Holst and Lozoff 1998, Lozoff et al 1991). Iron deficiency has not been shown to affect 
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the function of the immune system in its entirety, but rather only individual components. 

Cell mediated immunity is one facet of the immune system hindered by iron deficiency. 

T cell numbers, delayed type hypersensitivity (DTH), and lymphocyte proliferation have 

all been shown to be depressed in iron deficient subjects (Baynes and Bothwell 1990, 

Cook 1990, Farthing 1989, Finch and Cook 1984). The phagocytic capabilities of 

neutrophils and macrophages, which are considered components of the "non-specific" 

immune system, have also been shown to be impaired by iron deficiency (Farthing 1989, 

Baynes and Bothwell 1990, Cook 1990). With respect to metabolism and enzyme 

function, iron deficiency has been shown to impair energy metabolism, manifested by 

decreased work capacity, and this was found to be related to a decrease in mitochondrial 

enzymes (Finch and Cook, 1984). Siimes et al (1980) found that iron deficiency 

decreased cytochrome c concentrations in rat muscle and intestinal cells, and it was 

postulated that this could hinder mitochondrial functions dependent on the cytochrome 

enzymes. 

Iron deficiency occurs concomitantly with a number of diseases as well as 

conditions associated with chronic inflammation. However, the disease or the 

inflammation is typically the cause of the iron deficiency, not vice versa. This is not the 

case with pica, a disease characterized by cravings for substances not considered food. 

/ 
This disease is seen most often in children and pregnant women, two populations in 

which iron deficiency is rampant. It is estimated that 50% of persons with iron 

deficiency exhibit pica, but it is not known why this disorder occurs in some persons with 

iron deficiency and not others (Sato 1991, Prasad 1978). 
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Iron Overload 

Iron overload is a much less common disease than iron deficiency, but its 

physiological consequences are very detrimental. Furthermore, iron overload is typically 

seen in persons with accelerated iron absorption or persons with diseases that cause 

accelerated iron absorption, as opposed to iron deficiency, which is primarily caused by 

nutritional deficiency (Lynch 1995). The literature describes two main classes of iron 

overload, primary, which is a genetically linked disorder, and secondary, which includes 

those instances of iron overload that occur as a result of another disease (Franks and 

Marks 1998, Pippard 1997, Britton et al1994). There is one form ofdocumented 

nutritionally related iron overload that occurs in African males who regularly consume a 

homemade brew that is rich in a highly absorbable form of iron (Lynch 1995, Gordeuk et 

al 1992). 

Primary iron overload, or hereditary hemochromatosis, is an autosomal recessive 

disease linked to the HLA-A locus on chromosome 6. This genetic disease causes iron to 

be absorbed uninhibitedly from the diet, and, due to the body's poor excretion 

capabilities, massive quantities of iron are deposited in tissues throughout the body 

(Chua-Anusom 1999, Lynch 1995). There are both homozygous and heterozygous 

/	 expressions ofthis disease, with the fonner having more serious clinical manifestations 

(Lynch 1995, Pippard 1997). Secondary hemochromatosis is the occurrence of iron 

overload induced by or as a manifestation of another disease. Persons with sideroblastic 

anemia, aplastic anemia, hemolytic anemia, or thalassaemia typically exhibit this 

secondary hemochromatosis. In aplastic anemia, iron overload is a result of the repeated 

blood transfusions required for treatment of this fonn of anemia. In thalassaemia, 
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sideroblastic anemia, and hemolytic anemia, iron overload is a result of both repeated 

blood transfusions and increased dietary absorption induced by impaired red blood cell 

formation (Chua-Anusorn et al 1999, Halliday 1989). Moirand et al (1.997) reported a 

new form of iron overload that they found was not attributable to genetics or another 

form of anemia. They concluded that this fonn of iron overload is not linked to the HLA

A locus on chromosome 6, and is characterized by normal transferrin saturation, high 

serum ferritin, and liver iron concentrations greater than the upper limit of nonnal (> 3611 

moVg dry liver weight). The authors also postulated that this form of iron overload might 

be associated with excessive weight (BMI > 25) and/or metabolic disorders including 

hyperlipidemia, hypertension, and impaired glucose metabolism (Moirand et al 1997). 

The only documented form of iron overload due to excessive dietary iron intake is termed 

Sub-Saharan dietary iron overload because it is only exhIbited by South African and 

Zimbabwean populations. These populations regularly consume a brew that is prepared 

and stored in steel drums, which makes it a rich source of dietary iron. It is estimated that 

one liter contains 80 mg of iron, and observation of these populations revealed that 

several liters may bee consumed at any given point in time. Excessive consumption 

causes iron overload, and the clinical manifestations are the same as those seen in 

/ hemochromatosis (Lynch 1995, Gordeuk et al 1992). Due to the similarities in symptoms 

between hemochromatosis and the symptoms in these African populations, it was 

postulated that genetics were playing a role; however, research by Gordeuk et al (1992) 

did not find conclusive evidence that such a link was at work in these populations. 

There are specific hematological changes associated with hereditary 

hemochromatosis and the minor fonns of iron overload. Transferrin saturation is one 
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such parameter. Normal transferrin saturation levels are approximately 35% (Herbert 

1987). Subsequent fasting transferrin saturation levels in excess of 50% in women and 

60% in men are indicative of hemochromatosis and upon detection, further evaluation of 

the disease is initiated (Pippard 1997, Lynch 1995). Plasma ferritin, which is indicative 

of iron stores, is also evaluated, but usually only after transferrin saturation is found to be 

elevated because plasma ferritin levels are subject to influences other than iron stores 

(Lynch 1995). Plasma ferritin levels in excess of 300 f.lg/mL coupled with transferrin 

saturation greater than 60% are potent indicators for hemochromatosis and subsequent to 

these findings, a liver biopsy is typically perfonned for definitive diagnosis (Finch and 

Huebers 1986, Lynch 1995, Herbert 1987). In hemochromatosis, staining of the liver 

sample will show an increase in hepatocyte hemosiderin with concentrations reaching up 

to 50-100 times nOIDlal (Lynch 1995, Britton et al 1994).' Conversely, in the dietary form 

of iron overload seen in African males, iron loading occurs preferentially in the 

reticuloendothelial system, although there definitely is an increase in liver iron content as 

well (Lynch 1995). The nonnalliver iron concentration in humans is less than 36 

micromoles of iron per gram of dry liver weight (Moirand et al 1997). In heterozygous 

hemochromatosis, liver iron concentrations are approximately 54 micromoles of iron per 

/	 gram of dry liver weight. Both of these parameters correspond to a hepatic iron index (~ 

mol Fe/g dry weight/age in years) less than two. In homozygous hemochromatosis, the 

hepatic iron index is greater than two. This index is used in evaluating liver biopsy 

results because iron content increases with age; therefore, in diagnosing 

hemochromatosis or another disease that causes tissue iron overload, age must be 

considered (Lynch 1995). 
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The average functional iron pool is comprised of approximately 40 mg of iron per 

kg of body weight, and the storage pool contains approximately 1 gram in men and 300 

mg in women. The signs and symptoms of iron overload begin to appear when total body 

iron content becomes 5-10 times higher than normal (Lynch 1995). The physiological 

manifestations of iron overload are systemic, but the primary organ affected is the liver, 

as it is a major iron storage site; however, excess iron is also stored in the parenchymal 

cells of the heart, pancreas, and spleen, and the function of these organs is adversely 

affected as well (Britton et al 1994, Halliday 1989). As the disease progresses and iron 

concentrations of the tissues increase, fibrogenesis occurs which causes organ 

dysfunction (Britton et al 1994). In the latter stages of the disease cirrhosis develops, and 

in approximately 25% of these patients liver cancer will develop (Lynch 1995). 

Excessive iron deposition also causes dysfunction ofthe endocrine and cardiac system. 

Endocrine system dysfunction can cause diabetes, while arrhythmias and heart failure can 

ensue from failure ofthe cardiac system (Lynch 1995, Halliday 1989). Osteoporosis, 

increased susceptibility to infections, increased lipid peroxidation, and mitochondrial 

damage have also been attributed to iron overload (Lynch 1995, Halliday 1989, 

Oppenheimer 1989, Walter et al 2002). Complications from diabetes and cirrhosis, as 

/ well as arrhythmias, heart failure, and cancer are the common causes ofdeath in patients 

with iron overload (Lynch 1985). 

Typical treatment methods for iron overload include repeated phlebotomy and 

iron chelation therapy, although the fonner is much more effective (Halliday 1989). The 

most effective treatment regimen is consistent phlebotomy treatments such that serum 

iron and serum ferritin concentrations are maintained at the low-normal level, or 
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approximately 65 J..lgldL and 40 J..lglmL, respectively (Halliday 1989, Herbert 1987). The 

diagnosis and prompt treatment of iron overload prior to the development of cirrhosis is 

associated with improved cardiac and endocrine function as well as overall improved 

prognosis (Lynch 1995). 

Iron Deficiency and Overload in the Rat. Similarities in iron metabolism between 

humans and the rat allow for use of the rat model for studies of iron metabolism as it is 

not ethically feasible to perform the invasive procedures necessary for such studies on 

humans. However, differences in physiology exist, which preclude complete 

extrapolation of the results of animal studies to humans (Dallman et al 1982, Aggett and 

Davies 1980). 

Rats fed iron deficient diets and who subsequently developed iron deficiency 

anemia, exhibited poor rates of growth. Beard et at (1995) conducted a study to examine 

the effects ofprolonged dietary iron deficiency and food restriction on growth. Forty-six 

male Sprague-Dawley rats were divided into three groups each receiving one of three 

dietary treatments. For six weeks, the animals were fed either an iron deficient diet (5 

ppm), an iron adequate diet (50 ppm), or the iron adequate diet in amounts 5-15% less 

than what was consumed by the iron deficient group on the previous day. Prolonged -- feeding of an iron deficient diet did affect hematological parameters, as the iron deficient 

group had hemoglobin and hematocrit values (4.3 gldl and 20%. respectively) 

significantly less than that of the food restricted and control groups (P:::'0.05). Both the 

iron deficient diet and food restriction were found to affect body composition with the 

body weight and body fat percent of both the groups being significantly less than that of 

the control group (P:::'0.05). An interesting finding was that in the 4th and 5th week of the 
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experiment, the food intake of the iron deficient animals was significantly greater than 

the intake ofthe ad libitum control animals (p :::0.05). Furthermore, metabolic rate of the 

iron deficient anemic rats was found to be significantly greater than that of the food

restricted and ad libitum control groups (P:::0.05). The authors concluded that the 

increased metabolic rate was likely a compensatory mechanism to maintain core body 

temperature, as these animals had low body fat, which reduces heat insulation. The 

increase in metabolic rate may also partially explain the depressed weight gain of the iron 

deficient animals in the face of increased food intake during the last two weeks of the 

study (Beard et al 1995). 

Schwartz et al (1973) restricted food intake of male and female albino rats to 

examine the effects on weight, hematology, and clinical chemistry. The experimental 

diet was iron adequate, but by virtue of restricting intake, the animals were supplied with 

less than adequate dietary iron. There were four male and four female experimental 

groups, each consisting of 25 rats. The control group was fed ad libitum and the 

remaining three groups were provided the same diet in amounts equal to 50,75, or 87.5% 

of the amount consumed by the control group; therefore, the nutrient intake of the 

restricted animals was 50, 75, and 87.5% of that of the control group. The female rats in 

__	 the restricted groups gained significantly less weight (p<O.05) than the female control 

group, and the percent reduction in weight, as compared to the control, corresponded to 

the percent of dietary restriction. Food restriction affected hematological parameters in 

the female rats with significant differences observed primarily between the 50% 

restricted and control group (p<0.05). Red blood cell counts were significantly greater in 

the 50% group at 90 and 210 days, and in the 75% group at 210 days. Surprisingly, 
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hemoglobin and hematocrit were significantly greater in the restricted groups versus the 

controls. Specifically, HCT percentages and HGB levels were greater in the 50% group 

at 21,90, and 210 days. In the 75% restricted group, HCT was greater at 210 days 

whereas HGB was greater at 21 days, and the latter was greater in the 87.5% restricted 

group at 90 days. The authors attributed the aforementioned differences to 

hemoconcentration rather than inadequate nutrient intakes. There were no significant 

differences observed in BUN and SGPT between the female restricted groups and the 

female control group; however, glucose in the female 75 and 87.5% groups was 

significantly greater than the female control at the end of 42 days, and alkaline 

phosphatase was significantly greater in the female controls versus the female 75% group 

at 90 days and an female groups at 210 days (p<0.05). The authors postulated that the 

significant differences in alkaline phosphatase observed were due to metabolic, as 

opposed to pathologic, alterations in the liver. Food restriction was observed to produce 

significant differences among the females in kidney and liver weights as a percentage of 

body weight (PBW). Kidney percentages were significantly greater in the 50 and 87.5% 

groups after 90 days of restriction (p<0.005 and p<O.OI, respectively). Liver percent 

body weight (PBW) was significantly greater in the 50% group at 210 days (p<O.005), 

---- 75% group at 90 days (p<0.005), and the 87.5% group at 90 days (p<0.01). The authors 

observed increased fat and iron-laden macrophages in the liver, which may partially 

explain the greater weight of the livers of the restricted animals versus the controls. Iron 

laden macrophages were also found in the spleens, but there were no significant 

differences in spleen PBW between the restricted groups and the controls, and there were 
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no described changes in the kidneys to explain the greater weights of the kidneys in the 

restricted animals versus the controls (Schwartz et al 1973). 

Dallman and his colleagues (1982) examined the progression of iron deficiency 

by feeding iron replete rats iron deficient diets. For the first two weeks of the study, the 

weanling rats consumed a 100 ppm iron diet with the goal ofmaximizing iron stores. 

Subsequently, the animals were randomly assigned to receive 2, 6,. or 50 ppm iron diet for 

the remainder of the study (54 days). Liver iron concentrations in the control group (50 

ppm) varied little throughout the study, whereas, spleen iron concentrations increased 

from 40 pglg at day 0 ofthe experimental period to 426 pglg at day 54 of the study 

period. The authors concluded that the dramatic increase in spleen iron observed was a 

manifestation of the mechanism of iron storage. During the early stages of development, 

there is insufficient iron available for storage as the iron demands of growth are great, 

and the RBC, which contribute iron when they are removed from circulation and broken 

down by the spleen, have not reached the end of their life cycle, which has been 

estimated at 60 days (Dallman et al 1982). In the 2 and 6 ppm groups, both liver and 

spleen iron concentrations decreased significantly with the passage oftime and were 

significantly less than that of the control group (p<0.05). Hematocrit values in the 

-- control group increased gradually from 35.7% at initiation of the experimental feedings 

to 43.6% at the end of the study, and the authors attributed this change to the growth and 

development of the animals (Dallman et al 1982). Significant differences in hematocrit 

values between the control group and the 2 and 6 ppm groups were first observed on the 

6th day of the experimental feeding period and continued to the end of the study (p<O.05). 

Feeding iron deficient diets to iron replete rats also produced significant differences 

43 



(p<0.05) in serum iron and transferrin saturation between the control group and both 

deficient groups. The changes in laboratory parameters indicative of the various stages of 

iron deficiency were observed, however,. the changes did not occur in the order that 

corresponded to passage from one stage to the next. Specifically, the stages overlapped, 

giving a less clear picture of the progression of the disease than indicated elsewhere 

(Herbert 1987, Dallman et aI1982). 

The objective of Dallman et al (1982) was to determine the stages of iron 

deficiency development in iron-replete rats fed iron deficient diets. Conversely, Siimes et 

al (1980) fed weanling male Sprague-Dawley rats diets of deficient, marginal, adequate 

and excessive iron content to detemline the level of dietary iron intakes that would result 

in iron deficiency as indicated by changes in hemoglobin, myoglobin, hematocrit, 

transferrin saturation, cytochrome c, and liver iron. The animals were maintained on one 

of eleven experimental diets with iron concentrations ranging from 7 ppm to 500 ppm for 

three weeks. Hematocrit levels were determined at different time points over the course 

of the study, and there was a net decrease in the iron deficient groups (7, 10, 13, and 17 

ppm) with the lowest levels exhibited by the 7 and 10 ppm groups. The remaining diet 

groups (25,40, 50, 75, 125, 250, and 500 ppm) exhibited. a net increase in hematocrit 

levels with no differences detected among these groups. Hemoglobin, myoglobin, -
cytochrome c, and transferrin saturation increased with increasing dietary iron 

concentration from 7 ppm up through 17 ppm, and subsequently exhibited a plateau 

effect from 25 ppm-500 ppm. Significant differences in hemoglobin (p<0.001) and 

cytochrome c (p<0.05) were detected between all iron deficient animals and those on 

marginal, adequate, or excessive iron diets. Myoglobin levels in the two lowest dietary 
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iron groups (7 and lO ppm) were significantly different (p<O.OOl and p<0.05, 

respectively) than the myoglobin levels of the animals receiving the 25-500 ppm diets. 

Liver iron concentrations did not increase in a pattern comparable to that observed in 

hemoglobin, myoglobin, and cytochrome c, but rather the animals receiving the iron 

deficient diets (7-17 ppm) had similar liver iron concentrations, while from 25-500 ppm, 

Iiver iron concentrations increased at each level of increasing dietary iron concentration 

(Siimes et al 1980). The authors concluded that their findings support the concept that 

iron deficiency first results in depleted iron stores, which reduces transferrin saturation 

because there is less iron available to be transported. Decreased iron availability 

subsequently hinders production of hemoglobin, as there is insufficient iron to be' 

incorporated into the hemoglobin molecule. They also postulated that symptoms of iron 

deficiency, including depressed production of hemoglobin, myoglobin, and cytochmme 

c, occur with regular consumption of diets providing less than 25 mg Felkg diet, and that 

decreased cytochrome c levels suggest that maintenance on iron deficient diets during 

periods of rapid growth may hinder energy production in cell mitochondria (Siimes et al 

1980). 

Iron overload research in rats frequently examines deposition of iron in the -- tissues; one of the manifestations of overload is excessive tissue deposition, which affects 

organ function. Similarly to studies of iron deficiency, the effects of iron excess on 

hematology, weight, and plasma proteins are evaluated as well. 

Kimura and Yokoi (1996) evaluated an experimental hemochromatosis model by 

feeding male Wistar rats diets adequate or deficient in magnesium and deficient, 

adequate, or excessive in iron for twenty days. The iron concentrations of the adequate 
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and iron excess diets were 120 and 240 ppm, respectively. There were no significant 

differences in hematology, weight gain, food intake and efficiency, and tissue iron 

concentrations of the animals receiving the magnesium adequate-iron adequate and 

magnesium adequate-iron excess diet (Kimura and Yokoi 1996). Although not 

significant, there were differences in the aforementioned variables between iron adequate 

and iron excess groups. The rats consuming excess iron gained more weight, had higher 

feed efficiency, and consumed more diet than the animals on the iron deficient diet. 

Hematocrit was higher in the iron excess group, but hemoglobin and mean corpuscular 

hemoglobin concentrations were less. As would be expected, liver, heart, spleen, and 

kidney iron concentrations were greater in the excess group. The only significant 

difference in plasma parameters between adequate and excess groups was in amylase, 

with levels in the excess group being significantly higher than that of the adequate group 

(p<0.05). Albumin, SGOT, SGPT, and alkaline phosphatase were higher in the excess 

group, whereas urea nitrogen was lower (Kimura and Yokoi 1996). The lack of 

significant differences observed between the iron adequate and iron excess group may be 

due in part to the short study duration. 

A similar study to that just described, but with a longer experimental period, was 

conducted by Shah and" Belonje (1991). Fifty female weanling Sprague-Dawley rats 

were randomly assigned to one of five experimental diet groups (25, 47, 150,270 (chow) 

or 1260 ppm), and at 6 and 12 weeks, the rats were killed for analyses. Body weights 

were not significantly different among the different diet groups. Hemoglobin levels were 

higher in all diet groups at six weeks versus 12, and at six weeks the highest hemoglobin 

levels were seen in the 150 and 1260 ppm diet groups (p<0.05). An interesting finding 
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was that the animals receiving the chow had the lowest hemoglobin levels at both 6 and 

12 weeks, which the authors attributed to the effects of compounds such as phytates that 

were in the chow, but not the purified diet (Shah and Belonje 1991). However, this 

potential inhibition of iron absorption was not exhibited in the tissues, as the animals fed 

the chow did not have the lowest liver or spleen iron concentrations. Actually, they had 

the second highest liver and spleen iron concentrations, preceded only by the 1260 ppm 

diet group, and followed by the 150 ppm group.. The authors addressed this as well and 

concluded that dietary iron concentration affects tissue iron concentrations, but does not 

exert an effect on hemoglobin levels (Shah and Belonje 1991). This conclusion is in 

conflict with that of Siimes et al (1980) and Kimura and Yokoi (1996) who attributed 

differences in hemoglobin concentrations among animals fed diets ofvarying iron 

concentrations to dietary iron intake. Furthermore, hemoglobin is often used in the 

diagnosis of iron deficiency anemia, which results from inadequate dietary iron intake 

(Holst and Lozoff 1998, Finch and Cook, 1984). Analysis of liver and spleen iron 

concentrations in the female rats revealed that the concentration of iron in these tissues 

increased with increasing dietary iron concentration and with the passage of time. At 

both 6 and 12 weeks, the 25 and 1260 ppm groups had the lowest and highest liver iron - concentrations, respectively, but the differences in liver iron concentrations among all the 

diet groups, particularly 47, ] 50, and 270 ppm, were less pronounced at 12 weeks versus 

6. Furthennore, the 25 and 47 ppm groups experienced the greatest increase in liver iron, 

whereas the 1260 ppm group experienced a slight decrease. At 6 and 12 weeks, liver iron 

concentrations in the 1260 ppm diet group were significantly greater than that of all the 

other animals (p<0.05). At 6 weeks the 150 ppm diet group exhibited liver iron 
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concentrations significantly greater than the animals receiving the 25 ppm diet, but this 

significance was not detected at 12 weeks. In the spleen, significant differences in iron 

concentrations were only detected at 12 weeks between the animals receiving the 1260 

ppm diet and those receiving the 25, 47, and 150 ppm diets (p<0.05). The liver and the 

bone marrow are the two primary iron storage sites, yet in this study, the iron 

concentrations in the spleen far exceeded those of the liver, except in the 1260 ppm group 

at 6 weeks, for at this time the concentration of iron in the liver exceeded that of the 

spleen. Furthennore, the magnitude of change in spleen iron concentrations from 6 to 12 

weeks was also much greater than what was observed in the liver. In the liver, there was 

a doubling ofliver iron concentrations in the 25 and 47 ppm groups, which was the 

greatest increase observed among all of the diet groups. Conversely, tbe spleen iron 

concentrations increased over four-fold in the 25 and 150 ppm groups and 5-fold in the 

47,270 (chow), and 1260 ppm groups. Also, the difference in spleen iron concentrations 

among all diet groups at 6 weeks was less pronounced than what was observed at twelve 

weeks, which is the opposite of what occurred in the liver. The large difference in the 

spleen and liver iron concentrations raises the question of adequate perfusion of the 

spleen at the time of necropsy. The spleen functions in both the destruction of old red 

blood cells and the storage of blood for incorporation into circulation in the event of 

acute injury; therefore, inadequate perfusion could cause analyzed spleen iron 

concentrations to be higher than what would have actually been due to iron deposition 

alone (Cohen and Wood 2000). Unfortunately, the researchers failed to describe whether 

or not perfusion ofthe tissues was a component of the methodology. Shah and Belonje 
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(1991) ultimately postulated that iron absorption is more efficient with prolonged periods 

of insufficient iron intake. 

Iron deficiency in humans is treated with iron supplementation, and to examine 

the effects of iron excess via supplementation, Knutson et al (2000) fed 48 weanling male 

Sprague-Dawley rats iron deficient (0 J.lg iron/d) or iron adequate diets (800 J.lg iron/d) 

for twelve days followed by a 22-day period during which half of the rats were 

maintained on their original diet, and the other half were provided 8000 J.lg provided by 

their diet. The body weight of the rats provided the adequate diet plus the supplements 

was significantly greater than both the deficient and deficient plus supplement groups 

(p<0.05), but it was not significantly different than the adequate diet only group. 

Hemoglobin levels were not significantly different between the adequate and adequate 

plus supplement group, but liver iron concentrations were significantly greater in the 

supplemented group (p<0.05). The authors described their rats as having "subacute, 

minor iron overload" that increased liver iron deposition as well as lipid peroxidation in 

the animals (Knutson et aI2000). 

Chua and Morgan (1996) observed different effects of iron overload on animal 

weight than described thus far. The effect of iron overload and manganese loading on - tissue deposition ofboth minerals was examined. Twelve pregnant Wistar rats were 

maintained on either a 20 g Felkg diet (iron loaded) or a 0.5 g Felkg diet (control) 

beginning at day 18-19 of pregnancy and through weaning of the rat pups. At 15 days of 

age, half of the rat pups were killed for analyses, while the remaining animals were 

maintained on their respective diets until 63 days ofage. The body weight of the iron

overloaded rat pups at both 15 and 63 days were significantly less (p<0.05) than the body 
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weight of the control animals (Chua and Morgan 1996). Similar to the aforementioned 

studies, Chua and Morgan (1996) found that the liver and kidney iron concentrations of 

the iron- overloaded rats were significantly greater than the animals receiving the control 

diet (p<O.05). 

The research discussed here illustrates the effects of iron deficiency and iron 

overload on body weight and composition, hematology, and tissue iron concentrations in 

rats. The effects described were not always significant, but that does not disprove the 

occurrence of adverse effects of either iron deficiency or overload. In some of the cases 

discussed, the duration of the experimental period was relatively short, which raises the 

question of whether or not differences would become significant with the passage of 

time. 

Zinc 

Physiological Roles 

Zinc has a number ofvita} functions throughout the body and as such it is 

essential for life. Adequate zinc nutriture is required for normal growth and -- development, wound healing, efficient immune function, and enzyme activity (Prasad 

1988, Baer et al 1985). Protein-calorie malnutrition that often occurs in the elderly and 

persons oflow socioeconomic status has been identified as a causative factor in the 

development of zinc deficiency (Prasad 1988). Other causes include the poor 

bioavailability of zinc in the grain-based diets that are prominent throughout the world, 

namely in underdeveloped countries, diseases inducing malabsorption, and highly 
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catabolic states that cause excessive urinary zinc losses. The effects of zinc deficiency 

have been examined with respect to all of the aforementioned functions. 

Sandstead et al (1967) examined the characteristics of zinc deficiency with 

particular reference to growth and sexual maturation in 40 Egyptian males ages 12-20 

years. Zinc deficiency was confirmed by studies of zinc metabolism, which included 

assessment of the zinc concentration ofthe urine, plasma, and sweat. In those subjects 

not infected with parasites, inadequate dietary zinc intake was the primary causative 

factor of the disease. Diet history revealed that typical intake was lacking in zinc and 

iron. Animal proteins were an insignificant part of normal intake, and the primary food 

sources were wheat or com bread, rice, and vegetables, which varied depending on the 

season. Growth retardation was a prominent symptom of zinc deficiency and was 

characterized primarily by depressed linear and bone growth. Other clinical 

manifestations ofzinc deficiency included hypogonadism, hypopituitarism, dry skin, 

hyperpigmentation, abnormal alkaline phosphatase levels reflecting the inflammatory 

changes in the liver determined by biopsy, and impaired glucose absorption. Iron 

deficiency and pellagra commonly occurred concomitantly with zinc deficiency, which 

was not surprising given the poor nutrient availability oftypical Egyptian fare. The -- authors concluded that inadequate nutrient intakes coupled with excessive losses via 

sweat and due to bleeding from parasites were primary determinants of the development 

of zinc deficiency. Zinc supplementation facilitated reversal of zinc deficiency 

symptoms, namely growth and sexual maturation (Sandstead et al 1967). 

Carter et al (1969) also examined the role of zinc in growth and development in 

humans, and like Sandstead et al (1967), their study population consisted of adolescent 
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Egyptian boys. At the time of this preliminary research on zinc and physical 

development (1969), children in Middle Eastern countries, such as Egypt, Jordan, Iran, 

Turkey, Libya and Lebanon, commonly exhibited growth retardation. Such was the 

reasoning behind the selection of Egyptian children for this study, and an adolescent age 

group was utilized because adolescence is a period of rapid growth and developmental 

changes. The objective of this year-long study was to determine if zinc or iron 

supplementation would exert positive effects on the growth and development of 

adolescent boys. Two hundred seventy-nine boys age 11-18 years composed the study 

population, and were randomly assigned to receive one of three dietary supplements 

(placebo, 300 mg iron sulfate, or 60 mg zinc sulfate) for 6 days a week over the course of 

5 ~ months. A sub-sample of90 boys exhibited growth retardation as defined by the 

researchers as "heights greater than 2 standard deviations below the Iowa mean for height 

(Carter et aI1969)." This sub-population of boys received the same dietary supplements, 

but they were observed as a separate entity in order to assess the effects, if any, of 

supplementation on correcting growth retardation. The control group for this sub-sample 

was randomly selected from the remaining 189 boys and consisted of 30 boys with 

heights less than 2 standard deviations below the Iowa mean for height. Nutrient 

analyses of typical intake revealed that overall, the nutrient intake of the study population 

was inadequate to meet the demands of growth and development during adolescence. 

Interestingly, average dietary intake of zinc was not inadequate at 14 mg Iday, but the 

authors postulated that zinc absorption may be inhibited by other dietary components, 

including phytate. All boys exhibited a number ofphysical characteristics suggestive of 

nutrient deficiencies with the most prevalent being angular lesions, cheilosis, papillary 
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atrophy, eyelid scarring, hepatomegaly, and splenomegaly. There were no significant 

differences in the occurrence of the aforementioned clinical characteristics, as well as all 

others, among the study participants. Serum iron and zinc levels were below normal (less 

than 100Jlg and 90Jlg/ 100mL) in all study participants at the initial evaluation. Serum 

iron and zinc improved to nonnallevels with respective supplementation, but when 

supplementation was discontinued, both serum indices returned to sub-normal levels. 

Height, bone age, and sexual development improved by the end of the study, but there 

were no significant differences among supplemental treatment groups (Carter et al 1969). 

Ultimately, the authors observed improvements in serum zinc with zinc supplementation, 

but positive effects on growth and sexual maturation were not greater than what was 

observed in the iron supplementation and placebo groups. One possible explanation for 

the lack of significant differences observed among supplemental groups and between the 

growth retarded and remaining boys may be the passage oftime between the end of the 

supplementation period and the final physical examination. The authors observed 

improvements in serum zinc with zinc supplementation, but noted that the improvements 

were lost when the supplementation ceased; therefore, there may have been insufficient 

time for the additional zinc to positively affect growth. The boys receiving zinc 

supplementation did experience decreased incidences of papillary atrophy, dry/scaling 

skin, glossitis, eye-lid scarring, corneal scarring, parotid enlargement, hepatomegaly, and 

splenomegaly. Another possible explanation for the lack ofpositive effects on growth 

and development is the level of zinc supplementation utilized in the study, which may 

have been insufficient to correct the long-term effects ofzinc deficiency on growth and 

development. 
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The function of zinc in wound healing is thought to be related to its role in 

growth, specifically growth on the cellular level, and enzymatic activity (Halsted and 

Smith 1970, Hallbook and Hedelin 1977). However, wounds, from surgery, bums, or 

ulcers, have been shown to increase urinary zinc losses, which may deplete zinc stores 

such that wound healing is compromised (Prasad 1988, Hallbook and Redelin 1977). To 

examine the effects of surgery on zinc status, Hallbook and Hedelin (1977) measured 

serum zinc and 24-hr urinary zinc excretion pre-operatively and each day for five days 

post-operatively. Thirty-eight adults composed the study population, and all patient had 

pre-op serum zinc values below the standard of 91 /-lg/1 OOmL. The difference between the 

standard serum zinc value and average pre-op serum zinc values of the patients less than 

60 years of age (86±8 /-lg/100mL) and those over 60 years of age (75±15 /-lg/100mL) was 

significant at p<O.OI and p<0.005, respectively. All patients experienced a decrease in 

serum zinc after surgery, with the lowest levels observed on post-op day two. 

Subsequently an increase in serum zinc was observed from post-op day two through post

op day five, but at the 5th day, serum zinc I.evels had not returned to pre-op levels. An 

overall inverse relationship between serum zinc and urinary zinc excretion was observed 

with the greatest excretion rates observed between pre-op and post-op day one, and 

---between post-op days four and five. The authors concluded that the adverse effects of 

surgery on serum zinc levels warrant the use of zinc supplements post-operatively to 

ensure zinc status is maintained such that wound healing is facilitated rather than delayed 

(Hallbook and Hedelin 1977). 

Halsted and Smith (1970) observed depressed (58 /-lg/100mL) serum zinc levels in 

persons with leg ulcers, which led Hallbaak and Lanner (1972) to examine the effects of 
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zinc supplementation on the healing of venous ulcers. Twenty-seven patients with leg 

ulcers between 100-1000 sq mm were first divided into two groups, those with initial 

serum zinc levels <1 00j.tg/1OOmL (Group 1) and those with initial serum zinc levels >110 

Jlg/I00mL (Group 2). In a double-blind randomized design, the subjects within each 

group were assigned to receive either a zinc supplement (600 mg/day) or a placebo for 

18-weeks. In Group 1, the subjects receiving the zinc supplement exhibited a healing rate 

significantly greater than the controls (p<0.02), but in Group 2, there were no significant 

differences in healing rate between the zinc supplement and placebo groups. 

Furthennore, significant differences were observed between the two placebo groups, with 

the subjects in Group 1 exhibiting a healing rate significantly slower than exhibited in 

Group 2 (p<0.02). At the end of the study, the greatest healing rate was observed in those 

receiving the placebo in Group 2, followed by those receiving the zinc supplement in 

Group 1. The Group 1 placebo subjects experienced a net decrease in serum zinc at the 

end of the study period, which supports the findings of Halsted and Smith (1970) that the 

presence of leg ulcers adversely affects serum zinc levels. The findings of Hallbook and 

Lanner (1972) also suggest that zinc supplementation improves wound healing in persons 

with serum zinc levels below the normal range. -- Depressed immune function has been observed in persons with zinc deficiency, 

and the essentiality oftms nutrient for immune function has been revealed by research 

showing improved immune function with zinc supplementation. Characteristics of 

impaired immune function observed in zinc deficiency that have been corrected with zinc 

supplementation include thymic atrophy, impaired cell mediated immunity and delayed 

hypersensitivity, lymphopenia, depressed helper T cell activity, increased suppressor T 
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cell activity, and decreased natural killer cell activity (Keen and Gershwin 1990). 

Prasad (1988) assessed the zinc status of23 elderly subjects, and one-third 

exhibited signs and symptoms of mild zinc deficiency. The zinc concentrations of the 

granulocytes and platelets of the zinc deficient group were significantly less than what 

was observed in the controls. Furthennore, the subjects with zinc deficiency exhibited 

decreased reactivity to antigens, as well as significantly depressed IL-2 activity of the 

helper T cells (p<0.001). 

Baer et al (1985) examined the effects of zinc depletion and subsequent repletion 

on indices of zinc functions in males. The study population consisted of six men housed 

in a metabolic unit for a 10-11 weeks. During the first week, they were maintained on a 

baseline diet that provided 15.7 mg zinc per day. Subsequently, the subjects were placed 

on an zinc-depleted diet that provided 0.28 mg zinc per day for 30-63 days. The repleted 

subjects received diets providing 6, 23.3, or 46.3 mg zinc per day for two weeks (2 

subjects) or five weeks (1 subject). Assessment of the effects of zinc depletion on 

inunune function included measurements of monocyte and neutrophil chemotaxis. 

Monocyte chemotaxis was observed to be normal, but neutrophil chemotaxis was 

impaired after 8 weeks of depletion. The lower end laboratory value indicative ofnonnal-- neutrophil chemotaxis is 4%, and two of the depleted subjects exhibited chemotaxis 

values of 1.2 and 1.3%. During the depletion period, all subjects experienced sore 

throats, increased acne, and/or apthous stomatitis, all of which are indicative of impaired 

immune function. Furthennore, these symptoms disappeared during the repletion period. 

The authors concluded that the aforementioned findings suggest that resistance to 

infection is impaired in persons with zinc deficiency (Baer et al 1985). 
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Over one hundred enzymes, the majority of which are metalloenzymes, are 

dependant on zinc for maintenance of structure and function. The zinc-dependent 

enzymes function in DNA synthesis, the dehydration of bicarbonate and hydration of 

carbon dioxide, oxidation and reduction reactions, and hydrolysis ofpeptide bonds and 

phosphate esters (Abdel-Mageed and Oehme 1990, Baer et al 1985). 

In their study examining the effects of zinc depletion, Baer et al (1985) also 

assessed its effects on the levels of zinc dependent enzymes. They observed a significant 

decrease (p<0.0005) in serum alkaline phosphatase (AP) levels at the end of the depletion 

period in the group designated for repletion, and after two weeks of repletion serum AP 

levels improved significantly (p<0.05). Conversely, leukocyte alkaline phosphatase 

(LAP) levels increased in excess of the normal range during the depletion period, but the 

change from baseline was not significant. The group designated for repletion 

subsequently experienced a significant drop in LAP (p<O.OS) to a level within the nonnal 

range. Lactic dehydrogenase levels decreased from baseline after the depletion period, 

but the changes were not significant and the levels of this enzyme did not respond to zinc 

repletion. Erythrocyte delta-aminolevulinic acid dehydratase levels decreased 

significantly (p<O.OS) during the depletion period, and subsequently rose with repletion, -- although this change was not significant. An overall increase in plasma ribonuclease 

was observed in all subjects, but was not significantly greater than baseline; however, 

ribonuclease levels in the repletion group increased significantly (p<O.OS) during the 

repletion period. Despite the inconsistent changes in the aforementioned enzyme levels 

during a relatively short period of depletion, the authors concluded that some zinc 
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dependent enzymes are adversely affected by insufficient dietary zinc intake (Baer et al 

1985). 

Iron and Zinc Interactions in the Rat 

Hill and Matrone (1970) proposed that the antagonistic interactions among 

transition metals are attributable to similar physical and chemical characteristics of these 

metals. Iron and zinc are two such minerals, and elucidating the nature of the interaction 

between them has been the objective of trace mineral research in man and animals 

(Solomons 1986). The ensuing discussion will focus on the results of research involving 

the rat, as that was the experimental model used in our study. 

Bougie et al (1999) assessed the effects of dietary iron and zinc on growth and 

absorption, as reflected by metabolic balance studies and tissue concentrations. Thirty

two weanling male Sprague-Dawley rats were assigned to receive one of four 

experimental diets varying in iron and zinc concentration for two months. The iron and 

zinc concentrations were neither below or above the recommended intake range for rats, 

and the four diet combinations were as follows: 300 ppm Fe/45 ppm Zn (Fe+/Zn+), 300 

ppm Fe/14.2 ppm Zn (Fe+IZn-), 44.1 ppm Fe/45 ppm Zn (Fe-/Zn+), 44.1 ppm Fe/14.2 

ppm Zn (Fe-/Zn-). The metabolic balance studies revealed that iron and zinc absorption 

and retention were significantly (p<O.OOOI) greater in the animals provided the higher 

diet concentrations of these minerals (300 ppm Fe and 45 ppm Zn, respectively). In the 

first metabolic balance study, iron absorption was significantly affected by dietary iron 

concentration (p<0.0001), but not dietary zinc concentration (p=O.578). Zinc absorption 

and retention were significantly affected by both dietary iron (p=O.015 and p=O.046, 
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respectively) and zinc concentrations (p<0.00 I). The second balance study, which was 

conducted during the last week of the experimental period, revealed the same 

relationships between iron and zinc intakes and absorption as the first, except that a 

significant effect of dietary zinc on iron absorption was detected (p=0.015). The liver 

iron concentrations of the animals receiving the 44.1 ppm iron diet (Fe -) were 

significantly less than the liver iron concentrations of the animals receiving the 300 ppm 

iron diet (p<0.05). The greatest liver zinc concentration was observed in the group 

receiving the Fe-/Zn+ diet (44.1 ppm Fe/45 ppm Zn), and it was significantly greater 

(p<0.05) than the liver zinc concentrations of the animals receiving the Fe+1 Zn+ (300 

ppm Fe/45 ppm Zn) and Fe+/Zn- (300 ppm Fe/14.2 ppm Zn) diets. These findings 

suggest that there is an inverse relationship between dietary iron intake and zinc 

absorption. Specifically, when iron intakes were at the lower end of the recommended 

intake range (44.1 ppm), liver zinc concentrations were the greatest, and when dietary 

iron intake was at the upper end of the recommended intake range, Ii ver zinc 

concentrations were the lowest. Weight gain among the diet groups was not significantly 

different (p=0.06), but there was a trend toward significance, which is not surprising 

given the role of zinc in physical growth and development. The authors concluded that 

there is a negative relationship between iron and zinc, owing to the similarities in their 

physical and chemical characteristics that result in competition at the absorption site such 

that zinc absorption is depressed by a greater proportion of dietary iron (BougIe et al 

1999). 

Dursun and Aydogan (1995) also examined the relationship between iron and zinc 

with an emphasis on the effects of variable dietary iron intake on zinc absorption. 
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Twenty male Swiss albino rats were obtained at 6 weeks of age and randomly assigned to 

one offoUT dietary treatment groups: control (150 ppm Fe), low iron (10.44 ppm), high 

iron (388 ppm), and very high iron (827 ppm). Following a 7-day acclimatization period 

during which time the animals were fed standard rat diet, the animals were provided 15 g 

of their respective diets every day for two weeks. The rats were injected with radio

labeled. zinc (2 ~Ci Zn-65) and metabolic balance studies were performed to assess the 

effects of dietary iron on abso11Jtion, retention, and excretion of zinc. The animals 

receiving the control and low iron diets gained weight, whereas the animals receiving the 

high and very high iron diets lost weight; however, significance was only detected 

between the control group and the very high iron group (p<0.05). Fecal losses of zinc 

were the greatest in the high and very high iron groups, and the low iron group 

experienced fecal Zn losses less than that experienced by the controls. An inverse 

relationship between dietary iron and zinc absorption and retention was observed. 

Specifically, zinc absorption and retention in the very high iron group was significantly 

lower than that of the controls throughout the examination period post Zn-65 

administration (p<O.Ol). Conversely, the low iron group exhibited zinc absorption 

significantly greater than. the controls at 24 and 48 hours post Zn-65 administration 

(p<O.Ol). Furthermore, zinc retention in the low iron group was significantly greater than 

the controls at 48, 72, and 96 hours after Zn-65 administration (p<O.05). The inverse 

relationship between dietary iron and zinc was reflected in the tissue concentrations of 

zinc as well. Liver zinc concentration (~g ZnJg dry tissue) was significantly greater in 

the low iron diet group versus the control group (p<O.OOl), whereas, liver zinc 

concentrations of the very high iron group were significantly lower than the controls 
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(p<0.01). The authors concluded that the inverse relationship between iron and zinc that 

they observed was in accord with the theory that the interaction between these two 

elements is a function of their simHar absorptive pathways (Dursun and Aydogan 1995). 

The role of zinc in a number of life requiring physiological processes cements its 

position as an "essential" trace element. The observed inverse relationship between 

dietary iron concentration and zinc absorption and retention may have serious 

consequences for zinc nutriture in persons given iron supplementation to correct iron 

deficiency anemia. 

Copper 

Physiological Roles 

Copper, like iron and zinc, is a nutrient essential for life, and many of the 

functions of these minerals are similar. Copper plays a role in immune function and 

growth, as does zinc, and it and iron are components of the cytochrome oxidases, which 

function in energy production (Linder and Hazegh-Asam 1996, Olivares and Dauy 1996). 

One of the primary similarities among these minerals is that all serve as functional 

components of enzymes, and many of the functions of copper throughout the body, 

including anti-oxidation and iron metabolism, are related to its enzyme involvement). 

Copper is also a component of proteins that function in the metabolism, transport, and 

storage of minerals (Abdel-Mageed and Oehme 1990, Linder and Hazegh-Asam 1996, 

Olivares and Dauy 1996). 
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The functions of the copper-containing proteins, namely enzymes, throughout the 

body are numerous and diverse. Metallothionein is one such protein, and it is involved in 

the metabolism, transport, and storage ofminerals such as copper, zinc, and cadmium 

(Linder and Hazegh-Azam 1996). Superoxide dismutase (SOD) is an enzyme with 

copper at its active site, and it functions in the dismutation of superoxide radicals and as 

such, is involved in antioxidant activity (McCord and Fridovich 1969, Solomons1979, 

Linder and Hazegh-Azam 1996). Lysyl oxidase, another copper-containing enzyme, is 

involved in the cross-linking of collagen and elastin necessary for bone and tissue 

development (Abdel-Mageed and Oehme 1990). Ceruloplasmin is one of the primary 

copper-containing enzymes, as it is intimately related to iron metabolism and energy 

production, with ceruloplasmin's role in the latter related to another copper-containing 

enzyme, cytochrome c oxidase (Osaki et al 1966, Roeser et aI, 1970, Hsieh and Frieden 

1975). 

Holmberg and Laurell (1948) perfonned precipitation studies on human and pig 

serum that resulted in their identification of a "blue protein" different in nature from 

hemocuprein that they termed 'ceruloplasmin.' Their subsequent research on 

ceruloplasmin identified it as an enzyme with copper in its active site (Holmberg and -- Laurell 1951). Ceruloplasmin functions as a copper transport protein, and its enzymatic 

capabilities are required for iron metabolism, and as such it is referred to as a 

'ferroxidase' (Roeser et al 1970, Hsieh and Frieden] 975, Solomons 1979). 

Osaki et al (1966) assessed the role of ceruloplasmin in iron metabolism which 

led them to conclude that ceruloplasmin exhibited ferroxidase properties. Nineteen 

samples of human blood were collected for use in evaluating Fe (II) oxidation in the both 
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the presence and absence of ceruloplasmin, and the formation of Fe (III) transferrin under 

approximate physiological conditions. The presence of ceruloplasmin was associated 

with an accelerated rate of Fe (II) oxidation as compared to oxidation ofFe (II) without 

ceruloplasmin present. The conversion of Fe (H)-transferrin to Fe (ID)-transferrin was 

also observed to be greater in the presence of ceruloplasmin. The significance of these 

findings lies in the fact that increased rates of Fe (II) oxidation and fOImation of Fe (III)

transferrin in the presence ofceruloplasmin translates to greater amounts of iron 

transported to the bone marrow for erythrocyte formation (Osaki et al 1966). Osaki et al 

(1966) ultimately suggested that ceruloplasmin be classified as a ferroxidase, as it was 

observed to exhibit enzymatic properties, specifically by stimulating oxidation reactions 

in iron metabolism. 

Roeser et al (1970) fed 5-6 day old pigs a copper artd iron deficient diet to 

examine the effects of copper deficiency on iron status as it related to ceruloplasmin 

activity. The control animals received the original copper and iron deficient diet 

preparation that had been supplemented with copper sulfate, whereas the diet ofthe 

piglets in the experimental group was not supplemented. All animals consumed the diet 

for 73 days, and all were given intramuscular iron dextran injections during the first 3-4 

weeks of the study. Assays ofplasma ceruloplasmin levels revealed that control pigs had 

greater ceruloplasmin levels than the copper deficient animals, which illustrates the 

necessity of copper for ceruloplasmin formation. In the copper deficient pigs, plasma 

ceruloplasmin levels decreased continually with the passage of time, and hypoferremia 

developed between the 8
th 

and 9th week of the study with the lowest plasma iron level 

observed between the 11 th and 12th week of the study. Administration of copper and 
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ceruloplasmin improved plasma iron levels, but the ceruloplasmin exhibited a more 

positive effect on plasma iron than the administration of copper alone. The authors also 

assessed the role of ceruloplasmin on iron metabolism by administering intravenous 

injections of ferric and ferrous iron to both the control and copper deficient animals. In 

the control animals, the fonn of iron injected did not significantly affect plasma iron 

concentrations (p>O.05). However, in the copper deficient animals, there were significant 

differences in plasma iron concentrations as a result ofthe ferric and ferrous iron 

injections, with the increase in plasma iron stimulated by the ferric injections being 

significantly greater than that produced by the ferrous injections (P<O.OI). Furthermore, 

increas.es in plasma iron concentrations due to the ferrous iron injection were 

significantly different between the control and copper deficient animals, with the increase 

in the control animals being significantly greater than that observed in the copper 

deficient animals. The aforementioned findings led the authors to conclude that copper 

facilitates iron metabolism by enabling the production of ceruloplasmin, which is 

required for efficient iron metabolism (Roeser et al 1970). 

Hsieh and Frieden (1975) concluded that ceruloplasmin functions in copper 

transport based on the findings of their research that examined the roles of ceruloplasmin 

relative to cytochrome c oxidase activity. Sprague-Dawley rats of weanling age were 

maintained on a copper deficient diet for 8-weeks. The control and copper deficient 

groups received the same diet, but the water provided the control group was 

supplemented with copper (10 ppm). Two sub-experiments were included in this study 

that involved the injection of copper compounds, including ceruloplasmin, into the 

copper deficient rats to determine the effects on cytochrome c oxidase activity in 
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different tissues. In both sub-experiments, the ceruloplasmin injections had the most 

profound effects on cytochrome c oxidase activity in all tissues examined (spleen, liver, 

heart, lung, pancreas, and kidney). The greatest differences in cytochrome c oxidase 

activity were observed between the copper deficient animals injected with saline and 

those injected with rat or human ceruloplasmin .in the spleen, heart, and liver (Hsieh and 

Frieden 1975). The aforementioned findings led Hsieh and Frieden (1975) to conclude 

that ceruloplasmin facilitates the production of cytochrome c oxidase more so than other 

copper compounds including copper chloride (CuClz), copper-albumin, and copper

histidine by virtue of its role in copper transport. Furthennore, the role of ceruloplasmin 

in the formation of cytochrome c oxidase has implications for energy production 

throughout the body, as it is the fmal enzyme of the electron transport chain (Linder and 

Hasegh-Azam 1996). 

Iron and Copper Interactions in the Rat 

The interaction between iron and copper, like that of i.ron and zinc, can be 

attributed to the similarities in the physical and chemical properties of these two minerals 

(Hill and Matrone 1970). Furthermore, they are intimately related by virtue of the role of 

copper in iron metabolism (Ozcelik et al 2002). 

Ozcelik et al (2002) examined the relationship between iron and copper as it 

related to hematology. For nine weeks, two groups of seven Wistar rats were fed the 

same diet, with one group (experimental) receiving copper supplemented water. At the 

end of nine weeks, blood was drawn and analyzed for erythrocyte deformability~ 

viscosity, hematocrit, hemoglobin, and red cell count. The experimental group exhibited 
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significantly greater hematocrit, erythrocyte count, and blood viscosity levels than the 

control group (p<0.05). Conversely, erythrocyte defonnability and hemoglobin were 

lower in the experimental group, with the hemoglobin levels between the two groups 

being significantly different (p<O.05). The authors concluded the observed depression of 

hemoglobin despite increased erythrocyte counts and hematocrit in the experimental 

group was due to adverse effects of copper on the enzymes involved in hemoglobin 

production. They also postulated that excessive copper interferes with membrane 

proteins and as such affected erythrocyte defonnity and blood viscosity (Ozcelik et al 

2002). 

Crow and Morgan (1996) examined the effects of excessive iron and copper on 

deposition of both minerals in tissues. Twelve pregnant Wistar rats were provided iron 

and copper loaded diets starting on day 20 of their pregnancy. Litters contained 6-8 pups, 

and all were maintained on the same diet as their dams. At 15, 21, and 63 days of age, rat 

pups from each group were killed for analyses. The control diet contained 16 ppm 

copper and 70 ppm iron. The experimental groups were provided with either copper 

supplemented water (Cu+ group), diet supplemented with 20 g/kg carbonyl iron (Fe+), or 

both (Cu+, Fe+). An inverse relationship was observed between dietary copper and iron 

deposition in the liver. Specifically, the animals fed the copper loaded diet had liver and 

kidney iron concentrations significantly lower than the controls (p<O.05). The authors 

concluded that copper loading can have an inhibitory effect on iron deposition in organs 

(Crowe and Morgan 1996). 
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Trace Mineral Interactions Among Iron, Zinc, Copper 

Interactions among iron, zinc, and copper can have serious consequences 

stemming from impaired or enhanced absorption that subsequently affects availability of 

these nutrients to perform their physiological functions (Sherman and Tissue 1981). 

Gomez-Ayala et al (1997) examined the effects of iron deficiency on the absorption of 

iron, zinc, and copper in rats. Their research involved 131 male Wistar rats that were 

maintained on either an iron adequate or iron deficient diet for forty days, and at the end 

of the study, a portion of their duodenum was perfused with a mineral solution containing 

different forms of iron. They observed decreased absorption ofbeme iron, copper, and 

zinc in the iron deficient animals, and subsequently concluded that ferropoenic anemia 

hinders the absorption of minerals that require active processes (Gomez-Ayala et al 

1997). 

The risk of negative interaction effects occurring among iron, zinc, and copper is 

greater when one or all of these minerals are consumed in amounts greater than the 

amount normally consumed in a typical meal. Primary examples of such situations are 

nutritional programs aimed at correcting mineral deficiencies, namely iron deficiency, or 

regular consumption of supplements and highly fortified foods (Sandstrom 2001). The 

latter situation is not as likely to lead to adverse interactions as the former, but increased 

supplement use coupled with prevalence of iron fortified foods on the market does pose 

the threat of excessive consumption of one nutrient such that the others are affected 

(Roughead et al 1999). Iron deficiency due to poor nutrient intake or malnutrition can be 

accompanied by zinc or copper deficiency, and the supplemental iron doses utilized to 

correct the iron deficiency may exacerbate concomitant mineral deficiencies or contribute 
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to their development. The reverse may also be true specifically that copper or zinc 

supplementation can adversely affect iron status (Castillo-Duran and Cassoda 1999, 

Shennan and Tissue 1981). Interactions among iron, zinc, and copper have been the 

focus of animal research involving the manipulation of dietary iron, zinc, and/or copper, 

with examination of the subsequent effects on body weight, tissue mineral 

concentrations, and, in cases that included iron deficiency or overload, hematology. 

Analyses of tissue mineral concentrations are often a component oftrace mineral 

interaction research because tissue mineral concentrations are thought to be indicative of 

absorption as well as reserves of the minerals (Larson and Sandstrom 1992). 

Roughead et al (1999) conducted a surface response study to examine iron, 

copper, and zinc interactions using female Sprague-Dawley weanling rats and 15 

experimental diets of varying iron, copper, and zinc concentrations. The iron 

concentrations ranged from deficient (7 ppm) to excessive (300 ppm), with the latter 

selected because it was deemed to be comparable to excessive levels that could be 

reasonably achieved by humans. They found that the various dietary treatments did not 

significantly affect mean weight gain of the animals, which ranged from 123-127 grams 

over the six-week experimental period. Hemoglobin, hematocrit, serum ferritin, and liver 

iron were evaluated to detennine iron status in the animals. Dietary iron, but not copper 

or zinc, was observed to have a significant effect on hemoglobin and hematocrit levels 

(p<0.0001), with the lowest levels of both observed in the animals who received the 7 

ppm iron diet (10.4 and 32%, respectively). Both dietary iron and copper affected serum 

ferritin level, which is evaluated as an. indicator of iron stores. The highest serum ferritin 

level (578 J.lg/L) was observed in the animals receiving the diet highest in copper 
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(2Oppm) and moderate in iron and zinc content (45.8 ppm Fe and Zn). Excessive dietary 

iron intake (300 ppm) coupled with moderate zinc and copper intakes (45.8 and 3.2 ppm, 

respectively) also resulted in high serum fenitin (554 I-lgIL). These results led the authors 

to speculate that dietary copper and zinc may have an effect on serum fenitin, which they 

further stated has implications for the evaluation of serum ferritin levels relative to 

chronic disease (Roughead et al 1999). Liver iron concentrations were affected primarily 

by dietary iron, as the lowest concentration (0.4 flmol/g) was observed in the animals 

receiving the iron deficient diet and the highest concentration (11.8 flmoVg) was 

observed in the animals receiving the two highest iron diets (135.6 and 300 ppm). The 

authors concluded that dietary iron was the key detetnlinant of iron status and that the 

effects of zinc and copper, while evident, were minimal (Roughead et aI, 1999). 

The worldwide prevalence of iron deficiency anemia has fueled research 

examining the clinical manifestations of this disorder. Furthermore, such studies include 

determination of the effects of iron deficiency on tissue mineral concentrations, namely 

iron, zinc, and copper, because interactions are know to occur among these minerals, 

although the exact mechanism has yet to be clearly elucidated. 

./ Rodriguez-Matas et al (1998) examined the progression of iron deficiency 

induced by prolonged feeding of an iron deficient diet as well as the effects of iron 

deficiency on tissue concentrations of iron, zinc, and copper. Ninety- four male Wistar 

rats were randomly assigned to one of nine experimental groups. One group of animals 

served as baseline and was killed at the beginning of the study without having received 

an experimental diet. Halfof the remaining groups were maintained on an iron deficient 

diet (14.1 ppm) while the other half consumed an iron adequate diet (44.6 ppm). The 
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experimental diets differed only in iron content and were provided ad libitum to the 

animals. At the end of 10,20,30, and 40 days, one group of iron deficient and one group 

of control animals were killed for analyses. Differences in final body weight were only 

observed between the control and iron deficient rats at 40 days, with the control rats 

weighing significantly more than the iron deficient rats (p<O.OOl). The baseline control 

animals (0 days) did not have hemoglobin, hematocrit, RBC, or WBC values 

significantly different than the iron-deficient animals. However, the control animals had 

hemoglobin, hematocrit, RBC, and WBC values significantly greater (p<0.05) than the 

iron-deficient animals at all subsequent time points (10, 20, 30, 40 days). Dietary iron 

deficiency was also observed to exert an effect on tissue mineral concentrations 

(Rodriguez-Matas et al 1997). Liver and spleen iron concentrations were significantly 

greater in the control animals at 20, 30, and 40 days (p<O.05). Liver iron concentrations 

decreased in the iron deficient animals from baseline through 30 days, and then between 

30 and 40 days, there was a slight increase. In the control animals, liver iron decreased 

from baseline to day 10, increased from day 10 through day 30, and then decreased from 

day 30 to day 40. Spleen iron in the controls decreased from baseline to day 10 and 

subsequently increased through the end ofthe study. In the iron deficient animals, spleen / 
iron decreased from baseline through day 20, at which point it increased through the end 

of the study. Conversely to the observations for tissue iron, tissue zinc concentrations 

were lower in the control animals versus those on the iron deficient diet. Specifically, 

liver zinc concentrations in the control animals were significantly lower than the iron 

deficient animals at each time point (p<0.01). In the spleen, significant differences were 

only observed between the two groups at 10 days (p<O.OI) and 40 days (p<O.OOl). Liver 
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copper concentrations were not as affected by dietary iron as liver iron and zinc, with 

only the control animals at day 10 having liver copper concentrations significantly less 

than the iron deficient animals at the same time. Such was not the case with spleen 

copper, as the concentrations in the control animals were significantly less than observed 

in the iron deficient animals (p<O.OOl). The authors concluded that dietary iron 

deficiency persisting longer than 30 days depletes iron stores such that there is inadequate 

iron available for both the iron dependant enzymes and the production of heme proteins, 

resulting in diminished production ofhemoglobin (Rodriguez-Matas et al 1997). 

Hemoglobin functions as an oxygen transporter in the blood, and they postulated that the 

reduced hemoglobin levels induced by iron deficiency lead to reduced metabolic rates 

(Rodriguez-Matas et al1998). This is in contrast to the findings ofBeard et al (1995) 

who observed increased metabolic rates in rats with iron deficiency. Rodriguez-Matas et 

al (1998) also examined the effects of iron deficiency on tissue concentrations of zinc and 

copper. Their results suggest an inverse relationship between dietary iron and the 

concentration of zinc and copper. The inverse relationship was evident in liver zinc and 

spleen copper as both were significantly lower in the control animals at aU time points. 

However, the authors concluded that iron deficiency has a more profound effect on ./ 
copper metabolism due to the greater number of significant differences in the copper 

concentrations in tissues and bones observed between the control and deficient animals 

(Rodriguez-Matas et al 1998). Their conclusions regarding zinc were in contrast to those 

of Larson and Sandstrom (1992), who examined tissue mineral concentrations as 

indicators of absorption and observed an inverse relationship between iron and zinc that 

was most evident in the liver. 
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Fifteen male Wistar rats, weighing approximately 100 g at the start of the study, 

were fed either an iron deficient (5.9 ppm) or iron adequate (128 ppm) diet for 3 weeks to 

determine the effect of iron deficiency on tissue mineral concentrations (Yokoi et al 

1991). The initial and final weights of the iron deficient animals were less than the 

control animals, but these differences were not significant. Interestingly, food intake 

during the study period was significantly lower in the iron deficient group (p<0.05), but 

this was not reflected in weight differences. Liver, spleen, and kidney weight expressed 

as a percentage ofbody weight were not significantly different between diet groups, but 

the weight of the heart was significantly greater in the iron deficient group than the 

control group (p<0.05). As would be expected, hemoglobin and hematocrit 

concentrations were significantly lower in the iron deficient group than the control group 

(p<0.01), and the levels observed were below the reference range for these parameters 

(Yokoi et al 1991, Hrapkiewicz et al 1998). The authors concluded that the rats 

maintained on the iron deficient diet were anemic based on the hematological data and 

physical characteristics indicative of anemia, including pale tissue and conjunctiva color, 

abnormal incisors, and noticeably diminished physical activity. The iron deficient rats 

exhibited liver, heart, spleen, and kidney iron concentrations significantly less than tbose / 
of the control animals (p<O.OI). An inverse relationship between dietary iron and tissue 

copper was evident in the liver and spleen, as the tissue concentrations in both organs 

were greater in the deficient group (p<0.05). Copper concentrations in the heart and 

kidneys and zinc concentrations in all of the organs studied were not significantly 

different between diet groups (Yokoi et al 1991). The findings of Yokol et al (1991) are 
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consistent with those of Rodriguez-Matas, et al (1998), and both authors concluded that 

dietary iron has a more profound effect on tissue copper than tissue zinc. 

The research ofShukla et al (1990) was similar in pUIpose to that ofRodriguez

Matas et al (1998) and Yokoi et al (1991), yet it involved female rats that were 

maintained on the experimental diets for a longer duration than what was described by 

the previous researchers. Weanling rats of the C-F strain were randomly assigned to 

receive either a low iron (18-20 ppm) or iron-adequate (390 ppm) diet for eight weeks. 

At the end of the experimental period, the rats were killed, and their liver, spleen, and 

kidneys were analyzed for trace mineral content. The primary difference in tissue 

mineral concentrations between the deficient and control groups was observed in the 

liver. There was a direct relationship between dietary iron and liver iron concentration, 

with the iron deficient group having liver iron concentrations significantly less than the 

control animals (p<0.01). Liver zinc and copper concentrations were observed to be 

inversely related to dietary iron, with the iron deficient group having significantly greater 

zinc and copper concentrations than the control animals (p<0.02 and p<O.OI, 

respectively) (Shukla et al 1990). The direct relationship between dietary iron and liver 

/� iron, as well as dietary iron and liver zinc were also observed by Rodriguez-Matas (1998) 

and Larsen and Sandstrom (1992), respectively. In the kidney and spleen, iron 

concentrations were significantly lower in the iron deficient group (p<0.05), and the 

inverse relationship observed in the liver between dietary iron and copper concentration 

was also observed in the spleen (p<0.05). The authors postulated that the increased 

mineral concentrations in the animals maintained on iron deficient diets could be 

attributed to enhanced absorption of these minerals in the face of iron deficiency. They 
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further stated that the increased absorption of these minerals could be explained by the 

fact that transferrin functions as a transport protein for other minerals, and when less iron 

is available, there are more transport sites available for heavy minerals. A portion of this 

study involved feeding half ofthe iron deficient animals the iron adequate diet for two 

weeks following the original 8-week experimental period. The authors found that two 

weeks of iron repletion corrected the tissue mineral concentrations such that they were 

comparable to the concentrations observed in the control animals. They concluded that 

the increased tissue mineral concentrations observed in iron deficiency are due to 

interactions between iron and other minerals at the absorption and transport sites, and the 

fact that transferrin functions in the transport of many minerals, not just iron (Shukla 

1990). 

Sherman and Tissue (1981) also examined the effects of iron deficiency on tissue 

mineral concentrations, with an emphasis on iron nutriture during pregnancy and its 

effect on female offspring. Sprague-Dawley rats were randomly assigned to either an 

iron deficient (5 ppm) or control (307 ppm) diet upon determination of pregnancy and 

maintained on this diet through lactation. At 21 days of age, the female rat pups were 

/� randomly assigned to receive either the iron deficient or control diet, which resulted in a 

total of four experimental groups: deficient during gestation and weaning (DD), deficient 

during gestation and controi after weaning (DC), control during gestation and weaning 

(CC), control during gestation and deficient during weaning (CD). Rat pups were killed 

for analyses at two days of age to assess gestational effects of iron deficiency, at 21 days 

to assess lactation effects, and then post weaning at 30, 60, and 90 days. In the 2-day old 

pups, there were no significant differences in body weight, but the concentration of iron 
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was significantly greater in the bver of the control pups, while liver copper was 

significantly greater in the deficient pups (p<0.02). Liver zinc concentrations were not 

significantly different between the two groups. The 21-day old rat pups of dams on the 

iron deficient diet weighed significantly less and had significantly lower hemoglobin and 

hematocrit levels than their counterparts (p<O.OOO I). Similar to what was observed in the 

2-day old rat pups, liver iron was significantly greater (p<O.OOI) in the control groups, 

liver copper was significantly greater (p<O.OOI) in the deficient pups, and liver zinc 

concentrations were not significantly different between groups.. In the spleen, copper 

concentrations were significantly greater in the deficient animals (p<0.005), and in the 

kidney iron concentrations were significantly greater in the control group (p<O.05). The 

DD rat pups had significantly lower body weights at both 30 and 60 days than the other 

animals. At 90 days, the lowest body weight was observed in the CD pups, with 

significant differences in body weight only observed between the CD and DC pups 

(p<0.001). Hemoglobin and hematocrit levels were significantly lower in the CD and 

DD rat pups compared to the DC and CC pups at 30, 60, and 90 days (p<0.001). In the 

liver, iron concentrations at 30, 60, and 90 days were significantly greater in pups weaned 

/� to control diets than those weaned to deficient diets (p<O.OOl) regardless of their 

gestation diet. At 30 and 60 days, liver copper concentrations were significantly greater 

in the DD pups (p<0.001), whereas at 90 days, they were the greatest in the pups weaned 

to the deficient diet (CD) (p<O.OOl). As with tbe 2 and 21-day old pups, liver zinc 

concentrations were not significantly different among diet groups. The rat pups weaned 

to the deficient diet (CD) exhibited spleen iron concentrations significantly lower than the 

other animals at 30 days, while both groups weaned to deficient diets (CD and DD) 
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exhibited the lowest spleen iron concentrations at 60 and 90 days (p<0.005). Spleen 

copper and zinc concentrations were only observed to be significantly different among 

diet groups at 60 days, with the greatest concentrations ofboth minerals observed in the 

DD group (p<0.005). The pups weaned to the deficient diets exhibited kidney iron 

concentrations significantly less than the kidney iron concentrations of the control pups, 

with significant differences observed at 30, 60, and 90 days (p<0.05). Kidney copper 

concentrations at all time points as well as kidney zinc concentrations at 30 days were not 

significantly different among diet groups. Significant differences in kidney zinc 

concentrations were observed at 60 and 90 days with the pups weaned to deficient diets 

having lower kidney zinc concentrations than the pups weaned to the control diets 

(Sherman and Tissue 1981). As would be expected, there was a direct relationship 

between dietary iron concentration and body weight, hematology, and tissue iron 

concentrations with obvious differences in these parameters observed between the iron 

deficient and control animals at all ages. Furthermore, the observed detrimental effects 

of maternal iron deficiency on the iron status of offspring illustrated the importance of 

adequate iron nutriture during pregnancy. The findings of Sherman and Tissue (1981) 

/� suggest that dietary iron concentration is inversely related to tissue copper concentration, 

and that this relationship is more evident in the liver than the spleen or kidneys. The 

relationship between dietary iron and tissue zinc concentrations is much less clear, as 

significant differences were not observed in the liver, the findings in the spleen at 60 days 

suggest an inverse relationship, and at both 60 and 90 days the kidney zinc concentrations 

suggest a direct relationship. 
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Iron plays a key role in energy metabolism, and given the prominent problem of 

iron deficiency throughout the world, Stangl and Kirchgebner (1998) examined the 

effects of deficient and adequate dietary iron intakes on the citric acid cycle enzymes and 

cytochrome oxidase. They also observed the effects of iron deficiency on the liver 

enzymes affected by liver cell damage (AST, ALT, AP), and the tissue stores of iron, 

zinc, and copper, as tissue concentrations have been deemed indicative oftrace mineral 

status (Stangl and Kirchgebner 1998, Larsen and Sandstrom 1992). Eighty-four weanling 

male Sprague-Dawley rats were equally divided into seven groups, and fed diets of 

varying iron concentrations for five weeks. There were three iron deficient diet groups 

(9, 13, 18 ppm), three groups of animals provided the iron adequate diet (50 ppm) but 

pair-fed to each ofthe three deficient groups, and one group that received the iron 

adequate diet (50 ppm) ad libitum. The authors found that"the animals receiving the 

lowest dietary iron (9 ppm) and their pair-fed controls consumed significantly less food 

per day and gained significantly less weight than all of the other experimental animals 

(p<0.05). Hematological analyses revealed that the animals receiving the 9 ppm diet had 

significantly lower hemoglobin, hematocrit, mean corpuscular volume, and mean 

corpuscular hemoglobin concentration than all other animals (p<0.05). Red blood cell 

/ 
counts were also s.ignificantly affected by dietary iron intake, with the lowest count 

obse.rved in the 9 ppm group. Interestingly, the RBC counts in the 9 ppm group were 

significantly less than all of the diet groups except the 50 ppm ad libitum group, as the 

RBC counts in these two groups were not significantly different from each other (Stangl 

and Kirchgebner 1998). Of note, hemoglobin and hematocrit levels in the 9 and 13 ppm 

diet groups and RBC counts in the 9 ppm diet and ad libitum group were lower than the 
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reference range for the aforementioned hematological parameter (Hrapkiewicz et al 

1998). This led the authors to conclude that iron deficiency was achieved after a mere 5 

weeks of sustenance on an iron deficient diet. Liver enzymes were also observed to be 

different among dietary iron groups. Aspartate aminotransferase (AST) levels were 

significantly greater in the 9 ppm group than all of the other diet groups (p<0.05), and the 

average AST level observed in this group exceeded the upper limit of the AST reference 

range. The AST levels in the 13 ppm diet group also exceeded the upper limit of the 

reference range, but the AST level observed in this group was omy significantly greater 

than the 13 ppm pair fed controls (Stangl and Kirchgebner 1998, Hrapkiewicz et al 1998). 

The 9 ppm diet group exhibited the highest alanine aminotransferase (ALT) levels, and 

they were significantly greater than all groups except the 13 ppm and 13 ppm pair fed 

groups (Stangl and Kirchgebner 1998). Despite the significant differences, the ALT 

levels in all animals were within the reference range (Hrapkiewicz et al 1998). Alkaline 

phosphatase (AP) levels were elevated in all of the experimental animals (Hrapkiewicz et 

al 1998); however, significant differences were observed. Specifically, the 9 ppm 

animals had the highest AP levels that were significantly greater than the AP levels 

observed in the 9 ppm pair fed, 13 ppm pair fed, and 18 ppm pair fed groups. The AP 

levels of the 50 ppm ad libitum group were not significantly different than the AP levels 

of any other groups. The authors did not speculate on the latter results, but they did 

conclude that iron deficiency affects serum enzymes and that the elevations in liver 

enzymes that they observed may be suggestive of liver cell damage (Stangl and 

Kirchgebner 1998). Analyses of tissue mineral concentrations revealed that differences 

in dietary iron intake were reflected in the iron concentration of the liver and that dietary 
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iron influenced copper deposition in the liver as well. Liver iron concentrations were 

significantly lower in all three iron deficient groups compared to the pair-fed controls and 

the ad libitum group (p<O.05), but they were not significantly different from each other. 

An interesting observation was that the 9 ppm pair-fed group had liver iron 

concentrations significantly greater than the 13 and 18 ppm pair-fed groups and the ad 

libitum group (p<0.05). These findings are unusual given that the 9 ppm and 9 ppm pair

fed groups consumed significantly less feed per day than all of the other groups (p<0.05) 

(Stangl and Kirchgebner 1998). The authors did not speculate on this, but a possible 

explanation is that the body absorbs more iron in the face of insufficient food intake, a 

concept that was suggested by Shah and Belonje (1991) in response to the findings of 

their research on the effects of dietary iron on tissue trace element levels. The observed 

phenomenon was likely not due to the increased iron absorption sometimes seen in iron 

deficiency because the 9 ppm pair fed animals were likely not iron deficient, as indicated 

by their normal RBe counts, HGB, and ReT levels (Cook 1990, Gavin et al 1994, 

Hrapkiewicz et al 1998). Liver copper concentrations were inversely related to dietary 

iron concentration, and the animals in the 9 ppm iron deficient group had liver copper 

concentrations significantly greater than that of all other animals (p<0.05). The authors 

speculated that iron deficiency impairs the body's use of copper and, as such, this leads to 

increased deposition in the tissues (Stangl and Kirchgebner 1998). The pair fed groups 

and the ad libitum group all consumed 50 ppm diet in varying amounts, and their liver 

copper concentrations were not significantly different from each other. The authors also 

analyzed liver zinc concentrations, but failed to observe significant differences among 

any of the experimental groups (Stangl and Kirchgebner 1998). Overall, the authors 
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concluded that the early stages of iron deficiency affect hematological parameters, liver 

enzymes, and liver iron and copper concentrations, but that the citric acid cycle and the 

activity of cytochrome oxidase in the liver are not affected early in the development of 

iron deficiency (Stangl and Kirchgebner 1998). 

The aforementioned research on the effects of dietary iron on tissue iron, zinc, 

and copper concentrations supports the concept of a direct relationship between dietary 

iron and tissue iron concentrations, particularly in studies comparing the effects of 

deficient and adequate dietary iron intake. These results also support the inverse 

relationship between dietary iron and tissue copper, particularly in the liver and spleen. 

Tissue zinc concentrations were observed to be less affected by dietary iron 

concentrations than copper, as evidenced most notably by the lack of consistency in the 

results of the aforementioned studies. Specifically, direct, indirect, and lack of 

relationships between tissue zinc and dietary iron concentrations were described, which 

prevents the elucidation of the relationship, or lack thereof, between dietary iron and 

tissue zinc. 

Trace Elements and Ovarian Honnones 

The effect of ovarian hormones and trace mineral deposition in tissues has not 

been the focus ofmuch research, but relationships among trace minerals and ovarian 

hormones have been described. Bureau et al (2002) compared the trace mineral status of 

post-menopausal women receiving hormone replacement therapy to those who were not 

to examine the nature of the relationship between ovarian hormones and trace mineral 

status. A total of forty-four post-menopausal women between the ages of 50-60 were 
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randomly assigned to either the HRT (18) or non-HRT group and were followed for two 

years. Zinc, copper, chromium, selenium, magnesium, and calcium levels in the serum, 

plasma, and/or urine were analyzed, as was erythrocyte copper, to assess trace mineral 

status. Estradiol levels were significantly different between the two groups (p<O.OOI), 

and the levels observed in the HRT group were similar to what would be observed in pre

menopausal women. There were no significant differences between groups with respect 

to body weight, duration of menopause, BMl, alcohol use, and number of smokers and 

exercisers. Significant differences in plasma copper, serum and urine chromium, urine 

zinc, and urine magnesium were observed between the two groups with urine analyses 

being lower in the HRT group, and serum and plasma analyses being significantly greater 

in the HRT group (p<0.05). Metalloenzyme activity in the erythrocyte was also 

examined, but significant differences between groups were'not detected. A positive 

relationship between Cu-Zn SOD and erythrocyte copper was observed, but such a 

relationship was not observed between this metalloenzyme and plasma copper. 

Furthermore, plasma copper was significantly greater in the HRT group, but there was 

not a significant difference between groups in erythrocyte copper levels (Bureau et al 

2002). Conclusions were not made regarding the effects of ovarian hormones on copper 

status, as the results of this facet of the study were conflicting. A percentage of both 

groups exhibited plasma zinc levels «10.7 ~mol/L) that were below the reference range, 

with the greater percentage ofwomen with low plasma zinc observed in the HRT group 

(33% versus 11 %). However, the opposite was true with urine zinc, as the non-HRT had 

urine zinc levels signifi.cantly greater than the HRT group. The authors postulated that 

the decreased plasma zinc may be due to an adverse effect ofHRT on the binding 
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capacity of zinc with plasma proteins, and that the decreased urinary excretion of zinc, as 

well as magnesium and calcium was a reflection of the positive effects ofHRT in the 

prevention of osteoporosis. Selenium was not overtly influenced by HRT, but a positive 

effect on chromium status was observed. Overall, the authors concluded that the changes 

in ovarian hormone levels that occur in menopause affect trace mineral metabolism, but 

that more research must be performed to elucidate this relationship (Bureau et al 2002). 

Kanias and Kouri (1996) examined the trace mineral content of human ovaries to 

determine if a relationship exists between trace elements and both the ovary as an organ 

and the ovarian hormone phases (reproductive and menopausal). A total of40 human 

ovary samples were collected from women at both reproductive phases, and 7 samples 

were collected from stillborn fetuses for trace mineral analyses. Statistical comparison of 

ovarian trace mineral concentrations at the different ovarian stages (fetal, reproductive, 

and menopausal) reveal significant differences in ovarian iron and zinc concentration at 

these stages (p<0.05). An interesting observation in the data collected by Kanias and 

Kouri (1996) was that trace mineral content of the ovaries decreased with progression 

from one ovarian stage to the next, with the greatest iron and zinc concentrations 

observed in the fetal ovaries, and the lowest concentrations observed in the menopausal 

ovaries. Unfortunately, the authors failed to describe any relationships between ovarian 

hormone stages and any possible effects on trace mineral deposition in other tissues. 
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CHAPTER THREE 

METHODS 

Iron, copper, and zinc competitively interact resulting in depressed or enhanced 

absorption of any or all of these trace nutrients. However, the specific mechanism of 

these trace mineral interactions has yet to be determined (Rodriquez-Matas, et al. 1998). 

The purpose of this study was to examine the effects of varying levels ofdietary 

iron on tissue stores of iron, copper, and zinc as an indication of competitive interactions 

among these trace nutrients. Also,. differences in tissue storage between young mature 

and mature rats that were sham-operated or ovariectomized rats were examined to 

determine ifage or ovarian hormones influence tissue storage of iron, copper, and zinc. 

The study was approved by the Oklahoma State University·Animal Care and Use 

committee (Appendix A). 

Experimental Design 

This study consisted of two experiments (Figure 1). Experiment one was a 

completely randomized design with experimental units of 40 young mature female rats. 

Experiment two was a blocked, completely randomized 2 x 4 factorial design using 42 

sham-operated and 42 ovariectomized female rats as experimental units. 

The dietary treatment groups were designated for 6, 12,35, and 150 ppm iron. 

Both the 6 and 12 ppm diets were considered inadequate, the 35 ppm was considered 

adequate based on the recommendations ofReeves et al (1993), and the 150 ppm diet was 

considered high. 
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Animals 

One hundred twenty-four weanling female Sprague Dawley rats were obtained 

from Harlan Sprague-Dawley, Indianapolis, IN. This study was part of a larger study 

designed to investigate the effects of various levels of dietary iron on bone during growth 

and the effects of dietary iron and ovarian hormone status on bone in sham-operated and 

ovariectomized rats. The rat model was used because it has been identified as a useful 

model for studying post menopausal bone loss. Specifically, ovariectomized rats 

experience bone loss similarly to post-menopausal women (Kalu 1991). 

The animals arrived one week apart in two groups of 62 for surgery and necropsy 

scheduling purposes. Throughout the study, rats 1-62 were collectively labeled 'Group 1' 

and rats 63-124 were collectively labeled 'Group 2.' 

Housing 

The groups were housed in separate rooms at the Laboratory Animal Resource 

building at Oklahoma State University in Stillwater, Oklahoma until the fifteenth week of 

the study, at which point the remaining animals were housed in the same room. The 

experiment was designed for rooms kept at a temperature and humidity level appropriate 

for the animals and the lighting was such that the room was illuminated for 12 hours and 

dark for 12 hours. 

Upon arrival, the animals were individually housed in clear plastic shoebox cages 

with raised floor grids and stainless steel lids. Initially, ground corncobs served as the 

bedding in the cages. After 3 days, plastic grating attached to plastic pipe was placed on 

top of the ground corncob in the bottom of the cages. The purpose was to prevent the 
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animals from consuming their feces andlor urine as both contain minerals, and our aim 

was for the diet to serve as the sole mineral source. 

The cages, water bottles, and food bowls were cleaned and sanitized once a week. 

The animals were provided with deionized water ad libitum and fed a specific amount of 

food once a day. The animals were also provided with a one-inch piece of wooden dowel 

for chewing. The purpose was to prevent the animal's teeth from growing too long, 

which would hinder the animal's ability to eat. 

Randomization 

After the animals were placed in their individual cages and assigned a number (1

124), they were randomly assigned to ovarian hormone status and to diet groups. The 

animals were randomized within their respective group: Group 1, rats 1-62 and Group 2, 

rats 62-124. 

The random assignment to ovarian honnone status and diet group started with the 

first rat in each group (rat I and rat 63, respectively) and continued in numerical order to 

the last rat in each group (rat 62 and rat 124, respectively). A random drawing was 

perfonned to assign each animal to the experimental groups. The overall distribution of 

animals in the ovarian hormone status group was as follows: 40 young mature, 42 mature 

sham, and 42 mature oyx. The overall distribution of animals in each diet group was as 

follows: 32 animals received the 6 ppm iron diet, 30 animals received the 12 ppm iron 

diet, 30 animals received the 35 ppm iron diet, and 32 animals received the 150 ppm iron 

diet. 
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Diet 

A total of eight different diets were used in this study: growth 6 ppm iron diet, 

growth 12 ppm iron diet, growth 35 ppm iron diet, growth 150 ppm iron diet, 

maintenance 6 ppm iron diet, maintenance 12 ppm iron diet, maintenance 35 ppm iron 

diet, and maintenance 150 ppm iron diet. The diets within each of the main groups 

(growth and maintenance) only differed in the iron content. 

The diets were prepared according to the AIN-93 methodology for growth and 

maintenance diets at the Oklahoma State University Nutritional Sciences Department 

diet-mixing lab, Stillwater, Oklahoma (Reeves, et al. 1993). The diet composition for the 

growth and maintenance diets is listed in Table 1. 

The mineral mix was prepared according to the AIN-93 methodology at the 

Oklahoma State University Nutritional Sciences diet mixing lab, Stillwater, OK (Reeves, 

et al. 1993). The ingredients and the amount of each per kilogram of growth and 

maintenance mineral mix are listed in Table 2. 

All mineral mix components were combined for five hours in a ceramic ball 

mixer and the final product was stored in plastic bags at room temperature. Lab coats 

and mineral free gloves were worn during preparation to prevent mineral contamination. 

\ 
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TABLE 1� 

\� 

DIET COMPOSITION� 

Component AIN-93G g1kg 
Com starchI 397.5 

200.0 

Dextrinized com starch3 132.0 

Sucrose4 100.0 

Soybean oil5 70.0 

Cellulose6 50.0 

Mineral mix (AIN-93G/93M-MX)7 35.0 

Vitamin mix (AIN-93G/93M-VX)8 10.0 

L-Cystine9 3.0 

Choline10 2.5 
j Harlan Teklad, Madison, WI. Lot # 98302 
2 Harlan Teklad, Madison, WI. Lot # 98308 
3 Clo-Dex 10-Maltodextrin Lot # 98227 
4 Great Value Extra Fine Granulated Sugar 
5 Crisco All Natural Pure Vegetable Oil 
6 Harlan Teklad, Madison, WI. Lot # 98197 
7 Mineral mix was prepared in the lab 
8Harlan Teklad, Madison, WI. RX 892395 
9 Harlan Teklad, Madison, WI. Lot # 98295 
10 Harlan Teklad, Madison, WI. Lot # 98101 

AIN-93M g/kg 

582.1 

140.0 

155.0 

100.0 

40.0 

50.0 

35.0 

10.0 

1.8 

2.5 
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TABLE 2� 

MINERAL MIXES� 

Component AlN93-G glkgl AIN93-M g/kgl 

Calcium Carbonate 357.0 357.0 
Potassium Phosphate 196.0 250.0 
Potassium Citrate 70.78 28.0 
NaCl 73.275 73.275 
Potassium Sulfate 46.6 46.6 
Magnesium Oxide 24.0 24.0 
Zinc Carbonate 1.65 1.65 
Manganous Carbonate 0.63 0.63 
Cupric Carbonate 0.30 0.30 
Potassium iodate 0.01 0.01 
Sodium selenate 0.01025 0.01025 
Ammonium paramolybdate 0.00795 0.00795 
Sodium meta-silicate 1.45 1.45 
Chromium potassium sulfate 0.275 0.275 
Lithium chloride 0.0174 0.0174 
Boric acid 0.0815 0.0815 
Sodium Fluoride 0.0635 0.0635 
Nickel carbonate 0.0318 0.0318 
Ammonium vanadate 0.0066 0.0066 

Levels of dietary iron for AIN93-G and AIN93-M 
(corrected for amount of iron in cellulose) 

6 ppm 12ppm 35 ppm 150 ppm 
Ferric Citrate g/kg 0.88 1.86555 5.8883 25.8126 

Powdered sucrose corrected for amount in titrated minerals for 

\ AIN93-G/AIN93-M 

Slicrose g/kg 217.37/ 216.38/ 212.36/ 191.98/ 
206.15 205.16 201.14 181.21 

Ig/kg mineral mix 
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Diet Preparation 

The diet was prepared in 5-kilogram batches, stored in plastic bags, and kept 

refrigerated. Diet was prepared as needed throughout the study using the same lot of 

ingredients. The diet was formulated according to Reeves and colleagues, including all 

potentially beneficial trace elements (Reeves et ai, 1993). The Oklahoma State 

University Nutritional Sciences laboratory standardized procedures for diet preparation 

were utilized (Appendix B). 

Feeding 

Throughout the study, the animals consumed deionized water ad libitum and were 

fed in the late afternoon to coincide with their nighttime feeding pattern. The animals 

consumed standard rat chow for the first three days of experimentation to allow for 

acclimatization to their surroundings. Initially, all animals were provided with 15 grams 

of diet per day to allow adequate access to the diet. Subsequently, the amount of diet 

provided the animals was based on feed consumption of the animals that gained the least 

weight in order to match body weight among all diet groups. The animals and the food 

remaining in their food dishes were weighed twice a week. Tllis data was used to
/ 

calculate the appropriate amount of food to be provided the following week. 

In experiment one, the amount of feed provided was based on the diet group 

gaining the least weight and in experiment two, it was based on the diet and ovarian 

hormone status group gaining the least weight. The animals that gained the least amount 

of weight, received the most food. The goal was to provide these animals with sufficient 
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food to meet their needs. The remaining animals received the same amount or slightly 

less than that consumed by the animals that gained the least weight. 

The young mature animals consumed the growth diet for 7 weeks and the 

maintenance diet for 8 weeks. They were necropsied after this IS-week dietary 

intervention period. The mature sham-operated and ovariectomized animals consumed 

the growth diet for 7 weeks and the maintenance diet for 20 weeks. They underwent 

surgery during the 15th dietary intervention week, and they were necropsied after the 2ih 

week of dietary intervention. 

Surgery 

At 15 weeks of age, the animals randomized to the sham or ovariectomy group 

underwent their respective surgery. The procedure for the sham and ovariectomy 

surgeri.es was the same except that the sham-operated animals did not have their ovaries 

excised. They were simply lifted from the body cavity and replaced prior to closure. The 

sham operation was perfonned to control for the effects of surgery. 

The animals were initially anesthetized via box induction with halothane. The 2% 

halothane anesthetic was continued during surgery via a mask. After being anesthetized, 

/ the animals were shaved 2 centimeters on either side of their dorsal midline from the 

scapula to the pelvis. This area was cleaned for surgery with chlorhexidine scrub. The 

animals were positioned with the dorsal surgery area exposed. This was covered with an 

impervious fenestrated drape with an opening centered over the cranial to lumbar 

vertebrae. A one-centimeter incision was made in the skin over LI-U. A second 3

millimeter incision was made in the paralumbar abdominal musculature. The left ovary 
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was extracted with a traumatic forceps, isolated with mosquito forceps, and then 

removed. The ovarian pedicle and uterine hom were replaced and the muscle incision 

was closed. This procedure was then repeated on the right ovary. The skin incision was 

then closed with Vetbond adhesive. 

Necropsy 

The animals were housed in plastic metabolic cages and provided only with 

deionized water during the 12-hour period prior to necropsy_ Metabolic cages were used 

for the purpose of collecting the animal's feces and urine. At the end of the 12-hour 

period, each animal's feces were weighed, stored in sterile plastic sample bags, and 

frozen for analysis in another study. The urine volume was recorded and it was 

subsequently centrifuged. The supernatant was separated from the precipitate via pipette, 

stored in a 15 mL Falcon test tube, and frozen for later analysis for another study. 

The animals were anesthetized with 50 mg ofketamine and 2.5 mg ofxylazine 

per kilogram of the most recent body weight obtained at the Laboratory Animal Resource 

building. The animal's final body weight was recorded after administration of the 

anesthesia. A total body scan was perfonned by dual energy X-ray absorptiometry 

/� (DXA), (Hologic QDR 4500A, Waltham, MA) to determine the animal's body 

composition. 

Blood Collection, Organ and Bone Harvest 

With the animal in a supine position, an incision was made through the skin and 

musculature at the frontal midline extending from the inferior pelvic region to the 
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sternum. The intestines were moved out of the abdominal cavity to expose the abdominal 

aorta. The blood was collected via abdominal aortic puncture. EDTA (1.6mglmL, 

Sarstedt, Newton, NC) treated syringes were used to collect the blood for hematological 

analysis. Syringes not treated with anticoagulant were used to collect the blood for serum 

measures. This blood was clotted on ice and subsequently centrifuged. The serum was 

removed from the precipitant via pipette, distributed for various analyses, or frozen until 

analyses could be perfonned. 

After the blood collection was complete, the tissues were perfused with 

physiological saline via peristaltic pump inserted at the aortic puncture site until the liver 

and kidneys became pale. The liver, kidneys, heart, spleen, and uterus were harvested 

from the body. Each organ was trimmed of superficial fat and/or connective tissue, 

weighed, and stored in sterile plastic sample bags. The kidneys, heart, spleen, uterus, and 

the largest lobe of the liver were frozen at -20°e. All tissues except the uterus were 

analyzed for mineral content. Liver lobes I and 2 were frozen at -70°C for enzyme assay. 

The right and left tibia and femur were separated from the hind leg and collected 

for analyses. All clinging tissue was carefully removed from the bones to prevent 

damaging the periosteum using scissors, forceps, deionized water, and Kim-wipes. The 

/ 
entire vertebral column was immediately frozen after necropsy at -20°C in a 50 mL 

Falcon centrifuge tube. Later, it was cleaned, as were the other bones, to expose the 

vertebrae. Lumbar vertebrae 3,4, and 5 were separated from the column and individuaUy 

stored at -20°C in sterile plastic sample bags. 

Lab coats and latex gloves were worn during bone and organ harvest to prevent 

mineral contamination. 

93 



Analyses 

Nutritional Status 

Whole blood was analyzed using the ABX Pentra 120 Retic (ABX Diagnostics, 

Irvine, CA). The complete blood count, five-part differential leukocyte count, 

reticulocyte, hemoglobin, hematocrit, mean corpuscular hemoglobin concentration, mean 

corpuscular hemoglobin, and platelet count were determined immediately after the blood 

was collected. 

The serum was analyzed for serum albumin, urea nitrogen, glucose, alkaline 

phosphatase, creatinine, and uric acid. The COBAS Fara II clinical analyzer (Roche 

Diagnostic Systems, Nutley NJ) was used to perfonn these analyses. 

Enzymatic assays of ALT and AST were performe'd using the COBAS Fara II 

clinical analyzer. This analysis was performed to detennine if the liver had been 

damaged by insufficient or excessive iron intake. 

Mineral Analysis of Diet 

Four one-gram samples of each experimental diet were taken from different bags 

/� ofprepared diet for mineral analyses. The diet was dried and subsequently ashed using a 

modification of the procedures of Hill et al (1986) (Appendix C). The iron, zinc, copper, 

manganese, calcium and magnesium concentrations of the diet were detennined using a 

Perkin Elmer 51 OOPC Atomic Absorption Spectrophotometer with deuterium and Zeman 

background correction as appropriate. The phosphorus content of the diet was determined 

using the COBAS Fara II clinical analyzer and the appropriate reagents from Roche 
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Diagnostics (Roche Diagnostic Systems, Indianapolis, IN). The analyzed mineral content 

of the growth and maintenance diets is listed in Table 3. 

TABLE 3 

AVERAGE MINERAL CONTENT PER KILOGRAM OF 
GROWTH AND MAINTENANCE DIETS I 

Mineral (mg/kg diet) 6 ppm 12 ppm 35 ppm 150 ppm 

Growth 

Iron 10.8±4.8 14.6±4.8 36.0±4.8 166.1±4.8 

Zinc 37.9±0.7 38.3±O.7 36.6±O.7 35.7±O.7 

Copper 4.90±0.12 5.09±0.12 5.12±0.12 4.62±O.I2 

Manganese 9.01±O.15 8AO±O.I5 8.67±O.15 8.88±O.I5 

Calcium 3613±90 3840±90 3986::!:::90 3943±90 

Magnesium 397.8±12.6 393.7±12.6 425.9±12.6 408.3±12.6 

Phosphorus 2846±61.6 2732±61.6 2749±61.6 2674±61.6 

Maintenance 

Iron 9.0±4.8 18.3±4.8 40.3±4.8 150.8±4.8 

/ 
Zinc 32A±O.7 33.0±O.7 33.2±O.7 32.1±0.7 

Copper 4.61±O.I2 4.50±O.12 4AI±0.12 4.26±O.l2 

Manganese 8.l2±O.I5 8.53±O.15 8.ll±O.I5 8A2±0.15 

Calcium 3457±90 3460±90 3494±90 3182±90 

Magnesium 337.7±12.6 340.1±12.6 340±I2.6 274.3±I2.6 

Phosphorus 2324+61.6 2474+61.6 2327+61.6 2061+61.6 
ILS Means ± SE 
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Mineral Concentrations of Tissues 

All materials used in the sampling of organs (i.e. test tubes, beakers, forceps, etc) 

were soaked for 24 hours in 10% hydrochloric acid, rinsed with deionized water, and 

dried at 50°C in a drying oven (Lindberg 847, Watertown, WI). Tissues were prepared 

for mineral analyses using a modification of the procedures of Hill et al (Hill AD, et al. 

1986) (Appendix D). The organs of each diet treatment group were sampled with 

separate utensils that were labeled according to diet designation and stored separately. 

All utensils were soaked, rinsed, and dried as previously described between sampling of 

different organs. Lab coats and mineral free gloves were worn during all procedures. 

These measures were employed to prevent mineral contamination. 

Two samples of each organ were analyzed for iron, copper, and zinc content using 

a Perkin Elmer 51 OOPC Atomic Absorption Spectrophotometer with deuterium or Zeman 

background correction as appropriate. All tissue iron and zinc concentrations as well as 

kidney calcium were analyzed via the flame method. Tissue copper concentrations were 

analyzed via the flame and furnace methods. Furnace analyses required determination of 

recoveries, which are set at the 85th to 11Sth percentile in our lab; therefore, those 

recoveries in the 85th to 115th percentile were deemed acceptable. However, there were 

instances when an 85-115% recovery was not attainable with multiple sample analyses. 

In such instances, the analyzed value with the percent recovery closest to the ideal range 

was used; if all analyzed values were similar, the average was calculated and used as the 

result for that particular sample. The flame and furnace parameters are detailed in 

Appendix E. 
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Change in Tissue Mineral Concentrations from Surgery to Necropsy 

The mean of each tissue mineral concentration by diet in the young mature group 

was subtracted from the mean tissue mineral concentration by diet in both treatment 

groups. For example, the change in liver iron concentration of the sham-operated 

animals receiving the 6 ppm diet was calculated by subtracting the mean 6 ppm young 

mature liver iron concentration from the mean 6 ppm sham-operated liver iron 

concentration. 

Sampling Methodology 

The test tubes were doubly labeled with a heat-resistant wax pencil and weighed 

prior to sampling. Each beaker contained a maximum oqhirty-six organ samples and ), 

blank (empty) test tubes. The sampling utensils (forceps, scalpels, glass knives, glass 

stirring rods, watch glasses) were rinsed with Type I water (rni1\ipore < 18.2Q) and dried 

with Kim-wipes between samples and prior to storage. 

Liver A 0.1-0.3 g section of the largest lobe of the liver (tissue bag 3) was 

excised using a scalpel and forceps. The sample was inserted into the test tube using 

forceps and weighed. The weight was recorded and the test tube was placed in a beaker. 

The samples were dried for 48 hours at 100°C and the dry weight of each sample was 

recorded. 

Kidney, Spleen, and Heart. Each organ was halved using a glass knife and 

forceps at a point perpendicular to the midline. The sample was inserted into the test tube 

with forceps and a glass-stirring rod and weighed. The weight was recorded and the test 
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tube was placed in a beaker. The samples were dried for 24 hours at 100°C and the dry 

weight of each sample was recorded. 

Ashing 

The samples were completely ashed (all organic material dissipated) prior to 

mineral analyses. The ashing procedure used was a modification of the Hill method (Hill 

AD, et al. 1986) (Appendix D). Type I water double distilled ultra pure nitric acid (GFS 

Chemical, Powell OH), and ultrex ultra pure 30% hydrogen peroxide (1.T. Baker, 

Phillipsburg, NJ, catalog # 5155-01) were used to dissolve the organic materials. Trace 

mineral free pipet tips were used for all reagent additions. A new pipet tip was used each 

time a different reagent was added or ifthe pipet tip touched the test tube. 

After the samples had been dried and weighed, the test tubes were placed in a 

heating block and type I water, nitric acid, and hydrogen peroxide were added to the 

samples and heat was applied. The water, acid, and peroxide were repeatedly added until 

the solution in the test tube became clear. When the test tubes were completely dry, the 

samples were placed in a beaker and dry ashed in a Lindberg 847 ashing oven on the 

appropriate program. The wet and dry ashing cycles continued until the ash in the test 

tube became white, which indicated all organic material had been destroyed. The mineral 

ash was weighed and the samples were prepared for trace mineral analyses. 

Duplicate samples were analyzed for each tissue in each animal. When an 

analyzed tissue concentration was greater than 3 SD of the mean for that diet and 

treatment group, that value was dropped from all analyses. 
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Statistical Analyses 

All data were analyzed using PC SAS version 8.2 (SAS Institute Cary, NC). The 

variability ofthe tissue mineral data required use of the Levene's Test to test for equal 

variances. Equal variances could not be supported; therefore, SAS proc mixed with the 

slice option was used for analysis of variance. The Tukey-Kramer test was used to 

determine significance among variances instead of Least Square Means as it is a more 

conservative test for significance. Specifically, the Tukey procedure compares the means 

of all possible diet (Experiment One) or diet and treatment (Experiment Two) 

combinations such that the probability of detecting differences where there are none is 

low. Quadratic and cubic analyses were perfonned to detennine the non-linear line fit 

using the General Linear Model. For variables other than .tissue minerals, the general 

linear model was used for analysis of variance. Significance level was set at p ~ 0.05. 
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CHAPTER FOUR 

RESULTS AND DISCUSSION 

One hundred twenty-four female Sprague Dawley rats were obtained at 3 weeks 

of age and were randomly assigned to one of three experimental treatment groups (young 

mature, sham-operated, or ovariectomized) and one of four experimental diet groups (6, 

12, 35, or 150 ppm iron). This research on the effects of varying levels of dietary iron on 

tissue minerals entailed two experiments. Experiment 1 was completed to determine the 

effects of dietary iron on tissue minerals of young mature rats. Experiment 2 was 

completed to determine the effects of dietary iron on tissue minerals of both mature rats 

and mature rats with ovarian hormone deficiency. 

Experiment One: Young Mature Animals 

Wei ght Gain and Food Intake 

Forty rats comprised the experiment, with 10 animals per dietary treatment. The 

animals weighed an average of72.5 grams at the beginning and 230 grams at the end of 

the study, with no significant differences in either weight among diet groups (Table 4). 

Our findings were also similar to those of Shah and Belonje (1991) who examined the 

effects ofboth marginal and excessive dietary iron on body weight and found no 

significant differences in body weight among diet groups at the end of both the six-week 

and 12 week feeding periods. However, our results indicate a trend toward significant 

differences in weight gain and final weight among the diet groups (p=0.0576 and 

p=0.0737, respectively). Although not significant, the rats in the 150 ppm group weighed 
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the most and gained the most weight during the study, whereas the iron deficient groups 

weighed the least and gained the least weight during the study. The latter findings are 

similar to those of Beard et al (1995) and Stangl and Kirchgebner (1998) who observed 

lower body weights in male rats maintained on iron deficient diets. Beard et al (1995) 

found that the animals receiving the very low iron diet «5 ppm) for 6 weeks gained less 

weight and had lower final body weights than the controls who were maintained on an 

iron adequate diet (50 ppm) for the same duration. Stangl and Kirchgebner (1998) also 

observed the lowest final weights in their animals maintained on an iron deficient diet (9 

ppm) for five weeks. 

Feed efficiency was not significantly different among the diet groups, but the 6 

ppm group gained the least weight per gram of diet consumed whereas the 35 and 150 

ppm groups gained the most (Table 4). Beardetal (1995) and Stangl and Kirchgebner 

(1998) also examined weight gain relative to dietary intake and found, as we did, that the 

iron deficient animals gained the least amount of weight relative to intake. Beard and his 

colleagues (1995) concluded that the minimal weight gain observed in the iron deficient 

rats in the face of increased food consumption was due to increased metabolic rate in 

these animals (Beard et al 1995). It is feasible that our iron deficient animals had 

increased metabolic rates, but this cannot be concluded because we did not measure 

metabolic rate, and our animals were fed to the amount of the group that gained the least 

amount ofweight, whereas those in the experiment by Beard et at (1995) were fed ad 

libitum. Furthennore, our lowest iron group had the overall highest body fat percentage 

(Table 4), which does not reflect an increase in metabolic rate as was observed by Beard 

et al (1995). Therefore, the differences in weights among our diet groups could be due to 
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feeding methodology. Schwartz et al (1973) examined the effects of food restriction in 

rats and found that food restriction did reduce the weight gain in the restricted animals 

versus those not restricted. 

Assessment ofbody composition of the young mature rats showed that there were 

no significant differences in lean body mass or percent body fat among diet groups. 

Although not significant, the animals receiving the 150 ppm diet were the leanest with 

the highest lean body mass and the lowest percentage of body fat (216.93 grams and 

10.63%, respectively). Conversely, the animals receiving the 6 ppm diet had the highest 

percent body fat (12.64%), and those receiving the 12 ppm diet had the lowest lean body 

mass (203.87 grams) (Table 4). Our results are in conflic,t with those of Beard et al 

(1995) who observed the lowest body fat percentages in the iron deficient and food 

restricted animals. They postulated that iron deficiency and food restriction led to poor 

growth and low body fat percentages, the latter of which stimulated an increase in 

metabolic rate to maintain core body temperature as there was insufficient fat for heat 

insulation (Beard et al 1995). 

Liver and spleen weight as a percentage of body weight were significantly 

different among diet groups, whereas the weights ofthe kidney and heart were not (Table 

4). The liver of the 150 ppm group was the largest, and weighed significantly more than 

the livers of the animals receiving the 6 or 12 ppm diet. Conversely, the spleens of the 6 

ppm group were the largest and weighed significantly more than the spleens of the 12 

ppm group, which were the smallest. The observations of Schwartz et al (1973) 

regarding the effects of food restriction on organ weights suggest that food restriction, 

which would to a certain extent decrease mineral intake, does affect organ weight as the 
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animals provided 50% less diet than the control group had lower kidney, liver, spleen, 

and heart weights (p<O.OOl) (Schwartz et aI1973). Our findings were similar only with 

respect to the liver, as we too observed lower liver weights in oUI deficient animals. The 

lack of more similarities in findings between our study and that of Schwartz and 

colleagues (1973) is that the caloric intake of our animals was not restricted, but only the 

iron intakes. Even so, it cannot be concluded that the reduced organ weights of the 

restricted animals were not due at least in part to reduced mineral intake. 

Diet and Trace Mineral Intake 

The young mature rats consumed the AIN-93 diet fonnulated for growth for 

approximately 7 weeks followed by an 8-week period during which they consumed the 

maintenance fonnulation of the AIN-93 rodent diet. The average daily iron intake was 

significantly different among diet groups during both the growth and maintenance 

feeding periods (Table 5). Conversely, the average daily intakes of the growth and 

maintenance diets as well as copper and zinc during both feeding periods were not 

significantly different among the diet groups (Table 5). The lack of significant 

differences in diet, copper, and zinc intakes indicate that they were adequately controHed 

among the diet groups such that any differences in tissue mineral concentrations among 

the diet groups could not be attributed to differences in these variables. 
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Hematology, Nutritional, and Liver Function Analyses 

Very low iron diet formulations were included in this study with the goal of 

inducing iron deficiency because iron deficiency anemia is the most common nutritional 

deficiency disease throughout the world (CDC 2002). All hematological analyses, except 

leukocyte count, were significantly different among the diet groups (Table 6). The 

average hemoglobin (HGB) level observed in the 6 ppm diet group was borderline low 

and was significantly less than that exhibited by the other animals, which had hemoglobin 

levels well within the nonnal range (Hrapkiewicz et al 1998) (Table 6). Furthennore, 

mean corpuscular volume (MCV) and hematocrit (HCT) in the 6 ppm animals were 

significantly lower than that of the other animals, with HCT levels in the 6ppm animals 

below the reference range (Hrapkiewicz et al 1998) (Table 6). Despite their depressed 

HGB, HCT, and MCV levels,. the 6 ppm animals exhibited red blood cell and reticulocyte 

counts significantly greater than that of the remaining diet groups (Table 6). These 

results suggest that the animals receiving the 6 ppm diet were iron deficient. Specifically, 

they exhibited greater reticulocyte (RTC) and erythrocyte (RBC) counts than the other 

diet groups, which suggests that the bone marrow is releasing immature and mature RBC 

at a higher rate to improve the diminished oxygen carrying capacity ofthe blood, as 

reflected by the depressed hemoglobin levels. There were no differences in leukocyte 

counts among the diet groups (Table 6), but all animals exhibited leukocyte (WBC) 

counts lower than the reference range (Hrapkiewicz et al 1998, Young 1998). Our 

findings are similar to those of Stangl and Kirchgebner (1998) in all of the 

aforementioned param.eters, except RBC levels, as we observed the greatest RBC counts 

in our lowest dietary iron group whereas Stangl and Kirchgebner (1998) observed the 
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lowest RBC counts in their lowest dietary iron group. The differences in feeding 

duration (15 weeks versus 5) and dietary iron concentration (6 ppm versus 9 ppm) may 

partially explain this difference in RBC levels. In their research examining dietary iron 

deficiency, Dallman et al (1982) evaluated differences in hematocrit and Siimes et al 

(1980) evaluated differences in hemoglobin and hematocrit among their dietary iron 

groups. Both researchers observed that male Sprague-Dawley rats maintained on very 

low iron diets (2 and 6 ppm and 7 ppm, respectively) exhibited depressed hemoglobin 

and hematocrit values (Dallman et al 1982, Siimeset al 1980). Our findings were similar 

despite the differences in study duration and gender of the animals used in the study. 

Serum analyses were performed to assess nutritional status and liver function. 

Glucose, creatinine, urea nitrogen, albumin, and alkaline phosphatase were not 

significantly different among the diet groups (Table 7). Furthermore, albumin, 

creatinine, and alkaline phosphatase levels were within normal limits for rats (Young 

1998). Although not significantly different among groups, glucose levels were higher 

and urea nitrogen and albumin levels were lower than the normal levels for rats (Young, 

1998). The elevation in glucose may have been induced by stress,. as the animals were in 

a new environment for approximately 12 hours prior to killing and bad been injected with 

anesthesia. The minimal depression of albumin levels may have been due in part to the 

feeding methodology employed. Pair feeding all animals according to tbe group that 

consumed the least amount of diet was done to control weight gain among the diet 

groups. Therefore, some of the animals may have been routinely receiving less food than 

they needed which may explain the lower albumin levels. The depressed albumin levels 
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observed may also be due in part to decreased production of albumin by the liver (Tietz 

1990). Inadequate, marginal, and excessive dietary iron intakes may have impacted the 

liver such that production of albumin was compromised. Urea nitrogen levels are 

depressed in liver dysfunction and negative nitrogen balance, the latter of which can 

occur in malnutrition (Pagana and Pagana 2003). As with the albumin levels, it is 

possible that pair feeding caused a certain level of malnutrition in these animals, or the 

inadequate, marginal, and excessive dietary iron intakes adversely affected liver function. 

However, it must be noted that two of the liver function tests, ALP and ALT, were within 

normal limits for rats and, therefore, fail to support liver dysfunction in these animals 

(Young 1998). 

The liver function tests, alanine aminotransferase (ALT) and aspartate 

aminotransferase (AST) were significantly different among the diet groups (Table 7). 

ALT levels in the 6 ppm diet group were greater than the levels observed in the animals 

receiving the 12 and 150 ppm diets (p=0.0361). The animals receiving the 6 ppm diet 

had AST levels significantly greater than those of the animals receiving the 35 and 150 

ppm diets. Aspartate aminotrasferase and ALT are enzymes found in the liver, and when 

liver function is impaired, the blood levels of these enzymes are increased (Pagana and 

Pagana 2003). However, our animals exhibited ALT and AST levels at the low end of 

normal and below nonnal (Young 1998), respectively, and levels were higher in the 

lowest dietary iron group (6 ppm). Our findings were different than those observed by 

Stangl and Kirchgebner (1998) who fed iron deficient diets (9, 13, 18 ppm) to male 

Sprague Dawley rats for five weeks. They observed greater liver enzyme levels in their 

animals fed the iron deficient diets as compared to pair fed controls. The most profound 
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differences were observed between the 9 ppm group and the other animals, as the 9 ppm 

group typically exhibited significantly greater liver enzyme levels than their counterparts, 

which the authors postulated was suggestive of liver cell damage (Stangl and 

Kirchgebner 1998). The similarity between our findings and those of Stangl and 

Kirchgebner (1998) was that we both observed the highest liver enzyme levels in the 

animals receiving the lowest dietary iron concentration. 

The liver functions as a primary iron storage site, second only to the bone 

marrow, and liver function may be adversely affected by liver iron concentration. Stangl 

and Kirchgebner (1998) found that iron deficiency was related to an increase in liver 

enzyme levels, which are suggestive ofliver cell damage (pagana and Pagana 2003). 

Excessive dietary iron may affect liver function as well, but in a different manner such 

that liver enzyme levels are decreased. In their evaluation of characteristics of iron 

overload, Moirand et al (1997) assessed AST and ALT levels in persons diagnosed with 

homozygous genetic hemochromatosis and found that these enzyme levels were within 

nonnallimits, but were at the lower end of the nonna) range. The ALT levels in our 

animals exhibited this pattern, whereas AST levels in aU animals were below the 

reference range with the lowest levels observed by the 150 ppm animals. Moirand and 

colleagues (1997) did not discuss the results ofthe liver function tests of their subjects. 

Tissue Minerals 

The purpose of th.is study was to examine the effects of dietary iron on tissue 

mineral concentrations. The young mature animals consumed diets ofvarying iron 
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content for approximately 15 weeks. and the iron, zinc, and copper concentrations in the 

liver, kidney. heart, and spleen of these animals were analyzed (Table 8). 

Dietary iron had an overall effect on liver iron concentrations (p<O.OOOl). The 

animals receiving the 6 and 12 ppm iron diets had lower liver iron concentrations than 

those animals receiving the 35 and 150 ppm iron diets (p<O.OOOl) (Table 8). Further 

testing utilizing the Tukey procedure found no difference between the 6 and 12 ppm diet 

groups (p=0.2371). Comparison between the 35 and 150 ppm diet groups was not 

significant, but the analyses suggested a trend toward significance (p=O.069l). 

Regression analyses indicate a quadratic relationship (p<0.0001) between dietary iron 

concentration and its effect on liver iron concentration. The distribution of liver iron 

concentrations was linear up to the 35 ppm concentration. but from 35 to 150 ppm there 

was a tendency toward a plateau. Our study design was similar to that of Shah and 

Belonje (1991) in that both studies involved female Sprague-Dawley rats fed diets of 

varying dietary iron concentrations for a similar duration (15 and 12 weeks, respectively). 

The dietary iron concentrations in the two studies were different, as we examined the 

effects of deficient (6 and 12 ppm), marginal (35 ppm), and excessive (150 ppm) dietary 

iron intakes while Shah and Belonje (1991) examined marginal (25 ppm), adequate (47 

ppm), and excessive (150 and 1260 ppm) dietary iron intakes. Our findings were similar, 

as we both observed increased liver iron concentrations with increasing dietary iron 

concentrations. 
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However, a notable difference was that the liver iron concentrations observed in our 

animals fed the 35 and 150 ppm diets were much greater than th.e liver iron 

concentrations of the animals fed 25, 47, and 150 ppm diets in the study by Shah and 

Belonje (1991). We both fed our animals 150 ppm iron diets, yet our animals exhibited 

liver iron concentrations almost one and a half times greater than the animals in the 

aforementioned study. Furthermore, the animals fed the 1260 ppm iron diet in the study 

by Shah and Belonje (1991) had liver iron concentrations less than our 150 ppm animals 

(1 940±340J.tglg versus 2299±157.7/-lg/g). These differences are likely not significant due 

to the large standard error in both studies; however, the observed disparity in the liver 

iron concentrations resulting from maintenance on diets of very different iron 

concentrations (150 ppm versus 1260 ppm) may be due in part to the difference in study 

duration (12 versus 15 weeks) andlor the difference in feeding methodology. The 

animals in the study by Shah and Belonje (1991) were fed ad libitum, whereas our 

animals were fed to control weight gain among the groups. Significant differences in 

final weight and weight gain were not observed in our animals, but a trend toward 

significance was detected (p<0.0737 and p<0.0576, respectively). The animals in the 6 

and 12 ppm groups gained the least amount of weight overall and gained the least amount 

of weight per gram of diet consumed; therefore, the food intake of the 35 and 150 ppm 

animals was restricted, which may have stimulated increased iron absorption despite the 

concentration of iron in the diet, as was suggested by Shah and Belonje (1991). Another 

difference in our study and that of Shah and BeJonje (1991) was the form of iron used in 

the diets. We supplemented our diets with ferric citrate, whereas they used ferrous 

sulphate heptahydrate. Ferrous iron is better absorbed than ferric; therefore greater 
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absorption and, hence, greater liver iron concentrations would be expected, but this was 

not the case. Our analyses detected a significant quadratic relationship between dietary 

iron and its effect on liver iron concentrations, which may be reflected in the findings of 

Shah and Belonje (1991) compared with OUT findings. Specifically, rats fed a 150 ppm 

iron diet had liver iron concentrations comparable to animals fed a 1260 ppm iron diet 

prepared from a highly absorbable form of iron (ferrous). 

In addition to examining the effects of excessive dietary iron on tissue 

concentrations, we examined the effects of deficient dietary iron. This facet ofOUT study 

was similar to that of Shukla et al (1991) who examined the effects of dietary iron 

deficiency on tissue mineral concentrations in weanling female rats. Their animals were 

maintained on either an iron deficient diet (18-20 ppm) or iron adequate diet (390 ppm) 

for eight weeks. They observed, as did we, that inadequate'dietary iron intake results in 

depressed liver iron concentrations. Specifically, their iron deficient animals exhibited 

liver iron concentrations less (p<O.OI) than those observed in the control animals (Shukla 

et al 1991). We observed liver iron concentrations in both of our iron-deficient groups (6 

and 12 ppm) to be significantly less than observed in our animals maintained on a 

marginal iron diet (35 ppm). The difference in study durations (8 weeks versus 15 

weeks) is reflected in the actual liver iron concentrations of the animals in both studies. 

The iron deficient and control animals in the study by Shukla et at (1991) had liver iron 

concentrations (86.25 and 159.7 Jlglg, respectively) less than that exhibited by our 6 ppm 

animals (178.6 Jlglg). Despite the differences in average liver iron concentrations 

between the two studies, the conclusion of both is similar: iron deficiency results in 

decreased liver iron concentrations. 
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Liver zinc concentrations were not different among diet groups (p=0.7223) (Table 

8), but regression analyses indicated a trend toward a quadratic relationship between 

dietary iron concentration and its effect on liver zinc (p=0.0905). Liver zinc 

concentrations increased slightly from the 6 to 35 ppm diet concentrations and then 

decreased between the 35 and 150 ppm, and, although not significant, this distribution of 

data is suggestive of a quadratic relationship. Our findings were similar to tbose of Shah 

and Belonje (1991) who also failed to observe significant differences in liver zinc 

concentrations due to marginal or excessive dietary iron intakes. A facet of the research 

of Sherman and Tissue (1981) involved feeding pregnant Sprague-Dawley rats an iron 

deficient diet (5 ppm) throughout their pregnancy, and then maintaining twenty rat pups 

on the deficient diet after weaning. At 21, 30, 60, and 90 days, rats from this group were 

killed for analyses. They observed, as did we, that dietary iron deficiency did not have a 

significant effect on liver zinc concentrations (Sherman and Tissue 1981). However, our 

results were in contrast to those of Shukla et al (1990), who found that liver zinc 

concentrations were inversely related to dietary iron intake as their iron deficient rats 

exhibited liver zinc concentrations greater than that of the control animals (p<0.02). 

Although not significant, the greatest liver zinc concentration was observed in our 

animals maintained on the iron-adequate (35 ppm) diet, which does not coincide with the 

findings of Shukla et al (1990). A possible explanation for this disparity in results is that 

the effects of iron deficiency on liver zinc deposition are dissipated with time, as our 

study was almost twice as long as that of Shuklaet al (1990). The findings of Shennan 

and Tissue (1981) do not support this conclusion, as they failed to observed significant 

differences in liver zinc concentrations of their rats at all time points. 

116 



The concentration of copper in the liver was not significantly different among diet 

groups, but analyses suggested a trend toward significance between dietary iron and liver 

copper (p=0.0747) (Table 8). The Tukey procedure indicated a trend in differences 

between the liver copper concentrations of the 6 and ISO ppm diet groups (p=0.0753). 

Regression analyses suggested a trend toward a linear relationship between dietary iron 

and liver copper concentrations (p=O.0585). The concentration ofcopper in the liver 

decreased between the 6 and 12 ppm diet groups and continued to decrease with higher 

dietary iron, but much less severely than between 6 and 12 ppm (Table 8). Our results 

were similar to those of Shah and Belonje (1991), who failed to observe a significant 

effect ofmarginal or excessive dietary iron intakes on liver copper concentrations. 

However, our results conflicted with the findings of Sherman and Tissue (1981) and 

Shukla et al (1990), as they both observed that deficient iron intake increased liver copper 

concentrations (p<0.001 and p<O.OI, respectively). These differences can not be 

explained by the passage of time because Shah and Belonje (} 991) did not observe 

significant differences in liver copper concentrations at six or twelve weeks, and Sherman 

and Tissue (1981) observed significant differences at 21, 30, and 60 days. The fonn of 

iron used in the diets may partially explain the differences in findings, as the two studies 

that observed significant differences in liver copper concentrations used iron sulfate 

(FeS0 4 . 7H20) whereas our study used ferric citrate and Shah and Belonje (1991) also 

used ferrous sulphate heptahydrate. 
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Spleen 

Spleen iron concentrations increased with increasing dietary iron intake, but were 

not different among diet groups (p=O.1328) (Table 8). The lack of significance among 

spleen iron concentrations can be attributed to the variability of the data, which may be a 

reflection of inadequate perfusion of the spleen. Despite the lack of significant 

differences among spleen iron concentrations per the Tukey procedure, testing for non

linear fit revealed a quadratic relationship between dietary iron and its effect on spleen 

iron concentrations (p<O.OOOI). Similar to liver iron, the distribution of spleen iron 

concentrations was linear in nature up to the 35 ppm, and between 35 and 150 ppm, there 

was a tendency toward a plateau. Our findings were similar to those of Shah and Belonje 

(1991) in that we both observed increasing spleen iron concentrations as dietary iron 

increased. Furthennore, the spleen iron concentrations observed in our animals receiving 

the 35 and 150 ppm iron diets were comparable to the spleen iron concentrations 

observed by Shah and Belonje (1991) in their animals receiving 47 and 150 ppm and 

1260 ppm iron diets, respectively. As was the case with liver iron, our 150 ppm animals 

exhibited tissue iron storage patterns similar to the 1260 ppm animals in the study by 

Shah and Belonje (1991), suggesting that dietary iron does not continue to be deposited 

in the spleen. As we did not measure fecal iron, the actual amount of iron absorbed may 

not have increased between the 35 and 150 ppm groups. In our animals iron deficiency 

did not significantly affect spleen iron concentrations, but as stated, the lack of 

significance was likely due to the variability of the data. Although not significantly 

different from the other animals, spleen iron concentrations were the lowest in the 

animals maintained on the iron deficient diet. Shukla et al (1990) and Shennan and 
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Tissue (1981) both o'bserved lower spleen iron concentrations in their iron deficient 

animals than in the controls (p<O.05 and p<0.005, respectively). 

Spleen zinc and copper concentrations were not different among diet groups 

(p=O.2174 and p=0.5064, respectively) (Table 8). Furthermore, regression analyses 

failed to support a linear, cubic, or quadratic relationship between dietary iron and spleen 

zinc or copper concentrations (p=0.2170 and p=0.4459, respectively). Shah and Belonje 

(1991) also failed to observe significant differences in spleen zinc concentrations among 

their animals maintained on diets of marginal or excessive dietary iron concentration. 

Furthermore, our findings were similar to Shukla et al (1990) in that we both failed to 

observe a significant difference in spleen zinc concentrations among our dietary 

treatment groups. However, they did observe greater spleen copper concentrations 

(p<0.05) in their iron deficient animals, whereas we failed to make such an observation 

(Shukla et al 1990). Sherman and Tissue (1981) observed significant differences in both 

spleen zinc and copper concentrations. Specifically, the 60-day old animals maintained 

on the iron deficient diet during gestation, lactation, and post-weaning had spleen zinc 

concentrations greater than all other 60-day old animals (p<0.005). Spleen copper 

concentrations were greater in the weanling pups of the iron deficient dams, and in the 

60-day old rats of the iron deficient dams who were weaned to the iron deficient diet 

(p<0.05) (Shennan and Tissue 1981). The findings of Shukla et al (1990) and Sherman 

and Tissue (1981) suggest that there is an inverse relationship between dietary iron and 

spleen copper concentrations that may be due to maturation, as both observed significant 

differences at 60 days. However, at 90 days, Sherman and Tissue (1981) failed to 

observe significant differences in spleen copper concentrations. This possible effect of 
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maturation may explain why we did not detect significance, as our animals were 

maintained on experimental diets for 15 weeks. 

Kidney 

Dietary iron concentration had an overall effect on kidney iron concentrations 

(p=O.0065) (Table 8). The Tukey procedure identified that the kidney iron concentration 

of the animals receiving the 150 ppm diet was greater than that of the animals receiving 

the 6 and 12 ppm diets (p=0.005l and p=0.05, respectively). Differences in kidney iron 

concentrations were not observed among the 6 and 12 and 35 ppm animals (p>0.60); 

however, a trend toward differences in kidney iron was observed between the animals 

receiving the 35 and 150 ppm diets (p=0.0719). Kidney iron concentrations increased 

with increasing dietary iron, and regression analyses suggested a liner relationship 

between dietary iron and its effect on kidney iron concentrations (p=0.0006). Our 

findings are in accord with Shukla et al (1990) and Sherman and Tissue (1981) who also 

observed that dietary iron had a significant effect on kidney iron concentrations. In the 

study by Shukla et al (1990), the iron deficient animals had kidney iron concentrations 

less than that of the control animals (p<0.05). Sherman and Tissue (1981) observed 

lower kidney iron concentrations in their weanling pups of iron deficient dams and in 

their 60- and 90-day old animals maintained on the iron deficient diet after weanling 

(p<0.005). A facet of the study ofKimura and Yokoi (1996) utilized an experimental 

hemochromatosis model to examine the effects of excessive dietary iron (240 ppm) on 

tissue iron deposition. Our studies were different in that they used male Wistar rats 

maintained on an experimental diet for 20 days, whereas we used female Sprague
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Dawley rats and fed them an experimental diet for 105 days. However, they examined 

the effects of excessive dietary iron on kidney iron concentrations, which was not 

evaluated in the other studies discussed thus far. Their findings were similar to ours in 

that they observed kidney iron concentration of the animals on the high iIon diet to be 

greater than those of the animals on the iron deficient diet (p<0.05), but not significantly 

different than those of the animals on the iron-adequate diet (Kimura and Yokoi 1996). 

Kidney calcium was analyzed to determine if differences in iron concentrations in 

the kidney could be influenced by calcification of the kidney. Kidney calcium 

concentrations were not different among diet groups (p=0.3963) (Table 8), and regression 

analyses did not suggest a linear or non-linear relationship between dietary iron and 

kidney calcium (p=0.3693). Given the lack of significant differences among kidney 

calcium concentrations, the significant differences in kidney iron concentrations do not 

suggest kidney damage. Differences in kidney zinc and copper concentrations were not 

observed among the diet groups (p=0.7458 and p=0.7054» (Table 8). Regression 

analyses also failed to suggest a linear, quadratic, or cubic relationship between dietary 

iron and kidney zinc or copper concentrations (p=0.8446 and p=0.6773, respectively). 

Our kidney zinc findings were not similar to those of Sherman and Tissue (1981) who 

observed kidney zinc concentrations significantly less in their 60- and 90-day old rats on 

the iron deficient diet than those on the control diet. However, we both failed to observe 

significant differences in kidney copper concentrations among our diet groups (Sherman 

and Tissue 1981). Yokoi et al (1991) fed male Wistar rats an iron deficient (5.9 ppm) or 

iron adequate (128ppm) diet for three weeks, and like us, failed to observe significant 

differences in kidney zinc or copper concentrations due to iron deficiency. These results 
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cannot be totally extrapolated to ours, given the difference in study duration and sex of 

the animals used, but they support the suggestion of an effect of maturation on tissue 

mineral deposition. 

Heart iron concentrations were affected by dietary iron concentration (p=0.0019) 

(Table 8). According to Tukey analyses, the heart iron concentrations of the 6 ppm 

animals were less than the heart iron concentrations ofthe animals receiving the 35 and 

150 ppm diets (p=0.0155 and p=0.0017, respectively). Differences in heart iron 

concentrations were not observed between the 6 and 12 ppm animals (p=0.2819), or 

among the animals receiving the 12,35, and 150 ppm iron diets (p>0.1O). Heart iron 

concentration increased with increasing dietary iron; however, the increase in heart iron 

was not proportional to the increase in dietary iron. Regression analyses suggested a 

quadratic relationship between dietary iron and its effect on heart iron concentrations 

(p=0.0323). Our findings were similar to those of Kimura and Yokoi (1996) and Yokoi 

et al (1991) who both observed significant effects of dietary iron on heart iron 

concentrations. The iron deficient animals in the study of Kimura and Yokoi (1996) 

exhibited heart iron concentrations significantly less than that exhibited by the adequate 

or excessive dietary iron groups, and the heart iron concentrations of the animals in the 

latter two groups were not significantly different from each other. Yokoi et al (1991) also 

observed lower heart iron concentrations in their iron deficient animals as compared to 

the controls (p<0.0l). As with the other three tissues analyzed, heart zinc and copper 

concentrations were not different among diet groups (p=O.5786 and p=0.7835, 
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respectively) (Table 8), and regression analyses failed to reveal a relationship between 

dietary iron and heart zinc and copper concentrations (p=0.5864 and p=0.81 07, 

respectively). Yokoi et al (1991) also failed to observe significant differences in heart 

zinc and copper concentrations due to dietary iron deficiency. 

Tissue iron concentrations were affected by dietary iron; however, significant 

effects on tissue zinc or copper concentrations were not identified. Our animals were 

maintained on experimental diets for 15 weeks, which is longer in duration than any of 

the studies discussed that did observe differences in tissue zinc and copper concentrations 

in animals maintained on diets of varying iron content (Shukla et al 1990, Shennan and 

Tissue 1981). Ifdietary iron affected tissue zinc and copper concentrations during any 

stage of development, this effect was lost by longer maturation. Perhaps iron deposition 

occurred early in development, and as such, inhibited absorption of the other minerals. 

As the animals matured, iron absorption decreased in response to maximized tissue 

stores, which facilitated the absorption and tissue deposition of the other minerals. 

However, without serial fecal or serum mineral analyses, we are unable to verify this 

hypothesis. 
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Experiment Two: Sham-Operated and Ovariectomized Rats 

Weight Gain and Food Intake 

Eighty-four female Sprague-Dawley rats comprised the experiment, with forty

two animals per surgical treatment. Randomization to diet and treatment groups was 

done upon animal arrival. Within each surgical treatment, there were 11 animals in the 6 

ppm and 150 ppm groups and 10 animals in the 12 and 35 ppm groups. At the start ofthe 

experimental period, the animals weighed between 68-75 grams, with no differences 

observed due to diet (p=O.9209), treatment (p=O.6954), or an interaction effect 

(p=O.9801) (Table 9). Weight gain during the experimental period and final weight were 

different between treatment groups (p<O.OOOl) (Table 9). The sham-operated animals 

gained an average of 181 grams during the study and weighed an average of253 grams at 

its conclusion, whereas the ovariectomized rats gained an average of 200 grams during 

the study and weighed an average of272 grams at the end of the study. Diet or an 

interaction between diet and treatment did not have a significant effect on the weight gain 

or final weight of the animals (Table 9). Although dietary iron did not have a significant 

effect on weight gain or final weight, differences in these parameters were noted within 

each treatment group (Table 9). In the sham-operated group, the animals receiving the 

150 ppm diet gained the least amount of weight, and in the ovariectomized animals, the 

lowest weight gain and final weight were observed in the 6 ppm diet group. The 

differences in weight gain in the ovariectomized animals among diet groups were similar 

to the findings of Stangl and Kirchgebner (1998) who observed the lowest weight gain in 

the lowest dietary iron group. Daily weight gain per gram of 
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diet consumed was different among diet groups (p=0.0135) and between treatment groups 

(p<0.0001), but only a tendency toward an interaction effect was observed (p=0.0745) 

(Table 9). The 150 ppm sham-operated animals gained the least amount of weight per 

gram of diet consumed with significant differences observed between the 150ppm 

animals and all other diet groups. Within the ovariectomized group, the animals fed 

6ppm gained the lease per gram fed, but significant differences were found only between 

the 6 and 35 ppm groups. The animals in both treatment groups receiving the 35 ppm 

diet gained more weight per gram of diet consumed than the other animals within each 

treatment group (Table 9). 

The body composition measures of lean body mass and percent body fat were not 

influenced by dietary iron concentration (p=0.4793 and p=O.3007, respectively). Lean 

body mass was different between treatment groups (p<O.OOOI), with a trend suggestive of 

an interaction observed as well. In a pattern similar to that ofweight gain, the 150 ppm 

sham-operated animals had the lowest lean body mass, and the 150 ppm ovariectomized 

animals had the highest lean body mass (Table 9). Body fat percentages were not 

different due to an interaction between diet and treatment (p=O.1380); however, statistical 

analyses suggest a trend toward differences due to treatment (p=O.0955) (Table 9). 

Although significant differences were not detected, it is worthwhile to note that the 150 

ppm sham-operated animals, which were the smallest animals in the study, had the 

highest body fat percentage (Table 9). The difference in body fat percent between the 

sham-operated and ovariectomized animals may be due to the loss of ovarian hormones, 

or a reflection of the feeding methodology employed. Specifically, the food intake of the 

ovariectomized animals was restricted in attempts to match weight gain among the 
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animals. The ovariectomized animals continued to gain weight throughout the study, but 

because their food intake was restricted, they may not have been receiving food in excess 

of their needs such that fat storage was increased. Another possible explanation is that 

the sham-operated animals were provided food in excess of their needs and as such they 

experienced greater fat storage. We also observed the lowest body fat percentage in the 6 

ppm ovariectomized animals, which is similar to the findings of Beard et al (1995) who 

found that dietary iron deficiency was related to low body fat percentages. 

Liver and spleen weight as a percentage of body weight were different due to diet 

(p=O.0374 and p=O.0020, respectively), but not treatment (p=0.4279 and p=O.9864, 

respectively). Conversely, kidney and heart weight as a percentage of body weight were 

different due to treatment (p<0.0001 and p=0.0307, respectively), but not diet (p=0.1570 

and p=0.5784, respectively). There were no interaction effects on organ weight as a 

percentage ofbody weight (p>0.1 0) (Table 10). Differences in liver percent body weight 

(PBW) tended to increase with increasing dietary iron concentration as the sham animals 

receiving the 12 ppm diet had significantly lower liver PBW than the animals receiving 

the 150 ppm diet. In the ovariectomized animals, those receiving the 150 ppm diet had 

significantly greater liver PBW than the other groups. Furthermore, the spleens of all 

animals receiving the 12 ppm diet were significantly lower PBW than the spleens of all 

the other animals (Table 10). The differences in liver and spleen PBW among diet 

groups may be a reflection of the effects of iron on tissue growth. The sham-operated 

animals had kidney and heart PBW (p<O.OOOI and p=O.0307, respectively) than the 

ovariectomized 
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animals (Table 10). This may be a reflection of the lower final body weights of the 

sham-operated animals versus the ovariectomized as the sham animals weighed less than 

the ovariectomized animals (p<O.OOOl), and therefore, their organs constituted a greater 

percentage of their body weight. Our findings are similar to Schwartz et al (1973) as they 

too observed the greatest percent organ weights in animals with the lowest final body 

weight. 

Diet and Trace Mineral Intake 

The sham-operated and ovariectomized animals consumed the AIN-93 diet 

fonnulated for growth for approximately 7 weeks followed by a 20-week period during 

which they consumed the maintenance fonnulation ofthe AIN-93 rodent diet. Growth 

diet intake was not significantly different due to diet, treatment, or an interaction effect 

(Table 11). During the maintenance period, however, diet intake was different between 

treatment groups (p<O.OOOI). We attempted to control diet intake to prevent differences 

in weight between the treatment groups by providing a greater amount of feed to the 

animals in the diet and ovarian honnone status group gaining the least weight. The 

significant differences observed are a result of the 150 ppm sham animals continuously 

receiving the largest quantity of diet because they gained the least amount of weight 

throughout the study (Tables 9 and 11). 
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TABLE 11� 

AVERAGE DAILY GROWTH AND MAINTENANCE DIET INTAKES OF� 
SHAM-OPERATED AND OVARIECTOMIZED RATS1� 

Growth (g) Maintenance (g) 
Sham-operated 

6 ppm 12.I±O.3 13.7±0.2 
12 ppm 12.0±0.3 13.5±O.2 
35 ppm 1l.8±0.3 13.6±0.2 
150 ppm 11.9±0.3 14.1±0.1 

Ovariectomized 
6 ppm 12.3±0.3 13.5±0.1 
12 ppm 11.8±0.3 13.3±0.2 
35 ppm 11.5±0.3 13.1±0.2 
150 ppm 12.1+0.3 13.3±0.2 

diet p=0.2329 p=0.1590 
trt p=0.8365 p=O.OOOI 

diet*trt p=0.6952 p=0.1l97 
ILS Means ± SE 

The average daily trace mineral intakes during the growth period were 

significantly different due to diet, but not treatment or interaction (Table 12). Dietary iron 

intakes of the animals in the 150 ppm diet group were significantly greater than that of 

the animals in the other three diet groups. Furthermore, the animals receiving the 35 ppm 

diet had iron intakes significantly greater than the animals in the 6 and 12 ppm groups, 

whose intakes did not differ significantly (Table 12). Overall, average daily zinc intakes 

were inversely related to dietary iron concentration, with the animals receiving the 6 and 

12 ppm diets consuming significantly more zinc than the animals receiving the 150 ppm 

diet. The difference in zinc intake due to diet effects cannot be attributable to differences 

in zinc concentration of the diet, nor diet intake as differences in both were not observed 

(Tables 3 and 11, respectively). Whether or not the difference in zinc intake was due to 
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an interaction between iron and zinc is not quantifiable based on the data collected in this 

study. 

Dietary copper intakes exhibited an inverse relationship to dietary iron 

concentration as well, but only to a certain extent. Specifically, the animals receiving the 

150 ppm diet had significantly lower copper intakes than the animals receiving the 12 and 

35 ppm diets; however, there were no significant differences in copper intakes between 

the animals receiving the 6 and 150 ppm diets and the 6, 12, or 35 ppm diets (Table 12). 

As was the case with dietary zinc intake, the differences observed cannot be attributable 

to differences in the copper concentration of the diet nor differences in diet intake among 

the diet groups (Tables 3 and 11). Also, as was the case with growth zinc intakes, we 

cannot conclude that the observed difference in copper intakes in the different dietary 

iron groups was due to an interaction between these two minerals. 

Differences in trace mineral intakes during the maintenance period were 

attributable to diet, treatment, and interaction effects in the case of iron (Table 12). 

Dietary iron intakes were found to be different due to an interaction effect (p=0.0001). 

Specifically, iron intakes among diet groups within each surgical treatment group were 

significantly different, whereas iron intakes of all animals within the 6,12, and 35 ppm 

groups were not significantly different. The interaction effect was apparent between the 

sham-operated and ovariectomized animals receiving the 150 ppm diet, as the iron 

intakes of these animals were significantly different from each other and all of the other 

animals (Table 12). Specifically, the 150 ppm sham animals consumed significantly 

more iron per day than the 150ppm ovariectomized animals, and both 150 ppm iron 

groups consumed significantly more iron per day than all other diet groups. Average zinc 
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intakes were different between treatment groups (p=0.0001) (Table 12). In the sham

operated animals, zinc intakes were directly related to dietary iron concentration, while 

the zinc intakes in the ovariectomized animals were lowest in 150 ppm diet group and 

highest in the 12 ppm diet group. Differences in copper intakes were due to both a diet 

(p<0.0001) and treatment (p=O.OOOl) effect, but statistical analyses did not indicate 

occurrence of an interaction (p=0.1508). An inverse relationship between copper intakes 

and dietary iron concentration was observed, with the ovariectomized animals receiving 

the 35 and 150 ppm diets consuming significantly less copper than the animals on the 6 

or 12 ppm diets. The animals receiving the 6 ppm diet had the highest copper intakes in 

both treatment groups, which were significantly greater than the copper intakes of the 

animals receiving the 35 or 150 ppm diet (Table 12). The differences in maintenance 

zinc and copper intakes were not due to differences in the zinc and copper content of the 

maintenance diet (Table 3), but rather differences .(p=O.OOOI) in maintenance diet intake 

between the two treatment groups (Table 11). 

Hematology, Nutritional, and Liver Function Analyses 

Prolonged maintenance on an iron deficient diet, as well as the surgical treatment, 

had a significant effect on the hematological parameters of both the sham-operated and 

ovariectomized rats (Table 13). Although not outside the reference range (Hrapkiewicz 

et al 1998), hemoglobin levels were lower in the 6 ppm animals (p=0.0019), and there 

was a significant difference in these values between treatment groups (p=0.0020), with 

the lower hemoglobin values observed in the sham-operated animals. The diet and 

dietary iron intake of the sham-operated animals was greater than the intakes of the 
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ovariectomized animals (Table 11); therefore, the difference in hemoglobin 

concentrations between the two treatment groups are likely not due to differences in iron 

intake, but rather differences in ovarian honnone status. Iron deficiency anemia is more 

common in pre-menopausal women partially due to menstrual losses (10M 2002, pgs 18

19,375) and such may be the case rats. Red blood cell counts, reticulocyte counts, and 

mean corpuscular volume were affected by dietary iron intake (Table 13). The animals 

receiving the 6 ppm diet had greater RBC and reticulocyte counts than the animals 

receiving the 12, 35, or 150 ppm diets (p=O.0017 and p=O.OOOl), while MeV values were 

lower in the 6 ppm animals (p=0.0002). Hematocrit levels were not different among diet 

groups or between treatments, but a trend toward a treatment effect was observed 

(p=0.0759). Furthermore, the sham-operated animals receiving the 6 ppm diet bad the 

lowest hematocrit levels overall (Table 13). Leukocyte counts were not affected by diet, 

but differences were observed between treatment groups (p<O.OOOl), with the lower 

values exhibited by the sham-operated animals (Table 13). Furthennore, leukocyte 

counts in both treatment groups were below the reference range (Hrapkiewicz, et al 

1998). Although differences in leukocyte counts were observed between treatment 

groups, the fact that the leukocyte levels of all animals were depressed raises the question 

of effects ofhousing environment on the immune system. Unfortunately, concrete 

assessment of this speculation is beyond the scope of this study. 

Our findings regarding the effects of dietary iron concentration on hematological 

parameters are similar to some of the findings of other researchers. Stangl and 

Kirchgebner (1998), who examined the effects of deficient and marginal dietary iron 

intakes found, as we did, that the animals maintained on iron deficient diets had lower 
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--------

hemoglobin, hematocrit, and mean corpuscular volume than those animals maintained on 

iron-adequate diets. Our results also concur with Stangl and Kirchgebner (1998) in that 

neither we nor they observed differences in WBC counts among dietary iron groups. 

Shah and Belonje (1991) fed male and female rats diets containing marginal (25 ppm), 

adequate (47 ppm), high (150 ppm), or excessive (1260 ppm) iron for 6 and 12 weeks. 

They found, as did we, that at the end of both experimental periods the lowest 

hemoglobin levels were observed in the animals receiving the lowest dietary iron 

concentration (Shah and Belonje 1991); however, the hemoglobin concentrations of all 

animals were within normal limits (Hrapkiewicz 1998). 

Nutritional status and liver function were primarily affected by treatment, as 

opposed to diet or an interaction, but the latter two effects did occur. Creatinine and AST 

were the only parameters not affected by diet, surgical treatment; or an interaction 

between diet and treatment (Table 14), and they were within the reference range for rats 

(Hrapkiewicz, et al 1998). Glucose and urea nitrogen were different due to an interaction 

effect (p=0.0398 and p=0.0114, respectively), and both were outside the reference ranges 

for rats (Hrapkiewicz et al 1998). All animals had glucose levels higher than the 

reference value, which may have been due to stress, as animals were moved 

approximately 12 hours prior to necropsy and due to the administration 0 f anesthesia 

prior to blood collection. Urea nitrogen levels were lower than the reference range, 

which can be a sign of liver dysfunction, as efficient protein metabolism results in the 

production of urea by the liver. Low urea nitrogen levels are also seen in malnutrition as 

a response to reduced protein intake (pagana and Pagana 2003). 
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Liver dysfunction and malnutrition also can cause depressed albumin levels by affecting 

the liver's ability to produce this serum protein (Tietz 1990). Albumin levels in the 

ovariectomized rats were below the reference range (Hrapkiewicz et al 1998), and there 

was a difference in albumin levels between treatments (p<O.OOOl). Our animals were not 

overtly malnourished; however, the food intake of the ovariectomized animals was 

typically restricted per the feeding protocol described earlier. Alkaline phosphatase, 

ALT, and AST are all found in the liver, and aberrant levels can indicate liver 

dysfunction (Pagana and Pagana 2003). Alkaline phosphatase levels were nonnal 

(Hrapkiewicz et al 1998), but different among diet groups (p=0.0543) and between 

treatments (p<0.0001) (Table 14). ALT levels were marginal in all animals (Hrapkiewicz 

et al 1998), but there were differences between treatments (p=0.0022). AST levels were 

not significantly different, but all animals had AST levels much lower than the reference 

range (Pagana and Pagana 2003). Stangl and Kirchgebner (1998) also examined the 

effects of varying dietary iron concentrations on liver enzymes, and although their study 

involved male Sprague-Dawley rats and iron deficient and iron adequate diets only, there 

were some similarities to our findings. Specifically, when comparing our two lowest 

dietary iron groups we consistently found that the animals receiving the 6 ppm diets had 

greater liver enzyme levels than the animals receiving the 12 ppm diet, which is similar to 

the overall greater liver enzyme levels observed by Stangl and Kirchgebner (1998) in 

their lowest dietary iron group (9 ppm). 

The results presented do not provide conclusive evidence to suggest liver 

dysfunction occurred in our animals, and we cannot make conclusive statements 

regarding liver damage because we do not have histological analyses of liver tissue that 
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would clarify if structural changes had occurred. However, the prevalence of significant 

differences in the aforementioned clinical analyses due to treatment does suggest some 

difference in these animals that may be attributable to ovarian hormone status. 

Tissue Mineral Analyses 

Sham-operated and ovariectomized female rats were fed diets of varying iron 

concentrations for a total of27 weeks to examine the effects on tissue mineral 

concentrations. The iron, copper, and zinc concentrations of the liver, spleen, and heart 

were determined, as were the iron, copper, zinc, and calcium concentrations of the 

kidneys. Kidney calcium concentrations were detennined to, ideally, eliminate 

calcification of the kidneys as a possible explanation of any differences observed in the 

trace mineral concentrations of the kidney. 

Liver iron concentrations were different among the diet groups (p=0.0002), but 

treatment (p=0.2850) and interaction effects (p=0.4571 ) were not evident (Table 15), and 

the lack of interaction was further supported by the slice option ofproc mixed analyses. 

The Tukey procedure supported the findings of significant differences in the liver iron 

concentrations of the animals receiving the 6 and 12 ppm iron diets and those receiving 

the 35 and 150 ppm iron diets. Regression analyses suggest a quadratic relationship 

between dietary iron and its effect on liver iron concentrations (p<O.OOOl). Liver iron 

concentrations increased as dietary iron increased, with the change linear up to 35 ppm, 

and then from 35 ppm to 150 ppm there was a tendency toward a plateau. 
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TABLE IS� 

EFFECTS OF DIETARY IRON ON LNER MINERAL CONCENTRATIONS� 
IN SHAM-OPERATED AND OVARIECTOMIZED RATS 1

,2.3� 

Iron (~glg) Zinc (~glg)4 Copper (f..lglg) 

Sham-operated 
6 ppm 223 A±261.8a 92.9+8A3bc 45.8+4.63 

12 ppm 886.2+261.83 93.1±8A3bc 26.8+4.6b 

35 ppm 1963.3+266.7b 81A+8.S3c 20.7+4.8b 

- b
150 ppm 280S.8±258.2b 103.3±8.3 3S.3±4.53b 

Ovariectomized 
6 ppm 233.0±258.23 89.0±8.33bc 26.4+4.58 

12 ppm 909.3+266.73 79.1 +8.4c 20.3+4.6b 

- b
35 ppm 1829.6+261.8b 87.0±8.43bc 20.0+4.6� 
ISO ppm 210S.9±266.7b 81.7±8.S3c 20.3±4.78b� 

diet p=O.0002 p=O.1512 p=O.0129 
t11 p=0.28S0 p=O.0046 p=O..0041 

diet*trt p=0.4571 p=O.0096 p=O.1162 
I Mineral concentrations expressed per gram dry tissue 
2 Proc Mixed with Tukey-Kramer Adjustment 
3 Variables in the same column within a treatment group not sharing the same letter 

superscript are significantly different. 
4 Variables in the same column not sharing the same letter superscript are significantly 

different. 

Liver zinc concentrations were different among diet and treatment groups due to 

an interaction effect (p=O.0096) (Table 15). The sham-operated animals receiving the 

150 ppm diet had significantly greater liver zinc concentrations than the sham animals 

receiving the 35 ppm diet and the ovariectomized animals receiving the 12 and 150 ppm 

diets (Table 15). Regression analyses were performed separately for the sham-operated 

and ovariectomized rats, per the results ofproc mixed slice analyses that suggested 

interaction. A quadratic relationship between liver zinc concentrations and dietary iron 

was observed in the sham-operated animals (p=0.0329), whereas regression analyses of 

the liver zinc concentrations of the ovariectomized were not significant. The observed 
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differences in regression results between treatment groups further supports the occurrence 

ofan interaction effect on liver zinc concentrations. 

Liver copper concentrations were affected by diet and treatment (p=O.0129 and 

p=O.0041, respectively) (Table 15). The highest liver copper concentrations were 

observed in the lowest dietary iron groups in both the sham-operated and ovariectomized 

animals. The 6 ppm animals exhibited liver copper concentrations significantly greater 

than those of the animals receiving the 12 and 35 ppm diets, but not those receiving the 

150 ppm diet. Significant differences in liver copper concentrations were observed 

between treatment groups as well, with concentrations in the sham-operated animals 

being greater than those of the ovariectomized animals. Proc mixed analyses did not 

support an interaction until employment of the slice test, which required that regression 

analyses be perfonned separately for each treatment. These results suggest a cubic 

relationship (p<0.04) between dietary iron concentrations and its effect on liver copper 

concentrations in both sham-operated and ovariectomized rats. 

Spleen 

Proc mixed analyses failed to identify differences in spleen iron concentrations 

due to diet, treatment, or interaction effects (p>O.l 0) (Table 16). Spleen iron 

concentrations increased as dietary iron concentration increased, but the wi de range of 

spleen iron concentrations observed in each diet group prevented detection of statistical 

significance. A function ofthe spleen is to recycle red blood cells (Cohen and Wood 

2000), and inadequate perfusion of the spleen at necropsy may explain the 
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TABLE 16� 

EFFECTS OF DIETARY IRON ON SPLEEN MINERAL CONCENTRATIONS� 
IN SHAM-OPERATED AND OVARIECTOMIZED RATS 1

,2� 

Iron (Jlg/g) Zinc (~g/g) Copper (Jlg/g) 

Sham-operated 
6 ppm 1270.6±998.4 70.l±3.9 5.7±O.9� 
12 ppm 3543.6±1193.3 68.1±3.9 4.4±0.9� 
35 ppm 8434.7±1288.9 72.4±4.0 4.5±O.9� 
150 ppm 11047.0±1052.4 69.2±3.8 4.5±O.9� 

Ovariectomized 
6 ppm l239.3±95l.9 71.3±3.8 4.7±0.9 
12 ppm 3594.3±998.4 73.7±J.9 5.0±0.9 
35 ppm 5695.5±1193.3 75.8±3.9 4.8±0.9 
150 ppm 9296.4±1052.4 73.4±4.1 4.8±O.9 

diet p=O.1361 p=O.5954 p=O.3266 
trt p=O.3862 p=O.0974 p=0.87l4 

diet*trt p=0.6743 p=O.8698 p=O.1310 
I Proc Mixed with Tukey-Kramer Adjustment 
2 Mineral concentrations expressed per gram dry tissue 

variation in spleen iron concentrations we observed. Testing for non-linear fit suggests a 

quadratic relationship between dietary iron and spleen iron concentrations, which is 

reflected in the change in spleen iron concentration with increasing dietary iron. Similar 

to liver iron, but only in the sham-operated animals, spleen iron concentrations increased 

in a linear fashion up through the 35 ppm diet, and then exhibited a tendency to plateau 

between 35 and 150 ppm (Table 16). In the ovariectomized animals, the increase in 

spleen iron concentrations was gradual from the 6 ppm diet up through the 35 ppm diet, 

and from 35 to 150 ppm, the increase in spleen iron was more pronounced (Table 16). 

Spleen zinc concentrations were not different among diet groups (p=O.5954), nor 

did proc mixed analyses suggest an interaction (p=O.8698) (Table 16). Treatment did not 
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have an effect on spleen zinc as well, but there was a tendency toward a treatment effect 

(p=O.0974), which was reflected in the subtle difference in values between treatment 

groups (Table 16). Regression analyses failed to identify a linear, quadratic, or cubic 

relationship between dietary iron and spleen zinc concentrations (p=0.5180). 

Proc mixed analyses failed to identify differences in spleen copper concentrations 

due to diet (p=O.3266), treatment (p=O.8714), or interaction effects (p=O.131 0) (Table 

16). However, proc mixed analyses including slice testing did suggest an interaction; 

therefore, separate regression analyses were performed for each treatment, and they failed 

to identify a relationship between dietary iron concentration and spleen copper. Although 

not significant, the overall highest spleen copper concentration (5.7J.lg/g) was observed in 

the 6 ppm sham animals and the lowest (4.4J.lg/g) was in the 12 ppm sham animals. 

Kidney 

Kidney iron concentrations were different among diet groups (p=O.0208) and a 

trend toward a treatment effect was observed as well (p=O.0893) (Table 17). The animals 

receiving the 6 and 12 ppm diets had significantly lower kidney iron concentrations than 

the animals receiving the 35 and 150 ppm diets (Table 17). Proc mixed analyses with 

slice testing suggested an interaction effect, which required individual regression 

analyses be performed on each treatment group. Neither a linear nor a non-linear 

relationship between kidney iron and dietary iron concentrations was identified in the 

sham-operated animals, but a quadratic relationship was found in the ovariectomized rats 

(p=O.OI58), with the pattern of change in kidney iron concentrations resembling that of 

the liver and spleen (Tables 15 and 16). The difference in regression analyses of the 
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TABLE 17� 

EFFECTS OF DIETARY IRON ON KIDNEY MINERAL CONCENTRATIONS� 
IN SHAM-OPERATED AND OVARIECTOMIZED RATS 1,2,3� 

Iron (p.glg) Zinc (eglg) Copper (eglg) Calcium (eglg) 

Sham-operated 
6 ppm 210.4±290.2a 95.6±10.8 50.0±15.0 203.4±19.3 
12 ppm 746.7+290.2a 91.0±10.8 56.2±15.0 177.2±19.3 
35 ppm 1280.7+305.9b 83.2±11.0 42.4±15.3 174.9±20.3 
150 ppm 1178.4±276.7b 95.2±10.6 32.9±14.7 181.6±18.4 

Ovariectomized 
6 ppm 203.9±290.2a 86.2±10.8 30.3±14.7 180.1±18.4 
12 ppm 284.0+290.2a 77.6±10.8 33.5±15.0 195.8±19.3 
35 ppm 731.5+290.2b 84.5±10.8 33.3±15.0 195.1±19.3 
150 ppm 770.9±305.9b 99.7±11.0 37.1±15.3 248.2±20.3 

diet p=0.0208 p=O.l157 p=0.8503 p=O.3886 
trt p=0.0893 p=0.3451 p=0.1864 p=O.1382 

diet*trt p=0.7969 p=0.4372 p=0.q533 p=O.1467 
I Mineral concentrations are expressed per gram dry tissue 
2 Proc Mixed with Tukey-Kramer Adjustment 
3 Variables in the same column within a treatment group not sharing the same letter 

superscript are significantly different. 

sham-operated and ovariectomized animals further supports the occurrence of an 

interaction effect between diet and treatment that subsequently affected kidney iron 

concentrations. 

Dietary iron, ovarian hormone status, or an interaction between diet and treatment 

failed to have a significant effect on kidney zinc and copper concentrations (p>O.10) 

(Table 17). In both the sham-operated and ovariectomized animals, kidney zinc 

concentrations were greatest in the anjmals at the extremes of the dietary iron spectrum. 

Kidney copper concentrations, although not significantly different were inversely related 

to dietary iron concentration in the sham-operated animals, as the two iron deficient 
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groups had kidney copper concentrations greater than that of the animals receiving the 

adequate and high dietary iron. Conversely, the greatest kidney copper concentrations in 

the ovariectomized animals were exhibited by the 150 ppm group, followed by the 12 

ppm group (Table 17). Regression analyses were not significant for either kidney zinc or 

copper, but there was a tendency toward a linear relationship between dietary iron and its 

effect on kidney zinc concentrations (p=O.0835, per proc GLM). Pmc mixed analyses of 

kidney calcium failed to identify differences due to diet (p=0.3886) or treatment 

(p=O.1382) effects (Table 17). Interaction effects were not identified by proc mixed 

alone, but with the employment of slice testing, an interaction was suggested. However, 

regression analyses failed to identify a relationship, but a trend toward a quadratic 

relationship in the sham-operated animals (p=O.0602), and a linear relationship in the 

ovariectomized animals (p=O.0644) was observed. The lack of significant differences in 

kidney calcium concentrations among diet and treatment groups suggests that differences 

in kidney iron concentration may not be attributed to calcification of the kidney. 

Heart iron concentrations were different among diet groups (p<O.OOOl) with the 6 

ppm animals in both treatment groups exhibiting significantly lower heart iron 

concentrations than the animals receiving the 12,35, and 150 ppm diets (Table 18). Proc 

mixed analyses failed to identify treatment (p=0.9258) or interaction effects (p=O.5523). 

Testing for non-linear fit produced results similar to those observed in the liver, spleen 

and kidney, specifically that a significant quadratic relationship was identified between 

dietary iron and heart iron concentrations. In a pattern similar to that identified in the 
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TABLE 18 

EFFECTS OF DIETARY lRON ON HEART MINERAL CONCENTRATIONS 
IN SHAM-OPERATED AND OVARIECTOMIZED RATS l ,2,3 

Copper (I-lglg) 

Sham-operated 
6 ppm 
12 ppm 
35 ppm 

229.1+18.68 

252.6+18.6b 

279.1±19.3bc 

56.8±3.6 
55.5±3.6 
51.2±3.8 

20.0±l.3 
19.2±1.3 
18.4±1.3 

150 ppm 317.4±18.0c 54.4±3.5 19.9±1.3 

Ovariectomized 
6 ppm 
12 ppm 
35 ppm 

211.1+18.08 

266.9+18.6b 

298.2±18.6bc 

51.7±3.5 
54.8±3.6 
54.8±3.6 

18.7±!.3 
19.3±1.3 
19.0±l.3 

150 ppm 306.1±20.1c 53.3±3.8 19.8±1.3 

diet p<O.OOOl p=0.9354 p=0.5427 
trt p=0.9258 p=O.7308 p=0.7233 

diet*trt p=0.5523 p=O.6302 p=O.6427 
( Mineral concentrations are expressed per gram dry tissue 
2 Proc Mixed with Tukey-Krarner Adjustment 
3 Variables in the same column within a treatment group not sharing the same letter 

superscripts are significantly different. 

liver, spleen, and kidney, heart iron concentrations increased in a linear trend up through 

the 35 ppm diet concentration, and from the 35 to 150 ppm concentrations, a plateau 

effect was observed. This trend in the magnitude of change with increasing dietary iron 

concentration was more pronounced in the ovariectomized animals (Table 18). 

Heart zinc and copper concentrations were not different among diet or treatment 

groups (p>0.50), and proc mixed analyses with slice testing failed to indicate an 

interaction (Tablel8). Regression analyses were not significant for a linear, quadratic, or 

cubic relationship between dietary iron concentration and heart zinc or copper 

concentrations. 
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Change in Tissue Mineral Concentrations from Surgery to Necropsy 

Analysis of the change in tissue mineral concentrations from surgery to necropsy 

was performed to evaluate the effects of time and ovarian honnone deficiency. 

Iron. Liver iron concentrations did not change from surgery to necropsy due to 

diet (p=0.7172), treatment (p=0.2850), or interaction effects (p=0.4571), and regression 

analyses failed to identify a linear, quadratic, or cubic relationship between change in 

liver iron concentration and dietary iron concentration (p=0.3991). Although not 

significant, the pattern of change between treatment groups began to differ as dietary iron 

concentration increased between 12 and 35 ppm and up through 150 ppm. Specifically, 

the ovariectomized animals receiving the 150 ppm diet lost liver iron (-193.5f.lg/g dry 

tissue), whereas the concentration of iron in the livers of the sham-operated animals 

increased (+506.4 fig!g dry tissue) (Figure 2, Appendix F, Table I). Dallman et al (1982) 

examined the changes in tissue iron concentrations that occurred as a result of prolonged 

feeding of iron deficient diets in male Sprague-Dawley rats. The animals were obtained 

at weaning and fed a 100 ppm iron diet for 15 days, the 
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Figure 2. Change in Uver Iron Concentrations from Surgery to Necropsy in 
Sha~Operated and Ovariectomized Rats. Non-Significant Changes in liver Iron 
Concentrations. 
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purpose ofwhich was to maximize iron stores prior to being placed on an iron deficient 

diet. Subsequently, the animals were randomly assigned to the control group (50 ppm) or 

one of two deficient groups (2 or 6 ppm), and sacrificed at intervals during the following 

54-day feeding period. At the outset of the experimental feeding period, 6-8 rats were 

killed and the iron content of the liver and spleen was analyzed for baseline values. Liver 

iron concentrations increased in all three groups from baseline to 3 days, but from day 3 

through day 24, liver iron concentrations decreased. In the iron deficient groups, the drop 

in liver iron was most dramatic from day 3 to day 6, whereas in the control group, the 

most dramatic decrease was observed between days 10 and 14. Surpri.singly, there was a 

consistent increase in liver iron concentrations in the animals receiving the 2 and 6 ppm 
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diets from day 24 to the end of the experimental feeding period (day 54). E 

t}1e overall change in liver iron concentrations from day three to day 54 (ap 

'V"eeks) reveals an overall decrease in liver iron concentrations in all animal 

would be expected but was not observed in our iron deficient animals. Ho' 

flot monitor the changes in liver iron concentrations at different stages, but 

and given that the animals in the study by Dallman et al (1982) began to e, 

liver iron stores toward the end of the experimental feeding period raises tl 

whether or not they too would have experienced a net increase in liver iror 

in liver iron concentrations in our animals, and the tendency toward an inc 

passage of time in the study by Dallman et al (1982) is a reflection ofthe ( 

presented by Shah and Belonje (1991) that iron absorption is more efficiel 

prolonged maintenance on an iron deficient diet due. 

Zinc. Changes in liver zinc concentrations were due to an interact 

(p=0.0096), and slice testing further supported the occurrence of an intera 

ovariectomized animals receiving the 12, 35, and 150 ppm diets, liver zin 

decreased between 10-14.5 J..lglg dry tissue from surgery through necrops 

greatest decrease observed in the 35 ppm group. Conversely, the only sh 

experience a decrease in liver zinc were those receiving the 35 ppm diet, 

magnitude of change observed in this group was the greatest overall (-19 

tissue) (Figure 3; Appendix F, Table 1). In the remaining animals, the ir 

zinc ranged from 2.2-11AJ..lglg dry tissue, with the greatest increase obs€: 

animals receiving the 150 ppm diet. Regression analyses of each treatm 
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Figure 3.Change in Liver Zinc Concentrations from Surgery to Necropsy in� 
Sham-Operated and Ovariectomized rats. Diet x Treatment, p<0.001; Quadratic Fit� 
Sham-Operated Rats p=0.0002, Quadratic Fit OIIariectorrized Rats P=O.0360� 
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identified a quadratic relationship between the change in liver zinc and dietary iron in the 

sham-operated (p=O.0002) and ovariectomized (p=O.0360) animals. 

Copper. The change in liver copper concentration from surgery to necropsy was 

different among diet (p=O.0005) and between treatment (p=O.0041) groups, and proc 

mixed analyses with slice testing suggested the presence of an interaction. There was a 

direct, inverse relationship exhibited between dietary iron concentration and change in 

liver copper concentrations. Specifically, the animals in both 6 ppm diet groups 

experienced the greatest decrease in liver copper concentrations, with the sham-operated 

animals losing approximately IO~g/g dry tissue and the ovariectomized animals losing 

approximately 29.5 ~g/g dry tissue. Furthermore, as dietary iron increased, the negative 

150 



change in liver copper was minimized up through the 35 ppm diet. A positive change in 

liver copper occurred from the 35 to 150 ppm diet concentration. with the greatest 

increase exhibited by the sham-operated animals receiving the 150 ppm diet (+ 15.30~glg 

dry tissue) (Figure 4). Figure 4 depicts the disparity in the change in liver copper 

concentrations between the sham-operated and ovariectomized animals. Regression 

analyses describe the relationship between dietary iron concentration and its effect on 

change in liver copper as linear in the sham-operated animals (p<O.OOO 1) and quadratic in 

the ovariectomized (p<0.0001). which further supports the occurrence of an interaction. 

Figure 4. Change in Liver Copper Concentrations from Surgery to Necropsy in 
Sham-Operated and Ovariectomized Rats. Diet p<0.0005, Treatment p<0.0041; Linear 
Fit Sham-Operated p<0.0001. Quadratic Fit Ovariectomized p<0.0011 
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In their study examining the effects of marginal and excessive dietary iron on 

tissue mineral concentrations, Shah and Belonje (1991) evaluated the difference in liver 

j(on, zinc, and copper concentrations from 6 weeks of experimental feeding to 12 weeks. 

'fhey observed increased liver iron concentrations in all female rats except those 

receiving the 1260 ppm diet, which exhibited a decrease in liver iron. Our sham-operated 

~imals receiving the 150 ppm diet also experienced an increase in liver iron, but the 150 

ppm ovariectomized animals lost iron. This may be explained by the greater di et intake 

of the sham-operated animals, or by the loss ofovarian hormones. The changes in liver 

zinc concentrations observed by Shah and Belonje (1991) were primarily different from 

our findings as they observed increased liver zinc concentrations in all females 

consuming diets with iron concentration similar to those used in our study. Changes in 

Iiver copper concentrations were quite different in our study versus those observed by 

Shah and Belonje (1991). We observed decreased liver copper concentrations in all 

animals except those receiving the highest dietary iron concentration, whereas the only 

animals exhibiting decreased liver copper concentrations in the study by Shah and 

Belonje (1991) were those receiving the chow (270 ppm iron) and the highest dietary iron 

concentration (1260 ppm). 

The greatest overall changes in liver iron, zinc, and copper concentrations were 

consistently experienced by the sham-operated animals receiving the 1SO ppm diet, as 

compared to their ovariectomized counterparts. This could be a reflection of the greater 

diet intake of the sham animals or an effect of ovarian honnone deficiency on tissue 

mineral deposition. FurtheITIlore, the similarity in the change in liver iron and zinc 

concentrations in our ovariectomized animals on the 150 ppm diet and the 1260 ppm 

152 



~imals in the study by Shah and Belonje (1991) suggests a possible adverse effect of 

voth excessive dietary iron and/or ovarian hormone deficiency on deposition ofminerals 

jn the liver. Specifically, the ovariectomized animals in our study experienced loss of 

Iiver minerals, as did the 1260 ppm female rats in the study of Shah and Belonje (1991). 

Spleen 

Iron. The changes in spleen iron concentrations were not identified as different 

due to diet, treatment, or interaction effects (p>0.30)" and testing for non-linear fit failed 

to identify a relationship between changes in spleen iron and dietary iron concentrations 

(p>O.lO). These findings are similar to the liver iron change data, and may be attributable 

to the variability of the data. In the sham-operated animals, spleen iron concentrations 

increased relative to dietary iron concentration from surgery to necropsy, with the 

greatest increase experienced by the 150 ppm group (+2543.8 j.!g/g dry tissue) (Figure 5). 

Such was not the case in the ovariectomized animals, as the 35 ppm diet group 

experienced a dramatic decrease in spleen iron concentration from surgery to necropsy (

516.5Jlg/g dry tissue), and the greatest increase was observed in the 12 ppm group 

(1781.5~g/g dry tissue). Furthermore, the increase in spleen iron from surgery to 

necropsy exhibited by the sham-operated 150 ppm group was three times greater than 

that experienced by the ovari.ectomized 150 ppm animals (+2543.8 versus +792 ..9IJ.g/g 

dry tissue, respectively). Our findings are not entirely consistent with those of Dallman 

et al (1982) who only observed a net increase in spleen iron in their control animals (50 

ppm), whereas we observed a net increase in spleen iron in all ofour animals except the 

ovariectomized animals receiving the 35 ppm diet. The 
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Figure 5. Change in Spleen Iron Concentrations from Surgery to Necropsy in 
Sham-Operated and Ovariectomized Rats. Non-Significant Changes in Spleen 
Iron Concentrations. 

-Sham 
4000 --0IIx 

3000 

c� 
I 2000� c.. en \,
~ 
'0 \,-a 1000 
c 
0 \ ---~ 

\ ---~ 
\\ -_ .. - ---1 

a 
~ \ 

, .. ---=1. 0 \ ..--
\ ..--r----

-1000 

-2000+--.,---.----r--"T--r--.,.-----,---r--.----,.---r--r----r---,---.,--, 
o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 

Dietary Iron Concentration ppm 

pattern of change in spleen iron concentrations observed by Dallman et al (1982) in their 

iron deficient animals was similar to their observations in the liver. Specifically, they 

observed a decrease in spleen iron concentrations up through day 14, but from day 14 

through day 54, spleen iron concentrations increased (Dallman et al 1982). The disparity 

in the change in spleen iron concentrations observed in our iron deficient animals 

compared with that observed by Dallman et al (1982) may be partially due to the 5-week 

difference in study duration. Furthermore, as was suggested previously in the discussion 

of changes in liver iron, our observations may reflect more efficient iron absorption due 

to chronic insufficient dietary iron intake. Shah and Belonje (1991) observed that spleen 

iron concentrations increased with increasing dietary iron intake and with the passage of 
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time, which is in accord with our findings in the sham-operated animals. Such was not 

entirely the case in our ovariectomized animals as spleen iron concentrations decreased 

from the 12 ppm to the 35 ppm diet groups followed by an increase from 35 to 150 ppm. 

The difference in the pattern of change in spleen iron concentrations in the sham-operated 

and ovariectomized animals may be a reflection of the effects of ovarian hormone 

deficiency on spleen iron deposition. Of note, the amount of iron gained from 35 to 150 

ppm in the ovariectomized animals was greater than that gained by the sham-operated 

animals (+1309.4 ~g1g versus +311.1 ~g1g dry tissue, respectively). It is interesting that 

the magnitude of change in spleen iron concentrations from 6 to 12 weeks in the study by 

Shah and Belonje (1991) was much greater than that observed in our animals from 

surgery to necropsy, despite the fact that our animals were maintained on the 

experimental diets for much longer duration. We failed to observe a significant quadratic 

or cubic relationship between spleen iron and dietary iron concentration that may have 

helped explain this difference; however, our spleen iron data was variable which may 

have precluded detection of a significant quadratic or cubic relationship. The disparity in 

magnitude of change in spleen iron concentrations between our study and that of Shah 

and Belonje (1991) may be due to duration in that a storage threshold may be reached 

and, barring a metabolic disorder (hemochromatosis), the net increase in spleen iron may 

be lessened with time. 

Zinc. Diet did not have a significant effect on the change is spleen zinc 

concentrations from surgery to necropsy (Figure 6). Treatment and interaction effects 

were not significant, and slice testing supported the lack of an interaction effect. 
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Figure 6. Change in Spleen Zinc Concentrations from Surgery to Necropsy 
in Sham-Q:>erated and C>.ariectorrized Rals. Diel p=0.05; Quadratic Fit 
p=0.0105 
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In both the sham-operated and ovariectomized animals, the greatest decrease in spleen 

zinc was observed in the 150 ppm diet group, while the greatest increase was observed in 

the 35 ppm diet group (Figure 6; Appendix F, Table 1). There were obvious differences 

in the magnitude of change observed between treatment groups, as the amount of zinc 

lost from surgery to necropsy was almost six times greater in the sham-operated group, 

and the gain in spleen zinc was approximately 40 percent greater in the ovariectomized 

group. The findings ofShah and Belonje (1991) were primarily not in accord with our 

findings, as they observed a decrease in spleen zinc concentrations with the passage of 

time in all animals except those receiving the 47 ppm diet, whereas the majority of our 

animals experienced an increase in spleen zinc. The similarity between our studies was 
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that the animals in both studies receiving 150 ppm iron diet experienced decreased spleen 

zinc concentrations with the passage of time. Regression analyses identified a quadratic 

relationship (p<O.O105) between dietary iron concentration and the change in spleen zinc 

from surgery to necropsy. 

Copper. Change in spleen copper was not different among diet (p=0.3632) or 

between treatment (p=O.8714) groups; however, the occurrence of an interaction was 

suggested by proc mixed with slice testing. Therefore, regression analyses were 

completed on the treatment groups individually, which failed to identify a non-linear 

trend in the sham-operated animals, but there was a cubic relationship (p=0.0098) 

between dietary iron concentration and the changes in spleen copper from surgery to 

necropsy only in the ovariectomized animals. At each dietary iron concentration, there 

was an evident disparity in the magnitude of change in spleen copper that occurred in the 

sham-operated and ovariectomized animals (Figure 7). However, the greatest losses and 

gains of copper in the spleen were observed in the 6 and 12 ppm ovariectomized animals, 

respectively, while there was little change in the 35 and 150 ppm groups. 
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Figure 7. Change in Spleen Copper Concentrations from Surgery to Necropsy 
in Sham-Operated and Ovariectomized Rats. Ovariectomized Rats Cubic Fit 
p=0.0098. 
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Kidney 

Iron. Kidney iron concentrations did not change among diet groups (p=O.2036) or 

due to an interaction effect (p=O.7939)~ however, a trend. toward a treatment effect was 

observed (p=O.0893). This is reflected in the differences in the change data between the 

sham-operated and ovariectomized animals (Figure 8). In the 12, 35, and150 ppm diet 

groups, the gain of kidney iron was an average of 460 I-lglgram dry tissue greater in the 

sham-operated animals than in the ovariectomized rats. Furthennore, there was a loss of 

kidney iron in the 12 ppm ovariectomized animals, although it Was not as severe as 
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Figure 8. Change in Kidney Iron Concentrations from Surgery to Necropsy in 
Sham-Operated and CNariectomized Rats. Quadratic Fit p=0.0377 
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that lost in the liver of the 150 ppm ovariectomized animals and the spleen ofthe 35 ppm 

ovariectomized animals. Despite this variability, regression analyses described a 

quadratic relationship (p=O.0377) between dietary iron and the change in kidney iron 

from surgery to necropsy in both treatment groups (Figure 8). 

Zinc. Proc mixed analyses failed to detect differences in kidney zinc 

concentrations due to diet, treatment, or interaction effects, and testing for non-linear fit 

did not detect a relationship between dietary iron and kidney zinc concentrations 

(p>O.30). However, there was a disparity in the changes experienced by the sham-

operated and ovariectomized animals. Specifically, the kidney zinc concentrations 
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Figure 9. Change in Kidney Zil1c Concentrations from Surgery to Necropsy in Sha~Operated and 
CNariectomized Rats. Non-Significant Changes in Kidney Zinc Concentrations. 

20 . 

15 
-Sham 

10 --Otx 
CI>

gj ----.-
;:, 

5 ----
,~ 0 ,

"CI ,�
Cl ,� 

-5c , ' ON 
CI ,, ,"
U 

l' '::1. -10 

-15 r-20 

-25+-----,r-----,---,--,----r-----.--,-----,r-----,---,--,---r-----.--,-----,r---, 
o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 

Dietary Iron Concentration ppm 

increased in all sham-operated animals and in the ovariectomized animals receiving the 

35 and 150 ppm diets, whereas the ovariectomized animals receiving the 6 and 12 ppm 

diets lost zinc. The greatest gain and loss of kidney zinc occurred in the ovariectomized 

animals receiving the 150 ppm and 12 ppm diets (+10.3 and -10.8flg/g dry tissue, 

respectively) (Figure 9). 

Copper. Differences in the change in kidney copper concentrations were not 

detected by proc mixed analyses (p>0.1 0), and regression analyses failed to suggest a 

linear, quadratic, or cubic relationship between the change in kidney copper from surgery 

to necropsy and dietary iron concentration (p=0.7348). In the ovariectomized animals, 

only the 35 ppm group did not lose kidney copper from surgery to necropsy (Figure 10, 

Appendix F, Table 2). The overall greatest decrease in kidney copper occurred in the 
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Figure 10. Change in Kidney Copper Concentrations from Surgery to Necropsy in Sham-Operated 
and CNariectomized Rats. Non-Significant Changes in Kidney Copper Concentrations. 
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12 ppm ovariectomized animals (-14.9J.!g/g dry tissue) followed by the 6 ppm 

ovariectomized animals (-14.4J.!g/g dry tissue), which is the same pattern of change 

observed in the kidney zinc concentrations. The pattern of kidney copper gain was not 

similar to that of kidney zinc, as the greatest increase in kidney copper occurred in the 

sham-operated animals receiving the 35 ppm diet (+10.3!1g/g dry tissue), followed by the 

shams receiving the 12 ppm diet (7.7J.!g/g dry tissue) (Figure 10). In the sham animals, 

the pattern of change appeared to be different although the change was not statistically 

significant. That is, all diet groups except the 150 ppm group accumulated additional 

copper in the kidney whereas 150 ppm sham animals lost copper. This change in kidney 

copper apparently was not due to calcification of the kidney as the 150 ppm sham 

animals lost kidney calcium (Appendix F,. Table 2). 
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Calcium. The change in kidney calcium concentrations was different among diet 

groups (p=0.0405), and proc mixed analyses with slice testing suggested the presence of 

an interaction between diet and treatments. Regression analyses failed to identify a 

relationship between the change in kidney calcium and dietary iron in the sham animals 

(p=0.4478), but a linear relationship was detected in the ovariectomized animals 

(p=0.0231). This difference in regression findings for each treatment further supports the 

occurrence of an interaction. Specifically, the greatest decrease in kidney calcium from 

surgery to necropsy occurred in the sham-operated animals receiving 35 ppm diet (-42.3fl 

gig) whereas the greatest increase was observed in the ovariectomized animals receiving 

the 150 ppm diet (+54.4 ~g/g). The fact that the extremes of the results (highest versus 

lowest) occurred in different diet and treatment groups is suggestive of an interaction. 

Iron. Heart tissue mineral concentrations did not change from surgery to 

necropsy per proc mixed analyses (p>0.40), and regression analyses failed to identify a 

linear, quadratic, or cubic relationship between the change in heart mineral 

concentrations and dietary iron concentration (p>O.30) (Appendix F; Table 2). Heart iron 

concentrations increased in all animals, with the greatest increase observed in the sham

operated animals receiving the 6 ppm diet (+29.8~g/g dry tissue) (Figure 11). 
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Figure 11. Change in Heart Iron Concentrations from Surgery to Necropsy in Sham-Operated 
andOl/ariectomized Rats. Non-Significant Changes in Heart Iron Concentrations. 
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Zinc. Heart zinc concentrations decreased in all animals except the 

ovariectomized animals receiving the 35 ppm diet that experienced a slight increase 

(Figure 12). The greatest decrease in heart zinc concentrations from surgery to necropsy 

occurred in the ovariectomized animals receiving the 6 ppm diet (-7.6 Jlg/g dry tissue). 
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Figure 12. Change in Heart Zinc Concentrations from Surgery to Necropsy in Sha~Operated 

and Ovariectomized Rats. Non-Significant Changes in Heart Zinc Concentrations. 

5 -Sham 

--().I)( 

0� ----- ------ --- ... ... --1::: --- ... ......�I'G ......
ell 

J::.� ----- ------ --- ... ...... 

-
~ 

"1:1 --- ... 
OJ -5 
Co) 
c 

"N 
CI 
::l. 

-10 

-15-t--____,,------r-_._--r--~--.-...-____r-__r_-...,..._-r__..-_._-_._-r______, 

o� 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 

Dietary Iron Concentration ppm 

Copper. Heart copper concentrations decreased in all animals with the greatest 

loss occurring in the ovariectomized animals receiving the 6 ppm diet (-I.4~g1g dry 

tissue) (Figure 13). Although the changes in heart mineral concentrations were not 

si.gnificant, the results as a whole are suggestive of the interaction between iron, copper 

and zinc. Specifically, heart iron concentrations increased in all animals and the majority 

experienced a concomitant decrease in heart zinc and copper concentrations. 
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Figure 13. Change in Heart Copper Concentrations from Surgery to Necropsy in Sham-Operated 
and Ovariectomized Rats. Non-Significant Changes in Heart Copper Concentrations. 

2.00 -Sham 

--Ovx 

1.25 

t: 
ftI 
Cl) 0.50.s:. 

~ 
"'C 
C) 

I:: -0.25
8 ----------~-----------------Q. 
0 
U 
Cl -1.00::1. 

-1.75 

-2.50+----,--.--r---,.--,---r----,.--,--r---r--,--r----r--,---r----, 
o 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 

Dietary Iron Concentration ppm 

165 



CHAPTERS 

SUMMARY 

One hundred and twenty-four female Sprague Dawley rats were fed diets of 

varying levels of dietary iron to examine the effect of iron on tissue mineral 

concentrations at different stages of maturity. In the young mature animals, dietary iron 

concentration affected tissue iron concentrations, with significant differences observed in 

all tissues except the spleen. The concentration of iron in the spleen increased with 

increasing dietary iron; however, significance was not detected due to the variability of 

the data. Tissue copper and zinc concentrations were not significantly affected by dietary 

iron concentration. In comparing our study with others of similar design and purpose, we 

found that our study was typically longer by at least three weeks. Furthennore, these 

studies observed significant differences in tissue zinc and copper concentrations, whereas 

we did not. Our failure to observe significant differences in tissue copper and zinc 

concentrations due to deficient or high dietary iron intake may be a reflection of the 

concentrations of iron used or the effects of maturity on tissue mineral deposition. 

In the sham-operated and ovariectomized animals, the most profound effects of 

dietary iron and ovarian hormone status were observed in the liver. As was observed in 

the young mature animals, dietary iron also had a significant effect on all tissue iron 

concentrations, except the spleen, in the sham-operated and ovariectomized animals. In 

fact, there were no significant differences in spleen iron, zinc, or copper concentrations 

due to diet, treatment, or interaction effects, and, as was the case in the young mature 

animals; this was likely due to the variability ofthe data. A facet of the purpose of 
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experiment two was to determine if interactions would occur between dietary iron 

concentrations and ovarian honnone status such that tissue mineral concentrations were 

affected. The only significant interaction effect was observed in liver zinc 

concentrations. The ovariectomized animals exhibited liver zinc concentrations less than 

that of the sham-operated animals, and the 150 ppm sham group exhibited the highest 

liver zinc concentration. The relationship between dietary iron and liver zinc 

concentrations in the two treatment groups were not similar. Specifically, the highest 

liver zinc concentration was observed in the 150 ppm sham animals, and the lowest was 

observed in the 12 ppm ovariectomized animals. Testing for non-linear fit described a 

quadratic relationship as opposed to linear between dietary iron and liver zinc 

concentrations, and this is reflected in the data presented in Table 15. Livercopper 

concentrations were significantly different due to diet and treatment effects, but an 

interaction was not observed. In both treatment groups, the 6 ppm diet group exhibited 

the greatest liver copper concentrations, but the sham-operated animals exhibited liver 

copper concentrations greater than that ofthe ovariectomized animals. In the kidney and 

heart, significant differences in zinc or copper concentrations were not observed, which 

reflects their relatively minor role in storage of these minerals. The liver is a primary 

iron storage site, second only to the bone marrow and followed by the spleen. It is fitting 

then that the primary effects of dietary iron on tissue mineral deposition were observed in 

the liver, and had it not been for the variability of the spleen data, significant differences 

in mineral concentrations may have been observed in that tissue as well. 

The changes in tissue mineral concentrations from surgery to necropsy were 

analyzed to further assess the effects of maturity as well as ovarian honnone status. The 
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majority of the groups experienced increases in tissue iron concentrations from surgery to 

necropsy, but these changes were not significantly different due to diet, treatment, or 

interaction effects (p>0.05). These findings support our earlier suggestion that tissue iron 

deposition primarily occurs early in development. Significant changes in zinc and copper 

concentrations were only observed in the liver, with the effects of diet, treatment and 

interactions the same as our previous observations. The change in liver zinc 

concentration was different among the diet and treatment groups due to an interaction 

between dietary iron concentration and ovarian hormone status (p=O.0096). The changes 

in liver copper concentrations were different due to a diet and ovarian honnone status 

effect (p=0.0005 and p=O.0041, respectively), but an interaction was not observed. The 

ovariectomized animals experienced more liver zinc and copper losses than the sham

operated animals, which suggest that ovarian honnones may contribute to tissue mineral 

deposition. 

Results of Hypothesis Testing 

The following section presents the results of hypothesis testing. 

1.� There will be no statistically significant differences in the tissue iron 

concentrations of young mature rats due to varying levels of dietary iron. 

Hypothesis I was rejected because AAS analyses showed that the iron 

concentration in the liver, kidney, and heart was significantly different among di,et groups 

(Table 8). Mean liver iron concentrations of animals in the 6 and 12 ppm diet groups 

were lower than the mean liver iron concen rations of the animals in the 35 and 150 ppm 

diet groups (p<O.OOOl). Animals receiving the 6 and 12 ppm diets had mean kidney iron 
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concentrations lower than the animals receiving the 150 ppm diet (p<O.005 and p<0.05, 

respectively). Mean iron concentrations in the heart tissue of animals in the 6 ppm diet 

group were lower than that of the animals in the 35 and 150 ppm diet groups (p<0.02 and 

p<O.OO 1, respectively). 

2.� There will be no statistically significant differences in tissue copper 

concentrations of young mature rats due to varying levels ofdietary iron. 

Hypothesis 2 was not rejected because AAS analyses showed that liver copper 

(p<O.07), kidney copper (p<O.71), heart copper (p<O.78), and spleen copper (p<0.51) 

were not different among diet groups (Table 8). 

3.� There will be no statistically significant differences in tissue zinc conc'entrations 

of young mature rats due to varying levels of dietary iron. 

Hypothesis 3 was not rejected because AAS analyses showed that liver zinc 

(p<0.72), kidney zinc (p<O.75), heart zinc (p<O.58), and spleen zinc (p<O.22) were not 

different among diet groups (Table 8). 

4.� There will be no statistically significant interactions among iron, copper, and zinc 

in young mature rats due to varying levels of dietary iron. 

Hypothesis 4 was not rejected because AAS analyses showed that there 

were no differences in tissue zinc and copper concentrations (p>O.05) concomitant with 

variable dietary iron intake (Table 8). 

5.� There will be no statistically significant differences in the tissue iron 

concentrations of mature rats due to varying levels of dietary iron. 

Hypothesis 5 was rejected because AAS analyses showed that iron concentrations 
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of the liver, kidney, and heart were different among diet groups (p=O.0002, p==O.0208, 

and p<O.OOOl, respectively) (Tables 15, 17-18). Furthermore, had the spleen data been 

less variable, significant differences in spleen iron concentrations may have been detected 

as well. The liver and kidney iron concentrations of the animals receiving the 6 and 12 

ppm diets were significantly less than that of the animals receiving the 35 and 150 ppm 

diets. The heart iron concentrations in the animals receiving the 6 ppm diet were 

significantly less than that of the other animals. 

a.� There will be no statistically significant differences in the tissue iron 

concentrations of the sham-operated animals due to varying levels of 

dietary iron. 

Hypothesis 5a was rejected because AAS analyses showed that the 

iron concentrations of the liver, kidney, and heart of the sham-operated animals 

were significantly different among diet groups. 

b.� There will be no statistically significant differences in the tissue iron 

concentrations of the ovariectomized animals due to varying levels of 

dietary iron. 

Hypothesis 5b was rejected because AAS analyses showed that the 

iron concentrations of the liver, kidney, and heart of the ovariectomized animals 

were significantly different among diet groups. 

c.� There will be no statistically significant differences in tissue iron 

concentrations between the sham-operated and ovariectomized animals. 

Hypothesis 5c was not rejected because AAS analyses failed to 
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detect significant differences in tissue iron concentrations between the 

ovariectomized and sham-operated animals, which suggest that ovarian hormones, 

or lack thereof, do not influence tissue iron deposition. 

6.� There will be no statistically significant difference in tissue copper 

concentrations of mature rats due to varying levels of dietary iron. 

Hypothesis 6 was rejected because AAS analyses showed that liver copper 

concentrations were different among diet groups (p<O.OI29) (Table 15). The animals 

receiving the 6 ppm iron diet exhibited liver copper concentrations significantly greater 

than that of the animals receiving the 12 and 35 ppm diets. Significant differences in 

copper concentrations were not detected in the remaining tissues. 

a.� There will be no statistically significant differences in the tissue copper 

concentrations of the sham-operated animals due to varying levels of 

dietary iron. 

Hypothesis 6a was rejected because AAS analyses showed that the liver 

copper concentrations of the sham-operated animals were significantly different 

due to dietary iron. Specifically, the animals receiving the 6 ppm iron diet 

exhibited liver copper concentrations significantly greater than the animals 

receiving the 12 and 35 ppm iron diets. 

b.� There will be no statistically significant differences in the tissue copper 

concentrations ofthe ovariectomized animals due to varying levels of 

dietary iron. 

Hypothesis 6b was rejected because AAS analyses showed that the liver 
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copper concentrations of the ovariectomized animals were significantly different 

due to dietary iron. Specifically, the animals receiving the 6 ppm iron diet 

exhibited liver copper concentrations signi ficantly greater than the animals 

receiving the 12 and 35 ppm iron diets. 

c.� There will be no statistically significant differences in tissue copper 

concentrations between the sham-operated and ovariectomized animals. 

Hypothesis 6c was rejected because AAS analyses showed that the liver 

copper concentrations were different between treatment groups (p=O.0041). 

7.� There will be no statistically significant differences in the tissue zinc 

concentrations of mature rats due to varying levels of dietary iron. 

Hypothesis 7 was not rejected because AAS analyses failed to detect significant 

differences in tissue zinc concentrations among diet groups (Tables 15-18). 

a.� There will be no statistically significant differences in the tissue zinc 

concentrations of the sham-operated animals due to varying levels of 

dietary iron. 

Hypothesis 7a was not rejected because AAS analyses failed to detect 

significant differences in tissue zinc concentrations of the sham-operated animals 

due to dietary iron intake. 

b.� There will be no statistically significant differences in the tissue zinc 

concentrations of the ovariectomized animals due to varying levels of 

dietary iron. 

Hypothesis 7b was not rejected because AAS analyses failed to detect 
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significant differences in tissue zinc concentrations of the ovariectomized animals 

due to dietary iron intake. 

c.� There will be no statistically significant differences in tissue zinc 

concentrations between the sham-operated and ovariectomized animals. 

Hypothesis 7c was rejected because AAS analyses showed that the liver 

zinc concentrations of the sham-operated animals were different than that of the 

ovariectomized animals (p=0.0046) (Table 15). 

8.� There will be no statistically significant interactions among iron, 

copper, and zinc in mature rats due to varying levels of dietary iron. 

a.� There will be no statistically sIgnificant interactions among iron,. copper, 

and zinc in sham-operated rats due to varying levels of dietary iron. 

h.� There will be no statistically significant interactions among iron, copper, 

and zinc in ovariectomized rats due to varying levels of dietary iron. 

Hypotheses 8, 8a, and 8b were rejected because liver copper concentrations were 

significantly different among diet groups. Furthennore, the fact that the lowest dietary 

iron group exhibited the highest liver copper concentration suggests an inverse 

relationship between deficient dietary iron intake and liver deposition of copper. Such 

Cannot be said for excessive dietary iron intake and liver copper deposition because the 

liver copper concentration of the animals receiving the 150 ppm diet was not significantly 

different than that of any of the other dietary treatments. 

c.� There will be no statistically significant interactions among iron, copper, 

and zinc between sham-operated and ovariectomized rats due to varying 

levels of dietary iron. 
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Hypothesis 8c was rejected because AAS analyses detected a diet and treatment 

interaction that affected liver zinc concentrations (p=O.0096). 

Conclusions 

Dietary iron affects tissue iron concentrations in young mature rats as well as 

sham-operated and ovariectomized mature rats. However, maturity and ovarian hormone 

status appeared to affect tissue iron accumulation. The mature rats had greater tissue iron 

concentrations than the young mature rats, but the amount of iron accumulated in the 

tissues during the last 12-weeks of the study was not as great as that accumulated during 

the first 15weeks. Furtherm.ore, the tissue mineral concentrations ofthe sham-operated 

rats exceeded that of the ovariectomized rats suggesting that ovarian honnones may play 

a role in tissue mineral deposition. 

Dietary iron had less effect on tissue zinc and copper concentrations in the young 

mature rats perhaps due to adaptation with the passage of time. In the mature animals, 

dietary iron and ovarian honnone status affected zinc and copper concentrations, but 

these effects were only seen in the liver, which may be attributable to its role as a primary 

iron storage site. 

Recommendations 

Recommendations for further research include the following changes in the 

experiment. Due to the difficulties encountered with weight gain in the sham

operated animals, the feeding methodology should be changed such that a portion of 
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the animals are pair-fed to control weight gain, and another portion is fed ad libitum 

to assess the effects of iron deficiency or overload on eating habits and growth. 

Our assessment of trace mineral status was limited by tissue mineral 

concentrations, which are not the only means of quantifying trace mineral status. 

Therefore, measurement of serum mineral concentrations should be performed to 

further assess trace mineral status and absorption. Furthermore, zinc and copper 

status can be assessed by ceruloplasmin, superoxide dismutase, and metallothionein 

levels, and therefore such analyses should be included to examine possible effects of 

dietary iron on zinc and copper status. Measurement of fecal mineral concentrations 

would also aid in the assessment of trace mineral status by quantifying mineral 

excretion relative to dietary intake. 

Our results suggested an effect of maturity on tissue mineral deposition, and to 

further examine these effects, measurements of tissue, serum, and fecal mineral 

concentrations should be collected during early and later stages of development. The 

bone marrow serves as a primary iron storage site, and analysis of the trace mineral 

concentration of the femur would illustrate the effects of deficient and excessive 

dietary iron intake on iron storage as well as interactions among iron and other 

minerals at the storage sites. 

The results of animal testing have limited extrapolation to humans. Therefore, 

human studies should be performed to examine iron, copper, and zinc indices in pre

and post-menopausal women, or post menopausal women on hormone replacement 

therapy versus those who are not, to assess the role of ovarian honnones in the 

metabolism of these minerals. 
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OKLAHOMA TATE UNIVER ITY 

(ollege 01 Yelerinory Medicine 
Loborofory Animol Resources Unit 
Stillwoter, Ollahomo 74078-200i 
405-744·76310SU 

Memorandum 

DATE: February 3, 1998 

TO: Dr. Andrea Arquitt /� 
Nutritional Scien~es
 

FROM: Dr. K. Vargas +:£:j1 
IACUC Veterin~an 7 

SUBJECT: Protocol Approval 

Your protocol, #709, entitled "Effects ofIron on Bone in Growing and in Mature Rats", has been 
approved for 108 rats by the Institutional Animal Care and Use Committee. The protocol is 
approved through January 31,2001.� 

A modification must be submitted to the committee for approval prior to any changes in the� 
protocol.� 

Institutional Assurance number A3 722-01� 
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OKLAHOMA STATE U IVER.SITY 

College of Vele'inory Medidne 
laborolory Animol Resources Unil 
Slillwoler. Oklohomo )~O)ll-2001 

405-744-)6310SU 

Memorandum 

DATE:� August 21,1998 

TO:� Dr. Andrea Arquitt 
Nutritional Sciences 

FROM:� Dr. Archie Clutte~ 
IACUC Chainnan 

SUBJECT:� Modification Approval 

The modification to protocol, #709, entitled "Effects oflTon on Bone in Growing and in Mature 
Rats", for addition of 12 rats has been approved by the Institutional Animal Care and Use 
Committee. 
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APPENDIXB� 

DIET PREPARATION� 
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A lab coat and mineral free gloves were worn during all stages of diet preparation 

to prevent environmental mineral contamination. The diet was prepared in five-kilogram 

l1~tches. Prior to preparation, the cornstarch, casein, maltodextrin, sucrose, cellulose, L

c)'stine, and choline were weighed in the amounts appropriate for five-kilograms of diet 

~Od stored in plastic bags. The weighed cornstarch, casein, cellulose, maltodextrin, and 

svcrose were stored in sealed cardboard tubs at room temperature. The weighed L

Cystine and Choline were stored in sealed plastic bags and refrigerated. The soybean oil, 

vitamin mix, and mineral mix were weighed as each batch of diet was prepared. The 

soybean oil was stored in the freezer, the vitamin mix was refrigerated, and, as previously 

stated, the mineral mix was stored at room temperature. 

The utensils used in preparation of the diet were soaked in 10 % HCI for 24 hours, 

rinsed with deionized water, and dried with Kim-wipes prior to use. The mixing bowls 

"Were cleaned and rinsed with deionized water and allowed to air-dry in the diet mixing 

laboratory prior to use. 

The lowest iron diet was prepared first, followed by the 12ppm, 35ppm, and 

150ppm iron diets, in that order. The mixing bowls and utensils were cleaned with 

deionized water and Kim-wipes between preparations of the different diets. 

The procedure for preparing the diet is as follows: 

Using a small bowl: 

1.� Thoroughly combine the vitamin mix, L-cystine, choline, sugar, approximately 

half of the maltodextrin, and approximately 1 cup of casein manually in a small 

mixing bowl. 
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2. Form a well in the dry mixture and add two tablespoons of soybean oil. Cover the 

oil with a spoonful of the dry mixture. This will aid in eVen distribution of the oil 

throughout the dry mixture. 

3.� Cover the mixer with a plastic bag to prevent contamination and minimize loss. 

Set the mixer at the lowest speed for approximately five minutes. 

4.� Manually fold the mineral mix into this mixture and combine again at the lowest 

speed for another five minutes. 

Using a large bowl: 

1.� Manually combine the cornstarch, fiber, casein, and remaining maltodextrin in a 

large mixing bowl. 

2.� Fonn a well in the dry ingredients and add approximately halfof the remaining 

soybean oil. Cover the oil with a spoonful of the dry mixture. This will aid in 

even distribution of oil throughout the dry mixture. 

3.� Combine in a covered mixer on the lowest speed for five minutes. 

4.� Form a well in the mixture and add the remaining oil. Cover the oil, as in step 6, 

and mix on the lowest setting for five minutes. 

Final mixing: 

1.� Add the vitamin-mineral mixture from the small mixing bowl to the cornstarch 

mixture in the large mixing bowl. Mix the diet at a moderate speed until it is of a 

unifonn consistency (approximatelyI5-20 minutes). 

2.� Store the final product in labeled plastic bags in the refrigerator. 
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APPENDIX C� 

ASHING PROCEDURES FOR DIET� 
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Type I (millipore) water, double distilled ultra pure nitric acid (GFS Chemical) 

and 30% u.ltrex hydrogen peroxide (Baker) were the reagents used to digest the organic 

material of all the diet samples. Every cycle of wetashing was followed by a cycle of 

dry ashing. All diet samples were dry ashed in a Lindberg 847 ashing oven. The specific 

program used for the diet is detailed in the appropriate section. 

Wet Ashin 

1.� Insert the test tubes into the wells of the heating block. 

2.� Add 500J,lL (.5mL) each of Type 1 water, hydrogen peroxide, and nitric acid, in 

that sequence; to the test tubes. Set the temperature at 80a C. 

3.� After 15 minutes, increase temperature to 90°C. 

4.� After 15 minutes, add 500f.l.L ofhydrogen peroxide and increase temperature to 

lOO°e. 

5.� After 30 minutes, add 500l!L ofhydrogen peroxide and increase temperature to 

105°C. 

6.� After 15 minutes, add 500J,lL hydrogen peroxide. 

7.� Twenty-foUT hours later, add 500JlL hydrogen peroxide. 

8.� After 30 minutes, add 500JlL hydrogen peroxide. 

9.� After 30 minutes, add 500llL hydrogen peroxide. 

10. Forty-eight hours later, add 500J.!L each of Type 1 water, hydrogen peroxide, and 

nitric acid. 

11. Continue adding hydrogen peroxide until samples appeared white. When� 

completely dry, place test tubes in acid washed beaker for dry ashing.� 
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Dry Ash Cycle 

The program used to dry ash the diet samples was as follows: 

Parameter Settio2 
Prog idle 
SP 100 
Tune off 

Ramp Program Values 
Parameter Setting 
LC 1 
Ramp#I 1 

(rl-oC/min) 
First Soak temp 375 

(LI-OC) 
First Soak Time 2880 

(d I-minutes) 
Ramp#2 5 

(r2-oC/min) 
Second Soak Temp 100 

(L2- D C) 
Second Soak Time 0 

(d2-minutes) 
Holdback (Hb) 25 

Prop 20 
InU 120 
DELt 30 

The oven was programmed as detailed above and then tuned. Once the oven was tuned, 

the "Prog" parameter was adjusted to "run". 

Continue wet/dry ash cycle until diet ash completely white. Weigh test tubes, cover with 

parafilm, and store in sealed plastic bag until time for min 
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APPENDIXD� 

ASHING PROCEDURES FOR LIVER, KIDNEY, SPLEEN, AND HEART� 

197� 



Type I (millipore) water, double distilled Ultra pure nitric acid (GFS Chemical) 

and 30% ultrex hydrogen peroxide (Baker) were the reagents used to digest the organic 

material of all tissue samples. Every cycle of wet ashing was followed by a cycle of dry 

ashing. All tissue samples were dry ashed in a Lindberg 847 dry ashing oven. The 

specific programs used for each tissue are detailed in the appropriate section. 

Liver 

After the liver samples had been dried for 24 hours at 100°C and the dry weight 

recorded, the following procedures were used to ash the samples. 

Wet Ash - Initial Cycle 

1.� Insert the test tubes into the wells of the heating block. 

2.� Add 50 ~L each of Type I water, hydrogen peroxide, and nitric acid, in that 

sequence, to the test tubes. Set the temperature at 80°C. 

3.� After 15 minutes, increase the temperature to 90°C. 

4.� After 15 minutes, add 50~L of hydrogen peroxide and increase the temperature to 

100°e. 

5.� After 30 minutes, add 50 ~L of hydrogen peroxide and increase the temperature 

to 105°C. 

6.� After 15 minutes, add 50 ~L of hydrogen peroxide. 

7.� After 30 minutes, add 50 ~L hydrogen peroxide. 

8.� After 30 minutes, add 50 ~L hydrogen peroxide and allow the samples to dry. 

9.� When aU samples are completely dry, place the test tubes in an acid washed 

beaker for dry ashing. 
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Dry Ash Cycle 

The program used to dry ash the liver samples was as follows: 

Parameter Setting 
Prog idle 
SP 100 
Tune off 

Ramp Program Values 
Parameter Setting 
LC 1 
Ramp#l 0.25 

(rl-oC/min) . 
First Soak temp 275 

(LI-OC) 
First Soak Time 600 

(d I-minutes) 
Ramp#2 0.5 

(r2-oC/min) 
Second Soak Temp 375 

(L2-0C) 
Second Soak Time 1440 

(d2-minutes) 
Holdback (Hb) 25 

Prop 20 
Intt 120 
DEr.. t 30 

The oven was programmed as detailed above and then tuned. Once the oven was tuned,� 

the "Prog" parameter was adjusted to "run".� 

Wet Ash - Subsequent Cycles� 

1.� Insert the test tubes into the wells of the heating block. 

2.� Add 100!-1L of Type I water, hydrogen peroxide, and nitric acid, in that sequence, 

and set the temperature at 50°C. 

3.� After 15 minutes, increase temperature to 70°C. 
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4.� After 15 minutes, add 100 JlL each Type I water, hydrogen peroxide, and nitric 

acid and increase temperature to 90°C. Repeat this step, but increase the 

temperature to 105°C. 

5.� Periodically thereafter, continue adding 100 f,-lL each of Type I water, hydrogen 

peroxide, and nitric acid until the solution in the test tube becomes clear. When 

the solution becomes clear, allow the samples to dry. 

6.� When the samples are completely dry, repeat the dry ashing procedure described 

previously. 

7.� Continue the wet and dry ashing cycles until the ash in the test tubes becomes 

white. 

8.� When the samples are completely ashed, record the ash weights, cap the tubes, 

and place them in a test tube rack. Store the rack in a labeled, sealed plastic bag 

until analysis. 

Kidney 

After the kidney samples had been dried for 24 hours at 100°C and the dry weight 

recorded, the following procedures were used to ash the samples. 

Wet Ash - Initial Cycle 

1.� Insert the test tubes into the well of the heating block. 

2.� Add 50 I-lL each Type I water, hydrogen peroxide, and nitric acid, in that� 

sequence, to the test tubes. Set the temperature at 65°C.� 

3.� After a minimum of 30 minutes, add 50 I-lL each of Type I water, hydrogen 

peroxide, and nitric acid. 
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4.� After a minimum of30 minutes, add 50 I-lL each Type I water, hydrogen 

peroxide, and nitric acid. Increase the temperature to 75°C. Allow the sam.ples to 

sit overnight. 

5.� Add 100 J..lL each Type I water, hydrogen peroxide, and nitric acid. Increase the 

temperature to 85°C. 

6.� After a minimum of30 minutes, add 100 J..lL hydrogen peroxide. Increase 

temperature to 95°C. Repeat this step, but increase the temperature to 105 °C after 

adding the hydrogen peroxide. 

7.� Continue adding 100 I-lL hydrogen peroxide periodically until the solution in the 

test tube becomes clear. Then allow the samples to dry. If, after a significant 

amount oftime has elapsed between additions and the samples dry before 

becoming clear, add 100 I-lL each of Type I water, hydrogen peroxide, and nitric 

acid. Then continue with the periodic additions of 100 J..lL of hydrogen peroxide. 

8.� After the samples have completely dried" place the test tubes in an acid washed 

beaker for dry ashing. 
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Dry Ash Cycle 

The program used to dry ash the kidney samples was as follows: 

Parameter Setting 
Prog idle� 
SP 100� 
Tune off� 

Ramp Program Values 
Parameter Setting� 
LC 1� 
Ramp#1 1� 

(rl-oC/min)� 
First Soak temp 375� 

(Ll-OC)� 
First Soak Time 2880� 

(dl-minutes)� 
Ramp#2 5� 

(r2-oC/min)� 
Second Soak Temp 100� 

(L2-0C)� 
Second Soak Time 0� 

(d2-minutes)� 
Holdback (Hb) 25� 

Prop 20� 
InU 120� 
DEr.t 30� 

The oven was programmed as detailed above and then tuned. Once the oven was tuned, 

the "Prog" parameter was adjusted to "run". 

Wet Ash - Subsequent Cycles 

I. Insert the test tubes into the wells of the heating block. 

2. Add 100 ~L each Type I water, hydrogen peroxide, and nitric acid. Set 

temperature at 85°C. 

3. After a one-hour, add I00 ~L hydrogen peroxide and increase temperature to 

95°C. Repeat this step, but increase the temperature to 105°C after adding the 

hydrogen peroxide. 
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4.� Continue adding 100 ~L hydrogen peroxide periodically until the solution in the 

test tube becomes clear. Then allow the samples to dry. If, after a significant 

amount oftime has elapsed between additions and the samples dry before 

becoming clear, add 100 ~L each of Type I water, hydrogen peroxide, and nitric 

acid. Then continue with the periodic additions of 100 ~L of hydrogen peroxide. 

5.� After the samples have completely dried, place the test tubes in an acid washed 

beaker for dry ashing. Repeat the dry ashing procedure described previously. 

6.� Continue the wet and dry ashing cycles until the ash in the test tubes becomes 

white. 

7.� When the samples are completely ashed, record the ash weights, place the test 

tubes in a rack, and cover with parafilm. Store the rack in a labeled, sealed plastic 

bag until all the kidney samples are ashed. 

Spleen 

After the spleen samples had been dried for 24 hours at 100°C and the dry weight 

recorded, the following procedures were used to ash the samples. 

Wet Ash - Initial Cycle 

I.� Insert the test tubes into the well of the heating block. 

2.� Add 50 ~L each Type I water, hydrogen peroxide, and nitric acid, in that� 

sequence, to the test tubes. Set the temperature at 65°C.� 

3.� After a minimum of 30 minutes, add 50 ~L each of Type I water, hydrogen 

peroxide, and nitric acid. 
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4. After a minimum of 30 minutes, add 50 IJ.L each Type I water, hydrogen 

peroxide, and nitric acid. Increase the temperature to 75°C. Allow the samples to 

sit overnight. 

5.� Add 100 ilL each Type I water, hydrogen peroxide, and nitric acid. Increase the 

temperature to 85°C. 

6.� After a minimum of30 minutes, add 100 ilL hydrogen peroxide. Increase 

temperature to 95°C. Repeat this step, but increase the temperature to 105°e after 

adding the hydrogen peroxide. 

7.� Continue adding 100 ilL hydrogen peroxide periodically until the solution in the 

test tube becomes clear. Then allow the samples to dry. If~ after a significant 

amount of time has elapsed between additions and the samples dry before 

becoming clear, add 100 ilL each of Type I water, hydrogen peroxide, and nitric 

acid. Then continue with the periodic additions of 100 ilL ofhydrogen peroxide. 

8.� After the samples have completely dried, place the test tubes in an acid washed 

beaker for dry ashing. 

Dry Ash Cycle 

The program used to dry ash the spleen was the same as that used to dryas the kidney 

samples. 
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Wet Ash - Subsequent Cycles 

1.� Insert the test tubes into the wells of the heating block. 

2.� Add 50 ~L each of Type I water, hydrogen peroxide, and nitric acid. Set the 

temperature at 85°C. 

3.� After one hour, add 50 J-lL each Type I water, hydrogen peroxide, and nitric acid 

and increase the temperature to 95°C. 

4.� After a minimum of one hour, add 100 ilL each Type I water, hydrogen peroxide, 

and nitric acid and increase the temperature to 105°C. 

S.� Continue adding 100 ~L hydrogen peroxide periodically until the solution in the 

test tube becomes clear. Then allow the samples to dry. If a significant amount 

of time has elapsed between additions and the samples dry before becoming clear, 

add 100 ilL each ofType I water, hydrogen peroxide, and nitric acid. Then 

continue with the periodic additions of 100 ilL ofhydrogen peroxide. 

6.� After the samples have completely dried, place the test tubes in an acid washed 

beaker for dry ashing. Repeat the dry ashing procedure described previously. 

7.� Continue the wet and dry ashing cycles until the ash in the test tubes becomes 

white. 

8.� When the samples are completely ashed, record the ash weights, place the test 

tubes in a rack, and cover with parafilm. Store the rack in a labeled, sealed plastic 

bag until analysis 

After the heart samples had been dried for 24 hours at lOO°C and the dry weight 

recorded, the following procedures were used to ash the samples. 
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Wet Ash - Initial Cycle 

1.� Insert the test tubes into the wells of the heating block. 

2.� Add 50 ~L each Type I water, hydrogen peroxide, and nitric acid. Set the� 

temperature at 65°e.� 

3.� After a minimum of one hour, add 50 ~L each Type 1water, hydrogen peroxide, 

and nitric acid. 

4.� After a minimum of one hour, add 50 ~L each Type I water, hydrogen peroxide, 

and nitric acid. Increase the temperature to 75°e. 

5.� After 45 minutes, add 100 ~L each Type I water, hydrogen peroxide, and nitric 

acid. Increase the temperature to 85°e. 

6.� After a minimum of one hour, add I 00 ~L Type I water, hydrogen peroxide, and 

nitric acid. Increase the temperature to 95°C. Repeat this step, but increase the 

temperature to 105°e. 

7.� After a minimum of one hour, add I 00 ~lL hydrogen peroxide. Repeat. Allow the 

samples to sit overnight. 

8.� Add I 00 ~L each Type I water, hydrogen peroxide, and nitric acid. 

9.� After one hour, add 100 ~L hydrogen peroxide. Allow the samples to sit� 

overnight.� 

10. Add 100 ~L each Type I water, hydrogen peroxide, dnd nitric acid. 

11. After a minimum of 20 minutes, add I00 ~L hydrogen peroxide. Allow the 

samples to sit overnight. 
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12. Add 100 /-lL hydrogen peroxide. Allow the samples to dry, When the samples 

are completely dry, place the test tubes in an acid washed beaker and proceed 

with dry ashing. 

Dry Ash Cycle 

The program used to dry ash the heart was the same as that used to dry ash the 

kidney and spleen samples. 

Wet Ash - Subsequent Cycles 

1.� Insert the test tubes into the wens of a cold heating block. Add 100/-lL nitric acid. 

Allow the samples to sit overnight at room temperature. 

2.� Set the temperature at 55°C. 

3.� After a minimum of 30 minutes, add 1OOJ..tL nitric acid and increase the� 

temperature to 60°C.� 

4.� After a minimum of one hour, increase the temperature to 65°C. 

5.� After a minimum of one hour, increase the temperature to 70°C. 

6.� After a minimum of one hour, add 100/-lL nitric acid and increase the temperature 

to 75°C. 

7.� Periodically thereafter (approximately every 30-60 minutes) increase the 

temperature in 5°C increments until reaching a final temperature of 105°e. Then 

allow the samples to dry. Repeat the dry ashing procedure. 

8.� Continue the wet and dry ashing cycles until the ash in the test tubes becomes 

white. 
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9.� When the samples are completely ashed, record the ash weights, place the test 

tubes in a rack, and cover with parafilm. Store the rack in a labeled, sealed plastic 

bag until analysis. 
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FLAME SETTINGS FOR TRACE MINERAL ANALYSIS 1.2� 

NON-LINEAR mg/L� 

Iron Zinc Copper Calcium 

Wavelength (um) 248.3 213.9 324.8 422.7 
Slit Width 0.2 0.7 0.7 0.7 
Fuel Flow (L/min) 2.0 2.0 2.0 3.8 
Calib. Std. 1 1.00 0.25 0.50 1.0 
Calib. Std. 2 2.50 0.50 1.00 2.5 
Calib. Std. 3 5.00 1.00 2.00 5.0 
Calib. Std. 4 NA 2.0 4.00 10.0 
Calib. Std. 5 NA 4.00 NA NA 
'Flame Type: Air/C2H2 
20xidant Flow (L/min): 10.0 

FURNACE SETTING FOR COPPER ANALYSIS 
NON-LINEAR IlgiL 

Wavelength (run) 324.8 
Signal Type ZeemanAA 
Calib. Std. 1 10 ppb 
Calib. Std. 2 20 ppb 
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