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PREFACE

Subiject: High-dimensional multimedia database search

Purpose: Proposing MS-« as a solution for the curse of dimensionality problem in
high-dimensional multimedia database search.

Scope: Quantitative analysis of the curse of dimensionality problem.
Mathematical proof for MS-«.
Analysis of traditional and recently proposed methods.

Experiments for comparative study and performance analysis,

m
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CHAPTER 1
Introduction

1.1 Spherical Range Search

[n today’s multimedia applications, efficient similarity search is in high demand due to
ever-increasing availability of digital multimedia data including image, video, voice,
scientific data, time-series data, etc ([2], [3], [4], [5). [6], [7], [B], [9]). Objects in these
applications are abstracted as a collection of features represented by numerical
coordinates of a data point in a multidimensional data space, an important operation of
these applications is to find similar or close objects to a given object (point), this
operation is often called similarity search.

Similarity 1s measured by distance between objects, different metrics (L, £, L; elc.) can
be used to measure the distances, among which the L, (Euclidean) metric is the most

popular one. We choose to use the Euclidean metric through out this thesis. In an n
dimensional data space D, given points P and O, the Euclidean distance D{P,Q) is

defined as,

D(P,Q) = [i(p,- ~q,)? }

Similarity searches can be characterized as the task of finding neighboring points around
point O (called query point), k nearest neighbor (k-NN) and distance based spherical

range searches are two most important paradigms. As the names imply, k-NN search is to



find k(s) points with srh&llest D ( od points within the

P,Q), spherical range search is to fi

aypst-Siviec detngs by the centroid Q and search radius &, mathematiﬁany'

D(P,Q){i(p.-—q.-f}* <& (1)

i=1
k-NN search can be aceqmplished by iterative spherical range searches starting from a
small search radius & ang gradually increasing the search radius until k(8) nearest points
are found {[11]), and reagonable estimation on the starting & can be calctlated based on
dimension and the number of points in the data space {[1]). Thus, performance of

spherical range search can be used as a benchmark for comparison of various similarity

search approaches.

1.2 The Curse of Dimensionality

In Jarge multimedia databases, a straightforward simple scan i1s expensive, since its time
complexity is linear in terms of the size of the database. In order 10 achieve better
performance than a simple scan, spherical range searches are typically performed in two
stages, the first aims to quickly prune out the search area and retumns a relatively small
candidate set, and the second rejects anything beyond the exact search radius. Research
has been focused on the first stage, since its effectiveness will dictate how much the load
is reduced in the second stage. Various approaches have been proposeq and they are all
affected by dimension?Hty

The number of feature® (dimensions) in multimedia objects ranges begyeen moderate (4-
8 in [S], 45 in [6], |arge (315 in [4]) and extremely large (over 900 iy, [3]), thus high

dimensional similarity search becomes a necessity in many abpl::lilt:aui(}n ' Bt s



dimensionality increases, the curse of dimensionality (2 phenomenon that the
Performance of search algorithms degrades drastically as dimensionality increases.) kicks
in, we’ll explain this phenomenon bellow. In following discussions, we assume
coordinates of all dimensions are normalized between 0.0 and 1.0, this follows that the
€Xtension of each dimension edim is exactly 1.0.

As dimensionality increases, data space becomes more sparsely populated, sparsity can

be measured in terms of expected NN-distance (reads expected nearest neighbor

distance). Following Berchtold et al. [15] and Webber et al. [1], let P[Q,r] be the

probability that the NN-distance is at most » for query point Q, the expected NN-distance

for query point Q can be expressed as,

E[Q, nn“" :[ = fr Reilteld E’r] dr

it tollows that the expected NN-distance for any query point Q is the average of

E [Q,nn"*"] over all possible query points Q in D, ,

E[m:d'“'] = I E[Q,nn"”']d@
QEDN
good approximations for such integrals can be obtained by the Monte-Carlo method. i.e.

generating random points within the data space, summing the values of the function for

this set of points, and dividing the sum by the total number of points, Experiments have
been performed to cstimate E [nn‘*"’] and the results are shown in the following figure

(ih-
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Figure 1. E[nn‘“"] as a function of dimensionality

Figure 1 shows that £ [zm““"] mcreases with dimensionality, size of the database is

1,000,000 points, at 100 dimensions, E[rm"‘“] is already 2 times more than edim. Now

we can explain why performance of various similarity search algorithms degrades with

dimensionality or fails to address the dimensionality problem sufficiently,

Similarity search algorithms can be categorized as follows,

Hyper-cube based search area approximation methods including balanced
split ([13]), pyramid ([14]) and I" partitioning ([ 15]).

These methods ultimately will under-perform a simple scan at sufficiently
high dimensions, because when search radius € exceeds edim/? as shown
in Figure 2, a hyper-cube with 2¢ as the length of each dimension clearly

contains all data points in the search space, the pruning firgt stage becomes

an overhead of simple scan rather than an improvement.
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Figure 2: Search area when 2¢> edim

e Dimensionality reduction methods based on DFT ([16], [17], [7], [18]),
DCT ([19]), DWT, etc.
Since Hyper-cube approximation ultimatcly fails at high dimensionality, a
reduction in dimensionality is naturally conceived. A simple discard of

dimensions will result in unbounded search area, if dimension x; is
discarded, than the search area is unbounded along the x, dimension.

When ¢data density is very high, unboundedness will cause more false
points to be returned to the candidate set resulting in inaccurate
approximation.

Transformation schemes such as DFT, DCT and DWT have been
proposed to mitigate the effect of unboundedness, but these schemes do

not get rid of unboundedness, instead they still discard dimensions that



deemed to be insignificant in the transformed data space D, . Observations
of these methods confirmed loss of precision of these methods ([16], [10).
e Filter based methods including VA-File ([1]), LPC-File ([2]) and
iDistance ([11]) ete.
These methods aim to compress the database size by reducing the
information that each point contains. Data space is divided into cells or
partitions, and each data point is approximated by its geometric
information within its local cell or partition, this approximation
information 1s used to generate a compressed file based on the original
database.
A sequential scan on the approximation file can then be used to find
candidate points (filtering stage}. Since the scan is on a compressed file,
better performance over a simple scan is expected.
But these methods have to make tradeoff between compression rate and
accuracy. VA-File and LPC-File have better accuracy but bigger file size
(proportionate to the number of dimensions); iDistance achieved
compressed file whose size is not related to dimensionality but suffers
from loss of accuracy.

We shall discuss these methods in details in Chapter 2.

1.3 MS-co in a Nutshell

‘We observe that the hyper-cube approximation fails at high dimensionality because the

cube’s sides sit parallel with dimensional axes, but the extension of each dimension is at



most edim (or 1.0 in normalized data space), approximation for search peyond edim will
contain all points. Various methods have been proposed, but they all have to make some

tradeoff between efficiency and accuracy -
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Figure 3: Axial bounds vs. diagonal bounds

We try to overcome the edim limitation by finding an approximation scheme that can
search beyond edim. We observe that the length of the diagonal is greater than edim, in

fact, the diagonal is the longest line within a normalized cubical data space (in D, , the

diagonal length is Jn). If we can find a way to bind the search area along the diagonal,



we can search as far as the data space allows and still be able to approximate without
containing all points. Figure 3 clearly shows this, the axial bounds already includes the
whole data space, the diagonal bounds is still able to exclude points in the lined area. In
fact, the diagonal bounds are hyper-plains generated by the means of points. We will bind

the search area further by the standard deviation and the @-Constant, we shall explain the

MS- & approximation in detail in Chapter 3.

1.4 Outline

We have defined spherical range search and identified the problems with existing
approaches and briefly introduced our approach — the MS-a approximation. In Chapter 2
we will analyze 3 recently proposed approaches (VA-File, LPC-File and iDistance}, in
Chapter 3 a detailed description of MS-a will be given, Chapter 4 lays out what we want
to accomplish in this thesis work, Chapter 5 gives descriptions and ramifications of how
we will accomplish our work, Chapter 6 gives our results and finally Chapter 7 shall

conclude our work.



CHAPTER 2

Literature Review

In Chapter 1 we categorized existing similarity search methods into 3 groups. Since
hyper-cube based approximation and transformation based dimension reduction methods
have been shown to either fail or display unsatisfactory performance at high
dimensionality ([1], [16], [10]), we will not elaborate on them further, instead we shall
devote our efforts to analyze recently proposed VA-File, LPC-File and iDistance. In this
chapter, we’ll review these 3 filter based approximation methods based on published

maternials, and figures from these materials are borrowed here for illustration.

2.1 The VA-File

The Vector Approximation File (VA-File) ([1]) divides each axis ( x,) of the [, data

space into 2" sections. Let b= bi, D, is divided into 2’ rectangles (cells) each of
f=|

which is represented by a unique bit-string of length b. Each data point is approximated
by the bit-string of the cell in which it is located, thus the approximation file is simply an
array of bit-strings. Figure 4 illustrates this scheme for 4 points in a 2-dimensional data

space, in this example, b, = b, = 2. Obviously, more bits means more cells and more

granular partition of the data space, which leads to more accurate approximation of the
data points,

Suppose each coordinate of a data point is a 4B (32-bit) float, if b, =4 to b, =8, the VA-

File file size is 1/8 1o 1/4 of the original database file (here we assume that the original



file is a gering of Moats and ignore the header size), a scan of the VA-File file is expected

to take )ess time than the original file.

data space veator data
.' .l ﬂ." 0.'
" ©:| 0808 |
o, | B 01 0.4
., 09 01
10
approximadtion
| - e, 0019
G, 10 41
., 0D 01
- .. ®.| 1100
00 o 10 11

Figure 4: Data points and their approximation bit-string in a VA-File

Given a query point 0, the lower and upper bound of the distance between ( and each
approximation cell d,,, and d,,,. can be calculated based on the coordinates of O and the
cell (Figure 7 illustrates the lower and upper bound in a 2-dimensional data space). In k-
NN search, both d,,;, and d,,. are used in the filtering stage; in spherical range search,
only dmin needs to be calculated, the filtering stage scans all approximation cells in the

V A-File, if dmy, of the cell is not greater than search radius ¢ the data point falling within
the cell is selected as a candidate point. Random accesses to the original file are then
pcrrormed to find the real distance between points in the candidate set and Q.
Experiments have shown that the VA-File outperforms ([ 1]) a simple scan in high
dimensions, but its performance in the filtering stage degrades linearly with

dimensionality, this 1s due to the fact that the VA-File size grows linearly with

10



dimensionality and the time complexity of dm;, calculation is alse O(m*N)(N is the
number of data points). Worse yet, if the original data is 1B in each dimension, as in
color histograms, and 8 bits are used for each dimension, the VA-File accomplishes no
compression at all.

The VA-File also has to make a tradeoff between accuracy and compression rate, if more
bits are used, higher accuracy is expected, but performance of the filtering stage will
degrade because of the increased approximation file size; on the other hand, if less bits
are used, filtering should be more efficient, but accuracy suffers, more random access to

. the original file ensues.

2.2 The LPC-File

The Local Polar Coordinate File (LLPC-File) ([2]) is an improvement over the VA-File in

terms of approximation accuracy. Like the VA-File, it divides the data space into

2° rectangles (cells). It uses the same bit-string as the VA-File plus local polar
coordinates to approximate a data point.

Figure 5 illustrates the local polar coordinates for data point P in 2 and 3 dimensional
data spaces. We can use the three tuple (b,7,8) to represent the approximation, b is the
bit-string as in VA-File, 7 is the distance between O and P, ¢ is the angle between the
diagonal line of the cell and the line (P . Since r and @ are coordinates local to 0, we
refer to them as local polar coordinates. In 2 dimensional space, as shown in Figure 5(a),
£ and P’ have the same ( b, r,8) ; Figure 5(b) shows that in 3 dimensional space, points

on the circle revolving around the local diagonal have the same ( b,r,8) . It is clear that

11



the introduction of » and @ gains more accuracy in approximation (The ‘circle’ as

opposed to the whole cell).

ry data space cell ¢ for vector p

-

o

vl

11
/-'
r/

I 7

L A o

00 o1 10 11

(a3 2-dimencional space (b} 3-dimensional space

Figure 5: Local Polar Coordinates in 2 and 3 dimensional data spaces

As shown in Figure 6, if B is the query point, A and C are the points where the hyper-
plain formed by O, D, B intersects with the ‘circle’, the lower and upper bound of the

distance between B and the ‘circle’ dom and dy., are D{B,C)and D(B, A)and can be

calculated as follows.
i

d_. =(D(O, AY + D(O, By’ -2*D(O, A)y*D(O, By*cos(g, +t91))%

d, ={D(O, 4Y + D(O, BY ~2% D(O, 4)* D(0, B) * cos 16, -6,

Once dyin and dues are calculated, same algorithm on the VA-File can be used on the

LPC-File in the filtering and the random access stages.

12



cell ¢ for p

Figure 6: Hlustration of dp, and d,... in 3 dimensional data space

The approximation accuracy gain achieved by the LPC-File can ulso be measured by the
larger d,n:, and smaller d.. than those of the VA-File, as shown in Figure 7.

The LPC-File's approach of adding 3B (2B for r and 1B for &) to the VA-File bit-string,
though relatively small compared with the bit-string (2568 for 256 dimensions using §
bits for each dimension), is still a tradeoff between accuracy and compression rate.

Its performance degrades linearly just as the VA-File, and it gains no compression at all
for 1B histograms, also calculation of dp, 1s more expensive than VA-File. As
experiments show ([2]), its performance gain over the VA-File is marginal under

clustered data distribution and high data density, but the penalty it carries when

13



calculating d., may outWejgh, the precision gain when data distribution a1d density is not

in its favor.

<«—— cellc forp

i\
il LPC)

d wm(v A 1

drad LIPC)

Figure 7: Illustration of d,,.., and d,, in 2 dimensional data space for LPC- and VA-Files

2.3 The iDistance

The iDistance ([11]) method divides the data space into certain number of partitions, and
assigns a reference point for each partition. A data point P is represented as the
coordinate 4 in a one dimensional data space as follows.

d=i*c+ D(P,R)

Point P is located in partition i of which Ri is the reference point, and ¢ js a constant to
stretch the coordinate, so that the coordinates for all data points in partition i falls within

the range of i*c to (i+ 1)*c. We can see that the partition ID 7 is simply the quotient of

d divided by c. Let d,,x D€ the maximum distance between Ri and a1) points in partition



i, obviously ¢ must be greate, than & { goordinate is a

! .. Essentially, the one dimensiona

rough approximation of the Otiginal data.

Rf &

Figure 8: iDistance search area in 2 dimensional data space

The distance between the guery point and the reference point determines which area of a
partition needs to be searched. In Figure 8, R; R; and R; are reference poins of partitions
1, 2 and 3, each partition is the space enclosed in the hyper-sphere aroung yhe reference
point, Q; and Q; are two qusr}' points with search radii & and &;. Given the fact that all

points within some partition 31d having the same distance from the refeye,, point are

represented using the samé one dimensional coordinate, for O, the light gray area within

partition 1 needs to be se arf;ht;m::l, partitons 2 and 3 need not be searcheq; for Q; only the

15



/ight gray area withiy partition 2 needs to be searched, partitions 1 and 3 nﬂf"d not be
searched. It is straighy forward to show that for partition i, given query poi“t Q and

search radius €, a Point within it needs to be searched only when its distanc® from the

reference point falls wjthin the range max (0,0(0,,0)-%) to min(d,,,, P (0,0)+ s:) :

Pa

| (Dl | ]
OI E b i &
£

Q

Figure 9: iDistance data partitioning scheme in 2 dimensional data space, and the search

area (the lined area) for query point O

Data space is portioned in a pyramid like scheme as shown in Figure Y, the centroid of
the data space is used for the apex of all pyramids, and the border hyper-planes of the
data space are used as bases, each pyramid forms a data partition, as in P, p, P, and P,.
Experiments ([11]) show that the further the reference point is from the partition, the
better performance.

The original iDistance algorithm uses B™-tree to index the one dimension,
approximation data. for comparison with VA-File, we can store the aPproximation in a
flat file and use the familiar sequential scan for the filtering stage, withoy 1oss of

fairness. Clearly, iDistance has achieved much smaller CcOmpression rate on the

16



approximation file, suppose the one dimensional coordinate is a 4B float, in 256 float
coordinates space, the approximation is only 1/256 of the original file and stays
unchanged as dimensionality increases. But iDistance suffers from poor accuracy, as
confirmed by experiments ([11]). In figure 9, the search area (lined area) for query pint Q
is much bigger than the hyper-sphere (gray area). It is clear that when dimensionality
increases, the search area grows larger; also, if the data density is very high, more points
fall in the search area, both conditions lead to performance degradation. The time
complexity on calculating D{Oi, Q) is worth discussing, let » be the number of
dimensions, N' the number of data points, if we embed the calculation when evaluating
each approximation, the time complexity is O¢n*N), if we calculate it before evaluation,
the complexity is O¢n*n) because the number of partitions is 2*n, we choose to
implement iDistance using the latter approach, because our N is much bigger than »n, we

can see at high dimensionality, this portion of the calculation is very expensive.



CHAPTER 3
MS-a in Detail

This chapter will describe in detail iso-u hyper-planes, iso-o hyper-cylinders and o~

Constant planes, and how these hyper-surfaces can be used to bind the search area.

3.1 Definitions and Notations

Table 1 describes the notations we use 1n this thesis.

Notations Description

[ & B - ! Search radius o

P(ps, p2...p) € D, | D,point P with coordinates (p;, ps. -, pn)

FD,,. < D, N 1A projection of D, onto m (1 £ m < n) sub-dimensions
dim{Dn) Dimensions of D,, o
M H‘;'] The mean of point P in D, and D, respectively
S, o";"') The standard deviation of point P in D, and D,, rcspccfively
N The diagonal line
¥ig A hyper-cylinder revolving ar;und N

_.;'(E;‘)r - A hy‘per-s;:hefc in D, formed by centroid Q and radius &
P(NO) A hyper-plain formed by #and O

Table 1: Notations




Definition 1 (Mean) The mean of point P(p;, pa,..., Pe) in Dy,

ZP:‘

{w) _ fedim(D, )
HP L l——
m

Definition 2 (Standard Deviation) The standard deviation of point P(ps, Pz, -+ Pa) Il

[ )
=

3.2 Iso-u Hyper-planes

Theorem 1 Al data points on a hyper-plane perpendicular to # have the same p.

Proof: Let's take a look at Figure 10, points M, P and K are on a hyper-plane

perpendicular to #and intercepts A at M,

D(P, M) _[i(p,—m}‘}

inl

=['ng 2ems¥ 5 ;,:,,,]

jwl i=l

=['le1 _2'.&,‘_‘“‘_{:.4. .Eﬁ_‘ﬂi]

iml n n

d{D(P,M)")

= = , L
d{uﬂ) {I"I' H’a’) n

D(P.M yis minimuim only when p =y, , for the samne reason, we have Ha =H,,we

call these planes Iso- ¢ hyper-planes. We also have,

DO, M) =[imf]’ = min = ppin &

[

19



Xi

Iso-u hyper-planes

Up1

a~Constant Planes

Iso-ohyper-cylinders

X2

See Figure 12

See Figure 11

Ll X1

Figure 10: Iso- 4 hyper-planes, [so-o hyper-cylinders and a-Constant Planes in 3

dimensional data space

20



3.3 Iso-o Hyper-cylinderg

Theorem 2 All data points on a hyper-cyh‘na‘er revolving around W have theé same © .
Proof: Let’s take a look at Figure 1 0, points M, P and K are on a hyper—cyliﬂder
revolving around A, H and P are on a line paralle] to A, P and K are on the Circle
formed by the intersection of hyper.sphere (0, D(O, P) ) and the hyper-plane 2 (#, P).

Since geometric relationships between all points on the hyper-cylinder can b€ derived
from the relationships between A7, P and K, we only need to prove these 3 points have the

same o .

Since HP is parallel to A, it must be true that p, = h, +d for some constant d and

1<i<hn,

1
n ENF

_5EP3 E:A

i=l | A=l

n R

Q
-
i

Zh=+zd=+22h *d (Zk}2+(2d) +z-z;:, Zd

[ =] t=1 r=1 Jol =l

n ﬂ

)

th+ﬂ¢d"+2*d2k (Zk) +n *d1+2*n*ZFr *

i=] i=]

=
2

n 4]

| =

th (Zh)

= =1 i=] -

21



and since P and K are on (0, D(O, P) ) and P(,‘,’ P), we have ip'z _

_ | =1
o, =

I3

> 5 X

=1

—_— = Is] 2 -
He "“‘-—-..._—px =0,

we call these cylinders Iso-o hyper-cylinders.

‘We also have

D(M, P)=

-

L]

Z(Ps—m)z};

[ =1

A

> pl-2emxy p, +£m‘}
=

Tt | =

., S pY Oy
ZP.«Z—Z* = + -

iml n

=

L

—o,Jn
r

3.4 a-Constant Planes

Theorem 3 Let Ly be the intercept of Iso-pu hyper-plane P (¥, P) and axis X,1<k<n,

and o, be the angle between lines MP and Mz ’

Proof: To have some intuition, let’s take a look at the angle between Mp . ML, in

figure 10,

cosa, =

pe —_He
o, n-—1
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MP* ML,
D(M,P)*D(M,L,)

cosa, =

MP*ML, =—(p, —m)m—(p, —mym—..+(p, *m}{E": p,—m)—..—(p, —mm

i=l
= _mipi +nm® + p*ip,- -my p
i1 i=1 f=1

2 2
=—mn, + Ay + P, — e

=np,(p, —Hp)

DM, L) = [(Z p,—m)’ +(n—l}m2‘]2

i=l J

=[c"zp.-f —2(2;:,-)m+nm’]z

i=1

= [nzp.f, ~ 2!:].1.?, + n],Li ]5
I
=, [n(n - I)F

coso, = MP » ML,
" D(M,P)*DM,L,)
o (g - )
(0, ), [ D)
Py —HUp

B opvn—1

We call the hyper-planes with #'buried inside “a-Constant planes”, the angle between

these planes and any ML, (L being the intercept of any Iso-u hyper-plane and axis
x,,1 <k < n, and M being the intercept point of #and the Iso-u hyper-plane) can be

calculated using Equation (4).
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3.5 Approximation using Hyper-surfaces

Theorems 1, 2 and 3 have defined hyper-surfaces using a point’s x, ¢ and a constants, this
section will try to approximate the search space without false dismissals using these

surfaces, clearly the tightest bounding surfaces are those passing through the tangent

points of £(0.).

A N

bounding Iso-u hyper-planes

-\

bounding Iso-ohyper-cylinders

Figure 11: Hyper-plane 2(A, 0) in figure 10

24



3.5.1 Bound of the Means
Lemma 1 Let Q be the query point, ¢ the search radius and P any point in the search

sphere 8(Q,¢) i.e. P satisfying Equation 1, we have,

g

1o — o] < =

Proof: Figure 11 is the detailed illustration of hyper-plane 2 (A4, Q) of Figure 10, the
bounding Iso- & hyper-planes pass through the “upper’ and ‘lower’ tangent points of
F(0,¢) and intersect with A at points M, and M,.

D(O,M,) < D(O,M,) < D(O,M,)
D(O,My)~& < D(O,M,) < D(O,M,) +&

|D(O, M)~ D(O, M, )|<e

IFP\/;“HQ'J;'SE
€

|l—l,r- - l-lg' - In

Clearly, bounds by these hyper-planes are not confined and will lead to large false

returns. In the next section, we shall bind the search area further by the i1so-hyper-

cylinders.

3.5.2 Bound of the Standard Deviations

Lemma 2 Let Q be the query point, e the search radius and P any point in the search

sphere $(Q,&) i.e. P satisfying Equation 1, we have
ld P —G'QI <

-
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Proof: Figure 11 is the detailed illustration of hyper-plane 2(A, Q) of Figure 10, the
bounding Iso- o hyper-cylinders pass through the ‘right’ and ‘left’ tangent points of &
(0O,&) and intersect with A at points NV, and NV,

D(M,,N,) < D(M,,N,) < D(M,,N,)
D(M,.Q)—e<D(M,,N,)s D(MQ,Q)+5
\D(M,y,N,) - D(M,,0)| < €
opfn—cyn|<e

€

Jn

Lemmas 1 and 2 already confine the search area in a hyper-ring (see Figure 10), but its

iG,,—UQ|S

volume is still quite large compared with the search sphere, we shall bind the search area

further by the a-Constant Planes.

3.5.3 Bound of the ¢-Constants

Lemma 3 Let Q be the query point, & the search radius and P any point in the scarch

sphere $(Q,¢) i.e. P satisfying Equation 1, we have

arccus(p_‘_:_.; - .M) Sarcsjn(.___._

ag,n—1 G, ,Vn—] 0(,\/;)

Proof: Figure 12 is the detailed illustration of the Iso- hyper-plane which passes through
query point ( in Figure 10, the bounding a-Constant planes pass through the tangent

points of §((,s) at the smallest and biggest « angles possible.
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Figure 12: The Iso-u hyper-plane which passes through query point Q
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3.5.4 The MS-a Approximation Shape

From Theorems 1, 2 and 3, u, ¢ and a values essentially define some hyper-surfaces, u
defines a iso- u hyper-plane and vice versa, same for ¢ and a, when we say 4, the iso- u
hyper-plane is also implied.
Theorem 4 Let (O be the query point, ¢ the search radius, the search sphere 8((, &) can
be approximated by a piece of a hyper-ring, the hyper-ring is defined by the following u
and o thresholds, the piece is cui by the a-Consiant planes defined by the following a
thresholds.

p min = max(0,p, —Sf\/;}

B_max =p, +&/ J;

o _min = max(0,0, —&/</n)

O _max =0, +&/ Jn

o_min = max(0, o, -, )

a_max =a, +a,

Proof: These thresholds should be straightforward from Lemmas I, 2 and 3.

In fact the shape of the approximation is illustrated in Figure 13. Since the means bound
parallels the diagonal line which is the longest line in the data space, as long as the search
radius does not exceed the longest possible length in the data space, the MS-a
approximation will never include the entire data space, essentially this approximation
scheme solves the dimensionality curse by a tight yet efficient geometric approximation

of the search area.



Figure 13: Shape of the MS-a approximation

3.6 Subspace Bounds and MS-a Configurations

The search sphere 8 (Q.g) can be projected to an m dimensional subspace D, , for
1< m=<n,wehave,

D'™(P,0) =[i(p,- —q,-)*]’

i=1
L
n 2
D(P,Q) = [Z(p,- ~q, }‘]
=1
D"NP,Q)<D(P,Q)<e
which tells us that the projected sub search sphere satisfies the same condaition for the n

dimensional search sphere. Since P salisfying the same pre-condition for Lemmas 1, 2

and 3 both in the n and the m dimensions, we can use the lemmas to prove the following

corollaries.
Corollary 1 Let Q be the query point, & the search radius and P any point in the search
sphere 8(Q,¢) i.e. P satisfying Egquation I, for | <m < n, we have

A ey~
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Corollary 2 Let Q be the query point, & the search radius and P any point in the search
sphere 8(0,2) i.e. P satisfying Equation I, for 1 <m <n, we have

E

Jm

Corollary 3 Let Q be the query point, & the search radius and P any point in the search

(m) _ lm)
Ia,, o5 |<_:

sphere $(Q,&) i.e. P satisfving Equation I, for 1<m < n, we have

() {m}
—Hp

arccos(—LE—Hr }— arccos( LWL )| < arcsin( - )
ot Jm-1 crg"');m—l cr'u""am

We can vse these corollaries to bind the search area in groups of dimensions, an
illustration of subspace bounding is given in Figure 14,

Subspace bounding introduces the concept of MS-a configuration that is the combination
of the number of subspaces and the number of dimensions in each subspace. The
configuration of n subspaces (1 dimension in each subspace} is actually the hyper-cube
approximation; the configuration of 1 subspace reduces the dimensions 1o 3 {4, ¢ and a),
an important aspect of the MS-a approach is to find the configuration for optimal
performance. For a configuration of k subspaces with same number of dimensions,

m = n/k is the number of dimensions in each subspace and the dimensionality is reduced
to 3k. Choice of a configuration should take into account of both the approximation
accuracy and the number of the reduced dimensions (3k), a configuration that renders the
most accurate approximation may not be the optimal one if it requires more dimensions

than a less accurate configuration,

30



As for iDistance, a comparison of Figure 9 and Figure 14 shows that MS-a is more
accurate. iDistance’s accuracy suffers more at higher dimensionality and denser data
space, we'll try to demonstrate this in our experiments. In chapter 2, we established that
VA-File and LPC-File incurs O¢n*NJ in calculating d»; iDistance has a O(n*n) portion
in calculating query distances from reference points and O¢N) for accessing all
approximation data; MS-a has to calculate (i, ¢ and a) for the query point, time
complexity for this part is O¢k), it’s clear that accessing and evaluating all approximation
data carries Ofk*N) complexity. Since X is a number from 1 to 4, MS-a is obviously more
efficient than VA-File and LPC-File in the filtering stage, our experiments also show that
it is in fact more efficient than iDistance at high dimensionality due to the Ofn*n) portion

that iDistance carries.



+K3.

X2

Iso-of™ hyper-cylinders

1s0-24" hyper-planes

X

Figure 14: Subspace bounding on a 2 dimensional projection

3.7 Comparison with Existing Approaches

Using the same filtering stage as in VA-File and LPC-File, the compression rate of the
MS-a is determined by the number of subspaces k in a configuration. For k =1, the
approximation data point consumes 12B (3x4=12, assuming y, ¢ and a are 4B floats),
suppose each coordinate of a data point is a 4B (32-bit) float, in 256 dimensions, the
compression rate for MS-a is less then 0.012 as opposed to 0.125 ~ 0.25 for VA-File and
LPC-File, for one byte data point, it is less than 0.047 as opposed to 1 (no compression).
Although k£ maybe higher for optimal configuration, it is clear that the optimal £ is not

linear to n, because if k=n, MS-a degenerates to the most ineffective hyper-cube.
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CHAPTER 4
Objectives

Experiments show that MS8 (the approximation scheme using only the means and
standard deviation bounds with a configuration of &=8) significantly outperforms simple
scan, hyper-cubic based approximation schemes and data transformation schemes in high
dimensionality ([ 10]).

Recently filter based VA-File, LPC-File and the iDistance methods have been brought to
our attention, we believe MS-a should outperform or at least be a competitor for these
approaches. We aim to demonstrate our thoughts by experimenting these methods in
spherical range search, all 4 methods were implemented in a way (see the next chapter)
such that experimental results on them can yield fair comparison.

Though 4=8 has been shown to be the optimal configuration for MS at 256 dimensions
([10]), we think a smaller ¥ might be the optimal for MS-a because of the introduction of
the a-Constant bounds which significantly improves approximation accuracy at or ncar
the center of the data space. We performed experiments to find the optimal configuration
for MS-a.

Besides experimenting with various configurations, we also experimented with various

dimensions and search radii. Both approximation accuracy and response time were used

in the comparative study.
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CHAPTER S
Technical Methodology

In this chapter we shall describe our method that aims to provide a fair platform for our

comparative study of the 4 search approaches (MS-a, VA-File, LPC-File and iDistance).

5.1 Data Preparation

The (u, o, @) values of computer generated random data have a sharp bell shaped data
distribution which renders MS- & ineffective in the filtering stage, fortunately real data
has a more uniform distribution of these 3 tuples ([10]), we used real data in our
expernments.

Real data were obtained by sampling images in RGB color format at 256 locations which
constitutes the image’s 256 feature vector (a data point in ),,, data space), the R color at
each location is a byte value and used as the coordinate of one dimension. Lower

dimension data were obtained by selecting the lower dimension coordinates of each 256

feature vector. More than 15,000 data points were used in our experiments.
Approximation data {(x, o, a) tuple for MS-«, bit-string for VA-File, ( ,r,8) tuple for
LPC-File and i *c + D(P, R} for iDistance} were generated based on base data and

stored in a flat file (the compressed file) in the same order as the base data so that the

base data point can be easily located based on a candidate’s position in the compressed

file.

34



5.2 Algorithm Implementation

Spherical range search were implemented for all 4 methods in a two-stage (the filtering
and the random access stage) algorithm. We choose to use 8-bit to approximate each
dimension for VA-File and LPC-File, though smaller number of bits can be used at high
dimensions, 8-bit is chosen because it demonstrates more evidently that their
performance deteriorates linearly with dimensions.

The fltering stage is a simple scan of the compressed file, based on each of the 4

method’s filtering criteria {the threshold values in Theorem 4 for MS-¢, local distance

within max (0, D(0,.Q)- e) to min (cf;‘m, D(0,,Q) +E:] for iDistance and &, <& for
VA-File and LPC-File] the ID of the candidate approximation data is stored in a memory
heap.

The random access stage traverses the candidate heap, performs a random access to the
base file to find the ‘true’ data point based on the 1D of the candidate, and only those
points that satisfy Equation | are kept in the result set.

Because same file and memory access methods were used for all 4 methods and the

framework 18 the same, our implementation provides a fair platform for comparative

study.

5.3 Experiment Methodology

For a certain combination of search method, dimensionality and search radius, 99 query
points were extracted from the base data file upon each of which a spherical range search

was performed, and the average result were used for our study.



To find the optimal configuration for MS-a, we conducted experiments with » (number
of dimensions) in {8, 16, 32, 64, 128, 256}, k (number of subspaces) in {1, 2, 4, 8, 16},
the k value which generates the smallest candidate set and consumes the least response
time is the optimal configuration for the specific n and was used in our comparative
experiments,

In our comparative study, experiments were performed at 8, 16, 32, 64, 128, 256
dimensions, search radii in {0.2, 0.6, 1, 1.4, 1.8, 2.2, 2.6, 3}. We watched the %return
(number of candidate points as opposed to total number of points) and response time in
the filtering stage to evaluate the performance of all methods in the filtering stage. Total

response time was used as the yardstick for overall performance evaluation.
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CHAPTER 6

Comparative Study and Performance
Comparison

Our experiments were performed on a Dell Dimension L1000R PC running Windows

2000 with 1GHZ CPU and 256MEG RAM.

6.1 MS-« Optimal Configuration

In order to find the optimal configuration of MS-a, we conducted spherical range

searches for various k and search radii, results for 256 dimensions are given in figure 15.

— 80
- T Total Response
7 05 L 70 Time at
= - Radius=1.2
ﬁ 0.4 ram. - 60 T Total Response
28 | Time at
2 = A - 50 g Radius=1.6
= 03 — 40 £ | EEENTotal Response
@ : i = Time at
§ 0.2 i 2 [ 3g 2 Radius=2.0
g : : o : q_ —%— % Return at
2 : . ¥ s - L 20 radius=1.2
C - 10 —8— % Return at
radius=1.6
0 T T T o 0
=1 K=2 K=4 K=8 K=18 —a— % Return at
Partitions (K) radius=2.0

Figure 15: MS-a configurations at 256 dimensions

Search radii 1.2, 1.6 and 2.0 were chosen because they are in the medium radius range of

our comparative study (0.2 - 3.0). From the above figure, the configuration at &=2



provides the smallest %return and near optimal total response time. The experiments
were performed on byte sized base data, for 2 byte short integer and 4 byte float base
data, k=2 configuration should provide more evident performance advantage over k=1
because smaller %return in the filtering stage saves more time in the random access stage
for bigger base data file. We decided to designate k=2 as the optimal configuration for
256 dimensions and used it in the following experiments.

Similar experiments were performed for dimensions 8, 16, ....., 128, and the optimal
configurations are plotted in Figure 16. Clearly k grows very slowly with dimensionality

(sub-logarithm indeed).

3_.___ = - = - P — —

L]
n

| —— Optimal K |

Optimal Fartions (K)

1 g L :‘.‘ T ;'dl- T Eal T T
B 16 3z 64 128 256
Dimensions

Figure 16: MS-& optimal configuration partitions (k) al various dimensions

6.2 Analysis of the Filtering Stage

In section 3.7, we discussed the performance of the four methods in the filtering stage. To
prove our analysis, we conducted spherical range searches across dimensions 8, 16 to

256. We chose to use a big search radius for each of these searches so that the filtering
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stage returns all data points, thus excluding the affect of search radius in the filtering

stage and provide a fair comparison. The results are given in Figure 17.
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Figure 17: Filtering Stage Response Time at various dimensions

The response time of the filtering stage for MSA stays near constant for dimensions 8
through 64 and then doubles at 128 but almost no change at 256 dimensions, this is
expected because optimal k& only grows to 2 for 128 and 256 dimensions and time
complexity is O(k*N).

Figure 17 clearly shows the near linear growth of response time for VA-File and LPC-
File, and the penalty that LPC-File suffers for the time it spends on calculating the angles
and distances.

iDistance shows comparative filtering stage response time with MSA, based on the
discussion in section 3.7, we believe the spike at dimensions 128 and 256 is due to the

O(n*n) portion of the calculations.
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6.3 Performance Study at 256 Dimensions

We performed spherical range searches across search radii 0.2, 0.6, ....., 3.0 at 256
dimensions. We paid attention to approximation file size, %return, filtering stage

response time and total response time.

5,000,000

4,000,000 A

3,000,000 4

1,000,000 -
0 -

VA File LPC File IDlstance

Figure 18: Approximation file size at 256 dimensions on 15,766 byte-sized data points

Figure | 8 plots the approximation file sizes o fthe base data and the 4 approximation
methods. Using 8-bit approximation scheme, VA-File and LPC-File achieve no
compression. 1Distance has the smallest approximation file as is expected. The
approximation file size for MS-a is based on optimal configuration at 256 dimensions

(k=2), it is roughly 1/10"™ of the base file size.
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Figure 19: Filtering Stage % Return at 256 dimensions and various search radii

Figure 19 plots the %return of the 4 methods, VA-File and LPC-File provide excellent
approximation accuracy, almost 100 times betier than MS- & and iDistance. Note the
scale of y-axis in this figure is logarithm, MS-a provides significant accuracy
improvement over iDistance.

Figure 20 shows the response time in the filtering stage, MS-a outperforms all 3 other
methods in this regard.

Figure 18, 19 and 20 demonstrate that M S-a strikes a balance belween approximation

accuracy and efficiency.
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Figure 20: Filtering Stage Response Time at 256 dimensions and various search radii

Finally the yardstick (Total Response Time) for performance comparison is given in
Figure 21, results for Simple Scan 1s also plotted. We can see that MS-a consistently
outperforms all other methods including Scan, until search radius 3 when all 4 methods
under-performs Scan. Search radius beyond 3 is not important for similarity search
because 2% of data points are within the search sphere, for our more than 15,000 base
data points, that’s more than 300 points.

LPC-File actually is worse than Scan in our study because the data distribution is not
highly skewed as in the original study ([2]), and data density is quite low {15,000 as
opposed to 1,000,000 in ([2])). But LPC-File has its place when data distnibution and
density is in its favor.

At search radius 2.2, VA-File under-performs Scan, iDistance under-performs Scan at

search radius 1.4,
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‘Figure 21: Total Response Time at 256 dimensions and various search radii

(Base data: 256 byte color histograms)

Experiments on 2-byte short integer and 4-byte float base data were also conducted
(results not plotted here), VA-File outperforms MS-«a around search radius 0.4 ~ 0.6 on
these base data because its filtering power gains significant savings in the random search

stage, MS-a still consistently outperforms LPC-File, iDistance and Scan.
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CHAPTER 7

Conclusions

We proposed MS-a as a solution for high-dimensional multimedia database search. MS-
« strikes a balance between approximation accuracy and efficiency, and scales well with
dimensionality and search radii.

It outperforms Simple Scan, traditional hyper-cube based approximation, data
transformation techniques and dimensionality reduction techniques.

Based on our experiments, MS-a consistently outperforms recently proposed LPC-File
and iDistance methods. It consistently outperforms VA-File on byte sized base data in
entire range of search radii, and in small radii on short integer and float base data.

We conclude that MS-a i1s an efficient solution for the curse of dimensionaliry, and is

especially powerful in multimedia image databases such as color histograms,
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