
A SERVER-SIDE SECURITY MODE OR

WEB APPLICATIO

BY

JING DING

Bachelor of Science

Hefei United University

Hefei, P.R.China

1995

Submitted to the Faculty of the

Graduate College of the

Oklahoma State niversity

In Partial Fulfillment of

The Requirements for

The Degree of

MASTER OF scm E

December 2003

A SERVER-SIDE SECURlTY MODEL FOR

WEB APPLICATIONS

Thesis Approved:

~~~. 
De~Graduate College 

ii 



ACKNOWLEDGEMENTS 

I would like to acknowledge the continued support and guidance from my thesis 

adviser, Dr. G. E. Hedrick. He provided deep insight and technical advice on all issues of 

this research. 

I would also take this opportunity to convey my sincere thanks to Dr. Huizhu Lu 

for her suggestions during the preparation of my research. I am grateful to Dr. J. P. 

Chandler, Dr. . Park and Dr. M. H. Samadzadeh for taking out their time and for 

providing constructive feedback for my research as my committee members. 

I wish to express my appreciation to the Computer Science Department at 

Oklahoma State University for supporting me during my studies. 

Finally, I would hke to thank my husband Yong Hu, for his love, pati nee, and 

endurance that made this joumey a pleasant exp ri.ence. 

III 



TABLE OF CO TE TS 

Chapter Page 

I. IN"TRODUCTION '" 1
 

1.1 Motivation 1
 
1.2 Objectives 2
 
1.3 Organization of the thesis 3
 

II. LITERATURE REVIEW 4
 

2.1 The Concept of Web Applications 4
 
2.2 Issues of Web Application Security 5
 
2.3 Methods for Authentication 5
 
2.4 Methods for Authorization 6
 
2.5 Session Tracking 7
 
2.6 Firewall. II
 
2.7 Intrusion Detection System 11
 
2.8 Secure Socket Layer 12
 
2.9 Sanitizing Browser Inputs 13
 
2.10 Sensitive Web Page Caching Prevention 13
 
2.11 Cryptography 14
 

Ill. A SERVER-SIDE SECURITY MOD L. 16
 

3.1 Input Web Page Domain Checking 16
 
3.1.1 Definition 16
 
3.1.2lmplementation 17
 

3.2 Cookie Support Detector 21
 
3.3 Proposed Server-Side Security ModeJ 22
 

3.3.1 Problems of Existing Security Approaches ~ 22
 
3.3.2 Proposed Server-Side Security Model 25
 

IV. WHEAT BIN MIX OPTIMIZATION WEB APPLICATION 30
 

4.1 Objective 30
 
4.2 Background Information 31
 

IV 



Chapter Page 

4.2.1 Terminologies 31 
4.2.2 Standard Wheat Grade Table 33 
4.2.3 'Discount Table 34 
4.2.4 Sketch of Web Bin Mix Optimization Web Application 37 
4.2.5 A Limitation ofThe Optimization Algorithm 38 
4.2.6 Expansion Capability 39 

4.3 User Interface 39 
4.4 Inside of Wheat Bin Mix Optimization Web Application 49 

4.4.1 Architecture 4 
4.4.2 Tools Used 51 
4.4.3 Pattern Search Optimization Algoritlun 52 

V. SECURITY MODEL IN WHEAT BIN MIX OPTlMlZATION WEB 
APPLICATION 53 

5.1 Architecture 53 
5.2 New Service Components 55 
5.3 Server-Side Security Model Implementation 67 

5.3.1 Defming Input Web Page Domain 67 
5.3.2 Implementation 68 

VI. SUMMARY AND FUTURE WORKS 77 

6.1 SUmInary 77 
6.2 Future Works 78 

BlBLIOG~PHY 79 

APPENDIX: JSP CODES AND JAVA PROGRAMS FOR E URJTY LAyERS ....... 82
 

v 



LIST OF FIG RES 

Figure	 Page 

2.1 An Example of Role Hierarchy And Associated Privilege	 7
 

3.1 "Hello Shop" Web Application Workflow	 18
 

3.2 Cookies Support Detector	 22
 

3.3 A Server-Side Security Model For Web Applications	 26
 

4.1 Home Web Page	 40
 

4.2 Bin Information Web Page	 41
 

4.3 List Bin Information Web Page	 42
 

4.4 List Bin Infonnation From A File Web Page	 43
 

4.5 Optimization etting Pop-Up Window	 44
 

4.6 Optimization Setting Error Pop-Up Window	 45
 

4.7 Optimization Result Pop-Up Window	 46
 

4.8 Rank Criteria Setting Pop-Up Window	 47
 

4.9 Rank. Pop-Up Window	 47
 

4.10 Grade Table Pop-Up Window	 48
 

4.11 Discount Table Pop-Up Window	 48J 

4.12 The Architecture of Wheat Bin Mix Optimization Web Application 50
 

5.1	 The Architecture of Protected Wheat Bin Mix Optimization
 
Web Application 54
 

5.2 BinWebSite Web Page	 56
 

Vll 



Figure Page 

5.3 SetCookie Web Page 57 

5.4 TestCookies Web Page 58 

5.5 Error2 Web Page 59 

5.6 Error1 Web Page 59 

5.7 Login Web Page 60 

5.8 Check Web Page " 61 

5.9 Log]nError Web Page 62 

5.10 NoChance Web Page 62 

5.11 CustRegist Web Page 63 

5.12 RegistDisplay Web Page 64 

5.13 MustGive Web Page 64 

5.14 RedoRegist Web Page 65 

5.15 EditDisTabl.e Pop-up Window 6 

5.16 EditGradeTable Pop-up Window 67 

5.17 Digital Signature Generation 72 

5.18 Digital Signature Verification 73 

V 111 



CHAPTER 1
 

INTRODUCTION
 

1.1 Motivation 

Web applications are widely u ed to access database sy terns for information 

retrieval, transactions and publication. They are commonly applied for 6-cornmerce 6

bank, e-education, and e-govemrnent etc. We can use web appLication to purcha e 

goods, to transfer funds to enroll courses, to retrieve academic transcripts, and to pay 

taxes, etc. Most of those web applications process, store, and transmit ensitive data. 

Therefore, protecting sensitive data becomes the most important thing for those web 

applications' design. 

Authentication and Authorization are the two key security issue when 

considering web application security. Authentication is used to auth nticate a per. on i 

really the one he said he is. After authentication, authorization i u ed to en ur that each 

authenticated user only accesses information he is allowed to acce s. 

Today's authentication standard method is Usemame/Password authentication. [0 

authorization, Role Based Access Control is the approach mo t widely used to prevent 

secure infonllation from unauthorized access. However, what can we do if hackers 

bypass authentication? What can we prevent hackers from doing 'Forceful ite 

Browsing' (access sensitive information through a direct URL)? Usemame/Password 

authentication is similar to security guards watching the lobby of a building. They restrl.ct 

access to the building if someone want to come into the building through the door, but 



they do nothing to control. a person who trie to get into the building through a tunnel. 

Then what happens once the per on succe fuIJy gets into the building through a tunnel? 

Access control is used to ensure that every authenticated u er only to acce infolmation 

he or she has the privilege to acce s. For those attacker who bypa s authentication 

successfully, access control exi ts in nam only. 

Obviously, it is urgent for us to find some other security technique to protect web 

applications in addition to Usemame/Password authentication and Role Based Acces 

Control. 

1.2 Objectives 

There are three objectives of the thesis: 

•	 Compare the pros and cons of existing security approaches u ed to ecure web 

applications. 

•	 Propose a server-side security moduJe for web application to m et the following 

security requirements: 

Prevent malicious users from acce ing ensitive information without 

authentication. 

Prevent authenticated u ers from accessing information beyond their 

authorization. 

•	 Construct a web application to demonstrate the proposed security model. 

2
 



1.3 Organization of the thesis 

This thesis comprises the following chapter: hapter 2 i the lit ratur revi w. In 

Chapter 3, a server-side security model for web application i proposed. Two ecurity 

techniques, Input Web Page Domain Checking and Cookie Support 0 t ctOT, are also 

proposed. The proposed server side security model consi t of eleven ecurity layers 

where the two proposed techniques act as two ecurity layer . Chapter 4 de cribe in 

detail the construction of wheat bin mix optimization web application. This web 

application is used to demonstrate the proposed server-side ecurity model. Chapter 5 

addresses how to build the proposed erver-side security model into wheat bin mix 

optimization web application. Chapter 6 is the summary and future works. 

3
 



CHAPTER 2 

LITERATURE REVIEW 

In this Chapter, we present some background infonl1ation such as th.e concept of 

web applications, security issues and security measure currently u d to protect web 

applications. 

There are eleven sections in this Chapter. Section 2.1 introduce the concept of 

web applications. Section 2.2 discusses secUlity i sues of web application. Section 2.3 

describes some methods to implement authentication. Section 2.4 shows the most widely 

used authorization n:lethod-Role Based Access Control. Se sion tracking problems are 

discussed in section 2.5. Some other security techniques such as Firewall, Intrusion 

Detection System, Secure Socket Layer, Sanitizing Browser Inputs, and Sensitive Web 

Page Caching Prevention are introduced in ection 2.6, 2.7, 2.8, 2.9, 2.10, respectively. 

The last section 2. I1 describe some encryption and decryption method u d in web 

application security. 

2.1 The Concept of Web Applications 

"Web applications are th.e busine s logic that enables users' interaction with the 

web site, and the transacting and interfacing with all the back-end .data y terns [Pettit 

2001]." For example, applications allow u ers to check their account balance and to 

transfer funds; applications that allow users to shop online; applications that allow 

students to enroll clas es, and many, many others. 

4
 



Typically, a web-based application can be repre nted in a three-tier architecture, 

which includes a web-client network server, and a back-end information y tern 

supported by several databases. 

2.2 Issues of Web AppLi.cation Security 

There are two key is ues in the web application security: Authentication and 

Authorization. Authentication is used to ensure that someone i exactly the per on he 

said he is. It is the process of allowing only valid (authenticated) web visitors to view 

web pages of a web application. Authorization is used to ensure that authenticated u er 

can only do things what he is authorized to do. There are many kinds of methods to 

implement the two key issues. 

2.3 Methods for Authentication 

• Password-based authentication [George 1997] 

• Host-based authentication [George 1997] [Cook 2000] [Berry 1994] 

• Public Key Infrastructure (PKI) ba ed authentication [Oracle ompany 1999] 

• Other third party-based authentications: 

o Kerberos [Neuman 1994] 

o Distributed Computing EnvirOlU11ent (DCE) [Ro enbeeI)' 1992] 

o Smart Card [Rankl 1997] 

Among all of these method, password-based authentication is today's 

authentication standard and is used mo t widely since it i easy for human beings to gra p 

5
 



and no additional hardware is needed. U ually password-ba ed authentication a ks a user 

to give the correct user name and the corresponding pa sword. 

2.4 Methods for Authorization 

Joshi, Aref, Ghafoor, and Spafford surveyed all access control models used 

nowadays with their key features and approaches [Joshi 2001]. They also concluded 'The 

Role-Based Acces Control (RBAC) model is expected to provide a viable framework for 

addressing a wide range of security requirements for large enterpri e [Joshi 2001]." 

Role Based Access Control [Ferraiolo 2003] i today's most widely u ed 

authorization method. In RBAC model, each user is assigned one or more roles; each role 

is assigned one or more privileges; roles can be organized in hierarchies. 

For example, in Figure 2.1, we can divide employees of a university into two 

groups: administration staff and research staff. The admini tration staff consist of 

secretary, college dean and department Chair. The r earch taff consi ts of researcher. 

faculty and department Chair. Notice that department Chair belong to both 

administration staff group and research staff group. 

Now suppose that all employees are authorized with privilege A, administration 

staff is authorized with privilege B, and research staff i authorized with privil ge 

Then a secretary has privilege A and B, so does the college dean. Researchers and faculty 

have privilege A and C. Since the department Chair has both the administration staff and 

research staff role, the department Chair has privilege A, Band C. 

6
 



Employ Privilege A) 

/
(Priv ilege B) Administrator Staff Re earcb Staff (Privilege C) 

/1 1
Secretary Dean Chair Faculty Re ea.·cher 

Figure 2.1 An Example of Role Hierarchy And As ociated Privilege 

2.5 Session Tracking 

The client-server model basically follows three procedures: request from the 

client side, the server side's responses and afterward , the client side's acknowledgement. 

This is perfect for simple web browsing, where each request typically results in a 

web page being sent back to the client. The serv r does not need to know whether a series 

of requests come from the same, or from differ nt clients, or whether tho e r qu st are 

related or distinct. However, when writing web application, the e are things that we may 

concern. 

The idea of maintainIng state among reque t to a web application is known as 

session tracking. A session can be defined as a serie of related interactions retween a 

single client and the web server that take place over a period of time. No matter what 

authentication and authorization meth.ods are chosen, there are al 0 strong needs to 

ensure that a session related with each user is secure so that authentication and 

authorization methods can be brought into full play. 

7 



In the following section several traditional session tracking methods are 

discussed. 

URL Rewriting 

URL is the abbreviation of Urover al Resource Locator. RL Rewriting basically 

means that when a user is presented with a link to a particular resource instead of imply 

presenting the URL as normally do, the URL for that re ource is modified so that more 

information is passed when requesting for that resource [Ayers] 999]. 

Assume that a user searches some books from an on-line bookstore 

www.bookstore.com and he is presented with a earch result that has 2 book listed. 

Suppose the search result displayed to the user is basically a fonn within Java Server 

Page (JSP) format: 

<form method = "post" action = "book.jsp"> 

<input type = "checkbox" nam.e = "bookJD" value = "] I ++ <br> 

<input type = "checkbox" name = "bookID" value = "2"> JAVA<br> 

<input type = "submit" name = "Submit" value = "Add To art"><br> 

</fonn> 

In this fonn, there are two checkboxes, each for one book and a Submit button. 

The user can click any checkbox to add any of these book to his Cart. 

In this example, when a user links to the on-line book tore w~.book tore.com, 

the URL appears in the user's web browser is http://www.bookstore.comlbookj p, where 

the server is www.bookstore.com. the server resource is book.jsp (a Java erver Page 

file). After the user clicks the checkbox of the book "C++", the URL that appears in the 

8
 



us r' web browser i http://www.booktore.com/book.j p?bookID=l. The serv r ource 

ha been changed from book.j p to book.jsp?booklD=1. This i exactly what URL 

Rewriting means. The effect of this is that any part of th URL after the "?" (que tion 

mark) is treated as extra parameter that are passed to the erv r ide program. 

URL Rewriting is very easily to maintain session infonnation when a u er's 

browser doesn't support cookies or a u er disables cookies. W will introduce cookies 

technique later. 

Hidden Form Field 

Hidden Form Field i a session tracking technique in which browser input i not 

displayed when read by a web brow er [Duffey 2001). In thi technique, s ssion data can 

be tracked by storing it in hidden form fields then be retrieved later. 

Cookies 

Authentication 1S the first ecurity layer of web application protection. After 

authentication, the server side mu t ensure that a u er i till the am p r on who has 

successfully logged in. If a web application frequently a k u ers to do authentication, 

sometimes as often as every page request, this indeed make th web application secure. 

However, it is unacceptable since it i not convenient for u er . 

Today's most widely used cookie technique make authentication more 

convenient to users. HTTP by itself is stateless, after authentication, cookie can b the 

way a web application maintains ession state information. Cookies are sets of strings 

written to a client's web browser or stored on a client's hard di k by the web application 

9 



erver whenever that web browser isits the server' ite. As a user visits a web site for 

the ftrst time, the server side create a new se ion and ets cookie with a ulliqu value. 

When the user browses that web site again the cookies is ent back from the u er' web 

browser to the erver side, allowing the server side to r cognize the u er. Thu , cookies 

commonly are used to maintain state information among ubsequent HTTP reque ts and 

can be exchanged between the web client and the web server to maintain connection 

information. Cookies usually are used to store infomlation S..Ich as a user ho t name, 

password, account ID, session ID or other profile information. 

There are two types cookies.: 

•	 Persistent cookies: have an expiration date and are stored on a user's hard 

disk until that date. A persistent cookie can be used to track a u er's 

browsing habits by identifying the user whenever the user retums to a ite. 

•	 Non-persistent cookies (temporary cookie): are stored in the web 

browser's memory. They la t only until the brow er i clos d or a u er' 

session is over then are destroyed. 

Role-Based Access Control with Secure Cookies 

Cookies are insecure to store and tran mit s nsitive infonnation. Park, andhu 

and Ahn proposed Role-Based Access Control with persi tent ecure cookie technique 

to protect web applications [Park 200 JJ. In this technique, they sugge ted to use some 

cryptographic technologies, such as "digital signature" which we will introduce in section 

2.1 1, to encrypt cookies to prevent cookies from theft or modification. 

10
 



Session Timeout 

Ses ion timeout specifie the "no activity" duration beyond which a u e has to re

authenticate himself to a web ite. The "no activity" duration etting is u ually ba ed on 

the type of a web application. erious fmancial web applications may specify a very bort 

session timeout period. Regular application, such as e-mail, may u e longer timeout 

periods. 

2.6 Firewall 

Web servers are the places where most network services are located. Firewall. 

technology has become the most popular defense for these servers against the open un

trusted Internet. 

"A firewall IS a form of access-control technology that prevents unauthorized 

access to infonnation resources by placing a barri r between an organization network 

and the internet [Xtream 2002]." Deploying firewalls is a standard st p adopt d by many 

organizations. Firewalls protect again t many attacks on the network and ystem 

infrastructure. In addition, some firewalls provide filtering capability and prevent 

inbound malicious applications. 

2.7 Intrusion Detection System (IDS) 

lntrusion detection i a technology that attempts to di cover attacks pr ferably 

while they are still under way. There are two approaches for this technique: pattern-based 

and anomaly-based. 

11
 



Pattem-based y terns are explicitly programmed to detect certain known kinds of 

attack. Anomaly-based sy terns address those attack problems by attempting to detect any 

abnonnal behavior [Stillemlan 1999]. 

2.8 Secure Socket Layer (SSL) 

After a user has supplied proper identification and access is granted, Secure 

Socket Layer ensures secure data transrnis ion during a se ion so that that private data i 

not intercepted or altered during the session. 

HTTP is the basic protocol for data transmission on the Intemet. The protocol was 

not designed for security, thus very insecure. For example, students in a dorm share a 

broadcast Ethernet. A user may impersonate another user by running a listening program. 

Therefore, even though a user has properly logged onto a system, any information that is 

accessed can be intercepted and captured by another u er on the network. Th r is no 

easy way to prevent this interception except by encrypting all of the infomlation that 

flows both ways. 

Secure Socket Layer (SSL) technology is a solution that use public key 

technology (section 2.11) to ensure hat information exchanged between the web erver 

and the web client is encrypted. SSL provides data tran mi sion security between the web 

client and the web server. Accessing web sits using SSL appears different from regular 

sites. A normal web site may be: http://www.website.comJ. If the web sit uses SSL, then 

the 'http' protocol token becomes 'bttps' as in: https://www.website.com/[Duffey 

2001]." 

12
 



2.9 Sanitizing Browser Inputs 

Browser inputs are all input from a web browser such as u er ' input data from 

HTML fonns and cookie r trieved from the client's side etc. 

Some special characters in HTML fonn input such as! & > and $ can cause a 

web server to execute an operating system command or has other unexpected behavior. 

Some web guest books allow users to format their comments with HTML tag lIch as 

<FONT SIZE>. However, hackers may embed malicious HTML tags in the client 

requests. This is also called cross-site scripting. With cro s-site cripting, malicious u ers 

can access and delete files stored m a web server, crash a u er's computer or steal 

infonnation from HTML fields [Advosys Consulting 2002). 

It is very important for the server side to sanitize brow er inputs. The server side 

should be able to strip unwanted characters, invisible characters and HTML tags from 

users' inputs. The best solution is to check browser inputs again tali t f erver- ide 

defined valid characters other than a list of invalid one in e it i very difficult to 

detennine all possible malicious characters. 

2.10 Sensitive Web Page Caching Prevention 

Web browsers cache pages. They store a local copy of every page a u er vi it on 

the Web. Caching speeds up a user's access to Web pages. 

For example, if a user asks the web browser to get a web page vi ited before, the 

web browser first looks in the cache. If the browser finds that web page in the cache, it 

just loads that page rather than connects to a web server to get a new one. 

13 



However, in some cases we may not want ensitive web pages to be cached by 

web browsers, such as ome per onal infonuatiol1 on regi tration web page. In thi 

situation, we need to prevent sensitive web page from being cached by web browser to 

protect sensitive information. 

2.11 Cryptography 

Secret-key Encryption (using a single key) [Schwartz 2001], al a known as 

Symmetrical-key Encryption, is somewhat familiar to mo t people. In Secret-key 

Encryption, a single key is used for both encryption and decryption. Public-key 

Encryption [Naor 1990] is a little more complicated. In Public-key encryption, each 

individual holds two keys, one public key and one private key. The public key i freely 

published, and the private key is kept private. Once a message is encrypted with one key, 

it cannot be decoded without the other key. 

M05 message-digest algorithm [Loshin 1999] is a one-way encryption algorithm. 

The algorithm takes a message of arbitrary length a input. The output i a 128-bit 

"fingerprint" or "message digest" of the input. 

Secure Hash Algorithm (SHA-l) [Loshin 1999] i a mes age digest algorithm. It 

is the Federal Information Processing Standard. Given an input message of any length 

less than 264
, the SHA-I produces a l60-bit output called Me sage Oige t. Then the 

Message Digest can be used as an input to a signature algorithm that generates or verifies 

the signature of the message. 

Digital Signature Algorithm. (OSA) [Yen 1995] is for creating and verifying 

signatures. It can also be used to produce a key pair: private key and public key. The pair 

14 



of key's size range is 512 to 1024 bits. Before generating and erifying a digital 

signature, we ftrst use DSA to generate a public key and a private key. To generate a 

digital signature, we use SHA-l to generate a message dige t for a given me age. Then 

we use DSA to generate digita ignature for the mes age digest, which take the me age 

digest and the private key as input parameters. To verify a ignature, we fLrst re-compute 

the message digest for the original me sage. Then we u e DSA to verify the digital 

signature by taking the message digest, the digital signature and the public key as input 

parameters. If a message is not modjfied, the verification result is true. Otherwise the 

verification result is false. 

The Rivest, Shamir, and Addleman AsymmetricCipher Algorithm (RSA) [Loshin 

1999] is a public key cryptosystem in order to ensure that nobody, except the intended 

recipient, deciphers the message. 

Now we have discus ed various method u ed in web application security and 

their advantages. In Chapter 3, we will al 0 discu the di advantages of the e exi ting 

security techniques. By taking the advantages of those existing security t chniqu and 

combining them, along with two proposed techniques (Lnput Web Page Domain 

Checking and Cookies Support Detector), we propo e a server-side security model in 

Chapter 3. 

15
 



CHAPTER 3
 

A SERVER-SIDE SECURITY MODEL 

In thi Chapter, we will introduce a proposed sever-side security model for web 

applications. This server-side security model consists of eleven security layers, wh re 

two layers are the two proposed security techniques, Input Web Page Domain Checking 

and Cookies Support Detector, which will be de cribed in section 3.1 and ection 3.2 

respectively. Section 3.3 discusses the disadvantage of everal existing ecurity 

techniques and explains the purpose of each security layer in the proposed server- ide 

security model. 

3.1 Input Web Page Domain Checking 

As we known, web applications are ba ed on the c1.ient-server architecture.. For 

each client request, the server sends corre ponding w b pag from the server si.de to the 

client side. There are some particular order when accessing web page. We call thi.s 

particular order as Application Workflow. 

Input Web Page Domain Checking technique is propo ed to ensure the correct 

application workflow. Therefore, this technique can prevent malicious user from 

accessing sensitive information without authentication such as forceful.browsing. 

3.1.1 Definition 

16
 



Based on the particular order while accessing web page when reque t to access 

a certain web page are received, the server side must en ure that only tho e request 

coming from some particular web pages will be proce ed, and other will be declined. 

"Input Web Page Domain" is a set of such particular web page( ). Each web pag owns 

its own "Input Web Page Domain". 

3.1.2 Implementation 

Assume there is a member-only web application called "Hello Shop' designed for 

an on-line store. Every customer uses this web application for shopping hould have a 

membership in the on-line store. 

Suppose there are totally three Web pages designed for "Hello Shop" Web 

application: A "Login" Web page is used to authenticate user . a "Product Li t" Web 

page displays all products; a "Shopping Cart" web page lists all items a customer chose. 

We can do "Input Web Page Domain Checking" following three teps: 

Stepl: Drawing Workflow during Web Application Design 

For the "Hello Shop" Web application, the "Log In" web page hould b sent to 

the client's side (a user) from the server side to authenticate users before any other Web 

pages. In the "Log In" web page, a user types his or her u emame and password to login. 

If the user's given information is incorrect, i.e., incorrect usemame and/or incorrect 

password, the "Log In" page should be resent to the client's side for re-Iogin. Otherwi e, 

the "Product List" web page should be sent from the server ide to the client ide. If a 

user logs in successfully, he or she becomes an authenticated user. The user now can 

17 



---------

choose a product and add it to the u er hopping cart by clicking the "Add To Cart" 

button in the 'Product List" web page. The 'Shopping Cart' web page hould then be 

sent from the server side to the client's ide to di play aU item curr ntly in the shopping 

cart. [f the user wants to continue shopping the "Product List' web page should be re

sent rom the server side to the client's side. Based on the particular order of the three 

web pages, we can draw the workflow of "Hello Shop" Web application, as shown Figur 

3.1. 

Empty 

"Login" Web Page Login failed 

Login successful 

Web Client "Product Li t" Web Page 

Continue shopping Add a product to the hopping cart 

"Shopping Cart" Web Page 

Figure 3.\ "Hello Shop" Web application workflow 

18 



Step 2: Define "Input Web Page Domain" for Each Web Page 

Based on the workflow of "Hello Shop" web application we drew in step 1, we 

can define the "Input Web Page Domain" for each Web page a in Table 3.1. 

Table 3.1 "Input Web Page Domain" for "Hello Shop" Web Application 

Page Name [nput web page domain 

LogIn {Null, "Log In"} 

Product List {"Log In", "Shopping Cart"} 

Shopping Cart {"Product List"} 

.._

• Define "Input Web Page Domain" for "Log In" web Page: 

"Log In" web page should be sent first from the server side to the client side 

before any other web pages for authenticating a user. We use "Null" as an lement in the 

"Input Web Page Domain" of "Log In" web page to show that "Log [n" web page mu t 

be the first web page sent to the client's side. 

If a user fails to log in, the "Log In" web page is resent to the client ide. Thus, 

"Log In" web page itself is an element in the "Input Web Page Domain" of "Log In" web 

page. 

Therefore, "Input Page Web Page Domain" for the "Log [n" web page is {NuU, "Log 

In"}. 

• Defme "Input Web Page Domain" for "Product List" Web Page: 

"Product List" web page can be redirected by the "Log In" web page if a user log 

in successfully; "Product List' web page can also be redirected by the "Shopping Calt' 

19 



web page if a u er want to continue shopping after adding a product into the hopping 

cart. 

Therefore, the "Input Web Page Domain" for "Product Li t" web page contains 

only "Log In'' web page and 'Shopping Cart" web page. We denote thi '[nput Web Page 

Domain" as {"Log 10", "Shopping Cart"}. 

• Define "Input Web Page Domain" for "Shopping Cart" Web Page: 

Since "Shopping cart" web page can only be redirected from the "Product List" 

web page and can't be redirected by the "Log In" web page the "Input Web Page 

Domain" for the "Shopping Cart" web page onJy contains the "Product Li t" web page. 

We use {"Product List'} to denote the "Input Web Page Domain" for the "Shopping 

Cart" web page. 

Step 3: Do "Input Web Page Domain" Checking for Each Web Page 

Do "Input Web Page Domain" checking can according the following rule: 

We defme: 

P: A web page to be requested 

D: P's input web page domain 

Q: A web page that makes the request
 

Then the checking is performed according to the following rule:
 

{fQED, process the request. Otherwise, decline the request. 

In the "Hello Shop" web application since the "Input Web Page Domain" for 

. Log In" web page is {Null, "Log In"}, we must check to ensure that no other web page 

is sent to the client side before the "Log [n" web page from the server side except 

possibly the "Log In' web page itself. 

20 



Since the "Lnput Web Page Domain" for' Product Li t" web page i {"Log [n", 

"Shopping Cart"}, only requests coming from the "Log In" web page and reque ts 

coming from the "Shopping Cart" web page can be process d. If requ sts come from any 

other web pages, the "Product List" web page should not be sent to the client ide. 

Since the "Input Web Page Domain" for the "Shopping Cart" web page 

{"Product List"}, only requests coming from the "Product List" web page hould be 

processed. If requests come from any other web pages, the "Shopping Cart" web page 

should not be sent to the client side. 

3.2 Cookies Support Detector 

"Cookies Support Detector" technique is proposed to detect whether the client 

side supports cookies or not. Based on whether the client side supports cookies, the server 

side can adopt different session tracking technique to maintain ession status. 

The basic idea to detect whether the cI ient ide support cookie shown m 

Figure 3.2. There are four steps: 

1.	 Create cookies. 

2.	 Send cookies to the client's side. 

3.	 Get cookies from the client's side. 

4.	 Test the cookies' length. In implementation, cookies are an array of String 

data type objects since cookies are actually string of characters. Therefore, 

cookies do not exist means that the value of the String data type object is null. 

Thus, if the test result is null, we can conclude that the client side doe not 

support cookies or the client side disables cookies. Notice the fact that some 

21 



web browsers do not support cookies and some web brow ers provide the 

option that a user can disable cookies. If the cookies' length is greater than 

zero, we can conclude that the client's side supports cookies. 

Create Cookie Get Cookies 

Null 
String Cookie are not 

Test Cookies Length supported or cookies 
are disabled 

>0 

Cookies are supported 

Figure 3.2 Cookies Support Detector 

3.3 A Server-Sid.e Security Model 

Before introduce the proposed server-side security model, we first di cu the 

problems of existing security approaches used in web applications. We then propo e the 

server-side security model that takes advantage of existing security approaches and 

combines them with the proposed two techniques: Input Web Page Domain Checking and 

Cookies Support Detector. 

3.3.1 Problems of Existing Security Approaches 

In Chapter 2, we reviewed existing security approaches and their advantages. 

22 



Now, we will discuss the problems of the e existing security approaches. 

Firewall 

Firewall is widely used as the first layer protection for web application ecurity. It 

is an electronic gate that limits access between networks in accordance with local security 

policy [Goldberg 2002]. Though firewalls can prevent iIJegitimate traffic from traveling 

from the Internet to the corporate networks, they do little to protect again t inbound 

malicious requests for legitimate applications. Legitimate requests that pa s through a 

firewall may be used for a data-driven attack on the networks or back-end y terns 

[Garfinkel 1997]. "Data-driven attack is a form of attack that is encoded in innocuous 

seeming data which is executed by a lEer or other software to implement an attack. in the 

case of fuewalls a data driven attack is a concern since it may get through the fuewalJ in 

data form and launch an attack against a system behind the firewalL" [Garfinkel 1997] 

Secure Socket Layer (SSL) 

Secure Socket Layer (SSL) is often deployed to prevent data theft from the user's 

browser to a web site. However, SSL is 110t used in all web ites although it can be ea ily 

implemented to make data more secure. SSL dramaticaHy affects the speed at which 

users can access information, since a large amount of extra proCeSSiJlg occur in SSL due 

to encryption and decryption. Performance of an application is often decreased if SL is 

used. Therefore, it is better to use SSL only when sending confidential data over the 

Internet. In a web application design, one can mix SSL (using http protocol) and 000- SL 

(using https protocol). 

23
 



Intrusion Detection System (IDS) 

Intrusion Detection is a technique that attempts to di cover attack preferably to 

discover those attacks still wlder way. However, both pattem-ba ed and anomaly-ba ed 

IDS have significant drawbacks. Pattem-ba e IDS detects attacks with known pattern. 

Since only limited attack patterns are known, the effectivene s of pattem-ba ed IDS is 

also linu ted. Anomaly-based IDS detects attacks when an unknown pattern i se n. Since 

the real time normal behaviors of the web application cannot be predicted completely, it 

is possible that the anomaly-based IDS cause authorized users not be able to gain acces . 

Cookies 

Cookies technology is the easiest way to maintain session status. However, there 

are two disadvantages in using cookies. First, using cookies is not foolproof to tho e who 

know how to bypass the authentication. Cookies may allow a malicious u er to hijack 

web sessions and view, modify, or exploit the information related to another user's 

session. A hacker may obtain cookies by variou mean, incJudi.ng physical acce or 

network sniffing, as well as guessing the cookie content. Th n the hacker can 

impersonate the user by hijacking the user's se sions. If an unauthorized user is able to 

capture the cookies, he or she may be able to gain unauthorized access to per onal 

information. Secondly, users who have cookie disabled will not be able to be 

authenticated. 

Access Control 

Access control IS often used to allow authenticated users to perform certain 

operations they are authorized to. For those attacks bypassed authentication uccessfully, 

24
 



access control exists in name only. 

Session timeout 

Session timeout is used to enforce users to re-authenticate if a pre et amount of 

time is passed. However, it is difficult to set a petfect value for the se ion timeout: time 

too short is inconvenient to the user too long may provide a chance for attacker. 

3.3.2 Proposed Server-Side Security ModeJ 

In previous section, we discussed the problems of existing security models. In this 

section, we propose the server-side security model which takes advantage of existing 

security models and combines them with two new techniques: Input Web Page Domain 

Checking and Cookies Support Detector, to provide a secure protection for web 

applications. Figure 3.3 shows the model. The proposed server-side ecurity model set 

several security layers between the client's reque t and the "erver' re pon e to prevent 

sensitive information from theft. 

Layer 1: Sanitizing Browser Inputs 

Purpose: Prevent "cross site scripting" attack (Chapter 2, section 2.9), which 

embed malicious HTML tags or special character such as and & in the client web 

request to reveal sensitive information. 

Layer 2: Cookies Support Detector 

Purpose: Cookies Support Detector (Chapter 3, section 3.2) i used to detect 

whether the client's side support cookies. The server side adopts different session 

25 



Request 
,Ir 

Filter Invalid Input 

.. 
A New ~essiou Begin 1 I 

Within A . e. sinn r---- Cookles Support Detector

,.------.L-----r---.I Login Failed •,
Authenticafion 1""'''''.-----'
 

No
 
Yes 

I 
I"".. 

,ir 

1. Generate digital signature for session 1. Store ses ion information
 
information including role information. including role information into
 
2. Store digital signed session session object.
 
information into temporary cookies. 2. Using URL Rewriting technique
 
3. Set the temporary cookies to the to maintain session status.
 
client's side.
 

I Input Web Page Domain Checking 
1 

I ..o En-or ~ 

I. Get cookies from the client's side and verify the digital signature. R 
2. Get role information from verified cookies to do RBAC. (Cookie Support) B 

A1. Check the consistency of the session. 
2. Get role information from session object to do RBAC. (Cookies Not Support) 

Nn Error ... 
Error, Deny Acc ss! 

Hidden Form Filed I I
 

Deploy SSL As NeededI I
 
Within Session ... 

I 
I,Sensitive Web Page Caching Prevention 

1 ... Killing Cookies Session Over ... 
and Invalidating 
Session 

Figure 3.3 A Server-Side Security Model For Web Applications 

26 



tracking techniques based on the detection result. 

Layer 3: Authentication 

Purpose: Authentication is the traditional way to protect web applications and is 

used to ensure that the client is the person he said he is. Today's authentication tandard 

is Usemame/Password authentication. It is al 0 used in tm server-side ecurity model. 

Layer 4: Setting Temporary Digital Signed Cookies 

Purpose: Set digital signed temporary cookies to the client's web browser. If the 

client side SUppOlts cookies, after the client's authentication, the server side get the 

client's role information from a database and stores them (possibly with other ses ion 

information) into digital signed temporary cookies. Since cookies by themselve are 

insecure (Chapter 3, section 3.3.1), using digital si.gnature algorithm to digitally signed 

cookies can prevent cookies from theft or modification. In this server-side security 

model, we adopted the technique of "per istent digital igned cookies" introduced in 

[Park 2001]. However, in tead of using persistent cookies, we u e temporary cookie t 

make the cookies more secure since temporary cookies are deleted imm diately after 

each session is over. We call the cookies "temporary digital signed cookie ". 

Layer 5: URL Rewriting 

Purpose: If the client side does not support cookies URL Rewriting (Chapter 2, 

section 2.5.1) is then appl.ied. URL rewriting is a method in which the requested URL is 

modified to include a session ID. It works with browsers that do not support cookies, or 

when the client has disabled cookies. 

'27 



Layer 6: Input Web Page Domain Checking 

Purpose: Web applications are ba ed on the cIient- erver architecture. For each 

user request, the web application erver ends corresponding web pag from the server 

side to the client side. There are some particular crders (application workflow when 

accessing web pages. The proposed Input Web Page Domain Checking teclmique is u ed 

to ensure the correct application workflow, and prevent maliciou user from accessing 

sensitive infonnation without authentication. 

Layer 7: Role-Based Access Control 

Purpose: Role-Based Access Control (RBAC) is the most widely used 

authorization technique. It is used to prevent maJicious user (specifically, the legitimate 

user who can login but have no authorization to access certain web page ) to acces 

sensitive infonnation that is beyond his authorization. 

Layer 8: Hidden Form Field 

Purpose: Hidden fonn field (Chapter 2, section 2.5.2) i one of the implest 

session-tracking techniques. Hidden fonn fields are HTML input types that are not 

displayed when read by a browser. Thi technique can prevent some malicious user to 

modify parameters displayed on a web browser to do some type of hacking, such as on

line shopping lifting or data-driven attack, etc. 

Layer 9: Deploy Secure Socket Layer As Needed 

Purpose: Secure Socket Layer (SSL, Chapter 2, section 2.8) technique provide 

some fonn of encryption to prevent data theft during the data transition. In web 

2X
 



application de ign, we can mix HTTP protocol with HTTPS protocol tog ther. Since SSL 

dramatically affects the speed of web application perfomlance it is only r commend 

when sending a web page which contains sensitive information, ucb as user's credit card 

information, bank account infomlation, etc. 

Layer 10: Sensitive Web Page Caching Prevention 

Purpose: Web browsers usually store a local copy of e ery web page a u er 

visited to speeds up the access to Web pages. Preventing sen itive web page to be cached 

by client's web browser prevents malicious user accessing those sensitive web pages 

through clicking the "Back" button in the web browser to view the sen itive infomlation 

ever after a client has logged off. 

Layer 11: Killing cookies and invalidating Session 

Purpose: This is the last security procedure before a session is over. Since the 

cookies are temporary cookies in the proposed security model co kie mu t be kill d to 

end a session. Session is also to be invalidated to prevent maliciou u ers acc ing other 

people's session even after the other people has logged off. 

To demonstrate the proposed server-side security model, a Wheat Bin Mix 

Optimization web application is designed and implemented. in Chapter 4, we will present 

in detail about wheat bin mix optimization web application. [n ChapteJ: 5, we will discuss 

how to build the proposed server-side security model into wheat bin mix optimization 

web application. 

29
 



CHAPTER 4 

Wheat Bin Mix Optimization Web Application 

In this chapter, we introduce a Wheat Bin Mix Optimization w b application. 

There are 4 sections in this chapter. Section 4.1 describe the objective of wheat bin mix 

optimization web application. Section 4.2 presents some background infonnation about 

wheat bin mix optimization, including the discount table and the grade table u ed to 

calculate the discount. Section 4.3 shows the user interface and explains the function of 

each web page in the web application. Section 4.4 discu ses the architecture of this web 

application; tools used for performing the wheat bin mix optinllzation; and the 

optimization algorithm. 

4.1 Objective 

The objective of wheat bin mix optimization web application is to maximize the 

profit by optimal blending of wheat stored in two or more bin at wheat elevator . The 

buying company will discount the seller' wheat according to the wheat grade standard 

which is regulated by U.S. Department of Agriculture, as well a the buying company's 

own discount table. This web application is used to help elevator manager finding 

optimal blending strategy to maximize their profits. 

30
 



4.2 Background Information 

In this section, we fIrst introduce orne tenninologies related to wheat bin 

blending, !tandard wheat grade table, and discount table. Later, a sketcJl of wheat bin mix 

optimization web application will be presented. Finally, limitation of the optimization 

algorithm and the expandability of wheat bin mix optimization web application will be 

discussed. 

4.2.1 Terminologies 

The following terminologies are related to wheat quality. They also appear a the 

column name in the bin information table of wheat bin mix optimization web application. 

-	 BlIshels: the volume unit of a wheat bin. 

-	 Total Height (fl): the height of a wheat bin. 

-	 Head Space (ft): the height of the empty pace in the bin. 

-	 Break Point (ft): the height of the filled space in the bin. 

-Moisture (%): moisture weight percentage, an es ential mea ure of 

wheat's storabijity and value. 

•	 Test Weight (LB): test weight per bushel. It is the weight of the volume of 

grain that is required to fill a Winchester bushel (2,150.42 cubic inch) to 

capacity. 

•	 Dockage (%): material other than the predominant grain that can be ea ily 

removed with sieves and cleaning devices. 

31
 



•	 SBK (%): shrunken and broken kernels aU matter that pass through a 

0.064-inch by 3/8-inch oblong-hole sieve. 

•	 FM (%): foreign material. All matter other than wheat that remain in the 

sample after the removal of dockage and shrunken and broken kernels. 

•	 HDK (0,/0): heat damaged kemels, kernels that are materially discolored 

and damaged by external heat or a the result of heating cau ed by 

fel111e~ltation. 

•	 IDK (%): insect-damaged kernels, kernels that bear evidence of boring or 

tunneling by iIk"ects. 

•	 Damage (%): total damaged kernels, kernels that include weather

damaged, heat-damaged and insect-damaged etc. 

•	 Deject (%): total amount of damaged kernels, foreign material, and 

shrunken and broken kernels. 

•	 wee (0,/0): wheat of contrasting cia es, which are: Durum wheat, hard 

white wheat, soft white wheat and uncIa lti.ed wheat. 

•	 woe (%): wheat of other cia ses, classe other than the contrasting 

classes which including hard red spring wheat, hard red winter wheat and 

mixed wheat. 

•	 Protein (%): the weight percentage of protein contained in wheat. 

To perform bin-blending optimization, the value of "Bushel ".must be given by a 

user. Otherwise it is treated as 0, which indicates an empty bin. There i no reason for 

blending an empty bin. Other values, if missing, are as umed to have the best value, i.e., 

no discount is to be counted for missing values. For example, if the te t weight value is 

32
 



missing, it is assumed to be equal to 60 Lb. However, at lea t one other value hould be 

given besides the "bushels". 

4.2.2 Standard Wheat Grade Table 

In wheat bin mix optimizati.on web application, the following wheat grade table i 

used. This is the standard grade table published by Federal Grain Inspection Service in 

February 2002 [Federal Grain Inspection Service 2002]. 

Table 4.1: 810.2204 Grade and Grade Requirements for Wheat 

[Grade ITW (lb) IHDK (%) IDamage (%) IFM (%) [SDK (%) IDefect (%) Iwcc (%) I 
--~--

11 160 10.2 12 -10.4 f3 [3
-[512 158 '0.2 

14 [il.7 f5 [2 

3 [56 0.5 F r1.3 r8 18 flO 
4 154 I flO 3 12 112 10 
, 

V ~ 
r

5 3 115 20 f20 10 
1 

In wheat grading, Grade I is the highest grade, and Grade 5 is the lowest grade. 

The following indices are considered for grading the wheat: Test Weight (TW), Heat 

Damaged Kernel (HDK), Damage, Foreign Material (FM), Shrunken Broken Kernel 

(SBK), Defect, and Wheat of Contrasting Class (WeC). The grading procedure can be 

described as follows: 

1) For given wheat, get the grade based on each single index. The grade hould be 

one grade lower than the grade whose index value is just greater than the index 

value for that wheat. For example, if the TW value of given wheat is 57 Ib, we 

should classify the grade to 3 based only on the TW. 

33 



----

2) Take the lowest grade from step 1 to be the fmal grade. 

For example, a user gives the TW value and HDK value of wheat in a bin as 59.9 

Ib and 1.2%, respectively. Based on the TW value, the grade i 2; ba ed on the HDK 

value, the grade is 5. Therefore, the fmal grade is the lower of2 and 5, which i grade 5. 

4.2.3 Discount Table 

The Peavey Company (5301 West Channel Road, Catoo a, Oklahoma, 74015) has 

a discount table effective as of June 2000. We took this discount table as a "standard" 

discount table. The discount table can be modified and saved for future use (but should be 

in the same format i.n the web application design) if a buying company ha a different 

discount table other than the Peavey Company. 

The following is the "standard" discOlmt table used in the web application. In this 

table, negative values represent discount and positive values represent premium [Peavey 

Company 2000). All values are per bushel value. 

Table 4.2: Discount Table (Peavey Company) 

I Index >= r <= Cents 

IGrade 0rr 
f

2 b -0.5 

1-, 3 3 -3 

4 f4 -6 

I 
-r 

5 5 -9 

I sample -12 

I ~... F··:; *••*** 

~isture(%) f13.5 ro 

34 



--

13.6 ~3.7--2 

r 13.8 f14.0 -4 

I F2f14.1 1-6 

I 14.3 fl4."5 -8 

[ 14.6 r 
I Each fo.;- -2-

I '······1······ .
 
IFM(%) 11.0 o 

I 1.1 \5.0

r Each [Q.S - ':.""1 

I FFO~I

I PEach --5

,--*·;;:;;1······ I . 

ITW (Ib) - '58.0 I 0 

1-55.0 [57.9 ~-

I Each 0.5 -2 

1 
54.0 154.9 

Each 5 -410.1 
r ....... F··· ;;;;;;
 
[WO (%) 15.0 o 

5.1 [10.0I
Each -51-- rI

[ 1······1······ .
 
Dockage (%),.---- fI.O °
 

0 -2
I I.l 12. 

2.1 13.0 -4
 

[ 3,1 \10.0
 

I Each 10.5 -2 

1- -:.·····1·····'" ••.••.
 
! 

35
 



lDamage %) -~o 0 

3.1 rlO o 

Each -IfI
.

Fo 
r
10.1

-flEach I -2 

1**..** 1*****'" ';.-;;;; 
Protein (%) 1~116 

11.5 6I	 ri79 
10.5 jIlA 3I I 

10.0 -5I	 fiOA 
-10I	 F 

For example, to get the discount related to moisture (moisture % is rounded to one 

decimal point) of a bin of wheat, the table can be read as follows (other are similar): 

1) If moisture is less than or equal to 13.5%, the wheat is discounted by 0 cent 

per pound (no discount). 

2)	 If moisture is either 13.6% or 13.7% (notice that only moisture percentage 

value has only one decimal point), the wheat is di counted by 2 cent per 

pound. 

3) If moisture is between 13.8% and 14.0%, the wheat is di counted by 4 cent 

per pound. 

4) If moisture is either 14.1 % or 14.2%, the wheat is discounted by 6 cents per 

pound. 

5) If the wheat's moisture is between 14.3% and 14.5%, the wheat is djscounted 

by 8 cents per pound. 

36 



6) If moisture is greater than or equals to 14.6% then the wheat is di counted by 

8 cents discount, plus extra 2 cents discount per 0.25% over 14.5%, p r 

pound. 

4.2.4 Sketch of Wheat Bin Mix Optimization Web Application 

The implementation of this web application was divided into two phases: User 

interface construction and back-end optimization algorithm implementation. 

In phase 1, the user interface was constructed. When a user accesses the home 

page of the web application, the web application prompts the user to input number of 

bins. After the Dumber of wheat bins are selected from the drop-down menu, a bin 

information web page is dsplayed, asking the user to provide wheat bin information, 

which are the values of some or aU index of each wheat bin, such as bushels, moisture 

and protein. The bin information can also be loaded from an existing file in user's local 

disk. 

A user can view the standard grade table by clicking the "Grade Table" button, 

and view the discount table by clicking the "Discount Table" button. After the u er 

submits the wheat bin information, the grade and the discount of the wheat in each bin 

can be calculated ~ clicking the "Calculate Grade And Discount" button. Ba ed on the 

values of the grade and discount, the user can select some of the wheat bin for optimal 

blending by clicking the "Optimization" button. By clicking the "Calculate Rank" button, 

the user can get the rank of the bins based on variables the user selected, such as 

moisture, discount, protein, and test weight. 

37
 



In phase II, the back-end optimization algorithm was implemented using Java 

language. The algorithm is a pattern search method [Lewis 2000] proposed by Lewis 

Torczon, and Trosset. Since this algorithm performs a random earch it is not guaranteed 

that the optimal point is the global optimal point. The u er can perfonn the optimization 

several times and record all plausible resuJts. Then th user can elect on best possible 

blending option to perfom1 the blending. The user's final cboice may not be the' true' 

nurumum discount blending, since the user may choose the one that requires the 

mmunum steps of blending. For example, suppose the user has two options: the first 

option requires 4 steps of blending with discount $1 1,0 10; the econd option requires 3 

steps of blending with discount $1 1 000. 1n terms of discount, $10 difference in $11,000 

is negligible. Therefore, the user may select the second option. 

4.2.5 A Limitation of The Optimization Algo.-ithm 

The back-end optimization algoritllm - pattern search method i "characterized 

by a series of exploratory moves that con ider the behavior of the objective function at a 

pattern of points, all of which lie on a rational lattice' [Lewi 2000]. Due to the 

characteristics of the pattern search method, we set the maximum number of candidate 

wheat bins for optimization to be 5. Thjs is equivalent to say that we are searching in a 

max,irnum 5 dimensional space. Otherwise, the speed of the optimization will be too slow 

for practical use. It is obvious that the minimum number of wheat bin chosen for 

optimization should be 2. Otherwise there is no blending occurs. 

38
 



4.2.6 Expansion Capability 

The wheat bin mix. optimization application only applies to wheat. However it 

can also be used for other products such as com, soybean, provided that we u e the 

related grade table and discount table. 

4.3 User Interface 

This web application consists of the following web pages and pop-up windows: 

• Web pages 

o Home 

o Bin Infonnation 

o List Bin Information 

o List Bin From A File 

o Grade and Discount Calculation 

• Pop-up Windows 

o Optimization Setting 

o Optimization Setting Error 

o Optimization Result 

o Rank Criteria Setting 

o Rank 

o Grade Table 

o Discount Table 

The function of each web page and pop-up window will be discussed in detail, as 

follows: 

39 



• Home web page (Figure 4.1 : displays a drop-down window for u ers to choose 

the maximum number of candidate wheat bins for optimization. We limit the 

minimum number to be 2 instead of I, since there i no meaning to mix only 1 

candidate bin. We also limit the maximum numb r to b 30. Home web page 

retIieves the number of wheat bin chosen by a u er and pa e it to the Bin 

Information web page. 

. ,...-... 

I 

Figure 4.1 Home Web Page 

•	 Bin Information web page (Figure 4.2): displays a wheat-bin-information table 

and asks users to provide wheat bin information. Users can upload wheat bin 

information from an existing file or manually enter wheat bin information in the 

40
 



wheat-bin-information table. If a user manually enters the wheat bin infonnation 

the wheat bin infonnation can be saved in a file to the user' local llard disk for 

future use. Users can calcuJate grade and discount for each wheat bin by clicking 

the button "Calculate Grade & Discount". In this web page u er can also view 

the standard grade table and the standard discount table by clicking the 'Grade 

Table" button and "Discount Table" button. If a user manually enters wheat bin 

infonnation, Bin Information web page retrieves those data and passes them to the 

List Bin Infonnation web page. Otherwise, it just pa ses the diJ'ectory of a file 

given by users to the List Bin From A File web page. 

-
Head dlJ.(/J fra. iJ file.: 

ON Type TOur hill inl'o ~ttUon: 

file: I" '2 ve b~n 1r,faro 1an:1 at .., 

Figure 4.2 Bin Information Web Page 

41 



•	 List Bin Information web page (Fi.gure 4.3): gets manually entered wheat bin 

information passed from the Bin Infonnation web page and calculate both grade 

and discount for each wheat bin. List Bin lnformation w b page al 0 displays the 

manually entered wheat bin infonnation and their grades and discount in a table. 

Users can do optimization by clicking the "Optimization' button in this web page. 

The standard grade table and discount table can also be viewed on thi web page 

by clicking the "Grade Table" button and the "Discount Table" button. 

" fA 

Grad Md Oil>c'owlt lor Ilia: 

I f,r'; I 1r..2" )0 ~, 1 0
 
$llCLli .2.. TOO. 00 120'"..0. 0 1l5..0
 

J pr"" 14 215. )1) 15mQ H.I)
 
p tLi7 1L.8<J:LOQ 100." 0 '.i
 

Co "r,*,,~:.' 11. iffY. 10 ITll'YI n ) 0
 
f.	 S'ltftl~ II' (J(I I lJu 0 ]I 0 
T	 pr u.20 10.00 ::)0)0. 0 ~o.. 0
 

pn, IILfJ,·1j ;.JrrllO II I)
 

"..m23 1(1. rJ~ ~'OfJ.O 11.0
 

Figure 4.3 List Bin Information Web Page 

•	 List Bin Information From A File web page (Figure 4.4): gets the directory of a 

file passed from the Bin Information web page and opens the file. List Bin 

Information From A File web page also retrieves the data (wheat bin information) 

42
 



In that file and displays them in a table and provide 'Calculate Grade and 

Discount", "Grade Table" and 'Discount Table" buttons. 

oJ 

1.1.__ .,.· r. f, .. ~. I • I J .1 ...... "1 ." .... , ~ 11\ ·,.-t .. ,_ 
l.)) <fUJ .... ,.) II) ..... C". lU ~ ,,) J J) 

Figure 4.4 List Bin Infonnation From A File Web Page 

•	 Optimization Setting pop-up window (Figure 4.5): di.splays a table for 

optim..ization settings. In thi pop-up window, u ers must typ the original wheat 

bin IDs (candidate bins) and the de tination wheat bin JDs (put the mixed wheat 

after optimization). The maximum number of candidate wheat bins cho en for 

optimization is 5. OtherWise the speed of the optimization will be too slow for 

practical use. The minimum number of wheat bins chosen for optimization is 2, 

because it makes no sense if there is only 1 bin for blending. Tlie number of the 

original bin should equal to the number of the destination bin (just because of the 

program desi.gn). If the two number are not equal, the "Optimization setting 

error" pop-up window is displayed to show the error message. 

43
 



II I It .. 

..att 
tlnlD t.fl W qr r 

ion MIllDI l[iO :fiT ~ 

Figure 4.5 Optimization Setting Pop-up Window 

•	 Optimization Setting Error pop-up window (Figure 4.6): displays the error 

message if one or more of the following errors occur: 

o	 A user selected zero or one wheat bin for optimization~ 

o	 The number of the original bin doe n't equal to the nWl1ber of the 

destination bin; 

o Duplicate original wheat bin ID or destination wheat bin ill; 

Optimization Setting Error pop-up window also provides a "Redo" button 0 that 

a user can redo the optimization setting. 

44
 



-.to JOl'.-I'"_ -.-. 

ell>.<· 

-_".. , :;tl 

Figure 4.6 Optimization Setting Error Pop-Up Window 

•	 Optimization ResuJt pop-up window (Figure 4.7): di play the optimization 

result. The optimization result tells the u er how to blend the wheat from each 

original wheat bin into a de tination wheat bin, i.e., how many bu h ls of wheat 

should be taken out from each one of the original wheat bin to a de tination wheat 

bin. The Optimization Result pop-up window al 0 display the total bu hel , 

discount, grade of each destination wheat bin a well as the total di count after the 

blending. Optimization Result pop-up window provides a "Record Optimization 

Result" button by which a user can save the optimization result fo a file for later 

use. Users can choose to append or overwrite the optimization re ult to a file by 

"Append" or "Overwrite" button. 

45
 



Figure 4.7 Optimization Result Pop-Up Window 

•	 Rank Criteria Setting pop-up window (Fif,'1lre 4.8): di play criteria for 

calculating rank of each wheat bin. The criteria are di COWlt, moistur , te t 

weight, dockage and protein. Di count is elected by default. 

•	 Rank pop-up window (Figure 4.9): displays the rank value for each wheat bin 

based on the user's criteria selection. 

•	 Grade Table pop-up window (Figure 4.10): di plays the Federal Standard Grade 

Table as shown in Table 4.1. 

•	 Discount Table pop-up window (Figure 4.11): displays the discount table from 

Peavey Company, as shown in Table 2. 

46
 



· ,

Figure 4.8 Rank Criteria Setting Pop-Up Window 

101 hire 
I 

? ~ 

I 

11. J 

!' 10 ..) 

S II. ) 

5 11.') II. U 

Figure 4.9 Rank Pop-Up Window 

47
 



Figure 4.10 Grade Table Pop-Up Window 

-----.1· 
_ QIIIlJ 

II----::l.~ 

On P<,nvcr ..atII1l",ny 

a.... Yul IeDlaC'in.. ' 

IG""'. ,) 

'""' 1 ~~, :tJO. \i
 
,.",t,I, In. 1hO, 1::
 ,2
"fa1'" lQ. ZTe.. (A..
 

"rrl!1I SJ !lin rr
 
l,rw2: $3. O.
 I.
 
I"-renJS 10.lJJ "
 
..... 10.00 tur< I.J u.s • 
......A2L ~Il~ 00 l 1 - ,.., 

Q pr~"l) til 13- , I " -~ 
11.1 u~~ 

1 3 1 G 

1-1. 6 
t.och O.2G 

Figure 4.11 Discount Table Pop-Up Window 

48 



4.4 Inside of Wheat Bin Mix Optimization Web Application 

ill this section, we fir t present the arcllitecture of wh at bin mix optimization web 

application and tools used to build this web application. Then we .introduce the ba ic idea 

to implement the pattern search optimization algorithm. 

4.4.1 Architecture 

Figure 4.12 shows the architecture of wheat bin mIX optimization web 

application. 

Briefly, the elements shown in Figure 4.12 are: 

•	 The client component 

The client component is a web browser that displays the application pages. 

•	 The service component, Java Server Pages (JSP), includes: 

o	 A HomePage JSP page 

o	 A Binlnformation JSP page 

o	 A ListBinlnfo JSP page 

o	 A ReadBinFromFiJe JSP page 

o	 A ListBinFromFiJe JSP page 

o	 A OptiSetting JSP page 

o	 A Optimization JSP page 

o	 A CriterialSet JSP page 

o	 A GetRank JSP page 

o	 A Discount JSP page 

o	 A GradeTable JSP page 

49 



HTTP Requests 

Ask t~e number 
of \~h at bins for 
optlm zatlon Web Client 

Figure 4.12 The Architecture of Wheat Bin Mix Optimization Web Application 

Each service component is used to create different user interface and implement 

different functions. We already introduced in detail about the user interface and functions 

of wheat bin mix optimization web application in section 4.3. The corresponding 

relationship between each service component and each user interface is listed in Table 

4.3. 

50 



Table 4.3: Mapping Each Service Component to Each User Interface 

Service Component Corresponding User [nterface and Function 

HomePage.jsp Home web Page ( ection 4.3) 

Binlnfonnation.jsp Bin Infonnation web page ( ection 4.3) 

ListBinlnfo.jsp List Bin Infonnation web page (section 4.3) 

No corresponding user interface. It is just used to open a file and 
ReadBinFromFile.jsp 

pass the data of a file to the ListBinFromFile JSP page. 

ListBinFromFile.jsp List Bin Information From A File web page 

OptiSetting.j sp Optimization Setting pop-up window (section 4.3) 

Optimization.jsp Optimization Result pop-up window (section 4.3) 

CriteriaSet.jsp Rank Criteria Set pop-up window (section 4.3)
 

GetRank.jsp Rank pop-up window (section 4.3)
 

Discount.jsp Discount Table pop-up window (section 4.3)
 

Grade Tabl.e pop-up window (: ection 4.3) GradeTable.jsp 

4.4.2 Tools Used 

The database server used in the web applicati.on is Sun PointBase 4.2 l un 

Microsystem 2002]. Database server is used to support database in a web application. 

There are two databases created for wheat bin mix optimization web applIcation. One i 

the standard wheat grade table [Federal Grain Inspection Service 2002] provided by the 

U.S. Department of Agriculture. The other is the discount table [Peavey Company 2000] 

provided by the Peavey Company. 

51
 



Tomcat 4.0 rSun Microsystem 2002], a web application container makes the 

wheat bin mix optimization web application accessible from the web. 

4.4.3 Pattern Search Optimization Algorithm 

The back-end optimization algorithm--Pattem Search algorithm, is implemented 

in Java language. For details about the Pattern Search algorithm, s e [Lewis 2000]. The 

pattern search algorithm is implemented accord.ing the following teps (for implicity, we 

assume there is only one variable x in the objective function): 

- lnitialization~ illitialize Xo to random value. 

- Search and Poll: at iteration xk ' evaluate the objective function at a fmite 

number of points on a mesh to fmd one that yields the lowest objective function 

value. 

- .Parameter Update: refine the mesh, settingxk+, = x k ' do search step again. 

- Stop: until no non-increasing function value i found. 

In Chapter 5, we will discuss how to build the proposed server-side ecurity 

model described in Chapter 3 into wheat bin rn.ix optimization web application. 

52
 



CHAPTERS 

Security Model i.n Wheat Bin Mix Optimization Web 

Application 

In Chapter 4, we presented the architecture of the "bare" wheat bin DUX 

optimization web application, which was not protected by any security measures. 

Suppose wheat bin mix optimization web application is a member-only web application, 

i.e., each user of this web application must have the membership of wheat bin mix 

optimization web site. How can we prevent unauthenticated users from accessing this 

web application? How can we prevent unauthorized user from changing the default 

grade table or discount table? The answer to those questions is to build the server-side 

security model proposed in Chapter 3 into the "bare" wheat bin mix optimization web 

application. We call the resulting web application a protected wheat bin mix 

optimization web application. 

In this chapter, we will demonstrate how the server-side security model can be 

implemented by building this model into wheat bin mix optimization web applicati.on 

presented in Chapter 4. We will discuss in detail about how to implement each security 

layer of the server-side security model. 

5.1 Architecture 

The architecture of the protected wheat bin mix optimization web application is 

shown in Figure 5.1. 

53
 



--------------------------------------------

Web 
Page 

Within a cs ion Log Out 

------------------------------------------1 
I
I
I
I
I 
~ 
f 
1 
1 
I
I
I
I 
1 
I
I
I
I
I
I
I
I 
1 
1 
I
I
I
I
I
I
I
I 
1 
1 
I
I
I 
I
I
I
I 
1 
I
I 
1 
1 
I

1 

Figure 5.1 The Architecture of Protected Wheat Bin Mix Optimization Web 

Application 

In Figure 5.1, number 1 to II with circles is used to denote the proposed eleven 

security layers in Chapter 3 respectively: 

• Layer I--Sanitizing Browser Inputs 

54 



•	 Layer 2--Cookie Support Detector 

•	 Layer 3--Authentication 

•	 Layer 4--Set Digital Signed Temporary Cookies 

•	 Layer 5-- URL Rewriting 

•	 Layer 6--Input Web Page Domain Checking 

•	 Layer 7--Role Based Access Control 

•	 Layer 8--Hidden Form Field 

•	 Layer 9--Deploy Secure Socket Layer as Needed 

•	 Layer lO-- Sensitive Web Page Caching Prevention 

•	 Layer 11--KjIJing cookies and Invalidating Session 

Compare to the architecture of the "bare" wheat bin mIX optimization web 

application (Figure 4.12), some new web pages and pop-up windows are added in Figure 

5. J. Those new service components are: "BinWebSite", "SetCookies", "Te tCookies" 

"CustRegist", "Errorl ", "Error2", "Regi tDisplay", "Login", "Mu tGive", " heck", 

"RedoRegist", "LoginError", "NoChance", "EditDi Table", "EditGradeTable", and 

"Exit" web pages. Those web pages are written in Java Server Page (J P). We will 

introduce those service components in detail in section 5.2. 

5.2 New Service Components 

•	 BinWebSite Web Page (Figure 5.2) 

This page is the home page of the protected wheat bin mix optimization web 

application. Each time a user access the wheat bin mix optimization web site, 

this page is the first web page sent to the user. It gives users several options. 

55 



These operations are "Sign In", "Regi ter", "Introduction", "Optimization", 

"Objective", and "Contact Us". If a user is a member of this web site, he or 

she may access this web site by clicking the "Sign In" button. [f a user is not a 

member of this web site, he or he can click the "Regi ter" button to register 

first. The "Introduction" button provides a brief introduction to the wheat bin 

mix optimization web application. The "Optimization" button gives a 

description of the optimization algoritlun. The "Objective" button describes 

the objectives of wheat bin mix optimization web application. If users have 

1 Wheat Bin Mix HomeSite - Microsoft Internet Explorer rc-~~~ 
"Ie Edit V"1eW Favorite$ TooI5, Help 

~ Searc Fa VOfite5 

I;tp:/Jloc:<JlhQStS(lSl/BinWebSl 

Figure 5.2 BinWebSite Web Page 

any suggestions or problems about the wheat bin miX optimization web 

application, they can send email to wheat bin mix optimization web site by 

pressing "Contract Us" button. 

56
 



• SetCookies Web Page Figure 5.3) 

After a user clicks the "Sign In" button on the "BinWebSite' page the server 

side sends "SetCookies" page to the user. This page provides users a button 

"Cookies Support Detector" through which the server side can test wh ther 

the user's browser (the client's side) supports cookies. 

•	 • ; . 

~ , ~-~. -- ,..- ---~--

#, start ,. - Q 1II1l'.e .. -:-; J M· Ser... It. Poi... ~,r1)ll.. :Ji tltUl.. eo'''' ~ 11:32 Alo\ 

Figure 5.3 SetCookies Web Page 

•	 TestCookies Web Page (Figure 5.4) 

After a user clicks the "Cookies Support Detector" button in the "SetCookies" 

page, the server side detects whether the user's browser supports cookies. If 

cookies are supported the server side sends the TestCookies page to the user 

57
 



as shown in Figure 5.4. Otherwise, the server side sends the Errorl page 

(Figure 5.6) to the u er. 

~JSP Page - Microsoft Internet Explorer r-ircJ~ 
Fil Ed v I Fa.. tes T Help 

Ba<k • Searcll Fa\'Orill!S Medi~
 

https:J/IO.120.5.95:B443/tpcXooI<Jes.jsp
 

Yo bE .er su pBl eo ~·e, Will UI GOO . to wainl in Ie ion
 
inforlliJ ion
 

Figure 5.4 TestCookie Web Page 

• 

• 

Error2 Web Page (Figure 5.5) 

If a user's browser supports cookies, but the erver side can't get the exact 

cookies it sent to the user's browser, then the server side sends the Error2 JSP 

page to the user. 

Error! Web Page (Figure 5.6) 

If cookies are not supported or cookies are disabled in a user's browser, the 

server side sends the Errorl JSP page to the user. This page provides user a 

button "I Agree". By clicking this button, users may agree the server side to 

use session object to maintain session state. 

58 



IJSP Page MICrosoft Internet Explorer '. Il'Il tx 

Sou J \'e, { rIOt 

CO<lkits ... s II 

Figure 5.5 Error2 Web Page 

1<:00;;1... not Support 0' dlubled P••" . Micro...rl I",ternal Explo.er f. r" IX 

Figure 5.6 Errorl Web Page 

59 



• Login Web Page (Figure 5.7) 

If a user's browser supports cookies, the server side ends TestCooki.e page 

to	 the user as shown in Figure 5.4. If cookies are not supported in the u er's 

browser, the server side sends the Errorl page to the user a shown in Figure 

5.6. After the user clicks the "I Agree" button provided in the TestCookies 

page or in the Error1 page. the server side ends the Login page to the u er. 

J logIn· Microsoft Internet Explorer	 '- r,,~)( 

. 
6.1/1/ Ii:'; "'I"LIl\\u:..,.-..,,\\ 

Figure 5.7 Login Web Page 

•	 Check Web Page (Figure 5.8) 

After a user submits username and password in the Login page, the server ide 

compares the user's input username and password with records in its databa e. 

If the usemame / password pair is correct, the server side sends the Check 

60
 



page to the user. This page provides users "Do Optimization" button. By 

clicking this button, the server side send Home web page (Chapter 4) to 

users. 

:U.uth~n Page· MIcrosoft Int~rn~t Explor~r	 '. rr'!l r~ 
fi_ eq.t, 4J1\ F. I. Ip 

80:1:	 ~h F..cn,", Kod.o
 

~UO.>.9S &«]}l:I'-.1
 

. 
iMI li/iA V~Ulll~W""\\ 

Ilu 

Figure 5.8 Check Web Page 

•	 Login.Error Web Page (Figure 5.9) 

If a user submits incorrectusername or password, the server ide ends the 

LoginError page to the user. A maximum of three times retry is allowed. 

•	 NoChance Web Page (Figure 5.10) 

If a user provides the incorrect username / password pair for more than three 

times, the server side ends the NoChance page to the user. 

61
 



'JLO!lln ~ror hge - MIcrosoft Intem~ Explorer ". rt!J'~ 
1110 tV.... 

tQllin " I d. I try 

'ILl 

Figure 5.9 LoginError Web Page 

'J Login faIled Page. MIcrosoft Intem~ Explorer '. t6~.x 

fit! lUt\·c no ch'mcc '0 l'Ctr. 

Figure 5.10 NoChance Web Page 

62 



• CustRegist Web Page (Figure 5.11) 

If a user is not a member of the wheat bin mix optimization web ite, he or she 

needs to register before accessing wheat bin mix optimization web 

application. The CustRegist page pro ides u ers a registration form. A u r 

can click the "Submit" button on this page to ubmit regi tration i.nfonnation. 

. 
JiIIJ J./~JA \Jt\.l.J.lJ. .......~ .. ,\
 

v- .............n d ..'1 n Ihd.1 ., 'hole 'p" 
, , •• ''Il.' ',' 'r T't,' , 

1':1.1 IJJCL _..

Figure 5,11 Cu tRegist Web Page 

•	 RegistDisplay Web Page (Figure 5.12) 

After a user submit registration information ill the CustRegist page, the 

server side sends the RegistDispJay page to the user. This page displays users' 

registration infomlation. 

•	 MustGive Web Page (Figure 5.13) 

63
 



In the registration fonn provided in the CustRegist page, usemame and 

password are the required fields to fill. The other items are optional. If a u er 

doesn't provide username or password, the erver side send the MustGi e 

page to the user. By pressing the "Go Back To Register' button a u er can 

redo registration. 

'. 
Figure 5.12 RegistDi play Web Page 

Figure 5.13 MustGive Web Page 

64
 



•	 RedoRegist Web Page (Figure 5.14) 

The security layer l-"Sanitizing Browser Input" (Chapter 3, ection 3.3.2 

of the proposed security model is embedded in the RedoRegist page. If a 

user's inputs contain any invalid characters such a I, $ etc (Chapter 2, 

section 2.9), the server side detects those character from the user's input and 

sends RedoRegist page to the user. We will explain in detail about how to 

implement "Sanitizing Browser input" later in section 5.3 .2. 

. 
ilI/' J'JA ¥",wh'.~""''''\' 

'(' 

'y 

'.' 

• 

Figure 5.14 RedoRegist Web Page 

•	 EditDisTabJe Pop-up Window (Figure 5.15) 

The security layer 7 -"Role Based Access Control" (Chapter 3, section 3.3.2) 

of the proposed security model is embedded in the EditDisTable pop-up 

65
 



window. If a user plays a role (Chapter 2 section 2.4) as a System 

Administrator or a Web Application Designer, after he log in, the server side 

gets his role from tl'le back-end support database and sends the Discount Table 

pop-up window (Chapter 4) with an "Edit" button. By pressing the "Edit" 

button, the user can edit di count table in the EditDi Table I=OP-up window. 

We will explain how to implement the Role Based Access Control technique 

in wheat bin mix optimization web application later in section 5.3.2. 

, Discount Table· Microsoft Internet Explorer	 r- r61 r,)( 

.....	 ., 

r· I 0 0
 

I, I J 0 -:
 

:.! , 0 -'i
 

J.I	 It"" 

C.	 "Ii('" II 1 I ,
 

I' l'"
 ,.....	 \ 

a	 ... l..I al1 • 

Figure 5.15 EditDisTable Pop-up Window 

•	 EditGradeTabJe Pop-up Window (Figure 5.16) 

The proposed security layer 7 -"Role Based Access Control" (Chapter 3, 

section 3.3.2) is at 0 embedded in the EditGradeTable pop-up window. If a 

66
 



user plays a rol.e (Chapter 2, section 2.4) as a Sy tern Administrator or a Web 

Application Designer, after he logs in, the ~rver side gets his rol from the 

back-end support databa e and sends the Grade Tabl.e pop-up window 

(Chapter 4) with an "Edit" button. By pre ing the "Edit" button, the u er can 

edit grade table in the EditGradeTable pop-up window. 

10, ~201 G ad ad u i t F r IIb't'l 

.... I'" 

,. n 

I 

Figure 5.16 EditGradeTable Pop-up Window 

5.3 Server Side Security Model Implementation 

5.3.1 Defining .Input Web Page Domain 

Based on the architecture of the protected wheat bin mix optimization web 

application (Figure 5.1) we apply the "Input Web Page Domain Checking" technique 

67
 



proposed in Chapter 3. We now define input web page domain for each web page of the 

protected wheat bin mix optimization web application as following (Table 5.1): 

Table 5.1: Input Web Page Domain of Each Web Page 

Web page Input Web Page Domain
 

BinWebSite {Null, Exit}
 

SetCookies {BinWebSite}
 

,TestCookies {Set ookie } 

CustRegist {BinWebSite, RedoRegist, MustGive}
 

Error I {TestCookies}
 

Error2 {TestCookies}
 

RegistDisplay {CustRegist}
 

MustGive {RegistDisplay}
 

RedoRegist {Regi tDi play}
 

Login {TestCookie Error I, Login Error}
 

Check {Login}
 

LoginError {Che k}
 

NoChance {LoginError}
 

HomePagc {Check Li tBinlnfo}
 

Binlnforrnation {HomePage} 

. 
ListBinlnfo {Binlnforrnation}
 

ReadBinlnfo {BinJnformation}
 

ListBinFromFile {ReadBinlnfo} 

68 



5.3.2 lmplementation 

In this section, we will discuss how to build the eleven security layers ( hapter 3) 

of the proposed server-side security model into wheat bin mix optimization web 

application. 

Layer 1: Sanitizing Browser Inputs 

As shown in Figure 5.1, The Sanitizing Browser Input layer is built into the 

RegistDisplay (Section 5.2) web page. When a user clicks the "Submit" button in the 

CustRegist page (Section 5.2) to submit registration information, in order to prevent the 

user using special characters such as ! and & or embedding malicious HTML tags in the 

Browser Inputs (Chapter 2, Section 2.9) to do cross-site scripting (Chapter 2, Section 

2.9), the server side detects those malicious characters by comparing the Bowser Inputs 

with a list of server-side defined valid characters. In the protected wheat bin mix 

optimization web application design, the list of server-side defined valid characters i 

characters a-z A-Z and 0-9. If any of characters other than erver-side defined valid 

characters exists, the server side sends the RedoRegist page (Section 5.2) to the u er. The 

JSP code implementing "Sanitizing Browser Inputs" is listed in Appendix. 

Layer 2: Cookies Support Detector 

As shown in Figure 5.1, the Cookies Support Detector layer is built into both 

SetCookies (Section 5.2) page and TestCookies ( ection 5.2) page. When a user clicks 

the "Sign In" button in BinWebSite page (Section 5.2), the server ide sends the 

SetCookies page to the user and sets test cookies to the user's browser. The JSP code to 

setting cookies to the client's web browser is listed in Appendix. The SetCookies page 

69
 



provides a "Cookies Support Detector" button to the u er. By pre ing this button the 

user sends "Cookies Support Detector" request to the se er side, the server ide th n gets 

cookies it sets t.o the user's browser and tests the cookies' length. If no cookie xist (In 

Java programming, cookies are String data type objects since cookies are actually string 

of characters. Therefore, cookies do not exist means that the value of the String data type 

object is Dull.), indicating the user's browser doesn't support cookies or the user disables 

cookies, the server side sends the Errorl page (Section 5.2) to infoIDl the u er that it uses 

URL rewriting and session objects to maintain session status without cookies. [f the 

cookies' length is greater than zero, indicating the user's browser supports cookies the 

server side then tests the cookies' consistency, which means that the server side compares 

the cookies fetched from the user's browser with the cookies sets to the user's browser. If 

the cookies fetched from the user's browser exactly match the cookies the server side sets 

to the user's web browser in the SetCookies page, the server side then ends the Login 

page (Section 5.2) to the user. O:herwise, the erver ide end the Err r2 page ( ection 

5.2) to the user. The JSP code testing cookies fetched from the client' web browser is 

listed in Appendix. 

Layer 3: Authentication 

As shown in Figure 5.1, the authentication layer is built into the Login page 

(Section 5.2). We use usemame/password authentication to authenticate u ers. When a 

user clicks the "Submit" button in the Login page, the usemame and password he or she 

entered is sent to the server side. The server side then checks the u ernarne and password 

from the back-end support database. In this appbcation, PointBase 4.2 within Forte for 

JAVA 4.0 package [Sun Microsystem 2002] is used to create the back-end support 

70
 



database. If the correct username and password can be found from the databa e, the 

server side then sends the Check page (Section 5.2) to the u er. By pre sing the "Do 

Optimization" button in the Check page then the u er can perfonn wheat bin mlX 

optimization. If a user's usemame or pas word is incorrect the server ide end the 

LoginError page (Section 5.2) to the user. By clicking the back arrow in the LoginError 

page, the user can redo login procedure. A user has at most three times to retry login. If a 

user can't provide the correct username and password, the erve side block the user's 

access and sends the NoChance page to the u er. The JSP code implementing the 

"username and password" authentication is listed in Appendix. 

Layer 4: Setting Temporary Digital Signed Cookies 

As shown in Figure 5.1, the Setting Temporary Digital Signed Cookies layer is 

built into the Check page (Section 5.2). 

To set digital signed cookies to the client s brower, the erver ide: 

I.	 Uses Digital Signature Algorithm (Chapter 2) to generate a key pair-private key 

and public key. 

2.	 Uses Secure Hash Algorithm (Chapter 2) to generate message dige t for a u er's 

role information. 

3.	 Uses the message digest and the private key generated in step I and 2 as input 

parameters to the Digital Signature Algorithm to generate the digital signature for 

the user's role information and stores it into cookies. 

To verify digital signed cookies, the server side: 

4.	 Uses Secure Hash Algorithm to re-generate message digest for a user's role 

infonnation. 

71 



5. Retrieves the digital signature (digital signed role infonnation) from the client's 

browser. 

6.	 Uses retrieved digital signature from step 5. The digital signatur algorithm inputs 

are the public key generated in tep 1 and the me age digest generated in step 4. 

Digital signature algorithm uses the public key to decrypt tte digital signature to 

get a message digest and compare it with the me sage digest generated in step 4. 

The digital signature algorithm returns a Boolean value. If both mes age dige ts 

are the same, the digital signature algorithm return true as compari on result. 

Otherwise, it returns false. 

If the digital signature algorithm returns true, the server ide proces es the client's 

access. Otherwise, the server side denies the client's access. The procedure for signature 

generation and signature verification is shown in Figure 5.17 and Figure 5.18. 

Role Information 

Secure Hash Algorithm (SHA-l) 

Private Key Message Digest for Role Infonnation 

Digital Signature Algorithm CD A) 

Digital Signature for Role Information 

Figure 5.17 Digital Signature Generation 

72
 



Original Client's Role Information 

Secure Hash Algorithm (SHA-l) 

Digital Signature from 
Public Key The Client's Browser Message Digest for Original Role 

lnfonnation 

True False 

Signature Is Signed Signature Is Not 
By The Server Side Signed By The Server 

Side 

Figure 5.18 Digital Signature Verification 

The JSP codes to set and get digital signed cookies to and from a u er' brow er 

and the JAVA class implementing digital signature is listed in App ndix. 

Layer 5: URL Rewriting 

A. shown in Figure 5.1, the URL rewriting layer i built into the Check page 

(Section 5.2). After a user successfully logs in, a new se ion begins. If the client' 

browser doesn't support cookies, the server side rewrites the Universal Resource 

Location (URL) with session ID and stores the session ill into a ses ion object. 

An HTTP request is made up of the URL followed optionally by a query string 

containing pairs of parameters and values. For example, a HTTP reque t might be: 

https:l/lO.120.5.95:8443/Login.jsp,jse sionid= 74 7795D4C986E03585D033 730252C2B. 

73
 



In this example, the server is 10.120.5.95, the server resource i Login.jsp and the 

session ID is 747795D4C986E03585D033730252C2B8. Before URL rewriting the URL 

was https:l/10.120.5.95:8443/Login.j p. After URL rewriting the URL become: 

hltps:l/10.J20.5.95: 443/Login,j P;j .. ionia=747795D4C986E03585D033730252C2B. 

Before the server side sends responses to the client's ide .it compares the se sian ill 

passed by the request page with the session ill stored in the session object. If they match, 

the server side processes the client's request. Otherwise, the server side denie the 

client's request. The JSP code implementing URL rewriting is listed in Appendix. 

Layer 6: Input Web Page Domain Checking 

As shown in Figure 5.1, the Input Web Page Domain Checking layer is built into 

every web page. Each time a user accesses Wheat Bin Mix Optimization web site, to 

ensure the correct web application workflow, the server side needs to do input web page 

domain checking as discussed in Chapter 3. The input web page domain for each ~b 

page of wheat bin mix optimization web application is shown in Table 5.1. For example, 

the input web page domain for HomePage i {Check, Li. tBinlnfo} as defined in Tabte 

5.1. Before the server side sends the HomePage to the client' side, it check wh th r a 

request comes from the Check page or the ListBinlnfo page. If the reque t comes from. 

one of those two pages, the server side sends the HomePage to the client' id. 

Otherwise, it denies the client's request. The JSP code implementing Input Web Page 

Domain Checking is listed in Appendix. 

7.+
 



Layer 7: Role-Based Access Control 

As shown in Figure 5.1, The Role-Ba ed Acces Control layer is built into the 

Discount (Chapter 4) and GradeTable (Chapter 4) pop-up windows. We assume that onJy 

System Administrators and Web Application De igners of the Wheat Bin Mix 

Optimization web site have the privilege to edit the grade and discount tabl . If a u er 

sends the request for viewing the grade table or discount table to the server side, the 

server side first checks the user's role. If the user is a ystem admini trator or web 

application designer of the Wheat Bin Mix Optimization web site, the server side sends 

the Discount and GradeTable pop-up window with an "Edit" button to the user. 

Otherwise, it just sends the .Dscount and GradTable pop-up window without an "Edit" 

button. The JSP code implementing Role-Based Access Control is listed in Appendix. 

Layer 8: Hidden Form FieJd 

The Hidden Form Field layer is built into each web page that passes parameter. 

Using Hidden Form Field, the parameters passed by web pages are not di played by th 

client's web browser. For example, in the Login page (Section 5.2), after a us r click the 

"Submit" button, the usemame and password are sent to the server side. Suppo e the 

user's usemame is "Jack" and password is "12345". Without using hidden form field, the 

usemame and password information is displayed by a web brow er that may look. like the 

following: https://IO.120.5.95:8443/Login.jsp?username=Jack?pa sword=/2345. 

Obviously, passing parameters without using hidden form field in web pages i.s 

insecure. The JSP code implementing Hidden Form Field is listed in Appendix. 

75
 



Layer 9: Deploying Secure Socket Layer As Needed 

Since Secure Socket Layer (SSL) dramatically affects the speed at which u ers 

can access information, only sensitive web page containing user' private infonnation 

such as Login page and CustRegist page deploy SSL in the protected wheat bin mix 

optimization web application. In this application, we deploy Tomcat 4.0 [Apache 

Software Foundation 2003] as a web container. Tomcat 4.0 is a tool to make wheat bin 

mix optimization web application accessible from the web. Details about how to 

configure SSL supporting on Tomcat 4.0 are discu sed in [Apache Software Foundation 

2003]. 

Layer 10: Sensitive Web Page Caching Prevention 

Sensitive web pages such as Login page, CustRegist page are prevented from 

being cached by the client's web browser. The JSP code implementing the sensitive web 

page caching prevention is Iisted in Appendix. 

Layer ll--Killing cookies and Invalid Session 

After a user clicks the "Exit" icon in each web page, the server ide acknowl dges 

that the current session is over and kills all cookies (set cookies' Ii fetime to be zero) and 

sets the CutTent session to be invalid. The JSP code implementing killing cookies and 

invalidating session is listed in Appendix. 

76
 



CHAPTER 6 

SUMMARY AND FUTURE WORK 

6.1 Summary 

This work proposed two techniques: Inpllt Web Page Domain Checking and 

Cookies Support Detector. Input Web Page Domain Checking is a technique used to 

ensure a correct web application workflow, which means the server side sends each web 

page to the client side following a particular order. In Input Web Page Domain Checking, 

we first need to draw the architecture of a web application to reflect the application 

workflow. Secondly, we need to define the input web page domain for each web page 

based on the application workflow. Lastly, we do input web page domain checking 

according to the input web page domain for each web page. 

Cookies Support Detector is a technique used to test whether the eli nt's web 

browser supports cookies. In Cookies SUPP0l1 Detector technique, the server s.ide set 

cookies to the client's web browser then it gets the cookies from the client's web browser 

and tests the cookies' length. If the cookies length is greater than zero, the client's web 

browser supports cookies. Otherwise, the client's web browser doesn't support cookies or 

the client disables cookies. 

This study also proposed a server side security model for web applications. The 

proposed security model consists of eleven security layers. The eleven security layers 

contains the proposed Input Web Page Domain Checking technique, the proposed 

Cookies Support Detector technique, and some existing techniques such as Sanitizing 

77
 



Browser Inputs technique, Role-Based Acce Control t chnique and Setting Temporary 

Digital Signed Cookies technique. The Setting Temporary Digital Signed Cookies 

technique is modified from the "Role-Ba ed Access Control Using Secure Cookies" 

technique proposed in [Park 2001]. In the modified Setting Temporary Digital Signed 

cookies technique, cookies properties are changed from persistent cookies to temporaty 

cookies. Temporary cookies have two advantages. First, it i onJy stored in the client's 

web browser's memory and is killed after a session is over so it doesn t waste the storage 

of the client's hard disk. Second, it is more secure than persistent cookies since a u er 

cannot retrieve the contents of a web page after a session is over. 

To demonstrate the proposed sever side security model, a Wheat Bin Mix 

Optimi zation web application is developed. The server side security model is built into 

the web application. 

6.2 Future Work 

The proposed server-side security model can be built into any web application to 

protect sensitive information because this model sets eleven ecurity layer between the 

client's requests and the server side's responses. The proposed security model combine 

all advantages of currently most widely used secure measures with two proposed new 

techniques. However, since there are always new ulknown types of attack, there is no 

guarantee to establish a "complete secure system". Protectors will propo e and design 

more secure systems. At the same time, attacks will continue their efforts for breaking 

existing secure system. The proposed sever-side security model needs to improve and 

modify to face the future security challenge of web applications. 

78 



JJIBLIOGRAPHY 

[Apache Software Foundation 2003] "SSL Configuration How To." [On-line], Available: 
http://jakarta.apache.org/tomcat/tomcat-4.0-docl.sl-howto.html, Apa he Software 
Foundation (Access Date: January 5,2003) 

[Ayers 1999] Ayers, D., et.al., "Professional Java Server Programming.", Wrox Pres 
Ltd. (1999) 

[Berry 1994] Berry, B. and Taila Booth, "InforrrUx-Online Dynamic Server 
Administrator's Guide." Version 7.1. INFORMIX Software. Inc. (1994) 

[Cook 2000] Cook, J., Robert Harbus and Tetsuya Shirai, "DB2 Universal Database. ' 
V6.1, 2"d Edition, Prentice Hall (2000) 

[Duffey 2001] Duffey, K., et.al., "Profession JSP Site Design.", Wrox Press Ltd. (2001) 

[Federal Grain Inspection Service 2002] "Official United States Standards for Grain." 
Federal Grain Inspection Service (2002) 

[Ferraiolo 2003] Ferraiol0, D. F., D. R. Kuhn, and R. Chandramouli, "Role Based Access 
Control" ISBN: 1-58053-370-1, Artech House Publisher (2003) 

[Garfinkel 1997] Garfinkel, S. and G. Spafford, "Web Security and Commerce." 0 'ReilL 
and Associates, Sebastopol, CA. (1997) 

[George 1997] George, K. and Kevin Loney, "Oracle 8: The Complete R ference." 
Osborne McGraw-Hili (1997) 

[Goldberg 2002] Goldberg, 1. K. "Glossary Of Infonnation Warfare Tenn ." [On-line]. 
Available: http://www.psycom.net/iwar.2.html. (Access Date: October 10,2002) 

[Joshi 2001] Joshi, J. B. D., W. G. Aref, A. Ghafoor, and E. H. Spafford, "Security 
Models for Web-based Applications." Communication of the ACM. Vol. 44, No.2, pp. 
38-44 (200 J) 

[Lewis 2000] Lewis, R. M., V. Torczon and M. W. Trosset, "Direct Search Methods: 
Then and Now." Journal o.fComputational and Applied Mathematics, Vol. 124, pp. 191
207 (2000) 

[Loshin 1999] Loshin, P., "Big Book of lpsec RFCs Internet Security Architecture." 
Morgan Kaufmann Publishers (1999) 

7<) 



fNaor 1990] Naor, M., and M. Yung, 'Public-Key Cryptosystems Provable Secure 
Against Chosen Ciphertext Attacks." ACM Pre s, New York, pp. 427-437 (1990) 

(Neuman 1994] Neuman, B. C. and Theodore TS'O, "Kerbero: an Authentication 
Service for Computer Networks." IEEE Communications, Vol. 32, Number 9, pp.33-38. 
(1994) 

(Oracle Company 1999] "Database Security in Oracle8i." Oracle Technical White Paper 
[On-line). Available: http://otn.oracle.com/deploy/security/niscOO.htm (Acces Date: 
Oct. 15, 2002) 

(Park 2001] Park, J.S., R. Sandhu, and G. J. Ahn, "Role Based Access Control on The 
Web." Communications ofACM, Vol. 4, Issue 1, pp.37-7I. (2001) 

[Peavey Company 2000] "Grade Discount in Cents Per Bushel." Peavey Company, 5301 
West Channel Road, Catoosa, Oklahoma 74015. (2000) 

[Pettit 2001 J Pettit, S., "Anatomy of a Web Application: Security Considerations." [On
line] Available: http://www.cgisecurity.comllibIWeb_Server.pdj (Acce s Date: October 
15, 2002) 

(Rankle 1997] Rankl, W. and Wolfgang Effing, "Smart Card Handbook." John Wiley & 
Sons Ltd. (1997) 

[Rosenbeery 1992] Rosenbeery, K., David Kenney and Gerry Fisher, "Understanding 
DeE." 0 'Reil~y & Associates, Inc. (1992) 

[Schwartz 2001] Schwartz, R., 'U ing Field Encryption in Application." [On-line] 
Available: http://www-10.lotus.comllddltoday.nsfl8a6d147cf55a7fd38525665 007aa ill 
2 4d3j7b03bcajDc388256abb007305I91$FILElencrypt.pdfIris, Association In . (Acce 
Date: September 30, 2002) 

[Stillemlan 1999] Stil1ennan, M., and C. Marceall, "Intrusion Detection for Distributed 
Applications." Communications ofthe ACM, Vol. 42, Issue 7, pp.62-69. (1999) 

[Sun Microsystem 2002] "Forte for Java 4, Community Edition Tutorial." [On-line] 
Available: http://forte.sun.comlffjldocumentation/f.fJcetut.pdj Sun Microsystems, Inc. 
(Access Date: September 30, 2002) 

(Xtream 2002] Xtream, "Intemet Security." [On-line] Available: http://xtream.onlinefr 
/projectlsecurity.html. (Access Date: September 29, 2002) 

[Yen 1995] Yen, S.M., and C. S. Laih, "Improved Digital Signature Algorithm" IEl::."'E 
Transaction On Computers, Vol. 44, No.5 (1995) 

80
 



APPENDIX A 

JSP CODES AND JAVA PROGRAMS FOR SECURITY LAYERS 

SANITIZING BROWSER INPUTS 

/*A Java class named "Validatelnput used to check whether a user' input contain 
invalid characters. */ 

public class Validatelnput { 
1** Creates a new instance ofYalidatelnput *1 
public ValidateInputO {} 
public int checkVaJidlnput(String s){ 

int flag=O; 
for(int i=O; i<s.lengthO; i++){ 
lithe server-side defined valid characters are a-z, A-Z and 0-9; 

char inChar=s.charAt(i); 
if (((inChar > a)&&(inChar < z)) II ((inChar > A)&&(inChar < Z)) II ((inChar > 

O)&&(inChar < 9)) ) 
flag=l; 

else { 
flag=-l; 
break; 

} 
retum flag; 

/* A JSP code in RegistDi play JSP page used to call Validatelnput clas', if a user's 
registration information contain any invalid character, that i , if the return value oj 
Validatelnput class i. "-I ", the RegistDisplay pagejustJorward RedoRegist page to the 
user. Otherwise, it di.splays the user's registration inforatmation. */ 

<%@page import="BinCustomer.*" %> 

<a href="https:lll 0,120.5.95 :8443/RegistDisplay.jsp'·'></a> 

<%@include file="GetCustId.jsp"%> 

81 



<jsp:useBean id="custBean" c!ass="BinCustomer.Cu tomer" scope=" ession"/> 
<jsp:useBean id="userBean" class="BinCustomer.userTab1e" cope="applicationlt/> 
<jsp:useBean id="validate" c1ass="BinCustomer.ValidateInput" scope=" e ion"/> 

<jsp:setProperty name="userBean" property="*" I> 
<jsp:setProperty name="validate" property="*"/> 
<jsp:setProperty name="custBean" property="*"/> 

<html> 
<head> 

<title>Regist Display Page</title></head> 
<body> 

<TABLE class="header" width="100%" cellspacing="O" cellpadding="3" border="O" 
bgcolor="#OOOOOO"> 

<TR>� 
<TO><img src=lttit1e.GIF"><!TO>� 
<TO align="centerlt width=lt35 1t>� 

<TO a1ign=lt center" width="35 1t> 
<a href=''http://10.120.5 .95 :808l/ExitWebSite.jsp">� 

<IMG src="exit_16.gif' height=1t 16" width=" 16" border=ltO"><br>� 
<Font size=1t21t>LogOut</Font></A><!TD><!TR>� 

<!TABLE> 

<% if( (validate.checkValidlnput(request.getParameter("user ame lt»=-1 )11 
(validate.checkValidJnput(request.getParameter(ltmyPassword"»=- 1)11 
(validate.checkValidInput(request.getParameter("fir tNamelt»=-1 )11 
(validate.checkValidlnput(request.getParameter("middleNameli )=-1)11 
(validate.checkValidJnput(request.getParan1eter(lt lastName"»=-1)11 
(validate.checkValid[nput(reque t.getParameter(" treetN urnberlt))==- 1)11 
(validate.checkValidlnput(request.getParameter("street"»=- 1)11 
(validate.checkValidlnput(request.getParameter("aptlt»==-1)11 
(validate.checkValidlnput(request.getParameter("city"))=-1 )11 
(validate.checkYalidlnput(reque t.getParameter("state"»=-1 )11 
(validate.checkValidJnput(request.getParameter("zip"))=- 1)11 
(vaJidate.checkValidlnput(request.getParameter("telephoneNumberlt)=-1 »{ 

%>� 
<jsp: forward page="RedoRegist.jsplt>� 
<jsp:param name="RegistDisplay" value="yes"/>� 
</jsp:forward>� 
<%� 
}//end if flag==-l� 

82 



custBean=new Cu tomer .� 
custBean.setMyPa word(request.getParamet r("myPa word"))'� 
custBean.setUserName(reque t.getParameter "userNam� II 

IIString temp=" ";� 
custBean.setFirstName(request.getParameter("firstNarne" ).� 
Ilif(request.getParameter "middJeName")-null)� 

II temp=" ";� 
custBean.setMiddleName(request.getParameter("midd1e arne");� 
custBean.setLastName(request.getParameter("JastName") ;� 
custBean.setStreetNurnber(request.getParameter(" treetNumber"))'� 
custBean.setStreet(request.getParameter("street"));� 
custBean.setApt(request.getParameter("apt"))·� 
custBean.setCity(request.getParameter("city"));� 
custBean.setState(request.getParameter("state"));� 
custBean.setZip(request.getParameter("zip"));� 
custBean.setTelephoneNumber(request.getParameter("telephoneNumber"))'� 

%> 

<% custBean.recordCustomer(}; 
%> 

<H2>Welcome, <jsp:getProperty name="custBean" property="userName" I> </H2> 

<p><i>We have recorded the following data in your profile:<Ii></p> 

<table> 
<tr>� 

<td class="registerTD">First Narne:</td>� 
<td><jsp:getProperty name="custBean" property="firstName" 1></td>� 

</tr> 
<tr>� 

<td c1ass="registerTD">Middle Name:</td>� 
<td><jsp:getPropeTty name="custBean" property="middleName" 1></td>� 

</tr> 
<tr>� 

<td class="registerTD">Last ame:</td>� 
<td><jsp:getProperty name="custBean" property="lastName" 1></td>� 

</tr> 
<tr> 

<td class="registerTD">Street Number:</td> 
<td><jsp:getProperty name="custBean" property="streetNumber" 1></td> 

</tr> 

83 



<tr>� 
<td c1ass="registerTD">Street:</td>� 
<td><jsp:getProperty name="custBean" property="street" 1></td>� 

</tr> 
<tr>� 

<td class="registerTD">Apartment<ltd>� 
<td><jsp:getProperty name="custBean" property="apt" 1></td>� 

</tr> 
<tr>� 

<td class="registerTD">City:</td>� 
<td><jsp:getProperty name="custBean" property="city" I><ltd>� 

</tr> 
<tr>� 

<td class="registerTD">State:<ltd>� 
<td><jsp:getProperty name="custBean" property="state" 1></td>� 

</tr> 
<tr>� 

<td class="registerTD">Zip:<ltd>� 
<td><jsp:getProperty name="custBean" property="zip" 1></td>� 

<Itr> 
<tr>� 

<td class="registerTD">Telephone:</td>� 
<td><jsp:getProperty name="custBean" property="telephoneNumber" /></td>� 

</tr> 
</table> 
</p> 
</p> 
</body> 
</html> 

COOKIE SUPPORT DETECTOR 

/*A JSP page used to set cookies to the client's web browser*/ 

<%@page contentType="textlhtml"%> 
<%@page import="javax .servlet.http.Cookie"%> 

<a href="https:// 10.120.5.95:8443/setCookies.jsp"></a> 

<body> 

<TABLE class="header" width=" 100%" cellspacing="O" cellpadding="3" border="O" 
bgcolor="#OOOOOO"> 

<TR> 
<TD><img src="title.01 F"></TD> 

84 



<ffR> 
<(fABLE> 

<%� 
Cookie newCookie=new Cookie "binCookie" "wheatBin" ;� 
response.addCookie(newCookie);� 
%>� 

<fonn method=post action="https://IO.120.5.95:8443/testCookie .j p">� 
<input type=hidden name=setCookies value="yes">� 
<input type=submit name=operation value="Cookies Support Detector">� 
</fonn>� 

</body>� 
</htm1>� 

/* A JSP page used to test whether the client's browser supports cookies*/ 

<%@page contentType="textlhtml"%>� 
<%@page import="javax.servlet.http.Cookie"%>� 
<html>� 
<head><title>JSP Page</title></head>� 
<body>� 

<%! Cookie[J cookies;%>� 
<%! String cookieVal="";%>� 

<%� 
if(request.getCookiesO-=null){// The u er's brow er may not support cookies or 

cookies are disabled 
%> 
<jsp:forward page="Errorl.jsp"> 
<jsp:param name="testCookies" value="yes"/> 
</j sp :forward> 
<% 
} 

cookies=request.getCookies();� 
if(cookies !=null){� 

for(int i=O; i<cookies.length;++i){� 
if(cookies[i] .getNameO.equals("binCookie")){� 

cookieVal=cookies[i].getValueO;� 
break;� 
} 

J 

85 

I 



} 

if (cookieVal==null){/lThe u er's browser support cookies but we can not find the 
cookies we set 
%> 
<jsp: forward page=It Error2.j spIt> 
<jsp:param name="testCookies" value="yes"/> 
</jsp:forward> 
<% 

if(cookieVal.equals(ltwheatBin"»{IlThe user's browser support cookie, W set digital 
signature cookies to the user's web browser 
%> 
<TABLE class=ltheader" width=" 1OO%It cellspacing="O" cellpadding="3 1t border="O" 
bgcolor="#OOOOOO"> 

<TR> 
<TD><irng src="title.GlF"><ITD> 

</TR> 
<!fABLE> 

</p>
 
<h3> Your browser suppot cookies, We will use cookies to maintain session
 
information.</H3>
 
</p>
 
<form method=post action="https:/II 0.120.5.95:8443/Login.jsplt>
 
<input type=hidden nam.e=testCookies value="ye It>
 
<input type=submit value="I Agree">
 
</FORM>
 
<%
 
}
 
%>
 

</body>
 
</html>
 

AUTHENTICATION 

/* Login JSP page which uses tlsername/password to authenticate users*/ 

<%@page contentType="textJhtmJ"%> 
<%@page session=lttrue"%> 
<a href="https:l/l 0.120.5.95:8443/Login.j p"></a> 

<010-- Login page can not be cached by the user's web browser! --%> 

86 



<% .
 
response.setHeader(ICache-Control","no-cache")· IIHTTP 1.1
 
response.setHeader("Pragma ","no-cache"); IIHTTP 1.0
 
response.setDateHeader ("Expires", 0); Ilprevents caching at the proxy erver
 
%>
 
<%-- Do input page domain checking --%>
 
<%! int inputPageFlag'%>
 
<% 

inputPageFlag=O; 
if(request.getParameter("testCookies")!=null){ 

if(request. getParameter("testCookies").equal s("yes"» { 
inputPageFlag= I ;//support cookies 
} 

} 
if(request.getParameter("Error 1")!=null){ 

if(request. getParameter("Error1").equals("yes")){ 
inputPageFlag=2;//using session object 
} 

} 
if(request.getParameter("LoginError")!=null){ 

if(request.getParameter(ILoginError").equals("yes"»{ 
inputPageFlag=3;//redo login 
} 

} 
if(inputPageFlag=O) { 

%> 
<jsp:forward page="pageNotFound.jsp"/> 
<% 
} 
%>
 
<%-- in case malicious user user back button and refresh button to get the sen itive page 

-%>
 
<% Cookie[] allcookies=request.getCookiesO;
 

String reaITest=null;
 
if(al Icookies! =null){
 

for(int i=O; i<allcookies.length;++i){
 

if(allcookies[i].getNameO.equats("binCookie "» {
 
reaITest=aUcookies[i].getValueO;
 
break;
 
}
 

} 

if (reaITest==null){ 
%> 

87 



<jsp:forward page="pageNotFound.jsp"l>
 
<%
 
}
 
} 
eJse{llcookies not supported 

if(session.getValue(lsessionOk").equals(IOK")=false){ 
%> 
<jsp:forward page=lpageNotFound.jsp"/> 
<% 
} 
}llend else cookies not supported
 
%>
 
<html>
 
<head><title>Log In</title></head>
 
<body>
 
<TABLE class="header" width="lOO%" cellspacing="0" cellpadding=13" border="O"
 
bgcolor="#OOOOOO">
 

<TR>
 
<TD><img src="title.GIF"><!fO>
 
<TO align="center" width="35">
 

<TO aIign="center" width="35"> 
<a href="http://lO.120.5.95:8081IExitWebSite.jsp''>
 
<JMG src="exjC16.gif' height=" 16" width="16" border="O"><br>
 
<Font size="2">LogOut<IFont><1A><!fO><!fR>
 

<!fABLE> 
</p> 
<% if(inputPageFIag=-I){
 
%>
 
<form name="login" method="POST" action="https:lll 0.120.5.95: 8443/Check.jsp">
 
<010
 
} 
if(inputPageFlag==2){
 

String urI;
 
url=response.encodeUrl("Check.jsp" );
 

%>
 
<fonn name="login" method="POST" action="<%= uri %>">
 
<010
 
}
 
%>
 

<table> 
<tr>
 

<td class="loginMenu">User ID&nbsp;</td>
 
<td>
 

<input name="user" type="text" length="8" maxlength="8" I> 
<ltd>
 

</tr>
 

88 



<tr>
 
<td class="loginMenu">Password&nbsp;<ltd>
 
<td>
 

<input name="password" type="password" length="8" maxleng="8" I> 
</font> 

<ltd>
 
<Itr>
 

</table> 
<p> 

<%! String temp; %> 

<% if(request.getParameter("timeCount")-null) 
temp="three" ; 

else 
temp=request.getParameter("timeCount"); 

%> 

<% if(inputPageFlag==I){
 
%>
 
<input type=hidden name=cManager value="yes">
 
<% 

} 
if (inputPageFlag=2){ 
session.putValue("loginOk","OK");//used to maintain session consistency 

%> 
<input type=hidden name=sManager value="yes"> 
<% 
} 
Iladd from here 

%>
 
<input type=hidden name=Login value="yes">
 
<input type="hidden" name=passValue value="<%= temp%>"I>
 
<input type="submit" value="Login" c1ass="btn" I>
 
<input type="reset" value="Reset" class="btn" I>
 
</p>
 

</form>
 

<% session.putValue("sessionOk","No ft);%>
 
</body>
 
<!html>
 

89
 



SETTING TEMPORARY DIGITAL SIGNATURE COOKIES 

/* The f9powing is the Java program used to generate and v rify digital signature*1 

package DjgitalSignature";
 
import java.io. *;
 
impo~ java.security.*;
 
import java.math.Biglnteger;
 
import java. security.interfaces.DSAParams·
 
import java.security. interfaces.DSAPrivateKey;
 
import java.security.interfaces. DSAPublicKey;
 
import java.security.Signature.*;
 
import java.security.spec.*;
 
import java.security. interfaces. DSAParams;
 
impo11 java.security.KeyStore;
 

public class digitalSignature {
 

public DSAPublicKey idPubKey;
 
public DSAPublicKey tryKey;
 
public DSAPublicKey rolePubKey;
 
pubLic int idBackUpLen;
 
public int roleBackUpLen;
 
private Biglnteger yy;
 
private Biglnteger pp;
 
private Biglnteger qq;
 
private Biglnteger gg;
 
public String strY;
 
public String strP;
 
public String strQ;
 
public String strG;
 

public digitaISignatureO{}
 
pubJic byte[) GenSign(String str, String flag){
 

try{ 

II Generate a l024-bit Digital Signature Algorithm (DSA) key pair
 
KeyPairGenerator keyGen = KeyPairGenerator.getlnstance("DSA");
 
keyGen.initialize( 1024);
 
KeyPair keypair = keyGen.genKeyPair();
 
DSAPrivateKey privateKey = (DSAPrivateKey)keypair.getPrivateO;
 
DSAPubJicKey publicKey = (DSAPublicKey)keypair.getPublicO;
 

11************ 
tryKey=publicKey; 

90 



II Get p, q, g; they are the ame for both private and public keys
 
DSAParams dsaParams = privateKey.getParamsO·
 
pp = dsaParams.getPO;
 
qq = dsaParams.getQO;
 
gg = dsaParams.getGO;
 
II Get the public key's Y
 
yy = publicKey.getYO;
 

strP=pp.toStringO;
 
strQ=qq. toStringO;
 
strG=gg.toStringO;
 
strY=yy.toStringO;
 

II Generate a digital signature using private key
 
IIGet a signature Object for generating signature using the DSA algorithm.
 
Iispecify SHAI message digest algorithm used by DSA algorithm.
 
Signature mySign = Signature.getlnstance("SHAlwithDSA", "SUN");
 
mySign. initSign(privateKey);
 

IINow, provide the signature object mySign the cookie value infor to be signed.
 
mySign.update(inputStrToByte(str));
 

I/Now, generate the signature
 
byte[] finSign = mySign.signO;
 

if(flag.equals("id")) 
idBackUpLen=finSign.length;llset the back up length for convert digital igned 

id back to byte[] 
if(flag .equals(" role")) 

roleBackUpLen=finSign.length;//set the back up length for convert digital 
signed role back to byte[] 

II return temp; 
return finSign; 

} catch (SignatureException e) {
 
} catch (lnvalidKeyException e) {
 
} catch (NoSuchAigorithmException e) {
 
}catch (NoSuchProviderException e){
 
}
 
return null;
 

}
 

public boolean verifySign(byte[] sign, String str, DSAPublicKey k){
 
II Verifies the signature for the given string using the public key.
 
try {
 

91 



Signature sig = Signature.getInstance(t1 HAlwithDSA",ISUN")' 

Ilif(flag "id")
 
sig.initVerify(k);
 

Ilelse
 
II sig.i.nitVerify(rolePubKey);
 

sig.update(inputStrToByte(str»; 

lireturn sig.verify(strToByte(sign»; 
return sig.verify(sign);
 

} catch (SignatureException e) {
 
} catch (InvalidKeyException e) {
 
} catch (NoSuchAlgorithmException e) {
 
}catch (NoSuchProviderException e){
 
} 
return false; 

public byte[] inputStrToByte(String s){ 

int temp=O; 

II convert a String into a byte array
 
byte bufI] = new byte[s.lengthO+1];
 
for (int i=O; i<s.lengthO; i++) {
 

temp =(int)(s.charAt(i»; 
buf1i]=(byte)(temp); 

} 
return buf; 

public String byteArrToStr(byte[] bi){ 

Byte[] myByte=new Byte[bi.length]· 
String s=""; 

for(int j=Oj<bi.length;j++){
 
myByteUJ=new Byte(bifj]);
 
s=s+myBytefj].toStringO+" ";
 

}
 
return s;
 

} 

public byte[] strToByteArr(String ,int len){ 

92 



byte[] newByte;
 
int t'Index=O;
 
int index;
 

newByte=new byte[len]; 

index=s.indexOfC' "); 
for(int k=O; k<len; k++){
 

String temp=s.substring(tlndex,index);
 
newByte[k]=Byte.parseByte(temp)·
 
tlndex=index+ I;
 
index=s.indexOf(" II ,tlndex);
 
if(index==-l)
 

break; 
} 

return newByte; 

public void rePubKey(String yy,String pp,String qq, String gg, String flag){ 
try { 

Biglnteger y=new BigInteger(yy);
 
Biglnteger p=new BigInteger(pp);
 
Biglnteger q=new BigInteger(qq);
 
Biglnteger g=new Biglnteger(gg);
 

II Create the DSA key factory
 
KeyFactory keyFactory = KeyFactory.getlnstance("DSA");
 

II reCreate the DSA public key
 
DSAPublicKeySpec publicKeySpec = new DSAPublicKey pec(y, p, q, g);
 
DSAPublicKey publicKey = (DSAPubIicKey)keyFactory.GeneratePublic
 
(publicKeySpec);
 
if(flag=="id")
 

idPubKey=publicKey;
 
else
 

roIePubKey=publicKey;
 
}catch(NoSuchAlgorithmException e){
 
}catch(InvalidKeySpecException e) {
 
} 

1* The following JSP code is used to call digitaSignature cla s and set digital igned 
cookies to the client's browser. *1 

93 



<!-- Delect-all existing cookies and add new cookies with digiti.al signitial--> 
«>/0 

String name=""; 
Ilcheck if there are any cookies and delete all existing cookies! 
if(request.getCookiesO!=nuJI){ 

Cookie[) cookies=request.getCookiesO; 
for(int i=O;i<cookies.Jength·i++){
 

name=cookies[i].getNameO;//get each cookie name
 
Ilkill each existing cookie
 
Cookie killCookie = new Cookie(name, null);
 
ki llCookie.setMaxAge(O);
 
response.addCookie(kiIICookie)·
 
} 

Ilset new cookie.
 
user=request.getParameter("user");
 
Ilput role information into ession object
 
roleStr=getRole.roJelnfo(user);
 

Ildigital signature the id cookie value.
 
byteArrl =digi.GenSign(roleStr,"id");
 
syy=digi.strY;
 
spp=digi.strP;
 
sqq=digi.strQ;
 
sgg=digLstrG;
 
len=digi. idBackUpLen;
 

0/0> 

<% 

String cos=digi.byteArrToStr(byteArr I);
 
Cookie nameCookie=new Cookie("roleName", cos);
 
nameCookie.setMaxAge(-l);
 
response.addCookie(nameCookie);
 

%>
 
<fom1 method=post action=''http://lO.120.5.95:8081/HomePage.jsp">
 
<input type=hidden name=cManager vaJue="yes">
 
<input type=hidden name=syy value="<%=syy%>"I>
 
<input type=hidden name=spp vaJue=l<%=spp%>"/>
 
<input type=hidden name=sqq value="<%=sqq%>"I>
 
<input type=hidden name=sgg value=l<%=sgg%>"/>
 
<input type=hidden name=len value=l<%=len%>"/>
 
<input type=hidden name=roleStr value="<%= roJeStr%>">
 

94 



<% 

URL REWRITING 

/* The following JSP code is used to do URL rewriting*/ 

<%! String url;%> 
<% 

user=request.getParameterC'user"); 
//put role information into session object 
roJeStr=getRole.rolelnfo(user); 
session.putValue(" roleStr" ,roleStr); 
uri =response.encodeURL(" HomePage.jsp"); 

%>
 
<%-- --Using URL rewriting to maintain session status---------------- --%>
 
<form method=post action="<%= urI %>">
 
<input type=hidden name=sManager value="yes">
 
<input type=hidden name=sId value="<%= session.getldO%>">
 
<%
 

}//end sManager is yes 
}//end sManager is not null 
%> 
<% session.putValue("checkOk", "OK");%> 
<input type=hidden name=check value="yes"> 
<input type=hidden name=user vaJue="<%=reque t.getParameter("u er")%>"/> 
<input type=hidden name=password value="<%=request.GetParameter 
("password")%>"/> 
<input type=submit value="Do Optimization"> 
</forrn> 

JNPUT WEB PAGE DOMAIN CHECKING
 

/* For example, the input web page domain for Login web page is {TestCookies, Errorl,
 
LoginError}. The following JSP code in Login page is used to do input web page domain
 
checking. */
 

<%-- Do input page domain checking --%>
 
<%! int inputPageFlag;%>
 
<%
 

inputPageFlag=O;
 
if(request.getParameter("testCookies")! =null) {
 

if(request. getParameter("testCookies").equals("yes"» {
 
inputPageFlag=1;//support cookies
 

95 



} 
} 

if(requesLgetParameter("Error I") !=null){
 
if(requesLgetParameter("ErrorI").equals("ye "»{
 

inputPageFlag=2;//using session object
 
} 

}
 
if(requesLgetParameter("LoginError") !=null){
 

if(request.getParameter("LoginError").equals("yes"»{
 
inputPageFlag=3 ;//redo login
 
}
 

} 
if(inputPageFlag=O){ 

%> 
<jsp: forward page="pageNotFound.j sp"I> 
<% 
} 
%> 

ROLE-BASED ACCESS CONTROL 

1* For example: if a user clicks "Grade Table" or "Oi count Table" button in the 
ListBinlnfo page, the server side sends the grade table pop-up window or discount pop
up window depends on the user's role. *1 

llif the client's browser doesn't support cookie 
<% if(flag.equals("session"» { 

if(session.getValue("roleStr") .equals("Cu tomer"» { 
%> 
<FORM method="pOST" action="javascriptPopUp 
('http://I 0.120.5.95 :8081/GradeTable.jsp')" > 
<p><input type=image src="help_16.gif'> Grade Table</p> 
</FORM> 
<FORM method="POST" action="javascript:PopUp 
('http://IO.120.5.95:8081/DiscounLjsp')" > 
<p><input type=image src="help_I6.gif'> Discount Table</p> 
</FORM> 
<% 

if(session.getValue("ro leStr") .equals("Admin"» { 
%> 
<FORM method="POST" action="javascriptPopUp 
('http://l0. 120.5.95: 8081 IEditGradeTable.jsp')" > 
<p><input type=image src="help_16.gif'> Grade Table</p> 
</FORM> 

96
 



<FORM method="POST" action="javascript:PopUp
 
('http://lO.120.5.95:8081/EctitDisTabJe.jsp')" >
 
<p><input type=image src="help_16.gif'> Discount Table</p>
 
</FORM>
 
<%
 
}
 
} 
%> 

//ifthe client's browser supports cookies 
<% if(flag.equals("cookies")) { 

if(request. getParameter("roJeStr").equals("Customer"» { 
%> 
<FORM method="pOST" action="javascriptPopUp 
('http://lO.120.5.95:8081/GradeTable.jsp')" > 
<p><input type=image src="he1p_l6.gif"> Grade Table</p> 
</FORM> 
<FORM method="POST" action="javascriptPopUp 
('http://10.120.5.95:8081/Discount.jsp')'' > 
<p><input type=image src="help_16.gif'> Discount Table</p> 
</FORM> 
<010 
} 

if(request.getParameter("roleStr").equals("Admin"»{ 
%> 
<FORM method="POST" action="javascriptPopUp 
('http://lO.120.5.95:8081/EditGradeTable.j p')" > 
<p><input type=image src="help_16.gif'> Grade Table</p> 
</FORM> 
<FORM method="PO T" 
action="javascriptPopUp('http://l 0.120.5.95:80811EditDi Table.jsp')" > 
<p><input type=image src="help_16.gif'> Discount Table</p> 
</FORM> 
<% 
} 
} 
%> 

mnDE FORM FILED 

/* The following JSP code in Login JSP page uses hidden form field to send a user's 
username and password to the check page. */ 

<form name="login" method="paSTil action="https://l 0.120.5.95: 8443/Check.jsp"> 
<input type= hidden name=Login vaLue="yes"> 

97 



<input type= hidden name=pas Value value="<%= temp%>"1> 
<input type="submit" value="Login" clas ="btn" I> 
<input type="reset" value="Reset" class="btn" I> 
</p> 
<lform> 

SENSITIVE WEB PAGE CACJDNG PROTECTION 

1* The following JSP code in ListBinJnfo JSP page is used to prevent this page from
 
being cached by the client's web browser. *1
 

<010-- ListBinInfo can not be cached by the user's web browser! --%>
 
<%
 
response.setHeader("Cache-Control","no-cache"); IIHTTP 1.1
 
response.setHeader("Pragma","no-cache"); IIHTTP 1.0
 
response.setDateHeader ("Expires", 0); Ilprevents caching at the proxy server
 
%>
 

KILLING COOKIES AND INVALIDATING SESSION 

1* The following JSP code in Exit JSP page i used to kin cookies and invatid e ion 
when a session is over. *1 

<% 
likill al1 existing cookies 
String name=""; 
Ilcheck if there are any cookies and delete all exi ting cookies! 
if(request.getCookiesO!=null){ 

Cookie[] cookies=request.getCookiesO; 
forOnt i=O;i<cookies.length;i++){
 

name=cookies[i].getNameO;llget each cookie name
 
Ilkill each existing cookie
 
Cookie killCookie = new Cookie(name, null);
 
kiIICookie.setMaxAge(O);
 
response.addCookie(kiIICookie);
 
}
 

} 
Ilkill role session object
 
session.putValue("roleStr", "empty");
 
session.putValue("sessionOk", "No");
 
session.invalidateO; Ilinvalid session
 

%> 

98 



VITA 

ling Ding� 

Candidate for the Degree of� 

Master of Science� 

Thesis: A SERVER-SIDE SECURITY MODEL FOR WEB APPLICATIONS 

Major Field: Computer Science 

Biographical: 

Persona] Data: Born in Hefei, China, On Ocl. 3 L, ]974. 

Education: Received Bachelor of Science degree in Chemical Engineering from 
Hefei United University, Hefei, China in July L995. Completed the 
requirements for the Ma ter of Science degree in Computer Science at 
Oklahoma State University in December 2003. 

Experience: Employed by Hefei Phoenix Medical quipmenl Inc., H fei, hilla, as 
a technical upport engineer, 1995-1998. 

Professional Membership: Phi Kappa Phi Honor ociety Memb r. 


