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Chapter 1
 
Introduction
 

1.1 Motivation 

In the recent years we have witness dar volution in inform ti nand s nsor 

technology. These advances present unpreced nted halleng and n w opportunities 

for the years to come. We now have the n ce sary r source to d v lop an autonomous 

system. Developing unmanned vehicles for unknown) un tructur d sc nario i an 

intensive area of current research. In a near future, th e vehi will navigate 

autonomously everywhere from space, air, ground to unders a. 

The aim of this thesis is to design a modular autonomous platform for Multi-

Agent, Robotics, Hybrid and Embedded Systems (MARHES) laboratory. This vehi­

cle will be a testbed for research in cooperative multi-vehicle systems. In order to be 

autonomous, it must have localization technique and navigation ontral trat gi . 

1.2 Applications 

Mobile robotics is a very important field of research b cau e f their many po­

tential applications. Some applications report d in the lit ratur includ 

1 Intelligent Vehicles 

A fully autonomous vehicle is the one in which a computer performs all the tasks 

without human intervention. The vehicle makes the n cessary maneuvers and 

speed changes to perform the required tasks. A compl tely automated vehicle 

is still a challenging task, however advances have be n made in automating 

some tasks. Cruise control i v ry common in modern car. Also, adaptive 
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cruise control in which uto . ati p d 0 maint in 

a afe following di tan h borne r lit. 

2 Search and Rescue 

The mobile robots hav b n us d in arch and r ue ill) ion [11]. 

3 Agriculture Automation 

Robots have been utilized in agricultur automation. An exampl is th loan­

mower robot described in [21]. 

4 Space Exploration 

National Aeronautics and Space Adminstration ( ASA) and Jet Propulsion 

Laboratory (JPL) programs, have been involv d in unmanned robotic inter­

planetary probes. 

5 Military Systems 

Autonomous robots are used in military application u h r connai anc. 

The objective is to develop one or mor' sy. tern' with substantial d gr e of 

autonomy that could be op rat d by p r. 00 with limit d te hni al training 

[9]. 

6 Disabled Assistance 

Mobile robots are utilized in assistance of disabled people. 

7 Entertainment 

The AlBO robot is a good exampl of ntertainment robot [30]. 
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8 Dome tic Robo 

Cammer ial robot ar b oming mar ommon today. Som ompani tart d 

manufacturing and d v loping omm r ial ro at for d m tic purpo . A 

good example are the robot dev lop d by iRob t [32]. Roomb i an au­

tomatic vacuum that u s intelligent navigation t hnolog a aut matic lly 

clean homes. Another, Evolution Robotic d velop and manufa tur multi ­

functional personal robots for the home and workplace [29]. 

9 Museum Robots 

MINERVA is an interactive tour-guide robot, whi h was ucce fully xhib­

ited in a Smithsonian museum. During its two w k of operation, the robot 

interacted with thousands of people [26]. 

1.3	 Why We Need a Modular Mobile Robot? 

ow days there is an increasing demand on modular mobil pI tJ! rms for I' ar h 

and the previous listed application . The pric s of th s platf I'm ar v ry high which 

limit many research rs from doing xperimental work on mobile robots. An th r 

restriction i that most of the existing platform ar limit d to indoor us only. In 

the MARHES laboratory, we have developed a modular platform with off th h If 

components that are available at a reasonable 0 t. Th d igned v hid is low 

cost compared with available platforms and can b us d for ind or and outdoors 

operation. The processing unit is a modern laptop that can be replac d or upgraded 

with the latest computing technologies. The laptop has a firewire port for vision and 

an integrated wirel s communication that can be suited for cooperative n ing and 
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exploration. 

The total weight is Ie s than 10 kg. This light wight offer opportunity for 

portability. The suite of sensor includ sIR s n or ,quadratur n od r ) GPS unit 

and I I/O multi-function card. 

1.4 Organization 

This thesis is organized as follows 

•	 Introd uction 

Chapter 1 explains the importance of this research. Reasons for th need of 

this research and advantages of the platform are detailed. 

•	 Kinematic Modeling of the Vehicle 

The kinematic models of unicycle and car-like robot are derived in Chapter 2. 

•	 Hardware Description 

In Chapter 3, the car hardwar and operation of s n or ar d scrib d in full 

details. 

•	 Software Integration 

Chapter 4 describes the software architecture. Object oriented multi-thr ading 

and real-time issues are discussed. 

•	 Tools for Vehicle Control. 

Chapter 5 describ the design and implementation of algorithms for controlling 

th robot. 
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•	 avigation and Lo alization.
 

Chapter 6 pre ent th nonlinear ontrol law impl m nt d for targ t
 

tion using an xtend d Kalman flIt r (EKF).
 

•	 Conclusion and Futur Work
 

Chapter 7 concludes the thesi and pr sent ideas for futur work.
 

1.5 Contribution of this Work 

The purpose of this study is to develop an indoor/outdoor low cost modular mer 

bile platform for research in cooperative multi-vehicle sy terns. Thi the i al 0 gives 

details of hardware implementation and software architecture. The software architec­

ture was realized using object-oriented multi-threading visual C++. The operation 

of each sensor type is discussed and the handling of sensory data is explained. 

This work can be used as a reference for researchers who want to build a cost 

effective mobile robot. The nonholonomic kinematic mod I deriv d in thi w rk 

was validated both theoretically and xp rim ntally. Calibration f dom try pr 

c dure is explained as well. Several controll rs w r t sted on this mod I to prov 

its efficiency. A velocity-controlled vehicle was design d using PID ntroLl r for 

regulating both linear and angular speed. 

An extended Kalman filter (EKF) is impl mented to fus information from d ad 

reckoning sensors and low cost WAAS enabled Global Positioning System (GP ) unit 

for localization and control purposes. Input/Output f edback lineariz d controller 

for leader following is u d in target acquisition. 
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Chapter 2
 
Kinematic Modeling of the Vehicle
 

In this chapter, th kin matic mod I for th um 1 and ar-lik robot are 

derived. We will show that th unicyc1 model is a valid mod 1 for th ar-lik robot 

considering linear velocity has a non zero value. Thi will b the b mod I for 

implementing robot controllers. 

2.1	 Mobile Robot Modeling 

In our analysis, we will consider the kinematic model which deal only with 

nonholonomic constraints that result from rolling without slipping b tw en wh Is 

and ground. 

2.1.1 Kinematic Model of Disc Wheel (Unicycle) 

To derive the math matical mod 1 of th plant (Le. car-like robot) w will, for 

simplicity, consider the car as a rolling disc whe 1 (uni y 1 ) sh wn in Figur 2.1. 

Assuming pure rolling and no slipping, the nonholon mi onstraint be am 

j;	 inB - i;cosB = 0 (2.1) 

where (x, y) are the Cartesian position, and f) is th rientation with r p t to the 

positive x axis. The kinematic model is given by 

(2.2)[i] 
where 
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y 

x 

Figure 2.1: The global coordinate system for the uni ycle 

V : the linear velocity of the wheel. 

w : the angular velocity of the disc. 

2.1.2 The Car-Like Model (Front Steering) 

Consider the car-lik mod I shown in Figur 2.2. In this mod 1, th front wh els 

are steerable while the rear wheel have fix d ori ntation. For simplicity, we will 

assume both wheels on each axle collapse into a singl wh 110 at d at th midpoint 

of each axle [16]. Th gelleraJized coordinates of the rear wh 1 are q = (x, y, (), ¢), 

where (x, y) are the Carte ian coordinat s of th r ar wheel, e is the orientation of 

the car body with respect to the po itiv x axis, and ¢ is the teering angle. For 

both front and rear wheels we can write the nonholonomic con traint as 

i; sin () - if cos () = 0 (2.3) 

if sin(() + ¢) - VI cos(() + ¢) = 0 (2.4) 

7 
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y 

x 
Figure 2.2: The global coordinate system for the car (front steering). 

where (xf' Yf) is location of the midpoint of front axle that is given by 

xf=x+lc:o e (2.5) 

y! = Y + lsine (2.6) 

where I is the distance betwe n	 th two axles. T king th d rivativ of quation 

(2.5)	 and (2.6) gives the velocity as 

:if = ± - l(} in e (2.7) 

III = iJ + IB cos 0 (2. ) 

Solving equations (2.4), (2.7), and (2.8) to find iJ 

iJ = tan ¢ Vl (2.9)
I 

ow the complete kinematic model i given as 

Y 
I 

~ sine 00Xl! cose 1 l 1 (2.10): = ,a , v, + ~ v,
6

where Vl and V2 are the driving and t ering velocity inputs, re pectively. 
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2.1.3 The Car-Like Model (Double Steering) 

In double steering we hay both th front wh I and r ar wh 1 to b t rabl. 

This configuration giv u a mall r radius of urvatur ompar d 0 ingl t ring. 

With this feature we can hav fast r cony rg nc the d ir d ri ntation of ar 

body. Double steering does not affe t th degr e of f[" darn for rno il robot. Figur 

2.3 shows a model for double steering. In thi mod 1, we will urn both t ring 

angles are equal and opposite in direction to simplify th computing of the kin matic 

model. 

y 

Figure 2.3: Global coordinate system for th car (doubl st ering). 

Taking (x, y) as the cartesian coordinates of the point in th nt r of th ar. 

We can apply rolling without slipping to both wh I ill th same way w did in 

previous derivation. W model as 

(2.11)
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where VI and V2 ar th driving and t ring v 10 it input r p tivel. 

2.2 Curvature and Steering Angle (Double Steering) 

To get a better under tanding of how th robot b h:ll for th ommand d 

steering angle, we find the relationship betw n the t ring angl (double t ring 

model) and the curvature. Thi relation hip i affine. If both r ar and front wh els 

are fixed at a certain angle, the car will describ a cir ular path of certain radiu . 

The curvature e(s) is equal to 1/R, wh Ie R i th radius of d scribed eirel . We 

will describe how to find the radius experimentally and theoretically. 

2.2.1 Finding Curvature from Simulation 

We used equation (2.11) to find curvature by simulating the car motion at different 

fixed steering angles. As expected, we got different circular paths, each with a 

specific radius. To find the radius of each circle, we need to know three points on 

the circumference of the circle. If a, band e ar th I ngths of th sid a triangl 

as shown in Figure 2.4 and K is the area of th giv n triangl , th n th radius R of 

this cirele can be found as follows 

R= abc (2.12)
4K 

During simulation, we let ¢ vary from 0° to 22.5° (the steering angle limits). The 

robot length is 33 em.The relation hip was found by fitting those points hy affin 

equation. We got th following formula 

c(s) = a¢ + 13 (2.13) 

with Q = 6.0 and (3 = 0.002. We will provid th mathematical explanation of thi 

affine relationship between th steering angle ¢ and the curvature. From quation 
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a 

b 

c 

Figure 2.4: A circle circumscribed around a triangl , containing all three vertice 

(2.11), we have 

Hence, we have 

~ = 
R 

2tan¢ 
l 

(2.14) 

we approximate tan¢ by ¢ Becau th steering angl ¢ i limit d by ±22.5°. A 

result, equation (2.13) has a = f and j3 = O. 

2.2.2 Finding Curvature Experimentally 

First, the steering servos were calibrated to have a 0° t ring angle in b th wh el 

axles at neutral position. The maximum st ring angl was found to be ± 22.5°. W 

commanded the front wheels with a specific steering ang! and th rear wheels with 

the same angle but in opposite direction. We pick d three point on the circular 

described path and computed the radiu of curvatur from equation (2.12). We 

r corded thi data in tabl and pro es d it using Mat!ab. As seen from the plot in 
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Curvature VS. sleering angle ( ) for double sleenng 
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Figure 2.5: Curvature vs. steering angle (</» for double steering (simulation). 

Figure 2.6, the relation is affine and the values of a: and {3 ar do e to the theoretical 

one. The reason why we did not get exact parameters is becau e an experim ntal 

car has two wheels in the front and two wheels in the rear. The kinematic model 

assumes they collapse into single wheel. Another r on b au e th ory urn th 

nonrealistic case of no slippage. If the robot follows a urv d path, th lippage will 

occur on every single wheel. The slippage is dire tly pr portional to th wh I width 

and it is impossible to have a whe I with z ro width. Th lippag 0 illS mor 

frequently with larger steering angles. When the ste ring angl i small, th slippage 

is small. It disappears if the steering angle is set to 00 From th lin ar fitting, w • 

found the values a: = 5.2 and f3 = 0.0066. 

2.2.3 Maximum Reachable Angular Velocity 

The maximum st ering angle places a limitation all th maximum angular velocity 

that can b achieved by the robot. The limits on angular v locity i important 
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Curvature vs. steering angle C.) lor double sleering 
2.5,-----,-----..--.,....---r---,-----.-----,.-----, 

r. 5.3', - 0.076 

o 
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0 Reoordod points II- linoar 
-0.5~-_=_=_--:':~---:~---:!=:-----=-=_-=~=~~=='_:l o 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.' 

Q(rad) 

Figure 2.6: Curvature vs. steering angle (¢) for double st ering (experimentally). 

because control effort will be limited in real applications. The minimum radius of 

curvature occurs at maximum steering angle which is in our case ±22.5°. 

1 
Rmin ~	 --- (2.15) 

ex¢max 

The parameter ex is found experimentally to be ex = 5.2, th r for, R'l'nin ~ 0.5 m. 

The angular velocity is constrained by 

-Wmax ::; W ::; W max (2.1 ) 

where wand -w refer to counter clock wise and clock wi rotation, re p tiv ly. The 

maximum angular velocity W max for a giv n constant linear pe d v can b comput d 

from the following equation 
V 

Wmax = D .	 (2.17) 
~ "rntn 

ther fore equation (2.16) becomes 
v v --- < W < --	 (2.18)

Rmin - - Rmin 

From th above equation, we can find the limits by substituting in th minimum 

radiu of curvatur . The r lationship i plotted in Figure 2.7. 
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Reacha.ble Angular velocity 

non-reachable (l) 

non-reachable II) 

-6 '--_L-----'--__--'-__--'- "'--__--'---"-_---J 
-15 -10 -s 0 10 1S 

Linear velocity v (mls) 

Figure 2.7: Angular speed vs. linear speed relation 

2.3 The Unicycle Versus Car-Like Model 

Considering the first three states (x,y,()) in equation (2.10), the car-like model 

reduces to the unicycle model defined in equation (2.2) with w = 2 ta~cf>vl' In practice, 

we are interested in controlling w in 't ad of controlling te ring angl rat ;p. U ing 

the previous approximation of tan¢ ~ ¢, we can xpr w 

(2.19) 

where ¢ is in radians, Vl is in mj5, and l is in m.
 

The above approximation is valid only wh n Vl =!= O. In the following chapt rs, w
 

use equation (2.19) to control w.
 

14
 



Chapter 3
 
Hardware Description
 

In this chapt r the car h rdwar nd n or will be d tail d. 

3.1 The Experimental Testbed 

The MARHES Laboratory X-tr m robot (see Figure 3.1) ar b ed upon TXT­

1, a commercially available radio control truck from Tamiya Inc., with ignificant 

modifications. The TXT-1 is de igned imilar to a full ize monst I' truck with an 

aluminum ladder frame and multi-link su pension. Solid axle with a cantilev r 

system allows for massive suspension articulation. The kit includes the hardware 

and a second servo for four wheel teering. The servo (or servo ) are located n xt 

to the axle for direct steering. The kit can operate on a 7.2 V or 8.4 V battery. We 

used a 7.2 V battery to limit the speed. The robot has a servo controller for st ering 

and a PWM speed controll r for forward/backward moti n. 

An on-board notebook omputer provides the computational pow r for signal/im­

age processing, motion control and IEEE 802.11 b wir 1 ss n tworking. Als, PCM­

CIA Multi-function I/O card from National Instrum nts was u d for int rfa ing th 

computer with a 'uite of analog and digital s n ors. Th uite of s nsor includ sIR 

distance sensors odometer, CPS receiver, compass and st reo vision cam ra as w 

will detail them in this chapter. 

The included 3 Step mechanical sp ed controller is replac d by a ovak Super 

Roost r reversible electronic speed controller. The new sp ed controller i u ed to 

limit the current drawn by th driv motor, provide a safe transition from forward 
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Figure 3.1: Radio control truck without any modifications. 

to reverse using smart braking circuitry, and provide a power source for high-torque 

steering servo motors. The standard steering servo was replaced by a high-torque 

servo to supply an adequate amount of torque capable of steering the wheels under 

loads. 

A pulse width modulated signal (PWM) is u d to control th rvos. Th mini 

SSC is an electronic interface that allows a comput r to control up to ight rvo. 

The computer sends simple commands to the mini SS at 2400 or 9600 baud rate, 

and the mini SSC generates eight channels of precise, table servo-control puls . 

The Mini Serial Servo Controllers (SSC) i a fully ass mbled modul that includes a 

convenient phone-style jack for serial hookup, Futaba-J servo output headers, a ync 

LED to indicate when valid data is received, and a switchable servo range/resolution 

(900 range with 0.360 resolution, or up to 1800 motion with 0.720 re olution). 

Figure 3.2 shows a block diagram of robot hardware. 
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Figure 3.2: Block diagram of robot hardware 

The final shape of the robot after impl m nting all hardawr modifi ation i 

shown in Figure 3.3. In the following s ctions we will d cribe th op ration of ach 

h(\,rdware campon "nt. 

3.2 Short Distance Sensors 

This ensor was chosen because of the low price and simplicity of conne ting to 

the multi-function I/O card. This sensor takes a continuous di tan e r ading and 

reports the distance as an analog voltag with a distan e range of 20 em (~8 inch) 

to 150 em (~ 60 inch). The interface is 3-wire with power, ground and the output 

voltag . 

17 



ICompass P==­

1< igure 3.3: Robot aft r modifi ation 

3.2.1 Calibration of the m Sensors 

To accurat ly read Lh lIt nsor, th y n d to b alibrat d t find th . act 

voltag corr ponding to a p cHic distan . Th r ading is don usin r th muJti­

function I/O card. Voltag m asur m nt orr sponding to sp cifi di tane w r 

recorded. An xy plot was cr ated u iog MaLlab and a fourth d gr polynomial was 

used to fit this data as sbown in 1. igur 3.5. Since this fiLLing polynomial will b 

used frequently in our routines during robot navigation, th computing tim will b 

relatively large to find the corr ponding disLanc ror a sp cific voltage. A simpl r 

form is to u e pieeewi e lineariza ion by dividing data into two r gions as shown in 

Figure 3.6 and Figur 3.7. 
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Figure 3.4: Three Sharp GP2YOA02YK Infrar d rang r onfigur d in on unit. 

3.3� Data Acquisition System 

In order to interface data from the sensors with tb notebook, w us d tb 1 

DAQCard-6024E for PCMCIA from ationa] Instrument. This i consid r d low­

co t compared to otber [card. Th analog output of hort di 1.. n 

connected to the analog input of th ard. l'h output' r quadra ur 

conn ct d to the inputs of the count 'r of th ac usation card. 1]- hni al p ifi a­

tions of tbi digital data acqui iLion card ar Ii t d in Tabl 3.1. 

Table 3.1: I DAQ card-6024" pe ification 

Analog Input 
Analog Output 
counters 
Digital. I/O 

The I/O Connector Board 

19 



The voltage variation (11011) VS. dislance(m) for IR sensor 
120r------.:..:.;......::...::..:.:..-....:.--,.--:--:...-~..:..:.:..,.::.:..:-.:.----r---_, 

100 

'0 
III 

80 I:IQ Y• 8.6'.' _ 74'" + 2.3e+002',? _ 3.4e+002'. + 2.3e.002 
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o 

o 

'0 
() 

o 
o 

20 

~.L5----'-----:',::-5-----:----;;;2.5:----~3 

vollage(voll) 

Figure 3.5: The voltage variation (volt) v distance(m) for IR sen or. 

In order to connect the sensors and devices to the I/O acquisition card, w u d 

a CB-68LPR I/O connector board as shown in Figure 3.8. It provides 68 screw 

terminals for easy connection of field I/O signals. 

3.4 Dead Reckoning Sensors 

Dead Reckoning (d riv d from "d duc d re koning" of ailing d y ) i a impl 

mathematical procedure for determining th pr sent 10 ation of a v 1 by advan ­

ing some previous position through known our and v 10 it inf rmation ov r a 

giv n length of time [10]. Dead R ckoning is d fin d as th pr c of 1 ulat­

ing the location of a mobile robot fr m measurem nt of th angular rotation of 

odometer wheels. The wh Is can be driv n or fr wheeling. h mo t impli tic 

implementation of d ad reckoning i sometim t rm d odometry. Th t rm impli 

vehicle displacement along the path of travel and i dire tly derived from an onboard 

"odometer" [5]. Since the odom try j the rna t important n or in our platform, a 
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The voltage varia 'on (voU) vs. dislance(m) lor fR sensor, reglon(1) 
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Figure 3.6: The voltage variation (volt) vs. distance(m) for IR sensor, region(l). 

clear understanding of of how it works is necessary. Angular rotation of the wheel 

is measured by a rotary optical encoders attached to the wheel shaft. In the next 

section we will describe the operation of the optical encoder. 

3.4.1 Optical Encoder 

An optical encoder con ist of a rotating disk, a light ourc , and a photod t tor 

(light sensor). The disk, which is mounted on th rotating shaft, has od d patterns 

of opaque and transparent sectors. As the disk rotates, th patt rus interrupt th 

light emitted onto the photodetector) g nerating a digital or pul signal output. 

The encoding disk is made from: glass, for high-resolution applications (11 to 16 

bits), plastic (mylar) or metal, for applications r quiring more rugg d construction 

(resolution of 8 to 10 bits). Quadrature ncoders can be used to determin dir ction 

of rotation. This is done by adding a second channel, off t from th first, by 90°. A 

po sible tup is shown in Figure 3.9. Channel A can be used to provide the number 
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The vollage variation (volt) vs. dlslance(m) IOf IR sensor reglon(2) 
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Figure 3.7: The voltage variation (volt) vs. distance(m) for IR ensor, region(2) 

of counts and channel B for determining direction. We used two optical encoders 

placed inside each of the front wheels of the robot. Using two quadrature encoders 

provide us with both linear and angular displacements. The data output of each 

quadrature encoder is sent to one of the two count r' in th data cqui ition ard. 

One direction signal from either of th quadratur n oders i ad quat to t 1L bout 

the direction of rotation in the 4-wheel robot. Thi is b au e it i impo ibl to h v 

opposite direction of rotation in each of the front or r ar wh I. In a difF r ntial 

drive robot, two direction signals are requir d b caus it i po ible to hav on whe I 

rotating in opposite direction to the other wh 1, and hence it is po sible to spin in 

its location. 

The counter counts the rising edges for a sp cified period of time. The count r 

from the NI-DAQ card can be reset at any in tant and i' automatically r set on e it 

reaches the maximum number count. In our impl mentation we reset the count r to 
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Figur 3.8: The I/O onn ct.or board 

orne initial count value aft r r ading th count d p to avoid v rHow of accu­

mulated pulses count. In each s t period of tim, th counter will tart accumula(,ing 

from count value of 10000. If the robot move in th forward dir ction th ount 

will be incremented. On contrary, tb count will be d cpm nt d if tb robot move 

backward. 

StMlI eM ebB 

1 High Low 

2 HIgh High 

3 Low High 

4 Low High 

1 2 3 4 

Figure 3.9: The ob rved phase r lation hip betw n bann 1A and B pul train. 
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3.4.2 Installing Optical Encoder for the Car 

We have used optical encoder from Agil nt 'D elm l.ogi s. Th odom r 

consists of the HEDR-8000/8100 S ri s ncod r. It u s r fI. tiv t hnology to 

sense rotary or linear position. This sen or con i ts of an LED light our and a 

photodetector IC in a single SO-8 surface mount packag . W hav 1.1 d r fl ctive 

codewheel HEDR-5120-H-12. The numb r of puis for one ompl te r volution i 

408. The surface mount chip is mostly affect d by ambi nt lights, therefore, th best 

place to install it is inside the wheel. Doing 0 will al 0 give the odometry system 

protection against any damages from crashing. 

For installing the code wheel on the shaft, we first have to provide enough pace 

inside the unmodified upright part. This is done by milling a distance equal to the 

width of the codewheel. Figure 3.10 and Figure 3.11 how the wheel well before and 

after modifications. The codewheel is mounted on th h ft of th ar wh I in the 

milled space as shown in Figure 3.12. From th data h t, it an b s n that the 

spacing between the code wheel and the chip is v ry important and should b done 

as specified (2.03 ± 0.51mm) to get good results. The 1 troni cir uit board of the 

chip is placed inside the end of the upright, ke ping r comm nd d spacing distan 

with codewheel. 

3-.5� Calibrating the Mobile Robot 

Since the odometry syst m will depend on s~me parameters of the robot, the 

robot must be calibrated. Calibrating odometry for a 4-wh el robot is bas d on 

accurate measurement of the orientation angle as w 11 as translations and rotations. 
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We use the procedure de cribed in [19] with orne modifications. Aft r th alibration 

pro w., ar abl to u' adorn try fli LiV1 ly in pr eLi aI appli ati n1 

3.5.1 Sources of Errors in Odometry 

Sources of errors in adam tryar clas ifi dint two main yet maLic 

error which r uit from construction tol ran and non-s t mati fror (Dynamic 

error) which r ult from chang- in environm nl. 1n a 4.-wh I robot, th yst matic 

error re ult from [5]: 

• Unequal wheel diameters 

• Average of actual wheel diam ter differs fr~m nominal wheel diam t r. 

• Actual wh lbase differs from nominal whe Ibase. 
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• Mi� alignment of wheel . 

• Finit� lution. 

• hnit ncod r sampling rat. 

The on y t, matic error r suit [rom [51: 

• Tra'" l OVi r un '" n floor or unexp t d obj OV r fI r. 

•� Wh I lippage wbich r ult [rom� 

- tippy floors.� 

- Ov race leraLioIl.� 

-� as turning ( kidding).� 
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Figur 3.12: InstaLLed codcwh ei and phoL d t or 

- External forces (interaction with xt mal bodi ).� 

- Internal forces (castor wh is).� 

- lon-point whe 1contact with th floor.� 

The calibration proc i don to minimiz syst mali ITor. 

3.5.2 Odometry Equations and Calibration Param t rs 

Wh n th wheels of the robot roU n tb ground, th numb r of pul g n rat d 

from rotary encoder inside each front wh "i i proporLi nal to th tra\!' U d dis tan . 

The kinematic modeling of the robot requir [ram. Figur 3.13 how 

the robot and its reference fram (x, y, 0) Locat midway b Lw n h fr nt wb t. 

In our robot, two encod rs are installed insid ach front wb I. 

The equation, which r tat s the change in travelled d' tance with the hang of 

number of puts in each wh el, is 
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Figure 3.13: Kinematics of the robot 

od[ = k[on[ (3.1) 

8dr = kronr (3.2) 

Where k[ and kr are calibration paramet r for each wheel, nd th ir unit i (unit 

of length per number of pulses), on[ and onr are th ount d pulse' in each wh 1. 

The suffix l denotes the left wheel and r denot th right whe 1. Both of the two 

parameters (k[ , kr ) compensate for variation in wh el radiu , tyre inflation, and g ar 

ratio. The change in translational di tance i expressed as 

(3.3) 

and the travelled distance by th robot i 

(3.4) 
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where d.r and dl ar evaluat d at a h tim p 

(3.5) 

(3.6) 

The orientation angle of the robot 8 after trav lling a di tanc D i xpr d in 

terms of each wheel travelled distance as 

8 = dr - dl (3.7)
W 

and the rotational displacement is computed in the same manner as 

08 = ocl.,. - odl (3.8)
W 

where W is the robot base width. 

The effective width in this case is the distance between the two encoders. By deriving 

equations (3.3) and (3.4), we can decompo e the robot motion into translation 

component and a rotation component. Th lin ar v 10 ity v and an r v 1 ity w 

of equation (2.1) are now expressed as 

V r +VI 
V=--- (3.9)

2 

V r - VI 
W= (3.10)HI 

3.5.3 Calibration Procedure 

First, the robot's front and rear wheels must be aligned at 0° st ring angl . This 

is done using a traight edge that touches both sid tire. To calibrat both k1 and 

kr parameters, we run the robot in a straight path for short distanc (5 m ter ) and 
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measure the tra lled di tanc u ing m uring tap . B knowing numb r of pul s 

accumulated during this travelled di tan ,w f th two 

parameters. The final paramet r to calibrate i th width, whi h is done by 

running the robot one complete eirel that nd at th am initi 1 t rting point. W 

initialize the robot heading angle to be 0° in Cart sian oordinat . Th r ultant 

orientation angle after returning to the starting point of th ir ular path will be 

21r after one complete circle. By knowing both of the a cumulat d pul es from the 

front wheels, we can calculate the base width from equation (3.). ow we an do 

fine tuning for the three parameters kl , kr and W by commanding the robot to 

move for larger distance (20 m or more) in straight and circular paths many times. 

We use the kinematic model to update (x, y, 0) based on odometric displacements. 

Each time we tune the three parameters to match real position until we get the best 

position results. In the case of straight line path the final heading angle should be 

zero as we start from zero head angle. So w modify both kl and kr to g t 0° head 

angle. Table 3.2 show the final valu s of calibration param t r . 

Table 3.2: Calibration param t rs 

Parameter Value 
k l 0.1178 em/pulse count 
kr 0.1184 em/pulse count 
W 22.9 em 

30
 



3.6	 Vision Cams Unit 

The vi ion ensors are important for navigation and ob ta 1 avoi In. W us d 

two cameras mounted on the front of the v hid facing forward. Tb the robot 

its exact position at all time, allowing it to sen tb 10 ation of obj t and to tra k 

a predefine color. In our work, we use a simple color d t tion b d on a t reo 

vision system to compute the distance from the robot to a targ t. Tb 

of the cameras used are shown in Table 3.3. 

Table 3.3: Camera specifications 

I Interface IEEE-1394a (FireWire) 400 Mbps, 2 ports (6 pins) 
Camera Type IIDC-1394 Digital Camera, Vl.04 Specification compliant 
Sensor Type . Sony Wfine* 1/4" CCD Color, progressive, square pixels 
Resolution VGA 640 x 480 I 

Optics Built-in f 4.65 mm lens, anti-reflective coating 
Power Supply 8 to 30 VDC, by 1394 bus or external jack input 

Consumption 1W max, 0.9 W typical, 0.4 W sleep mode 
Dimensions (W x H x D) 62 x 62 x 35 mm 

3.7 Compass Sensor 

Electronic compass is an essential component of the olution to n of the long-

standing robotics problems Where am I? The compas is n d d b cau e it an 

compensate for the foremost weakness of odometry. In an odometry b d position­

ing method, any mall momentary orientation error will cau e a con tantly growing 

lateral positioning error [5]. The advantage of u ing a compas rath r than a gyro 

is that a compass gives the heading angle directly. The gyro require integrating 

the angular velocity to get the heading angle. The compas will provide th hading 

31
 



angle me urement updat in th K lman filt r w will xplain lat r. d id d 

to use th 1655 analog comp n or from Din mor In trum nt ompan. Thi 

sensor provides a ratiom tri output on two hann I Th outpu wing from ap­

proximately 3.2 V to 1.8 V in a in jcosin f hion. It will r turn t th indi at d 

direction from a 90° displacement in approximat ly 2.5 conds with no ov r wing. 

Technical Specifications of 1655 analog comp sen or ar list d in Tabl 3.4. 

Table 3.4: Specifications of 1655 analog ompass sensor from Din mol' Sen or 

Power 5-volts DC @ 19 rnA. 
Since rise time is only 90 nanosecond , 
input current may be pulsed to save power. 

Outputs Dual analog channels, 2.5 V ± 0.75 V swing (total voltage 
swing rail to rail, approximately 1.50 V), 4 rnA DC signal. 
May feed direct to A-D front end of microprocessor. 

Weight 2.25 grams 
Size 12.7 mm diameter, 16 mm tall 
Pins 3 pins on 2 sides on .050 centers 
Temp -40 to +85 degrees C 

The compass has two inusoidal analog outputs. On i a in urv and the 

other is a cosine curve. Typical output curve look lik th pI t shown in Figur 

3.14. Those two outputs can be decod d using a subroutin whi h comput the 

heading angle in radians relativ to orne dir ctions. 

3.8	 GPS Unit 

The GPS has become a common solution for outdoor navigation ill larg nVlron­

ments where there is no other reference available. We used the Mag Han M rid ian 

GPS unit with horizontal accura y (RMS) <7 m 95% 2D and with WAAS <3m 
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Figure 3.14: Typical analog compas outputs 

95% 2D and vertical accuracy is 10 m (RMS). Tb Wid Ar a Augm ntation S ­

tern (WAAS) is a GPS-ba ed navigation and landing y t In \'hat provide pr ci ion 

guidance to aircraft at, Lhou and of airp rL and air Lrip 

no pr ci ion Landin capability. Sy L much as WAA 1m wn d 

augm ntation y t m ( BA ). WAA i d ign d \'0 impr Vi Lh aura yan n­

ure the integri ty of infarma~ioncami og from P at II it [331. A d tail d I, hn i aL 

sp cifications of thi unit i ti ted in Tabl 3.5, 

To decode CPS data, We us d a camm rcial GP amp n nt [or I + 1- from 

Mar haUSoR (35}. Th GE S unit is connected La a bo Lcomput r through h rial 

port. The output of the GPS river is MEA ent nee. M· A Land [; rational 

Marin ELectronics A 0 iaLion. An MEA ent n a lin of data containing 

ASCII text that d fin po i ion, Vi Iocity, time and oth r information comput d by 
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Table 3.5: CPS t chnical sp cification 

Position Update Rate (per second) 1 
Time to First Fix: Cold <2 
Time to First Fix: Warm <1i 

Time to First Fix: Hot (seconds) 15 
Maximum Velocity (mph) 951 
Maximum Velocity (km/h) 1530 
Weight (gm) 227 

. Display Size Height (inches) 2.2 
Display Size Height (mm) 55.9 
Display Size Width (inches) 1.75 
Antenna Quadifiler Helix. 
Horizontal Accuracy (meters) <7 
Horizontal Accuracy (RMS) 95 % 2D 
Horizontal Accuracy -RMS wi WAAS (meters) <3 
Horizontal Accuracy (% RMS/WAAS) 95 % 2D 
Vertical Accuracy (meters RMS) 10 
Velocity (knots RMS) 0.1 
Battery Type AA 
Battery Quantity 2 
Battery Life (hours) 14 
Receiver WAAS Enabled Yes 
Waterproof (IEC-529 IPX7 Standard) Yes 
Operating Temp Min (C) -10 
Operating Temp Max (C) 60 
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the GPS river. tting r ud with hi f d t no 

parity, and no top bit. tandard provid a larg rang of nt n 

but many relate to non-GPS devi and om oth r ar GPS r 1 t d but rar ly 

used. Most GPS receivers al 0 have a binary mod but it i normall b t to I' rYe 

the use of binary GPS proto ols for appli ation that rally r quir th ir u , u h 

those requiring position updates of greater than once per and. In our work w will 

be dealing with two cornman types of MEA sentence which are the GPGGA and 

GPRMC. The GPGGA stands for Global Positioning Sy tern Fix Data. An exampi 

of the structure of the GPGGA sentence is shown below: 

$GPGGA, 123519,4807.038 ,N ,01131.000,E,l ,08,0.9,545.4,M,46.9,M" *47 

An explanation of this MEA sentence is given in Table 3.6 [34]. The GPRMC 

NMEA sentence gives position, velocity, time and course data. It stands for the 

Recommended Minimum. An example of th structur of th GPRMC nt n 

shown below : 

$GPRMC,123519,A,4807.0~8,N,01131.000,E,022.4,084.4,230394,003.1,W*6A 

An explanation of this GPRMC NMEA senten e is giv n in Tabl 3.7 [34]. 

3.9	 Power System 

An important problem to overcome was supplying different voltage 1 v Is to op­

erate the additional hardwar components. We' have solved this probl m with the 

addition of a Battery Booster 12 circuit. This circuit eliminate the n ed for a 9 V 

battery for the Mini SSC II serial servo controller b' ard from Scott Edwards Ele _ 
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Table 3.6: Stru tur of th GPGGA nt n 

GGA Global Positioning System Fix Data 
123519 Fix tak n at 12:35:19 UTe 
4807.038,N Latitude 48 deg 07.038' N 
01131.000,E Longitude 11 deg 31.000' E 
1 Fix quality: 0 = invalid 

1 = GPS fix (SPS) 
2 = DGPS fix 
3 = PPS fix 
4 = Real Time Kinematic 
5 = Float RTK 
6 = estimated (dead reckoning) 
7 = Manual input mode 
8 = Simulation mode 

08 Number of satellites being tracked 
0.9 Horizontal dilution of position 
545.4,M Altitude, Meters, above mean sea level 
46.9,M Height of geoid (mean sea level) above WGS84 ellipsoid 
(empty field) time in seconds since last DGPS update 
(empty field) DGPS station ID number 
*47 the checksum data, always begins with * 

Table 3.7: Structure of the GPRMC nt n 

RMC Recommended Minimum sentence C 
123519 Fix taken at 12:35:19 UTC 
A Status A=active or V=Void. 
4807.038,N Latitude 48 deg 07.038' N 
01131.000,E Longitude 11 deg 31.000' E 
022.4 Speed over the ground in knots 
084.4 Track angle in degrees True 
230394 Date - 23rd of March 1994 
003.1,W Magnetic Variation . 
*6A The checksum data, always begins with * 
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tronies. The lR n or I' qUIr a 5 volt D uppl. u d th r gula d 5 v I 

from the connector board of the a qui i ion ard that i uppli d b th not book 

battery. The second problem w upplying nough pow I' to th v hi 1, inc it 

carries more weight than it was d igned for and al 0 now h high torque rv 

sensors, speed controller, etc., which are xtra load on th p w r t m. Th two 

options to solve those probl m are adding additional batteri or r placing th x­

isting battery with a more powerful one. The problem with adding more batteries 

is that there is no convenient place on the chassis to store th m. Also adding xtra 

batteries will increase the load on the robot. Our po ible solution is to have a single 

battery with large battery capacity (5000 mAh). Using a fully harged 7.2 V battery 

with 3000 mAh capacity, the average runtime is about 30 minutes. 

3.10 On Board Computer 

The ouboard comput r along with th multifun tion a qui ition 'ard provid a 

computational power for sensory data pro ssing. We d id d to us a S ny VAl 

SRX77P notbook. Using su h a not book sav s th tim f building a PC on th 

robot. The notebook is fast, lightweight, and has low pow r consumption. Th 

processing unit used in other exp rimental testbeds vehicles ar bas d on a micro­

controller [20],[14], ihis might limit the capabilities of th robot. Using a notebook 

will provide a large disc space for writing code, a fast processing speed, a standard 

communication interfaces and a built in efficient battery. Two serial ports wer 

needed to interface both the sse and GPS r iv r. An USB to serial port converter 

from Keyspan was u ed Becau e th notebook doe not have a serial port. The 
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I e span USB 4- Port rial ad pt r aHo\) f ur rial d vi to b nn t d to 

single USB port. 

Table 3.8: otebook p cifi ati n 

Processor Low Voltage Mobil Int I 
PentiumIII processor 800A MHz
 

L2 Cache Memory 512 KB (CPU Integrated)
 
Hard Disk Drive 20 GB
 
C/D Partition 40% and 60% (approximation)
 
Standard RAM 128 MB SDRAM (Expandable to 256 MB)
 

(PClDO unbuffered DIMM memory modules)
 
LCD Screen 10.4" XGA (1240 x 768)
 
Wireless LAN ' Communication IEEE802.11 b
 

(IBSS Ad hoc mode support, DS-SS modulation)
 
Max. 11 Mbps data transfer speed (approximation)
 
Max. 100 meter communication di tance(approximation)
 
2.4 GHz band frequency 
Wireless channels 1 to 11 
64, 128 bit Network key length 

Power Source 16V DC/AC 100-240V
 
Battery Lithium-ion
 
Dimensions 10.2" (w) x 1.1" (h) x 7.7" (d)
 

(259 mm x 27.8 mm x 194 mm) 
Connection Capabilities 1 USB port Phon line (RJ-ll) p rt
 

Ethernet port LLINK (IEEE 1394) p rt,
 
4-pin S400 styIe
 

In the next chapter, we will discuss the oftware archite ture impl m nt d in this 

thesis. 
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Chapter 4
 
Software Integration
 

This hapt r pr sent the oftwar d v 1 pm nt of our d ign d hi 1 . 

4.1 Software Architecture 

The current softwar ar hitecture i impl and fl. xibl for an futur updat. 

The block diagram shown in Figure 4.1 give a d tail d stru tur of th on ral 

architecture implemented on the ARHES TXT robot. It on i t of hardwar 

dependent software, logical sensors and controllers. Thi architecture allow the ve­

hide to exhibit intelligent autonomous behavior. We used an object-ori nt d C++ 

decomposition to provide abstractions for the component of the y terns. Compo­

nents are implemented using classe . 

4.2 Real-Time Issues 

Our vehicle control r quir s 11 al-time p rforman finiti n 

of real-time. The definition given in [31J is as follow "A real-time y tem i on in 

which the correctness of the computation not only depend upon th logi al orr ct­

ness of the computation but also upon the time at which the r ult i produced. If 

the timing constraints of the system are not met, ystem failure i said to have oc­

curred." A brief discu sion of real-time issue lik d termini m and jitter is giv n in 

[18]. Real-time control applications p rform a d fin d task periodi ally. Th task is 

performed b fore the new pro essor period tarts. Figure 4.2 how proc s or activ­

ity during running time. Th hard r aI-time performance i difficult to b achi v d 
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Figure 4.1: Control ar hitecture scheme. 
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Figur 4.2: Real-time control. 

4.2.1	 Windows Family Operating Systems 

The operating sy tern u d was Micro oft Windows XP. Some of th re on for 

this	 hoice include[36] 
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•	 Th incr asing pow 1: and d lining pri of Window XP pI tform . 

•	 Th many appli ations allabl on th pIa £ rro. 

•	 The vari ty of developm nt tools availabl on th platform. 

•	 The richnes of the Mi ro oft win32 Application Pr grammin Int rf (API). 

•	 The large number of d veloper , support p r onn I, and nd u r who r 

familiar with the system. 

The Windows XP is not inheren ly a real-time op rating sy t m. 

method to improve its performance is by using real time extensions. Venturcom is 

providing RTX extensions for real-time performance. RTX enabi Windows XP, 

Windows 2000, or Windows NT to function as both a general-purpos op rating 

system and a high-performance real-time operating [37J. In our operating system 

we did not experience with th xt n ion , how v r, th y ould b olution t 

improve the performance. 

4.3 Multi-Threading and Timing Functions 

In most PC operating sy tern' the central pro sing unit C.P.U i not abl to 

run two piec s of code at exactly at th am tim. The op rating y t m olv s 

this problem using time slicing. In time slicing, th microproce or tim har d 

among piec of code called thread . Each thr ad i giv n a portion of th micropro­

ces or's time. Hence the thread thinks it h the whol mi ropro e or tim whil 

it is actually shared among other thread . The d tail of how th operating ystem 

implements multi-thr ading ar b yond th op of his the is. 
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gr at advantag of u ing window b d p ra ing m i h up rt 

of multi-thr ading. ulti-thr ading i a wa to I t pI'ogr m do m r than n thing 

at a time. It i implemented within a ingl pr gram running n a ingl m. 

It involves an operating sy t m allowing pI' gram to pli t tw n multipl 

thr ads of x cution. In our main program w n d im d fun tion alls 

at exact sp cific rates. We need to run our dill r nt ind p nd ntl, h 

at a specific rate to get good r suIts. On m thod to do this i t u int rrupts 

but this method is not recommend d under Window XP. Th oth r m thod i 

to use the multimedia library. This multimedia tim r provid s a high ac uracy of 

timing schedule as we monitored the microproce or p rformanc. This ac uracy 

is extremely lowered when using functions that are computationally intensive like 

image processing routines. The multimedia timer u es a eparate hread to generate 

timed function calls in the applicati n. Th handling of th thr ad is done internally 

to the multimedia function alls. Th two main fun ti n t u ar: 

•	 timeSetEvent : A function tarts a sp ifi d tim r v nt. Th multim di 

tim r runs in its own thread. Aft r th v nt is tiv t d, it Us th 

callback function or sets or pulses th sp ifi d ev nt obj t. 

•	 timeKillEvent: A function cancel a p 'ifi d tim r ev nt. 

Each call to timeSetEvent for periodi timer ev nts r quir s a orresponding call 

to the timeKillEvent function. Th timer etup nd hutdown mu t b done properly 

in the main program. Th multimedia library, Winmm.lib, mu t be link d into the 

application and th h ad r file, mmsy tem.h includ d in the sour e code. For more 
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information about multirn dia library, th M D librar. ing multi-thr ading 

enables us to switch b tw en behavior through g n r ting and t rmina ing tim d 

events. 
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Chapter 5
 
Tools for Vehicle Control
 

This chapter d cribes the tool w implem nt d for our d ign d robot. 

5.1 Velocity Controlled Robot 

Working with a kinematic model only is impl and mak th r aliz tion of th 

controller possible. The usual input for a 4 wheel mobile robot ar th t ering angle 

¢ and speed. Dealing with these two input might in rease th difficulty of control­

ling the robot since many control laws are express d in t rms of linear and angular 

velocity. One can think that a higher level controller (plann r) generate the de ired 

velocities and a lower level controller deals with the car dynami (mass, inertia, 

etc.). As a result, we need a transformation that transforms the input commands 

of linear velocity (v) and angular velocity (w) to motor peed and steering angle ¢. 

Most application for controlling mobile robots requir ur t mat hing b tw n 

commanded velocity and the actual velocity. This prop rty n not b a hi v d using 

an open loop controller. Hence there is a need for a do d loop ontroller to n ur 

the convergence of the actual velocity to the command d v 10 ity. PID cantrall rs 

have been used effectively for many years in indu try. i e [23] has a good di ussion 

of adjusting the PID gain, K p , K i , and K d . Figure 5.1 show a blo k diagram of 

the velocity controlled robot. The PID controller is design d to match the m asur d 

velocity with commanded one. 

44
 



Kinematically Controlled Robot 
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Figure 5.1: Velocity controlled robot. 

5.1.1 PIn Linear Speed Controller 

Many control applications assumes a velocity controlled thus maintaining the 

actual speed as the desired one is important. For flat non-inclined surface the speed 

can remain constant, but if the surface b comes inclined thi ondition i viol t d .. If 

the car encounters an incline, th power to the motor mu t b in r as d to maint in 

a constant speed due to the incr as d load. On th ontrary, if th ar i traY lling 

downhill, the power to the motor must b d creased. Therefor, w· impl m nt a 

digital PID speed controller based on the in tailed optical quadratur ncod r n or. 

The speed is calculated by knowing the differ nce between two ncod r r ading' and 

the time elapsed between the two I' adings. In our ubroutin , a ampling rate of 

200 m. s is implemented using timing function. After om xp rim nts in m asuring 

the speed using thi sampling rate, it was found that a minimum sp ed of 0.10 m/s 

can be measured with acceptable accuracy and as the spe diner as the accuracy 
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improve. The robot lin r locit i a tuat d b two D m t r . pr ximat 

the y tern as a fiT t ord r tern. A fir t ord r t m h th form 

} 
(5.1)G(s) = 1 + 7S 

where K is a constant and T is the tim can taut of th sy m r pan which is th 

time it takes for the step r ponse to rise 63% of it final vall. Th tim onstant 

depends upon the robot's environment. It was found xp rim ntaH to b around 

1.5 seconds for even ground. A simple standard digital PID ontroller shown in 

F}gure 5.2, has the general form: 

(5.2) 

R(s) + 

Figure 5.2: A PID controll r 

wh r u i the change in velocity, the variabl repr ent th tracking error 

(the difference between the desired input value and· the actual output), kp i the 

proportional gain, ki is the integral gain and kd is the derivative gain. The gain 
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parameters kp , ~ and kd re ho n 0 g th b m p rform 11 and 

stability. 

The transfer flmction for a PID controll r i 

(5.3) 

The closed loop transfer function after adding th PID ontroll r b om 

G( )H(s) 
Gcl(s) = 1 + G(s)H(s) (5.4) 

and G(s)H(s) is evaluated as 

(5.5) 

Now the closed loop transfer function has the form 

Using equation (5.6) and classical control th ory, we found th initi I valu of th 

PID gains. The gains were tuned xperim ntally to obtain th d sir d v rall r 

sponse. In discrete time intervals Ie i computed uing Ts E and' i omputed 

llsing ek-;.k-I. So equation (5.2) becomes 

(5.7) 

Where Ts is the sampling time. In our implementation, the sampling tim was 

200ms. The sampling time can be lower but the multi-threading v nts did not 

a 'cur correctly at lower sampling rates. 
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Smoothing Filter Using	 Holt Exponential Smooth r 

This simpl and wid ly u	 d r cur ive £11 r is obt on d b it ring 

Yt = aXt + (1 - a)Yt-1 (5. ) 

where a < 1 is a tunable smoothing pararn t r. Thi filt r can bud onlin to 

smooth the output commands and sensor' measur ment . Thi allow u t 'rnootb 

the output commands of digital PID spe d controller. This low-p filter giv s most 

weight to most recent historical values and thus provides the b is for a nsible 

forecasting procedure when applied to trend, seasonal, and irregular components 

(Holt-Winters forecasting). The parameter a was tuned experim ntally to g t the 

best possible performance. 

Figure 5.3 shows the performance of this controller. In this profile we have vari­

able reference speeds in both directions. The angular velocity was set to zero without 

being controlled. The ground was ev n and has om in lination. 

5.1.2 PIn Angular Speed Controller 

The basic id a behind this controller is, if th linear v I ity is . urn d to b c n­

stant then the teering angle will control the angular v locity. Th r lation b tw n 

wand v is 
w = viR	 (5.9) 

Wh re R is the signed distance from the ICC (in tantan ous nter of curvature) 

to th mid point between the two front wheel. We hay shown -xp rimentally in 

equation (2.13) that R is linearly relat d to steering angle cPo Thus we can u e the 

same form of the previous PID controller equation (5.7) to r gulat the steering 
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Measured and Reference linear veloclty 
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Figure 5.3: Measured and reference velocity 

commands instead. One important parameter to consider is the sampling time. The 

sampling time is limited by the ste ring rvo r pon tim (i., th ampling tim 

can not be smaller than steering rvo re pon e tim). Th r pon tim of th 

servo is constant at no load but it varie according to the whe l-ground friction. Th 

design of the PIn controller will be for a nominal value of v b caus w is coupl d with 

v as in equation (2.19). The angular speed controller as ume v icon tanto This 

problem is eliminated by having a dynamic Pill gains. In other word ,th PIn gain 

will vary based on the value of desired linear velocity. We used the the sam teps 

described in section 5.1.1 to find the gains. Figure 5.4 and 5.5 show the measured 

linear and angular velocities with a constant reference linear velocity of 0.5 m/s 
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and a con tant r fer nc anglllar v loeiL of 0.6 radls. Tb xp t d Lraj cLory i 

a circular path witb a consLan radiu as hown in I'igur 5.6. Th m ur d ( ,y) 

po Won are updat d using odometri ro alional and tran lational di pIa m nt . 

The robot follow a circlllar paLh aft r botb lin ar and angular v 10 iLi h eLL! d 

down. The measured radiu ,from igure 5.6, was around O. m whi b i clo to Lh 

theoretical radius computed from R = ~ = g:~ = 0.83 m. Thi i a good indicati.on of 

correctness of odom Lric paramet rs caUbration. Th- ULing tim and Leady tat 

errors were within acceptable HmiLs. 

Measured and reference linear velocity 
0.6.----;r-,--------,,--------,r-------.------.----, 

0.4 

- Measured "near velocny 
- Reference "near veloc ! 0.3 . 

~ 

'S
l 0.2 

0.1 

o 

-o.10:-----:5~---Jl:-0 ---...J'------1-----'-25----..J 
15 20 30 

t (Sec) 

Figure 5.4: M asured and reC r nc lin ar velociLy 

5.2 Wall Follower 

Wall following i a useful and common L chni.que for mobile robot naviga ion in 

known environm nts. The wall follower can be used for ob tad avoidance. Tb 
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Measured and reference angular velocity 
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Figure 5.5: Measured and reference angular velocity 

execution of a planed path can be prevented by unexpected obstacle. When the 

path can not be replanned, a imple strat gy con i t in following ~h c ntour of th 

obstacle by using distance sensors [17]. The common nor u ed for w II [oUowing 

is an ultrasonic transducer [28],[3]. In our impl m ntation , tb IR s n or w r m­

ployed for measuring the di t~ce to wall. A imple PID controll r was impl ment d 

to achieve wall following. 

5.3� Obstacle avoidance 

Obstacle avoidance is an important behavior in autonomous v hicle. Th re are 

many techniques to implements obstacle avoidance.. One of the olutions is to use 

a potential field. In this approach, the obstacles are modeled as carrying electrical 

charges. The robot is modeled as a charged point having the same charge as obstacles 
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Figure 5.6: Trajectory path for controlled v and w 

in the environment. Collisions between the obstacles and the robot are avoided by 

the repulsive force between them. The repulsive force is the negative of the gradient 

of the potential field [9}. W implem nted a impl ob tacl avoidan by fall wing 

the contour of the obstacle and commanding te ring angl ¢ t mov way fr m th 

obstacle using distance measurements from IR en ors. 
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Chapter 6� 
Navigation Control and Localization� 

This chapter de rib a localization m thod for outdoor 11 vio-ation u ing x-

tended Kalman (EKF) tilt r which fus odom try input 1 CPS and omp m a­

surernents. 

6.1� Introduction 

In this section, we discuss the effectivene of our designed robot by te ting 10 al­

ization algorithm using Kalman filter. Determining the robot location from physical 

sensors has been referred to as [6] " the most fundamental problem to providing 

the mobile robot with autonomous capabilities." Because of GPS position fixe are 

inaccurate and at times may not be available, other navigation aids are used in con­

junction with GPS to enhance system performance. Dead reckoning sensors can not 

be used alone for indefinitely long p riods, ince rrors grow without bound. Th y 

accurately measure chang s in a v hid ' position ov r hort tim (can b us d al n 

when GPS fixes becorn unavailabl for short p riods). The natur of th errors in 

GPS position fixes is somewhat differ nt than that of the errors in d d r koning. 

The errors appear in GPS position fixes and the errors in dead r ckoning ar ompl­

mentary in nature. Proper fusion of the GPS position fixes with th d ad re koning 

sensor data can take advantage of the omplementary errors producing positioning 

performance bett r than either type of data alone [1J. 

There are a few example of. autonomous outdoor navigation robot and most 

of them are costly re arch prototype . Another xarnple is given [24] but it u e a 
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Laser canner which as urn prior knO'li I dg about th nviromn nt m r 

set of sensors (Laser s ann r L 18220 and in rtial pI tform D U-6 ) u d in b t 

experiment are very exp n ive. In [25] and [24] th ATRV-Jr platform manufa tur d 

by iRobot used in the experiment I v r xpen iv ompar d to th 0 t of our 

platform. 

Outdoor environments are very difficult to work with b cau knowl dg , and th 

terrain characteristics may not be available. The sonar, IR, or L r ann r u d f r 

localization in indoors become useless in outdoors, though th y might still b 1.1 ed 

as bumpers for obstacle avoidance. The next section explains how the localization 

problem is solved. 

6.2 Odometric Kalman Filter 

Kalman filters have been efficiently used for state estimation. A common filter 

type, is the odometric filter where r ading from th adorn try y t m n th rob t 

are used together with the g om try of the robot mov m nt as a mod I f th r bot. 

In order to be able to use the Kalman filter the proces model in quation (2.2) ne d 

to be discretized first and then lineariz d. The di cr tiz d proc mod 1is xplain d 

in [27] and can be updated by th following equation 

x(k + 1) ] [ X(k)] [ e5dkcos(B(k) + t) ]'
y(k + 1) . = ,y(k) + e5dksin(B(k) + ~) (6.1)

[ B(k + 1) O(k) , e5Bk 

where 

c5dk : The translational displacement at instant k� 

e5Bk : The rotational di plac ment of the robot at instant k. Th three tates (x, y, B)� 
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constitute the pro tat v tor. B on id ring 8dk and 8Bk input u(k) w(k) 

system noise, and '"'((k) input noi e w r writ th nonlin r fun tion in quati n 

(6.1) as: 

x(k + 1) = f(x(k), u(k)' w(k), '"'((k)) (6.2) 

The system and input noi e are assumed to be Gau ian with z ro m an and th ir 

covariance matrices Q(k) and r(k) respectively (i.e. w(k) N(O, Q(k)),'"'((k) rv rv 

N(O, r(k)) ). 

An extended Kalman filter can be designed using the system mod 1in equation(6.1). 

Denoting B(k) +~ as cp and linearizing the process model we get the following yst m 

A and input G matrices 

(6.3) 

(6.4) 

(6.5) 

cos(cp) 
G(k + 1, k) = sin~cp) (6.6)

[ 

The measurements z(k) is expres d as: 

z(k) = C(k)x(k) + v(k) (6.7) 

Where v(k) is the measurement Doi e and it is assumed to he Gau sian with Z 1'0 

mean and covarianc matrix R (i.e. v(k) N(O, R(k») ),rv 
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C(k + 1) matrix i simpl a 3 x 3 id n it matrix b w n m ure h thr 

real state directly and w call it C for impli ity. 

1 0 0]
C = 0 1 0 (6.8)

[ 001 

The Kalaman filter is construct d from the gen ral form d rib d in [13], in th 

following equations 

x(k + 11k) = f(x(klk), u(k); 0, 0) (6.9) 

P(k + 11k) = A(k + 1, k)P(klk)A(k + 1, kf + G(k + I, k)r(k)G(k + 1, kf + Q(k) 
(6.10) 

K(k + 1) = P(k + llk)CT[CP(k + llk)CT + R(k + l)r1 (6.11) 

x(k + 11k + 1) = x(k + 11k) + K(k + l)z(k + 11k) (6.12) 

P(k + 11k + 1) = [I - K(k + I)C]P(k + 11k) (6.13) 

where 

x(k + 11k) a predicted future state,� 

x(k + 11k + 1) time updat d state,� 

z is the innovation term comput d as z(k + 11k) = z(k + 1) - Cx(k + 11k),� 

P(k + 11k) is a priori estimate"error covariance matrix,� 

P(k + 11k + 1) is a posteriori estimate error covariance matrix.� 

K(k + 1) is the Kalman gain matrix.� 

State error covariance matrix for the update e timate is calculated by the Jo eph 

form [13] which is more computationally- table version of quation (6.13) 

P(k+lJk+l) = [1-K(k+l)C]P(k+llk)[I-K(k+ I)C]T +K(k+l)R(k+l)K(k+If 
(6.14) 
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6.2.1 Handling the System and Input Nois Covariance Matrix 

The determination of th ovarian rna rix Q(k) i diffi ult 

the robot odometry may ncount r non y temati rr r whi h w an not 11 ndle. 

Having a very small ystem nois covarianc Q (k) will low th flIt r 

to measured values specially when the me urem nt nor covarian matrix i big. 

Thus, we inject enough uncertainty (by xp rim ntal tuning) in th 

covariance. The system noise covariance matrix Q(k) i 1 ct d as 

0.1 
(6.15)Q(k) = ~ [ 

The input noise covariance is selected as 

r(k) = ,[ O.056dk 0 ] (6.16)
0 O.050t'h 

6.2.2 Handling the Measurement Noise Covariance Matrix 

The (x, y) states are measured using GPS nnit. Th GPGGA NMEA nt n e 

contains the position in global coordinates. We us d the MarshalSoft To lkit p kag 

to covert from geodeti global oordinat s (longitud and latitude) t 10 1 coordi­

nates (x(m), y(m)) with resp ct to som referen point. Th r f r nc point w 

used is the initial position. Thi choice makes the robot initial position at th ori­

gin. Also we have chosen that East dir ction is our po itive x axis and th orth 

direction is the positiv y axis. The accuracy of R det rmines th ffe tiveness of 

filtering process. Having the covariance matrix R gr ater than th real one slows up 

convergence of estimat d stat to measured values. On contrary, setting it maller 

than the real value can pe d up converg nce of estimat d state to measured value. 
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In reality R i no stationar and h rr r in po ition ar ightl r lated. \M will 

assume it is stationar for impli ity. Having can tan R during filt ring pr 

may not result a good localization ac uracy a it v ri d p nding d p ndin n th 

number of visible sat llite and iono ph ri audition. To hand I thi w n d to 

have a dynamic R that chang based on GPS data quality. Th Diluti n Of Pr ­

cision DOP can tell about the quality of GPS dat . DOP i updat d b d on the 

alignment, or geometry, of the group of atellites ( on tellation) from whi h 'ignal 

are being received. We used this to modify the ubmatrix of R. How ver, th re 

is no guarantee that the estimated state will converge to the actual state wh n the 

measurements are not available for long time. For Heading angle m asur ment we 

used both GPS and compass to give heading angle. Heading angle from GPS is 

available at the GPRMC NMEA sentence. The GPS unit must be moving to get 

accurate reading from GPS heading angle. The accuracy depends upon the speed 

of the vehicle. It is very accurate at higher sp ds and 'ompl t ly fal wh n th 

robot does not move. Ther fore, the heading angle m asur m nt from GPS ar 

disregarded at very low speeds and th varian e of m ur d f:} i ill difi d bas d n 

the speed of the robot. Fortunat ly, the compas has oppo it b havior. W will 

switch between GPS and compas readings, how v r, the GPS will b th dominant 

sensor for providing heading angle m asurements be ause the robot i moving rna t 

of time. The heading submratix of R is updated by the varian e of th s nsor used 

for measuring heading angle. 

58� 



6.2.3 Handling the Different Sampling Rat 5 

The dead reckoning data i given at a higher fr qu n y (e r 200 Tn. e ond) , th n 

the information availabl from CPS ( v r 1 econd) h n tim upd t and the 

measurement update part operate at differ nt rat . W in orpar m ur m nt 

when it is available. When th measur m nt i not availabl th pI' di t d futur 

state and the a priori state error covariance are u d a po teriori tat timat 

and state error covariance for the next iteration. 

6.3� Navigation Controller 

This section describes different controllers that us the e timated po ition giv n 

by EKF to reach a desired target position. This problem is solved using different 

controllers [2]. 

6.3.1 Target Acquisition Using Leader Following Approach 

We use the leader following control algorithm to r a had sir d d stinatiol1 (i. ., 

the leader robot is at reset). We us a velo ity ontrolled v hi 1 that u s th 

kinematic model only. The convergenc to command d v locity an be guar nt d 

by our previous PID v locity controller. The formation control law w I' d riv d 

using input-output feedback linearization [15]. The kinematics of both I ad rand 

follower are represented by the unicycle model giv n in equation (2.2). We on id r 

two robots shown in Figure 6.1, where Vj and Wj are the linear and angular v 10 iti s 

of the follower at midpoint on the front axle. 

We� will describe the kinematic controller for leader following, present d in [8]. 
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Figure 6.1: Two robots in a leader following configuration. 

The leader will benxed at the d tination point with both lin ar and angul r v 10 i-

ties are set to zero. By applying input/output lin arization t g nerat a ntr llaw 

that gives an exponentially onv rgent solution in th vari hI iij and 'l/Jij w g t 

Vj = k1(j cos "'Yij - iij in "'Yij (k2~j + Wi) + Vi 0 (3ij (6.17) 

1 - -
Wj = dlkliij sin "'Yij + iij cos "'Yij(k21/Jij + wd + Vi sin (3ij] (6.18) 

where 

d is an offset distance to the midpoint of front axle P j of the robot, and k1 and k2 

are the user selected control gains. The closed-loop linearized system b come 
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- -

ij = k2 ij (6.19) 

Because we are using Cart ian oordinat I \. an omput u in lT 

/3 = atan2(ii; - Yi i - Xj) (6.20) 

where 

Xj = Xj + dcose, Yj = Yj + d in e, 

By setting the angular and linear speed of the lead r at z w, th control input 

become 
Vj = k1lij cos 'Yij - lij sin 'Yij k2'l/Jij (6.21) 

1 - -
Wj = d[k1lij sin 'Yij + iij cos 'Yij k2'l/Jij] (6.22) 

6.3.2 Experimental Results 

In this experiment we initiated the robot at (x(O), yeO), 11(0» = (0,0,0) and 

set the target position at (Xt> yd = (20,9). Th po ition was timat d using th 

Kalman filter. We do not have a ground truth for r al traj tory trav r d by th 

robot, however, the final position reached by th rohot w within 1m rr r from th 

position of the target. Figure 6.2 shows the trajectori cornput d from stirnat cl 

state of Kalman filter, measured po ition from GPS, and odometric upd t d po ition. 

The odometric trajectory is updated using the kin matic mod I d scrib d in quation 

(6.1) without taking the advantage of GPS and compass. Th odometric tat i 

correct in the beginning) however, in th middle of the path the rror ac umul ted 

to give completely wrong y position at the end. The GPS reading are corr ct and 

within the device accuracy. The e timated po ition agree with the ob rvation that 
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tru robo follow a traighl. line toward l.h ar l.. 

EstImated, odometry (process),and Measured(GPS) trajectortes 
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Figure 6.2: Estimated, measured and proc s traj clori 

To analyze tbis xperirnent in mor d tail, w pioU d th h adin)" an 1 ri. v n 

by timated tate (Kalman filter d), m ur d hading angl ( P and omp ) 

and odom try (proce only withoul. incorpora ing any m UT m. nts) as hown in 

Figure 6.3. As we ee from Figure 6.3) the ori ntation angl from b lh odom ryand 

estimated state wer almost the sam in th b ginning. Th ill asur d hading anglo 

provides corrections for the filter once tb lin ar spe d is in p d. Th stimal d 

heading angle takes the advantag of tb correct m. asur m nL while odom tri'tat 

heading angt accumulate rrors to reacb completely incorr cl final valu . 
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Figure 6.3: Estimated, measured and pro 
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Chapter 7� 
Conclusion and Future Work� 

7.1 Concluding Remarks 

This thesis has de cribed th d v loping of a modul r mobil t tb db· mod­

ifying the standard chassis of a omm r ial in xpen iv R/ tru k. Th v hi 1 i 

equipped with a suite of ensor to op rate autonomou ly. Th 

cludes IR, odometer, GPS, and vision y t m. Th onbo rd not book along with 

the multifunction acquisition card provided a computational pow r for s nsory data 

processing. 

The kinematic model for the vehicle was derived and it was shown that th 

unicycle model is a valid model for the vehicle under some conditions. Tools for robot 

control have been designed and implemented and their performance is promising. A 

control archite ture utilizing obje t ori nt d multi-thr ading was u d to 

modularity. 

Also we have demonstrated that good r suIts of loc lizati n ar obt in bi by 

using only an inexpensive well alibrated d ad r ckoning s nsors and an in xp nsiv 

commercial GPS unit. The target acquisition is achi v d by applying Input/Output 

feed back linearized controller for leader following. Further exp rim nt 1r s arch an 

be carried out using the de igned vehi Ie to verify th oreti al r suIt that hay b en 

validated using only simulation. 
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7.2 Future Work 

There are some modification n d t b don to g tab tt I' P r£ I'm n f th 

robot. 

7.2.1� Hardware Modifications 

The following ar some suggestions for modifi tion on hardwar . 

•� Adding a gyro to measure angular velocity so we can avoid non y temati rror 

in odometry. 

•� Building power monitoring system to give the statu of remaining pow I' in 

batteries. 

7.2.2� Software Modifications 

Here are some suggestions for software improvement 

•� Devlop the communication network betw n vehi 1 s. On pos ibl olution i 

to use . Net. 

•� Improving real-time performance by adding I' aI-time xtensions. 

•� Impl menting more functions that take the advantag of vision unit. 

7.2.3 Localization Algorithm Improvement 

Though the localization algorithm using Kalman filt I' works fine, th following 

suggestion can improve the filter performance 

•� Extending the state of the filter to includ both angular and linear velocity. 
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• Improving m asur m n a cur 

the CPS unit and compass pI' 

y b 

i ion. 

u in high I' pr i ion d vi 

• Extending th measurements vector of th 

measured by a gyro. 

tilt I' to in Iud angular I ity 
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Appendix A� 
Hardware Sources� 

Tamiya Am rica, Inc. 
RC car chasis 
2 Orion Aliso Vi jO,CA 92656-4200 
1-800-TAMIYA-A 
http://www.tamiyausa.om 

Sony Electroni sIne. 
Notebook Sony VAIO SRX SRX99 
1 Sony Drive MD TA3-12 Park Ridg , N w J r y 07656 
(877) 865-S0NY(7669) 
http://www.sonystyle.com 

Sharp Electronics Corporation [U.S.A.] 
JR Distance measuring sensor 
1300 Naperville Drive, Romeoville, IL 60446 
1-800-237-4277 / 1-800-BE SHARP 
http://www.sharp.co.jp 

National Instruments Corporation 
I DAQCard-6024E for PCMCIA and CB-68LPR DAQ 

11500 N Mopac Expwy Au tin, TX 7 759-3504 
1-512-683-0100 
http) /www.nLcom 

Agilent Technologies, Inc. 
Reflective optical surface mount neod rand odewh Is 
395 Page Mill Rd.P.O. Box 10395 Pal Alto, A 94303 
1 650 752-5000 
http://wwwagilent.com/emi ondu tor 

Hitec RCD USA, Inc. 
Servos 
12115 Paine St. Poway CA, 92064 
1-858-748-6948 
http://www.hitecrcd.com 

Digi-Key 
Electronic component· 
701 Brooks Avenu South Thief River Falls, M 56701 
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1-800-DIGI-I EY 
http://www.digik . om 

Thale avigation 
lagellan GPS 

471 El Camino R al Santa Clar CA 95050-4300 
1-408-615-5100 
http://www.magellangps.om 

Scott Edwards Electronic In . 
Serial Servo Controll 1's (SSC ) 
1939 S. Frontage Rd. #F, Si rra Vista, AZ 85635 
1-520-459-4802 
http://www.seetron.com 

Tower Hobbies 
RC car upgrade components 
PO Box 9078 Champaign, IL 61826-9078 
1-800-637-6050 
www.towerhobbies.com 

Robson Company, Inc. 
1655 Analog Compass Sensor 
227 Hathaway St. E. Girard, PA 16417 
1-814-774-5914 
http://www.dinsmore n or·. m 

Novak Electronics, Inc. 
Electronic speed control 
18910 Teller Avenue Irvin, CA 92612 
1-949-833-8873 
http://www.teamnovak.com 
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