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PREFACE 

This thesis proposes a new fault model and its modeling and analysis methods in a 

clockless asynchronous Wave pipeline. It is highly desirable to have an adequate and 

clockless wave pipeline-specific pulse fault rate model for establishing a sound 

theoretical fOlmdation for clockless wave pipeline design for reliability. The pulse fault 

model is throughly identified as the unique fault specifically in the clockless wave 

pipeline in comparison with conventional wave and wave delay faults wave pipelines. 

The pulse fault rate is statistically yet practically modeled, and extensively evaluated with 

respect to various design parameters, such as yield, fault coverage, defect-level, and 

request level length. 

This thesis has proposed the pulse fault model for the two-phase clockless 

asynchronous wave pipeline, and its fault rate has been stat~stically yet practically 

derived. The pulse fault model has been througbly identified "as the unique fault of the 

c10ckless wave pipeline in comparison with wave and wave delay faults of conventional 

wave pipelines. The pulse fault rate is statistically yet practically modeled, and 

extensively evaluated with respect to various design parameters, such as yield, fault 

coverage, defect-l'evel, and request level length. The simulation results have revealed that 

the proposed pulse fault in association with the request level length has great effect on the 

integral pulse fault rate. Also, it has been demonstrated that an increased request level 

length may significantly affect the pulse fault rate to decrease, while in consequence the 

yield is enhanced and defect level is decreased significantly. In conclusion, the proposed 

modeling and analysis have provided a theoretical yet practical guideline for a feasible 

clockless asynchronous wave pipeline design strategy for reliability. 
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Introduction 

Wave pipeline is a cutting-edge technology for extending the performance of mod­

ern microprocessors to their maximum. This technology has been extensively re­

searched to achieve significant performance upgrade [4]. 'Nave pipeline can be im­

plemented either synchronously or asynchronously. Clockless wave pipeline is one of 

the asynchronous implementations without internal clock-controlled-registers to fur­

ther improve the performance of synchronous wave pipeline. Instruction pipeline is a 

realization of linear synchronous pipeline in which performance is improved through 

instruction-level parallelism by allowing to start execution of an instruction before the 

previous ones already in the pipeline are finished. The architecture of conventional 

synchronous linear instruction pipeline is shown in Fig.1.l. 

In order to increase the throughput of the pi.peline, the wave pipeline technology 

was introduced by Cotton [2] in 1969. This pipeline was also referred to as the 

maximum rate pipeline. Cotton observed that the rate at which logic can propagate 

through the circuit depends not on the longest path delay, but on the difference 
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Figure 1.1: Conventional Synchronous Linear Instruction Pipeline 

between the longest and the shortest path delays. Hence, by removing the internal 

latches, balancing all the logic paths within the circuit, and allowing multiple waves, 

the logiC bits can propagate through the combinational circuit in each stage without 

any delay for register-latching. Thus, a. clock period much shorter than the one for the 

longest path in the circuit can be obtained. To achieve this it must be guaranteed that 

no fast data wave overruns a previous slow data wave that would result in data loss. 

Therefore, it is critical and the challenging in wave pipeline design that all paths in 

the combinational logic be well balanced. The balancing of paths can be implemented 

in two ways: rough tuning and fine tuning. Rough tuning is to equalize path delays by 

inserting delay elements to the fast path, and fine tuning is by adjusting gate delays 

to achieve path equivalence. 

Wave pipeline has been extensively researched in both academic and industrial 

sectors [6], and three to four times of speed-up has been reported [4]. Many research 

efforts of wave pipeline have been focused all synchronous wave pipeline (SWP), 

which is a wave pipeline using dock to control the latches operating in parallel. 

Many works also have been done to research and enhance SWP into an effective and 
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reliable computer technolog [1], such as modeling and analysis of correct timing [12] 

[3]; development of logic syn hesi and computer-aided design (C D) tool. [ r S\ P 

circuits [16],(13]; and development of new wave pipeline-specific circuit [10]. 

A conventional synchronous instruction wave pipeline architecture is shown In 

Fig.1.2. Each active instruction in the pipeline can be regarded as a wave of input 

data. By removing the internal register-latches, multiple instructions can propagate 

through the same logic stage simultaneously at a higher dock frequency. Note that 

this wave pipeline is still synchronous because the primary input (PI) and the primary 

output (PO) operate synchronously under the control of the clock. 

Reg/Lalcb RegILalcb 
lnslruclion 

C CLOCK ~ 

Figure 1.2: Instruction Wave Pipeline 

Most recently, researches have been focused on clockless asynchronous wave pipeline 

(AWP) , which replaces the clock with request and acknowledgement signal, or just 

request signal to realizp clockless asynchronous wave pipeline operation. Basic ar­

chitectures of AWP have been presented in [7], [8]. Since logic stages op rate asyn­

chronously, AWP is potentially faster than SWP, and thus more attention has been 

paid recently. AWP has two basic types. One uses both request and acknowledge 

signals, i.e., handshaking protocol. This type of AWp is able to buffer signlas to 

3� 
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impose strict control, but extra delay is required due to th Waiting period for ac­

knowledgement signals. The other kind of A\ P u es onl request signal 'without 

acknowledgement signals and could run much faster than the former type of AWP. 

This kind of AWP is to be investigated in this work. Howev [, fault models, testing, 

fault tolerance and defect-level issues of such AWP have not been adequately and 

extensively addressed. 

The objective of this thesis is to identify an adequate and clockless AWP-specific 

fault model, and provide a sound theoretical yet practical foundation for AWP design 

for reliability. Specifically, this thesis will address and propose a method for modeling 

and analysis of the effect of the new AWP-specific fault associated with AWP design 

parameters on yield, defect-level, thereby providing an effective and accurate model 

for AWP testing algorithIlls and ultimately fault-tolerance .. 

4� 
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Chapter 2 

PreliIllinaries and Review 

In conventional pipeline, there are registers or latches between any two stages. At any 

instant of time, there is at most one data active in a single stage as shown in Fig.2.1. 

Whereas, in wave pipeline, the internal registers or latches are removed, and multiple 

data can be active in the same logic stages simultaneously as shown in Fig.2.2. The 

clock cycle time in conventional pipeline is determined by the maximum tage delay, 

that is Tek > D max (where Tek is the clock cycle time and Dmax is the maximum stage 

delay). 

Prim:u;y lnput lnlernli! Lulcb Inlernm Lnlch P..imill'y OUIIJ.UI 

single wOlle .ingle wove IInUh:: Wlive 

C1oc::k 

Figme 2.1: Conventional Pipeline 

In wave pipeline, the time constraint is more stringent. The clock cycle time is 

determined not by D but by the relative difference between Dmax and Dmin , thatmax 

5 
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Primary Input Multiple waves active in the logic tage Primary Output 

Clock 

Figure 2.2: Typical Synchronous Wave Pipeline 

is T7l* < Tck < ;J"__i [51 (where N is the number of waves in the circuit, Tmax is the 

maximum path delay and Tmin is the minimum path delay. 

In order to model the classic SWP timing constraints, the following parameters 

are defined [5]. 

•� D rnin , D rnax : Minimum and maximum propagation d~lays in a combinational 

Logic stage. 

• Tck : Clock period 

•� Tsu., Tit: Register setup and hold times 

•� Dr: Propagation delay of a register 

•� 6.: Clock skew between the primary output and input registers. This skew is 

intentionally inserted between two dock signals and for adjustment of delay. 

•� 6. ck : Worst case uncontrolled clock skew due to the delay differences along the 

clock lines. 
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•� drnAx(x), drnin(x}: {a,ximum and inimum propagation dela s from primary in­

puts to node x. 

•� 1~x: Temporal separation of the waves at internal nodes 

•� N: Number of clock cycles needed for a signal to propagate through the logic 

stages. (i.e., the number of data waves present in the logic stages or the degree 

of wave pipelining). 

•� TL: Time at which a data is sampled at the output register. 

Sampling at the primary output registers, the following holds. 

(2.1) 

The output data ]s to be clocked after the last bit arrived at the primary output 

and before the first bit associated with the next clock cycle arrives at the primary 

output, so it has a two sides time constraint. 

The constraint for clocking the last bit of a data wave requires that the last hit 

arrive early enough to be clocked by the output register during Nth clock cycle, and 

can be expressed as follows. 

(2.2) 

The constraint for clocking the first bit of a data wave requires that the arrival of 

the next bit does not interfere with the clocking of the current data wave as follows. 

(2.3) 
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To combine the cOnstraints 2.2 and 2.3, the maximum rate pipelining condition by 

Cotten can be 3Pplied as follows. 

Tck > (Dmax - DmiTt) + T su + Tit + 26.ck (2.4) 

The minimurJ1. clock period is limited by the difference of the path delays, i.e., (Dmax ­

D min ) and the clocking overhead, i.e., (Tsu + Tit + 26ck) resulting from the insertion 

of clocked registers. 

Constraint 2.4 guarantees that waves do not collide or overlap at the output of a 

logic stage [1] . Also, additional constraints need to be imposed on the internal nodes 

of the combinational block to preve~t wave collision at the individual logic gates, 

i.e., the next wave should not arrive at a node until the current wave has propagated 

through, known as the internal node constraint. 

Let x be an internal node, and drnax(x) and dmin(x) be the longest and the shortest 

propagation delays from the primary"input to the node x, respectively. The following 

internal node constraint must be satisfied at each node x of the circuit. 

T ck > (clmax(x) - dmin(x» + T sx + 6.ck (2.5) 

It is obvious that T sx is equivalent to the register overhead Ts +7',1., and 6.ck is counted 

only once since the output register was not accounted for. 

Combining 2.2, 2.3 and 2.4, the following expression holds. 

Dr + Dma:e + T su + D.ck < NTck + 6. < T ck + Dr + D min - (Th + 6.ck) (2.6) 

Let 

(2.7) 
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and 

T"t'in = Tck + D," + D.min - (Th + 6ck + 6) (2.8) 

Then, finally the following expression holds. 

T,nax < T < Tmin (2.9)l'T N-1ck 

If N = 1, then it is the case of conventional pipeline where the clock period is only 

lower-bounded on the maximum delay in a logic stage. In case of larger values of N, 

however? it shows that the clock period is also upper-bounded on ;:Y~1' 

Latching a data during data propagation through a stage, the faster bits of a data 

must wait at the output line of the hit.ch until all the bits reach the latch and lined 

up. The clock will then turn high, and aU of the data bits begin to move forward 

simultaneously. SWP is register-based, and the input data are globally latched. All 

the data bits within SW·P are latched by the same clock. They always begin to 

propagate toward next stage at the same time. \Vhereas, AWP is not register-based 

and there is only local latching. The bits of a single data wave are latched at the 

same time locally and asynchronously in each stage as shown in Fig.2.3. 

Figure 2.3: Clockless Asynchronous Wave Pipeline 

The critical speed-limiting factors in synchronous wave pipeline are uncontrolled 
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clock skew, saIDphng tim at th primar output, and worst case transition time at 

each logic stage outputs [1]. The path delay equaliza ion problem could be re.olved 

theoretically while its implementation in the presence of various static and dynamic 

delays [1] is a real challenge since the SOurces of delay variations are so extensive. 

Note that the same kind of delay variations affect AWP as well. 

Gate delay varies depending on many factors. Gate delay variations may result 

from variations of process parameters during manufacturing, e.g., coupling capaci­

tance effect may cause significant changes in the gate delay especially in multilevel 

metal processes; noise in the power supply voltage can cause cumulative delay dis­
, 

persions as waves propagate through several logic layers; changing temperature and 

supply voltage level can impact on gate delay; and some input pattern may also cause 

significant delay variations. 

Testing wave pipeline circuits is a complicated process because of the following 

factors. 

•� Operating mode [11]: Since there an~ multiple data Wetves propagating through 

the combinational circuit simultaneously, traditional delay-fault testing is not 

readily able to detect faults of successive transitions in the circuits. 

•� New class of faults: Besides traditional stuck-at and delay faults, two new classes 

of faults are introduced in SWP as follows. 

1.� Wave delay fault [11]: There is a two-sided time constraint for the propa­

gation time of any path delay in the combinational logic stage. The valid 

clock period for an arbitrary SWP is discrete. Therefore, the valid path 

10 
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delays are also discrete. If a path is too long or t 0 short to satisf the 

timing constraint on the primal' output lines it may cause set-up or hold 

time error on the primary output. 

2.� Wave fault [11]: A wave fault is caused on a node if a signal transition is 

invalidated by the immediate following signal transition. Then, the two 

successive waves come too close to stabilize signal on a node, or some 

waves surpass their preceding wave. This fault may cause a spike or even 

no transition at all, instead of a stable signal level between transitions. 

The wave faults can be observed and detected at primary output lines. 

11 



Chapter 3 

Clockless Asyn,chronous Wave 

Pipeline 

There are three major potential advantages of asynchronous wave pipeline (AWP) 

[9). 

1.� Large systerrl can be easily built and modified jll a plug and play fashion be­

cause it is not necessary to consider the global synchronization of different 

components. 

2.� Extra consideration for dock path design and extra power for clock signal can 

be avoided in AWP. 

3.� AWP may Outperform SWP because fast data does not have to wait for a clock 

Signal to be Synchronized to slow data. 

However, due to the clockless and asynchronous operation, clockless asynchronous 

pipeline can not be adequately facilitated by synchronous r gister-based control. 

12� 
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Figure 3.1: Two-phase asynchronous wave pipeline [7] 

An asynchronous wave pipeline was proposed by Hauck [7], called two-phase asyn­

chronous wave pipeline, which has a two-phase operation by alternating positive and 

negative level-sensitive switches. Instead of clock signal-based control AWP relies on . , 

a request signal. Although the duty of the request signal is quite similar to conven­

tional clock signal and is generated by a clock at the primary input, the operation of 

switches and logic stages are asynchronous while a clock drives all registers in parallel 

in SWP. 

As shown in Fig. 3.1 [7], the switches separate logic stages. A request line controls 

the s,witches behaving as a reference signaL Data waves and .request pulses e.nt~r the 
.. • - ... I :'J .. ."', : '..,' ~Of",. . , 

AWP at the same time. They need to stay coherent until hit the primary output. 

Delay elements are added in the request line to emulate the propagation delay of 

the data waves. The delay element denoted by d represents the propagation delay 

of the sWitches. The other delay element denoted by D max represents the worst-case 

propagation delay of the logic stage. Ideally, the request signal always get aligned to 

the last bit of the wave. Although the paths are equalized for delay-balancing, the 

path delay variations still exist. Hence, data propagating through logic stage may 
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get skewed since some bits run faster or slower. As a result, the wave spreads wider 

as the wave propagates thrOllgh a path for a longer period of time. If the shape (i.e., 

the width) of the waves is not controlled, then the wave pipeline's utilization will not 

realize its maximum high. 

If a wave becomes exceedingly wide, then it may interfere its adjacent waves. 

Consequently, less number of waves can be accommodated in the AWP at the same 

time. A solution to this problem is using positive and negative switches, which can 

be inserted in between the logic stages. The switches can be transparent or opaque to 

the data wave. If transparent, the switch turns off for a data wave just to propagate 

through the s~itch without a~y Iatchfng as shown in' Fig.3.2. Then, the data bits 

start to propagate on through the next stage before the arrival of the request signal. 

If opaque, the switch turns on to latch through-data wave as shown in Fig.3.3. The 

data bits are latched being aligned at the outpu t line of the switch. They can not 

propagate on forward until the arrival of their corresponding request signal. Hence, 

the data wave gets aligned at the output line of the switch. Thus, more waves 
.. " "'; I. " 'i .!:. ... t: ~. f';; .... ,~.... :,- ....,~ j : ~:...\.¥ ~'.. .'~ -~. F.,:,t'!r '·:'1~.~Jt."'.c; '1"". ~ ':/ .llll·i I' ../~': ~ . '.,i.. l (, {,' I ,'J '.j ~ ~ ...... 1;' ".#~I 1 ' .... .. ',. .. 

can be active within the AWP simultaneously, and AWP's throughput is increased. 

Specifically, positive switches are opaque to the data associated with low request 

signal and transparent to those associated with high request signal, and vice versa 

for negative switches. 

Fig.3.4 [7] shows that data wave flow through a pipeline with pre-set observation 

points numbered 1 through 7, as shown in Fig.3.1. Traces can be obtained by setting 

seven observation points and the data wave flow over the same time axis can be 

recorded. Data and request signal lines are drawn together in the traces. The lined 

14 
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Figure 3.4: Slices of two-phase asynchronous wave pipeline [7] 
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signals represent the request lines, and the blocked signals repre ent the dynamic 

behavior of Ow da,t.a waveI?]· 

Since different paths have different path delays, the time when the first (fastest) bit 

of a data wav arrives may vary. This point corresponds to the left end of each triangle 

of the data wave in Fig 3.4. The rising hypotenuse visualizes the increasing number 

of bits arriving at the observation point. The right end of the triangle corresponds 

to the point of time when all bits of the data wave ha,ve arrived. From this point the 

data become stable, and the period of stability corresponds to the shaded rectangles 

"[7]. 

Trace 1 shows the initial snapshot at'the primary input of the pipeline [7]. The 

first switch we encounter is an N-switch where data associated with low request level 

are latched and aligned. This low-data corresponds to the left wide triangle lying 

completely across the low phase. the data has to be stablized prior to the rising edge 

of the request signal. The foliowing high-data is only half through on its way to the 

next P-switch where it is to be latched. Therefore, it has only reached half of the 
1 . .'~ ". • _ •. ,' ~ :., ": ~:'~. ~, .. ~ '. * ~ " • '-: ~. ':' ~ ~ , .. , ' ..... 7 ~ .• \ , 

maximum spread and thus the triangle is shorter. 

In Trace 2, the observation point has passed the N-switch. In fact, no time has 

elapsed with the request signal, but there is a switch delay on the data path. Hence, 

the request signal arrives prior to its associated data wave. The high-data has moved 

closer to the falling edge. 

In Trace 3, no time has elapsed with the data wave. The request signal has a delay 

d such that the data catches up the request signal again, and the data lies across its 

associated request level, where the low data is aligned. The low data is ready to enter 

17 



the ne:;<:t logic stage. Note that the hi.gh data wave has passed through the -switch 

wit.hot.1t being aligned with no change of its shape. 

Traces 4, 5, 6 are analogous to Traces 1, 2, 3. In trace 4, there is a significant 

request signal delay and data wave delay with respect to the corresponding time axis. 

The low-data waves have now half of their maximum spread because it is on its half 

way through to the next N-switch. The high-data waves have their maximum spread 

because they have passed all the way through the next P-switch, where they will be 

latched and aligned. 

In Trace 5, the high-data gets latched and aligned by the P-switch while the low 

data waves move a little c1bser to the rising edge. Note that there is no request signal 

delay. In Trace 6, the request signal is delayed to catch its associated data wave. In 

Trace 7, the request signal and data wave have completely passed the two-phase logic 

stage with no overlap between two data waves. 

The throughput of AVVP is determined by the minimum length of the low or high 

level of the request signal. The following parameters will be used for the timing 
.. 

~ ~. ~.., .'....� 
' •• ~. ...... .• ..:;.."" I . ... 

analysis. 

•� Par-tial circuit: any two adjacent logic stages within a AWP circuit and their 

corresponding switches. 

•� Partial path: a path within a partial circuit. 

•� d max , dmin : maximum and minimum propagation delay of a partial path within 

a.ny partial circuit. 

18 
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• Dmax , D min : 

spectively. 

tnaximum dmax and minimum dmin within th A P circuit, re­

• 6: dmax - dmin 

• 6 max : maximum 6 

• 6 ps : uncontrolled pulse skew. 

• Tsu , Th : switch setup and hold time, respectively. 

• d: propagation delay of a switch. 

• L min : minimum length of request' level. . 

Primary Input 
Logic Logic 

Primary Output 

•
•
•

I I 
000 

•
• 

reQ 

... t' ." .. .f" '.•. -t". . . • , , I 

Figure 3.5: Beginning of a data wave entering a AWP 

For simplicity, suppose a data wave from the primary input to the primary output 

is traced to calculate the L min . Normally, all the bits of a data wave enter the AWP at 

the same time as aligned as shown in Fig.3.5. Also as shown in Fig.3.5, suppose a low 

request signal is associated with the data wave. The first switch the data wave will 

hit is an N-switch, and the N-switch i transparent to low data. Therefore, all the 

bits pass on through the N-switch without being latched as shown in Fig.3.6. After 
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Figure 3.6: Data wave before a transparent switch 

propagating through the N -switch, the data wave continues to propagate through 

~ .' '. 

the next logic stage and hits the next s~itch, a P-s~itc~, which is opaque ~o the 
(",

low data. Therefore" the data bits gets latched and aligned at the outp~t lin~ of 
". • •. ,', • ,..... .­ ...;. .. ;. • • '.:. :. • f, ... ' ••~ " .~;... • ...~ ·.11 

the switch. At this point, the width (i.e" the spread of the data bits in the data 

wave) may become the widest on this partial path as shows in Fig.4.3. The 6. can be 

captured at this point. After passing through this switch, the width of the data wave 

.. ~,.~ 

..',. .~'-: ." " 
. 

returns to 0 (i.e., aligned). Then, the data wave will propagate on toward the next 
, ••;_••• _ '~_.J' _ _ •• ".' ", ••••• _ " • - ' ••,. - .. " • • • .-' 

partial path to get aligned l.mtill the next' P-switch. Then at this point, another 6 

. "", CpU be capt'!lred. Continuing"on this w;ay,Jinally, at the prhnary output, the maximum 
. 'I.' ... ... . .... .. ,.;;<.... ,,'... ,.. '. "_., ~ " : " ,•. , .... " ..'.;- ..'.,..... .... • I '. • •• '~' ." _ • • • ' '. • 

6. can be captured as referred to as 6 max . 

In order to make the data wave successfully passing through the AWP without 

faults, the request signal level must always maintain the proper association with its 

corresponding data wave. As shown in Fig.4.3, the minimum length of request level 

IS 

Lmin = f::.,max + Tsu + Th + d + 26.ps . (3.1 ) 
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The reason for Tsu and Th is that the data wave must stay stable before the rising 

edge and after the falling edge of the request signal. Otherwise, the input data will 

be observed as an invalid input data by the switch and correct output value cannot 

be guaranteed. The high-data is delayed by the N-switch and moves closer to the 

falling edge while it has to become stable before the falling edge [7]. Therefore, the 

request signal must operate with an adequate delay (i.e., d) to orchestrate with the 

switch delay. 

• ...... r 
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skew must be taken int.o account to practice reliable AWP operation. Based on the 

t"vo-phase AWP, a new type of c10ckless AWP-specific fault is proposed and referr d 

to as pulse fault. 

The request signal is the reference for data waves. Ideally, both of them should 

enter the pipeline simultaneously. After entering the pipeline, the data wave and the 

request signal are supposed to stay coherent until the primary output so that the pulse 

can implicitly control the switches properly in the course of data wave propagation. 

The ideal case of AWP operation is shown in Fig.4.2. 

Wave 1 (Low Dm) Wn•• 2 (High DOl.) 

, 0 C' 0 • 

Data. and RequJest Signals Progpogoooo.Direction 

Fignre 4.2: Ideal case of operation of data waves and request pulse 

In Fig.4.2, the faUing or the rising edge is the request pulse signal corresponding 

to their request level. For proper operation, the data wave must always lie within its 

corresponding request level, while satisfying the setup time and hold time constraints 

as well. When a data wave is passing a switch and the corresponding request level 

fails to completely cover the entire data wave, then the pull'w fault occurs. There 

are two types of the pulse fault proposed. One is that the request level is somewhat 

slower such that some bits of the data wave pTOceed faster than the associated request 
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level, or can not satisfy the setup time constraint. This is referred to as setup time 

pulse fault as shown in Fig.4.3. Setup time pulsp. fault can occur at eith r -switch 

or P-switch. Suppose a low data wave is about to pass a P-switch, and all the bits 

are normally to be latched and aligned at the output line of the switch. If some hits 

of the data wave are too fast and can not stay stable during the setup time of the 

previous request signal, or some bits even overlap the preceding signal, then these 

bits will go through the P-switch without being latched. Consequently, these bits 

mess up with the previous wave's bits and the pulse fault then occurs. Likewise, if a 

data wave encounters an N-switch, it normally pass through it without being latched. 

If some bits of the data wave run too fast, then thes~. faster bits will be latched and 

aligned at the N-switch, just as the bits of the preceding data wave. The consequence 

is that the faster bits mess up with the previous wave's bits. 

Wove 1 (High Dllln) Wave 2 (Low Our,,) WAve). (H1~ Outs) 

Data and Request SiglJsls Pr0S1Jl'8uliol1 Direction 

Figure 4.3: Setup time pulse fault 

The other type of the pulse fault is referred to as hold time pulse fault and is shown 

in Fig.4.4. It occurs because some bits of the data wave are too slow such that the 

pulse signal proceeds fater than them, or the last bits can not stay stable during the 
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hold time of its associated request pulse. Thus, the last bits of the Current wave are 

treated as part of the next wave. The bits or two adjacent wave mess up and the final 

output becomes invalid. The hold time pulse fault can also occur at either N-switch 

or P-switch. Suppose there is a low data and an N-s,'vitch, and the bits are to pass on 

through the switch without latching. If the pulse signal proceeds its associated last 

bit, or some last bits can not satisfy the hold time constraint of the pulse signal, then 

the last bits wi]} get aligned just as the next wave's bits instead of moving ahead. 

Likewise, when a ~ow data passes a P-switch, the bits should be aligned at the output 

, " . 
'line of the switch. However, ~f sOnit: bits are lagging behind the associated request 

• ". .- . 'I ... ~. "', . _ t ',: :r1. • • • I • ". , ' •• 

signal, then the pulse arrives and let the aligned bits start propagating on through 

the next logic stage before these last bits arrive at the switch. Then, these late bits 

will pass on through the switch without being latched being mis-treated as the bits 

of the next wave. 

Data l:lnd Rcquesr Sign.u.ls Progpaglilion Direct,ion 

Figure 4.4: Hold time pulse faul t, 

The proposed pulse fault is substantially different and clockless AWP-specific from 

the wave delay fault and wave fault with SWP [11). In A\i\lP, there is no wave delay 
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fault on the primary output because there is IlO clock input to the primary output 

latch; and as long as the request level covers the associated data wave at the primary 

output, the data is valid. However, wave faults still exist in AWP as they can occur 

at any internal gates and s,·.ritches. Note that the pulse fault is inclusive of the wave 

fault at switches in the sense that since each data wave is associated with a. request 

level, and two request levels can not overlap, in order to have two waves overlapped 

at a switch, one data wave or both. of them must not be covered by the corresponding 

request line properly. This means that the pulse fault must have occurred already 

before a wave fault occurs at a switch. 
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Chapter 5 

Pulse Fault Rate Analysis 

Path delay of a circuit with fabrication variations can be modeled by using an interval 

than a single value. Let x denote the average path delay of a partial path. Suppose 

there are n partial paths in a partial circuit, e.g., Xl, X2 ...Xn' AU of the partial paths 

are assumed to be well balanced in the AWP under investigation. Then, without loss 

of generality, x can be modeled by using the normal distribution with a mean It and 

a standard deviation a as follows. 

(5.1) 

.. 
L..,j-I Xi andLet i: be the sample mean, and s be the standard error, i.e. i: 
~ 

71 

Then {t and a can be substituted with x and s , respectively, because i: and s are 

unbiased estimator of J-L and CT. 

(5.2) 
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Suppose [(x) is the p. d..f. (probability density function) of x as follows. 

(5.3) 

Then the probability that some bits in the data wave proceed too fast and then 

overstep their associated request level (i.e., the probability of setup time pulse fault) 

or some bits in the data wave are too slow such that they lag behind the associated 

request level (i.e., the hold time pulse fault) is the probability that some bits are out 

of the range of the request level interval as shown in Fig.5.l (where the shaded areas 

represent the probability of pulse fault). 

[(x) 

Setup time pulse falJlt p'Tobabili~y , Hold time pulse fault probabilily 

\ 
___________________ Palhde.lay~ 

i::-=--Requesl Level~ 

Figure 5.1: Pulse Fault Probability 

As shown in in FigA.l, the request signal and all the data bits enter the circuit at 

the same time, and for proper operation the request signal should be slower than the 

slowest bit of the data wave and reach the switch after the slowest bit. Li.kewise, the 

previous request signal should reach the switch before the fastest bit of th associated 

data wave. The data skew (represented by I::, in Fig.5.2) is supposed to be covered 

by the associated request level properly. Therefore, the coverage of I::, by the request 

level, i.e., the relative position between the data wave and its associated low or high 

request level may influence the pulse fault rate to a great extent. 
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Lets a refer to the difference of propagation time between the slowest bit of the 

data wave and the request level as shown in Fig.5.2. The as ociated request signed':; 

propagation delay (denoted as ds ) of the data wave can be expressed as ds = dmax+a. 

The propagation delay from the request signal start to propagat.ion to the previous 

request signal reach the switch (denoted as dp ) is dp = dmin - (L - a - ,6,). Thus, 

Logic 

req 

associated t--- L----! . .request signal 
ds dp 

Figure 5.2: Relative position between the request signal and data wave 

The pulse fault rate at switch i is then: 

(5.4) 

If we have n switches in the AWP and Pi is the pulse fault rate at each switch 

where 1 :::; i :::; n, then the total pulse fault rate (Ptotal) of the AWP is as foHows. 

n� 

Ptatal 1 - II (1 - Pi)� 

n 
i=l ltima", .. +Q, 1 ((:z;_~)2) 

1 - (1 - --e - 23 dx) (5.5)II 
i=l dmin; -(£-0,-6;) ~s 
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The fault cover'age (referred to as Fe [14]) is the percentage of total possible 

pulse faults that can be detected by a testing process with a certain testabilit . 

FC 

(5.6) 

where T i is the testability at switch i. 

The yield (referred to as Y [15]) is the ratio of the number of good products to 

the total number of products and Ga.n be expressed as follows. 
" ... ',! .; 

.' ~ 

Y = 1 - Ptotal 

(5.7) 

The deject level (referred to as DL [17)) is the ratio of products that are defective . 
, but not detected during testing ana shipped as expressed as follows. 

DL 1 _ y(l-FC) 

Based on the contributing factors for L, e.g., 6, 6 ps , Ts , ~L' d and 6 max , four 

possible Pi can be implemented to set up the relative position between data wave and 

the request level. The first possible Pi is to place the 6 within the request level just 

as shown in Fig.4.1, the fault rate at switch i is as follows. 
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Logic 

N11---7"-::N­
reg1 

L-6: 6~L-6 
2 : 2 

Figure 5.4: Data skew is in the middle of request level 

.' , 

Logic

11" --7--<N­
req 

6max-6 d :: .6max-6 d 

1 
--- + - + 6ps+1'h: .t::.: T!If- ..6.ps + + ­

2 2 .: 2 2 

Figure 5.5: Divided d and 6. into two parts equally 
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Table 5.1: Parameter Values Simulated 
# path testability path 1 path 2 path 3 path 4 path 5 path 6 

So - 52 4 0.78 27 24 26 22 
51 - 53 5 0.89 60 58 64 62 63 
52 ­ 54 6 0.95 37 34 33 35 32 30 
53 - 55 5 0.86 72 75 78 70 77 
5" ­ 56 6 0.91 40 43 42 44 41 46 

(5.12) 

For simulation, suppose there is a circuit with 7 switches (e.g., So - 56 as provided 

in Table 5.1). Also, suppose that the number of paths within any partial circuit 

(the # path in the table), and their, path delays are known. Lastly, assume that the 

testability (i.e., the probability to detect the pulse faults) at each switch is known as 

provided in Table 5.1 with the unit ns. 

From Table 5.1, 6 max = 8 ns can oe calculated. It is also assumed that d = 1 ns, 

Tsu = 0.6 ns, Th = 0.2 ns, and 6.ps = 0.1 ns. Then L min = 6'ffiuX + T su + Tit + d + 

26. ps = 10 ns. 

The final simulation results are shown in Table 6.1, 6.2,6.3 and 6.4. The length 

of the request I.evel is set to L min first, i.e., 10 ns, and then to the longer values 

up to 15 ns. It is shown that the total pulse fault rate at 15 ns becomes very low 

as shown in Fig.6.1. For this simulation, SAS (Statistical Analysi..· Software) was 

used to compute the standard deviations of those path delay samples in Table 5.1. 

Then, from the c.d.]. (cumulative density function) of Equation 5.4, the pulse fault 

probability were calculated. 

By using Equation 5.5, the total pulse fault rate can be calculated. Then, the 
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yield, the fault coverage and the defect level can be calculated as well. The simulation 

results are shuwn in Fig.G.l Fig.6.2, Fig.6.3 and Fig.6.4. 

In summary, the simulation results have demonstrated that the proposed pulse 

fault in association with the request level length has great effect on the integral pulse 

fault rate, as shown in Fig.6.1. AU four possible Pi drop to less than 5% when 

the request level length extends from Lmin (i.e., 10 ns) up to 15ns. An increased 

request level length may significantly affect the pulse fault rate to decrease, while in 

consequence the yield is enhanced and defect level is declined significantly. The fault 

coverage is evaluated with an arbitrary sample testability distribution as shown in 

Table 6.1. Comparing the four strategies for Pi, it can also be observed that strategies 

1 and 2 demonstrate similar performance, and strategies 3 and 4 demonstrate similar 

performance, in which the last two strategies demonstrate less pulse fault rate. Thus 

strategies 3 and 4 can be suggested to be more suitable for implementation in practice. 
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'Chapter 6 

Conclusion 

This paper has proposed the pulseJault' model for the two-phase clockless asyn­

chronous wave pipeline, and its fault rate has been statistically yet practically de­

rived. The pulse fault model has been throughly identified. as the unique fault of 

the clockless wave pipeline in comparison with wave and wave delay faults of con­

ventional wave pipelines. The pulse fault rate is statisticaJly yet practically modeled, 

and extensively evaluated with respect to various design parameters, such as yield, 

fault coverage, defect-level, and request level length. The simulation results have re­

vealed that the proposed pulse fault in association with the request level length has 

great effect on the integral pulse fault rate. Also,it has been demonstrated that an 

increased request level length may significantly affect the pulse fault rate to decrease, 

while in consequence the yield is enhanced and defect level is decreased significantly. 

it has been observed and analyzed that placing D. in the middle of L or divide d and 

(Limax - Li) equally and let them stride at both sides of Li can reduce pulse fault 

rate drastically. In conclusion, the proposed modeling and analysis have provided a 
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theoretical yet practical guideline fOT a feasible clockless asynchronouS wave pipeline 

design strateg , for reliability. 
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Table 6..l' Simulation Results' strategy 1 
L total fault rate 
10 0.367494451 

10.2 0.352666198 
10.4 0.325746021 
10.6 0.30445439 
10.8 0.284201208 
11 0.264713337 

11.2 0.246210244 
11.4 0.228198915 
11.6 0.211871715 
11.8 0.19603997 
12 0'.181111714 

12.4 0.153968671 
12.8 0.130207994 
13.6 O.O9~489187 

15 0.047429059 

yield 
I 0.632505549 
0.64.7333802 
0.674253979 
0.69554561 

0.715798792 
0.735286663 
0.753789756 
0.771801085 
0.788128285 
0.80396003 

0.818888286 
0.846031329 
0.869792006 . , 
0.908'510813 
0.952'570941 

fault coverage defect level 
0.871709406 0.057072231 
0.871896485 0.054187892 
0.871639409 0.049334605 
0.871477465 0.045589325 
0.871348472 0.042103392 
0.871195594 0.038832599 
0.871071585 0.035784593 
0.870848159 0.032900601 
0.870780798 0,030297901 
0.870637117 0.027833042 
0.870492922 0.025544572 
0.870197947 0.021468949 
0.869896313 0.017985904 
0.869258668 0.0124660~ 

'0.868073019 0.0063899'21 

Table 6.2: Simulation Results: strategy 2� 
L total fault rate yield fault coverage defect level� 
10 0.347888027 

10.2 0.326300201 
10.4 0.305504602 
10.6 ' 0.285611382 
10.8 0.266576551 
11 0.275411848 

11.2 0.231258524 
11.4 0.214940745 
11.6 0.199231543 
11.8 0.184627363 
12 0.170815811 

12.4 0.145645552 
12.8 0.123670156 
13.6 0.08799714 
15 0.046916725 

0.652111973 
O.67~699799 

0.694495398 
0.714388618 
0.733423449 
0.724588152 
0.768741476 
0.785059255 
0.800768457 
0.815372637 
0.829184189 
0.854354448 
0.876329844 
0.91200286 

0.953083275 

'0.864479146 0.056293856 
0.864299125 0.052186822 
0.864137228 0.048324778 
0.86397734 0.044717579 
0.863824971 0.041339828 
0.868943331 0.04134129 
0.863525426 0.0.35256376 
0.863350419 0.032527872 
0.863322501 0.029911017 
0.863202038 0.027535627 
0.863096544 0.025317783 
0.862902869 0.02134915 
0.862762008 0.017954032 
0.862543906 0.012581559 
0.862305445 0.006594794 
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Table 6.3' Simulation Results: strategy 3 
L total fault rate yield fault coverage defect level 
10 0.242881202 0.757118798 0.884499981 0.031625281 

10.2 0.225890719 0.774109281 0.884699873 0.029090192 
10.4 0.209854335 0.790145665 0.88488168 0.02675043 I 

10.6 0.194734407 0.805265593 0.885073572 0.024583895 
10.8 0.1806017 0.8193983 0.885261675 0.022594974 
11 0.167284435 0.832715565 0.885447901 0.020751921 

11.2 0.154742773 0.845257227 0.885635815 0.019042608 
11.4 0.14.3148225 0.856851775 0.885821934 0.017484744 
11.6 0.132308882 0.867691118 0.885998982 0.016048789 

I 

11.8 0.122179681 ' 0.877820319 0.886179765 0.01472284 
12 0.112750677 0.887249323 0.886354305 0.01350335 

12.4 0.095814679 0.904185321 0.886695884 0.011347226 
12.8, 0,P89036914 0.919963086 0.886973733 0.009384535 
13.6 0.05819.1689 0.94~~08315 0,887616937 0.006715111 
15 0.031111724 0.9688$8276 0.888356046 0.003522397 

Table 6.4: Simulation Results: strategy 4 
" 

L total fault rate yield fault coverage defect level 
10 0.241383233 0.758616767 0."883601987 0.031644441 

10.2 0.224389178 0.775610822 0.883804451 0.029094173 
110.4 0.208302282 0.791697718 0.884009554 0.026728831 I 

10.6 0.193235642 0.806764358 0.884210603 0.02455619 
10.8� 0.18081626 0.81918374 0.884470613 0.022778536 
11 0.16576059 0.83423941 0.884624314 0.020692996 

11.2 0.153323796 0.846676204 0.884830951 0.018985839 
11.4 0.141694096 0.858305904 0.88503183 0.017413136 
11.6 0.13083329 0.86916671 0.88523444 0.015963673 
11.8� 0.120717027 0.879282973 0.885437317 0.014630241 
12 0.11280932 0.88719068 0.88569498 0.013588609 

12.4 0.094483412 0.905516588 0.886027256 0.011248021 
12.8 0.08006562 0.91993438 0.886408548 0.009434751 
13.6� 0.057136576 0.942863424 0.887132926 0.006618404 
15 0.031118336 0.968881664 0.888152685 0.()O3529563 
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