
PREDICTING FINANCIAL MARKETS USING NEURO

FUZZY GENETIC SYSTEMS

By

BRENT ARTHUR DOEKSEN

Bachelor of Computer Science and Mathematic

Oklahoma State University

Stillwater, OK

1999

Submitted to the Faculty ofthe

Graduate College ofthe

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of

MASTER OF SCIENCE

December, 2003

PREDICTING FINANCIAL MARKETS USING NEURO

FUZZY GENETIC SYSTEMS

Thesis Approved:

~~

~~. --~h ~ 'I

/uean or t e

11

PREFACE

This study was conducted to provide knowledge in stock market prediction

through the use of several different types of artificial intelligence systems. Many

attempts have been made to accurately predict the stock market with only marginal

success. This study shows that predicting the stock market is possible with very little

input data and compares the abilities of several different methods: Neural Networks,

Fuzzy Systems with Mamdani and Takagi Sugeno inference method. Mamdani Inference

System was adapted using back propagation and genetic algorithms. Takagi Sugeno

Fuzzy inference system was adjusted using back propagation learning and least squares

method. This research is concluded with a yearlong profit simulation on two stocks,

Microsoft and Intel. Thus showing how these models can be used to make profit.

I sincerely thank my master's committee -Dr. Aijth Abraham (Chair), Dr.

Dursun Delen, and Dr. Johnson Thomas -for their support in the completion of this

research.

111

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

Neural Networks 1

Conjugate Gradient 5

Fuzzy Logic 5

Genetic Algorithms 7

Decision Trees 10

Classification and Regression Tree 12

Objective of Study 13

Significance of Study 14

Data Set and Tools Used 14

II. LITERATURE REVIEW 17

Hurst Exponent. 17

Scaling and Normalization 18

Overfitting and Overtraining 19

Learning 20

Splitting the Data Set. 21

Recent Trends 22

III. HYBRID INTELLIGENCE SYSTEMS ARCHITECTURE 23

Stand Alone 23

Transformational Hybrid Intelligence System 23

Hierarchical Hybrid Intelligence System 24

Integrated Intelligence System 25

Conclusion of Hybrid Intelligence Systems 26

IV

Chapter Page

IV. HYBRID INTELLIGENCE SySTEMS 20

ANFIS 27

Neuro Fuzzy 30

Takagi Sugeno Neuro Fuzzy 30

Mamdani Neuro Fuzzy 31

Input Selection 32

V. HURST EXPONENT ON DATA. 33

VI. DATA PREPERATION 35

Input Reduction 35

Data Reduction 39

Data Transformation 41

VII. RESUTLS 42

Testing Standards 42

Conjugate Gradient vs. Back Propagation .43

Takagi Sugeno Neuro Fuzzy Inference System Tests .45

Mamdani Neuro Fuzzy Tests .46

Classification vs. Regression .47

Random Data Sets 48

Even Split in Classification 50

VIII. SIMULATIONS AND DISCUSSIONS 51

IX. CONCLUSION 55

X. FUTURE WORK 57

BIBLIOGRAPHy 59

v

LIST OF TABLES

Table Page

2.2 Normalization of a series 19

5.1 Hurst Exponent Calculations 35

6.1.1 Spearman Correlations 37

6.1.2 Greedy Input Reduction: 8 inputs 39

6.1.3 Greedy Input Reduction: 7 inputs 39

7.2 Conjugate Gradient vs. Back Propagation .45

7.3 Takagi Sugeno Neuro Fuzzy VS. Neural Networks .47

7.4 Mamdani Neuro Fuzzy Results .48

7.5 Classification vs. Regression 49

7.6 Classification across 3 Random Sets 50

7.7 Classification with Even Split. 51

8.1 Profit Simulation 52

8.2 Profit on MSFT vs. INTC 55

VI

LIST OF FIGURES

Figure Page

1.1 Neural Network 3

1.3.1 Binary String Representation 8

1.3.2 Elitism 9

1.4 Example Decision Tree 10

1.7 Microsoft and Intel Stock Price 15

3.3 Hierarchical Hybrid Intelligent System 25

3.4 Integrated Hybrid Intelligent System 26

4.1 ANFIS 28

4.2.1 Takagi Sugeno Neuro Fuzzy Inference System 31

6.1 Sensitivity About the Mean: MSFT 38

7.2 Conjugate vs. Back Propagation .45

7.6 Random Data Sets 50

8.1 Microsoft Profit Simulation 53

8.2 Transactions 54

8.3 Intel Profit Simulation 55

Vll

CCI

AI

ANFIS

CSI

INTC

MF

MSFT

MSE

PE

RMSE

TSK

NOMENCLATURE

Artificial Intelligence

Artificial Neuro Fuzzy Inference System

Michigan's Consumer Sentiment Index

United State's Consumer Confidence Index

Intel's Trade Symbol

Membership Function

Microsoft's Trade Symbol

Normalized Mean Squared Error

Processing Element

Root Mean Squared Error

Takagi Sugeno and Kang Neuro Fuzzy Inference System

Vlll

Chapter 1

Introduction

Moore's law is still in tack and thus processors are doubling in speed

approximately every 18 months. This new power is very helpful with artificial

intelligence, which was only a mere conception a few decades ago. Now, thanks to

abundance of processing power, we can even combine artificial intelligence techniques in

ways not possible just 10 years ago. Inference systems can learn patterns in megabytes of

data in only seconds, thus allowing for more and more data to be learned by the

machines. The ability to parse through tons of data is critical in the financial world as

there are gigabytes of data, and the ability to understand and learn the non-linear patterns

in an unsupervised manor is critical to success. This paper will delve into some of the

most popular artificial intelligence methods used today. These methods are: Neural

Networks, Fuzzy Inference System, Genetic Algorithm, and Decision Trees. Once the

strengths of these artificial intelligence methods are explained, we can then try and create

a hybrid intelligence system that realizes the strength oftwo or more of these intelligence

systems by combining them into one significantly more advanced system.

1.1 Neural Networks

Neural Networks is an attempt at creating a computer that thinks in a manner

similar to humans. The term, neural networks, was originally coined in the 1940's.

Neural Networks can handle complex problems that have as many as 200 independent

variables [23]. Neural networks are great for problems that are complex and contain

I

uncertainty. Neural Networks can even determine trends over time [18], which is a

limitation of decision trees and many other artificial intelligence mechanisms. Time

series analysis is critical to any financial model because we must learn how the prices

changes over time and what inputs are most critical to future prices.

Database marketing is an area that would benefit from neural networks. Database

marketing often has hundreds of independent variables, which is well suited for a neural

network. Figure 1.1 shows what a neural network could look like. Independent variables

are inputted to every node in the hidden decision layer and their output is passed onto the

next decision layer (depending on how many layers have been set up). Once the output is

determined, its result is compared to the actual outcome and the result is backward

propagated into the systems and is weighted according to the systems learning rate.

Selecting the right learning rate and momentum are critical to the success of the neural

network. Good programming can avoid the user from having to proceed through the very

lengthy process of trial and error. Neural Planner provides a "Smart Start" option that

will search for the ideal setting for the learning rate and momentum [26].

2

I -~'
-~

Output C., '-~~-"""--'

n ----------------'-""

'"'-------.::::::::-.,....;{}-" '\ p ~ ~,~ -=~~.-\"
-----:;::-. ~ -~

--
----"...-/"'<

t--~-/--
/'

u

./"",,0
s ~.--

Figure 1.1 Neural Network

The two key points that must be followed when designing a neural network are:

do not over train the neural network and pick a good starting point. If a neural network is

over trained, it will memorize the noise of the dataset and not attain the true signal of the

population. Also, if the wrong starting point is selected the results tend to be very poor as

a local minima will be found. Luckily, good programming can solve both of these

problems. The algorithm can check accuracy as it trains and as soon as the accuracy

starts to dip, because of over training, the program can be rolled back to the best results.

This is done in Weka [30] by setting a threshold variable to an integer x. When the

network trains for x epochs and the performance doesn't get any better on the cross

validation set, then the network is rolled back to the best result and stops training. To

solve the wrong starting point, a program should choose several starting points at random

and then pick the one with the best results. One final problem with a neural network is

3

the high price of software that runs this algorithm. ModelMAX, a tool used by many

direct markets can be an extravagant expense to many companies [24].

The positive side of using a neural network is it can adapt for areas of higher

uncertainty and has the ability to solve larger problems. Neural networks are well suited

for problems that are highly non-linear. These types of problems are very common in

database marketing with hard to define variables such as customer satisfaction and even

harder to define dependant variables such as customer loyalty. Another strength of neural

networks is the ability to predict a continuous variable, whereas decision trees have

problems with this topic. The ability to learn new situations and recognize trends is

another reason that neural networks are popular. The ability of the neural network to

reduce costs can easily outweigh the cost of buying the software for any mid-size or

larger direct marketing company, making the decision to do so profitable and intelligent.

The cost ofthe software will eventually come down, and today there are many tools that

are available for academic use; however, many of the free tools, such as Weka and Fuzzy

Cope 3, are not very user friendly. Plus they lack much of the power of the commercially

available software.

The overall performance of neural networks are also improved though the use of

different technique to find the global minimum. These new methods use gradient-based

descent techniques such as conjugate gradient descent. To begin with, there is the

Newton method, which attempts to find the steepest descent. Second, there is the

Levenberg-Marquardt variant, which is discussed in the next section, and lastly there is

the Quasi-Newton Method. All of these algorithms arrive at an optimal solution much

4

faster than back propagation and require fewer epochs resulting in less expensive

hardware being required.

1.1.1 Conjugate Gradient

The conjugate gradient is a method, which uses an approximation of the second

order derivative without actually calculating the second derivative. This process was

originally discovered in the 1960s for solving linear systems [18]. This method is

exceptionally fast and thus is very useful with solving large data sets or when many

networks need to be built. The gradient uses a vector of previous points to determine the

conjugate direction. Imagine that you are standing on step embankment that leads to a

river that is going to your right and empties into the ocean. The ocean represents the

minimum and so the best path is a straight line to the ocean. If you used a steepest

descent method you would head straight down to the river first and once you got there

tum head down the river. A conjugate gradient method would send you directly towards

the ocean because it makes use of the second derivative. [4]

1.2 Fuzzy Logic

Fuzzy logic gives a set of natural language rules that are easily understood by

humans. Fuzzy logic, which is based on the Fuzzy Set theory, was original discovered by

Zadeh in 1965 [35]. Fuzzy set theory can be viewed as a generalization ofthe classical

set theory [20]. The primary advantage of fuzzy logic is its readability [28]. Fuzzy

Inference systems have been successfully used in many different areas such as automatic

5

control, data classification, decision analysis, time series prediction, and pattern

recognition [16]. Petrovic et al. [24] use fuzzy logic in a multiple objective decision

model for a manufacturing plant. The rules for a fuzzy system can be generated either

by interviewing experts in the field or mechanical mechanisms used in a fuzzy inference

system, which uses supervised learning to recognize patterns in the data. A typical fuzzy

rule is given below:

If (customer has high credit score) and (customer has high income) then (grant loan).

Equation 1.2

In the above example it is obvious that there is no absolute definition for either statement.

Not everyone is going to agree that $50,000/year is a high income. Even ifthe limit was

moved up to $200,000/year a few people would still not consider that to be a high

income. Thus, we must define a membership function to describe the fuzzy relationship

between having a high income and any specific income. The membership function below

helps determine the degree of "if' relating to whether or not a customer has high income.

1
Equation 1.3 %Highlncome = 30,000-income)

(30,000
 1+ 2

In the above example a customer with an income of $30,000/year is said to have

high income with a certainty of 50%. Similarly a customer with an income of

$90,000/year is said to have a high income with certainty of 80%. Knowing the certainty,

6

allows the system to weigh rules within the system and give preference to rules that the

customer fits better.

As opposed to traditional probability theory not all possibilities must add up to

100% [29]. For example, let us say that there are two cases: a person is rich or a person

is poor. It is possible that according to a membership function, Jack is rich (CF = 0.65)

and Jack is poor (CF = 0.20). Except 0.65 + 0.20 "* 1.00 and this case is possible in

fuzzy logic but not in probability theory.

Fuzzy Logic is used today in many different real world applications. One such

example is an Anti-Lock braking system [29] where instead of the traditional anti-lock

braking system, which uses an on/off pumping action to unlock the wheel, there are about

18 sensing factors. When a sensor begins to come close to being locked, the pressure on

the brake is slightly released and therefore maximizing the friction helping the vehicle to

stop sooner. Fuzzy Logic is commonly used in control systems such as a subway control

system or other motor controls and navigation [5]. One system designed by Hall (1987)

provided for small and medium size businesses to plan strategically for a single product

basic on how the company answered five questions regarding their strength and

weakness. The system was known as STRATASSIST [29].

1.3 Genetic Algorithms

John Holland at the University of Michigan (1975) was the first to propose

genetic algorithms. Genetic Algorithms have been used in modeling exchange rates [15]

through a use of a multi-agent system. Genetic algorithms loosely mimic the concept of

natural selection. Each member is made up of a chromosome, which is normally a binary

7

string. This chromosome defines the characteristic ofthe member of the population and

that allows the algorithm to determine its fitness. A population is a group of members

and changes from generation to generation through methods such as mutation and

crossover. The fitness function is used at every generation to see which members are fit

and most likely to survive to the next generation through a crossover operation that can

be thought of as mating.

Use the integer equalvent of the
binary value to determine its fitness

10010 Fitness Evaluation 18

Fitness Evaluation 6 00110

Figure 1.3.1 Binary String Representation

The process of creating genetic algorithms goes like this: Find a way of representing a

member of the population at a bit string, this is known as Encoding Schemas. The

second step called fitness evaluation finds a way of evaluating the fitness of this

member. Step three known as selection, selects the members of the population that are

the most fit. Finally the fourth step called crossover, mates the fittest members.

8

Using Integer Fitness and using elitism and
crossover to create the next generation

11011 11011 ,,,-:> 11010 11010
00010 10010
10000 01000 I....,.>10000 f~?> 01010 01010 11000
00110 00010
Current Next
Generation Generation

Figure 1.3.2 Elitism

We must also introduce some randomness to ensure more of the search space is

covered and this can be done by mutation. Mutations can be done by simply flipping a

bit in the string to produce a new mutated string. Mutation does not occur in every

generation and can be changed by adjusting the mutation rate. It is also critical to avoid

local minima. If the mutation rate is too high the generation will lose the chromosomes

that were created through the selection process and the search will be very similar to that

ofa random search. In addition if the mutation rate is too low the algorithm is likely to

get stuck in local minima, but generally speaking it is best to keep the mutation rate low.

Once these steps are done go back to step 2 and repeat until the desired fitness is

achieved.

Another common practice is called elitism, which keeps the very best members of

the current generation and puts them in the next generation without any crossover or

mutation. The rest of the population is then used for crossover and mutation to create the

remaining members of the next generation.

9

Genetic Algorithms are an exceptionally powerful tool, as they are very effective

at searching a predefined search space, and this ability helps genetic algorithms to be

used in a hybrid manor with other tools.

1.4 Decision Trees

A decision trees can be used to predict an outcome for dependant variable based

on many independent variables. The root node ofthe tree contains the most significant

independent variable. As the tree is traversed, the node becomes less important to the

outcome until a leaf node is reached and an outcome is predicted. Figure 1 below shows

a simple decision tree that could be used by any direct marketer.

Decision Tree

Figure 1.4 Example Decision Tree

The creation of a decision tree is done by determining the relative importance of

each independent variable on the dependent variable. One such method of classification

is the C4.5 tree. Equation 1.4 and 1.5 show how the importance of each independent

variable is qualified. (Let p be the number of elements in class P and n be the number of

10

elements in class N.) For example, class P could be the people to receive catalog and

class N could be the people who do not receive a catalog.

p pnn
I(p,n) =---log2-----log2--Equation 1.4

p+n p+n p+n p+n

SetSispartitionedintosets{SpS2, ..., Sv }. For Set Si' Pi is the number ofp's in the

set and ni is the number of n's in the set. I(p,n) is the importance to model. The higher

the I(p,n) is the better this combination is for a split. A value of zero means to attach no

importance to I(p,n) and a value of 1 means n and p have ideal values. Gain (A) is the

amount of information gained for an attribute A with a highest gain being the attribute to

use as the root.

v p+n
Gain(A)=I(p,n)-L iI(Pi,ni) Equation 1.5 f

i=1 p+n

The weakness of a decision tree is that it cannot adapt to trends in the data or

changes that occur over time. If particular groups of people stop ordering from catalogs

because of a new competitor, for example the Internet, the decision tree created will not

capture this trend. A possible solution to this problem would be to rebuild the decision

tree on regular intervals to catch any business or customer trends.

A benefit of the decision tree is that the results can easily be explained. For

example, a bank can easily explain to a customer why they were declined using a

decision tree. Decision trees can be very accurate when enough data is available for

training, even beating human experts. This process can be seen when looking at a bank

trying to determine qualified loan applicants. American Express UK loan officer's

manually determined if applicants in the grey area would be accepted for a loan, but they

11

where right only 50% of the time. After a decision support system was implemented, that

used a decision tree, the success rate increased to 70% saving the company money [29].

1.4.1 Classification and Regression Tree

CART (Classification and Regression Tree) is a special case of a decision tree

that can be constructed by examining data in a systematic approach; the CART grows

through a series of splits. A CART determines the importance of each variable before

adding a splitter in the tree. Starting from the root node an exhaustive search is

preformed on all inputs to determine which input creates the least error when picked.

After finding the split, two disjoint sets are created according to the split and each set is

then passed on down the tree and the process repeats with the best split picked at each

level. This process terminates when the gain for each level does not meet a threshold or

when a predefined error is reached.

This technique can also be useful in determining which variables are the most

important in a data set and thus have the greatest impact on the output. The most

important variables will be contained towards the top of the tree, and the least important

will not exist in the tree. In this study a CART was designed to help pick which inputs

have the most impact and which inputs could be removed from the models with very little

impact on the performance of each network.

12

1.5 Objective of Study

The main focus of this study is to compare different performances of artificial

intelligence paradigms on predicting the direction of individuals stocks, and how hybrid

intelligence can be used to better solve problems. The first algorithm examined is

Artificial Neural Network using conjugate gradient descent algorithm. The second

algorithm used is a straightforward back propagation method. A Mamdani Neuro Fuzzy

inference was built and then the membership functions were modified using back

propagation and a Genetic Algorithm. This showed how effective Genetic Algorithms

could be and provide a comparison with Takagi Sugeno Neuro Fuzzy model. The ANFIS

model is based on Takagi Sugeno Fuzzy Inference System and was compared with a

neural network on both performance and training time required [18]. A Neuro Genetic

solution was also built which had a Neuro network as its base and used genetic

algorithms to determine the strength of each input, thus eliminating some of the

unnecessary inputs; this created a hierarchical hybrid intelligence system. Once all

networks were built, the last part of the experiment was to use the best result from the

above mentioned algorithms in a simulation to determine how much profit could be made

using this method versus a simple buy and hold technique. For the simulation, any

money left on the sidelines will earn a return of Prime rate. It has been suggested that

stock prices take a random walk; if that is the case our network will do no better than the

buy and hold technique. This study will disprove the random walk theory.

13

1.6 Significance of Study

The most recent studies compare indexes such as the S&P 500, NASDAQ, and

the Dow Jones [2][8][28][31][32]. The experiments done in this project examine the

chaotic behavior ofactual companies that tend to be less stable and thus harder to predict.

Studies have also shown that using direction as compared to prediction can generate

higher profits, [8] and this study will try and capitalize on that idea. Also the prediction

will examine a more realistic situation where an investor has the choice between multiple

stocks, in this case 2, and chooses the stock that is mostly likely to increase in value. The

experiments also compare many hybrid techniques and their abilities to predict a

categorical output. The ability to predict the direction of the stock prices is the most

important factor to making money using financial prediction. All the investor really

needs to know is to buy if the stock is going up in value and to sell if it is decreasing in

value.

1.7 Data Set and Tools Used

The data is comprised of prices for Microsoft and Intel Corp from January 2nd,

1990 until August 5
th

, 2003. This time period was a very violent time in the stock

market, it include 2 recessions, a dot COM boom, and a dot COM bust. Also world

events like the September 11 th attack where included in the original data set. Figure 1.7

shows the violent nature of the Microsoft and Intel during the selected time period. It

also shows the wider range and more chaotic behavior caused more problems for the

networks in predicting Intel's stock price.

14

Stock Price

$80.00 _0'-o.o__~ _._.o_ __..o_.,o.•_._.__.. ~ ~._ ~ .~-­

$70.00

$60.00

$50.00

UI
CI)

I MSFT! 0 $40.00
--INTC U

$30.00

$20.00

$10.00

$­
r-r­eo eo (]) (]) 0 0 N N C") C")
(]) (]) (]) (]) (]) (]) 0 0 o 0 0 0 0 0
(]) (]) (]) (]) (]) (]) 0 0 o 0 0 0 0 0
...... N N N N N N N N

i5!
N
t::: i5!

N
t::: i5!

N
t::: i5!

N
t::: i5!

N
t::: i5!

N
t::: i5!

N
t:::

Date

Figure 1.7 Microsoft and Intel Stock Price

Information contained for each daily report is the opening price, closing price, low price,

high prices, and volume of shares traded. External data was also gathered to aid the

network in its training. Economic indicators such as the current Prime rate, Michigan's

Consumer Sentiment Index, and the United States Consumer Confidences where added.

The software used to train the Mamdani Neuro Fuzzy and Mamdani Neuro Fuzzy with

Genetic Algorithm is FuzzyCope 3[10]. The neural network using both conjugant

gradient descent and traditional back propagation were trained using Neuro

Solutions[22]. All testing was done on an Athlon 2000+ with 1 GB of memory. Ajava

application was written to transform .CSV files into .TRN files that can be understood by

FuzzyCope to save time from manual translation and improve the accuracy so that no row

is lost. Similarly it was required to transform .csv into .RCL files, which FuzzyCope

used to perform a test once the network was trained. Another stone-alone java

15

application was developed to randomize the rows or a .CSV file to ensure the network

fully randomized this could have also been done using the preprocessing built into Neuro

Solutions. FuzzyCope3 is designed to perform regression testing only and not

classification. Thus it was necessary to writing an application to transform the predicted

value to 0 or 1 and then do a comparison for accuracy. All Java applications where

developed using JDeveloper by Oracle.

16

Chapter 2

Literature Review

2.1 Hurst Exponent

Some papers have used the Hurst Exponent [9][12][32][33] to prove that the data

is not completely random but in fact has the correspondence between the input and the

output data. The Hurst Exponent was originally discovered by Hurst el al. [14] in 1965.

The Hurst Exponent can show the degree of correlation. Ifthe exponent is 0.5 the data is

completely random and no thus no network will be able to predict the output and thus it is

a waste of time to attempt to learn any pattern in the data. The closer the Hurst Exponent

is to one, the greater the correlation between the input and output, and a Hurst Exponent

of less than 0.5 means that the input and output are indirectly proportional. It is

important to note the Hurst Exponent is confined to the range ofato 1.

HurstExponent = 10g(R IS) Equation 2.1
10g(N)

S is the standard deviation of the time series before normalization

R is the maximum and minimum cumulative deviations of the observation has compared

with the mean of the series.

N is the number of observations

RN = max[x, N] -min[x, N] Equation 2.2
1~,~N' I$I~N'

x/,n' the cumulative deviation, is describe by

17

,
X"N =I (xu -JlN) Equation 2.3

u=l

Jlx is the mean of Xu for all N elements.

The Hurst exponent can be very useful in any set and allows a method of comparing sets

of data. For example, a set with a Hurst Exponent of 0.55 is very difficult to predict and

any network with decent results should be great. However, a data set with a Hurst

Exponent ofO.95 should expect the network to be extremely accurate to be considered

good.

2.2 Scaling and Normalization

It is important to smooth out the data and help the network to learn the signal of

each input and not just memorize a single input with a very large numerical value given

to it. Thus normalization of the data can help any network better obtain the correct signal

of the network. There are many methods available today but no research has proven one

to be superior to the others in all cases. Below is an example of one way of normalizing

data.

Xi ­xmin
ni =--'-----= Equation 2.4

x max -xmin

In the above equation x is the original series with xmax being the greatest value in the

series and Xmin being the smallest value in the series. The new series denoted n will be

on the range from [0,1]. The example below shows a series of stock prices before

normalization (x-series) and after normalized (n-series).

18

x-series n-series

35.25 0.5478

37.25 0.9462

37.52 1.0000

37.5 0.9960

34.87 0.4721

32.5 0.0000

Table 2.2 Normalization of a series

The above set of data shows how a data set can be spread out by using normalization,

making it easier for the network to understand.

2.3 Overfitting and Overtraining

Many networks will memorize the patterns ofthe test set as apposed to learning

the signal of the set. This is normally caused by over training. Setting a threshold in the

cross validation data set can prevent this problem, after a certain predetermined number

ofmeager results the network would stop training and would revert to the most ideal

network. For example, if the accuracy ofpredicting against the cross validation set

becomes worse for 20 epochs in a row, then the network has complete training and uses

the weights specified by the network with the best prediction against the cross-validation

set. Similarly overfitting can be caused by have too many neurons to define the problem.

This problem can be fixed by reducing the number of hidden neurons. There have been a

few papers published that have discussed a general rule of thumb to determine an

approximate number of neurons. One such rule of thumb is the Freisleben rule ofThumb

19

[33]. Which states the correct number of hidden neurons is a multiple k times the number

of inputs (n) minus one.

neurons =(k *n)-l Equation 2.5

A second rule ofthumb popular in newsgroups is

neurons = .Jinputs *outputs Equation 2.6

H n+1 =In(Hn) Equation 2.7

The Baum-Haussler rule for determining the correct number ofhidden neurons is defined

by the following function.

N *E # neurons :::; record' tolerance Equation 2.8
NInputs *Noutputs

Using any ofthese rules of thumbs can prevent the networks from memorizing and thus

catching the actual signal ofthe neural network. Nrecordl is the number ofrecords and

Etolerance is the Error tolerance. N;nput.l and NoutpUl.l are the number of inputs and number

ofoutputs respectively. Hn is then number ofhidden neurons in layer n.

Both rules ofthumbs give a good guideline, but there is no guarantee ofthe best number

for every dataset. Hence it is best to try many different networks [6] to see which

produces the best rest for the data set in question.

2.4 Learning

Supervised learning is most common form of training a network, and it done by

providing the network with both the input and the expected output. Thus the system can

learn from known truths about the data. This learning technique should be used

20

whenever there is sufficient data with both inputs and outputs. When know outcome is

available it is ideal to use supervised learning [26].

Unsupervised learning means the system attempts the recognized patterns in the

data and doesn't have the expected outputs. Self-organizing maps are a common usage

of unsupervised learning when the network attempts to recognize clusters of data and to

group them according to similarities with other members. Unsupervised learning is done

when the system doesn't know the expected output, and the system is then supposed to

learn the patterns. A common tool used for unsupervised learning is a self-organizing

map.

2.5 Splitting the Data Set

The data set should be split into 3 different sets: Training set, cross-validation set,

and the testing set. A common break down is to use 2/3 of the data set for training, 2/15

for cross-validation, and 3/15 for testing set. The above-mentioned split was used by Yao

et al [32]. A two-thirds training and one-third validation set was used by Yao et al [32];

however, this not a good design because no cross validation is done thus preventing the

network from over training. There is no guarantee for any split to be perfect for all

datasets. Thus is it advisable to try all rules of thumbs and to vary the size ofthe sets to

see what produces the best results. It is crucial to use a cross-validation set regardless of

the size ofthe split to prevent the network from over training, also known as over-fitting

the data.

21

2.6 Recent Trends

Many papers have dealt with input selection when it corn to mapp.ing financial

indexes and stocks[2](8)[28) [3 1][32]. Inputs have been brok n into two different typ

of inputs financial and political (which tend to be qualitative). Kuo et at [19] u e a

genetic algorithm base fuzzy neural network to measure the qualitativ ffect on the

stock price. Variable selection is critical to the success of any network and 5 key parts of

the financial vi.ability of a company were identified by Quah el at [26] as yield, liquidity

risk, growth, and momentum factors. These variables are widely available in qualitative

fonn such as the PIE ratio can be used for yield and the return on equity could be u ed for

growth etc. Macroeconomic factors such as inflation and short-term interest rate [8] have

to shown to have direct impacts on the stock returns.

A better measure of fitness which considers profit [31] ha been suggested to

replace a root means squared error. Yao and Poh [32] showed an example wh re a model

with a low NMSE had a lower return then a model with a high r NM . Br wnst ne [6]

recommends using percentages to measure performance s that th r suit can b bett r

understood by traders and other people that might need their research and ar not xp rt

in the field. Chen et at [8] used a 68-day sliding window to predict the n xi day' pric

of the index. Commission is commonly overlooked when doing research relating to tock

market prediction; however, if any model is actually implemented it i going to incur fees

which could greatly affect the profit predicted by the model. Chen el at [8] con ider 3

different levels ofcommissions and how it would affect the best buying trategy u ed by

investors. Simulation [34] has been used to show how these models can produce profits

on real world testing data that is not seen by the network.

22

Chapter 3

Hybrid Intelligence SystelTIS Architecture

3.1 Stand Alone

"Stand-alone models consist of independent oftware components which do oot

interact in any way [1]." These systems can work in a parallel enviroom nt to allow th

user to determine which model is the best fit to learn the signal of the data. Once the

stand-alone system has aided in picking the best ystem that ystem would then be

developed by itself to make the best possible single intelligent sy tern. The advantage of

this model is it is fast to build and uses software that is already available. A di advantage

is the system doesn't incorporate any strengths of the discarded sy tern and as a re ult

the performance is not any better than a single intelligence system.

3.2 Transformational. Hybrid Intelligent System

The system begins as one system and then transition into an ntirely n w y tern.

Thus once the model is built on a ystem is required to b worked on. Like the stand­

alone model this system suffers from not being able to use the trength of both sy terns.

These systems also tend to be application-oriented [I]. A di advantage of this system i

there is not any really available software that support this type of architecture.

23

3.3 Hierarchical Hybrid Intelligent System

The Hierarchical Hybrid Intelligent yst m u s the trengths of muJtipl typ of

artificial intelligence syst ms to produce th be t po ibl int llig nt tern. Th design

is broken up in layers with each layer ha ing a ingle int lJigenc

what is best at that layer. A common usage of hierarchical hybrid int Ilig nt s st m i to

use an evolutionary algorithm to produce the inputs or th be t tting for anoth r

artificial intelligence system. Leigh (Forecasting the NY composite index) u ed a

genetic algorithm to detenmne which of the 22 inputs where the mo t u eful and which

could be eliminated to generate a better R- quared corr lation. Th finding from the

genetic algorithm were then used to create a bett r neural network. A hi rarchicaJ hybrid

intelligent system is when the system begins

22 inputs

D
Genetic Algorithm

Neural Network

Hierarchical Hybrid Intelligence System

Figure 3.3 Hierarchial Hybrid lntellig nt yst m

as one type of intelligent sy tern, and then i transform d into a different type with the

final product having no proof of ever being of the fir t type of intell ig nt system. The

design shown in figure 3.3 was used in this study to reduce the numb r of inputs form 16

to 9 which were then given to the neural etwork for training. Hierarchical hybrid

24

intelligence systems show dramatic iropro ern nt over using a singl int lligent st m.

This allows the user to focu on the bigger picture, and tb computer can figure out the

details of the design such as how many bidden n urons hould be u ed.

3.4 Integrated Intelligent System

Integrated Intelligent Systems use fused architectures [1] that provid a single model with

tbe best characteristic of all models. There are numerou advantages to this type of

model. Integrated Intelligent systems provide increased performance and are more robu t

because it is both noise resistant and has the ability to xplain itself. The bigge t

disadvantage of this system is its complexity; to design tbi type of system i a complex

undertaking for any company. Nevertheless these types of systems are needed by

companies and so are actually being developed. The hope is that as more Integrated

Intelligent systems are developed, the aforementioned problems wil.l begin to dissipate.

One such model that is currently available is Fuzzy ope which provide a Nelli·o-Fuzzy

model, and it is available at [10]. Similarly Neuro solution ha an AN I (Artificial

Neural Fuzzy Inference System) that uses an integrat d intelligent sy t m [22].

Hierarchical design has been very popular in recent studie Abraham [1] di cusses a 5­

layered system that evolves Neuro-fuzzy-Evolutionary yst m (~voNF). This typ of

system would require the largest computers systems available today to build its model,

which is a buge disadvantage of the hierarchical architecture. The cost of the system to

run these programs can be huge, but the biggest strength of these systems is their

performance once the model has been built. Mamdani Fuzzy Inference shown in figure

3.4 is an example of an integrate intelligence system.

25

z = (centroid or Mea)

x y
x y

Figure 3.4 Integrated Hybrid Intelligent ystem [3][4]

3.5 Conclusion of Hybrid Intelligence Systems

The most interesting of the intelligence systems are the Integrated and

Hierarchical hybrid because these two methods provide the most significant perfonnance

improvements and can realize the strength of many different intelligent systems.

However, we are not limited to having to choose one of these two systems, in fact, it

would be perfectly reasonab}e to create a Hierarchical Integrated Hybrid Intelligence

System. This system would contain layer a in the hierarchical sy tern, with on r

more layers containing an integrated y tern.

26

Chapter 4

Hybrid Intelligence Systems

4.1 ANFIS

ANFIS, Adaptive Network-based Fuzzy Inference y tern hav h en shown to

provide better result than artificial neural network and fuzzy mod Is [16].

A common model used today in ANFIS is the Takagi Sug no Fuzzy Model. In the

Sugeno model each different rule has its own function.

if(x is A) and (y is B) then z =j{x y) Equation 4.1.1

In the above functionf(x,y) is a crisp function and the sets A and B are fuzzy sets

thus they don"t have absolute members, but rather a degree of member hip. lang [16]

gives an excellent example of an ANFIS with only 2 input. he diagr m b low how

the procedure for inputs x and y. Each lay r i then de cribed below.

27

Layer I Layer 2 Layer 3 La er 4 La er 5

x

f

y

Figure 4.1 ANFIS [16]

The ANFIS consists of 5 different layers described below:

Layer 1 (Membership Function): This bell shaped graph determines if x is in A and to

what degree it i.s a member. The bell shape of the graph can be manipulated by changing

a value of any variable. Thus the end result i.s a bell shap that b tier matche the r al

world.

quation 4.1.2 PA, = 2b,

x -c,
I +-­

a,

a, b, and c are constants that determine the shap of the bell. A is the linguistic label (tall,

short, etc) that is associated with the node.

28

Layer 2 (Firing Strength): Every node in la er two corr ponds to th firing tr ngth fa

rule. Any T-nonn operator could be u ed in this layer. Two common T-noml op rator

are the AND and MAX functions.

Equation 4.1.3

Layer 3 (Normalized Strength): In layer three calculate a normalized firing strength 0

that the output one node doesn t overshadow all other nodes.

W
0 3,I = W , = i = 1,2 Equation 4.1.4

WI +w2

Layer 4 (Adoptive function): Each node has a node function defined by W" normalized

firing strength, and by 3 new constant p q and r. The e three parameters ar referred to

as the consequent parameter .

°4 ; = W,/' = W, (PiX + q,y + r,) quation 4.1.5

Layer 5 (Calculate Output): A summation of all input signals is us d in this ignal nod to

compute the overall output as describe in the formula below.

Equation 4.1.6

29

The Mamdani fuzzy inference system is a sp cial ca e of the ugeno fuzz mod I in

which the order of the model is zero. Since the order of the sy t m i z r th nfi a

constant.

4.2 Neuro Fuzzy

Neuro fuzzy systems are an attempt to combine natural linguistics u d in fuzzy

inference Systems with the proven capabilities of artificial neural network [13]. Th

combined system's goal is to be more transparent like a fuzzy system giving the u ers a

list of general and understandable rules while at the same time building in the ability of a

neural network to predict non-linear trends in data. Central to this idea, i building a

bridge from fuzzy logic using membership functions and artificial neural network that

possess quantitative adaptive number crunching power. Castellalo et al (7] de igned a

Neuro-fuzzy model where the parameters of the fuzzy rules base were configured by a

two-phase learning of the neural network.

4.2.1 Takagi Sugeno Neuro Fuzzy

A common fuzzy inference system (FIS) used today is Takagi ugeno fuzzy

inference system [27]. The idea was to formalize a systematic m thod for generating

rules that a computer could use for any given data set [17]. Takagi Sugeno FIB has rule

that follow the format:

if(pressure is high) then volume = 2 *pressu're Equation 4.2.1

30

In a Takagi Sugeno FIS the consequent. is a crisp function that can b expr ed in t rm

ofj{x). A first-order Sugeno fuzzy model occurs when the function/is a fir t order

polynomial. A zero-order Sugeno fuzzy model occur when the functionfis a con tanto

This can also be viewed as a special case of the Marndani fuzzy inferenc y tern

[17][18].

Takagi Sugeno has 2-step process of learning that occurs for every epoch through

the training set. The first step holds the membership functions constant and update the

input patterns learned according to an iterative least squares method. The second part of

the learning updates the membership function while the input patterns are held constant

[3]. Theses steps provide for a very efficient learning tool.

q W1,Zt + W 1·Z2 z=
W +w2t

yx
x y

Figure 4.2.1 TSK Fuzzy Inferenc ystem [3][4]

4.2.2 MamdaniNeuro Fuzzy

AI and BJ are input fuzzy sets and the result is the output of the fuzzy set [3][21].

A supervised learning technique is used to learn the membership functions in a Mamdani.

Fuzzy Inference system. The Mamdani system ha 6 layers instead of 5 that are in

Takagi Sugeno Model. The fust layer is for the inputs. The second layer i a

fuzzification layer. The third layer is the rule antecedent layer. Then the fourth rule is

31

the strength nonnalization rule and th fifth is tb c n equ Dt la er ru1 . The finalla er

in the Mamdani UfO Fuzzy sy tern i th rule inti T nce la er.

4.3 Input Selection

In real world problems there can b hundreds [16] of diffi rent po ibl input for

any artificial intelligence system. For instance in a fmancial mod I the input ar not

just limited to the stock price, dividends and volume trade of a particular stock or iod

in question. However the indexes could extend to the overall p rformance of the mark t

the consumer confidence, Federal Reserve inter t rates or ev n world policie indicator

such as how is the current war is proceeding. Once all thes pos ible input hav b n

found it is good to find a mechanism for reducing the he r number of inputs as ha ing

too many inputs can cause many problems such a complexity of computation and Ie s

transparency of the underlying model. Four rules have been found as a rule of thumb to

guide input selection by lang [17], and it is r a onable to b Ii ve that the e rul ar

generalized enough that they could work for other mod I .

1) Remove noise/irrelevant inputs

2) Remove inputs that are dependant on other inputs

3) Inputs that create a more conci e and tran parent mod

4) Reduce time for model construction

32

Chapter 5

Hurst Exponent on Data

Once the data was transfonned in the mo t viable form to u e in all the network,

the Hurst Exponent [9][12][32][33]was calculated to show that both the predi tion is

possible and that the prediction is going to be very difficult. The tim en us d to

calculate the Hurst exponent consisted only of the percentage change in price from the

previous day and the actual value was not used.

P'oday - PYeslerdoy
Pr ecentageChange = ----=------:- Equation 6.1

PYe..vlerdoy

This equation was preformed on all 1398 days in the testing set from January 15t 1997 to

July 31, 2002. Then the x/.N was calculated for all days u ing equation 2.3. nc that

was done, then the R N (1.3387 for MSFT) could be found u ing equation 2.2. h

standard deviation for MSFT was found to be 0.02742 that gave us all th information

needed by equation 2.1 to detennine the Hurst xponent to be 0.537 for M T. This

proves both points earlier stated. The data is not a complete random walk because neither

network had a Hurst Exponent of 0.5. And second it shows that good performance will

be very difficult to achieve for any network, as the network is nearly random. imilar

tests where run on Intel's data to produce a HUT t Exponent of 0.513. Thus based on the

Hurst Exponent, Intel's data is more random and should be more difficult to produce

good results. Figure 5.1 shows how the calculation for Microsoft was calculated to find a

33

Price
1 Change X t,n
1 -0.0025 -0.0035
2 -0.0033 -0.0078
3 0.0642 0.0554
4 0.0585 0.1129
5 -0.0734 0.0386
6 0.0746 0.1122
7 -0.0946 0.0167
8 -0.0413 -0.0256
9 -0.0302 -0.0568
10 -0.0174 -0.0752
11 0.0149 -0.0613
12 -0.0108 -0.0731
13 -0.0012 -0.0753
14 -0.0197 -0.0960
15 0.0127 -0.0843
16 -0.0181 -0.1034
17 0.0053 -0.0990
18 -0.0351 -0.1351
19 0.0580 -0.0781
20 0.0078 -0.0713
21 -0.0232 -0.0955
22 -0.0371 -0.1335
23 -0.0040 -0.1385

1398 0.0364 0

IMean = 0.0009851

] = O. J129

min [x] = - I .2257
Is/sN I,

1

IR=1.33971 I =0.02741

IN=1398!

H LOg(RlS)=O.536

Log(N)

Table 5.1 Hurst Expon nt Calculations

Hurst exponent of 0.5368.

34

Chapter 6

Data Preparation

A key when desigrung any artificial inteLLigence sy t m i to pre nt the data in

the most meaningful and understandable format for the algorithm to under tand. Th 3

steps of presenting the data to the network to the sy tern is to choose the be t input

remove misleading or corrupt data rows, and transform the data.

6.1 Input Reduction

There are 16 inputs to begin with in each data model. This must b r duc d to aid

in the performance time of the neuro fuzzy engine since execution time grows

exponential with the number of inputs. It takes about 3 day to train an ANFI with five

inputs and five MFs per input, thus the number of input mu t b r du d to n mor than

five. Also results with neural network tend to b b tter wh n ulln cary inputs are

removed and duplicate or similar inputs are eliminated. This is hown to b th case in

the testing of these networks. The original 16 inputs that were con idered ar: on urn r

Confidence Index the prime rate, Michigan Consumer ntiment rnd x price -1 (pric

yesterday), price -2 (price the day b fore ye terday), price -3 (price 3 days ago) price-4

(price 4 days ago), price -5 (price 5 days ago), volume -1 (volum of trades y terday),

low -1 (low price yesterday), high -1 (high price yesterday), op n -1 (open price

yesterday) low -2 (low price the day before yesterday), high -2 (high price th day

before yesterday) open -1 (open price yesterday), and volume -2 (volume day before

35

yesterday). Several models were used to detennine tb 1 ast important input and th 11

these inputs where removed b fore a mor accurate and it rali approach could b u ed

to determine the final inputs. Models were built u ing decision tree (ART) to

determine wbich variable offered the most 'gain.' Linear regre ion mod 1 w r al 0

designed to determine which inputs contributed the most to the mod I. ignificanc

towards the price model was built using correlation models to determine ach input

contribution, which is shown below in figure 6.9.

Variable <.05000

Vol-1 Vol-2 Price-1 Price-2 Price -3 Price-4 Prlce-S Prime CCI Price

Vol-1 0.876 -0.0138 -0.052 -0.079 -0.065 -0.071 -0.12 -0.045 -0.0431

Vol-2 1 -0.0402 -0.013 -0.053 ·0.082 -0.064 -0.12 -0.046 -0.0445

Price -1 -0.023 -0.019 -0.016 -0018 0.008 -0.D15 -0.0289

Price-2 1 -0.023 -0.018 -0.016 0.008 -0.011 -0.0082

Price-3 -0.025 -0.017 0.009 -0.007 -0.0176

Price -4 -0.023 0.011 -0.007 -0.0196

Price -5 1 0.007 -0.011 -0.0045

Prime 0.709 -0.0062

CCI -0.0207

Price

Table 6.1.1 pearman orrelation

Also a genetic algorithm with a population of 50 was trained for 100 generation , and th

results were examined to see what variable it had cho en to remove from the data model.

Each network was trained for 10,000 epochs with a threshold of 500. The Mutation rat

used was 0.1, uniform crossover, Roulette was used for election, and rank basi fitne s

was used. A progression of generational was used in tead of a steady state. After

building a network the sensitivity for each input can be test by hold all variables constant

except the one variable in question, then the network is feed a series of value for this

variable. How the outputted result changes for each different input gives us the

36

sensitivity for this variable. The ensitivity about the Mean te t was conducted to s

how important each input is relative to a particular n ural network. Th r ult for

Microsoft data set is shown below in figure 6.1 .

Sensitivity About the Mean

0.35

0.3

0.25
?:

0.2~
"in 0.15c
11l
en 01

!OCloseNI
0.05

0

Input Name

Figure 6.1 Sensitivity About the Mean: MSFT

All the results from the above experiments were then analyzed to determine which

variables to use based on their importance in all the models. From the r suits given th

best 9 inputs were picked. Using the model built, the number of input was reduced to a

much more manageable size and from there a greedy systematic test wa p rformed to

eliminate the least important variable according to a neural n twork. Giv n the 9 inputs,

a network was built and tested with one input missing. This iterative approach was

impressive as improving performance, however ideally a power set should be cr ated to

pick the best inputs with every possible combination. Each network took about 20

minutes to train and test. For the original 16 inputs, the power set would contain

=65536 combinations, which would take 2 years, 5 months, and 27 days, and thi

not feasible for this study. The network which did the best on test was kept, thus after the

37

216

first iteration there wh re 8 input left. Till process' r peat d again ith all 8 inputs

being removed individually to find out which input wa th I ast ignificant. h n that

input was removed and so on until the data et contain d th 5 mo t ignificant input.

The graph below shows a cross table r suIt that d tennin d that onsum r

Confidence Index) should be removed from Microsoft s inputs.

Network Name MSE cross validation NMSE on Testing
without CCI 0.000521 0.00712

without close-3 0.000535 0.00729
without volume 0.000527 0.00731
without high-2 0.000515 0.0074
without c1ose-2 0.00053 0.00757
without open-1 0.000516 0.00765
without high-1 0.000513 0.00779
without c1ose-1 0.0006 0.00880

Table 6.1.2 Greedy Input Reduction: 8 inputs

Interestingly, the network with CCI had a performance 0[0.007506063, which was wor e

than the network that had the input removed. Similar the next it ration, which choose

volume to be removed even out perform d thi n twork with a NM of 0.00687 1094.

This iteration is shown below.

Network Name MSE cross validation NMSE on Testing
without volume-1 0.000515 0.00687
without close-2 0.000518 0.00719
without high-2 0.000509 0.00726
without close-3 0.000520 0.00746
without high-1 0.000532 0.00766
without open-1 0.000524 0.00769
without close-1 0.000584 0.00809

Table 6.1.3 Greedy Input Reduction: 8 input

The final selection of inputs using this approach was: clo e-1, op n-], high-l high-2, and

close-3. The final performance on testing was 0.00693, which is just lightly wor than

including 6 inputs. All networks in the above example were trained 3 eparate tim s

38

with randomly initialized weights chos n and the b t n twork th n cho en by th

system to perform the t st on. Each run u d conj ugat gradient de cent and 10 000

epochs and a threshold of 500. A threshold of 500 in thi study means that if the ITor n

the cross validation set does not improve for 500 epoch then t rminate training. he

network used contained 20 processing elements in layer on and 7 proce ing el m nt in

the second layer. NMSE used by Neuro Solutions in th M of th network divided by

a straight forward network that picked the average value each tim and then calculat d

the MSE for this dumb network. Thus wh n NMS iI, th network ha learned nothing

about the data set and a value of 0 means the network is perfect.

NMSE = MSEne,work Equation 6.1ne/work MSE
dumhNelW{)rJc

6.2 Data Reduction

There are many things to do for data cl a.., up. Fir t, th d cision n d t be

handled on what to do with missing or invalid data. Ifther i enough data as in this

model, it is wise just to throwaway those record oth data set w re exarnin d ft r

missing or incomplete data and none was found. Also we must d cid what to do with

outliers, which can throw a model off. In some cases, such a fraud d tection, the outliel:s

are the meat of the problem; however, that is not the case for our data and thu all outlier

were removed from the set. All days in whi.ch the price increased or decreased by more

than 10% in a single day were removed from the database as these outliers where most

likely caused by external forces. Also days in which little, less than 0.1% or no change

occurred were removed because an action performed by the investor would not affect

39

there bottom line. The outliers for th e models wer d termined to b da s wh n tTad

volume is 4 times the average trade volume or more. For Mi.crosoft thi valu cam out

to any day that more than 105 million shares here trade. Th da are rno tly like

caused by a natural or manmade disaster for which no network ould have the ability to

foresee. The prime was also used and the change in prime can greatly affect the mark t

so any day that prime was changed was removed from the data. The daily valu sinc

1947 of the prime rate is published at on the web [25] and it is updated every time the

prime is changed. Removing this noisy data aids the networks to obtain better prediction.

Data reduction is also necessary to give a more manageable size to the data t. Man

made disasters such as 9/11 have a huge impact on the stock market, which could not

have been for seen by any algorithm. Thus the entire week following September 11

2001 was removed from the data sets of both Intel and Microsoft. The data sets u ed in

this paper original1y had data from January 1990 all the way to August 2003, and the

price of the stocks had changed so much that very little would b I arn d by u ing th

entire dataset. All the data prior to 1997 was remov d from th data set. This pr vid d 2

services: First it reduced the size of the data set and econd it gave a better plit of

increasing days to decreasing days. Studies have shown in classification problem it i

important to have equal representations of both cases in ord r to prevent the network

from becoming biased towards the more common value, in this case increasing days.

Intel's data set contained less than a 1% difference in the representation of increasing

days as compared with decreasing days, thus further manipulation of the data s t was not

required. However Microsoft did much better during this period and had an increase in

59.6% of the days in the sample set. In order to prevent the network from heavily

40

favoring the increased prediction the data set had increasing prediction randomly

removed until a 55/45 split was achieved. This al10wed e p rimenls to b t ted to how

the difference with strong bias and without a bias. Thu the la t year of data from August

1S\ 2002 until July 31 st, 2003 was held out of set to be u d as an un een testing set in the

simulation.

6.3 Data Transfonnation

Transfonning the data in the most meaningful manor for the network ise ential

for the success of the network. The daily price was modifi d from a stock price to a

percentage change from the previous day in an attempt to help the network better

understand the network. This gets the data closer to the actually attempted prediction of

predicting if the stock price goes up or down not simply trying to guess the price which

we don't care about in this prediction paper. However, after day ofte ting this was

found to actually hurt performance and a straight price mod I wa then u ed. All data

should also be standardized or normaliz d so that one column of value cannot

completely dominate the prediction. There are many types of normalization of data such

as min-max normalization, z-score normalization and normalization by decimal scaling.

Most of the better software in the industry handles the normalization for the us r. The

data in this paper was normalized using a min-max normalization sp cified in equation

2.4. Also z-score normalization was tried, and the results tended to p rform wor ethan

with the much more straightforward min-max normalization thus min-max normalization

was used. Many neural network tools, such as WebStatistica and Neuro Solutions

automatically normalize the data for the user.

41

Chapter 7

Results

7.1 Testing Standards

The test standards listed below were used for all te t unles otherwise not don

the results. All tests on the neural network where given 10,000 epochs to train and cross

validation was used to terminate training after 200 epochs with no improvement. Al 0 all

networks were ran 3 times each with randomized starting weights to insur the best

possible network by minimizing the chance of obtaining a local minima. Neural

Solutions allows for varying of a single parameter; so often it was the case that with

everything being held constant, the number of hidden neurons in the first layer would

vary from 10 to 50, with a step size of 2, to determine which network was best at learning

the data. This type of gradual improvem nt was key to the llcce seen in the final

networks that were to average around 63% correct wlLich was much b tter than the

original networks which had a very dismal performance of around 53%. Wh n a 2­

layered neural network was designed the second layer would contain the cei Iing of the

log of the number of neurons in the first layer. All networks used conjugate gradient

descent unless otherwise noted. The transfer function us d for all networks wa

TanhAxon. The data split for the networks were 65% test, 15% cross and 20% testing,

except in the simulation when the test set was the entire year. The training et was

broken up as 80% training and 20% cross validation. etworks given for Fuzzy Cope

used min-max normalization.

42

7.2 Conjugate Gradient vs. Back Propagation

The original neural network designed used the v ry straightforward method of

back propagation. The error would filter through the network back onth learning rat

and momentum of the network. Several new ideas have been publi hed to provid faster

learning and also to provide better results for the networks. This pap r examine

conjugate gradient descent and back propagation algorithm. Figure 7.2 how that it

takes about one-third the amount of time to train a conjugate gradient n twork than a

back propa.gation network. Much of the improvement in sp ed was becaus conjugate

gradient networks would norrnallycross the thre hold (set at 200 epochs without

improvement) before ever reaching the epoch limit of 10,000. Exact time required i not

possible since the weights are randomly initialized, and the picking of the weights can

greatly affect the convergence of the network. For example, it took just ov ran h UT l

train a series of conjugate gradient network with the numb r of proe ssing el ments

43

varying from 20 to 50 in a single layer and each network a built 3 time .

Conjugate vs. Back Propagation

r-
I

Back Propagation 3 MSE 0.000361 I

Back Propagation 2 MSE .0000349 I

X. Back Propagation 1 MSE 0.000363 I

>.

l ­
e:::
.~ Conjugate 3 MSE 0.000330 I
I-

Conjugate 2 MSE 0.000344 I

Conjugate 1 MSE 0.000363 I

o 2000 4000 6000 8000 10000 12.000

Epochs

Figure 7.2 Conj ugate vs. Back Propagation

The same test, with back propagation, takes about 4 hours. The chart below

shows the performance of both back propagati.on and conjugate gradient, both using the

default learning rates provided in N uro Solution. It i cl ar that onjugat radi nt i

bett.er in almost every category in this regression t 81.

Back Propa.gation MSE Error Overall Correct Decrease Increase
30 PE* - 5 PE** 0.3725 59.98% 41.01% 78.72%
40 PE* - 6 PE** 0.3748 59.10% 41.60% 76.41%
36 PE* 0.3702 61.14% 36.92% 85.08%

Conjugate Gradient Descent
24 PE - 5 PE 0.3702 59.98% 37.50% 82.19%
48 PE - 6 PE 0.3689 59.40% 35.16% 83.35%
22 PE 0.3745 62.59% 42.18% 82.77%

*Step size 1.0 first layer Random Set 1
**Step size 0.1 second layer Momentum 0.7 as default

Table 7.2 Conjugate Gradient vs. Back Propagation

44

7.3 Takagi Sugeno Neuro Fuzzy Inference System Tests

Neuro Solutions provide an ANFIS training kit which th y d fin a following:

"The ANFIS (Co-Active Neuro-Fuzzy lnference System) model int grate adaptable

fuzzy inputs with a modular neural network to rapidJy and accurately approximate

complex functions. Fuzzy inference systems ar also valuable as they combine th

explanatory nature of rules (membership functions) with the power of "black box" neural

networks." [22]The ANFIS package is not part of the educator ver ion and thu it had to

be tested only in evalua60n mode, limiting the number of exemplars to 300. This greatly

reduced the networks ability to learn as the other networks had about 850 exemplar to be

trained on. In order to make a comparison between a straight neural network and that of

the ANFIS, the neural network was trained with the exact same restriction . The results

for both were mediocre at best. The significance here is simply to show that the Takagi

Sugeno Neuro Fuzzy was superior to the Neural network in learning the signal and this

also shows the extreme complexity of this network. The network' U ed 5 inputs: pric·

yesterday, price a week ago, volume yesterday high price y terday and high price 2

days ago. The la t two input were discovered in Neural Trading solutions a powerful

stock market predictor software available for commercial u e[22]. To show th xtreme

complexity of these networks, a rough approximation of time is given. [t should b noted

that many of the networks terminated, due to th cross validation set not having any

improvement for 500 epochs well before every reaching the] 0,000 epochs maximum.

The time complexity of using an ANFIS is its worst a ets. It is simply impossible to te t

hundreds of different weights for a network when it takes 2 days to train a ingle network

on one oftoday's fastest machines.

45

Type of Network NMSE on testing % Correct Time

3 MFs per input 0.003811 53.67% 30 min

4 MFs per input 0.004515 56.00% 4 hours

5 MFs per input 0.005447 55.33% 22 hours

NN-20-7 0.006474 55.00% 1 min

NN-10 0.008856 56.67% 15 sec

NN-9 0.006148 55.33% 15 sec

Randomize
Records

3 MFs per input 0.004685 55.33% 30 min

300 exemplars, Conjugate Gradient, TSK, Bell MF,

Axon Transfer, 10,000 epochs, 500 threshold, cross-validation

Table 7.3 Takagi Sugeno Neuro Fuzzy vs. Neural Networks

7.4 Mamdani Neuro Fuzzy Tests

The results reported by FuzzyCope3 were very poor. The oftware, simply put

lacks the power to learn such a complex network. [t uffers from being wlabl to get Ollt

of a local minimum and thus hundreds of similar networks must be built. The oftwar

must then be reloaded to clear its memory so it does not fmd the arne local minimum.

This technique was able to find a good olution for the problem using 3 m mb rship

functions per input. However, the problem never converged when 4 and 5 membership

functions were used per input despite around 100 attempts for both network using

varying weights. NMSE error in these tests means, the mean of all the error squared on a

normalized data set in which the data is in the range [0, I]. The results are shown below.

46

MF per RMS NMSE
input Step Momentum Epochs Training Testing % Correct

3 0.2 0.8 1000 0.0232 0.0414 53.31%
3 0.2 0.8 2000 0.0230 0.0412 53.01%
4 0.2 0.8 2000 0.2059 0.4792 NA
5	 0.2 0.8 2000 0.2059 0.4792 NA

Population Min, Max Generation
3 MF - GA 50 -20,20 50 0.0228 0.0412 53.01%

Cross Over Point: Fitness Selection:
Uniform Normalization Elitism Tournament

Table 7..4 Mamdani Neuro Fuzzy Results

The error for both 4 and 5 membership functions per input are actually 10 time wors

than that of the network with 3 membership functions. Thi is caused by an error in

. FuzzyCope3, which is unable to converge for these networks.

7.5 Classification vs. Regression

This fundamental question comes down to where to translate the data before or

after submitting to the neural network. When performing regression testing all 5 input

are given to the network, and the output is th stock price for the next day in dollar and

cents. Once a test is completed the predicted price is compared with ye terday' price to

see if the price increased or decreased. The actual price is compar d with yesterday s

price to determine if it increased or decreased. [f both formulas produce the same output

then it is determined that the network correctly predicted the value. las ification is

much more straightforward. Before presenting the data to the network the output is

translated to], for increase, or 0 for decrease. And the objective of the network is to

correctly predicted 0 or 1.

47

Regression Min MSE Cross NMSE Testing Testing split Correct Decrease Increased

28 PE - 5 PE 0.0004663 0.006659 50.29% 57.94% 37.50% 78.14%

42 PE -6 PE 0.0004583 0.006789 50.29% 52.71% 31.65% 73.52%

26 PE 0.0004918 0.007338 50.29% 54.45% 36.33% 72.36%

Classification
24 PE - 5 PE 0.3702 NA 50.29% 59.98% 37.50% 82.19%

48 PE - 6 PE 0.3689 NA 50.29% 59.40% 35.16% 83.35%
22 PE 0.3745 NA 50.29% 62.59% 42.18% 82.77%

Table 7.5 Classification vs. Regre sion

7.6 Random Data Sets

When dealing with random sets, it is often very important to show the data i

actually able to be learned at the shown rate for more than aju t a single set. As thi set

which is chosen at random, could have been luckily. Showing the same tests for different

randomly selected data sets shows the results are real izable. The Microsoft data set used

in the previous two sections was randomized three different times and networks where

built for each data set using the same standards di Cli sed in previou s ction to en ul'

the best possible networks were created.

48

Composite of All Sets

60.00%

56.00%

CI> 56.00%
III
III e
r.J CJTraining54.00%.= Cross Validation III
>.
III 52.00% o Testing-c
'0
'#. 50.00%

46.00%

46.00%

Set 1 Set2 Set 3

Random Sets

Figure 7.6 Random Data Sets

It is important that the training set and the test set have similar composites in order for the

network to perform well. Set I has about a 6% difference in the make up training and

testing of the randomly selected rows making prediction much more difficult.

Set 1 MSE Correct Decrease Increase
22 PE 0.3745 62.59% 42.18% 82.77%
24 PE - 5 PE 0.3702 59.98% 37.50% 82.19%
48 PE - 6 PE 0.3689 59.40% 35.16% 83.35%

Set 2
Classification
34 PE 0.3920 55.91% 16.21% 90.03%
20 PE - 5 PE 0.3924 58.23% 10.40% 95.92%
38 PE - 6 PE 0.3905 59.40% 26.27% 87'86%

Set 3
Classification
42 PE 0.379365 60.85% 36.33% 80.49%
32 PE - 5 PE 0.382199 59.98% 36.99% 78.39%
54 PE -6 PE 0.380529 60.85% 37.64% 79.44%

Conjugate Gradient MSFT

Table 7.6 Classification across 3 Random Sets

49

The importance of the table abo is to sho that p rformanc i comparable a ro all

sets. Thus the r suits can be con iderable reliabl for any random gr uping of th

dataset.

7.7 Even Split in Classification

Also studies have shown that in classification it is important to have a irnilar plit

so that the network does not become biased. The data consists of M FT stock price from

1997 randomized with 55% of the total set representing incr asing days. In thi study the

inputs we use show the difference in performance on a et of ev n inputs and wh n th

train set is not evened out. The results are below.

Classification: MSE Error Correct Decrease Increase
24 PE - 5 PE 0.37022 59.98% 37.50% 82.19%
48 PE - 6 PE 0.36889 59.40% 35.16% 83.35%
22 PE 0.37448 62.59% 42.18% 82.77%

Classification Even Split:
22 PE - 5 PE 0.37520 58.23% 57.97% 58.49%
46 PE - 6 PE 0.37578 58.23% 61.48% 55.02%
18 PE 0.38068 61.14% 59.14% 63.12%

Table 7.7 Classification with ven plit

These find are consistent with studies publish d on datas t split . Th ov rall

performance is slightly better when not making the training a set an v n plit" h w v r

this creates a big bias even when the data is split 55/45. A you can ee in Tabl 7.6 the

network that was not evenly split got over 80% for the network, for day that increased in

value and less than 40% for days that decrease in value. However the even split data

was able to score around 60 correct, regardless of if the prediction day is increasing or

decreasing.

50

Chapter 8

Simulations and Discussions

The best possible neural networks were designed u ing only data from January

1997 until July 2002. Data from these sets (MSFT and INTC) were r moved in the

manner mentioned in section 6.2. One additional st p wa taken aft r th result were

shown to be good. A regression based neural network predict d all value in the training

period and the results were compared with the actual price. Any day with a pr diction

error of more than 5% was removed from the training data set. The e days were outlier

and most likely caused by external forces. Each model was given $100 at the beginning

of the testing period, August 1, 2003, and the model bought if it predicted an incr a e

with over a 50% certainty. The model would hold onto the stock until it came to a day,

which had an increase certainty of less than 50%, and then it would sell the stock. The

table below shows an example of this trategy. A similar model wa a] buill which

Increase # of
Output Action shares Cash

0.460738 STAY o $ 100.00
0.617069 BUY 4.411116 $
0.566166 HOLD 4.411116 $
0.551663 HOLD 4.411116 $
0.595844 HOLD 4.411116 $
0.521784 HOLD 4.411116 $
0.489340 SELL o $ 106.93
0.552275 BUY 4.483247 $
0.478012 SELL o $ 107.69
0.651398 BUY 4.617822 $
0.485218 SELL o $ 113.78
0.557304 BUY 4.612206 $
0.479946 SELL o $114.29
0.461905 STAY o $ 114.29

Table 8. 1 Profit Simulation

51

earned the prime rate for any money that was not invested in the tack, thi r ult din

only marginal improvement for all models.

The results from the simulation were astonishing. Profit was impro ed a much

as 889% over a straightforward buy and hold strategy. The figure below how how

profit increased dramatically by using the neural network to make deci ions.

Microsoft Profit Simulation: $100invesbnent

$120.00

$100.00

$80.00

Pro1il/w Prime
Profit $60.00 o Profit

$40.00

$20.00

$­
Buy and Hold 18 PE ·5 PE 36 PE· 6 PE 44 PE

Figure 8.1 Microsoft Profit imulation

The model, which was created with 44 processing elements in one layer, wa able to

make $103.17 in a one-year period with an initial investment of $100.00. For

comparison, if the same money bought stocks at the being of the period and sold th

stocks at the end of the period it would have made a profit of $10.43, this is refi rred to as

a buy and hold strategy. This model predicted the direction of the stock correctly 63% of

the time. Despite the lack luster perfonnance the model was able to predict correctly

when it counts most. The biggest draw back of such a scheme in the real world is

52

commission. The model mentioned above bought and sold stock a total of 143 times

during the 252 trading days in the simulation period. The total number oftrad i sbown

in the table below (that shows the Microsoft model, wbich was much more accurat

trading more often).

Transactions

22 PE - 5 PE 36 PE - 6 PE 17 PE 18 PE - 5 PE 36 PE - 6 PE 44 PE

Intel I Microsoft

Figure 8.2 Transactions

The prediction on Intel's stock was inferior in all cases. Two of the 3 model were abl

to beat the buy and hold strategy. The only plus side of Intel performance is it minimized

the number of transactions, thus it would incur less commi sian jfjt were actually

implemented. The table below shows the best models picked by the lowest M E on the

cross val.idation set for both Intel and Microsoft.

53

Network MSE Training MSE Cross Correct Profit
MSFT 44

PE 0.3959 0.3968 63.32% $ 103.17
INTEL 17

PE 0.3957 0.3972 54.98% $ 49.23

Table 8.2 Profit on MSFT vs. INTC

The profit seen by the best model for Intel increased profit over the buy and hold strateg

by 55%. The graph below shows the results of all 3 models on Intel s data.

Intel Profit Simulation: $100 investment

$50.00

$45.00

$40.00

$35.00

$30.00

Profit wI Prime
Profit $25.00

o Profit

$20.00

$15.00

$10.00

Buy and Hold 22 PE - 5 PE 36 PE - 6 PE 17 PE

Figure 8.3 Intel Profit Simulation

54

Chapter 9

Conclusion

The ability to predict stocks on a daily bases is very difficuJt for even th rno t

advance AI techniques. The Hurst Component confirmed the hypothesi which aid

prediction is possible but especially difficult. Surprisingly, th onsumer onfidenc

Index and Prime Rate were not able to improve the predictability of the e networks.

Through the use of many techniques, it is possible to correctly predict the direction of the

stock 63% of the time for a large company like Microsoft. The study d monstrated that a

Takagi Sugeno (TSK) Neuro Fuzzy System was able to produce a much better result than

a pure neural network when given the same training set. The TSK Neuro Fuzzy sy tern

requires a great deal ofprocessing power, and a network with five membership functions

per input took as long at 22 hours to training. The Takagi ugeno euro Fuzzy model

was superior in prediction to the Mamdani Neuro Fuzzy Infer nee y tem and both

networks required about the same amount of time to train. Genetic Algorithm are a v ry

efficient way of determining which input are the most valuable and by r moving

unnecessary inputs the performance of the network can be increa d. enetic Algorithm

provide a "good enough" solution when searching the entire s arch space could take

years of CPU time on even the best system. Genetic Algorithms wer used to fine turn

the membership function in the Mamdani Neuro Fuzzy ystem, and the result was a

marginal improvement in the RMSE; however it didn't improve the percentage of

directional correctness, which was the goal of this study. The GA - Mamdani didn't

perform as well as the ANFIS..

55

The neural network using conjugate gradient de cent wer abl to achi v 63%

correct on the test set thus this researcb pro ide the groundwork for a r at d al of

profit. Even the worst model used for Microsoft produced a r turn on investment of

66%, and the best network scored an astounding 103% return. Tbi study al a

demonstrated that picking the correct stock is as important a building th be t n twork

(as tbe best network for Intel was outperformed by the wor t network on Microsoft data).

The best network for Intel scored a mediocre return on investment ofjust under 55%.

The biggest downfall of these networks was that the transaction co t of buying and

selling stocks would be very costly. However it would be feasible to fin tune the buy

and sell strategy to lower this cost.

56

Chapter 10

Future Work

There are many areas in which thi r earch an bet nd d. Th many ar a of

interest is the stock market simulation.

It is clear from all the tests that the network wer abl to I arn th pattern in

Microsoft's data much more easily than Intel s data thus it might be po sible that another

stock is more learnable than Microsoft. More stocks could b picked to determine which

have the most learnable pattern. There also exi t many different type of networks such

as Support Vector Machines, Generalized Feed Forward JordanlElman twork A FI

(attempted but the software version used limited its ability) and Tim -Lag Recurrent

Network. Anyone of these might actually out perform the neural networks designed

here, the only way to be for sure is to design all the networks and see which does th be t.

Similarly, there are many different tran fer functions and trying many diff! r nt

combinations might also improve performanc. ach probl m wa giv n well ov r a

hundred networks before picking the best network' how v r th r are an infinite numb r

of networks and thus many more networks couJd be built hoping to find a mor optimal

solution. The data sets themselves might not b optimized f! r learning and thus trying

more than just 3 random data sets could improve performance. The input pace could b

searched more thorougWy. The original 16 inputs were cut down to 5 inputs u ing

multiple techniques such as Genetic Algorithms and an iterative approach. Howev r, all

65,536 could be checked to find the be t network for each approach. The imulation was

performed using a static model, and the research has been done showing that a moving

57

model that is updated with each day can outperform a static mod l. Thu it might b

possible that in the simulation if a new neural network is built r day giv nth mo t

recent infonnation it coul.d improve its performance. The co t of commi ion i omitt d

from this research, as profit is not the goal of this study. How ver if an actual r al world

model were to be used for making profit it would be neces ary to modify the entire

model to consider commission and thus reduce the numb r oftrad perform d by th

network. Many of the networks had 150 trades over the 252 days the market was open

during the testing period. It would be very advisable to set a tbre hold that woul.d not

perform the predicted action unless the likelihood was much better than jut 50%. One

last method for improving the network performance would be to remove more outljer

from the networks and with different combinations. All data in th training and cross

validation set that was missed by more than 5% by a well trained regr s ion network,

were removed. The value of 5% shoul.d be changed many times to fmd an ideal value for

learning. From all the above recommendations it.i cl ar that this problem i tractable,

with so many combinations and that not aJl po sible network could v r be built. 0 w

must be satisfied with a good enough result.

58

Bibliography Page

1.	 Abraham, A. Recent Advances in Intelligent Paradigm

Studies in Fuzziness and Soft Computing. Ed. Ajith Abraham Lakhmi . Jain

and Janusz Kacprzyk: Physica-Verlag (2002): 1-28.

2.	 Abraham, A. Philip, N. S., and Saratchandran P. "Mod ling Chaotic Behavior

of Stock Indices Using Intelligent Paradigms. Neural, Parallel and cientific

Computations. 11 (2003): 143-160.

3.	 Abraham, A. "It is Time to Fuzzify Neural Networks. Intelligent Multimedia,

Computing and Communications: Technologies and Applications of the Future.

(2001): pp. 253-263.

4.	 Abraham A. "Meta Learning Evolutionary Artificial N ural Networks.'

Neurocomputing Journal, Elsevier Science Netherlands, (2003) (forthcoming).

5.	 Bartos, F.J. "Motion Control Tunes into AI Methods." Control Engineering 46

No.5 May (1999).

6.	 Brownstone, D. "Using Percentage Accuracy to Measur Neural Network

Predi.ctions in Stock Market Movements." Neurocomputi Ilg. 10 (1996): 237­

250.

7.	 Castellano, G., Castiello, C., Fanelli, A.M. and Giovannini, M. "A Nero-Fuzzy

Framework for Predicting Ash Properties in Combu tion Proce ses. ' N ural,

Parallel and Scientific Computation. 11 (2003): 69-82.

8.	 Chen, A.S., Leung, MT., and Daouk, H. "Application ofNeural Networks to an

Emerging Financial Market: Forecasting and Trading the Taiwan Stock Index."

Computers and Operations Research. 30 (2003): 901-923.

59

9.	 Feder, Jens. Fractals. Pelnum Pres New York w York, 1988.

10.	 Fuzzy Cope 3. http://kel.otago.ac.n:zJsoftware/FuzzyOPE3/,11/2003

11. Garver, M. S. "Try new data-mining techniqu 'Marketing New. Volume 36

issue 19 Sept (2002).

12. Grossglauser. M. and Bolot, J-C.	 "On the Relevance of Long-Rang Dep ndellc

in Network Traffic." ACM SIGCOMM '96. August (1996).

13. Harris, c.J. and Hong, X. "Neuro-Fuzzy Network Model Con truction U ing

Bezier Bernstein Polynomial Functions." IEEE Proc D Control Th oryand

Application in Press. 47 (2000): 337+.

14. Hurst, RE., Black, R.P. and Simaika Y.M. Long-Term Storage: An Experim Iltal

Study. London, England. Constable, 1965.

15. Izumi, K. and Veda, K. "Analysis of Exchange Rate Scenarios Using an

Artificial Market Approach." Proceeding of the International Conference on

Artificial Intelligence. 2 (1999): 360-366.

16. lang, l.S.R. 'ANFIS: Adaptive-Network-Ba ed Fuzzy Inti r nce y tern.' _I~_

Transactions on Systems, Man, and Cybernetics. 23 (1993): 665-684.

18. lang, J.S.R., Sun, C.-T., and Mizutani, E. Neuro-Fuzzy and Soft omputing: A

Computational Approach to Learning and Machine Intelligence. New Jersey:

Prentice Hall, 1997.

19. Kuo, R.J., Chen, C.H., and Hwang, Y.C.	 "AnlnteIligent Stock Trading Decision

Support System through Integration of Genetic Algorithm Based Fuzzy Neural

60

etwork and Artificial 118 2001):

21-24.

20. Labbi A., Gauthier, E. "Combining Fuzzy Knowl dg and Data for uro- uzz

1/2 (1997).

21. Mamdani, E Hand Assilian, S. "An experirn nt in Linguistic ynth is with a

Fuzzy Logic Controller." International Journal of Man-Machine

No.1 pp. 1-13, (1975).

22. Neuro Solutions. http://www.nd.com.11/2003

23. O'Brian, T. V. "Neural Nets for Direct Marketers" Marketing Re arch. Volume

6. Issue 1 Dec (1994).

24. Petrovic-Lazarevic, Sonja, and Abraham, A. "Hybrid Fuzzy-Linear Programming

Approach for Multi Criteria Decision Making Problems." eural, Parallel and

Scientific Computations. 11 (2003): 53-68.

25. Prime Rate. http://re earch.stlowsfed.org/fr d2/dataJPRIME.t l. 11/2003.

26. Quah, T.S. and Srinivasan, B. "Improving Returns on t k Inve tment thr u h

Neural Network Selection." xpert Systems with Applications. 17 (1999): 295­

301.

27. Sugeno M, "Industrial Applications of Fuzzy ontrol." Isevier Science Pub o.

(1985).

28. Tsaih, R., Hsu, Y., and Lai, C.C. "Forecasting S&P 500 Stock Index Futures with

a Hybrid AI System." Decision Support System. 23 (1998) 161-174.

29. Turban, E. and Aronson, J. E. Decision Support Systems and Intelligent ystems.

Delhi, India: Pearson Education, Inc., 2001.

61

30. Weka. http://www.cs.waikato.ac.nzJrnl/weka.I1/2003.

31.	 Yao, J.T. and Tan, C.L. A Study on Training riteria for Financial Tim de

Forecasting.' Proceedings of International

Processing. Nov. 2001: 772-777.

32.	 Yao, J. and Poh H.L. 'Forecasting the KLSE Index U ing eural twork ."

IEEE International Conference on Neural. Networks. 2 (1995) 1012-1017.

33. Yao, J., Tan, C.L., and Poh, H..L. "Neural Networks for Technical

Analysis: A Study ofKLCI." International Journal of Theoretical and Appli d

Finance. 2 (1999) 221-24l.

34.	 Yao, J., Poh, H. L. "Equity Forecasting: A Case Study on the KLSE Index. '

NNCM '95. (3Td International Conference on Neural Network in the apitaL

Markets). Oct (1995) 341-353.

35. Zadeh, L. A. "Fuzzy Sets." Information and Control. June (1965), 8(3): 338-353.

62

VITA

Br nt Arthur Do k n�

Candidate for the D gr of�

Master of Comput r Scienc�

Thesis: Predicting Financial Markets Using euro Fuzzy Genetic y tern

Major Field: Computer Science

Biographical:

Personal Data: Born in Stillwater, Oklahoma On November 14 1976 th son of
Gerald and Cheryl Doeksen

Education: Graduated from Stillwater High School, Stillwater klahoma in May
1995; received Bachelor of Science degree in Computer Science and Mathematic
from Oklahoma State University, Stillwater Oklahoma in December 1999.
Completed the requirements for the Ma ter of ci nc degre with a major in
Computer Science at Oklahoma tat Univ r ity in D c m r 2003.

Experience: Brent has b en a prof! sional ftware d v lop r ince 199 and ha
worked for several companie acros the Unit d tate: abr In ., J.8. Hunt
Phillip Morris, OneOK, and William ommunication r up.

