A SERVER-SIDE SECURITY MODEL FOR

WEB APPLICATIONS

BY
JING DING
Bachclor of Science
Hefei United University
Hefei, P.R.China

1995

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in Partial Fulfillment of
The Requirements for
The Degree of
MASTER OF SCIENCEC
December 2003

A SERVER-SIDE SECURITY MODEL FOR

WEB APPLICATIONS

Thesis Approved:

ﬁf/éé/c—%

Thesis Adviser

QW/

ﬁ of the Graduate College

1

ACKNOWLEDGEMENTS

I would like to acknowledge the continued support and guidance from my thesis
adviser, Dr. G. E. Hedrick. He provided deep nsight and technical advice on all issues of
this research.

[would also take this opportunity to convey my sincere thanks to Dr. Huizhu Lu
for her suggestions during the preparation of my research. 1 am grateful to Dr. J. P.
Chandler, Dr. N. Park and Dr. M. H. Samadzadeh for taking out their time and for
providing constructive feedback for my research as my commitice members.

I wish to express my apprcciation to the Computer Science Department at
OkJahoma State University for supporting me during my studies.

Finatly. [would like (0 thank my husband Yong Hu, for his love, patience, and

endurance that made this joumey a pleasant experience.

TABLE OF CONTENTS

Chapter Page
L INTRODUCTION Lottt et et ettt ettt ab ettt et e]
LT MOBIVATION Lottt et e]

1.2 OB ECIIVES ..o et e s 2

1.3 Organization of the thesiS. ... e e 3

[I. LITERATURE REVIEW ... e e 4
2.1 The Concept of Web ApplCationscoeviiii i 4

2.2 Issues of Web Application SECurity ... oo 5

2.3 Methods for AUthenticationc.cccooiumiiiiiriiii e e 5

2.4 Methods for Authorizationc..ccocevveriieiiinns USRI 6

2.5 SeSS10N TTACKITIE ..ooiiiiii e et e e 7

2.6 FIrewall.. oo e e 11

2.7 Intrusion Detection SYSIEMcoiiitii e eee et et ce e re e ennae e 11

2.8 SeCUIe SOCKEE LAYCT ...t e et et e e e e e e eeee e e ene 12

2.9 Sanitizing Browser INPULSivieuriiiiiiiiiie it et e e 13

2.10 Sensitive Web Page Caching Preventioncocvoiiciiicic e 13

2.1 CryplOgraD Y o e e e 14

[II. A SERVER-SIDE SECURITY MODEL......ooiiiiiiiiiiii et [6
3.1 Input Web Page Domain Checking ... 16

1L D INEIOM oo ettt et 16

T8 B0 1Y] [0 415 11 P T4 T4) o VO O 17

3,2 COOKIE SUPDOTT DEIECIOT. ..uumtriireeee et oi et a et ta i e e e e e e e tie s e 21

3.3 Proposed Server-Side Security Model ... 22

3.3.1 Problems of Existing Security Approachcs...........oocpoveiveeeiee e 22

3.3.2 Proposed Server-Side Security Modeloc i 25

IV. WHEAT BIN MIX OPTIMIZATION WEB APPLICATION...........ocveeeeeeieeeee 30
4.1 ODJECIIVE Lo oiiiiiiiie ettt e oo ettt e e 30

4.2 Background INFOTMaAtIONc..comeeria i ittt 31

v

Chapter Page
4.2.1 TemMUNOIOZIES....cccooiiit it e et 31

4.2.2 Standard Wheat Grade Tableccocimiremnmns i 33

4.2.3 Discount Tableococoiiiiiiii e i e 34

4.2.4 Sketch of Web Bin Mix Optimization Web Application..................... 7

4.2.5 A Limitation of The Optimization Algorithm. ..., 38

4.2.6 Expansion Capabilityccoocoeiiviirenirreceeeeer s e 39

4.3 USET INLEMFACE ... oo ettt e 39
4.4 Inside of Wheat Bin Mix Optimization Web Applicationcceviiccinniianns 49
G4, 1 ATCNILECIUTE ..cooiiiiiii ettt e 48

4.4.2 ToOl8 USEQA ..ot 51

4.4.3 Pattern Scarch Optimization Algorithm.................................. 52

V. SECURITY MODEL IN WHEAT BIN MIX OPTIMIZATION WEB
APPLICATION ... e

5.1 ATCRITECIUTE ..ottt et et et e et

5.2 New Service COMPONENESiiomiiiceieece e e it e e

5.3 Server-Side Security Model Implementationcccoo oo e e e
5.3.1 Defining Input Web Page DOmaincoviiiiniicninmnice e

5.3.2 Implementation............cc.ccoccviveiivencennnens, e e e e

VI. SUMMARY AND FUTURE WORKS ... i
6.1 SUITIMTATY oottt ettt bttt e e e e b re e £t ere s e e

6.2 FULUIE WOTKS. . 1o 1ttt e e e bt e

BIBLIOGRAPHY oot e et et e e

APPENDIX: JSP CODLS AND JAVA PROGRAMS FOR SECURITY LAYERS.......

53
55
67
67
63

17

77

78

79

82

LIST OF FIGURES

Figure Page
2.1 An Example of Role Hierarchy And Associated Privilegecccoooovoviiviiecin, 7
3.1 “Hello Shop™ Web Application Workflow ... e e 18
3.2 Cookies Support Detector T PSSP 22
3.3 A Server-Side Sccurity Model For Web AppliCations.........cc.oooeiiviieiiece e, 26
4.1 Home Web Page.ot s e 40.
4.2 Bin Information Web Page ..., e e 41
4.3 List Bin Information Web Page ...t e 42
4.4 List Bin Information From A File Web Page. ..o 43
4.5 Optimization Setting Pop-Up Window ..o 44
4.6 Optimization Setting Error Pop-Up Window ... 45
4.7 Optimization Result Pop-Up WindoWwccoooiiiiiiinis i e 16
4.8 Rank Criteria Setting Pop-Up Window........ccooiiiiii e 47
4.9 RANK POP-UDP WINUOW .oviiiiiiii ittt et 1ot et ea st 47
4.10 Grade Table Pop-Up WINdOWc...iciiiiiiiiii i e 48
4.11 Discount Table Pop-Up WINdoOWwcccoooiiiiiiiiii et ae e e 48
4.12 The Architecture of Wheat Bin Mix Optimization Web Application...................... 50
5.1 The Architecture of Protected Wheat Bin Mix Optimization

Web APPHCAUION (oo e 54
5.2 BINWebSite Web Page oo 56

v

Figure Page
5.3 SetCookies Web Pageccccoviiinieiie ettt st sbssmne e ents s 57
5.4 TestCoOKIES WED PAGe........ccoviciceiiiiiiiiie ettt e 58
5.5 EITOr2 WED PAEE ovuivi ittt e ebt ettt aeen e 59
SO ETTOr] WED PAE ..ottt ettt ettt e 59
ST LOZIN WED PaBE ..iciiiviiriiee ittt a e et 60
5.8 Check Web Page ... e e e e 61
5.9 LogINETOr WeED Pae.....cc.oiiviiiiiiiii e 62
5. 10 NOChance Web Page.....oooiiiiiiii ettt 62
5.11 CustRegist Web Page O U SUU PSETUTO PSPPSR 63
5.12 RegistDisplay Web Page ... 64
S5.13 MUstGive Web Page.......oooiiiiiie et e et 64
5.14 RedoRegISt Web Pame .. .ovviiiiiiit ittt 65
5.15 EditDisTable Pop-up WindOwcoov i e b 66
5.16 EditGradeTable Pop-up WINAOW ..ot neeaee e 67
5.17 Digital Signatire GEMETALIONoouiiiiieitie vt eciee e or it arimece smee e ceeeeas 72
5.18 Digital STENature VerifICAtON . vvvve ittt 73

viii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Web applications arc widely used to access databasc systems for information
retrieval, transactions and publication. They arc commonly applied for ecommerce, o
bank, e-education, and e-government etc. We can use web applications to purchase
goods, to transfer funds, to enroll courses, 10 retrieve academic transcripts, and to pay
taxes, etc. Most of those web applications process, store. and transmit sensitive data.
Thercfore, protceting scensitive data becomes the most important thing for those web
applications’ design.

Authentication and Authonzation are the two key securily issues when
considcring web application sccurity. Authentication is vsed to authenticate a person is
really the one he said he is. After authentication, authorization is uscd to cnsurc that cach
authenticated uscr only accesses information he s allowed to access.

Today's authcntication standard imcthod is Uscrnamce/Password authentication. In
authorization, Role Bascd Access Control is the approach most widely uscd to prevent
secure information from unauthorized access. Howcever, what can we do if hackers
bypass authentication? What can we prevent hackers from doing ‘Forceful Site
Browsing® (access sensitive information through a direct URL)? Username/Password
authentication is similar to security guards watching the lobby of a building. They restrict

access to the building if somcone want to come into the building through the door, but

they do nothing to control 2 pesson who tries to get into the building through a tunnel.
Then what happens once the person successfuily gets into the building through a tunnel?
Access contro] is used to ensure that every authenticated user only to access information
he or she has the privilege to access. For those attackers who bypass authentication
successfully, access control exists in name only.

Obviously, 1t is urgent for us to find some other security technigues to protect web
applications in addition to Usemame Password authentication and Role Based Access

Control.

1.2 Objectives

There are three objectives of the thesis:

e Comparc the pros and cons of existing security approaches used to securc web
applications.

e Proposc a server-side security module for web applications to mecet the following
security requirements:
- Prevent malicious uscrs from accessing scnsitive information without
authentication.
- Prevent authenticated users from accessing wformation beyond their
authorization.

o Construct a web application to demonstrate the proposed security model.

I

1.3 Organization of the thesis

This thesis comprises the following chapters: Chapter 2 is the literature review. In
Chapter 3, a server-side sceurity model for web applications i proposed. Two security
techniques, Input Web Page Domam Checking and Cookie Support Detector, are also
proposed. The proposed server side security medel consists of eleven security layers,
where the two proposed techniques act as two security layers. Chapter 4 describes in
detail the construction of wheat bin mix optinuzation web application. This web
application. is used to demonstrate the proposed server-side security model. Chapter 5
addresses how to build the proposed server-side security model into wheat bin mix

optimization web application. Chapter 6 is the summary and future works.

CHAPTER 2

LITERATURE REVIEW

In this Chapter, we present some background information such as the concept of
wieb applications, sccurity issues and securily measures curremly used (o protect web
applications.

There are eleven sections in this Chapter. Section 2.1 introduces the concept of
web applications. Section 2.2 discusses sceurity issues of web applications. Scction 2.3
describes some methods to implement authentication. Section 2.4 shows the most widely
used authorization method—Role Based Access Control. Session tracking problems are
discussed in section 2.5. Some other security techniques such as Firewall, Intrusion
Detection Systemn, Secure Socket Layer, Sanitizing Browser Inputs, and Scnsitive Web
Page Caching Prevention are introduced in section 2.6, 2.7, 2.8, 2.9. 2.10, respectively.
The last section 2.1} describes some encryption and decryption methods used in web

application sccurity.

2.1 The Concept of Web Applications

“Web applications are the business logic that cnables users® interaction with the
web site, and the transacting and interfacing with all the back-end data systems [Pettit
2001].” For example, applications allow users to check their account balance and to
wansfer funds; applications that allow users to shop onlinc; applications that allow

students to enroll classes, and many, many others.

Typically, a web-based application can be represented in a three-tier architecrure,
which includes a web-client, network semers, and a back-end information system

supported by severa) databascs.

2.2 Issues of Web Application Sccurity

There are two key issues in the web application security: Awthentication and
Authorization. Authentication is used Lo ensure that someonc is exactly the person he
satd he i1s. It is the process of allowing only valid (authenticated) web visitors to view
web pages of a web application. Authorization is used to ensure that authenticated user
can only do things what he is authorized to do. There are many kinds of methods 10

mplement the two key issues.

2.3 Methods for Authentication

s Password-based authentication [George 1997)
e Host-based authentication |George 1997] {Cook 2000]) [Berry 1894]
e Public Key Infrastructure (PKI) based authentication [Oracle Company 1999)
e Other third party-based authentications:
o Kerberos [Neuman 1994)
o Distributed Computing Fnvironment (DCE) [Rosenbecery 1992]
o Smart Card [Rank] 1997]
Among all of these methods, password-based authentication is today's

authentication standard and is used most widely since it is easy for human beings to grasp

and no additional hardware is needed. L sually, password-based authentication asks a user

to give the correct user name and the corresponding password.

2.4 Methods for Authorization

Joshy, Aref, Ghafoor, and Spafford surveyed all access control models used
nowadays with their key featurcs and approaches [Joshi 2001]. They also concluded “The
Role-Based Access Control (RBAC) model is expected to provide a viable framewaork for
addressing a wide range of security requirements for large enterprise [Josht 2001].”

Role Based Access Control [Ferraiolo 2003] i1s today's most widely used
authorization method. In RBAC mode!, each uscr is assigned one or more roles; each role
Is assigned one or more privileges: roles can be organized in hierarchics.

For example, in Figure 2.1, we can divide employecs of a university into two
groups: administration staft and research staff. The administration staff consists of
secretary, college dean and depariment Chair. The rescarch staff consists of researcher,
faculty and department Chair. Notice that depariment Chair belonps (o both
administration staff group and research staff group.

Now suppose that all employees are authorized with privilege A, adnmmstration
staff is authorized with privilcge B, and rescarch staff is authorized with privilege €.
Then a secretary has privilege A and B, so does the college dean. Researchers and tuculty
have privitege A and C. Since the department Chair has both the administration s@ff and

research staff rofe. the department Chair has privilege A, B und C.

Employece (Privilege A)

(Privilege B) Admintistrator Staff Research Staff (Privilege C)
Secretary Chair Faculr) chcarchcr

Figure 2.1 An Example of Role Hierarchy And Associated Privilege

2.5 Session Tracking

The client-server model basically follows three procedures: requests from the
client side, the server side’s responses and afterwards, the client side’s acknowledgement.

This is perfect for simple web browsing, where each request typically results in a
web page being sent back to the client. The server does not need to know whether a serics
of requests come from the swne, or from different clients, or whether thnse requesis are
related or distinct. However, when writing web applications, these are things that we may
concern.

The idea of maintaining state among requests (o a web application is known as
session tracking. A session can be defined as a series of related interactions between a
single client and the web server that take place over a period of time. No matter what
authentication and authorization inethods are chogen, there are also strong nceds to
ensure that a session relaled with each user is secure so that authentication and

authorization methods can be brought into full play.

In the following sections, several traditional session tracking methods are

discussed.

URL Rewriting

URL is the abbreviation of Untversal Resource Locator. URL Rewriting basically
means that when a user is presented with a link to a particular resource instcad of simply
presenting the URL as normally do, the URL for that resource is modified so that more
information 1s passed when requesting for that resource [Ayers 1999].

Assume that a user searchcs some books from an on-line bookstore
www.bookstore.com and he is presented with a search result that has 2 books listed.
Suppose the search result displayed to the user is basically 2 form within Java Server
Page (JSP) format:

<form mcthod = “post” action = “book.jsp">

<input type -: “checkbox™ name = *bookID" value = “1">C* i ~br>

<input type = ‘“‘checkbox™ name = “bookID" value = “2"> JAVA<br

-.input type = “submit” name = “Submit’ value: *“Add 1o Cart"><br:

“Iform>

In this fonm, there are two checkboxes, e¢ach for one book and a Submit button.
The uscr can click any checkbox to add any of these books to his Cart

In this example, when a user links to the on-line bookstore www.bookstore.com,
the URL appears in the user’s web browser is http:'www .bookstore.com/book.jsp, where
the server is www.bookstore.com, the server resource is book.jsp (a Java Server Page

file). After the user clicks the checkbox of the book “C++”, the URL that appears in the

user’s web browser is http://www.bookstore.convbook.jsp?bookID—1. The scrver source
has been changed from book.jsp to book.jsp?booklD=1. This is exactly whar URL
Rewnting means. The effect of this is that any part of the URL after the “?” (question
mark) is treated as extra paramnetcers that are passed to the server side program.

URL Rewriting is very easily to maintain session information when a user's
browser doesn’t support cookies or a user disables cookies. We will introduce cookies

technique later.

Hidden Form Field

Hidden Form Field s a session tracking technique in which browscr input is not
displayed when read by a web browser [Duffey 2001). In this technique, session data can

be tracked by storing it in hidden form ficlds then be retrieved later.

Cookies

Authentication is the first sccurity layer of web application protection. After
authentication, the server side must ensure that a user is still the same person who has
successfully logged in. [f a web application frequently asks users to do authentication,
sometimes as often as cvery page request, this indeed makes the web apphcation secure.
However, it is unacceptable sinee it 1s not convenient for uscrs.

Today’s most widcly used cookie technigue makes authentication more
convenicnt to users. IITTP by itself is stateless, afier authenucation, couvkies can be the
way a web application maintains scssion state information. Cookies are sets of strings

written to a clicnt’s web browser or stored on a client’s hard disk by the web application

server whenever that web browser visits the scrver's site. As a user visits a web site for
the first time, the server side creates a new session and scts cookics with a unique value.
When the user browses that web site again the cookies is sent back from the user’s web
browser to the server side. allowing the server side to recognize the user. Thus, cookies
commonly arc uscd to maintamn state information among subsequent HTTP requests and
can be exchanged between the web client and the web server to maintain connection
information. Cookies usually are used 10 store information such as a uscr’s host name,
password, account ID, session I ar other profile information.
There are two types cookies:

e Persistent cookies; have an cxpiration date and are stored on a user’s hard
disk until that date. A persistent cookie can be used to track a user’s
browsing habits by identifying the user whenever the user retums to a site.

o Non-persistent cookies (temporary cookies): arc stored in the web
browser’s memory. They last only unti) the browser ts closed or a user’s

session 1s over then are destroyed

Role-Based Access Control with Secure Cookies

Cookies are jnsecure 10 storc and transmit scnsitive information. Pack, Sandhu
and Ahn proposed Role-Based Access Contro} with persistent secure cookies technique
to protect web applications [Park 2001]. In this technique, they suggested to use some
cryptographic technologies, such as “digital signature™ which wc will introducc in section

2 11, to encrypt cookies to prevent cookies from theft or modification.

Session Timeout

Session timeout specifies the “no activity” duration beyond which a use has to re-
authenticate himself to a web site. The “no activity” duration setting is usually based on
the type of a web application. Scrious financial web applications may specify a very short
session timeout period. Regular applications, such as e-mail, may use longer timeout

periods.

2.6 Firewall

Web servers arc the places where most network services are located. Firewall
technology has become the most popular defense for these servers against the open un-
trusted Internet.

“A firewall is a form of access-control technology that prevents unauthorized
access to information resources by placing a barrier between an organization’s network
and the Internet [Xtream 2002]." Deploying firewalls is a standard step adopted by many
organizations. Fircwalls protect against many attacks on the nctwork and system
infrastructure. In addition, somc firewalls provide filtering capability and prevent

inbound malicious applications.

2.7 Intrusion Detection System (IDS)

Intrusion detection is a technology that attempts to discover attacks, preferably
while they are stil) under way. There are two approaches for this technique: pattern-based

and anomaly-based.

Pattern-based systems are explicitly programmed to detect certain known kinds of
attack. Anomaly-based systems address those atiack problems by attempting to detect any

abnormal behavior [Stillerman 1999].

2.8 Secure Socket Layer (SSL)

After a user has supplied proper identification and access is granted, Secure
Socket Layer ensures sccure data transmission during a session so that that private data is
not intercepted or altered during the session.

HTTP is the basic protocol for data transmission on the Imemet. The protocol was
not designed for security, thus very insecure. For example, students in a2 dorm share a
broadcast Ethemnet. A user may impersonate another user by running a listening program.
Therefore, even though a user has properly lagged onto a systcm, any information that is
accessed can be intercepted and caprured by another user on the network. There is no
easy way to prevent this interception except by cencrypting all of the information that
flows both ways.

Secure Socket Layer (SSL) technology is a solution that uses public key
technology (section 2.11) to ensure hat information exchanged hetween the web server
and the web client is encrypted. SSL. provides data transmission sceurity between the web
client and the web scrver. Accessing web sits using SSL. appears different from regular
sites. A normal web site may be: hetp://www.website.comr. If the web sit uses SSL, then
the “hetp' protocol token becomes ‘https® as in: hitps: ‘www.websitc.com/ [Dufiey

2001].”

2.9 Sanitizing Browser Inputs

Browser inputs are all inputs from a web browser such as users’ input data trom
HTML forms and cookics retieved from the client's side ete.

Some special characters in [TTML formy inputs such as !, &, -, and $ can cause a
web server to executc an operabing system command or has other unexpected behavior.
Some web guest books allow uscrs to format their comments with HTML tags such as
. However, hackers may embed malicious HTML tags in thc client
requests. This is also called cross-site scripting, With cross-site scripting, malicious users
can access and delcte files stored m a web server, crash a user’s computer or steal
information from HTML fields [Advosys Consulting 2002].

It is very important for the server side to sanitize browser inputs. The server side
should be able to strip unwanted characters, invisible characters and HTML tags from
users’ wnputs. The best solution is to check browser inputs against a list of scrver-side
defined valid characters other than a list of valid ones since it is very difficult to

determine all possible malicious characters.

2.10 Sensitive Web Page Caching Prevention

Web browsers cache pages. They store a local copy of every page a user visits on
the Web. Caching specds up a user’s access to Web pages.

For example, if a user asks the web browser to get a web page visited before, the
web browser first looks in the cache.)f the browser finds that web page in the cache, it

just loads that page rather than connects to a web server to get a new one.

Howcvcer, in some cases, we may not want sensitive web pages to be cached by
wcb browsers, such as some personal information on repistration web pagc. In this
situation, we need to prevent sensitive web page from being cached by web browsers to

protect sensitive tnformation.

2.11 Cryptography

Secret-key Encryptton (using a single key) [Schwartz 2001], also known as
Symmetrical-key Encryption, js somewhat familiar to most people. In Secret-key
Encryption, a single key is used for bhoth encryption and decryption. Public-key
Encryption [Naor 1990] is a littke more complicated. In Public-key encryption, each
individual holds two keys, one public key and one privatc key. The public key is freely
published, and the private key is kept privaie. Once a message is encrypted with one key,
it cannot be decoded without the other key.

MDS35 message-digest algorithm [Loshin 1999] is a onc-way encryption algorithm.
The algorithm takes a message of arbitrary length as imput, The output is o 128-bit
“fingerprint” or “‘message digest™ of the input.

Secure Hash Algonithim (SHA-1) [Loshin 1999] is a message digest algorithm. [t
is the Federal Information Processing Standard. Given an input message of any length
less than 2™, the SHA-| produces a 160-bit output called Message Digest. Then the
Message Digest can be used as an input 10 a signature algorithm that generatu.\ or venfies
the signature of the message.

Digital Signature Algorithm (DSA) [Yen 1995) is for creating and verifying

signatures. It can also be used to produce a key pair: private key and public key. The pair

of key's size range is 512 to 1024 bits. Before generaling and verifying a digital
signature, we first use DSA 1o generate a public key and a pnivate key. To generate a
digital signature, we use SHA-1 to generate a message digest for a given message. Then
we use DSA to generate digitat signature for the message digest, which takes the message
digest and the private key as input parametcrs, To verify a signature, we first re-compute
the message digest for the original message. Then we use DSA to verify the digital
signature by taking the message digest, the digital signature and the public key as input
parameters. If a message 1s not modified, the verification result is truc. Otherwise, the
verification result is false.

The Rivest, Shamir, and Addleman AsymmetricCipher Algorithm (RSA) [Loshin
1999} is a public key cryptosystem in order to ensure that nobody, except the intended

recipient, deciphers the message.

Now wc have discussed various methnds used in web application sccuriry and
their advantages. In Chapter 3, we will also discuss the disadvaniages of these existing
securnity techniques. By taking the advantages of thosc cxisting sceurity techniques and
combining them, along with two proposed techniques (Input Web Page Domain
Checking and Cookies Support Detector). we propose a server-side security madel in

Chapter 3.

15

CHAPTER 3

A SERVER-SIDE SECURITY MODEL

In this Chapter, we will jntroduce a proposed sever-side security mode! for web
applications. This server-side security modcl consists of eleven security layers, where
two layers are the two proposed security techniques, Input Web Page Domain Checking
and Cookies Support Detector, which will be described in section 3.1 and section 3.2
respectively. Section 3.3 discusses the disadvantage of several existing sccurity
techniques and explains the purpose of each security layer in the proposed server-side

security model.

3.1 Input Web Page Domain Checking

As we known, web applications are based on the client-server architecture. For
each client request, the server sends corrcsponding web page from the scrver side to the
client side. Therc are some particular orders when accessing web pages. We call this
particular order as Application Workflow.

[nput Web Page Domain Checking tcchnique is proposed to ensure the correct
application workflow. Thercfore, this technique can prevent malicious user from

accessing sensitive information without authentication such as forceful browsing.

31.1.1 Definition

16

Based on the particular order while accessing web pages, when requesis to access
a certain web page are received, the server side must ensure that only those requests
coming from some particular web pages will be processed, and others will be declined.
“Input Web Page Domain™ 1s a set of such particular web page(s). Each web page owns

its own “Input Web Page Domain™,

3.1.2 Implementation

Assume there is a member-only web application called “Hello Shop™ designed for
an on-line store. Every customer uses this web application for shopping should have a
membership in the on-line store.

Suppose there are totally three Web pages designed for “Hello Shop™ Web
apphication: A “Login” Web page is used to authenticate users, a “'Product List” Web
page displays all products; a “Shopping Cart” web page lists all items a customer chose.

We can do "Input Web Page Domain Checking” following three steps:

Stepl: Drawing Workflow during Web Application Design

For the “Hello Shop”™ Web application, the “Log In™ web page should be sent 10
the client’s side (a user) from the server side to authenucare users before any other Web
pages. In the “Log In” web page, a user types his or her usernamc and password to login.
If the user's given information is mcorrect, ie., incorrect usernanie and/or incorrect
password, the “Log In” page should be resent to the client’s side for re-login, Otherwise,
the “Product List” web page should be sent from the server side to the client side. If a

user logs in successfully, he or she becomes an authenticated user The user now can

choose a product and add it to the user's shopping cart by clicking the “Add To Cart”
button in the “Product List” web page. The “Shopping Cart” web page should then be
sent from the server side to the client’s side to display all items currently in the shopping
cart. If the user wants to continue shopping, the “Product List” web page should be re-
sent fom the server side to the client’s side. Based on the particular orders of the three

web pages, we can draw the workflow of “Hello Shop” Web application, as shown Figure

x A3

Empty

“Login” Web Page Login failed

e e]

Login successful

Web Client

“Product L.ist” Web Page —'

! Continue shopping T Add a product to the shopping cart

“*Shopping Cart” Web Page

S C]
—1

Figure 3.1 “Hello Shop” Web application workflow

18

Step 2: Define “Input Web Page Domain” for Each Web Page
Based on the workflow of “Hello Shop” web application we drew in step i, we

can define the “Input Web Page Domain” for cach Web page as in Table 3.1.

Table 3.¢ “Input Web Page Domain” for “Hello Shop” Web Application
Page Name Input web page domain
Log In {Null, “Log In"} T

Product List f“Log In”, “Shopping Can} |

Shopping Cart | {“Product L.ist™}

e Define “Input Web Page Domain” for “Log In” web Page:

“Log In” web page should be sent first from the server side to the client side
before any other web pages for authenticating a user. We use “Null” as an element in the
“Input Web Page Domain” of “Log [n" web page to show that “Log In” wcb page must
be the first web page sent to the chient’s side.

If a uscr fails to log in, the “Log In" web page is resent to the client side. Thus,
“Log In"" web page itself is an element in the “Input Web Page Domain™ of “Log In™* weh
page.
Therefore, “Input Page Web Page Domain™ for the “Log In™ web page is {Null, “l.og
in®}.

¢ Define “Input Web Page Domain” for “Product List™ Web Page:

“Product List" web page can be redirected by the “Log In" web page il a user logs

in successfully; “Product List® web page can also be redirected by the *“Shopping Cant™

web page if a user wants to continue shopping after adding a product into the shapping
cart.

Therefore, the “Input Web Page Domain™ for “Product List” web page contains
only *“Log In”” web page and “Shopping Cart™ web page. We denote this “Input Web Page
Domain” as {*Log In”, “Shopping Cart™}.

* Define “Input Web Page Domain’ for *“Shopping Cart” Web Page:

Since “Shopping cart™ web page can only be redirected from the “Product List™
web page and can’t be redirected by the “Log In™ web page, the “Input Web Page
Domain™ for the “Shopping Cart” web page only cantains the “Product List” web page.
We use {“Product List™} to denote the “Input Web Page Domain™ for the “Shopping

Cant” web page.

Step 3: Do “Input Web Page Domain” Checking for Each Web Page

Do “Input Web Page Domuin” checking can according the following rules:

We define:

- P: A web page to be requested

- D: P's input web page domain

- Q: A web page that makes the request

Then the checking is performed according to the following rule:

If O € D, process the request. Otherwise, decline the request.

In the “Hello Shop" web application, since the “Input Web -Pagc Domain” for
“Log In" web page is {Nul), “Log In"}, we must check to ensure that no other web page
15 sent to the client side before the “Log In” web page from the scrver side except

possibly the “Log In' web page itself.

20

Since the “Input Web Page Domain” for “Product List™ web page is {“Log In”,
“Shopping Cart"}, only requests coming from the “Log Jn” web page and requests
coming from the “Shopping Cart’™" web page can be processed. |f requests come from any
other web pages, the “Product List” web page should not be sent to the client side.

Since the “Input Web Page Domain” for the “Shopping Cart” web page is
{*Product List”}, only rcquests coming from the “Product List” web page should be
processed. If requests come from any other web pages, the “Shopping Cant™ web page

should not be sent to the client side.

3.2 Cookies Support Detector

“Cookies Suppornt Detector” technique is proposed 10 detect whether the client
side supports cookies or not. Based on whether the client side supports cookies, the server
side can adopt different session tracking technique to maintain session status.

The basic idea to detect whether the client side supports cookics is shown in
Figure 3.2. There are four steps:

1. Create cookies.

2. Send cookies to the client’s side.

3. Get covkies from the client’s sidc.

4, Test the cookies' length. In implementation, cookies are an array of String
data type objects since cookies are actually string of characters. Therefore,
cookies do not exist means that the value of the Siring data type object i1s null.
Thus, if the test result is null, we can conclude that the client side does not

support cookies or the client side disables cookies. Notice the fact that some

21

web browsers do not support cookies and some web browsers provide the
option that a user can disable cookies. If the cookies’ length is greater than

zero, we can conclude that the client’s side supports cookies.

Create Cookies Set Cookies Get Cookies

l Null

String Cookies are not
Test Cookies Length | ——p supported or cookies
are disabled
b oo

Cookies are supported

Figure 3.2 Cookies Support Detector

3.3 A Server-Side Security Model

Before introduce the proposed server-side security model, we first discuss the
problems of existing secunity approaches used in web applications. We then propose the
server-side security model that takes advantage of existing security approaches and

combines them with the proposed two techniques: Input Web Page Domain Checking and

Coaokies Support Detector.

3.3.1 Problems of Existing Security Approaches

In Chapter 2, we reviewed existing security approaches and their advantages.

22

Now, we will discuss the problems of these existing security approaches.

Firewall

Firewall is widely uged as the first Jayer protection for web application security. It
is an electronic gate that limits access between networks in accordance with local security
policy {Goldberg 2002). Though fircwalls can prevent tllegitimate traftic from traveling
from the Internet to the corporate networks, they do litde to protect against inbound
malicious requests for legitimate applications. Legitimate reguests that pass through a
firewall may be used for a data-dnven attack on the networks or back-end systems
[Garfinkel 1997). “Data-driven attack is a form of attack that is encoded in innocuous
seeming data which is executed by a user or other software to implement an attack. In the
case of firewalls a data driven attack is a concern since it may get through the firewall in

data form and launch an artack against a system behind the firewall.” [Garfinkel 1997]

Secure Socket Layer (SSL)

Sccure Socket Layer (SSL) is oflen deployed to prevent data theft from the user's
browser to a web site. However, SSL is not used in all web sites although it can be easily
implemented to make data more sccurc. SSL dramatically affects the speed at which
users can access information, since a large amount of ¢xtra processing occurs in SSL due
to encryption and decryption. Performance of an application is often decreased if SSL is
used. Therefore, it is better to use SSL only when sending confidential dat over the
Internet. In a web application design, one can mjx SSL (using http protovol) and non-SSL

(using https protocol).

23

Intrusion Detection System (1DS)

Intrusion Detection is a technique that attempts to discover atiacks, preferably to
discover those attacks still under way. However, both pattern-based and anomaly-based
IDS have significant drawbacks. Pattern-base [DS detects attacks with known pattern.
Since only limited ahack patterns arc known, the effectiveness of pattern-based IDS is
also [imited. Anomaly-based IDS detects attacks when an unknown pattern is scen. Since
the real time normal behaviors of the web application cannot be predicted comptetely, it

is possible that the anomaly-based I1DS cause authorized users not be able to gain access.

Cookies

Cookies technology is the easiest way 1o majntain session status. However, there
are two disadvantages in using cookies. First, using cookies is not foolproof to those who
krow how to bypass the authentication. Cookies may allow a mualicious user to hijack
web sessions and view, modify, or exploit the information reluted 10 ancther user’s
session. A hacker may obtain cookies by vanous means, including physical access or
network sniffing, as well as pguessing the cookics contents. Then the hacker can
impersonate the user by hijacking the user’s sessions. If an unauthorrzed user is able to
capture the cookies, he or she may be ablc to gain unauthorized access to personal
information. Secondly, users who have cookies disabled will not be able v be

authenticaled.

Access Control
Access control 15 often used to allow authenticated users to perform certain

operations they are authorized to. For those attacks bypassed authentication successfully,

24

access control exists 1n name only.

Session timeout
Session timeout is used to enforce users to re-authenticate if a preset amount of
time is passed. However, it is difficult to set a perfect value for the session timeout: time

too short is inconvenient to the user, too long may provide a chance for attacker.

3.3.2 Proposed Server-Side Security Mode}

In previous section, we discussed the problems of existing security models. In this
section, we propose the server-side security model which takes advantage of existing
secunty models and combines them with two new techniques: Input Web Page Domuain
Checking and Cookies Suppont Detectoy, to provide a sccure protection for web
applications. Figure 3.3 shows the model. The proposed server-side security model sets
several security layers between the client's request and the server's response 10 prevent

sensitive information from theft.

Layer 1: Sanitizing Browser Inputs
Pumpose: Prevent “cross site scripting’ attack (Chapter 2, section 2.9), which
embed malicious HTML tags or special characlers such as ! and & 1n the client web

request to reveal sensitive information.

Layer 2: Cookies Support Detector
Pumpase: Cookies Support Detector (Chapter 3, section 3.2) is used to detect

whether the client’s side supports cookies. The server side adopts different session

25

Response

i Request

r Filter invalid Input j
!

A New Session Begin

Within A Session

Cookies Support Detector

Login Failed
[Authentication |<_l :

No

Yes -
1. Generate digital signature for session 1. Store session information
information including role information. mcluding role information into
2. Store digital signed session session object.
information into temporary cookies 2. Using URL Rewriting technique
1. Set the temporary cookics to the to maintain session status.
client’s side.

‘

[nput Web Page Domain Checking

Emror, Deny Access!
= ' >

l L Error, Deny Access: >
No Error
1. Get cookies from the client's side and verify the digilal signature. R
2. Get role information from verified cookies lo do RBAC. {Cookies Support) B
1. Check the consistency of the session, A
2, Get role information from session object to do RBAC, (Cookies Not Support) C
No Frror ; L P
Error, Deny Access!
I Hidden Form Filed T
\ Deploy SSL As Needed
¢ Within Session
- »
Sensitive Weh Page Caching Prevention I
Session Orver I — Killing {"90".1.85
and Invalidating
Session

Figure 3.3 A Server-Side Security Model For Web Applications

20

tracking techniques based on the detection result.

Layer 3: Authentication
Purpose: Authentication is the traditional way to protect web applications and is
used to cnsurce that the client is the person he said he is. Today's authentication standard

is Username/Password authentication. [t is also used in this server-side sccurity model

Layer 4: Setting Temporary Digital Signed Cookies

Purpose: Set digital signed temporary cookies to the client's weh browser. If the
client side supports cookies, after the client’s authentication, the server side gets the
client’s role information from a database and siores them (possibly with other session
information) into digital signed temporary cookies. Since cookies by themselves are
insecure (Chapter 3, section 3.3.1), using digital signature algorithm to digitally signed
cookies can prevent cookies from theft or modification. In this server-side sccurity
model, we adopted the technigue of “persistent digital signed cookies™ introduced 1n
(Park 2001]. However, instcad of using pursistent cookies, we usc temporary cookies to
make the cookies more secure, since temporary cookies are deleted immediaely afler

each session is over. We call the cookies “temporary digital signed cookies™.

Layer §: URL Rewriting

Purpose: If the client side does not support coukics, URL Rewriting (Chapter 2,
section 2.5.1) is then applied. URL rewriting is a method in which the requested URL is
modified to include a session ID. [t works with browsers that do not support cookies, or

when the client has disabled cookies.

Layer 6: Input Web Page Domain Checking

Purpose: Web applications are based on the client-server architecture. For each
user request, the web application server sends correspanding web page from the server
side to the client side. There are some particular aders (application workflow) when
accessing web pages. The proposed Input Web Page Domain Checking technique is used
to ensure the correct application workflow, and prevent malicious user from accessing

sensitive information without authentication.

Layer 7: Role-Based Access Control

Purpose: Role-Based Access Control (RBAC) is the most widely used
authorization technique. 1t 1s used to prevent malicious user (specitically, the legitimate
user who can login but have no authonzation to access certain web pages) to access

sensitive information that is beyond his authorization.

Layer 8: Hidden Form Field

Purpose: Hidden form field (Chapter 2, section 2.5.2) is one of the simplest
session-tracking techniques. Hidden fornn fields are HTML input types that are not
displayed when read by a hrowser. This techniyue can prevent some malicious users to
modify parameters displayed on a web browscer to do some lype of hacking, such as on-

line shopping lifting or data-driven attack, etc.

Layer 9: Deploy Secure Socket Layer As Needed
Purpose: Secure Socket Layer (SSL. Chapter 2, section 2.8) technique provides

some form of euncryption to prevent data theft during the data transition. In web

2K

application design, we can mix HTTP protocol with HTTPS protoco! together. Since SSL
dramatically affects the speed of wcb application pedormance, it is only recommend
when sending a web page which contains sensitive information, such as user’s credit card

information, bank account information, elc.

Layer 10: Sensitive Web Page Caching Prevention

Purpose: Web browsers usually store a local copy of every web page a user
visited to speeds up the access to Web pages. Preventing sensitive web page to be cached
by client’s web browser prevents malicious user accessing those sensitive web pages
through clicking the “Back™ button in the web browser to view the sensitive information

ever afler a client has logged off.

Layer 11: Killing cookies and Invalldating Session

Purposc: This is the last security procedure before a session is over. Since the
cookies are temporary cookics in the proposed secunity model, cookies must be kifled to
end a session. Session is also to be invalidated to prevent malicious users accessing other

people’s scssion cven after the ather people has logged off.

To demonstrate the proposed scrver-side sccurity model, a Wheat Bin Mix
Optimization web application 1s designed and implemented. In Chapter 4, we will present
in detail about wheat bin mix optimization web application. [n Chapter 5, we will discuss
how to build the proposed server-side security model into wheat bin mix optimization

web application.

29

CHAPTER 4

Wheat Bin Mix Optimization Web Application

In this chapter, we introduce a Wheat Bin Mix Optimization web application.
There are 4 sections in this chapter. Section 4.1 describes the objective of wheat bin mix
optimization web application. Section 4.2 presents some background information about
wheat bin mix optimization, including the discount table and the grade table used to
calculate the discount. Section 4.3 shows the user interface and explains the function of
cach web page in the web application. Section 4.4 discusses the architecture of this web
application; tools used for performing the wheat bin mix optimization; and the

optimization algorithm.

4.1 Objective

The objective of wheat bin mix optimization web application is to maximize the
profit by optimal blending of wheat stored in two or more bins at wheat elevators. The
buying company will discount the seller’s wheat according to the wheat pgrade standard,
which 1s regulated by U.S. Department of Agriculture, as well as the buying company’s
own discount table. This web application is used to help clevator managers finding

optimal blending strategy to maximize their profits.

30

4.2 Background Information

[n this section, we first introduce some terminologies related to wheat bin
blending, sandard wheat grade table, and discount table. Later, a sketch of wheat bin mix
optimization web application will be presented. Finally, imitations of the optimizaton
algorithm and the expandability of wheat bin mix optimization web application will be

discussed.

4.2.1 Terminologies

The following terminologies are related to wheat quality. They also appear as the
column name in the bin information table of wheat bin mix optimization web application.

» Bugshels: the volume umit of a wheat bin.

o Total Height (f1): the height of a wheat bin.

e FHead Space (f1i): the height of the empty space in the bin.

s Break Puint (f1): the height of the filled space in the bin.

* Moisture (%). wmoisture weight percentage, an essential measure of
wheat’s storability and valuc.

o Test Weight (LB): test weight per bushel. It is the weight of the volume of
grain that is required to fill a Winchester bushel (2.150.42 cubic inch) to
capacity.

» Dockuge (%5): material other than the predominant grain that can be easily

removed with sieves and clecaning devices.

3i

e SBK (2%u): shrunken and broken kemels, all matter that pass through a
0.064-inch by 3/8-inch oblong-hole sieve.

e FM (%): foreign matenal. All matter other than wheat that remains in the
sample after the removal of dockage and shrunken and broken kernels.

e HDK (%): heat damaged kernels, kemels that are matenally discolored
and damaged by cxternal heat or as the result of hcating caused by
fermentation.

e DK (%) insect-damaged kemels, kemels that bear evidence of boring or
unneling by insects.

o Damage (%). total damaged kemnels. kemels that include weather-
damaged, heat-damaged and insect-damaged ¢tc.

e Defect (%) toral amount of damaged kemels, foreign matenal, and
shrunken and broken kesnels.

e WCC (%): wheat of contrasting classes, which arc: Durum whcat, hard
white wheat, soft white wheat and unclassified wheat.

» WOC (7). wheat of other classes, classes other than the contrasting
classes which including hard red spring wheat, hard red winter wheat and
mixed wheat.

* Protein (%) the weight percentage of protein contained in wheat.

To perform bin-biending optimization, the valuc of “Bushels”™ must be given by a
user. Otherwise it is treated ac 0, which indicates an empty bin. There is no reason for
blending an empty bin. Other values, 1f missing, arc assumed to have the best value, ie.,

no discount is to be counted for missing values. For example, if the test weight value is

32

missing, it is assumed to be equal to 60 [b. However, at least onc other value should be

given besides the “bushels™.

4.2.2 Standard Wheat Grade Table

In wheat bin mix optimization web application, the following wheat grade table 1s
used. This is the standard grade table published by Federal Grain Inspection Service in

February 2002 [Federal Grain Inspection Service 2002].

Table 4.1: 810.2204 Grade and Grade Requirements for Wheat

Grade . TW (Ib) ' BDK (%) 'Damage (%) ¥M (%) SBK (%) /Defect (%) WCC (%)

1 60 02 2 0.4 3 3)
2 58 0.2 4 0.7 5 5 2
3 56 0.5 17 1.3 8 8 10
4 54 | 10 3 12 12 10
s s 3 15 5 20 20 10

In wheat grading, Grade 1 is the highest grade, and Grade S is the lowest prade,

The following indices are considered for grading the wheat: Test Weight (TW), Heat

Damaged Kemel (HDK), Damage, Foreign Matenal (FM), Shrunken Broken Kemel

(SBK), Defect, and Wheat of Contrasting Ciass (WCC). The grading procedure can be
described as follows:

) For given wheat, get the grade based on each singlc index. The grade should be

one grade lower than the grade whose index value 18 just greater than the index

value for that wheat. For example, if the TW value of given wheat is 57 Ib, we

should classify the grade to 3 based only on the TW.

33

2) Take the lowest grade from step 1 to be the final grade.
For example, a user gives the TW value and HDK value of wheat in a bin as 59.9
Ib and 1.2%, respectively. Based on the TW value, the grade is 2; based on 1the HDK

value, the grade is 5. Therefore, the final grade is the lower of 2 and 5, which is grade 5.

4.2.3 Discount Table

The Peavey Company (5301 West Channel Road, Catoosa, Oklahoma, 74015) has
a discount table effective as of June 2000. We took this discount table as a “‘standard”
discount table. The discount table can be modified and saved for future use (but should be
in the same format in the web application design) if a buying company has a different
discount table other than the Peavey Company.

The following is the “standard” discount table uscd in the web appiication. In this
table, negative values represent discount and positive values represent premium [Peavey

Company 2000]. All values arc per bushel value.

Table 4.2: Discount Table (Peavey Campany)

Index >- <: Cecnts
Grade | 1 ¢
2 2 -0.5
3 3 -3
4 4 -6
5 5 -9

sample -12
VESPRS S b ban bdwwds

‘Moisturce (%) 135 0

136 137 -2

13.8 14.0 -4

4.1 142 -6

FM (%)

TW (1b)

WOC (%)

|Dockage (%)

14;_! 14.5 -.8

14.6

Cach 025 -2

Ces MUk Evhahs AUBAEE
0 0

1.1 5.0

Each 0.5 -

5.1 10.0

Eac; " -5

seenis ineuies sasike

58.0 0

550 57.9

Exch 0.5 -

~

54.0 549

Fach 0.5 -4

FENSRE WwANA T sERaAS
5.0 0

5. 10.0

Each | -5

Seitve Fkikse RVOIIE
0 0

1.1 2.0 -2

2.1 3.0 -4

3.1 10.0

Fach .0'5 -2

*iutt*lkb.-ib L2 LA AYE]

35

For example, to get the discount related to moisture (moisture % 1s rounded to one
decimal point) of a bin of wheat, the table can be read as follows (others are similar):

Iy If moisture is less than or equal to 13 5%, the wheat is discounted by 0 cent

2)

3)

4)

d)

Damage (%)

3l

Each

10.1

Each

FRBRES R hdh

Protein (%) 12.0

1.5

per pound (no discount).

If moisture is either 13.6% or 13.7% (notice that only meisture percentage

value has only one decimal pomi), the wheat is discounted by 2 cents per

pound.

If moisture is between 13.8% and 14.0%. the wheal is discounted by 4 cents

per pound.

If moisture is either 14.1% or 14.2%, the wheat is discounted by 6 cents per

pound.

If the wheat’s moisture is between 14.3% and 14.5%, the wheat is discounted

by & cents per pound.

36

3.0

10.0
I
15.0
I

.4
10.4

g9

-2

T

6

6) If moisture js greatcr than or equals to 14.6%, then the wheat 15 discounted by
8 cents discount, plus extra 2 cents discount per 0.25% over 14.5%, per

pound.

4.2.4 Sketch of Wheat Bin Mix Optimization Web Application

The implementation of this web application was divided into two phases: Lscr
interface construction and back-end optimization algorithm implenientation.

In phase I, the user interface was constructed. When a user accesses the home
page of the web application, the web application prompts the user to input number of
bins. After the number of wheat bins arc selected from the drop-down mcnu, a bin
information web page is dsplayed, asking the user to provide wheat bin information,
which arc the values of some or all index of each wheat bin, such as bushels, moisture
and protein. The bin information can also be loaded from an existing fite in user’s locaf
disk.

A user can view thc standard grade table by cheking the “Grade Table” button.
and view the discount table by clicking the “Discount Table™ bunon. After the user
submits the wheat bin information, the grade and the discount of lhe wheat in cach bin
can be calculated by clicking the “Calculate Grade And Discount”™ bution. Based on the
values of the grade and discount, the user can sclect some of the wheat bins for optimal
blending by clicking the “Optimization” button. By clicking the “Calculale Rank” button,
the user can get the rank of the bins based on variables the user sclecied, such as

moisture, discount, protein, and test weight.

37

In phase]I, the back-end optimization algorithm was implemented using Java
language. The algorithm is a pattern search mecthod [Lewis 2000] proposed by Lewis,
Torczon, and Trosset. Since this algorithm performs a random search, it is not guaranteed
that the optimal point is the glubal optimal point. The uscr can perform the optimization
several times and record all plausible results. Then the user can sclect one best possible
blending option to perform the blending. The user’s final chojce may not be the “true™
minimum discount blending, since the user may choose the one that requires the
minimum steps of blending. For example, suppose the user has two options: the first
option requires 4 steps of blending with discount $11,010; the second option requires 3
steps of blending with discount $11,000. In terms of discount, $10 difference in $11,000

is negligible. Therefore, the user may select the second option.

4.2.5 A Limitation of The Optimization Algorithm

The back-end optimization algorithm — pattern search method is “characterized
by a serics of exploratory moves that consider the behavior of the objective function at a
pattern of points, all of which lie on a rational lattice”™ {Lewis 2000]. Due to the
characteristics of the pattern search method, we set the maximum number of candidate
wheat bins for optimization to be 5. This is ecquivalent to say that we arc searching in a
maximum 5 dimensional space. Otheswise, the speed of the optimization will be too slow
for practical use. [t is obvious that the myinimum number of wheat bins choscn for

optimization should be 2. Otherwise there is no biending occurs.

38

4.2.6 Expansion Capability

The wheat bin mix optimization application only applics to wheat. However, it
can also be used for other products. such as com, soybean, provided that we use the

related grade table and discount table.

4.3 User Interface

This web application consists of the following web pages and pop-up windows:
e Web pages
o Home
o Bin Information
o List Bin Information
o List Bin From A File
o Grade and Discount Calculation
e Pop-up Windows
o Optimization Setting
o Optimization Setting Ersor
o Optimization Result
o Rank Criteria Setting
o Rank
o Grade Table
© Discount Table
The function of each web page and pop-up window will be discussed in detail as

follows:

39

Home web page (Figure 4.1): displays a drop-down window for users to choose
the maximum number of candidate wheat bins for optimization. We limit the
minimun number to be 2 instead of 1, since there is no meamng to mix only |
candidate bin. We also limit the maximum number to be 30. llome wcb page
retrieves the number of wheat bin chosen by a user and passcs it to the Bin

Information web page.

TR sl
N ER ves Egaes Tods neg [v |
- -+ D] D Qeer Yreasies piwde 8 N U o K
ke) 11 (¥ et EOR ey 30 o] e ek ™

A
&=
Welcome Usa in mix entmization |

Hrer ymory Bepnp dr vy Nper? DRAXTINC

cainde ¥ I
x
) Dores ¥ ook twewen
wort] |10 @ 8 | M sneig e | Pttt 4, 00 [0 e P e (T g gt | i e | [P raam

Figure 4.1 Home Web Page

Bin Information web page (Figurc 4.2): displays a wheat-bin-information table
and asks users to provide wheat bin information. Users can apload wheat bin

information from an existing file or manually enter wheat bin information in the

wheat-bin-information table. If a user manually enters the wheat bin information,
the wheat bin information can be saved in a file to the user’s local hard disk for
future use. Users can calculate grade and discount for each wheat bin by clicking
the button “Calculate Grade & Discount™. In this web page. users can also view
the standard grade table and the standard discount table by clicking the “Grade
Table” button and “Discount Table™ button. If a user manually enters wheat bin
information, Bin Information web page retrieves those data and passes them to the

List Bin Information web page. Otherwise, it just passes the dircclory of a file

given by users to the List Bin From A File web page.

s oy smeadonw) o MiToselt Ak srserl § agiiees B i@l
Py IR Vesw Pt Toom fen
Jifni - = D A Psess DiFyeikes Preds J :_5- & = d&
kb L) tege e e s cldrdorrsd e T _'—_ﬁ (G Ly ™
! L (] L .‘.‘
< A My Ontinir st

i i O RS e |

Rcad dotn from o filc: !

| — puene, | = | i
OK Type your bin information:
Petal Maad Mrosk :
Binld Bans C Budely Bergirn Gess Paim BOMWIY T k= el = SRR uf Iu";.'{"h;)m :‘{ ?;f
e trh ()
17 i e el e e el e) e -~
- e = ‘e j
aam
| “heces a0 file 0o 2rve bia e .-ur.!'.-u.r Bremud
Swes [Caloulste prwie § droooa
i
|
.fp-_‘!. Tatle
1 .l'lfihl-‘ Tehiem
Lo SIS 1 e
) Corm ¥ Lot 0w
Eoat] |10 8B a ™| Epeeramt - | €t i levn 8. <6 i i o e e (... | B it pare | &Gl rrm

Figurc 4.2 Bin Information Web Page

4]

e List Bin Information web page (Figure 4.3): gets manually entered wheat bin
information passed from the Bin Information web page and calculate both grade
and discount for each wheat bin. List Bin Information web page also displays the
manually entered wheat bin information and their grades and discount in a table.
Users can do optimization by clicking the “Optimization™ button in this web page.
The standard grade table and discount table can also be viewed on this web page

by clicking the “CGrade Table™ button and the “Discount Table™ button.

T N T T T e addhzi
Phe B e Sgeude Pk Sep -
B =) 2 P | rewos b (| 0 O H b
s [v e e =) -r Pl v ™

, ‘ T - | e Tty e et W L P ey |

| - A My Ontimiotann

—-.J; r Ll el LV TR RN,
(radv aml Desvoust for rach bin:

Tats) - lamd bina .
a h Emimture TP Dodiege BN Y W TN Pasnge Bafort WO IO Fralrn
Banrh Huse Prsrsacat Cfude Bupdele ey ght s Jpacs Peisi Ay I TR T T TR a8
[T2)] [eeY Irry
prokl F R V T i 1
= Pk T TR o d aclien g H o 1

I 2™ o games i g

Ot 1ot pwt v |

L

i Torey

I Srendin \1.‘.'l"1ﬂ
Bue| D8 AT ittt | itets b v 0G0t it b b B gt | Bl s | TERIR was

Figure 4.3 List Bin Information Web Page

¢ List Bin Information From A File web page (Figure 4.4): gets the directory of a
file passed from the Bin Information web page and opens the fle. List Bin

formation From A File web page also retrieves the data (wheat bin information)

42

in that file and displays them in a table, and provides “Calculate Grade and

Discount”, “'Grade Table” and “Discount Table™ buttons.

PR oo s e £ e o it e e oy
P G few Tamde boa eep -
.-h...,_‘__;_?)_j_-,;-..- D i i St = R K1

Mnss [, - g P e P o] e |

'~ A Mix Ontirsiation

" e e L N
Your bty ynfersmticg arce,
Yot 2y Boed Binwm ’
Retvrars TR Baaags W XD WA SDM B Setect WX WE Hiwr
LLAZE meks Fresnsds -“'(l‘\" r 'ﬂl.l.", 'l'l'."; a5 |“ I. e |.~‘ w) el iwk (W) :.‘IJI al 3 > "y " ! :“J e
el y
eruld 130K
[
]
S 1 | k1A
[[
prewl] T
e mb A N
L it grows wet direeers |
.C. ak Tdl=
Qe e
wj e
W] D 7| Eeiegs v | St g G D T e e i B 3 e e Sl rme

Figure 4.4 List Bin Information From A File Web Page

Optimization Setting pop-up window (Figure 4.5): displays a table for
optimization settings. In this pop-up window, uscrs must type the onginal wheat
bin IDs (candidate bins) and the destination wheat bin 1Ds (put the mixed wheat
after optimization). The maximum number of candidate wheat bins chosen for
optimization is 5. Otherwise the speed of the optimization will be too slow for
practical use. The minimum number of wheat bins chosen for optimization 1s 2,
because it makes no sense if there is only 1 bin for blending. The number of the
original bin should equal to the number of the destination bin (just because of the
program design). If the two numbers are not equal, the “Optimization setting

error” pop-up window is displayed to show the error message.

43

S R) .-M

e R S, £ ; % 1
wlet v e] P Deen yrewos o J S d & L et R

[R — _d_m*'

! {73 Wﬂpflnmw_ﬂguuhhmﬂ

terade and P

g oy ool , 8 e & PR -
il aied

roblt 4. £
<«

+ pwoklT 1], B

prck 22 43, 4

£ grenl® 0.0

Fa— T Slagze Barey Palacrad fratlc

B preed] 4135 = I

! b el 1L O trigimal Fainil M rr-__ P B
Fortinmt imm Pl (f7 07 1 o s

ML L |

. st Tohle
S i i : —" |

.ﬂ\!-mml Twle
."sn‘-. Feferance »

] 1 B8 S~ R ysdtemies | Elinest e | @ Jumerinst | (5 cune wedse | Winme pe [et (008 L0

Figure 4.5 Optimization Setting Pop-up Window

o Optimization Setting Error pop-up window (Figure 4.6): displays the crror
message if one or more of the following crrors occur:
o A user selected zero or one wheat bin for optimization;
o The number of the original bin doesn't equal to the number of the
destination bin;
o Duplicate original wheat bin ID or destination wheat bin 1D;
Optimization Setting Error pop-up window also provides a “Redo” button so that

a user can redo the optimization setting.

44

¢ SIS

el 20 1 I8 * et] B F DT A K

i (o L e e R e e

A

/
- /"" ‘., gt = -
Lrade and D1

Binll| Emmw Dase
prekl 5,7
piob J2, T
provlf b0

% problT 5.8
e il 12, €
i prendh §0o0e

prench 0 08
presd e

Tytimazation

.'51'-1" Talle
.I"'.. oo Talle
.I’-..l. Bt e~

&) bome

presll $11%00

| O

|

e
B

JIE

b
el

W edrawa

L

W] N8 A D" St owes o | Koo v | CITTTESETINY koo teriror . [[o° nr vag [re—— L T

Figure 4.6 Optimization Setting Error Pop-Up Window

Optimization Result pop-up window (Figure 4.7): displays the optimization

result. The optimization result tells (the vser how to blend the wheat from each

original wheat bin into a destination wheat bin, i.c., how many bushels of wheat

should be taken out from cach one of the original wheat bin to a destinalion wheat

bin. The Optimization Result pop-up window also displays the total bushels,

discount, grade of each destination wheat bin as well as the total discount afiey the

blending. Optimization Result pop-up window provides a “Record Optimization

Result” button by which a uscr can save the optimization result to a file for later

use, Users can choose to append or overwrite the optimization result to a file by

“Append” or “Overwrite” button.

45

e SR N Wy T i ol |
o v D d) Ve Guitwore Gwas S 0L A K

L T —— Bt Q""l""‘"
=

Je AL ptmimins
‘mn’t-'muiﬂh e —— *"Qﬁ
ot AR .

| BiadD Tl P by |
|

pobt 10| Oprindiation Resulr:

Ly peteba (12 Ted
Popente M2 B pil few s fwaB Tt *";“'““m—u—w“‘;'m "&fmg;mﬂwm'
2 preb 7 FRANE T ppspo 3 o oo eeme [edie = 14 3E! !
"3 lprshl2 $1ama T FEM 0 [E30 07108 04300 C I -
prwls S0 O0 7 1,.;3;,-_.- AL O DR R 54 ¢ " o 10 GEg
}.n.h'_\) f0aq _-:_' MEECCEINGLE CERry e et et e e e e e PR R S L pOTeor:Ly T O et L e

1 prmal $7150

sl e Totd Do o {2000 M
Spameyiva Triect g e ba et uJ[S Bagmie |
.-:\.a. Takie & ppyrnd € Crmraes Facdd Opmizaioe: Mgt | o
. ey = -
T
a E—
igiorn ﬁum

LI P] L_JMH_JMIMGM#-.IMLH___JMM @D wxm

Figure 4.7 Optimization Result Pop-Up Window

Rank Criteria Setting pop-up window (Figurce 4.8). displays critcria for
calculating rank of each wheat bin. The criteria are discount, moisture, {est
weight, dockape and protein. Discount is selected by default.

Rank pop-up window (Figure 4.9): displays the rank value for each wheat bin
based an the user's criteria selection.

Grade Table pop-up window (Figure 4.10): displays the Federal Standard Grade
Table as shown in Table 4.1

Discount Table pop-up window (Figure 4.11): displays the discount table from

Peavey Company, as shown in Table 2.

m Dkl oy W B Famd win

Arall Kans Bomrsand &0 wln [+ TR | VI]

peand T, DE o
T peokd)0 T IO
a1 T4 57E, i
rtmbl” {1 B (a2

cresth fan.
(o SU Th
B premll 115w
"

1
Y oprewdd b ge, W
L
r

a1 30 0

]

.f;‘.x-— Tukl=
.l.- ot P uls
L PRIOT,

e r————— R .\J

g S PP S T T

zgg.ua-uwm-—m uﬂih_‘-n

Figure 4.8 Rank Criteria Setting Pop-Up Window

(racde upd Jiscoun?

Hrwld Hesd Diweswsd Cpmda L e
[}
I eredn g rmuan 1
2 e 3o twign 3 | Fin Rerk defaraves
Jooprdlle dq 2w nm 2 |
. IR LY] D} eiangarl [| Balargre boslrure ™ \LJ
- B Bintd | EEY Wi ulur Mank Valur
foped 24000) i A 4
t preal® jo hr " & 1 l' . i Yo
: w
. Prrmag o o 4 = & L) o 2
a 2 m e i Yaw
I opresl] JIOR N 2
1 i W v I ™o
» pree;p il] !
. k XTI i T B wi i
T K L 1. ¥ (S}
N " 1 < VT
- Ve - .
®... .. ; : * '
' i v f |] i 1 -

.Lll-a.u‘ Tkl = : —
.rn.m Frelmimn o

L

it = -
B 70 #E D) m-mm_wﬁ?»:‘mmn

Figure 4.9 Rank Pop-Up Window

47

(i L emg- o e SRCL

T yesir 117
RIS
A pual?d)
[RTTRS FIb

Al
T prenidn
i

preadl 4108
L R

ratt

!

LNLT BLTE j H

L .-
.Lrbxlatl' |
Q. i

@ i

Framl i 10 €]

fry Ontim

Faald Veas n...i

Crudu I8 (18) HOL (%) Ommope (8) 70 (4} SR (X} Defesc (X}

i 5 L ’ iy o]
. FE] 1 I E
K [(TR Y . 11 b E
4 LT} 1 Hl] i i H
L L . iF f X R

Figure 4.10 Grade Table Pop-Up Window

] 3 (st 7 b - >

Heg y1,vw Fmiua Fom oA
(rade 15
adv and Disc Fowi Qiva Faiie’ Frealus
WAE Weem Biwemet Yariokle > 4 Cembu
ke 1 [

! ok, 3 o A 0ot
prond 0 T i) & !
(R L I R T I 4 -

< prelt 3] EA O ; : N
pros2 5 sy va i i

tooprendl kv y dereme v
e re3 B Bosywage 16! 1 e
preval (105 M0 PP -

4 pre 10 m f 1 ¥

Ot Lna g 8 L0 il

e T
® <

Sewax [l it Tt &

® Pevias srimer banAS
L SU S] Tt 1

& bt &
Nal Telersr-e Pawon '

Biscaunt Table Haced Gn Penvey Cospany

! oamt 1t gy 2304 Grade And Grade Requirements For Wheat

e (83
1

b

1w
o

1a

o)

wiars W WL Fininl
L8

ol

s I o e e e ; I

hat

1 [l

———————

m ———— _-. I - S ———— | .F - - b
B} 1883 5 Ol | Mwstes] Goumiin | 8 hatreii S i e W | St] (S0 ot

Figure 4.11 Discount Table Pop-Up Window

48

i Bolege PO

YT Frrinis

(up ina (L2}

]

4.4 Inside of Wheat Bin Mix Optimization Web Application

In this section, we first present the architecture of wheat bin mix optimization web
application and tools used to build this web application. Then we introduce the basic idea

to implement the pattern search optimization algorithm,

4.4,1 Architecture

Figure 4.12 shows the architecture of wheat bin mix optimization web
application.
Briefly, the elements shown i Figure 4.12 are:
o The client component
The cltent component is a web browser that dispiays the application pages.
¢ The service component, Java Server Pages (JSP), includes:
© A HomePage JSP page
o A Binlnformation JSP page
c A ListBinInfo JSP pagc
¢ A ReadBinFromFile JSP pagc
o A ListBinFromFile JSP page
o A OptiSetting JSP page
o A Optimization JSP page
o A CriterialSet JSP page
© A GetRank JSP page
© A Discount ISP page

© A GradeTable JSP page

——b‘ ListBinnlo jsp

ReazdBinbnio jap |

v

ListDruTFromFile ysp |

Binlnlomyivon 1sp

s
Web
Page
{_ |
{ HTTP Reguests
i _r
Web Client

Figure 4.12 The Architecture of Wheat Bin Mix Optimization Web Applicalion

Each service component is used to crecate different user interface and implement
different functions. We already introduced in detail about the user interface and functions
of wheat bin mix optimization web application in section 4.3. The corresponding

relationship between each service component and cach user interface is listed in Table

4.3

T X
Vicw Grude

Table and
Lhiscount Table

A 4

| DpnScthing.jsp 4—

Oplimizaiion.)sp ‘

m CrteriaScl.jsp

—

GelRank jsp

Ask the number I Discounl jsp

of wh¢al bins for

opliml uuon

HomcPage .jsp

(nzldeTableysp

Table 4.3: Mapping Each Service Component to Each User Interface

Service Component

Corresponding User lnterface and Function

HomePage jsp

Home web Page (section 4.3)

Binlnformation.jsp

Bin Information web page (scction 4.3)

ListBinInfo.jsp

List Bin Information web page (section 4.3)

ReadBinFromFile jsp

No corresponding user interface. [t is just used to open a file and

pass the data of a file to the ListBinFromFile JSP page.

ListBinFromFile jsp

List Bin Information From A File web page

OptiSetting)sp

Optimization Setting pop-up window (section 4.3)

Optimization.jsp Optimization Result pop-up window (section 4.3)

CriteriaSet.jsp Rank Criteria Set pop-up window (section 4.3)
GetRank.jsp Rank pop-up window (section 4.3)
Discount.jsp Discount Table pop-up window (section 4.3)

GradeTable.jsp

Grade Table pop-up window (section 4.3)

4.4.2 Tools Used

The database server used in the web application is Sun PointBase 4.2 (Sun

Microsystem 2002]. Database server is used to support database in a web application.

There are two databascs created for wheat bin mix optimization wcb application. One is

the standard wheat grade table [Federal Grain Inspection Service 2002] provided by the

U.S. Department of Agriculture. The other is the discount table [Peavey Company 2000]

provided by the Peavey Company.

5]

Tomecat 4.0 [Sun Microsystem 2002}, a web application container, makes the

wheat bin mix optimization web application accessible from the web,

4.4.3 Pattern Search Optimization Algorithm

The back-end optimization algenithm--Pattern Search algorithm, is implemented
in Java Janguage. For details about the Pattern Search algorithm, sce [Lewis 2000]. The
pattern search algorithm is implemented according the following steps (for simplicity, we
assume there 1s only one variable x in the objective function):

— Inittalization: initiahize x, to random value.
- Search and Poll: ar iteration x,, cvaluate thc objective function at a finite

number of points on a mesh to find one that yiclds the lowest objective function
value.

— Parameter Update: refine the mesh, setting x,,, : x, . do search step again.

— Stop: until no non-increasing function value is found.

In Chapter 5, we will discuss how to build the proposed server-side security

model described in Chapter 3 into wheat bin mix optimization web application.

CHAPTER 5
Security Model in Wheat Bin Mix Optimization Web

Application

In Chapter 4, we presented the architecture of the *bare” wheat bin mix
optimization web application, which was not protected by any security measurcs.
Suppose wheat bin mix optimization web application is a member-only wcb application,
i.e., each user of this web application must have the membership of wheat bin mix
optimization web site. How can we prevent unauthenticated users from accessing this
web apptication? How can we prevent unauthorized users from changing the default
grade table or discount table? The answer to those questions is to build the server-side
security model proposed in Chapter 3 into the “bare” wheat bin mix optimization web
application. We call the resulting web application as protected wheat bin mix
optimization web application.

In this chapter, we will demonstrate how the server-side security model can be
implemented by building this model into wheat bin mix optimization web application
presented in Chapter 4. We will discuss in detail about how to implement cach sccunty

layer of the server-side security model.

5.1 Architecture

'The architecture of the protected wheat bin mix optimization web application is

shown n Figurc 5.1.

53

Web Exngsp

il T (€

Within a Session Log Out
=== i e (
i 1 !
i |
Web C“ent | ListRinlntoisp)
HTTP l Requusls {)
v : ReadBininfo gsp I[
) o | '
\/. BinWchSite jsp I @ & . 'I
/: Sign In Register | LisiBinFromFile jsp {
| i
SclConkics.)sp ———— { BinInformarion 15p (
") | {
(53C0 v | BNTT il
_/
. } f-“\ ¢ \. N .)
CusiRegistisp ey i .]) View Grade OpOScumg.)sp 1
L. Y J 7 Table und
") . | s Prcaunt Optimzation jsp |
= /,\ | Mol |
Lror2)sp ('-) : Critenaseysp :
|| Ask the number L GetRank jsp ‘ :
Errorl js RegistLisplay.ysp | of wheat bins for |
i oplimjzation |
v(OGOV i |
| [
P Logingsp MustGwve jsp ! |
— : Discount sp I Grade Tuble 3p ‘ :
s)y o) '
_ Jy || SITREE I T
Check jsp RcdoRegist §sp) |
~) EdaDisTable)sp i FawGimdeTable 1sp J I
-~ {
‘L_JL ' & 1) { i = 1
LoyinError ysp ; HomePage .jspJ :
) l
| |
. L] r '
| |
NoChance jsp | !
‘ | |
| !
! ’
S s i SN]

Figure 5.1 The Architecture of Protected Wheat Bin Mix Optimization Web

Application

In Figure 5.1, number 1 10 11 with cir¢cles 1s used to denote the proposed eleven

sceurity layers in Chapter 3 respectively:

e Layer |--Sanitizing Browser Inputs

54

e [ayer 2--Cookies Support Detector

e Layer 3--Authentication

o Layer4--Set Digita} Signed Temporary Cookies

» Layer 5-- URL Rewriting

e Layer 6--Input Web Page Domain Checking

e [ayer 7--Rote Based Access Conirol

o [ayer 8--Hidden Form Ficld

» [ayer 9--Deploy Secure Socket Layer as Needed

e Layer 10-- Scnsitive Web Page Caching Prevention

e Layer 11--Killing cookies and Invalidating Session

Compare to the architecture of the “bare” wheat bin mix optimization wceb

application (Figure 4.12), some new web pages and pop-up windows are added in Figure
5.1. Those new service components are: “BinWebSite”, “*SetCockies”, “TestCaokies™.
“CustRegist”, "“Errorl”, “Error2”, “RepstDisplay”, “Login™, “MustGivc”, “Check”,
“RedoRegist”, “LoginError”, “NoChance”, “EditDisTable”, “EditGradeTable”, and
“Exit” web pages. Those web pages are written in Java Server Pages (JSP). We will

introduce those service components in detail in section 5.2.

5.2 New Service Components

* BinWebSite Web Page (Figure 5.2)
This page is the home page of the protected wheat bin mix optimization web
application. Each time a user access the wheat bin mix optimization web site,

this page is the first web page sent to the user. It gives users several options.

S5

These operations arc “'Sign In”, “Register”, “Intraduction”, “Optimization”,
*Objective”, and “Contact Us”. If a user is a member of this web site, he or
she may access this web site by clicking the “Sign In” button. If a user is nat a
member of this web site, he or she can click the “Register” button to register
first. The “Introduction” button provides a bricf introduction to the wheat bin
mix optimization web application. The “Optimization” bufton pgives a
description of the optimization algorithm. The “Objective” button describes

the objectives of wheat bin mix optimization web application. If users have

3 Wheat Bin Mix HomeSite - Microsoft Internet Explorer
Fle Edit View Favorites Tools Help

™

_ © ¢ = # 0 , Search i Favorites W Media & v LT3 M B
Adidress. & hitp: [flocalhost-8081/BirWehSite fsp < E1Go

s T

Synuty a mantee) Deas L9 I |

B et

dfor.. [RPoi.. Awh. 0.8 2:17pH

Figure 5.2 BinWebSite Web Page
any suggestions or problems about the wheat bjn mix optimization web
application, they can send email to wheat bin mix optimization wcb sitc by

pressing “Contract Us” button.

56

SetCookies Web Page (Figure 5.3)

Afier a user clicks the “Sign In” button on the “BinWebSite” page, the server
side sends “SetCookies™ page to the user. This page provides users a bufton
“Cookies Support Detector” through which the server side can test whether

the user's browser (the client’s side) supports cookies.

3 hteps://10. 120 5.95: 8443 /setCookies. jsp - Microsoft Interne... = [0 [X
File Edit View Favorites TYools Help ir
DAk - 2 =@ 3) Seaxn JrFavorites Widedia & v 4 B - KL 4

‘ddress | & hitps: [/10.120.5.95: 844 3/setCocioes Jsp ¥ o b

i iAW Ii" BAILILEQNNIN

[ties o vt

S W Intaret

Dhip... S 22 11232 AN

Figure 5.3 SctCookics Web Page

TestCookies Web Page (Figure 5.4)
After a user clicks the “Cookies Support Detector™ button in the “SetCookics™
page, the server side detects whether the user's browser supports ¢ooktes. If

cookies are supported, the server side sends the TestCookies page to the user

57

as shown in Figure 5.4. Otherwise, the server side sends the Error]l page

{Figure 5.6) to the user.

3 JSP Page - Microsoft Internet Explorer

File &dt View Favorites Yook Help 2
(D Back - = & Scarch . Favorites & Media € (0w X5
Addeess @ihtps:/(10.126 5.95: 849 /oestCookiasjsp - BGo ks "

&S OIIA ¥ puliii AN

Your browser suppol cookles, We will use cookies to mainlain session
Inforaation.

|—] a.:.-; |

il ey 2 W Werrat
Yistart ® "% Wihe. [.3Mv ser. Bmi. m3r v Bxp. L0 1150AM

Figure 5.4 TestCookies Wcb Page

o Error2 Web Page (Figure 5.5)
[f a uscr’s browser suppons cookies, but the server side can’t get the exact
cookies it sent 1o the user's browser, then the server side sends the Error2 JSP
page to the user.

s Errorl Web Page (Figure 5.6)
If cookies are not supported or cookies are disabled in a uscr’'s browser, the
server side sends the Errorl JSP page to the user. This page provides uscrs a
button “1 Agree” By clicking this button, users may agree the scrver side to

use session object to maintain session state.

S8

2JSP Page - Microsoft Internet Exploser
Fim Bt Wiew Favgrites Took Help

< @ Soarch 1 Pevorites Wit @ LI G B - 5B
iets 8 et bt SOS L/ BTOrL

Soury, we ¢an nol Hind the
ragkies we setl

Cnan

- 0 1

Figure 5.5 Error2 Web Page

2 Cooxl21 nol Support o1 disshled Page - Microsult Intermet kxploter
Fhe B View Rovoditod

el X
Toels Melp B
O bk ol G, ek [laoroec WHem & v L@ Ls
» l-"H‘ﬂ’."l_‘_rf'_ﬂ_l"_l_ﬁl'.ﬂmlPl'

=/ /77 *dr HHRILGWNWN

Your brgwser dowss™| sepport
1opkjes or cookies ae disablr!

We may ine sessaon objecl
3 o manian your sexcionl

Efumte:,. Wlnmie * 2ALoues

Figure 5.6 Errorl Web Page

59

Login Web Page (Figure 5.7)

If a user’s browser supports cookies, the server side scrds TcstCookies page
to the user as shown in Figure 5.4, If cookies are not supported in the user’s
browser, the server side sends the Error] page to the user as shown in Figure
5.6. After the user clicks the “I Agree” button provided in the TestCookies

page of in the Errorl page. the server side sends the Lopin page to the user.

ALc3 In - Microsoft Internet Explorer -2
Fie fdit Yww Fesmites Tenk Hain F
&1°1 L4 L, tswn | fyeontes SHele - A s

whime. /10020 595 ewW)logm yo premon d<EXRNGEMOMITTIAGSICHLIY LR

ird BiA !b"’q;'.-l'..‘q.m".'\""\".

Figure 5.7 Login Web Page

Check Web Page (Figure 5.8)
After a user submits uscmame and password in the Login page, the server side
compares the user’s input usernamc and password with records in ifs database.

[f the username / password pair is correct, the server side sends thc Check

60

page to the user. This page provides users “Do Optimization” button. By
clicking this button, the server side sends Home web page (Chapter 4) to

users,

BAuthen Page - Microsoft Internet Explorer - I
Fie B4t View Favorles Tool Help ¥
O ek - i # 5 . Seaech rFoverites o Wedis) T 5 & LE

v) 10520505 M43/ Creck jop) e - 0O Linis =
| i Ogeeneman |

Figure 5.8 Check Web Page

LoginError Web Page (Figure 5.9)

[f a user submits incorrect username or password, the server side sends the
LoginError page to the user. A maximum of three times retry is allowed.
NoChance Web Page (Figure 5.10)

If a user provides the incorrect username / password pair for more than three

times, the server side sends the NoChance page to the user.

61

ALogin error Page - Microsoft Intarnet Explorer b 4
Fle Odt View Povories Took Meb >
O Bark - O St) Facodtm o Media @ (1= Ls

s e (710 1205 68 3443 Comck fap, dnE ER&0LHT77 1462 SICR19E - Qs

Login Fatled, Meiry!

-

& PorirBac *Forte b

R RSt Vies Fovoedws Tonols Weip
Qbed -) = 46 Someth | Favormmn of thalia £ - L. W - X &
s A) ralbent G0R) MC0anow Jap)) = OGs

! Y N vy Minisaalinesy

You huve no chance to relry!

R Pk * Forte or Wingn Fa T 241 m

Figure 5.10 NoChance Web Page

62

CustRegist Web Page (Figure S.11)

If a user is not a member of the wheat bin mix optimization web site, he or she
needs to register before accessing wheat bin mix optimization web
application. The CustRegist page provides users a registration form. A user

can click the “Submit” button on this page to submit registration informmation.

ARegisloation pagn - Mictawlt intemeat Eaplorer - 2N

i B wn Sgapries Yook Feip

ST A @) dewn S Faite e § v
e 0 E29A 1 B i

oy remsanLrd it

LANT bkl
TTREE] NOMTREE
W T

A7 AN Tl T

T s Le lamagin k1t TEE
T %

D s ot e\ "7 e xw Do VIR Y

9 ™ Thesdat

gy thorm b 3. R Pl

Figurc 5.11 CustRegist Web Page

RegistDisplay Web Page (Figure 5.12)
After a user submits registration information in the CustRegist page, the

scrver side sends the RegistDisplay page to thce user. This page displays users’

registration information.

MustGive Web Page (Figure 5.13)

63

[n the registradon form provided in the CustRegist page, usemame and

password are the required fields to fill. The other items are optional. If a vser
doesn’t provide username or password, the server side sends the MustGive

page to the user. By pressing the “Go Back To Register” button, a user can

redo registration.

e)
o - E Gamen | et et @ 0= 'S
T I LG Y G gy oy .

Tighael & ' vewsoul 3 oUPmN

Vi i e eurem fasm Gy

Urha L P e v . ~
R e T

warrerrd mml b oeieen'

Figure 5.13 MustGive Web Papge

64

» RedoRegist Web Page (Figure 5.14)
The sccurity layer 1 “Sanitizing Browser Inputs™ (Chapter 3, section 3.3.2)
of the proposed secunity model is embedded in the RedoRegist page. If a
user's inputs contain any invalid characters such as !, $, etc (Chapter 2.
section 2.9), the server side detects those character from the user’s input and
sends RedoRegist page to the user. We will explain in detail about how to

implement “Sanitizing Browser Input” later in section 5.3.2.

ARetype the registration mformation - Microsoft Internet Explorer

Fim B Vaw favortim Toclx Fap
O b < & Towet | Pevieien of Mantin . L&
R 4T LD % 118 e ey i wpter g

Yrroe?

§ st gt ey colalin e v ey ol U Sl @ fe wbn compaseed by

e YT B sty pum iy 3 OaFTER

Figure 5.14 RedoRegist Web Pape

e EditDisTable Pop-up Window (Figure 5.15)
The security Jayer 7 “Role Based Access Control” (Chapter 3, section 3.3.2)

of the proposed securty model is embedded in the EditDisTable pop-up

window. If a user plays a role (Chapter 2, section 2.4) as a Systcm
Administrator or a Web Application Designer, afier he logs in, the server side
gets his role from the back-end suppon database and sends the Discount Table
pop-up window (Chapter 4) with an “Edit” button. By pressing the “Edit”
button, the user can edit discount table in the EditDisTable pop-up window.
We will explain how to implement the Role Based Access Control technique

in wheat bin mix optimization web application later in section 5.3.2.

IDiscount Table - Microsoft Internst Explorer

Figure 5.15 EditDisTable Pop-up Window

EditGradeTable Pop-up Window (Figurc 5.16)
The proposed security layer 7 “Role Based Access Control™ (Chapter 3,

section 3.3.2) is also embedded in the EditGradeTable pop-up window. If a

user plays a role (Chapter 2, section 2.4) as a System Admunistrator or a Web
Application Designer, after he logs in, the ®rver side gets his role from the
back-end support database and sends the Grade Table pop-up window
(Chapter 4) with an “Edit” button. By pressing the “Edit” button, the user can

edit grade table in the EditGradeTable pop-up window.

3AGrade Table + Microsoft Internet Explorer

B0, 2204 Grade And Grade Reguiremenis For Wheat

Braae TR (1Rl N (N pamwpe e W OW e ful pegess A WY R

T YT YT

Figure 5.16 EditGradeTable Pop-up Window

5.3 Server Side Security Model Implementation

5.3.1 Defining Input Web Page Domain

Based on the architecture of the protected wheat bin mix optimization web

application (Figure 5.1), we apply the “Input Web Page Domain Checking” technique

67

proposed in Chapter 3. We now definz input web page domain for each web page of the

protected wheat bin mix optimization web application as following (Table 5.1):

Table 5.1: Tnput Web Page Domain of Each Web Page

Web page input Web Poge Domalin
BinWebSite {Null, Lxit)
SctCookics {BinWcbSile)
TestCookies - {SctCookics}
CustRegist {BinWebSite, RedoRegist, MustGive}
Errort { TestCooktes}
Errar2 ! { TestCookies}
RegistDisplay {CustRegist}
_ MustGive - {RegistDisplay § B
RedoRegist {RepisiDisplay §
[Login . -_(_'I'csl(fookics. Errorl, LoginError -
f_ Cheek - {Login}
Loginf:lrror {Cheek)
NoChance {Loginllx:rorl
HomePage {Check, LisiBinlnfo} o
B Binlnformetion {HomcPage)
ListBinInfo { BinInformation)
ReadBinlnfo {RBinInformation}
"~ Lis\BinFromFite ' " (ReadBinlnfo}

68

5.3.2 Implementation

In this section, we will discuss how to build the eleven sccurity layers (Chapter 3)
of the proposed scrver-side security model into wheat bin mix optimization web

application.

Layer 1: Sanitizing Browser Inputs

As shown in Figure 5.1, The Sanitizing Browser Input layer is built into the
RepgistDisplay (Section 5.2) web page. When a user clicks the “Submit™ button in the
CustRegist page (Section 5.2) to submit registration information, in order to prevent the
user using special characters such as ! and & or embedding malicious HTML tags in the
Browser Inputs (Chapter 2, Section 2.9) to do cross-site scripting (Chapter 2, Section
2.9), the server side detects those malicious characters by comparing the Bowser Inputs
with a list of server-side defined valid characters. In the protected wheat bin mix
optimization web application design, the list of server-side defined valid characters is
characters a-z, A-Z and 0-9. If any of characters other than server-sidc defined valid
characters exists, the server side sends the RedoRegist page (Section 3.2) to the vser. The

JSP code implementing “Sanitizing Browser Inputs” is listed in Appendix.

Layer 2; Cookies Support Detector

As shown in Figure 5.1, the Cookies Support Detector layer is built into both
SetCookies (Section 5.2) page and TestCookies (Section 5.2) page. Wh(én a user clicks
the “Sign [n™ button in BinWebSite page (Section 5.2), the server side sends the
SetCookics page to the user and sets test cookies to the user’s browser. The JSP code to

setting cookies to the client's web browser is listed in Appendix. The SetCookics page

69

provides a “‘Cookies Support Detector” button to the user. By pressing this button, the
user sends “Cookics Support Detector” request to the sever side, the server side then gets
cookies it sets to the user’s browser and tests the cookies’ length. If no cookies exist (In
Java programming, cookies are String data type objects since cookies are actually string
of characters. Therefore, cookies do not exist means that the value of the String data type
object is null), indicating the user’s browser doesn’t support cookies or the user disables
cookies, the server side scnds the Error] page (Section 5.2) to inform the user that it uses
URL rewriting and session objects to maintain session status without cookies. [f the
cookies’ length is greater than zero, indicating the user’s browser supports cookics, the
server side then tests the cookies’ consistency, which means that the server side compares
the cookies fetched from the user’s browser with the cookies sets to the usey’s browser. If
the cookies fetched from the user’s browser exactly match the cookies the server side sets
to the vser’s web browser in the SetCookies page, the server side then sends the Login
page (Section 5.2) to the user. Otherwise, the server side sends the Error2 page (Section
5.2) 1o the user. The JSP code testing cookies fetched from the client’s web browser is

listed in Appcndix.

Laver 3: Authentication

As shown in Figure 5.1, the authentication layer is built into the Login page
(Section 5.2). We use username/password authentication to authenticate users. When a
user clicks the “Submit” button in the Login page, the usemnsme and pass;vord he or she
entered is sent 1o the server side. The server side then checks the username and password
from the back-end support database. In this application, PointBase 4.2 within Forte for

JAVA 4.0 package [Sun Microsystem 2002] is used to create the back-cnd support

70

database. If the correct username and password can be found from the databasc, the
server side then sends the Check page (Section 5.2) to the user. By pressing the “Do
Optimization” button in the Check page, then the user can perform wheat bin mix
optimization. If a user’s usemame or password is incorrect. the server side sends the
LoginError page (Section 5.2) to the user. By clicking the back arrow in the LoginError
page, the user can redo login procedure. A user has at most three times to retry login. If a
user can't provide the correct usemame and password, the serve side blocks the user’s
access and sends the NoChance page to the user. The JSP code implementing the

“username and password” authentication is listed i Appendix.

Layer 4: Setting Temporary Digital Signed Cookies

As shown in Figure 5.1, the Setting Temporary Digital Signed Cookies layer is
built into the Check page (Section 5.2).

To set digital signed cookies to the client’s browser, the server side:

I. Uses Digital Signature Algorithm (Chapter 2) to gencrate a key pair—pnvate key
and public key.

2. Uses Secure Hash Algorithm (Chapter 2) to generate message digest for a user’s
role information.

3. Uses the mcssage digest and the privatc key generated in step | and 2 as input
parameters to the Digital Signature Algonthm to generate the digital signature for
the user’s role information and stores it into cookies.

To verify digital signed cookies, the server side:
4, Uses Secure Hash Algonthm to re-generate message digest for a user's role

information,

71

5. Retrieves the digital signature (digital signed role information) from the client's
browser.

6. Uses retrieved digital signature from step S. The digital signature algorithm inputs
are the public key generated in step | and the message digest generated in step 4.
Digital signature algorithm uses the public key to decrypt he digital signature to
get a message digest and compare it with the message digest gencrated in step 4.
The digital stgnature algorithm retums a Boolean value. If both message digests
are the same, the digital signature algorithm returns true as comparison result.
Otherwise, it retumns false.

[f the digital signature algorithm returns true, the server side processes the client’s
access. Otherwise, the server side denies the client’s access. The procedure for signature

generation and signature verification is shown in Figure 5.17 and Figure 5.18.

Role Information

l

‘ Secure Hash Algonthm (SHA-1)

!

v

Message Digest for Role Information Private Key

I Digital Signaturc Algorithm (DSA)

Digital Signature {or Role Information

Figure 5.17 Digital Signature Generation

Original Client’s Role Information

v

’7 Secure Hash Algorithm (SHA-1)

Digital Signature from l Public Ke
The Client's Browser Message Digest for Original Rolc Y

Information
v v L

\ Digital Signature Algorithm (DSA)

True l False

Signature [s Signed Signature [s Not
By The Server Side Signed By The Server
Side

Figure 5.18 Digiral Signature Verification

The JSP codes to set and get digital signed cookies o and {rom a user’s browser

and the JAVA class implementing digital signature ts listed in Appendix.

Layer 5: URL Rewriting

As shown in Figure 5.1, the URL rewriting Jayer is built into the Check page
(Section 5.2). After a uscr successfully logs in, a new session begins. [f the client’s
browser doesn’t support cookies. the server side rewnies the Universal Resource
[Location (URL) with session 1D and stores the session 1D into a scssion objcét.
An HTTP request is made up of the URL followed optionally by a query siring
containing pairs of parameters and valucs. For example, a HTTP request might be:

https /710.120.5.95:8443/Login.jsp;jsessionid=747795D4CIS6 E03ISE5D033730252C28.

73

[n this example, the server is 10./20.5.95, the server resource is Loginjsp, and the
session 1D is 747795D4CI98KE03S85D033730252C288. Before URL rewriting, the URL
was hups://10.120.5.95:8443/Loginjsp. After URL rewriting, the URL bhecomes:

Bigs 7 10120.5.95:8443/) opin japnjsesstonid=747795D4CIB8EED3S85D033730252C28.

Before the server side sends responscs to the client’s side, it compares the session 1D
passed by the request page with the session LD stored in the session object. If they match,
the server side processes the client’s request. Otherwise, the server side denies the

client’s request. The JSP code implementing URL rewriting is Jisted in Appendix.

Layer 6: Input Web Page Domain Checking

As shown in Figure 5.1, the Input Web Page Domain Checking layer is built into
every web page. Each time a user accesses Wheat Bin Mix Optimization web site, to
ensure the correct web applicanon workflow, the server side needs to da input web page
domain checking as discussed in Chapter 3. The input web page domain for each web
page of wheat bin mix optimization web application is shown in Table 5.1. For example,
the input web page domain for HomePage 15 {Check, ListBinlnfo} as defined in Table
5.1. Before the server side sends the HomePage to the chient’s side, it checks whcther a
request comes from the Check page or the ListBinlnfo page. If the request comes from
one of those two pages, the server side sends the HomePage to the client’s side.
Otherwise, it denies the client’s request. The JSP code implementing Input Web Page

Domain Checking is listed in Appendix.

74

Layer 7: Role-Based Access Control

As shown in Figure 5.1, The Role-Based Access Control layer is built into the
Discount (Chapter 4) and GradeTable (Chapter 4) pop-up windows. We assume that only
System Administrators and Web Application Designers of the Wheat Bin Mix
Optimization wcb site have the privilege to edit the grade and discount table. If a user
sends the request for viewing the grade table or discount table to thc server side, the
server side first checks the user’s role. If the user is a system administrator or web
application designer of the Wheat Bin Mix Optimization web site, the server side sends
the Discount and GradeTable pop-up window with an “Edit” bution to the user.
Otherwise, it just sends the Discount and GradTable pop-up window without an “Edit™

button. The JSP code implementing Role-Based Access Control is listed in Appendix.

Layer 8: Hidden Form Field

The Hidden Form Field layer is built into cach web page that passes parameters.
Using Jlidden Form Field, the parameters passed by web pages are not displayed by the
client’s web browser. For example, in the Login page (Section 5.2}, after 2 user clicks the
“Submit™ button, the uscrmame and password are sent to the server side. Suppose the
user’s username js “Jack™ and password 1s 12345, Withour using hidden form ficld, the
vsername and password information is displayed by a weh browser that may look like the
foltowing: Aups://10.120.5.95:8443/Login jsp?username Jack?password=12345.

Obviously, passing parameters without using hidden form {icld tn web pages is

tnsecure. The JSP code implementing Hidden Form Field is Jisted in Appendix.

75

Layer 9: Deploying Secure Socket Layer As Needed

Since Secure Socket Layer (SSL) dramatically affects the speed at whuch users
can access information, only sensitive web pages containing users’ private information
such as Login page and CustRegist page deploy SSL in the protected wheat bin mix
optimization web application. In this application, we deploy Tomcat 4.0 [Apache
Software Foundation 2003] as a web container. Tomcat 4.0 1s a tool to make wheat bin
mix optimization web application accessible from the web. Details about how to
configure SSL supporting on Tomcat 4.0 arc discusscd in [Apache Software Foundation

2003).

Layer 10: Sensitive Web Page Caching Prevention
Sensitive web pages such as Login page, CustRegist page are prevented from
being cached by the client’s web browser. The JSP code implementing the sensitive web

page caching prevention is lisied in Appendix.

Layer 11--Killing cookies and Invalid Session

After a user clicks the “Exit” icon in each web page, the server side acknowledges
that the current session is over and kills all cookics (sets cookics’ lifetime to be zero) and
sets the current session to be invalid. The JSP code implementing killing cookies and

invalidating session is listed in Appendix.

76

CHAPTER 6

SUMMARY AND FUTURE WORK

6.1 Summary

This work proposed two techniques: Input Web Page Domain Checking and
Cookies Support Detector. Input Web Page Domain Checking is a technique used to
ensure a correct web application workflow, which means the server side sends each web
page to the clicnt side following a pariicular order. In Input Web Page Domain Checking,
we first need to draw the architecture of a wcb application to reflect the application
workflow. Secondly, we need to define the input web page domain for cach web page
based on the application workflow. Lastly, we do input web page domain checking
according to the input web page domain for each web page.

Cookies Support Detector is a technique used to test whether the client’s web
browser supports cookics. In Cookies Support Detector technique, the server side sets
cooktes to the client’s web browser then it gets the cookies from the client’s web browser
and tests the cookies’ length. 1f the cookies length is greater than zero, the client’s web
browser supports cookies. Otherwise, the client’s web browser doesn’t support cookies or
the client disables cookies.

This study also proposed a server side security model for web applications. The
proposed security model consists of eleven security layers. The eleven security layers
contains the proposed Input Web Page Domain Checking techniguc, the proposed

Cookies Support Detector technique, and some exisling techniques such as Sanitizing

77

Browser Inputs technique, Role-Based Access Control technique, and Setuing Tcmporary
Digital Siénecl Cookies technique. The Setting Temporary Digital Signed Cookies
technique is modified from the “Role-Based Access Control Using Secure Cookies”
technique proposed in (Park 2001]. In the modified Setting Temporary Digital Signed
cookies technique, cookies properties arc changed from persistent cookies to temporary
cookies. Temporary cookies have two advantages. First, it is only stored in the client’s
wcb browser's memory and is killed after a sesston is over so it doesn't waste the storage
of the client’s hard disk. Second, it is more secure than persistent cookijes since a user
cannot retrieve the contents of a web page after a session 1s over.

To demonstrate the proposed sever side security model, a Wheat Bin Mix
Optimization web application is developed. The server side security model 1s built 1nto

the web application.

6.2 Future Work

The proposed server-side security mode] can be built into any web applications to
protect sensitive information because this model sets efeven security layers between the
clicnt’s requests and the server side’s responses. The proposed sccurity model combines
all advantages of currently most widely uscd secure measures with two proposed new
techniques. However, since there are always new inknown types of attack, there is no
guarantee to establish a “complete secure system”. Protectors will propose and design
more secure Systems. At the same time, attacks will continue their efforts for breaking
existing secure system. The proposed sever-side security model needs to tmprove and

modify to face the future security challenge of web applications.

78

BIBLIOGRAPHY

[Apache Software Foundation 2003] “SSL Configuration How To.” [On-line], Available:
hitp:Hiakarta. apache.org/tomeut/tomeat-4.0-doc/ssl-howto.html, Apache Software
Foundation (Access Date: January 5, 2003)

[Ayers 1999] Ayers, D., et.al, “Professional Java Server Programming.”, Wrox Press
Ltd (1999)

[Berry 1994] Berry, B. and Taila Booth, “Informix-Online Dynamic Server
Administrator’s Guide.” Version 7.1. INFORMIX Sofiware, Inc. (1994)

[Cook 2000] Cook, I., Robert Harbus and Tetsuya Shirai, “DB2 Universal Database.™
V6.1, 2™ Edition, Prentice Hall (2000)

[Duffey 2001] Duffey, K., et.al., *“Profession JSP Site Design.”, Wrox Press Ltd. (2001)

[Federal Grain Inspection Service 2002] “Official United States Standards for Grain.”
Federal Grain Inspecrion Service (2002)

[Ferraiolo 2003] Ferraiolo, D. F., D. R. Kuhn, and R. Chandramouli, ‘Role Based Access
Control” ISBN: [-58053-370-1, Artech House Publisher (2003)

[Garfinkel 1997] Garfinkel, S. and G. Spafford, “Web Sceurity and Commerce.” O Reilly
and Associates, Sebastopol, CA. (1997)

[George 1997] George, K. and Kevin Loney, “Oracle 8: The Complcie Reference.”
Osborne McGraw-Hill (1997)

(Goldberg 2002] Goldbery, 1. K. “Glossary Of Information Warfare Terms.” [On-line].
Available: hitp:/fwww. psycom.net/iwar. 2. html. (Access Date: October 10, 2002)

[Joshi 2001] Joshi, J. B. D., W. G. Aref, A. Ghafoor, and E. I1. Spafford, “Sccurity
Models for Web-based Applications.” Communication of the ACM. Vol. 44, No. 2, pp.
38-44 (200))

[Lewis 2000] Lewis, R. M., V. Torczon and M. W. Trosset, “Direct Search Methods:
Then and Now.” Journal of Compusational and Applied Mathematics, Vol. 124, pp. 191-
207 (2000)

[Loshin 1999] Loshin, P., “Big Book of Ipsec RFCs Intemet Security Architccture,”
Morgan Kavfmann Publishers (1999)

79

[Naor 1990] Naor, M., and M. Yung, “Public-Key Cryptosystems Provable Secure
Against Chosen Ciphertext Attacks.” ACM Press, New York, pp. 427-437 (1990)

chuman 1994] Neuman, B. C. and Theodore TS’O, “Kerberos: an Authentication
service for Computer Networks.” JEEE Convnunications, Vol .32, Number 9, pp.33-38.
(1994)

[Oracle Company 1999] “Database Security in Oracle8i.” Oracle Technical White Paper
[On-linc]. Available: hup: ‘otn.oracle.com/deploy/security/nissc00.htm (Access Date:
Oct. 15, 2002)

(Park 2001] Park, J.S., R. Sandhu, and G. J. Ahn, “Role Based Access Control on The
‘Web.” Communications of ACM, Vol. 4, Issue 1, pp.37-71. (2001)

[Peavey Company 2000} “Grade Discount in Cents Per Bushel.” Peavey Company, 5301
West Channel Road, Catoosa, Oklahoma 74015. (2000)

[Pettit 2001] Pettit, S., “Anatomy of 2 Web Application: Sccurity Considerations.” [On-
line] Available: hup:/fnww.cgisecurity.com/lib/Web_Server.pdf. (Access Date: October
15, 2002)

[Rankle 1997] Rankl, W. and Wolfgang Effing, “Smart Card Handbook.” Juhn Wiley &
Sons Lid. (1997)

[Rosenbeery 1992] Rosenbeery, K., David Kenney and Gerry Fisher, “Understanding
DCE.” O'Reillv & Associares, Inc. (1992)

[Schwartz 2001] Schwartz, R.. “Using Field Encryption in Applications.” [On-line)
Available: htip://www-10.lotus.com/ldd/roday nsf(18a6d147cf5507fd38525665K8007aacfl/
24d3f7b03bcaf0c388256abb00730519/SFILE/encrypr.pdfiris, Association Inc. (Access
Date: September 30, 2002)

[Stillerman 19997 Stillerman, M., and C. Marceall, “Intrusion Detection for Distributed
Applications.” Communications of the ACM, Vol. 42, Issue 7, pp.62-69. (1999)

(Sun Microsystem 2002] “Forte for Java 4, Community Edition Tutorial.” [On-line]
Available: hup://forte.sun.com/ffj/documentation/ffjcetut.pdf. Sun Microsystems, Inc.
(Access Date: September 30, 2002)

(Xtream 2002] Xtream, “Intemnet Security.” [On-line] Available: http://xtream.online. fr
/project/security. itml. (Access Date: September 29, 2002)

[Yen 1995) Yen, S.M.. and C. S. Laih, “Improved Digital Signature Algorthm" /EEE
Transaction On Computers, Vol. 44, Nu. 5 (1995)

80

APPENDIX A

JSP CODES AND JAVA PROGRAMS FOR SECURITY LAYERS

SANITIZING BROWSER INPUTS

/*A Java cluss named “ValidateInput used to check whether «¢ user’s input contain
invalid charucters. ¥/

public class Validate(nput {
/** Creates a new instance of Validatelnput *.’
public ValidateInput() {}
public int checkValidInput(String s){
int flag=0;
for(int 1=0; i<s.length(); i+ '){
/the server-side defined valid characters are a-z, A-Z and 0-9;
char inChar=s.charAt(i);
if (((iInChar > a)&&(inChar < z)) || ((inChar > A)&&(inChar < Z)) |, ((inChar >
0)&&(inChar < 9)))
flag=!:
else {
flag=-1;
break;
i
}
return flag;
}
!

= 4 JSP code i RegistDisplay JSP page used to cull Validatelnpui class, If a user's
registration information contain any invalid character, that is, if the return value of
Validate/nput class is "-1", the RegistDisplay page just forward RedoRegist page o the
user. Otherwise, it displuvs the user’s registration inforatmuation. ™/

<%ypage import- "BinCustomer.*" %>

<a href~"https:/’10.120.5.95:8443/RegistDisplay.jsp”>

<%lainclude file="GetCustld.jsp e

81

<jsp:useBean id="custBean" class="BinCustomer.Customer” scope="session"/>
<jsp:useBean id="userBean" class="BinCustomer.userTable" scope="application"/>
<jsp:useBean 1d="validate” class="BinCustomer.ValidateInput" scope="session"/>

<jsp:setProperty name="userBean" property="*" />
<jsp:setProperty name="validate" property="*"/>
<Jsp:sctProperty name="custBean" property="*"/>

<html>
<head>

<title>Regist Display Page</title></head>
<body >

<TABLE class="header" width="100%" cellspacing="0" cellpadding="3" border="0"
bgcolor="#000000">
<TR>
<TD></TD>
<TD align="center" width="35">
<TD align="center" width="35">

LogQut<'Font></TD></TR>
</TABLE>

<% 1f((validate check ValidInput({request. getParameter{ "userName'))==-1)|
(vahidate.check Validinputirequest.getParameteri"myPassword™))==-1}||
{validate check ValidInput(request.getParameter("firstName"))==-1})|
(validate .check ValidInput{request.getParameter{ “middleName")}==-1)||
(validate check ValidInput(request.getParameter("lastName")y==-1)||
(validate.checkValidInput(request. getParameter("streetNumber” })==-1)||
(validate.check ValidInput{request. getParameter("strect"))=—- 1)|
(validate.check ValidInput(request. getParameter("apt"))==-1)||
(validate.checkValidlnput(request.getParameter(“city”)==-1)|
(vahdate.checkValidlnput(request_getParameter("state”))—-1)|
(validate.check ValidInput{request.getParameter(" z1p"™)}==-1)||
(validate checkValidInput(request getParameter("tclcphoneNumber”)j==-1)){

%=

<jsp:forward page="RedoRegist.jsp">
<jsp:param name—="RegistDisplay” value="ycs"/>
</jsp:forward>

=204

t/end if flag=—-1

custBean=new Customer{);
custBean.setMyPassword(request. getParameter("myPassword™));
custBean setUserName(request.getParameter("userName"));

//String temp="";
custBean.setFirstName(request. getParameter("firstName"));
//if(request_getParameter("middleName")==null)

1 temp="",
custBean.setMiddlieName(request.getParameter("middleName"));
custBean.setLastName(request.getParameter("lastName"));
custBean. setStreetNumber(request. getParameter("streetNumber”));
custBean. setStreet(request.getParameter("street"));
custBean. sctApt(request.getParameter("apt"));

custBean setCity(request. getParameter("city”));

custBean setState(request.getParameter(”state")),
custBean.setZip(request.getParameter("zip™));

custBean setTelephoneNumber(request.getParameter("telephoneNumber”));

0>

<% custBean.recordCustomer();
DA)}

<H2>Welcome, <jsp:getProperty name="custBean" property="userName" /> </H2>
<p><i>We have recorded the following data in your profile:</i></p>

<table>

<tr>

<td class="registerTD">First Name:</td>

<td><jsp:getProperty name="custBean" property="firstName" /=</td>
</r>
<{r>

<td class="registerTD">Middle Name:</td>

<td><jsp:getProperty name="custBean" property="middleName" /></td>
</ir>
<tr>

<td class—"registerTD">Last Name:</td>

<td><)sp:getProperty name="custBean" property="lastName" /></td>
<[tr>
<ir=

<td class="registerTD">Street Number:</td=

<td><jsp:getProperty name="custBean" property="streetNumber" /></td=
</tr>

83

<tr-
<td class-<"registerTD">Street:</td>
<td-<jsp:getProperty name -"custBean" property="street" /></td>
</tr>
<t
-.d class="registerTD">Apartment:- /td>
<td><jsp:getProperty name="custBean" property- "apt" /></ud>
</tr>
<>
<td class="registerTD">Ciry:</:d>
<td><jsp:getProperty name="custBean" property="city" /></td>
</1r>
<tr>
<td class="registerTD">Statc:</td>
<td><jsp:getProperty name"custBean" property "state" /></td>
</tr>
<{r>
<td class="registerTD">Zp:</td>
<td><jsp:getProperty name="custBean" property="z»ip" /></td>
<Jtr>
<tr>
<td class="registerTD">Telephone:</1d>
<td><jsp:getProperty name- -"custBean” property="telephoneNumber" />~1d>
</tr>
<ftable>
<p>
<,/’p:»
</body-~>
</huml>

COOKIE SUPPORT DETECTOR

/%4 JSP page used o set cookies to the client’s web browser*/

~%%lapage contentType="text/html" %>
<%(@page import="javax serviet.hrtp.Cookie" %>

<ra>

<body>

<TABLE class="header" width="100%" cellspacing="0" cellpadding="3" bordcr "0"
bgcolor "#000000">

<TR>
<TD>-, TD>

84

</TR>
</TABLE>

Yo

Cookie newCookie=new Cookie("binCookie”, "whcatBin");
response.addCookie(newCooki€);

%>

<form method=post action="https:/ '10.120.5.95:8443/1estCookies.jsp">
<input typc=hidden name=setCookies value="ycs">

<input type :submit name=operation value="Cookies Support Detector>
<'form>

</body>
</html>

/* A JSP page used 1o test whether the client’s browser supports cookies™*/

<%{@page contentType="text/html"%>
<%{@page import="javax.servlet.http.Cookie" %>
<htm]>

<head><title~JSP Page</title> </head>

<body>

<%! Cookie[] cookies; %>
<%! String cookieVal="";%>

<%
it{request.getCookies()==null){// The user's browser may not support cookivs ar
cookies are disabled
%>
<jsp:forward page: "Errorl.jsp">
<)sp:param name--"testCookies” value-="yes"/>
</jsp:forward>
<%
)

cookies=request.getCookies();
1f{cookiest=null){
for(int 1 0; i<cookies.length;+ +1){
if{cookics[i}.getName().equals(“binCookie")){
cookieVal cookies[i].getValue();
break;
)

85

}

if (cookieVal—=null){. The user's browser support cookies but we can not find the
cookies we set

%.

<jsp:forward page: "Error2.jsp“™>

<)sp:param name="testCooklies" value="yes"/>

</jsp:forward>

<%

}

ifcookieVal.equals("wheatBin”)){//The user's browser support cookies, We set digital
signature cookies to the user's web browser
%>
<TABLE class="header" width="100%" cellspacing="0" cellpadding "”3" border "0"
bgcolor="#000000">
<TR>
<TD></TD>

</TR>

</TABLE>

</p>

<h3> Your browser suppot cookies, We¢ will use cookies to maintain scssion
information.</H3>

</p>

<form method=post action="https://10.120.5.95:8443/Login.jsp">
<input type=hidden namec=testCookics value—"yes">

<input type -submit value="[Agree'™

<~ FORM>

<%

}

%>

</body>

<html>

AUTHENTICATION

/* Login JSP page which uses username/password to authenticate vsers*/
<%(@page contentType ="texthtml* %>

<h{@page session="true" %>

<a href~"https://10.120.5.95:8443/Login.jsp">

<%-- Login page can not be cached by the user's web browser! --%>

86

7
response.setkleader("Cache-Control”,"no-cache™), . .HTTP 1.1
response.setHeader("Pragma”,"no-cache"); //HTTP 1.0
response.setDateHeader (“Expires”, 0); . /prevents caching at the proxy server
%>
<%-- Do input page domain checking --%->
<%! int inputPageFlag; %~
<%
inputPageFlag=0;
if(request.getParameter(testCookies™)!=null){
if{request. getParameter("testCookies").cquals("yes")){
inputPageFlag=1;//support cookies
)
}
if(request.getParameter("Errorl”)!=null){
if(request.getParameter("Error!").equals("yes")){
inputPageFlag=2;//using session object

)

if{(request.getParameter("LoginEmor")!=null){
if{request.getParameter(LoginError”).equals(“yes")){
inputPageFlag=3;,redo login

}

}

if(inputPageFlag==0){
O/")>
~jsp:forward page—"pageNotFound.jsp"
<%
}
%>

<%-- 1n case malicious user user back button and refresh button to get the sensitive page -
OS>
<% Cookie[] allcookies request.getCookies();
String rcalTest=null;
if(allcookies!=null){
for(int 1=0; 1<allcookics.length;+ i) {

if(allcookies(i]).getName().equals("binCookie")){
realTest=allcookies[i].getValue(),
break:
)
y

if (realTest =null){
L7

87

<jsp:forward page="pageNotFound.jsp"/>
<0%

J

else{//cookies not supported

if(session.getValue(“sessionOk").equals("OK")==false){
%>
<jsp:forward page="pageNotFound. jsp"/>
<%
}
}//end else cookies not supported
Y>>
<html>
<head><title>Log In</ttle></head=>
<body>
<TABLE class="header" width="100%" cellspacing="0" cellpadding="3" border="0"
bgcolor="#000000">

<TR>

<TD></TD>
<TD align="center" width="35">
<TD align="center" width="35">

LogOut</TD></TR>
</TABLE=>
</p>
<% if{inputPagellag==1){
Ufl"o:)
<form name="login" method="POST" action="https://10.120,5.95:8443/Check jsp"=
<4

if{inputPageFlag==2){
String url;
url=response.encodeUrl("Check jsp")k
Yo
<form name="login" method="POST" action="<%= ur] %>"=
<%
}
Yo
<table-=
<{r-=
<td class="loginMenu">User ID =/td>
<td>
<input name="user” type="text" length="8" maxlength="8" />
</td>
</tr>

88

<tr=>
<td class="loginMcru">Password =.td -
<td>
<input nane—"password" type="password" length="8" maxleng="8" />

</td>
</tr>
</table>

<p~
<%! String temp; %>

<% if(request. getParameter("timeCount") null)
temp="three";
clse
temp=request.getParameter("timeCount");
O/O>

<% if (inputPageFlag - 1){
O/°>
<input type=hidden nanic ‘cManager value="yes">
<%
}
if OnputPageFlag==2){
session.putValue("loginOk”,"OK");//used to maintain session consistency
0h>
<input typc=hidden name ssManager value="yes">
<%
}

/fadd from here

%o

<input type=hidden name :Login value="ycs">

<snput type="hidden" name-=passValue value="<%= temp%>"/>
<jnput type- “submit” value="Login" class="btn" />

<jnput type- "reset” value="Reset" class="btn" />

</p>

- /form=>
<% session.putValue("sessionOk","No"): %>

<fbody>
</html>

89

SETTING TEMPORARY DIGITAL SIGNATURE COOKIES

/* The following 1s the Java program used to generate and verify digital signature*/

package DigitalSignature;

import java.io.*;

import java.security.*;

import java.math.Biglnteger;

import java secunty.interfaces. DSA Params;
import java.sccurity. interfaces. DSA PrivateKey;
impont java.security.interfaces.DSA PublicKey;
import java.secunty.Signature.*,

import java.security.spec.™;

import java.security.interfaces. DSA Params;
import java.security.KeyStore;

public class digitalSignature §

public DSAPublicKey idPubKey;
public DSAPublicKey tryKey;
public DSAPublicKey rolePubKey;
public int iIdBackUpLen;

public int roleBackUpLen;
private Biglnteger yy;

private Biglnteger pp;

private Biglnteger qq;

private Bigintcper gg;

public String strY;

public String strP;

public String strQ;

public String strG;

public digitalSignature(){}
public byte[) GenSign(String str, String flag){

try |

' Generate a 1024-bit Digital Signature Algorithm (DSA) key pair
KeyPairGenerator keyGen = KcyPairGenerator.getlnstance("DSA");
keyGen.initialize(1024);

KeyPair keypair -: keyGen.genKeyPair();

DSAPnvateKey privateKey = (DSAPrivateKey)keypair.getPrivate();
DSAPublicKey publicKey = (DSAPublicKey)keypair.getPublic():

//#****tt***#l

tryKey publicKey;

90

/1 Get p, q, g; they are the same for both private and public keys
DSAParams dsaParams = privateKey.getParams();

pp = dsaParams.getP();

qq = dsaParams.getQ();

gg = dsaParams.getG();

/1 Get the public key's Y

yy = publicKey.getY();

strP=pp.toString();
strQ=qq.toString();
strG=gg toString();
strY =yy.toString();

/f Generate a digital signature using private key

//Get a signature Object for generating signature using the DSA algorithm.
/ispecify SHA1 message digest algorithm used by DSA algorithm.
Signature mySign = Signature.getInstance("SHA 1withDSA", "SUN"});
mySign.initSign(privateKey),

//Now, provide the signature object mySign the cookie value infor to be signed.
mySign.update(inputStrToByte(str)),

/Now, generate the signature
byte[] finSign = mySign.sign();

if{flag.equals("id"})
idBackUpLen=finSign.length://set the back up length for convert digital signed
id back to byte[]
if(flag.equals("role"))
roleBackUpLen=finSign.length;//sct the back up length for convert digital
signed role back to bytc[]
// return temp;
return finSign;
} catch (SignatureException ¢) {
} catch (InvalidKeyException ¢) {
} catch (NoSuchAlgorithmException ¢) §
pcatch (NoSuchProviderException ¢){
}

return null;

}

public boolean verifySign(byte[] sign, String str, DSAPublicKey k){
/f Venfies the signature for the given string using the public key.

y {

9]

Signature sig = Signature.getInstance("SHA L withDSA", "SUN");

/if(flag=="id")
sig.anitVerify(k);
/lelse

// sig.initVerify(rolePubKeyy);
sig.update(inputStrToByte(str));

/freturn sig.verify(strToByte(sign));
rctum sig.verify(sign);
} catch (SignarureException e) {
} catch (InvalidKeyException ¢€) {
} catch (NoSuchAlgorithmException ¢) {
jcatch (NoSuchProviderException e){

'

return false;

}
public byte[] inputSuToByte(String s){
int temp=0;

// convert a String into a byte array
byte buf[] = new byte{s.length()=1];
for (int i=0; i<s.length(); i++) {
temp =(int)(s.charAt(i)):
bufli]=(byte)(temp);
}

return buf}

}
public String bytcArrToStr(byte[] bi)!

Byte(] myByte=new Byte[bi.length];

String s="";
for(int j—0;j<bi.length;j++){
myByte{j]=new Byte(bi[}]):
s=s - myByte[j].toString()+" "
)

retum §;

b
public byte[] strToByte Arr(String s, int Jen){

byte[] newByte:
it dndex=0,
int index;

newByte=ncw byte{len];

Index=s.indexOf{(" ");

for(int k=0; k<len; k= t){
String temp=s.substring(tindex,ndex).
newByte[k]=Byte.parseByte(temp);
tindex=index+};
index=s.indexOf(" ",tIndcx);
if(index==-1)

break;
}

retumn newByte;

}

public void rePubKey(String yy.String pp,String qq, String gg, String flag){
try{
Biglnteger y=new Biglnteger(yy);
Biglnteger p=new Bigintegen(pp),
BigInteger g=new Biglnteger(qq);
Biglnteger g=new Biglntegen(gg);

/" Create the DSA key factory
KeyFactory keyFactory = KeyFactory.getinstance("DSA");

{/ reCreate the DSA public key

DSAPublicKeySpec publicKeySpec new DSAPublicKeySpec(y, p. g, g):
DSAPublicKey publicKey — (DSAPublicKey)keyFactory.GeneratePublic
(nublicKeySpec);

if{flag -—-"id")
idPubKey=publicKey;
clse

rolePubKey=publicKey;
yeatch(NoSuchAlgorithmException e){
tcatch(InvalidKeySpecException e)
}
¥

/* The following JSP code is used to call digitaSignatare class and set digital stgned
cookies 10 the client’s browser. */

93

< 1-- Delect-all existing cookies and add new cookies with digitial signitial-->
<%
Sting name—""
//check if there are any cookies and delete all existing cookies!
if(request.getCookies()!=null){
Cookic[] cookies=request.getCaokics();
tor(int i=0;i<cookies.length;i+)4
name=cookies[1].getName()y. et each cookie name
//kill each existing cookie
Cookie killCookie = new Cookie(name, null);
killCookie.setMaxAge(0):
response.addCockie(kitiCookie):
}

-

}

f/set new cookie.
user=tequest.getParameter(user");
/fput role information into session object
roleStr—getRole.roleInfo(user);

//digita) signawure the id cookie value.
byteArrl=dig). GenSjgn(roleStr,"id");
syy=digi.stryY;

spp=digi.strP;

sqq=digi.staQ;:

sgg=digi.strG;
lun=digi.idBackUpLen;

%>
<%

String cos digi.byteArrToStr(byteArrl):
Cookie nameCookiec new Cookie{"roleNamc”, cos):
nameCookie.setMaxAge(-1);
response.addCookie(nameCookic);
%%
<form method=post action="http://10.120.5.95:808 | 'HomePage.jsp">
<input typc =hidden name=c¢Manager value="yes">
~input type=hidden name-syy value="<%=syy%>"/>
<input type=hidden name=spp value="<%=spp%>"/>
<input type=hidden name=sqq value="<%=sqq%>"/>
<input type=hidden name=sgg value="<%=sgg%>"/>
<mput type=hidden name=len valuc="<%=len%>"/>
<input type—hidden name=roleStr valuc="<%= roleStr¥>">

04

- %

URL REWRITING

/* The following JSP code is used to do URL rewriting*/

<%! String url;%; >
<%
user=request, getParameter("user");
//put role information into session object
roleStr—getRole.rolelnfo(user);
session.putValue("roleStr”,roleStr);
url response.encodeURL("HomePage.jsp");
%>
<%-- --Using URL rewriting to maintain session Statug---------------- -- -
<form method=post action:="<%=- url %>">
<input type=hidden name=sManager value="yes">
<input type=hidden name=sld value="<%= session.getld()%>">
<%
}//end sManager is yes
}//end sManager is not nul)
Y>>
<% session.putValue("checkQk", "OK");%>
<input type=hidden name=check value="yes">
- input typc=hidden name=user value="<% request.getParameter("user”)%>""-
<input type—hidden name=password value="<%—request.GGetParameter
("password")%>"/>
<input type submit value="Do Optimization>
</form>

INPUT WEB PAGE DOMAIN CHECKING

/* For example, the input web page domain for Login web page is {TestCookies, Errorl,
LoginEmor}. Tke following JSP code in Login page is used to do input web page domain
checking. */

<%-- Do input page domain checking --%>
<%! int inputPageFlag:%>
<%
inputPagcFlag=0;
if(request.getParameter(“testCookies") =null){
if(request. getParameter("testCookies").equals("yes")){
inputPageFlag=1: /support cookics

)
} .
if(requesi.getParameter("Error]1")!=null){
if{request.getParameter("Error]").equals("yes")){
inputPageFlag=2;//using session objcct
}
J
if(request.getParameter("LoginError')!=null){
if(request. getParameter("LoginErmor”).equals(”yes")){
inputPageFlag=3,;//redo login
}
}
if(inputPageFlag= -0){
S>>
-jsp:forward page="pageNotFound jsp"/>
<%
)

%>

ROLE-BASED ACCESS CONTROL

/* For example: if a user clicks “Grade Table” or “Discount Table™ button in the
ListBinInfo page, the server side sends the grade table pop-up window or discount pop-
up window depends on the user’s role. */

/Af the client’s browser doesn’t support cookies
<% 1f(flag.cquals(”session")){

if(session.getValue(roleSir').equals("Customer")){
0/0>
<FORM method="POST" action="javascript:PopUp
(‘http://10.120.5.95:8081/GradeTable. jsp')" >
<p><input type=image src’ "hclp_16.gif"> Grade Table</p>
<YFORM>
<FORM method="POST" action="javascript:PopUp
(‘http://10.120.5.95:808 1/Discount.jsp")” >
<p><input type=image src "help_16.gif"> Discount Table</p>
</FORM>
<%
}

if(session.getValue("roleStr").equals(” Admin'')){
%>
<FORM method="POST" action: "javascript:PopUp
('http:10.120.5.95:808 1/EditGradeTable jsp')" >
<p><input type=image src “help_l6.gif*> Grade Table</p>
</FORM>

96

<FORM method="POST" action="javascnipt:PopUp
(‘http://10.120.5.95:808 1 /EditDisTable jsp')* >

<p><input type—-image srce="help_L6.gif"> Discount Table</p>
- FORM>

<%

}

}

8>

/Iif the client’s browser suppons cookies
<% if(flag.equals(“cookies")){
if(request.getParameter(*'roleStr*).equals(“Custamer™)){
%>
<FORM method="POST" action="javascript:PopUp
(‘hitp://10.120.5.95:8081/GradeTable jsp')" >
<p><input type ‘image src="help_16.gif"> Grade Table</p>
</FORM>
<FORM method="POST" action="javascript:PopUp
('http:. /10.120.5.95:8081/Discount.jsp’)" >
<p><input type=image src="help_16.gif"> Discount Table</p>
</FORM>
<%
)
if(request.getParameter("roleStr").equals("Admin")){
%>
<FORM method="POST" action="javascript: PopUp
(‘http://10.120.5.95:808 1/EditGradeTable.jsp')" >
<p><input type image src: "help_16.gif"> Grade Table- /p>
</FORM>
<FORM method "POST"
action="javascnpt:PopUp(‘http://10.120.5.95:8081/EditDisTablc.jsp')" =
<p><input type=image src="help_J] 6.gif'> Discount Table</p>
<*FORM>
<%
3
¥

%>

HIDDEN FORM FILED

/* The following JSP code in Login JSP page uses hidden form field to send a user's
username and password to the check page. */

<form name—"login" mcthod="POST" action="https://10.120.5.95:8443/Check.jsp">
<input typc = hidden name=Login value="yes">

97

<input type= hidden name- passValue value="<%- temp%>"/>
<input type="submijt" value "Login" class="bm" >

<input type="reset" value="Resct" class "bm" />

</p>

</form>

SENSITIVE WEB PAGE CACHING PROTECTION

/* The followmg JSP code in ListBininfo JSP page is used to prevent this page from
being cached by the client’s web browser. *.

<%-- ListBinInfo can not be cached by the user's web browser! --% -

<%

response.setteader("Cache-Control","no-cache"); #HTTP 1.1
response.setHeader("“Pragma”, no-cache”); #/HTTP 1.0
response.sctDateHeader ("Expires”, 0); //prevents caching at the proxy server
O/é)

KILLING COOKIES AND INVALIDATING SESSION

/* The following ISP code in Exit JSP page is used to kill cookies and invalid session
when a session is over. */

<%
/fkill all existing cookies
String name=""\
/{check if there are any cookies and delete all existing cookics!
if(request.getCookies()'=null){
Cookie[] cookies=request.getCookies();
for(int i =0;i<cookies.Jength:i+) {
name=cookies[i).getName();//get each cookic name
//kill each existing cookie
Cookic killCookic = new Cookie{name, null):
killCookie.setMaxAge(0);
response.addCookie(killCookic);
s

}

“kill role session object

session.putValue(“roleStr”, "empry");

session.putValue("sessionOk", "No"),

session.invalidate(). //invalid session
%>

9%

VITA (“l)/’i

Jing Ding
Candidalc for the Degree of

Master of Science

Thesis: A SERVER-SIDE SECURITY MODEL FOR WEB APPLICATIONS

Major Field: Computer Science

Biographical:

Personal Data; Boyrn in Hefei, China, On Oct. 31, 1974.

Education: Received Bachelor of Science degree in Chemical Engineering from
Hefeir United University, Hefei, China in July 1995, Completed the
requirements for the Master of Science degree 1n Computer Science al
Oklahoma State University in December 2003.

Experience: Employed by Hefei Phoenix Medical Equipment Inc., Hefei, China, as
a technical support engineer, 1995-1998.

Protessional Membership: Phi Kappa Phi Honor Socicty Member.

