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PREFACE 

SUbject: 

Purpose: 

Scope: 

High-dimensional multimedia database search 

Proposing MS-a as a solution for the curse ofdimensionality problem in 

high-dimensional multimedia database search. 

Quantitative analysis oftbe curse ofdimensionality problem. 

Mathematical proof for MS-a. 

Analysis of traditional and recently proposed methods. 

Experiments for comparative study and performance analysis. 
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CHAPTERl
 

Introduction
 

1.1 Spherical Range Search
 

In today's multimedia applications, efficient similarity search is in high demand due to 

ever-increasing availability ofdigital mUltimedia data including image, video, voice, 

scientific data, time-series data, etc ([2], [3]., [4], [5], [6], [7], [8], [9]). Objects in these 

applications are abstracted as a collection of features represented by numerical 

coordinates of a data point in a multidimensional data space, an important operation of 

these applications is to find similar or close objects to <J given object (point), this 

operation is often called similarity search. 

Similarity is measured by distance between objects, different metrics (L 1, L2, L3, etc.) can 

be used to measure the distances, among which the L2 (Euclidean) metric is the most 

popular one. We choose to use the Euclidean metric through out this thesis. In an n 

dimensional data space D", given points P and Q, the Euclidean distance D (p, Q) is 

defined as, 

1/D(P,Q) =
[ 
~(Pi _q)2 Ji 

Similarity searches can be characterized as the task of f"mding neighboring points around 

point Q (caHed query point), k nearest neighbor (k-NN) and distance based spherical 

range searches are two most important paradigms. As the names imply, k-NN search is to 
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find k(s) points with slQ. . 0 points within the 
qUest D (P, Q) , sphencal range search is to fin 

hyper-sphere defined b". . _ . ~l1y, 
.:r the centrOId Q and search radIUs e, mathemattC 

(1 ) 

k-NN search can be aCComplished by iterative spherical range searcheS starting from a 

small search radius e, and gradually increasing the search radius until1C(S) nearest points 

are found ([11]), and reasonable estimation on the starting e can be calculated based on 

dimension and the nU01ber ofpoints in the d.ata space ([ 1D. Thus, perfonnance of 

spherical range search can be used as a benchmark for comparison ofvarious similarity 

search approaches. 

1.2 The Curse ofDimensionality 

In large multimedia databases, a-straightforward simple scan is expensive, since its time 

complexity is linear in terms of the size of the database. In order to achieve better 

performance than a simple scan, spherical range searches are typically perfonned in two 

stages, the first aims to quickly prune out the search area and returns a relatively small 

candidate set, and the second rejects anything beyond the exact search radius. Research 

has been focused on tbe first stage, since its effectiveness will dictate how much the load 

is reduced in the secolld stage. Various approaches have been propOSed and they are all 

affected by dimensioOality. 

The number of featureS (dimensions) in multimedia obj ects ranges between moderate (4

8 in [5],45 in [6], Ia:r€~e (315 in [4]) and extremely large (over 900 ill. [3]), thus high 

. I"l'w search becomes a necessity in many applicatl'dimenSlOna SlIDl aIi~) ens. But as 

2
 



dimensionality increases, the curse ofdimensionality (a phenomenon that the 

perfonnance of search algorithms degrades drastically as dimensionality increases.) kicks 

in, we'll explain this phenomenon bellow. In following discussions, we assume 

coordinates ofall dimensions are normalized between 0.0 and 1.0, this follows that the 

extension of each dimension edim is exactly 1.0. 

As dimensionality increases, data space becomes more sparsely populated, sparsity can 

be measured in terms of expected NN-distance (reads expected nearest neighbor 

distance). Following Berchtold et al. [15] and Webber et al. [1), let P[Q,r] be the 

probability that the NN-distance is at most r for query point Q, the expected NN-distance 

for query point Q can be expressed as, 

it follows that the expected NN-distance for any query point Q is the average of 

dislE [Q, nn ] over aH possible query points Q in D", 

E[nndiSIJ = J E[Q,nndiS']dQ 
QeD" 

good approximations for such integrals can be obtained by the Monte-Carlo method, i.e. 

generating random points within the data space, summing the values of the function for 

this set of points, and dividing the sum by the total number ofpoints. Experiments have 

been performed to estimate E[nn disl 
] and the results are shown in the following figure 

([1]). 
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o	 100 aDo soo "':00 
N~~:beJ' of dimension$. (ol 

Figure 1: E[m'ldur] as a function ofdimensionality 

Figure '1 shows that E[mldisl 
] increases with dimensionality, size oftbe database is 

1. ,000,000 points, at 100 dimensions, E [ nndiSI 
] is already 2 times more than edim. Now 

we can explain why perfonnance of various similarity search algorithms degrades with
 

dimensionality or fails to address the ditnensionality problem sufficiently.
 

Similarity search algorithms can be categorized as follows,
 

•	 Hyper-cube based search area approximation lnethods including balanced 

split ([13]), pyramid ([14]) and r partitioning ([15]). 

These methods ultimately will under-perform a simple scan at sufficiently 

high dimensions, because when search radius e exceeds edim/2 as shown 

in Figure 2, a hyper-cube with 2& as the length of each dimension clearly 

contains all data points in the search space, the pruning first stage becomes 

an overhead of simple scan rather than an improvement. 



Data space 

Search area 

I?---edim -----"::!>I 

2E 

Figure 2: Search area when 2& > edim 

•	 Dimensionality reduction methods based on DFT ([16], [17], [7], [18]), 

DeT ([19]), DWT, etc. 

Since Hyper-cube approximation ultirrlately fails at high dimensionality, a 

reduction in dimensionality is naturally conceived. A simple discard of 

dimensions will result in. unbounded search area, if dimension Xi is 

discarded, than the search area is unbounded along the Xi dimension. 

When & data density is very high, unboundedness will cause more false 

points to be returned to the candidate set resulting in inaccurate 

approximation. 

Transformation schemes such as DFT, DCT and DWT have been 

proposed to mitigate the effect of unboundedness, but these schemes do 

not get rid of unboundedness, instead they still discard dimensions that 
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deemed to be insignificant in the transformed data space D;,. Observations 

of these methods confirmed loss ofprecision ofthese methods ([16], [10). 

•	 Filter based methods including VA-File ([1]), LPC-File ([2]) and 

iDistance ([ 11]) etc. 

These methods aim to compress the database size by reducing the 

information that each point contains. Data space is divided into cells or 

partitions, and each data point is approximated by its geometric 

information within its local cell or partition, this approximation 

information is used to generate a compressed file based on the original 

database. 

A sequential scan on the approximation file can then be used to find 

candidate points (filtering stage). Since the scan is on a compressed file, 

better performance over a simple scan is expected. 

But these methods have to make tradeoffbetween compression rate and 

accuracy. VA-File and LPC-File have better accuracy but bigger file size 

(proportionate to the number of dimensions); iDistance achieved 

compressed file whose size is not related to dimensionality but suffers 

from loss of accuracy. 

We shall discuss these methods in details in Chapter 2. 

1.3 MS-a in a NutsheU 

We observe that the hyper-cube approximation fails at high dim.ensionality because the 

cube's sides sit parallel with dimensional axes, but the extension of each dimension is ~t 
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. t' on for search beyond edim willmost edim (or 1.0 in normalized data space,) approxInla 1 

b t th 11 have to make somedcontain all points. Various methods have been propose, u ey a 

tradeoff between efficiency and accuracy. 

Diagonal
 
Bounds
 

IE----edim --~ 

Axial 
Bounds 

Figure 3: Axial bounds vs.. diagonal bounds 

We try to overcome the edim limitation by finding an approximation scheme that can 

search beyond edim. We observe that the length of the diagonal is greater than edim, in 

fact the diagonal is the longest line within a nonnalized cubical data snace (in D the
'r II' 

diagonal length is .j;;). Ifwe can find a way to bind the search area along the diagonal, 
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we can search as far as the data space allows and still be able to approximate without 

containing all points. Figure 3 dearly shows this, the axial bounds already includes the 

whole data space, the diagonai bounds is still able to exclude points in the lined area. In 

fact, the diagonal bounds are hyper-plains generated by the means of points. We will bind 

the search area further by the standard deviation and the a-Constant, we shall explain the 

MS-a approximation in detail in Chapter 3. 

1.4 Outline 

We have de.fined spherical range search and identified the problems with existing 

approaches and briefly introduced our approach - the MS- a approximation. In Chapter 2 

we will analyze 3 recently proposed approaches (VA-File, LPC-File and iDistance), in 

Chapter 3 a detailed description of MS- a will be given, Chapter 4 lays out what we want 

to accomplish in this thesis work, Chapter 5 gives descriptions and ran1.ifications ofhow 

we will accomplish our work., Chapter 6 gives our results and finally Chapter 7 shall 

conclude our work. 
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CHAPTER 2
 

Literature Review
 
In Chapter 1 we categorized existing similarity search methods into 3 groups. Since 

hyper-cube based approximation and transfonnation based dimension reduction methods 

have been shown to either fail or display unsatisfactory performance at high 

dimensionality ([1], [16], [10]), we will not elaborate on them further, instead we shan 

devote our efforts to analyze recently proposed VA-File, LPC-File and iDistance. In this 

chapter, we'll review these 3 filter based approximation methods based. on published 

materials, and figures from these materials are borrowed here for illustration. 

2.1 The VA-File 

The Vector Approximation File <yA-File) ([ 1]) divides each axis ( Xi ) of the D
It 
data 

n 

space into 2b
; sections. Let b = L)i, D" is divided. into 2b rectangles (cells) each of 

i=l 

which is represented by a unique bit-string oflength b. Each data point is approximated 

by the bit-string oftheceU in which it is located, thus the approximation file is simply an 

array ofbit-strings. Figure 4 illustrates this scheme for 4 points in a 2-dimensionaldata 

space, in this example, bi =b! =2. Obviously, more bits means more cells and. more 

granular partition ofthe data space. which leads to more accurate approximation of the 

data points. 

Suppose each coordinate of a data point is a 4B (32-bit) float, if bi = 4 to hi =8, the VA-

File file size is 1/8 to l/4 ofthe original database file {here we assume· that the original 
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file l'S' . .) ofth 'VA-F"le file is expected a stnng of floats and Ignore the header SIze, a scan e ,I ' 

to take less time than the original file. 

data spaeo veclor data .,

11 

~~, 

10 I 

01 .;. '1 
I.~ 

approxlmalion 

001,1 
IG' Il, 1011 

GO .~ 
.~,.,.1 0001 

11-('0 

00 '01 10 H 

Figure 4: Data points and their approximation bit-string in a VA-File 

Given a query point Q, the lower and upper bound of the distance bet"W"een Q and each 

approximation cell dmin and dmox can be calculated based 011 the coordinates of Qand the 

cell (Figure 7 illustrates the lower and upper bound in a 2-dimensional data space). In k-

NN search, both dmin and dmax are used in the filtering stage; in spherical range search" 

only d min needs to be calculated, the filtering stage scans all approximation cells in the 

VA-File, if dmin of the cell is not greater than search radius £, the data point falling within 

the ceB is selected as a candidate point. Random accesses to the original file are then 

performed to find the real distance between points in the candidate set and Q. 

Experiments have shown that the VA-File outperfonns ([1]) a simple scan in high 

dimensions, but its performance in the filtering stage degrades linearly with 

dimensionality, this is due to the fact that the VA-File size grows linearly with 
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dimensionality and the time complexity of dmin calculation is also O(n *N)(N is the 

number of data points). Worse yet, if the original data is IB in each dimension, as in 

color histograms, and 8 bits are used for each dimension, the VA-File accomplishes no 

compression at all. 

The VA-File also has to make a tradeoff between accuracy and compression rate, if more 

bits are used, higher accuracy is expected, but performance ofthe filtering stage will 

degrade because of the increased approximation file size; on the other hand, if less bits 

are used, filtering should be more efficient, but accuracy suffers, more random access to 

. the original file ensues. 

2.2 The LPC-File 

The Local Polar Coordinate File (LPC-File) ([2]) is an improvement over the VA-File in 

terms of approximation accuracy. Like the VA-File, it divides the data space into 

2b rectangles (cells). It uses the same bit-string as the VA-File plus local polar 

coordinates to approximate a data point. 

Figure 5 illustrates the local polar coordinates for data point P in 2 and 3 dimensional 

data spaces. We can use the three tuple (b, r, B) to represent the approximation, b is the 

bit-string as in VA-File, r is the distance between 0 and P, B is the angle between the 

diagonal line of the ceIl and the line OP . Since rand e are coordinates local to 0 , we 

refer to them as local polar coordinates. In 2 dimensional space, as shown in Figure 5(a), 

P and p' have the same (b,r,e); Figure 5(b) shows that in 3 dimensional space, points 

on the circle revolving around the local diagonal have the same (b, r, e). It is clear that 
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the introduction of r and B gains more accuracy in approximation (The 'circle' as 

opposed to the whole cell). 

data space ell (" foTvector p 

11 
/7 

.¥:V 
./ 

10 

IY...... I 

0 
(H 

00 

00 01 10 11 

(a) 2-dimensiomll sp~ e (b 3·dim nsjomll space 

Figure 5: Local Polar Coordinates in 2 and 3 dimensional data spaces 

As shown in Figure 6, if B is the query point. A and C are the points ",here the hyper-

plain fanned by 0, D,. B intersects with the 'circle', the lower and upper bound o:f tIle 

distance between B and the 'circle' dmi1l and dma>: are D(B.C}and D(B,A) and can be 

calculated as follows. 

dlliin =( D(o,A)2 + D(O,B)2 -2 *D(O,A)* D(O,B) *cOs.I~ -B
2 
IY

I 

I 

d =(D(O,A)2 +D(O,Bf-2*D(O,A)*D{O,B)*cos(0, +LJ ))2max' . 1 . u 2 . 

Once dmin and dmax are calculated, same algorithm on the VA-File can be used on the 

LPC~File in the filtering and the random access stages. 
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cellcforp ~ 

Figure 6: Illustration of dmi/l and dmax in 3 dimensional data space 

The approximation accuracy gain achieved by the LPC-File can also be measured by the 

larger dmill and smaller dmax than those of the VA-File, as shown in Figure 7. 

The LPC-File's approach of adding 3B (2B for rand IB for B) to the VA-File bit-string, 

though relatively small compared with the bit-string (256B for 256 dimensions using 8 

bits for each dimension), is still a tradeoff between accuracy and compression rate. 

Its performance degrades linearly just as the VA-File, and it gains no compression at all 

for IB histograms, also calculation of dmill is more expensive than VA-File. As 

experiments show ([2]), its performance gain over the VA-File is marginal under 

clustered data distribution and high data density, but the penalty it carries when 
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calculating dmin may outweigh the precision gain when data distributioI1 and density is not 

in its favor. 

cite forp 

VA) 

q 

Figure 7: Illustration of d min and dmax in 2 dimensional data space for LPC- and VA-Files 

2.3 The iDistance 

The iDistallce ([11]) method divides the data space into certain number of partitions, and 

assigns a reference point for each partition. A data point P is represented as the 

coordinate d in a one dimensional data space as follows. 

Point P is located in partition i ofwhich Ri is the reference point, and c is a constant to 

stretch the coordinate, so that the coordinates for all data points in Partition i falls within 

the range of i * c to (i -+-1) * Co. We can see that the partition ID i is simply the quotient of 

d divided by c. Let d~.", be the maximum distance between Ri and all . 18' It't' 
n-- pom m pa 1 lon 
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. b' 1 t be great oordinate is a 
1 ,0 VIOUS Y emus . ~t than d~. Essentially, the one dimensional v 

rough approximation of the ()~.'lgtna1d ta a. 

Figure 8: iDistance search area in 2 dimensional data space 

The distance between the query point and the reference point detennines which area of a 

partition needs to be searched. In Figure 8, R l , R 2, and R3 are reference Points of partitions 

1,2 and 3, each partition is the space enclosed in the hyper-sphere around the reference 

point, Ql and Ql are two qUery points with search radii £1 and £2· Givell the fact that all 

points within some partitiotl and having the same distance from the refet-ence point are 

represented using the same one dimensional coordinate, for Ql the light gray area within 

artition 1 needs to be seafvlled, partitions 2 and 3 need not be searcheq. .c Q 1 hP . • lor 20n yt e 

15
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light gray area within partition 2 needs to be searched, partitions 1 and 3 oeed not be 

searched. It is straight forward to show that for partition i, given query poil'lt Q and 

search. radius £ , a POint within it needs to be searched only when its distaIJce from the 

reference point falls Within the range max (0, D (0;, Q) - f:) to min (d~,ax' fJ (0;, Q) + f:). 

Q 

Figure 9: iDistance data partitioning scheme in 2 dimensional data space, and the search 

area (the lined area) for query point Q 

Data space is portioned in a pyramid like scheme as shown in Figure 9, the centroid of 

the data space is used for the apex of all pyramids, and the border hyper-planes of the 

data space are used as bases, each pyramid forms a data partition, as in PI, P2, P J and P4. 

Experiments ([11]) show that the further the reference point is from the partition, the 

better perfonnance. 

The original iDistance algorithm uses B+-tree to index the one dimensional 

approximation data, for comparison with VA-File, we can store the aPProximation in a 

flat file and use tbe familiar sequential scan for the filtering stage, withOut loss of 

fairness. Clearly, jOistance has achieved much smaller compression rate on the 
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approximation file, suppose the one dimensional coordinate is a 4B float, in 256 float 

coordinates space, the approximation is only 1/256 of th.e original file and stays 

unchanged as dimensionality increases. But iDistance suffers from poor accuracy, as 

confirmed by experiments ([11]). In figure 9, the search area (lined area) for query pint Q 

is much bigger than the hyper-sphere (gray area). It is clear that when dimensionality 

increases, the search area grows larger; also, if the data density is very high, more points 

fall in the search area, both conditions lead to performance degradation. The tim.e 

complexity on calculating D(Oi, Q) is worth discussing, let n be the number of 

dimensions, N the number of data points, ifwe embed the calculation when evaluating 

each approximation, the time complexity is O(n*N}, if we calculate it before evaluation, 

the complexity is O(n*n) because the number of partitions is 2*n, we choose to 

implement iDistance using the latter approach~ because our N is much bigger than n, we 

can see at high dimensionality, this portion of the calculation is very expensive. 
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CHAPTER 3� 

MS-a in Detail� 
This chapter will describe in detail iso-,uhyper-planes, iso-ahyper-cylinders and a-

Constant planes, and how these hyper-surfaces can be used to bind the search area. 

3.1 Definitions and Notations 

Table 1 describes the notations we use in this thesis. 

Notations Description 

&. Search radius 

P(PI, pl, .... , PII) E Dn Dnpoint P with ooordinates (P I, jJ2, ... , Pn) 

Dmc Dn A projection ofDn onto ill (1 ~ m ~ n) sub-dimensions 

dirn(Dm) Dimensions of Dill 

f..l f.!(III)
p' p The mean ofpoint P in DJI and Dill respectively 

a a(m) 
p' p The standard deviation of point P in DII and Dill respectively 

N The diagonal line 

, 

d A hyper-cylinder revolving around N 

S(Q,&.) A hyper-sphere in Dn formed by centroid Q and radius &. 

P(/Y, Q) A hyper-plain fonned by Nand Q 

Table 1: Notations 
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Definition 1 (Mean) The mean ofpoint P(pJ, P2, ... , PI') in D m, 

2: Pi 
( m) iedim(D.,)

/l
P

= m 

Defmition 2 (Standard Deviation) The standard deviation ofpoint P(pj, P2, ... , Pn) in 

3.2 Iso-p Hyper-planes� 

Theorem 1 All data points on a hyper-plane perpendicular 'to N have the same J-L.� 

Proof: Let's take a look at Figure 10, points M, P and K are on a hyper-plane 

perpendicular to N aI'ld intercepts N at M , 

D(P,M)is minimUIU only when /lM =/-lp, for the same reason, we have ~M =J-LK' we 

call these planes Iso-phyper-planes. We also have, 

I 

D(O,M) = [~m: y= mJ;; = J-Lp"[;; (2) 
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Iso-Ji hyper-planes 

Iso-o-hyper-cylinders 

Upl 

See Figure 12 

o 

See Figure 11 

a-Constant Planes 
XI 

Figure 10: Iso-Ji hyper-planes, Iso- a hyper-cylinders and a-Constant Planes in 3 

dimensional data space 
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3.3 Iso-a- Hyper-cylindel"s 

Theorem 2 All data points on a hyper-cylinder revolving around Nhave the same cr . 

Proof: Let's take a look at Figure 10, points M, P and K are on a hyper-cyliOder 

revolving around N, Hand P are on a line parallel to ~ P and K are on tbB circle 

formed by the intersection of hyper-sphere SCQ, DCO, P» and the hyper-plane PCA'; P). 

Since geometric relationships between all points on the hyper-cylinder can be derived 

from the relationships between M, P and K, we only need to prove these 3 points have the 

same cr. 

Since HP is parallel to N, it must be true that PI = hi + d for some constant d and 

l$i$n, 

f1 

2t hj2 + L.d+ Zi,:hr*d (thr )2 +Ci:d)2 +2* thr *~:>1]2 
I 

[�
[-I i_I i=J 1=1 1=1 1=1 1=1� == - 2 

n n 

J 

~[ tho' +n*d~ + 2*d~?, (~?')' +n' * d::2*n* t.~r 
1 

h~ [t.
n 

(~~)~J,' 
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- -

and since P and K are on SeQ, D(O,P» and J'("",: P), we have tPi2 = "2:/</ and 
;=1 i=J 

we call these cylinders Iso-a-hyper-cylinders. 

We also have 

D(M,P) ~ [t,CP' -m)'Ji 
~ [t,P,' -2 0 m* toP, +tom'Ji 

, (3) 

n (I:Pi/ (tPi)2]2
= LP;2 -2* /-1 +-='=~I_-

,'=1 n n 
[ 
I 

= crl'J;; 

3.4 a-Constant Planes� 

Theorem 3 Let Lk be the intercent otIso-IIr hyper-plane P (N, P) and axis x 1< k ,:::,/ n ,�:r 1 k' 

and a be the angle between lines MP and lv1Lk ,
Pk 

P -Ilp 
cosa p =~ 1 (4)

k ncrp 

Proof: To have some intuition, let's take a laole at the angle between Mf5 and ML1 in 



MP*MLkcos 0: = -------"----
p. D(M,P)*D(M,L

k
) 

n 

MP*MLk =-(PI-m)m-(p2 -m)m-,.,+(Pk -m)(LP; -m)- ... -(p" -m)m 
;=1 

n� 
2

"n 

=-mLP; +nm + PkLPi -mLP, 
;=1 ;=1 ;=1 

= -mnJ.lp + nJ.lp
2 + Pkn/lP - n/l

2 p� 

= n/lp(Pk -J.lp)� 

I 

D(M,LK )� =[(~P; _m)2 +(n-l)m
2J 

1

=[(tpy -2(~PJm+nm2J 
= [ n2/l~ -� 2nJ.l~ + nJ.l~ J2

I 

= IIp [n(n -1)F
1� 

MP*MLk�coso: =-----~--
p.� D(M,P) *D(M,Lk )� 

n)..tp (Pk - Jlp)�=----'--'----"-...:..:..----'--'-----,:'\
(crp.f;;)(j.J-p [n(n-])]2) 

We can the hyper-planes with Nburied inside "a-Constant planes", the angle between 

these planes and any MLk (Lk being the intercept of any Iso-,u hyper-plane and axis 

xk,l :::; k :::; n , and M being the intercept point of Nand the Iso-,u hyper-plane) can be 

calculated using Equation (4). 
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3.5 Approximation using Hyper-surfaces 

Theorems 1,2 and 3 have defined hyper-surfaces using a point's IJ., (J and a constants, this 

section will try to approximate the search space without false dismissals using these 

surfaces, clearly the tightest bounding surfaces are those passing through the tangent 

points of SeQ,s). 

Q 
bounding Iso-,u hyper-planes 

o 

bounding Iso-o-hyper-cylinders 

Figure 11: Hyper-plane .P(/y' Q) in figure 10 
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3.5.1 Bound of the Means 

Lemma 1 Let Q be the query point, s the search radius and P any point in the search 

sphere S(Q,s} i.e. P satisfying Equation 1, we have, 

Proof: Figure 11 is the detailed illustration ofhyper-plane P(IY, Q) of Figure 10, the 

bounding 1so-J.l hyper-planes pass through the 'upper' and 'lower' tangent points of 

S(Q,s) and intersect with Nat points Mh andMl. 

D(O,M1) S; D(O,Mp) S; D(O,Mh ) 

D(O,MQ)-f, S; D(O,Mp)::; D(O,MQ)+E 

\D(O,Mp )- D(O,MQ )\ S E 

II-!p.j;, -IlQ~I S; f, 

l~p-I-!QIs; ~ 
"\In 

Clearly, bounds by these hyper-planes are not confined and will lead to large false 

returns. In the next section, we shall bind the search area further by the iso-hyper

cylinders. 

3.5.2 Bound of the Standard Deviations 

Lemma 2. Let Q be the query point, s the search radius and P any point in the search 

sphere S(Q,s) i.e. P satisfying Equation 1, we have, 
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Proof: Figure 11 is the detailed illustration ofhyper-piane P(IY, Q) ofFigure 10, the 

bounding Iso-O"hyper-cylinders pass through the 'right' and 'left' tangent points of S 

(Q,£) and intersect with Nat points Nh and M. 

D(MQ,N,) ~ D(MQ,Np ) ~ D(MQ,Nh )� 

D(MQ' Q) - E ~ D(MQ' N p ) ~ D(MQ' Q) + &� 

ID(MQ,Np )- D(MQ,Q)I ~ &� 

IcrI' J;z - crQ ..[,;1 ~ E 

Icrp-crQI~ };; 

Lemmas 1 and 2 already confine the search area in a hyper-ring (see Figure 10), but its 

volume is stiB quite large compared with the search sphere, we shall bind the search area 

further by the a-Constant Planes. 

3.5.3 Bound of the a-Constants 

Lemma 3 Let Q be the query point, £ the search radius and P any point in the search 

sphere S(Q,£) i.e. P satisfying Equation 1, we have, 

Pk-lJ.l') Cqk-lJ.Q . e arccos( ,..----; - arccos r--;) ~ arcsm( r)
crpvn-l crQvn-l crQv n 

Proof: Figure 12 is the detailed illustration of the Iso-,u hyper-plane which passes through 

query point Q in Figure 10, the bounding a-Constant planes pass through the tangent 

points of SeQ,s) at the smaHest and biggest a angles possible. 
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M'� 

a-Constant Planes 

Figure 12: The 1so-f.l hyper-plane which passes through query point Q 

. 8 E
sIna = =-~= 

t D(M',Q) C1 .f;z
Q 

a l sa~ sal 

a Qk - at S a ~ S a 
Qk 

+at 

lapk -aQk Is at 

( Pk -lJ.p ) ( qk - J-lQ . E arccos r--7 - arccos ~) s arcsm( r) 
C1 p -v n -1 O"Q-vn-l C1

Q 
-v n 
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3.5.4 The MS-a Approximation Shape 

From Theorems 1, 2 and 3, p, tj and a values essentially define some hyper-surfaces, p 

defines a iso- /.l. hyper-plane and vice versa, same for (J and a, when we say p, the iso- }l 

hyper-plane is also implied. 

Theorem 4 Let Q be the query point, 6 the search radius, the search sphere S(Q.~) can 

be approximated by a piece ofa hyper-ring, the hyper-ring isdefilled by the following p 

and u thresholds, the piece is cut by the a-Constant planes defined by the following a 

thresholds. 

J.L _ min = max(O,1lQ - E/J;z) 

I-l_ max = I-l(} + eI.[;; 

(J'_min =max(O'O"Q -s/J;;) 

a_max =aQ +s/J;; 

a_min =max(O,aQ -at) 

a_max =aQ +at 

Proof: These thresholds should be straightforward from Lemmas 1, 2 and 3. 

In fact the shape of the approximation is illustrated in Figure 13. Since the means bound 

parallels the diagonal line which is the longest line in the data space, as long as the search 

radius does not exceed the longest possible length in the data space, the MS-a 

approximation will never include the entire data space, essentially this approximation 

scheme solves the dimensionality curse by a tight yet efficient geometric approximation 

ofthe search area. 
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Figure 13: Shape of the MS-(X approximation 

3.6 Subspace Bounds and MS-a Configurations 

The search sphere S (Q,E) can be projected to an m dimensional subspace D m , for 

1~ m ~ n , we have, 

[ '" )2
I 

D(nJ)(P,Q)= fr(p;-qy 
I 

D(P,Q) =[t<p; _qy)2
,=1 

D(m)(p,Q) ~ D(P,Q) ~ E 

which tells us that the projected sub search sphere satisfies the same condition for the n 

dimensional search sphere. Since P satisfying the same pre-condition for Lemmas 1, 2 

and 3 both in the n and the ill dimensions, we can use the lemmas to prove the following 

corollaries. 

Corollary 1 Let Q be the query point, s the search radius and P any point in the search 

sphere SeQ,s) i.e. P satisfying Equation 1, for 1~ m ~ n, we have, 
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Corollary 2 Let Q be the query point, e the search radius and P any point in the search 

sphere S(Q,e) i.e. P satisfying Equation 1, for 1~ m ~ n, we have, 

,...(111) _ cr("') I < _c_ 
up Q - r1 "m 

Corollary 3 Let Q be the query point~ & the search radius and P any point in the search 

sphere SCQ,&) i.e. P satisfying Equation 1, for 1~ m ~ n, we have. 

We can use these corollaries to bind the search area in groups of dimensions, an 

illustration ofsubspace bounding is given in Figure 14. 

Subspace bounding introduces the concept ofMS-a configuration that is the combination 

of the number of subspaces and the number of dimensions in each subspace. The 

configuration ofn subspaces (1 dimension in each subspace) is actually the hyper-cube 

approximation; the configuration of 1 subspace reduces the dimensions to 3 (j.J., (J and a), 

an important aspect of the MS-a approach is to find the configuration for optimal 

perfonnance. For a configuration of k subspaces with same number of dimensions, 

m = n / k is the number of dimensions in each subspace and the dimensionality is reduced 

to 3k. Choice of a configuration should take into account ofboth the approximation 

accuracy and the number ofthe reduced dimensions (3k), a configuration that renders the 

most accurate approximation may not be the optimal one if it requires more dimensions 

than a less accurate configuration. 
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As for iDistance, a comparison ofFigure 9 and Figure 14 shows that MS-a is more 

accurate. iDistance's accuracy suffers more at higher dimensionality and denser data 

space, we'll try to demonstrate this in our experiments. In chapter 2, we established that 

VA-File and LPC-File incurs O(n*N) in calculating dmin ; iDistance has a O(n*n) portion 

in calculating query distances from reference points and O(N) for accessing all 

approximation data; MS-a has to calculate (;J., a and a) for the query point, time 

complexity for this part is O(k), it's clear that accessing and evaluating aU approximation 

data carries O(k*N) complexity. Since k is a number from 1 to 4, MS-a is obviously more 

efficient than VA-File and LPC-File in the filtering stage, our experiments also show that 

it is in fact more efficient than iDistance at high dimensionality due to the O(n *n) portion 

that iDistance carries. 
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N' 

Iso-dm
) hyper-cylinders 

Iso-JIm) hyper-planes 

Figure 14: Subspace bounding on a 2 dimensional projection 

3.7 Comparison with Existing Approaches 

Using the same filtering stage as in VA-File and LPC-File, the compression rate of the 

MS-a is detennined by the number of subspaces k in a configuration. For k =1, the 

approximation data point consumes 12B (3x4=12, assuming /1, (J and a are 4B floats), 

suppose each coordinate ofa data point is a 4B (32-bit) float, in 256 dimensions, the 

compression rate for MS-a is less then 0.012 as opposed to 0.125 ~ 0.25 for VA-File and 

LPC-File, for one byte data point, it is less than 0.047 as opposed to 1 (no compression). 

Although k maybe higher for optimal configuration, it is clear that the optimal k is not 

linear to n, because if k=n, MS-a degenerates to the most ineffective hyper-cube. 
~ 
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C'HAPTER4� 

Objectives� 
Experiments show that MS8 (the approximation scheme using only the m.eans and 

standard deviation bounds with a configuration ofk=8) significantly outperfonns simple 

scan, hyper-cubic based approximation schemes and data transfonnation schemes in high 

dimensionality ([ 10]). 

Recently filter based VA-File, LPC-File and the iDistance methods have been brought to 

our attention, we believe MS- a should outperfonn or at least be a competitor for these 

approaches. We aim to demonstrate our thoughts by experimenting these methods in 

spherical range search, all 4 methods were implemented in a way (see the next chapter) 

such that experimental results on them can yield fair comparison. 

Though k=8 has been shown to be the optimal configuration for MS at 256 dimensions 

([10]), we think a smaller k might be the optimal for MS-abecause of the introduction of 

the a-Constant bounds which significantly improves approximation accuracy at or near 

the center of the data space. We perfonned experiments to find the optitnal configuration 

forMS-a. 

Besides experimenting with various configurations, we also experimented with various 

dimensions and search radii. Both approximation accuracy and response time were used 

in the comparative study. 
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CHAPTER 5� 

Technical Methodology� 
In this chapter we shall describe our method that aims to provide a fair platform for our 

comparative study of the 4 search approaches (MS-a, VA-File, LPC-File and iDistance). 

5.1 Data Preparation 

The (P, a, a) values of computer generated random data have a sharp bell shaped data 

distribution which renders MS-a ineffective in the filtering stage, fortunately real data 

has a more unifonn distribution of these 3 tuples ([10D, we used real data in our 

experiments. 

Real data were obtained by sampling images in ROB color fonnat at 256 locations which 

constitutes the image's 256 feature vecto,r (a data point in D 256 data space), the R color at 

each location is a byte value and used as the coordinate of one dimension. Lower 

dimension data were obtained by selecting the lower dimension coordinates of each 256 

feature vector. More than 15,000 data points were used in our experiments. 

Approximation data {(u, 0", a) tuple for MS-a, bit-string for VA-File, (b, r,8) tuple for 

LPC-File and i *c + D(P, R;) for iDistance} were generated based on base data and 

stored in Ii t1at file (the compressed file) in the same order as the base data so that the 

base data point can be easily located based on a candidate's position in the compressed 

file. 
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5.2 Algorithm Implementation 

Spherical range search were implemented for a114 methods in a two-stage (the filtering 

and the random access stage) algorithm. We choose to use 8-bit to approximate each 

dimension for VA-File and LPC-File, though smaller number ofbits can be used at high 

dimensions, 8-bit is chosen because it demonstrates more evidently that their 

performance deteriorates linearly with dimensions. 

The filtering stage is a simple scan of the compressed file, based on each of the 4 

method's filtering criteria {the threshold values in Theorem 4 for MS-a, local distance 

within max (0, D ( 01' Q) - E:) to min ( d~lax' D (OJ' Q) + E:) for iDistance and d min ~ E: for 

VA-File and LPC-File} the ID of the candidate approximation data is stored in a memory 

heap. 

The random access stage traverses the candidate heap, performs a random access to the 

base file to find the 'true' data point based on the ID of the candidate, and only those 

points that satisfy Equation 1 are kept in the result set. 

Because same .file and memory access methods were used for all 4 methods and the 

framework is the same,OUf implementatlOn provides a fair platfonn for comparative 

study. 

5.3 Experiment Methodology 

Por a certain combination ofsearch method, dim.ensioIIatity and search maius. 99 ~ 

points were extracted from the base data file upon each ofwhich a spheric~l~se..~ 

was perfonned, .a.nd the average result were used for our study. 

35 



To find the optimal configuration for MS-a, we conducted experiments with n (number 

of dimensions) in {8, 16,32,64,128,. 256}, k(numberofsubspaces) in {I, 2,4, 8, 16}, 

the k value which generates the smallest candidate set and consumes the least response 

time is the optimal configuration for the specific n and was used in our comparative 

experiments. 

In our comparative study, experiments were performed at 8, 16,32,64, 128,256 

dimensions, search radii in {O.2, 0.6, 1, 1.4, 1.8,2.2,2..6, 3}. We watched the %return 

(number of candidate points as opposed to total number of points) and response time in 

the filtering stage to evaluate the perfOlmance of all methods in the filtering stage. Total 

response time was used as the yardstick for overall performance evaluation. 
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CHAPTER 6� 

Comparative Study and Performance� 
Comparis,on� 

Our experiments were perfonned on a Dell Dimension LIOOOR PC running Windows 

2000 with 1GHZ CPU and 256MEG RAM. 

6.1 MS-a Optimal Configuration 

In order to fmd the optimal configuration ofMS-a, we conducted spherical range 

searches for various k and search radii, results for 256 dimensions are given in figure 15. 

80 
r=:::JTotal Response

Ii) 0.5 Time at 
"0 70 
~ Radius=1.2 
0 
0 60 [==JTotal ResponseQ) 0.4 
~ Time at 
Q) 50 c Radius=1.6,E ..

0.3 :li= Total Response 
Q) 40 Q) 
II) n: Time at 
t: Radius=2.00 30 <f!.0.2Q. _% Return at 
~ n: 20 radius=1.2 

0.1J:!l 
0 10 -% Return at 

radlus=1.6 
.... 

0 0� 
K=1 K=2 K=4 K=8 K=16� -.--% Return at 

Partitions (K) radlus=2.0 

Figure 15: MS-a configurations at 256 dimensions 

Search radii 1.2, 1.6 and 2.0 were chosen because they are in the medium radius range of 

our comparative study (0.2 - 3.0). From the above figure, the configuration at k=2 
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provides the smallest %retum and near optimal total response time. The experiments 

were performed on byte sized base data, for 2 byte short integer and 4 byte float base 

data, k=2 configuration should provide more evident perfonnance advantage over k=1 

because smaller %return in the filtering stage saves more time in the random access stage 

for bigger base data file. We decided to designate k=2 as the optimal configuration for 

256 dimensions and used it in the following experiments. 

Similar experiments were performed for dimensions 8, 16, ., ... , 128, and the optimal 

configurations are plotted in Figure 16. Clearly k grows very slowly with dimensionality 

(sub-logarithm indeed). 

3-.-----------------------,� 

g� 
III 
C� 
0� 
:e 
~ 2D.. 

10� 
E� 

'';:; 
Q. 

0 

Dimensions 

Figure 16: MS-a optimal configuration partitions (k) at various dimensions 

6.2 Analysis of the Filtering Stage 

In section 3.7, we discussed the performance of the four methods in the filtering stage. To 

prove our analysis, we conducted spherical range searches across dimensions 8, 16 to 

256. We chose to use a big search radius for each of these searches so that the filtering 
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stage returns all data points, thus excluding the affect of search radius in the filtering 

stage and provide a fair comparison. The results are given in Figure 17. 

0.7,-----------------------, 
Ql 

E 0.6 +-------------------i= 
Ql 

I:: 0.5 +-------------------
o OMSA 
~ ~ 0.4 +-----------------------r- OVA-File
0:: ~
 

LPC-File�~ g 0.3 +-----------------
Jl!~ .iDistanceC/) 

0.2 +-------------..,.",..--t7I 
I::
·C 

0.1 +-----------1;;;:i----I~ 
u:: 

8 16 32 64 128 256 

Dimensions 

Figure 17: Filtering Stage Response Time at various dimensions 

The response time of the filtering stage for MSA stays near constant for dimensions 8 

through 64 and then doubles at 128 but almost no change at 256 dimensions, this is 

expected because optimal k only grows to 2 for 128 and 256 dimensions and time 

complexity is O(k*N). 

Figure 17 clearly shows the near linear growth of response time for VA-File and LPC-

File, and the penalty that LPC-File suffers for the time it spends on calculating the angles 

and distances. 

iDistance shows comparative filtering stage response time with MSA, based on the 

discussion in section 3.7, we believe the spike at dimensions 128 and 256 is due to the 

O(n*n) portion of the calculations. 
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6.3 Performance Study at 256 Dimensions 

We perfonned spherical range searches across search radii 0.2, 0.6, ....., 3.0 at 256 

dimensions. We paid attention to approximation file size, %return, filtering stage 

response time and total response time. 

5,000,000 ~-----------------, 

4,000,000 

3,,000,000 

2,000,000 

1,000,000 

a 
Base MSA VA-File LPC-File iDistance 

Figure 18: Approximation file size at 256 dimensions on 15,766 byte-sized data points 

Figure 1 8 plots t he approximation file sizes 0 f t he base data and the 4 approximation 

methods. Using 8-bit approximation scheme, VA-File and LPC-File achieve no 

,compression. iDistance has the smallest approximation file as is expected. The 

approximation file size for MS-a is based on optimal configuration at 256 dimensions 

(k=2), it is roughly VIOth of the base file size. 
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Figure 19: Filtering Stage % Return at 256 dimensions and various search radii 

Figure 19 plots the %retum of the 4 methods, VA-File and LPC-File provide excellent 

approximation accuracy, almost 100 times better than MS-a and iDistance. Note the 

scale of y-axis in tIus figure is logarithm, MS- a provides significant accuracy 

improvement over iDistance. 

Figure 20 shows the response time in the filtering stage, MS- a outperforms all 3 other 

methods in this regard. 

Figure 18, 19 and 20 demonstrate that MS-a strikes a balance between approximation 

accuracy and efficiency. 
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Figure 20: Filtering Stage Response Time at 256 dimensions and various search radii 

Finally the yardstick (Total Response Time) for performance comparison is given in 

Figure 21, results for Simple Scan is also plotted. We can see that MS-a consistently 

outperforms all other methods induding Scan, until search radius 3 when all 4 methods 

under-performs Scan. Search radius beyond 3 is not important for similarity search 

because 2% of data points are within the search sphere, for our more than 15,000 base 

data points, that's more than 300 points. 

LPC-File actually is worse than Scan in our study because the data distribution is not 

highly skewed as in the original study ([2l), and data density is quite low (15,000 as 

opposed to 1,000,000 in ([2])). But LPC-File has its place when data distribution and 

density is in i~s favor. 

At search radius 2.2, VA-File under-performs Scan, iDistance under-performs Scan at 

search radius 1.4. 
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'Figure 21: Total Response Time at 256 dimensions and various search radii 

(Base data: 256 byte color histograms) 

Experiments on 2-byte short integer and 4-byte float base data were also conducted 

(results not plotted here), VA-File outperf~rms MS- a around search radius 0.4 - 0.6 on 

these base data because its filtering power gains significant savings in the random search 

stage, MS- a stiB consistently outperforms LPC-File, iDistance and Scan. 
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CHAPTER 7� 

Conclusions� 
We proposed MS-a as a solution for lllgh-dimensional multimedia database search. MS

ex strikes a balance between approximation accuracy and efficiency, and scales well with 

dimensionality and search radii. 

It outperforms Simple Scan, traditional hyper-cube based approximation, data 

transformation techniques and dimensionality reduction techniques. 

Based on our experiments, MS-a consistently outperforms recently proposed LPC-File 

and iDistance methods. It consistently outperforms VA-File on byte sized base data in 

entire range of search radii, and in small radii on short integer and float base data. 

We conclude that MS-ais an efficient solution for the curse ojdimensionality, and is 

especially powerful in multimedia image databases such as color histograms. 
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