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PREFACE 

The purpose of this research was to study the single-phase flow in structured 

packing using Computational Fluid Dynamics (CFO). This study will help in reducing 

the empiricism associated with the current packing manufacturing process. The work 

presented in this thesis is a step towards evaluating the reliability ofCFD as a design tool, 

and will serve as a platform for future endeavors of CFO model development for 

structured packing. Effect of packing design parameters on the performance was studied, 

and flow patterns within a small section of two-sheet system (adjacent sheets) were 

analyzed. 
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CHAPTER 1� 

INTRODUCTION� 

1.1 Distillation process 

The separation of a homogeneous liquid mixture into its individual components is 

an important step in many industrial processes. Of the various processes that might be 

used to achieve the separation, distillation is the most widely used method. Distillation 

uses a very simple separation principle: an intimate contact is created between the 

starting mixture and a second phase in order to enhance effective mass transfer between. 

The thennodynamic conditions are chosen such that the constituent to be separated from 

the mixture transfers to the second phase. The phases are subsequently separated into two 

single phases with different compositions (Stichlmair et aI., 1998). As per the Research 

and Development Portfolio, Published by US Department of Energy i.n April 1999, 

separation processes represent up to 70% of capital and operating costs and accounts for 

nearly 45% of the energy used in the chemical process industries. Distillation contributes 

a major part of this energy requirement, estimated at US$524 billion per annum (Porter, 

1995). Therefore, any improvement in the distillation process will result in significant 

monetary and energy savings. 

Separation within a distillation column is achieved through either tray or packed 

type contacting devices. In tray type columns, the gas flows vertically upward through 
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small perforations in horizontal trays, while liquid flows across the tray. In packed 

columns, a high interfacial area for mass transfer between gas and liquid is provided by 

filling the column with a bed of solid materials with high porosity and large volumetric 

area. The liquid trickles downward tn the form of thin films small rivulets and even 

small droplets. Trays are used in large diameter columns and can be operated efficiently 

at very low liquid loads. However, relatively high-pressure drop and high liquid hold up 

are the disadvantages associated with the use of tray columns. Packed columns are used 

almost exclusively in small diameter (e.g. smaller than 0.7 m) towers. The small pressure 

drop in packed column relative to the tray column is a big advantage. Also, the danger of 

decomposition of thermally unstable substances is also less in packed columns because 

liquid holdup is very small (Stichlmair et aI., 1998). 

1.2 Structured packing 

Packings can be classified as random and structured. Random packing is dumped 

m the column whereas structured packing has regular arrangement. The random 

distribution leads to liquid maldistributioD, which adversely affects the mass transfer 

efficiency. This resulted in the development of structured packing. In comparison to 

random packing, structured packing permits higher mass transfer efficiency at lower 

power consumption, thus achieving an economy in column scale and operating costs. In 

structured packing, corrugated sheets are assembled parallel in vertical direction with 

alternate inclination of corrugation of neighboring sheets (Stichlmair et aI., 1998). 
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The liquid flows as a fi 1m on the packing surface and gas flows through the 

chalmels formed between the neighboring sheets. These corrugated sheets are grouped 

together in a block. An example of a structured packing block is presented in Figure 1-1. 

Fig 1-1 A graphical representation of a structured packing block {I6] 

The blocks of packing are installed as layers that fill the cross sectional area of the 

column. These layers are stacked, atop another, to give the required packed height. 

Adjacent layers are rotated 90° to enhan.ce lateral rrllxing of liquid and gas. This 

arrangement results in an ordered network of flow channels. Structured packing is treated 

mechanically and/or chemically in order to improve the liquid wetting characteristics. 

The surface treatment can affect both the surface area available for mass transfer and the 

liquid film turbulence. Embossing and creating fluted surface are some examples of 

surface treatment. 
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Fig 1-2 Surface texture and perforations ofMELLAPAK TM structured packing 

1.3 Rationale 

Almost all the traditional design equations developed to describe fluid flow and 

mass transfer in structured packing involve one or more empirical constants. These 

equations are applicable in the range of the experimental conditions under which the 

constants were determined and are specific to a particular type of packing. Empiricism 

restricts the use of these equations and limits their usefulness in designing new packing. 

The work proposed in this thesis started with an effort to model the flow distribution 

within an entire distiHation column Computational Fluid Dynamics (CFD). During the 

course of the work, it was realized that computationally it is not feasible to model the 

micro scale/local phenomena (for example, mixing occurring at an intersection of 

crossing channels in structured packing) in detail. Therefore, these local phenomena need 
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to be approximated by proper models for which detailed understanding of the local 

phenomena will be required. This process is analogous to large eddy simulations in 

turbulence, where large scale eddies are solved directly without any approximations and 

small scale eddies are approximated using turbulence models. 

1.4 Objectives 

The aims of this thesis are to use the approach of Computational Fluid Dynamics to: 

1) Provide an understanding of the flow physics in structured packing on microllocal 

scale, which can serve as a platfonn for future endeavors of CFD model development 

for structured packing. 

2) Study the effect of structured packing design parameters (channel inclination angle and 

crimp angle) on performance (pressure drop and mixing characteristics). 

3) Study the flow pattern 111 a section of adjacent corrugated sheets with alternate 

corrugation inclination. 
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1.5 Thesis Structure 

1) A brief literature review, giving the evolution of structured packing and the previous 

work that has been done to model the structured packing, will be discussed in second 

chapter. Also, a brief overview of CFD will be given. 

2) The procedures and methods used while working with the CFD code used for this 

study (CFX-5.5.1) will be discussed in Chapter 3. 

3) CFD model development and results will be presented in Chapter 4. 

4) Final discussion and conclusions will be addressed in Chapter 5. 
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CHAPTER 2� 

LITERATURE REVIEW� 

Introduction 

The literature reView addresses the topics of structwed packing and 

Computational Fluid Dynamics (CFD) in two sections. In the structured packing section, 

fIrst a brief overview of the evolution of structured packing design will b given. 

Secondly, previous work in the area of modeling fluid flow and mass transfer in 

structured packing will be discussed. In the CFD section, present state of the art in CFO 

modeling will be presented. 

2.1 Structured packing: An overview 

2.1.1 Evolution of structu red packing 

Although structured packings have been around as early as the 1940's, the earlier 

models such as Panpak never became popular. One reason for this unpopularity could be 

the fact that this was before the time when the detrimental effect of liquid maldistribution 

on structured packing was known. The second generation of structured packing began in 

the late fifties with high efficiency wire-mesh packings like the Goodloe ,Hyperfil ,and 

Koch-Sulzer. Extensive experimentation, led by Sulzer, provided insight into 
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maldistribution and the knowledge was applied for successful scale up. By early 1970's, 

use of structured packing increased significantly into vacuum distillation, where their low 

pressure drop per theoretical stage is a major advantage. Their high cost high sensitivity 

to solid and low capacity hindered application of the wire-mesh packing outside vacuum 

distillation. The corrugated-sheet structured packing, first introduced by Sulzer in the late 

1970's, started a new generation of structured packing. With a high capacity, lower cost, 

and lower sensitivity to solids, while still retaining high efficiency, this corrugated sheet 

packing became competitive with conventional internals. The 1980~s saw an accelerated 

rise in popularity of structured packing, becoming one of the most popular column 

internals in use today. Presently, the popular corrugated sheet structured packings are 

Mellapak®, Flexipac®, Gempak®, Montz Bl , MAX-PAC18\ Montz BSH®, and 

Flexeramic® (Kister, 1992). 

2.1.2 Geometrical features of corrugated structured packing 

a) Crimp geometrylflow channel cross-section geometry 

h 

Fig 2-1 Flow channel cross-section 
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The relative ratio ofB to h, S to b and the crimp angl.e (angle between side Sand 

base B), defmes the geometry ofthe flow channel and of the vapor liquid contact zone. In 

different packing families crimp angle varies from 28° to 45° and B to h ratios range 

from 2:1 to 4:1 (Kister, 1992). 

b) Sheet geometry 

Channel inclination angle 

Fig 2-2 Sheet geometry 

The inclination angle of the channels may range from 150 to 600~ 45° is most 

popular. Gaiser and Kottke (1989) showed the effect of channel inclination angle on flow 

pattern and hence the local heat and mass transfer. They found that at high inclination 

angle and a small B: h ratio, the major part of the flow following the valley gets reflected 

at the wall and returns along the valley of the neighboring sheet. Whereas, at low 

inclination angles and a large B: h ratio. a greater part of the flow is in the main flow 

direction, between the contact points of adjacent sheets. Olujic et al. (2000) presented an 

experimental study revealing the effect of packing geometry and corrugation angle on 
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mass transfer and hydraulic performance for Montz packing. With increasing corrugation 

angle (also called as channel inclination angle) the pressure drop decreases sharply. The 

accompanying increase in capacity and decrease in mass transfer efficiency are an order 

ofmagnitude less pronounced, indicating that a significant amount of pressure drop is not 

directly involved with the mass transfer process. Increasing the ratio of the "useful" to 

"usel.ess" (the gas-gas interaction and direction change) pressure drop is the key to further 

improvement of the perfonnance of corrugated sheet structured packing. 

c) Surface texture 

Most structured packings have a roughened or enhanced surface that assists the 

lateral spreading of liquid, promotes film turbulence, and enhances the area available for 

mass transfer. Laboratory measurements of absorption rates showed that both mass 

transfer efficiency and wetted area are enhanced by texturing metal surfaces. Texturing 

techniques include grooving, lancing, shallow embossing, and deep embossing. Surfaces 

of most structured packings contain perforations, which serve as communication channels 

between the upper and lower surface of each sheet. Usually, the perforations are of 

circular shape (Kister, 1992). 
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2.2 Modeling of structured packing 

With the increasing use of structured packing various models are proposed to 

predict their performance. Most of the models are based on some empirical constants. 

This empiricism makes the models applicable to only the existing designs of structured 

packing. 

Zuiderweg et a1. (1993) proposed a zone/stage model to predict the influence of 

initial liquid distribution on the liquid flow distribution inside the column and the overall 

efficiency of the packed column. The model can be applied to both random and 

structured packing. But, the model requires two packing characteristics as input: a liquid 

spreading coefficient and an "ideal" or "basic" HETP. These values need to be 

determined experimentally. 

Stoter et a1. (1993) proposed a mathematical model, based on fust principles, for 

the calculation of gas flow distribution in channels formed between the tightly packed 

corrugated sheets. The model neatly explains the physics of fluid flow in crisscrossing 

network of structured packing. The model uses a discrete cell approach, based on average 

mass, momentum, and energy balance equations for each of numerous crossings of gas 

flow channels. Characteristic friction factors for gas inlet, bulk zone, and wall zone are 

required model parameters. These model parameters need to be obtained from pressure 

drop measurements for each type and size of structured packing. The model assumes 

complete wetting of the packing surface and thus the liquid holdup is expressed as a 

function of an average liquid film thickness and packing surface area. 
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Shetty and Cerro (1997) developed correlations for estimating design parameters 

(liquid hold up, interfacial area, and mass-transfer coefficient) in ordered packing 

materials based on fluid mechanics and mass transfer without any adjustable parameters. 

The effect of the size of structured packing as well as liquid properties on these 

parameters was explored. Mass-transfer coefficients for the liquid phase were estimated 

using a penetration theory model. These parameters were used to predict height of a 

transfer unit (HTU) and height equivalent to a theoretical plate (HETP) for typical 

commercial packing materials and compared with existing experimental data. 

A mechanistically based model was developed by Rocha et al. (1993) to predict 

liquid hold up, pressure drop, and flooding in columns containing structured packing. The 

correlations were based on the approach of considering the flow channels within the 

packing as a series ofwetted wall columns with a geometry that depends on the angie and 

siz·e of the packing. The model takes into account the texturing of the packing surface as 

well as the wettability of the surface material when in contact with various typ s of 

liquids. The model was able to predict the pressure drop above, as well as below, the load 

point. 

Iliuta and Laracru (2001) developed an implicit one-dimensional two-zone, two

fluid mechanistic model for the prediction of the irrigated two-phase pressure drop, total 

liquid holdup, and the packing fractional wetted area in gas liquid columns containing 

structured packing. The model is applicable in the preloading zone. The two-phase flow 

topography was approximated using two inclined and interconnected slits. Out of the two 
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slits, the dry slit is solely fed by gas and a gas-liquid slit fed by liquid and remaining gas. 

Their model requires no adjustable parameter. 

Spiegel et a1. (1996) proposed a method to predict the heat transfer coefficient for 

structured packing, based on the experimental study with air/water and air/oil system for 

Mellapak 1M 250.Y, 250.X, and l25.X. 

Cannen Rey et a1. (1998) investigated the inil uence of natural convection (for low 

velocities) on mass transfer coefficient for structured packing. This is a unique study, 

because aU other literature studies are related to high Reynolds number. Low velocities 

are used in applications like bioreactors. A simple model was fonnulated, which 

describes natural convection mass transfer in structured packing by correlations obtained 

for inclined surfaces. 

Hanley et al. (1994) proposed a new approach of percolation theory to predict the 

two-phase pressure drop in a packed column. The approach i based on the concept of 

conductor/insulator transition in electrical lattice. The flow passage, making up the void 

spaces of the packing, are taken to be "conducting" when they are open to vapor flow and 

"insulating" when they are chocked off by the liquid (i.e. localized flooding). The same 

approach was used to develop correlations for mass-transfer coefficients, mass-transfer 

area, the HETP, and dynamic liquid holdup (Hanley et aI., 1994). 

Edwards et al (1999) proposed a concept of depth of penetration of 

maldistribution in columns packed with structured packing and a method to estimate the 

depth. Vapor flow is modeled as flow through an isotropic porous media (modeled by the 
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Ergun equation). For liquid flow calculations, an approximate solution for a point source 

in an infmite domain was used. The correlations developed do not take into account the 

effect ofliquid vapor interaction. 

Design, scale-up, and performance analysis procedures for packed columns have 

been traditionally based on macroscopic mass balances. Successful design and scale-up 

of packed columns require a model that captures the basic transport phenomena on the 

scale of packing and not on the scale of the equipment. CFD models can be used to 

predict the overall separation efficiency based on local conditions. The CFD models, 

however, require the specification of number of closure models to capture the 

infonnation lost during the averaging process. These closure models should provide the 

interaction of transport processes between the phases on a scale smaller than the 

averaging scale (Nandakumar et aI., 2000). 

Hodson et al. (1997) studied the single-phase fluid flow in stmctured packing 

using CFD. This was the first effort, to the best knowledge of the author, to use FD to 

model the processes occurring within stmctured packing. Modeling efforts in the past are 

mostly based on fitting experimental data to semi-empirical expressions i.e. modeling on 

micro- scale. The proposed CFD model takes a different approach of modeling the 

processes occurring on micro-scale within the channels of structured packing. The model 

focuses on the intersections or junctions between the channels in neighboring sheets of 

packing. The solution proceeds in a stepwise manner by performing successive 

simulations on one junction: Outlets from one junction act as inlets to next. A heat 

transfer model was used to study the effect ofpacking geometry on heat transfer (which 
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is analogues to mass transfer). Based on the heat transfer results a new packing design 

with slots and tabs punched out of the apex of the channels was proposed. 

Krishna et a1. (2001) studied the radial, and axial, liquid-phase dispersion within 

the catalytically packed crisscrossing sandwich structure of KATAPAK-S using CFD. 

The crisscrossing structure of the KATAPAK-S was modeled as a set of intersecting, 

connecting, triangular tubes. Ergun equation was used to model the catalytic packing 

inside the crisscrossing. Residence time distribution simulation was conducted to 

calculate the liquid radial dispersion coefficient. 

Gulijk (1998) used the CFD approach, similar to Krishna et a1. (2001) to calculate 

the transversal dispersion coefficient in a structured packed bed. The transversal 

dispersion coefficient was found to be 40 times that of fixed bed value. 

Recently Petre et a1. (2003) proposed a predictive combined mesoscale-microscale 

methodology using CFD to apprehend the aerodynamic phenomena occurring at the 

macroscale in structured packing containing columns. The postulate rests on identifying 

recurrent dissipation patterns, called as Representative Elementary Unit, REU, 

constituting the geometry of the structured packing. CFD microscale simulations were 

carried out to detennine different REV loss coefficients. Appropriate REU-bed mapping 

equations were developed to allow clustering of the REV loss coefficients into a global 

bed-scale loss coefficient for estimating the total pressure drop. The simulation results 

were in accordance with the experimental results published for different packings. A 

CFD-aided development methodology was also proposed for Montz Bl-250 structured 

packing recasting the detailed information into compact macroscopic numerical 
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coefficient for the total loss coefficient similar to Ergun equation. The laminar turbulent, 

and curvature parameters appearing in these correlations were expressed as a function of 

the corrugation angle. 

There have been some efforts to use CFD to study fluid flow through fixed bed (random 

packing) 

Parsons et al. (1992) analyzed the single-phase flow patterns in random packing 

bed using CFD. Resistance to fluid flow was modeled using the Ergun equation. 

Mohammed et al. (2002) presented the results of first large scale experimental 

effort undertaken to collect experimental evidence necessary for appropriate validation of 

a results from a commercial CFD package, FLUENT 5. The authors used FLUENT 5 to 

predict the extent of gas maldistribution introduced by geometry of column internals. A 

quarter of the liquid distributor was simulated assuming symmetry. 

Nandakumar et al. (2000) proposed a CFD- based approach of volume-averaged 

equations for velocity and concentration fields to simulate the hydrodynamics and mass

transfer processes in a randomly packed distillation column. 

Logtenberg and Dixon (1998) studied the fluid flow and heat transfer in a fixed 

bed of tube to partic1e ratio 2.86 using a commercial finite element code, 

ANSYSIFLOTRAN. In another study, Jiang et al. (2001) used CFDLffi code, developed 

by Los Alamos Laboratory, to model the multiphase flow distribution in catalytic packed 

bed reactors. 
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2.3 Computational Fluid Dynamics (CFD) 

Computational fluid Dynamics (CFD) is a computer-based tool for simulating the 

behavior of systems involving fluid flow, heat transfer, mass transfer, and other related 

physical processes. It works by solving the equations of fluid flow over a region of 

interest, with specified conditions on the boundary of that region. 

2.3.1 History of CFD 

Computers have been used to solve fluid flow problems for many years. 

Numerous programs have been written to solve either specific problems, or specific 

classes of problem. From the mid-1970's, the complex mathematics required to 

generalize the algorithms began to be understood, and general-purpose CFD solvers were 

developed. These began to appear in the early 1980's and required what were then 

powerful computers, as well as in-depth knowledge of fluid dynamics, and large amount 

of time to set up simulations. Consequently, CFD was a tool used almost exclusively in 

research. 

Recent advances in computational power, together with powerful graphics and 

interactive 3-D manipulation of models mean that the process of creating CFD model and 

analyzing the results is much less labor-intensive, reducing the time and therefore the 

cost. Advanced solvers contain algorithms, which enable robust solution of the flow field 
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in a reasonabl.e time. As a result of these factors CFD is now an establjshed industrial 

design tool, helping to reduce design timescales and improving processes throughout the 

engineering world. CFD provides a cost-effective and accurate alternative to scale model 

testing, with variations on the simulations being performed quickly, offering obvious 

advantages. 

2.3.2 Turbulence Modeling 

Commercially-available general-purpose CFD codes often ignore transition 

region (from laminar to turbulent flow) and classify flows as either laminar or fully 

turbulent. A cruci.al difference between the visualization of laminar and turbulent flows is 

the appearance of eddying motions of wide range of length scales in turbulent flows. A 

typical flow domain of 0.1 by 0.1 m with a high Reynolds number turbulent flow might 

contain eddies down to 10 to 100 ~m size. We would need computing meshes of 10 to 

1012 points to be able to describe processes at all length scales. The fastest events take 

place with a frequency of about 100 ~s (Versteeg et aI., 1995). Speziale (1991) states that 

the direct simulation of a turbulent pipe flow at a Reynolds number of 500000 requires a 

computer which is 10 million times faster than current generation eRAY supercomputer. 

With present day computing power it has only recently started to become possible to 

track the dynamics of eddies in very simple flows at transitional Reynolds number. The 

computing requirements for the direct solution (DNS) of the time dependent Navier

Stokes equations of fully developed turbulent flows at high Reynolds number are truly 

phenomenal and must await major developments in computer (Versteeg et a1., 1995). In 
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most of the engineering applications it is not required to resolve each and every eddy in 

the flow. Therefore the Navier-Stokes equation for turbulent flow is time averaged as 

expressed by Equation 2-1. 

DU a -.-, _ 2
P--+ p--(u ill j) = pg - Vp + /-IV U (2-1) 

Dt ax; 

The time-averaged Navier-Stokes equation resulted in SIX additional unknowns called 

Reynolds stresses. It is the main task of turbulence modeling to develop computational 

procedures of sufficient accuracy and generality to predict the Reynolds stresses. 

Turbulence models listed in literature are: 

1) The Zero equation model: Mixing length model 

2) Two-equation model: k-E model 

3) Reynolds stress equation model 

4) Algebraic stress model 

The mixing length and k-E models are most used and validated turbulence models for 

engineering applications. They are based on the assumption that there exists an analogy 

between the action of viscous stresses and Reynolds stresses on the mean flow. The Zero 

equation model is easy to implement and cheap in tenns of computing resources, but the 

model is incapable of describing flows with separation and recirculation. The k-E model 

is more sophisticated than the zero equation model. But, the k-E model fails to give 
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correct results in certain cases; for example, some unconfined flows, flows with large 

extra strains, rotating flows, fully developed flows in non-circular ducts (Versteeg et aI., 

1995). 

2.3.3 Terminologies associated with CFD 

a) Discretization: 

Analytical solutions to the Navier-Stokes equation exist for only the simplest of 

flows under ideal conditions. For real flows the governing equations need to be solved 

numerically. Discretization refers to the numerical approach of replacing the governing 

equations by algebraic approximations, which may be solved using a numerical method. 

b) Mesh/Grid generation 

Grid generation can be defined as the sub-division of the computational domain 

into a number of smaller, non-overlapping sub-domains. 

c) Structured mesh 

The grid is laid out in a regular repeating pattern. These types of grids utilize 

quadrilateral elements in 2D and hexahedral elements in 3D (html1ink (39)) 

d) Unstructured mesh 
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Unstructured grid methods utilize an arbitrary collection of elements to fill the 

domain. These types of grids typically utilize triangles in 2D and tetrahedra in 3D (html 

link (391) 

e) Finite volume solution techo ique (Versteeg et aI., 1995) 

The numerical algorithm of finite volume scheme consists of following steps: 

•� Formal integration of the governing equations of fluid flow over aU the control 

volumes of the solution domain 

•� Discretization involves the substitution of a variety of finite-difference type 

approximations for the tenus in the integrated equations representing flow 

processes such as convection and diffusion. This converts the integral equations 

into a system of algebraic equations. 

•� Solution of the algebraic equations by iterative method 

1) Finite element technique 

Finite element methods use simple pi.ecewise functions (e.g. linear or quadratic) 

valid on elements to describe the local variations of unknown flow variables q>. 

g) Advection scheme 

Advection scheme is used for the discretization of the convective tenns in the governing 

equation 
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b) Convergence: (html link: [40]) 

1) Grid convergence 

Grid convergence indicates that as the grid spacing is reduced, the computed 

simulation results approach the continuum result. Here "grid spacing" can refer to both 

spatial spacing, as well as, time step for the case of unsteady, time-accurate simulations. 

2) Iterative convergence 

Iterative convergence indicates that as the discrete equations are iterated, the 

computed simulation results approach a fixed value. The criteria to determine the 

iterative convergence include: 

i) Residuals 

The residuals of the equations are the change in the equations over iteration. 

These are usually scaled or normalized. One usually looks for the residuals to reach a 

certain level as an indication of iterative convergence. For a time-marching, steady-state 

strategy, this involves examining whether the residual has been reduced a certain number 

(usually 3-4) of orders ofmagnitude. 

ii) Results 

The CFD simulation has the objective of determining some quantity such as lift, 

drag, recovery, etc. One can track the values of such engineering quantities with respect 

to iteration and define iterative convergence when these quantities converge. The 
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convergence criteria are usually defined by acceptable error in these values. It is often the 

case that certain quantities may reach convergence at a di fferent rate than other 

quantities. One can check that a monitored flow value (such as thrust, drag, or boundary 

layer profile) has remained unchanged with respect to the number of iterations. 

iii} ,Time-Accurate Simulatiolls 

For a time-marching, time-accurate strategy, this involves examining whether the 

final time has been reached with proper convergence at each time step. 

iv) Space-Marching Simulation 

For a space-marching strategy, this involves examining whether the end of the 

marching segment has been reached with proper convergence at each marching step. 

i) Validation 

Validation is the process of determining the degree to which a model is an 

accurate repres~ntation of the real world from the perspective of the intended uses of the 

model (htmJ link (401). 

j) Verification 

Verification is the process of determining that a model implementation accurately 

represents the developer's conceptual description of the model and the solution to the 

model (htmllink [401). 
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k) Numerical diffusion 

Numerical diffusion is usually eXhibited by difference equations where the 

advection term has been approximated using an odd-ordered advection scheme, for 

example, Upwind Differencing Scheme, which is first order accurate. This causes the 

distributions of the transported properties to become smeared. The resulting error has a 

diffusion-.like appearance (CFX-5.5.1 user manual) 

1) Numerical dispersion 

Numerical dispersion is usually exhibited by discretized equations whose 

advection terms has been approximated using schemes that are even order accurate, for 

e.g. central difference scheme, which is second order accurate. Dispersion results in 

oscillations or wiggles in the solution particularly where there are steep flow gradients 

(CFX-5.5.1 user manual) 
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CHAPTER 3 

STRUCTURE OF CFX-5.5.1 

3.1 Working of CFX-5.5.1 

In the present study, the CFD code used is CFX5.5.1. CFX-5.5.1 is the latest 

upgrade in CFX-5 series (CFX- 5.6 is scheduled for release in May). CFX-5 is a general 

purpose CFD code (marketed by ANSYS), combining an advanced solver with powerful 

pre and post processing capabilities. This section is intended to briefly describe the 

working ofCFX-5. For detailed reading, CFX-5.5.1 user manual is recommended.. 

The process ofperforming single CFD simulation is split into three components: 

Pre-Processing Solver Post-Processing 

Pre-processor 

The pre-processor is the component used to create the input for the solver. Pre-processing 

involves: 

a) Defining the geometry of the region of interest 

b) Selecting the physical models which are to be included in the simulation 
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c) Specifying the properties ofthe fluid 

d) Specifying the boundary conditions 

e) Creating a mesh of control volumes 

In CFX-5.5.1, CFX-Build acts as pre-processor. In addition to its own geometry tools, 

CFX-Build can import geometries from other major CAD packages. CFX-Build also 

provides high-level automatic mesh generation tools, significantly reducing mesh 

generation times. 

Solver 

The solver is the component which solves the CFD problem, producing the 

required results. The process can be described as follows: 

a) The partial differential equations are integrated over all the control volumes in the 

region of interest. This is equivalent to applying a basic conservation law (e.g. for 
I 

mass or momentum) to each control volume. 

b) These integral equations are converted to a system of algebraic equations by 

generating a set of approximations for the terms in the integral equations. 

c) The algebraic equations are solved iteratively. 

An iterative approach is required because of the non-linear nature of the equations and as 

the solution approaches the exact solution it is said to be converged. For each iteration an 

error, or residual, is reported as a measure of the overall conservation of the flow 
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properties. How close the final/converged Solution is to the exact solution depends on a 

number of factors, including the size and shape of the control volumes and th size of the 

final residuals. Complex physical processes, such as combustion and turbulence are often 

modeled using empirical relationships, and the approximations inherent in these models 

also contribute to differences between the CFD solution and the real flow. The solution 

process requires no user interaction. The solver produces a result file, which is then 

passed on to the post-processor. In CFX-5.5.1, the solver process is managed by CFX-

Solver Manager. 

Post-processor 

The post-processor is the component used to analyze and present the results. Post

processmg involves anything from obtaining point values to complex animated 

sequences. 

Examples of some important features of post-processors are: 

, 
a) Visualization of the geometry and control volumes. 
b) Vector plots showing the direction and magnitude of the flow 

c) Visualization of the variation of scalar variables (such as temperature) through the 

domain 

d) Quantitative numerical calculations 

e) Animation 
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f) Charts showing graphical plots of variables 

g) Hardcopy output 

In CFX-5.5.1, post-processing is achieved through CFX-Post. 

3.2 Mathematical Details 

There are number of different solution methods which are used in CFD codes. 

The most common, and the one on which CFX-5 is based, is known as the finite volume 

technique (Refer section 2.3.3 for details). The advection scheme implemented in CFX

5.5.1 can be expressed in the fonn: 

¢ lip + fJ V ¢ .d r (3-1) 

Where ¢up is the value of the upwind node, 'V ¢> is the gradient of ¢J and r ' is the vector 

, 
from the upwind node to the ip. Particular choices for {3 give rise to different schemes. , 

CFX-5 uses a single cell, unstaggered, and coIlocated grid to overcome the decoupling of 

the pressure and/or velocity. 

Coupled Solver 

One of the strength of CFX-5 is its coupled solver. Segregated solvers employ a 

solution strategy where the momentum equations are first solved, using a guessed 

pressure, and an equation for a pressure correction is obtained. Because of the guess-and
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correct nature of the linear systems a large number of iterations are typically required in 

addition to the need for judiciously selecting relaxation parameters for these variables. 

CFX-5 uses a coupled solver, which solves the hydrodynamic equations (for u, v, W,. p) as 

a single system. The solution approach uses a fully implicit discretization of the equations 

at any given time step. For steady state problems the time-step behaves like an 

acceleration factor, to guide the approximate solutions in a physically based manner to a 

steady state solution. This reduces the number of iterations required for convergence to a 

steady state, or to calculate the solution for each time step in a time dependent analysis. 

The solution procedure in general follows the following two steps: 

1) The non-linear equations are linearized and assembled into the solution matrix. 

2)� The linear equations are solved usmg an Algebraic Multigrid method. (The 

convergence behavior of many matrix inversion techniques can be greatly 

enhanced by the use of technique called multigrid. The multigrid process involves 

carrYing out early iterations on a fine mesh and later iterations on progressively 

coarser virtual ones.' The results are then transferred back from the coarsest mesh 

to the original fine mesh. CFX-5 uses a particular implementation of Algebraic 

Multigrid called Additive Correction) 

Turbulence models 

Turbulence models offered by CFX-5.5.1 cover a wide range of engineering applications. 

a) The Zero Equation model 
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b) Standard k-E model 

c) RNG k-E model 

d) Standard k-w model 

e) Baseline (BSL) zonal k-w model 

f) SST zonal k-w based mode.! 

g) Reynolds-Stress model 

a) Launder, Reece, and Rodi Isotropization of Production model (LRR-IP)� 

b) Launder, Reece, and Rodi Quasi-Isotropic model (LRR-QI)� 

c) Speziale, Sarkar, Gatski model (SSG)� 
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CHAPIER4 

RESULIS AND DISCUSSION 

Introduction 

A packed bed of structured packing consists of blocks of structured packing one 

atop another as shown in Figure 4-1. 

, 

Figure 4-1 Structured packing bed (Krishna et aI., 200 I) 

Each block is made of structured packing sheets placed adjacent to each other in such a 

way that two adjacent sheets have different channel orientation as shown in Figure 4-2 

and 4-3. 
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Fig 4-2 A graphical representation of a structured packing block (Krishna et aI., 200I) 
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, Fig 4-3 Channel orientation for structured packing sheets 

The triangular channels of adjacent sheets intersect each other at an angle decided by the 

channel inclination angle. Two adjacent sheets in a structured packing block can be seen 

as an ordered network formed by repeating an elementary unit cell shown in Figure 4-4. 

The elementary unit consists of an intersection zone formed by the channels of adjacent 

sheets. 
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4.1 Base case 

4.1.1 Geometry 

For the base case, a channel inclination angle of 45° is considered i.e. the two 

flow channels intersect at an angle of 90°. The flows in the two channels interact with 

each other at the intersection zone. The geometry for the base case, used in the CFD 

simulation, is shown in Figure 4-4. The channel cross-section dimensions are shown in 

Figure 4-5. Downstream of the intersection zone, the flow from each channel has three 

possible paths to follow. The flow paths are shown in Figure 4-6. In Figure 4-6, the flow 

is entering at Upper Channel inlet. The three possible flow paths are: 

1.� The flow will follow the Upper Channel (Path 1) 

2.� The flow will follow the Lower Channel (Path 2) 

3.� The flow will get split at the intersection with a fraction of the flow following the 

Upper Channel and remaining flow entering the Lower Channel. 

In past, visualization experiments have been conducted to study the flow profile 

in intersecting square ducts/ channels (Umeda et aI., 1994; Zhang et aI., 1993). It was 

'" observed that the flow followed the third possibility mentioned above. For the base case 

geometry, iJthe fl.ow gets split at the intersection, the flow entering the Lower Channel is 

expected to show the characteristics as that of the flow in a 900 bend (since the two 

channels intersect at 90°). Therefore, it is expected that the flow entering the Lower 

Channel will result in a recirculation zone due to flow separation. For CFD simulation, 

the location of the outlet should be such that vortices are far enough from the outlet so 

that their influence on flow solution is minimal. For the base case, a trial and error 

analysis showed that a distance of 36 mrn (equal to the length of the channel base), 
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downstream of the intersection zone, is sufficient to satisfy the above mentioned 

criterion. The total length of each channel is 108 rom (36*3). 

Inlet 

Inlet 

Lower 
Channel 

z 

Outlet 

Outlet 

Fig 4-4 Geometry used for the CFD simulation of base case 

,. 

... 36mm-" 

Fig 4-5 Dimensions for channel cross-section 
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Path 1 

Fig 4-6 Flow paths downstream of the intersection zone (Top view of Figure 4-4) 

4.1.2 Mathematical models 

Air as an ideal gas is modeled in the flow domain shown in Figure 4-4 with the 

domain operating pressure set to 1.013 '" 105 N/m2
. The fluid domain is assumed to be 

isothermal with a constant temperature of 298 K. Since the Reynolds Number, for the 

flow conditions considered in the simulati.on, is less than lO,OOO, the two-equation RNG 

k-8 turbulence model is used. The RNG k-E turbulence model is based on the 

renorrnalization group analysis of the Navier-Stokes equations. The transport equations 

for turbulence generation and dissipation are the same as those for the standard k-E 

model, only the model constants differ. 

The transport equation for turbulence dissipation is: 

~8 . ~~ 8-at +V'e(pUB)-V'e(--Vc:) = k(CCIRNGP;' -CC2RNGP8) (4-1) 
(J" cRNG 
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The transport equation for turbulence kinetic energy is: 

apk + V. (pUk) - V _ (J.leJJ Vk) =P - P& (4-2)
k& ~k 

Pk is the shear production due to turbulence, which for incompressible flows is given as: 

(4-3) 

(Jk, C e1RNG, C&2RNG are constants, whose value is given as 

Ce2RNG = 1.68 

Ce1RNG = 1.42- [TJ 

CIlRNG = 0.085; ~RNG = 0.012 

To study the mixing of the flow at the intersection zone, a tracer simulation was 

carried out by solving the scalar equation for an additional variable. The additional 

variable considered in this study is the mass fraction of the tracer. The additional variable 

equation is given by Equation 4-4. 

~ ~$ 
-+ V -(U¢) - V.«pD<Il +_1)V - (-» = S<Il (4-4)at SCI p 
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A very low value of kin matic diffusivity equal to 10-11 m 2/s is specified for the 

additional variable_ In CFX, turbulent viscosity is calculated as: 

e
lI=Cpr, f.i E: 

Where, 

0.09C il = 

k and E are obtained by solving the turbulence kinetic energy and dissipation equations 

respectively. The default turbulent Schmidt number in CFX-5 is 0.9. You can modify this 

value with the solver expert parameter "turbulent schmidt number" (personal 

correspondence with CFX technical support). The default value of turbulent Schmidt 

number is used for all the simulations. 

4.1.3 Boundary conditions 

The boundary conditions used are: 

1) For both Lower and Upper Channels, fixed velocity boundary condition (2 mls) is 

used. The choice of the velocity value was based on the assumption that Reynolds 
\ 

Number for general structured packing applications is less than 10,000 (Petre et at., 

2003). The average Reynolds Number calculated by CFX was 5500, which ensures 

turbulent conditions, and also satisfies the above mentioned assumption. Also, in the 

experimental study of gas flow in two-sheet structured packing system, Stoter (1993) 

used a velocity of 2 mls. A flat velocity profile is used with the entering flow normal 

to the boundary. Turbulence intensity equal to 0.037 and auto computed length scale 

is specified, which is used by the solver to calculated turbulence kinetic energy and 

turbulence dissipation. Additional variable (tracer mass fraction) is set to a value of 
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one� at inlet of Upper Channel and zero at the Lower Channel inlet i.e. the tracer is 

introduced only at the Upper Channel inlet. 

2) At both the outlets, zero relative static pressure boundary condition is used. 

3) At waUs, smooth, no slip waH boundary condition is specified. In CFX, the near wall 

region is approximated using scalable wall functions as opposed to standard wall 

functions. In CFX 5.4.1 and earlier versions, only standard wall functions were 

available. In CFX 5.5.1, both scalable and standard wall functions are available. 

Two approaches are commonly used to model the flow in the near-wall region: 

•� The wall function method 

•� The Low-Reynolds-Number method where the Navier-Stokes equations are 

solved up to the wall. Highly refined mesh is required to capture the rapid 

variation of variables in the near wall region. 

In the wall function approach, the viscosity affected sublayer region is bridged by 

employing empirical formulas to provide near-wall boundary conditions for the mean 

flow and turbulence transport equations. These fonnulas connect the wall conditions (e.g. 

\ the wall shear stress) to the dependent variables at the near-wall grid node, whi.ch is 

presumed to lie in the fully developed region of the boundary layer. The major advantage 

of the wall-function approach is that it conserves the valuable computer resources, and it 

avoids the need to account for viscous effects in turbulence model (CFX-5.5.1 user 

manual). 

The disadvantage with the standard wall functions is that they result in a singular 

solution at separation points. The scalable wall functions are based on the turbulence 

equation, and the singularity at the separation point is avoided by using a limiting value 
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of y+ (scaled distance from wall). The basic idea behind the scalable wall-function 

approach is to assume that the surface coincides with the edge of the viscous sublayer, 

which is defined to be at y+ = 11. This region is the intersection between the logarithmic 

and the near wall profile. The computed y+ is not aLlowed to fall below this limit. 

Therefore, all grid points are outside the viscous sublayer and all fine grid inconsistencies 

are avoided. The scaled velocity for scalable wall function is given as 

(4-5) 

4.1.4 Initial conditions 

All fields except for velocity were initialized usmg "Automatic" initial values. The 

"Automatic" setting sets the pressure equal to the operating pressure specified in the 

domain fonn, and all velocity components equal to zero. 

4.1.5 Meshing 

Unstructured meshing with tetrahedral volume elements is used for the 

\ 

simulations. Delaunary Surf'lce Meshing mode is used for creating the surface mesh and 

the volume mesh is created from the surface mesh using Advancing Front Inflation (AFI) 

mode. Inflation is used in the near wall region with 5 inflation layers. 

In near wall regions, boundary layer effects give rise to velocity gradients, which 

are greatest nonnal to the surface. Computationally efficient meshes in these regions 

require that the elements have high aspect ratios. If tetrahedral elements are used, then a 

prohibitively fine surface mesh may be required to avoid generating highly distorted 

tetrahedral elements at the surface. This problem can be overcome by using inflation in 
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the near wall region. In the inflated layers prisms are used to create a mesh that is finely 

resolved normal to the wall, but coarse parallel to it. This mesh arrangement is beneficial 

for cost effective CFD analysis. The AFI volume mesher can use the local surface 

element normals to inflate 2D triangular surface elements into 3D 'prism' elements at 

selected walls or boundaries. Figure 4-7 shows the near wall meshing with inflation. The 

creation ofthese elements can be controlled using Inflation Parameters to determine their 

size and distribution in near-waH regions(CFX-5.5.1 user manual). Mesh generated for 

the base case is shown in Figure 4-8, where close to the wall, five layers of inflated mesh 

elements are present, and rest of the volume is filled with tetrahedral elements 

(unstructured mesh). 

Tetrahedral 
volume mesh 
(Unstructured) 

\ 

-----r----t----t----t__-l__-lIIIII----:.lnflated 
volume mesh 

.................................................................................................� 
(Structured) 

Fig 4-7 Volume mesh with inflated mesh elements in the near waH region 
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Tetrahedral 
volume mesh 
(unstructured) 

Fig 4-8 Mesh for the base case 

4.1.6 Solver parameters 

Maximum number of time steps = 100 

Time step = Auto time step 

(Auto time step is calculated as the ratio of cube root of the domain volume and velocity 

\� specified at the inlet) 

Convergence criterion = 10-5 Normalized Root Mean Square (RMS) value 

Advection scheme = Second order High Resolution Scheme was used to achieve near 

second-order accuracy 

To complete the discretization of the advection term, the variable must be related to the 

nodal values of¢. The advection schemes implemented in CFX-5 can be cast in the form: 

(4-6) 
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Where, ¢up is the value at the upwind node, \l¢ is the gradient of¢, and r' is the vector 

from the upwind node to¢jp . Particular choices for {3 give rise to different schemes. The 

High Resolution Scheme computes {3 locally to be as close to I ({3=1 in Equation 4-5 will 

result in 2nd order scheme) as possible without violating boundedness principles. The 

high resolution scheme is therefore both accurate (reducing to first order near 

discontinuities and in the free stream where the solution has little variation) and robust. 

4.1.7 Convergence 

A typical convergence plot obtained for the base case is shown in Figure 4-9 and 

4-10. The simulation took 178 iterations and a CPU time of 3 hours to converge. 
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Fig 4-9 Residual plot for mass and momentum equations 
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Fig 4-10 Residual plot for turbulence equations 

The residual plots show a smooth convergence. 

\ 
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4.1.8 Results for the base case 

Figure 4-11 shows the streamline plot (also streakline or pathline plot, since the 

simulation is a steady state simulation) for the two intersecting triangular channels. Red 

streamlines represent the flow path for the fluid entering from the Upper Channel inlet 

and blue for the Lower Channel inlet. The streamlines are plotted as constant color lines, 

and the color does not indicate any value. The flow from the Upper Channel inl,et gets 

split at the intersection zone. Part of the flow goes straight (Upper Channel), and rest of 

the flow bends at 90° to enter the Lower Channel. Similar flow behavior is observed for 

the flow entering from Lower Channel inlet. The fraction of the flow bending at 90° is 

expected to result in a recirculation zone because of flow separation. For the flow 

entering from the Upper Channel inlet, the recirculation zone is expected to be developed 

in the circled portion shown in Figure 4-11. The vector plot, in Figure 4-12, shows the 

recirculation zone that is developed in this region. In the vector plot, red color indicates 

maximum velocity, blue indicates minimum, and rest represents the intennediate values. 
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Fig 4-11 Streamline plot 

Fig 4-12 Vector plot for the circled region in Figure 4-11� 
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Figure 4-13 shows the contour plot for tracer mass fraction distribution, and the 

"'Mixing Band" within which the mass fraction is changing from zero to one. The contour 

plot for Figure 4-13 is shown on a plane at the center of the intersection zone. In Figure 

4-13, the contour lines can't be seen distinctly. Therefore an expanded view of the circled 

portion in Figure 4-13 is shown in Figure 4-14. Figure 4-15 shows the contour plot at the 

.Upper Channel outlet. In Figure 4-15, the "Mixing Band" is spread over a larger area as 

compared to Figure 4-13 (see the Upper Channel portion of Figure 4-13), indicating an 

increase in mixing. The increase in mixing can be ascribed to the increase in interaction 

between flow streams from channels of adj acent sheets (Upper and Lower Sheet for the 

base case). For Figure 4-15 and all other tracer distribution contour plots, coming after 

this, refer to the Legend shown in Figure 4-13. A Legend represents the values 

correspond.ing to the colors used in the CFD results. For Figure 4-13, the Legend is 

shown on the extreme left hand side. 
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Fig 4-13 Contour plot for tracer mass fraction at the center of the intersection zone 
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Fig 4-14 Expanded view ofencirc1ed portion in Figure 4-13 

z 

Lx 

Fig 4-15 Contour plot for tracer mass fraction at Upper Channel outlet 
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(I) Effect of advection scheme selection 

Sensitivity of the CFD results to the advection schemes was studied for the base 

,case. Figure 4-16 and 4-17 show the results obtained using Isl order/Upwind Advection 

Scheme and Second Order High Resolution Scheme respectively, for the same mesh and 

boundary conditions. Figure 4-16 shows a spread out "Mixing Band" as compared to 

Figure 4-17. The reason behind the wider "Mixing Band" is the numerical diffusion 

associated with 15t order advection scheme. Numerical diffusion is usually exhibited by 

difference equations where the advection term has been approximated using an odd-order 

scheme, for instance, Upwind Differencing Scheme (UDS), which is first order accurate. 

The effect of the numerical diffusion over the whole flow domain is that the features of 

the flow are smeared out as observed in Figure 4-16. It is a fact that using the UDS 

scheme with tetrahedral element meshes will produce solutions that exhibit a larger 

degree of numerical diffusion than would exist from a solution obtained with a similar 

mesh of hexahedral elements. However, this discrepancy diminishes rapidly as the 

,� advective discretization is made more second-order accurate, and by working towards a 

grid independent solution (CFX-S.5.1 user manual). 
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Fig 4-16 Contour plot for tracer mass fraction at the center of the intersection zone (using 

frrst order advection scheme) 

Fig 4-17 Contour plot for tracer mass fraction at the center of the intersection zone (using 

Second Order High Resolution Advection scheme) 
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(II) Effect of mesb size 

A very low value of kinematic diffusivity equal to 10- 11 ro2/s is specified for the 

additional variable so that no Dllxmg should occur because of diffusion. But, 

correspondence with the CFX technical support indicated that this argument is not 

entirely true. Setting the kinematic diffusivity to a small value will only prevent mixing if 

the flow is parallel to the grid. Since an unstructured mesh is used in the simulations, this 

will not be the case and some mixing will occur because of numerical diffusion. The level 

of numerical diffusion will increase with increased mesh size. So, a finer mesh will help 

in reducing the errors caused by numerical diffusion. To verify this fact, three different 

grid sizes were used to analyze the effect of mesh size on solution. The number of 

tetrahedral and prismatic elements for each mesh size is given Table 4-1. 

Tetrahedral elements Prismatic elements 

Mesh I 62501 36691 

Mesh II 151151 69105 

Mesh III 307411 108732 

Table 4-1 

The numbers for tetrahedral and prismatic elements are obtained from the solver output 

file. Results for each mesh size are shown in Figures 4-18 through 4-23. The effect of 

mesh size is seen more clearly in Figures 4-21 through 4-23. From Mesh I to Mesh III, 

the mesh size is reducing. From Figures 4-18 through 4-20, it can be observed that the 

spread of the Mixing Band is decreasing as the mesh size is decreasing i.e. the coarse 
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mesh is over predicting the mlxmg. Reducing mesh Slze has minimized this over 

prediction caused by numerical diffusion. All the CFD results for the base case are 

obtained with Mesh In. 
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Fig 4-18 Contour plot for tracer mass fraction at the center of the intersection zone (for 

Mesh J) 

Fig 4-19 Contour plot for tracer mass fraction at the center of the intersection zone (for 

Mesh ll) 

Fig 4-20 Contour plot for tracer mass fraction at the center of the intersection zone (for 

Mesh Ill) 
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Fig 4-21 Contour plot for tracer mass fraction at Upper Channel outlet (for Mesh I) 

Fig 4-22 Contour plot for trac~r mass fraction at Upper Channel outlet (for Mesh II) 

Fig 4-23 Contour plot for tracer mass fraction at Upper Channel outlet (for Mesh III) 
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(lin Splitting Factor 

As shown in Figure 4-11, the flow in each channel gets split at the intersection 

zone with a fraction of the flow following the path of the channel, and remaining flow 

entering the channel of the adjacent sheet. Thus, the portion of each channel, down 

stream of the intersection zone, represents the mixing of two flow streams. "Splitting 

Factor" is defmed as the fraction of the flow splitting at the intersection zone and entering 

the channel of adjacent sheet. For example, for the base case, Splitting Factor is the 

fraction of the flow in the Upper Channel entering the Lower Channel, which represents 

the adjacent sheet (same is true for flow in Lower Channel). Splitting Factor can be 

considered as the degree of flow mixing in a structured packing block consisting of sheets 

, stacked adjacent to each other. 
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(IV) Effect of turbulence intensity 

Turbulence intensity (TJ.) needs to be speCIfied as a part of inlet boundary 

condition. Since no experimental data was available for inlet T.!., effect of T.I. on 

performance parameters was studied so as to select appropriate T.I.. Two perfonnance 

parameters, Splitting Factor and pressure drop, were chosen to evaluate the effect of T.!. 

Splitting Factor i.e. mass fraction of tracer at Lower Channel outlet is taken as a mass 

flow average value. Both pressure drop and tracer mass fraction are calculated using the 

calculator function in CFX POST. 0.001 and 0.1 are the lower and upper limits of T.r. 

that are allowed in CFX. As per CFX manual, normally T.t. ranges between 1-5% and 

considering the fact that variation of both the parameters with T.T. is small (as can be 

t inferred from Table 4-2), a value of 0.037 was used for all the simulations. 

Turbulence Intensity SpLitting Factor Pressure Oro Pa 
0.001 0.55 0.33 
0.037 0.541 0.362 
0.06 0.536 0.386 
0.1 '0.531 0.42 

Table 4-2 Effect of turbulence intensity on performance parameters 
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(V) Mesh Adaptation 

For the problem studied in this thesis, it has been identified that numerical 

diffusion errors will result in over prediction of mixing at the intersection zone (based on 

the results in Section 4.1.8 (I and In. Using a fine mesh and High Resolution Advection 

Scheme, the numerical diffusion errors are reduced as described in sections 4.1.8 (I and 

II). The tracer mass fraction is changing from 0 to 1 in only a small region (Mixing 

Band), and the error caused by numerical diffusion can be further reduced if a refined 

mesh is used in the Mixing Band. This selective mesh refining can be achieved by using 

Mesh Adaptation. Mesh Adaptation in CFX-5 is the process in which, once or more 

during a run, the mesh is selectively refined in areas, which depend on the Adaptation 

.criteria specified .. This means that as the solution is calculated, the mesh can 

automatically be refined in locations where solution variables are changing most rapidly, 

in order to resolve the features of the flow in these regions. For the base case, the mesh is 

adapted with the tracer mass fraction. Within the Mesh Adaptation step itself, three 

processes take place: 

1. Adaptation Criteria are calculated for each mesh element.� 

2. The appropriate number of nodes is added to the existing mesh according to the� 

Adaptation Criteria calcu lated.� 

3. The solution already calculated on the older mesh is linearly interpolated onto the new� 

mesh.� 

The Mesh Adaptation algorithm is shown in Figure 4-24.� 
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CFX-S Defi i 10 File 

No Adaption requested Adap 'on reques ed 

Solve on c rrent mesh using 
Intermediate Convergence Criteria, 
specified on the Mesh Adaption 
Advanced Para eters form. 

Adaption finished 

F rther Adaptjon 

Perform esh Adaption step, 
adding new nodes according to 
the Adap 'on Criteria. 

Solve on curren mesh� 
using Convergence Criteria� 
specified on the SeUSolver� 
Parameters for .� 

CFX-5 Results File 

(includes the mesh used for the latest solution.) 

Fig 4-24 Flow chart for Mesh Adaptation in CFX-5 (reproduced from CFX-5.5. I user 

manual) 
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For the base case, Solution variation is used as the Adaptation criterion, mathematical 

details of which are given below. 

The Adaptation Criterion, Ai, for a given mesh edge i oflength Ii is calculated as 

Where ¢ j is the j th Adaptation variable (e.g. density, pressure etc.), A¢ j is the global� 

range of the variable ¢ j over all the nodes (excluding those on Wall boundary conditions� 

for turbulent flow), A¢ ji is the difference between t/J j at one end of the edge and the other� 

I end, and N t/J j is a scalar for Adaptation variable t/J j to scale all the A to take values� 

between 0 and 1. If you select more than one variable, then Adaptation Criterion are� 

calculated and normalized for aU of the solution variables selected at each element, and 

the maximum of these is used to decide whether to refine the element. You need to 

ensure that the variables you select will vary during the calculation; for instanc , you 

should not select density for an' incompressible flow calculation. 

CFX-5 uses incremental Adaptation for mesh Adaptation. The particular implementation 

of incremental Adaptation that is adopted in CFX-5 is known as hierarchical refinement 

or h-refinement. Each Adaptation step consists of a structured refinement of an existing 

mesh. A sequence of refinements forms a set of hierarchical levels. In each Mesh 

Adaptation Step, each mesh edge, which is marked for Adaptation, has an extra node 

placed halfway along it. The mesh elements, which share this edge, are then divided to 

use the new node, and are subjected to the following restrictions: 
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• eighboring elements must only differ by one refinement level. Hence, one mesh� 

element cannot be divided twice if its neighbor has not been divided at all.� 

• Where possible, regular refinement of an element takes place. Regular refinement� 

means that all the edges of an element are divided into two, and the element split� 

accordingly. To make this possible, extra nodes may be added.� 

• No "hanging" nodes are allowed. This means that if an extra node is added to an edge,� 

aU the mesh elements, which share that edge, must be refined.� 

• Only certain types of elements are allowed in the refined mesh: tetrahedron, prism,� 

pyramid and hexahedron.� 

In regions where Inflation has taken place (so that there are prisms and some pyramid� 

,elements near Wall� Boundary Conditions), the Mesh Adaptation avoids refining these� 

elements in the direction perpendicular to the Wall. Only edges on the interface between� 

the inflated elements and the rest of the tetrahedral mesh are allowed to be marked for� 

Adaptation. When the refinement of these edges takes place, the refinement propagates� 

through the layers of prismatic elements to the Wan Boundary Condition itself. For the� 

base case, mesh inflation is used in the near wall region.� 

Adapation parameters are specified on the "set solver parameter" fonn in CFX-BUILD.� 

The Adaptation parameters used for the base case and significance of these parameters is� 

given below.� 

1) Adaptation Criterion: Solution variation� 

2) Adaptation variable: Tracer mass fraction� 

3) Maximum number of Adaptation steps: 3� 

61� 



This sets the number of mesh Adaptation steps that take place. In CFX-5 user manual, it 

is recommended that you choose a number between 1 and 5. 

4) Number of nodes in adapted mesb: Multiple of initial mesh = 3 

This setting allows you to select how many nodes will be in the [mal mesh. You can 

either select Final Number of Nodes, which allows you to specify the number of nodes 

directly, or select Multiple of Initial Mesh, which allows you to specify the number of 

nodes in the final mesh as a multiple of the initial mesh. If you select Multiple ofInitial 

Mesh, you must enter a multiplier which is greater than 1.2. If you select to specify Final 

Number ofNodes, then you are advised to choose a number of nodes, which is no more 

than a factor of five greater than the number of nodes in the initial mesh. For results 

presented in this section, Multiple of Initial Mesh option is used. The initial mesh used 

here is MESH ITI (refer Table 4-1). In setting up the Adaptation parameters, the tutorial 

"Free surface flow over a bump", given in CFX-5.5.1 user manual, was referred. 

Since the tracer mass fraction is varying between 0 and 1 in the Mixing Band, it is 

expected that during Mesh Adaptation mesh in the Mixing Band region will be refined. 

The mesh generated during the Adaptation steps is shown in Figures 4-25 and 4-26.Since 

the mesh for the third Adaptation step is same as that of second step, it is not shown here. 

Figure 4-25 i.e. mesh for the first Adaptation step is same as Mesh III, whereas Figure 4

26 shows the mesh after it is being adapted to the Adaptation variable i.e. tracer mass 

fraction. As expected, the mesh is refined in the Mixing Band region shown by the 

yellow band in Figure 4-26. The fact that same mesh is generated for Adaptation step 2 

and 3 indicates that only two Adaptation steps will suffice for the base case. 
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Fig 4-25 Mesh for the 1st Adaptation step 

Fig 4-26 Mesh for the 2nd Adaptation step 
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Figures 4-27 and 4-28 show the contour plot for tracer mass fraction obtained for the first 

and second Adaptation steps. The contour plot for third Adaptation step was found to be 

same as that of second. This corroborates the fact that only two Adaptation steps are 

required. Comparing the Mixing Band spread in Figures 4-27 and 4-28, it can be 

observed that the over prediction of mixing, caused by numerical diffi.Ision, is reduced 

further as a result of Mesh Adaptation. Therefore, it can be concluded that for 

simulations, which consist of mixing of flow streams, use 

• Higher order advection scheme 

• Refined mesh 

• Mesh Adaptation 
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I Fig 4-27 Contour plot for tracer mass fraction at the center of the intersection zone (1 st 

Adaptation step) 

Fig 4-28 Contour plot for tracer mass fraction at the center of the intersection zone (2nd 

Adaptation step) 
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4.1.9 Comparison of the CFD results with experimental results (for base case) 

In past, visualization experiments have been conducted to study the flow profiles 

in intersecting square ducts/ channels (Umeda et aI., 1994;Zhang et aI., 1993). To the best 

knowledge of the author, no experimental study has been done for intersecting triangular 

ducts. The geometry considered in this thesis is different from the one that has been 

studied in the literature, not only in terms of the shape (square and triangular cross 

section), but also the way the channels are aligned. Therefore, the flow physics associated 

with the two geometries is also different. . Figures 4-29 and 4-30 will make this point 

more clear. In both the figures, the intersection zone is shown by the circled region. 

Figure 4-29 shows the geometry studied in literature. In Figure 4-29 mixing at the 

\ntersection takes place by direct impingement of flows coming from both the inlets. 

Figure 4-30 shows the square shaped version of the base case geometry (as shown in 

Figure 4-4). In Figure 4-30, mixing at the intersection takes place because of the shear 

between the flows from upper and lower inlet. To the best knowledge of the author, no 

experimental study has been conducted for the geometry considered in this study. 
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Outlet� 

Inle� 

Inlet 

Outlet 

Fig 4-29 Geometry similar to the one that has been studied in the literature (Umeda et aI., 

I 994;Zhang et al., 1993) 

Outlet 

Lower inlet 

Outlet 

Fig 4-30 Geometry similar to the one that is being used in the this study 
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4.2 Effect of design parameters on the performance of structured packing 

The sheets in a structured packing block are stacked in such a manner that the 

adjacent sheets have different channel orientation so that the channels intersect each other 

at an angle. The purpose of this type of design is to enhance the radial spread and mixing 

of the gas phase. Splitting Factor is a measure of mixing between flow streams. Pressure 

drop is a measure of the capacity ofthe packing. Packing capacity can be roughly defined 

as " the vapor velocity above which liquid accumulates uncontrollably in the packed bed 

and continued operation becomes impossible". Packing with high pressure drop has low 

capacity. Pressure drop and Splitting Factor are chosen as performance parameters for 

this study. Channel inclination angle (8) i.e. angle made by the channels with the 

'horizontal and crimp angle (<P) i.e. angle between the base and the side of the triangular 

cross section are the design parameters considered in this study. 

Fig 4-31 Structured packing sheet showing channel inclination angle (8) 

Fig 4-32 Channel cross section showing crimp angle (4)) 
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4.2.1 Effect of channel inclination angle 

The effect of channel inclination angle (also called as corrugation angle) on the 

perfonnance parameters was studied by running simulations for a wide range of angles. 

The channel djmensions are same as that of base case; only inclination angle is varied. 

For the geometry used in this study, the channel inclination angle is shown in Figure 4

33. 

y 

Lx 

Fig 4-33 Location of channel inclination angle (8) 

Experimentally it has been observed that the mass transfer efficiency of the 

column decreases with the increase in the channel inclination angle (Olujic et aI., 2000). 

However, the experimental study has not discussed any reasons for the decreased 

efficiency. Figure 4-34 shows that Splitting Factor decreases with 8 i.e. mixing of the 

flow streams in a structured packing block decreases with 8. The decrease in gas mixing, 

caused by the increase in inclination angle, can be a probable cause for the observed 

decrease in column mass transfer efficiency_ 
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Fig 4-34 Splitting Factor as a function of channel inclination angle for a crimp angle of 

Figure 4-35 shows that pressure drop decreases with the inclination angle, which 

IS in accordance with the experimental observations (Olujic et aI., 2000; Petre et aI., 

2003). The pressure drop, in the problem under consideration, is caused by the interaction 

of two streams at the intersection. Total pressure drop in a structured packing bed is 

comprised of: 

• Elbow loss and stream splitting in bed entrance region 

• Pressure drop due to flow interaction at crisscrossing junctions (intersection) 

• Elbow loss by fonn drag at the transition between successive layers 

• Elbow loss by flow striking the wall and subsequent flow redirection to Upper 

Channels (Petre et aI., 2003) 

The pressure drop at the intersection contributes about 65-72% of the total pressure drop 

(Petre et aI., 2003). Literature has strongly emphasized the need of reducing this pressure 
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drop as a part of developing efficient packing (Olujic et a1. 2000). D crease 10 pre sur 

drop will result in increased packing capacity and reduced energy consumption. 

1.2 
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,Fig 4-35 Pressure drop as a function ofchannel inclination angle for a crimp angle of 45° 

Increase in channel inclination angle 

Decrease in Splitting Decrease in pressure drop 
Factor (reduced mixing) (increased capacity and energy 

saving) 

Fig 4-36 Effect of channel inclination angle on Splitting Factor and pressure drop 

Therefore. while selecting a channel inclination angle for an effiCient packing design, a 

balance between the two performance parameters has to be maintained. 
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4.2.2 Effect of crimp angle 

Once the optimum channel inclination angle for the structured packing is chosen, 

another design parameter that can be varied, for a given inclination angle, is crimp angle. 

Figure 4-37 and 4-38 show that both Splitting Factor and pressure drop decrease with the 

increase in crimp angle.. To the best knowledge of the author,. there has not been any 

independent work published in the literature addressing the effect of crimp angle on 

packing performance. But, if the experimental data (Petre et at, 2003) for Gempak 

(crimp angle= 43° and inclination angle= 45°) and Montz B1-250 (crimp angle= 36.9° 

'and inclination angle= 45°) for dry pressure drop is compared, it can be observed that 

pressure drop for Montz packing is greater than Gempak packing i.e. pressure drop 

decreases with the increase in crimp angle. This corroborates the CFD results shown in 

Figure 4-38. Similar trends are obtained with an inclination angle of 22.5° and three 

crimp angles that are tested for 45° inclination angle. Thus, for the reasons explained in 

section 4.2.1, a balance has to be maintained between the perfonnance parameters while 

selecting optimum crimp angle. 
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Fig 4-37 Variation of Splitting Factor as a function of crimp angle for a channel 

inclination angle of 45° 
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Fig 4-38 Variation of pressure drop as a function of crimp angle for a channel inclination 

angle of 45° 
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4.3 Effect of surface roughness 

The CFD results presented in earlier sections were obtained with assumption of 

smooth walls. In reality, the surface of a structured packing sheet is roughened so as to 

improve the wettability and liquid turbulence. The smooth wall boundary condition for 

the single-phase flow is based on the assumption that the liquid film (in two-phase flow) 

on the sheet surface is thick enough so that the gas flow pattern will not be affected by 

the surface roughness. However, in case of liquid maldistribution, the gas phase will be 

exposed to rough surface (since no liquid film will be present on the surface). Thus, 

single-phase simulation with rough wall boundary condition was carried out. The 

roughness height was measured for the Mellapak ™ packing, obtained from Fractionation 

'Research Inc., Stillwater, using electronic Vernier Caliper. A value� of 0.5 mm was 

specified as the roughness height. A careful mesh generation is required to capture the 

effects of roughness. Following suggestions were obtained from CFX technical support 

through personal correspondence: 

•� Use an epsilon based turbulence model (K-epsilon, RNG k-epsilon, or the R M 

models based on epsilon). Omega based models do not work with surface 

roughness. 

•� The thickness of the first element off the wall should be about the same as the 

roughness height that you set. Ifthe first element thickness is much less than the 

roughness height, then you would be attempting to resolve the wall roughness 

with the mesh .In this case, the rough wall assumption will not be valid. Also, 

as a rough guide, if the first element of the inflation (prismatic element) is about 5 

times thinner than wall roughness, then can become negative which is invalid. 
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But, larger value of the first prism height will increas the value of . So a value 

of half the roughness height or close to that will be appropriate for the height of 

first prism in the inflated layer. 

•� The size of the prism cell bordering the unstructured tetrah dral mesh must be 

close to the tetrahedral cell dimensions to have a smooth transition from prisms to 

tetrahedrons. This smooth transition can be achieved by using a geometric 

expansion factor of 1.2 or less in the inflation parameter form of CFX-BUILD. 

•� Use Scalable Wall Function. 

In accordance with the above suggestions, RNG k-epsilon turbulence model is 

hsed along with Scalable Wall Function. First prism height is set instead of maximum 

thickness of the inflation layer. The method of setting the first prism height does not 

control the overall height of the inflation layers, but creates prisms based upon the first 

prism height and the expansion factor. As a result, the Maximum Inflation Thickne s 

setting is ovenidden and becomes unavailable. The setup involves pecifying a first 

prism height and an expansion factor. The number of inflation layers then ne ds to be 

specified in relation to these two parameters and the background mesh spacing. 

Successive layers of inflated elements will be created until either: 

•� The prism element reaches unit aspect ratio (same height as base length) 

•� The number of layers specified has been reached. 

If the number of layers specified is too few to allow unit aspect ratio prisms to be 

created, a warning message will appear that contains a recommended number of layers. 

Conversely, if too many layers are specified a warning message will appear 
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recommending that you reduce the number of layer. Th suggested number of layers 

depends on the Volume mesh spacing - maximwn dge length. This method of inflation 

creates a smoother transition from the inflated prism mesh elements to the tetrahedral 

mesh elements (CFX-5.5.1 user manual). 

For this simulation, the inflation parameters for the inflated boundary are: 

• Number of layers = 24 

• Geometric expansion factor = 1. 15 

• First prism height = 0.35 mm (roughness height is 0.5 mm) 

The number of layers is the one that is being recommended by the warning message in 

CFX-BUILD as described above. 

The mesh generated with these parameters is shown in Figure 4-39 

Fig 4-39 Mesh generated to study the effect of roughness 
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Figure 4-40 shows the contour plot for tracer mass fraction with rough walls. 

Figure 4-40 is not much different from Figure 4-20, which shows the contour plot. for 

smooth wall. The only difference is the circled portion in Figure 4-40. The mass fraction 

variation in this region is more pronounced than Figure 4-20. The results in Figure 4-20 

were obtained with 5 inflation layers, whereas for Figure 4-40, 24 layers were used. The 

meshes used for both these results are shown in Figures 4-41 and 4-42. This difference in 

mesh types, in the encircled portion, might be causing the results to vary. Therefore, to 

verify this argument, simulation for smooth wall boundary condition was carried out with 

the mesh used for rough wan (shown in Figure 4-42). Figure 4-43 confirms that 

difference in mesh types was causing the variation in results observed in Figures 4-20 and 

4-40. Thus, CFD results indicate that wall roughness has no influence on tracer 

distribution. Same value of Splitting Factor was obtained for rough and smooth wall, 

which further corroborates this finding. Further study is required to confirm this 

prediction. Table 4-3 gives the pressure drop for the rough and smooth wall boundary 

conditions, where the mesh with 24 inflation layers was used for both the irnulations. As 

expected, the pressure drop for rough wall is greater than smooth wall. But, the difference 

is not significant. 

Fig 4-40 Contour plot for tracer mass fraction at the center of the intersection zone 
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I Fig 4-41 Mesh generated with 5 inflation layers (the result obtained with this mesh is 

shown in Figure 4-20) 

Figure 4-42 Mesh generated with 24 inflation layers (the result obtained with this mesh is 

shown in Figure 4-40) 
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Fig 4-43 Contour plot for tracer distribution at the center of the intersection zone (For 

smooth wall with 24 inflation layers) 

Wall bounda condition Pressure dro 
Smooth 1.394 
Rou h 1.5 

Table 4-3 Effect ofwall boundary condition on pressure drop 
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4.4 Effect of inlet boundary condition 

So far, all the simulation results presented are based on the assumption of equal 

velocity at both the inlets. This assumption is based on uniform vapor distribution in the 

structured packing block, and represents an idealistic situation. In reality, vapor 

maldistribution takes place i.e. velocities are different at the inlets. Therefore, simulations 

were carried out for the base case geometry with different velocities specified at Upper 

and Lower Channel inlets. Results in Figure 4-44, and 4-45 and 4-46 are obtained with 

velocities equal to 1.5 mls and I mls respectively at Lower Channel inlet. In both cases, 

velocity at the Upper Channel inlet is 2 mls. The mesh used is Mesh III, details of which 

are given in Section 4.1. Rest of the parameter specifications is same as that of the base 

I� case. Comparing Figure 4-20 (with equal velocities at both the inlets) with Figures 4-44 

and 4-45, it can be observed that in the intersection zone (bounded by dotted lines in 

Figure 4-44), there is not much change in the Mixing Band. Although, the curvature of 

the mixing band in the intersection zone for Fig 4-45 is less than 4-20 and 4-44, the width 

remains almost the same. Downstream of the intersection zone, a .Iarge change in the 

Mixing Band is observed. Splitting Factor decreases with the decrease in the velocity at 

the Lower Channel inlet as shown in Table 4-4 i.e. less flow from the Upper Channel 

inlet is entering the Lower Channel at the intersection zone. This type of flow pattern is 

expected to be seen in actual structured packing operation, where vapor maldistribution 

takes place. 
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Fig 4-44 Contour plot for tracer distribution at center of the intersection zone (Velocity at 

Lower Channel inIet=1.5 mls and Upper Channel Inlet = 2 mls) 

Fig 4-45 Contour plot for tracer distribution at center of the intersection zone (Velocity at 

Lower Channel inlet=l mls and Upper Channel Inlet = 2 mls) 
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Fig 4-46 Streamline plot for flow entering at Lower Channel inlet (Velocity at Lower 

Channel inlet=l m/s and Upper Channel Inlet = 2 m/s) 

Velocity at Lower Channel inlet Splitting Factor 

2 m/s (same as Upper Channel) 0.541 

1.5 m/s 0.483 

2 m/s 0.34 

Table 4-4 Variation of Splitting Factor with the velocity specified at Lower Channel inlet 
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J,5 Large scale simulation 

The results discussed so far are obtained for an el.ementary unit of two adjacent 

~veets, as shown in Figure 4-4. To study the over all flow pattern in the two-sheet 

~angement, geometry was created in CFX-BUILD, as shown in Figure 4-47, with thirty 

iotersecting channels resulting in 110 elementary units. In Figure 4-47, only fifteen 

vhannels of top sheet are visible. The adjacent sheet channels (remaining fifteen) are 

crossing the visible channels in Figure 4-47 at 90°. 

Figure 4-47 Two-sheet geometry with thirty channels (geometry created in CFX-BUILD) 

For meshing this geometry with appropriate mesh size, the total number of 

tetrahedral elements required was 8 million. With the available computational power 

(Intel Pentium-4, 1.8 GHz, 512 MB RAM processor), it was not possible to perform the 

simulation for the above mentioned mesh. Therefore, two-sheet geometry with 12 

intersecting channels, resulting in 28 elementary units, was studied. The geometry built in 

CFX-BUILD is shown in Figure 4-48. The channels intersect each other at 90°. 
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Fig 4-48 Two-sheet geometry with 12 channels i.e. six channels per sheet (geometry 

created in CFX-BUILD) 
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J.~.l Model development 

rfpe dimensions of the geometry are shown in Figure 4-49 and 4-50. 

112mm 

i 
87mm 

1 
f,tig 4-49 Sheet dimensions for the geometry shown in Figure 4-48 

14mm 

Fig 4-50 Channel cross section for Figure 4-48 

There are total eight inlets and eight outlets, four for each sheet. The two sheets 

are referred to as Upper Sheet and Lower Sheet. To visualize the position of the two 

sheets, refer to Figure 4-4. The Upper Channel in Figure 4-4 represents the channel 

positions for Upper Sheet, and Lower Channel for Lower Sheet. Locations of inlet and 
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tlet boundary conditions are shown in Figure 4-51. The ends of the channels on the 
OV 

ri~lJt and left side of Figure 4-51 were assumed to be closed and wall boundary condition 

w~, applied there. rn Figure 4-51, VI and UO represents inlet and outlet of Upper Sheet 

c1'l~els respectively, and LI and VO represents the same for Lower Sheet. The 

]11~thematical models, boundary conditions, and other parameters are same as that of the 

base case described in section 4.1. Equal velocity was specified for all the inlets with nat 

velocity profile nomlal to the surface. The dotted arrows in Figure 4-51 represent the 

:flow direction at the inlets. 

U02 L01 U03 

UI1 UI2 LI 4 VI3 LI3 UI4 LI2 LIl 

:Fig 4-51 Inlet and outlet boundary conditions for two-sheet geometry 
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I 

~,2 Results for large-scale simulation 
4· 

gftalitative results 

Figures 4-52 through 4-59 show the flow path for each inlet. Comparing Figures 

,40 ...52 and 4-56, 4-53 and 4-57, 4-54 and 4-58, and 4-55 and 4-59 i.e. similar inlet 

locations for Upper Sheet and Lower Sheet, it can be observed that the flow pattern is 

e"actly same, but with different orientation. At the side walls, as shown by the circled 

region in Figures 4-53, 4-54, and 4-55, the flow gets reflected from the walls, and enters 

ttte channel of adjacent sheet. From the streamline plots, it can be observed that the criss 

crossing network of channels, fonned between two adjacent sheets, has resulted in 

considerable radial (x-direction in Figure 4-51) flow distribution. 
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fig 4-52 Streamline plot for ill I Fig 4-53 Streamline plot for VI 2 

Fig 4-54 Streamline plot for ill 3 Fig 4-55 Streamline plot for VI 4 
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Fig 4-56 Streamline plot for LI 1 Fig 4-57 Streamline plot for LI 2 

Fig 4-58 Streamline plot for LI 3 Fig 4-59 Streamline pl.ot for LI 4� 
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Quantitative results 

Tracer simulations were conducted to study the flow distribution from a point 

source i.e. tracer distribution at the outlets when tracer is introduced in only one inlet. 

Stoter (1993) experimentally studied the tracer distribution in two-sheet system. The 

experimental results are shown in Figure 4-61. The left and right in Figure 4-61 

corresponds to Upper Sheet and Lower Sheet (terms used for adjacent sheets in the CFD 

simulations) respectively. The experiments were carried out with Montz packing with 17 

channels per sheet. The tracer distribution in Figure 4-61 is obtained by introducing tracer 

at only one inlet location (point source), inlet 16 of right sheet. For the CFD simulation, 

the tracer was injected at UI 1 (refer Figure 4-51). Experimentally it was observed that 

most of the tracer is following the channel direction causing a peak at the outlet of the 

channel in which tracer was introduced (outlet 16 of right sheet in Figure 4-61). The CFD 

results, shown in Figure 4-60, are in accordance with experimental observations i.e. peak 

is obtained at UO 3, which represents the channel outlet in which tracer was introduced 

(UI 1). Tracer mass fraction is almost equal for all the outlets of Lower Sheet. The 

experiments were carried out with sheets consisting of 17 channels per sheet, whereas 

there are only four channels per sheet in CFD simulations. If we compare the circled 

portion in Figure 4-61, which represents four channels, with Figure 4-60, the CFD results 

corresponding to Upper Sheet qualitatively matches the respective experimental results 

i.e. right sheet. The decrease in mass fraction for left sheet in Figure 4-61 is quite steep as 

compared to the Lower Sheet in Figure 4-60. 
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Comparing Figures 4-52 through 4-55 and 4-56 through 4-59, it is expected that if 

the tracer is introduced in Lower Sheet at the similar inlet location as that of Upper Sheet 

we should get similar tracer distribution as that of Figure 4-60 but with different 

orientation i.e. the peak for tracer mass fraction should be at LO 3. To verify this 

simulations were carried out with tracer injected at LI I.The tracer distribution is shown 

in Figure 4-62, which shows similar tracer distribution as that of Figure 4-60, but with 

different orientation as explained above. 

To study the effect of walls, tracer was introduced at Ul 4, channel corresponding 

to which ends at wall. The flow pattern is shown in Figure 4-64 in tenus of streamline 

plot, and tracer distribution is plotted in Figure 4-63. At the intersection zone, shown by 

circled region in Figure 4-64, the flow gets split, and a part of the flow follows the 

channel of Upper Sheet (which ends at wall), and remaining flow follows the channel of 

Lower Sheet (which ends at LO 4). Starting from this intersection zone, to reach LO 4, 

the flow in the lower channel has to go through five intersection zones; where at each 

intersection zone the flow will get split. The remaining fraction of the flow from th.e 

intersection zone (circled portion) strikes the wall, as highlighted by the rectangular 

region in Figure 4-64. The flow cannot continue to follow the same channel (because of 

the wall at the end of the channel), and will be forced to enter the channel of adjacent 

sheet (which in this case is Lower Sheet). 
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Fig 4-60 Tracer mass fraction distribution with tracer introduced at ill 1 
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Fig 4-61 Measured tracer distribution in two-sheet system for Montz packing (Stoter, 

1993) 
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Fig 4-62 Tracer mass fraction distribution with tracer introduced at LI 1 
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Fig 4-63 Tracer mass fraction distribution with tracer introduced at ill 4 
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Fig 4-64 Flow pattern for the flow entering at LI 4 
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CHAPTERS� 

CONCLUSIO SAND RECOMMENDATIO S 

Currently the structured packing design and development place is purely 

experimental, and based on expenence. The experimental process is carried out by 

conducting trial and error analysis of the effect of packing design parameters Oll 

performance. This process is highly time consumrng and uneconomic. The work 

described in this thesis, based all CFD analysis, will help m reducing the above

mentioned empiricism and the shortcomings associated with it. 

S.l Conclusions� 

The conclusions derived from the CFD analysis presented in this thesis are:� 

•� Effect of channel intersection all flow distribution in tructured packing wa 

studied. Flow gets split at the intersection zone, formed by the channel of the 

adjacent sheets. A fraction of the flow follows the channel, and re t of the flow 

enters the channel of adjacent sheet. Therefore, downstream of the inter ection 

zone, mixing of the flow streams from adjacent sheets takes place. Also, this 

splitting phenomenon results in efficient radial distribution of gas phase in the 

packed bed. Flow recirculation is expected to develop downstream of the 

intersection zone, and CFD results were able to capture this effect, at least 

qualitatively. 
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• Selection of appropriate Advection Scheme and me h ize i quite crucial in this 

CFD analysis as hown in Section 4-1. To minimize the errors caused by 

numerical diffusion in simulations involving flow mixing use 

• Higher order advection scheme 

• Refined mesh 

• Mesh Adaptation 

• Effect of design parameters on packing performance was studied. Pressure drop 

and Splitting Factor decrease with the increase in channel inclination angle and 

crimp angle. Splitting Factor is the measure of flow mixing in tructured packing 

bed, and the decrease in the Splitting Factor might result in reduced efficiency for 

the distillation process. Decrease Ll1 pressure drop indicates the increase in 

packing capacity, and reduction Ll1 energy consumption. Therefore, while 

designing efficient structured packing, a balance between the perfonnance 

parameters, mentioned above, ha to be maintained. Using CFD analysis design 

parameters, that need to be tested experimentally, can be bort-li ted, thereby 

optimizing the manufacturing process. 

• CFD results indicated that wall roughness does not have any effect on Splitting 

Factor. More study is requi,red to conflIm this findillg. As expected, pres ure drop 

in case of rough wall is greater than smooth wall, but the difference was not 

significant. 

• The two-sheet CFD analysis showed that the crisscross network of channels 

results in efficient radial spread of the gas phase. 
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5.2 Recommendations for future work 

The two-sheet system is nothing but repetition of elementary unit cell (as hown 

in Figure 4-4).Therefore, there is no need of modeling the entire two-sheet system a it is 

being done in this thesis (Section 4-5). For this type of flow domain, use of periodic 

boundary conditions is an efficient way of doing CFD analysis. But for the two-she t 

system, pressure is not periodic in the flow direction. Therefore, CFX technical support 

group suggested the use of Customized Periodic Boundary Condition (CPBC). In CPBC, 

the two-sheet system will be modeled using only one elementary unit cell. Therefore, 

there will be no need to solve a big mesh (8 million mesh elements), required to mesh the 

complete geometry of two-sheet system shown in Figure 4-47. Once the solution for one 

unit cell is obtained, the outlet for that unit cell will act as an inlet for next unit cell. For 

this data transfer to take place, FORTRAt~ user routines need to be written. The detail 

about CPBC can be obtained from CFX technical supp0l1. Becall e of the unavailability 

of FORTRAN Visual-6 compiler (Compiler supp0l1ed by CFX), no imulation has been 

carried out using CPBC. Use of CPBC to represent the two-sheet system will not permit 

to study the effect of sidewalls on flow pattern. To study the effect of wall, complete 

two-sheet geometry need to be modeled (as being done in this thesis). But, experimental 

study by Hudson [12] has shown that the wall effects for gas phase are important only in 

case ofsmall diameter columns. 

Various structured packings (for example, Mellapak) have perforations on the 

surface. It is believed that since liquid film is present on the surface, the perforations will 
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tJ-ot have any effect on the gas flow pattern. But, in case of liquid maldistribution the 

?erforations will not be covered by liquid. It will be intere ting to study th effect of 

l'erforations on gas flow pattern. In this thesis, effect of urface roughness on flow pattern 

is studied. Also, it will be worth studying the entrance effects for the flow transition 

lJetween structured packing blocks, where the sheets are rotated by 90° from one block to 

~tlother. 

Two-phase CFD model needs to be developed because in reality two pbases are 

present within structured packing. But, tbe two-phase flow model are not as developed 

as single-phase models. Therefore, extreme care needs be taken before drawing any 

conclusions from the CFD results. The possibility of wrong predictions can be minimized 

by conducting sensitivity analysis i.e. analyzing the effects of turbulence models, 

boundary conditions, advection scheme, and mesh size on the CFD results. 

Validation of the CFD results is often not given the importance it deserves. Quite 

often ten-fifteen years old literature data is used for validation of CFD result. But, one 

should keep in mind that this data was generated for tbe development/validation of 

empirical equations, and not for validation of CFD results. In mo t of the ca es, tbi 

experimental data gives properties on bulk scale, whereas the purpo e of CFD analysis i 

to study the local phenomena. Therefore, advanced experimental techniques like 

Computer Tomography, Capacitance Tomography, Doppler Anemometer, and Gamma 

Ray Scan should be used to build the database suitable for CFD validati.on. 

"C.FD and experimentation Iteed to be coupled to establish the credibility ofCFD as a 
design tool" 
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