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PREFACE 

This thesis reviewed a number of existing methods to exploit the spatial and 

temporal locality commonly existing in programs. This thesis provided detailed analysis 

and testing of adaptive prefetching (a method designed to utilize spatial locality) and the 

least recently and frequently used (LRFU) method (a method designed to utilize temporal 

locality). The two methods were combined in this thesis work in terms of their 

exploitation of locality. The comparative studies of the methods were done using real 

traces, and hit rate was used as an evaluation measure. 

Adaptive prefetching dynamically detects spatial localities in the references and 

accordingly prefetches various numbers of blocks into cache to reduce CPU misses. 

Results showed that by using adaptive prefetching, the hit rate improved ignificantly by 

an average of 11.7%·over the hit rate of LRU in the traces and cache configurations used. 

LRFU quantifies the recency and frequency and use the combined recency and 

frequency value (CRF) to make replacement decisions. Result showed that LRFU 

consistently gives higher hit rates than LRU, but not by much in the trace files and cache 

configurations tested. And the A value (a controllable parameter which determines the 

weights given to recency and frequency) has to be in a certain range,· which is usually 

narrow, in order to get the best performance for hit rate. Compared to adaptive 

prefetching and LRU, the hybrid approach of combining adaptive prefetching and LRFU 
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gave a consistently higher hit rate also. But, affected by the performance of LRF the 

improvement in the hit rate by the combination was low. 
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CHAPTER I 

INTRODUCTION 

As the gap between processor speed and memory access time increases, the 

perfonnance of cache becomes increasingly critical in mitigating the high latency of 

memory access and thus improving the overall system performan.ce. 

The potential benefit of caching lies in two kinds of localities in a program, 

spatial locality, i.e., the tendency for the neighboring items of a referenced item to be 

referenced again soon, and temporal locality, i.e., the tendency for a referenced item to be 

referenced soon again [Smith 82] [Johnson et al. 97]. 

Exploitation of spatial locality can result in cache hits for subsequent accesses to 

multiple nearby items, and exploitation of temporal locality can result in cache hit for 

subsequent accesses to a particular item [Johnson et al. 97]. Therefore to take advantage 

of caching fully, both localities must be exploited. In either case, the cache can be 

assumed to be fully associative, which means each block in main memory can be placed 

in an.y of the available block frames in cache, and therefore offering the greatest 

flexibility in implementing block replacement algorithms for a higher hit rate. The other 

mapping methods are direct mapping, where a block in memory can be placed only in a 

unique block frame in cache, set associative, where block frames in cache are divided 

into sets and a block in memory can be placed anywhere in a unique set, and sector 



mapping, where blocks in both cache and memory are partitioned into sectors and any 

sector in memory can be placed in any sector frame in cache [Hwang 92]. 

The rest of this thesis is organized as follows. Chapter II provides a review of the 

literature on exploiting spatial and temporal localities. Chapter III discusses adaptive 

prefetching. Chapter IV discusses the least recently and frequently used (LRFU) 

algorithm. Chapter V describes the hybrid approach by combining adaptive prefetching 

and LRFU. Finally, Chapter VI gives the summary and future work. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Exploiting Spatial Locality 

Traditionally, exploitation of spatial locality is achieved through fetching either 

larger block or prefetching additional blocks [Johnson et al. 97] [pendse and 

Bhagavathula 98]. 

Prefetching anticipates cache misses and fetches data from the memory system 

before the processor actually needs the data. So prefetching attempts to overlay processor 

computation time and memory access time, and avoid stall cycles [Smith 78]. 

A larger block size has the natural effect of prefetching, but it has a number of 

negative consequences [Pendse and Bhagavathula 98] such as increasing the miss rate by 

fetching too many useless data items into cache, wasting bus bandwidth and thus 

increasing miss penalty, and poor cache utilization due to fragmentation and 

underutilized cache blocks. Many of these problems can be avoided by employing 

prefetching with a small block size. 

There are three popular prefetching techniques: hardware prefetching, software 

prefetching, and the combination of them [Vanderwiel and Lilja 00]. These techniques 

are explained in the followed sections. The advantages offered by using different 
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prefetching methods depends on the type of localities exhibited [Milutinovic et al. 96] 

[Gonzales et al. 95]. 

2.1.1 Hardware Prefetching 

Hardware prefetching includes sequential prefetching and prefetching with 

arbitrary strides. These two technologies are discussed below. 

Sequential Prefetching: the simplest method of sequential prefetching is the One Block 

Lookahead (OBL) approach, that is, prefetch block m+ I when block m is accessed 

[Vanderwiel and Lilja 00]. The implementations differ depending on what type of access 

to a block initiates the prefetch of the succeeding block. Three approaches were 

summarized by Smith [Smith 82]: always prefetch prefetch-on-miss, and tagged 

prefetch. A brief discussion of the three approaches follows. 

Always prefttch means that on every memory refer nee an acce s to block m 

implies the prefetch of block m+ 1. Always prefetch can reduce the miss rate by 75 to 80 

percent for large cache sizes, but it can also increase the transfer rate between memory 

and cache by 20 to 80 percent [Smith 78J. 

The prefetch-on-miss algoritlun simply initiates a prefetch for block m+ I if access 

to block m causes a miss and block m+ 1 is not in cache. It does not increase the memory 

traffic much, but is not quite effective either, because it results in a cache miss for every 

other cache block in a strictly sequential access pattern [Vanderwiel and Lilja 00]. 
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In tagged pre/etch, a bit, caned a tag is associated with each block. The initial 

value of the tag is 0, but changed to 1 if the block is accessed by a program. And the tag 

is reset to 0 if the block is removed from cache. Whenever the tag of a block changes 

from 0 to 1, the next sequential block is fetched [Gindele 77]. Tagged prefetch is equally 

effective with the always prefetch algorithm and has the benefit of much lower access 

ratio, which is defined as the ratio of total accesses to the cache (actual plus prefetch 

lookup) to the number of actual references [Smith 82]. 

In access streams such as a tight loop, OBL (One Block Lookahead) may not 

avoid cache miss because the prefetch may not be initiated far enough in advance 

[Vanderwiel and Lilja 00]. To overcome this problem, more than one block may be 

fetched, that is, the degree of prefetching can be increased. However, in a program phase 

that exhibits little spatial locality, this aggressive prefetching can cause cache pollution, 

where a prematurely prefetched block may displace the data in the cache that is currently 

in use by the processor [Casmira and Kaeli 98], and also increa th traffic b tw en 

cache and memory) which could increase the miss penalty. 

In general, the benefit of sequential prefetching is that no change to the existing 

executables is required, and that it can be implemented with relatively simple hardware 

[Vanderwiel and Lilja 00]. 

Prefetching with Arbitrary Strides: for program phases with nonsequential memory 

access patterns such as scalar references or array accesses with large strides, sequential 

prefetching performs poorly. To solve that problem, Fu and Chen [Fu et at. 92] [Chen and 

Baer 95] proposed techniques that employ special logic to monitor a processor's address 
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referencing pattern to detect constant stride array references originating from looping 

structures. However, Dahlgren and Stenstrom [Dahlgren and Stenstrom 95] showed that 

those approaches only have limited performance benefits over tagged prefetching in a 

distributed shared memory multiprocessor. 

2.1.2 Software Prefetching 

The fetch instruction, which is supported by most microprocessors, can be used to 

implement prefetching [Bernstein et al. 95] [Santhanam et aL. 97]. Software prefi tching is 

the insertion of fetch instructions by a programmer or the compiter during an 

optimization pass. It is most often used within loops responsible for large alTay 

calculations. Those loops, which are common in scientific code, often have predictable 

array referencing patterns and exhibit poor cache utilization [Vanderwiel and Lilja 00]. 

Studies indicate that adding just a few prefetch directives to a program can sub tantially 

improve performance [Mowry et aL. 92]. 

2.1.3 Integration of Hardware and Software Prefetching 

Hardware prefetching initiates prefetching at run time. In contrast, software 

prefetching relies exclusively on compile time analysis to schedule fetch instructions. 

Some researches have tried to take advantage of both prefetching policies by making use 

of compile time program infonnation without too much instruction overhead as incurred 

by pure software prefetching [Gornish and Veidenbaum 94J [Zhang and Torrellas 95] 
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[Chen 95]. Simulation results have showed that these approaches achieve better 

performance than pure hardware and pure software prefetch. 

2.2 Exploiting Temporal Locality 

Temporal locality can be exploited by a cache replacement algorithm [pendse and 

Bhagavathula 99]. A good replacement algorithm evicts data that have no immediate 

need to reside in the cache, and thus retains the data that is more likely to be accessed for 

as small a cache size as possible. 

The LRU and the LFU algorithms exploit the localities of user program and are 

two of the most popular replacement policies [Karedla et al. 94]. However, they both 

have disadvantages. LRU does not account for the possibility of references to a page in 

the near future, so a page that is referenced only once may replace a page that may be 

referenced multiple times in the near future [Wong and Baer 00]. LFU use historical 

frequency counts to select a victim page or block for replacement, but it is expensive to 

implement and may also cause cache polIution, where inactive data tend to increase the 

miss rate and hence reduce the performance of the cache [Karedla et at. 94]. 

A number of efforts have been done to find good cache replacement algorithms 

based on LRU and LFU. O'Neil and his colleagues [O'Neil et a1. 93] provided the LRU­

K page algorithm on database page buffering. This algorithm maintains a history table 

that contains the counts of the last K referen.ces to popular database pages, and 

statistically estimates the inter-arrival times of the references on a page by page basis. 

Similarly, Pomerene and his colleagues [Pomerene et al. 89] suggested the use of a 
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shadow directory in order to look at a relatively longer history when making decisions 

with LRU. The problem with those two algorithms is that the size of the history table or 

the shadow directory limits the length of the history consulted. Some other algorithms 

such as 2Q [Johnson and Shasha 94] and S-LRU [Karedla et aI. 94] have also been 

proposed to try to partially take account of the frequencies while making the LRU 

decisions and keeping the overhead low. 

Many researchers have also tried to find other ways to reduce the miss rate. 

Pendse and Walterscheitdt [Pendse and Walterscheidt 96] proposed a fuzzy replacement 

algorithm that is based on the application of nine fuzzy rules. It utilizes the age and the 

reference frequency of a block to make replacement decisions. The performance of the 

fuzzy replacement algorithm is better than that of LRU for small cache sizes, and 

comparable with that of LRU for large cache sizes. Compared to traditional approaches 

that are mostly based on LRU, LFU, etc .., this approach opens a new direction in disk 

caching and page replacements in virtual memory management ystem. 
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CHAPTER III 

ADAPTIVE PREFETCHING 

3.1 Algorithm 

The advantage of sequential prefetching is that the implementation is relatively 

simple. However OBL (One Block Lookahead) has the shortcoming that prefetch may 

not be initiated early enough to avoid a memory processor stall (for details see Section 

2.1.1). To solve the problem of memory processor stall, an adaptive prefetching 

technique has been proposed [Pendse and Bhagavathula 98]. In this scheme, the degree of 

prefetching is matched to prefetch efficiency, the percentage of hit in the total number of 

prefetched blocks. Prefetch efficiency is an indication of the degree of spatial locality of a 

program and is calculated periodically. The adaptive prefetching algorithm performs well 

[Pendse and Bhagavathula 98] and, compared to other algorithms, it is relatively simple 

in terms of the complexity of the algorithm and the ease of implementation. The 

algorithm designed by Pendse and Bhagavathula [Pendse and Bhagavathula 98] is 

discussed below with some modifications and supplements. Those "modifications and 

supplements have to do with block placement and the effect on hit rate by the change of 

some parameter values as listed in Section 3.2. 
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Assume the cache is fully associative. It is divided into two parts, the main cache 

and the prefetched cache, and both are managed by the LRU replacement algorithm. On 

each reference, both caches will be searched. Two variables the prefetch counter that is 

preset to 0 and the prefetch coefficient counter that is preset to 1, are used to control the 

number of blocks to be prefetched. 

On a cache hit the prefetch counter is incremented. The prefetch counter is sampled 

at a regular interval of 16 references and the sampled value is compared against two 

preset threshold levels of 6 and 12. If it is higher than 12, the prefetch coefficient counter 

is incremented. If it is lower than 6, the prefetch coefficient counter is decremented. 

Otherwise, the prefetch coefficient counter remains unchanged. After the comparison, the 

prefetch counter is reset to O. The numbers mentioned above were used in the original 

algorithm without explanation. The next section discusses the validity of those numbers. 

On a cache miss, the missed block is brought into the main cache and the victim 

block is placed in the prefetched cache. Prefetched blocks, who e numbers are given by 

the prefetch coefficient counter, are also brought into the prefetched cache if they are not 

in the cache. 

The upper limit of the prefetch coefficient counter is the size of the prefetched 

cache, and the lower limit is 1, because 0 means no prefetch. 

3.2 Implementation 

The efficient implementation of the LRU replacement algorithm includes several 

ways, such as the second chance algorithm or the additional reference bit algorithm 

10 
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[Deitel 90] [Silberschatz and Galvin 94]. Since the efficiency in implementing LRU is 

not the goal of this thesis report LRU is implemented using a stack which is 

implemented by a linked list. 

Four trace files 015 .doduc.din, 008.espresso.din, 013 .spice2g6.din and 

022.1i.din, were used for the evaluation and experimentation. Each trace contains one 

million references from a MIPS R3000 machine and was downloaded from 

http://tracebase.nmsu.edu. 

The following are discussions on some details about the block placement in 

adaptive prefetching implementation that are important but have not been addressed as 

well as discussions on the validity and effect of some parameters that are important but 

have not been fully discussed in the original algorithm for adaptive prefetching [pendse 

and Bhagavathula 98]: 

1) How to deal with blocks expelled from the main cache? Because according to temporal 

locality, those blocks may still be needed. Therefore in the implementation used for thi 

thesis work, those blocks are placed at the head of the block list in the prefetched cach to 

give them more life time. 

2) How to deal with the blocks that are hit in prefetched cache? In the implementation 

used for this thesis work they are placed at the head of the block list in the main cache. 

3) The choice of the threshold values used to increment or decrement the prefetch 

coefficient counter, which is a variable that decides the number of blocks to be 

prefetched. In the original algorithm [Pendse and Bhagavathula 98], a sample rate of 16 

references is used, and the two threshold levels are 6 and 12 (sample rate is th number of 

references that are sampled and used to increment the prefetch counter, and prefetch 
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counter is a variable that stands for the level of spatial locality in the current piece of the 

workload, it has an initial value of zero and is incremented by every hit in the references 

sampled at a certain rate). However the actual running results given below raise questions 

on the effectiveness of the choice of those two values in detecting spatial locality quickly 

and at the same time maintaining low bus traffic. 

Table I is the result from trace file 022.li.din. The size of prefetched cache is 8 

blocks, so 1 to 8 blocks can be prefetched each time. The prefetch coefficient counter 

distribution gives the percentages of the number of prefetched blocks each time in all the 

prefetches. For example, "8: 99%" means that in 99% of prefetches 8 blocks are 

prefetched. In the prefetch coefficient counter distribution in Table I, only significant 

percentages are listed. 

T ABLE I: THE EFFECT OF THRESHOLD VALVES ON PCC 
DISTRIBUTION AND HIT RATE 
(PCC: Prefetch Coefficient Counter) 

Cache Size: 512 Byte, Block Size: 8 Byte, Size of Prefetched Cache: 8 blocks 

Thresholds 6,12 10, 12 10, 14 12, 14 

PCC 
Distribution 

8: 99% 8: 76% 7: 14% 8: 49%, 7: 13% 8: 37%, 1: 32% 

Hit Rate 82.8% 83.0% 83.7% 82.4% 

-
Cache Size: 256 Byte, Block Size: 8 Byte, Size of Prefetched Cache: 4 blocks 

Thresholds 6, 12 10, 12 10, 14 12, 14 

PCC 
4: 98% 4: 41%,1: 33% 4: 31%,1: 51% 4: 22%, 1: 60%

Distribution 

Hit Rate 74.3% 73.7% 73.3% 73.5% 
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Table I shows that while the threshold values are low the prefetch coefficient 

counter distribution concentrates on the maximum value of the prefetch coefficient 

counter. So in each fetch, very likely the maximum number of blocks are prefetched. 

However those prefetches do not increase the hit rate significantly. So it is better to use 

higher threshold values to reduce the bus traffic. Therefore, the values 6 and 12 as used in 

the original algorithm are not good for trace files 022.li.din, and may not be optimal for 

other workloads either. If the spatial locality is low, low threshold values may create 

more prefetches but if that is the case, more prefetches may not be effective at all 

because of the low spatial locality, and may not be worthwhile with respect to the 

increase in the bus traffic. 

With the increase in cache size, the hit rate increases too. Therefore the threshold 

values should increase accordingly to reduce the bus traffic. 

4) The minimum value of prefetch coefficient counter, 1 or O. If set to 1; questions may 

arise that if the spatial locality is not good, we should not allow the y tern to alway 

prefetch. In Table I, the minimum value is set to 1. Table II gives the result from trace 

file 022.li.din, with the minimum value of prefetch coefficient counter as O. 

Table II shows that if the minimum value of the prefetch coefficient counter i O. 

then in many cases there will be no prefetch at all, especially when the threshold values 

are high and cache size is small, as a result, the hit rate is reduced significantly. Therefore 

it is safer to keep 1 as the minimum value of the prefetch coefficient ·counter. Since the 

prefetched blocks are only added to the prefetched cache that takes a small part of the 

whole cache, there is no cache pollution to the main cache. 
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TABLE II: pec DISTRIBUTION AND HIT RATE WITH 0 AS THE 
MINIMUM VALUE OF PCC 
(PCC: Prefetch Coefficient Counter) 

Cache Size: 512 Byte, Block Size: 8 Byte, Size of Prefetched Cache: 8 blocks 

Thresholds 6, 12 10, 12 10 14 12 14 

PCC 
Distribution 8: 99% 8: 76%, 7: 14% 8: 49%, 7: 13% 8: 36%, 0: 36% 

Hit Rate 82.8% 83.0% 83.5% 76.2% 

Cache Size: 256 Byte, Block Size: 8 Byte, Size of Prefetched Cache: 4 blocks 

Thresholds 6,12 10,12 10, 14 12, 14 

PCC 4: 98% 4: 37%,0: 35% 4: 29%, 0: 53% 4: 19%,0: 63% 
Distribution 

Hit Rate 74.3% 67.8% 65.1% 63.3% 

5) Prefetched cache size. It cannot be too small, otherwise a good spatiaL locality may not 

be satisfied. In the Qriginal algorithm [Pendse and Bhagavathula 98], a prefetch d cache 

size of 1/3 of the total cache size was used. However Table III shows that the prefetched 

cache size does not have a significant effect on the hit rate. So a small prefetched cache 

size is preferred to avoid possible heavy bus traffic caused by a large prefetched cache. 
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TABLE IfI: THE HIT RATE AT DIFFERENT PREFETCHED CACHE SIZE 
(TOTAL CACHE SIZE: 1 Kilobyte; BLOCK SIZE: 8 Byte) 

Prefetched Cache Size / Total Cache Size 
Trace File 

1/4 116 1/8 1110 1/12 

022.Ii.din 88.3% 89.7% 89.8% 89.8% 89.8% 

OI3.spice2g6.din 88.9% 89.2% 89.5% 89.4% 89.4% 

3.3 Evaluation. of Adaptive Prefetching 

This section. discusses the evalution. of adaptive prefetching in terms of 

improvement in the hit rate. Table IV shows the effect of LRU with adaptive prefetchin.g 

as compared to LRU with no prefetch. The hit rate is improved significantly by an 

average of 11.7%. The reason seems to be that adaptive prefetching dynamically detects 

the spatial locality in the references and accordingly prefetches various numb rs of 

blocks into cache to avoid CPU miss. 

TABLE IV: COMPARISON OF HIT RATE WITH AND WITHOUT PREFETCH 
(CACHE SIZE: 512 Byte; BLOCK SIZE: 8 Byte; RATIO OF 
PREFETCHED CACHE SIZE: 1/8) 

Trace File 
Prefetch 

078. swm256.din 013 .spice26.din OI5.doduc.din 022.li.din 

No Prefetch 88.3% 66.0% 75.6% 69.9% 

Adaptive 
Prefetch 

92.8% 82.7% 87.2% 83.7% 
I 

15
 

r..----------------------­



There are also a number of shortcomings in using adaptive prefetching. They are 

briefly explained below. 

1) The performance of adaptive prefetching depends on two important parameters: the 

threshold values used to decrement or increment the prefetch coefficient counter, and the 

size of the prefetched cache that although may not affect the hit rate significantly, but 

could affect the bus traffic very much. Those parameters have to be well tuned for 

maximum performance output. 

2) Adaptive Prefetching should be used for instruction cache. It may not work well on 

data cache that has very limited spatial locality. 

3) Since adaptive prefetching splits the cache into two parts, it makes the cache design 

more complicated. 

Besides the hit rate, the miss penalty is also an important parameter to evaluate a 

cache system. Miss penalty includes access time and transfer time. Since the prefetch is 

on consecutive blocks with the missed one, it does not increas acce s time. Obviously 

the prefetch increases the bus traffic and thus may increa e the transD r tim . Howev r, 

transfer time is usually a small fraction of the access time. So the miss penalty will not be 

increased too much as a result of prefetching multiple blocks for each cache mis . 
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CHAPTERrV 

LRFU - LEAST RECENTLY AND FREQUENTLY USED 

4.1 Algorithm 

LRFU is a relatively new cache replacement algorithm proposed by Lee and his 

colleagues [Lee et al. 99]. It has the following features that distinguish it from other 

algorithms. 

•	 It quantifies both recency and frequency and their combined value: Combined 

Recency and Frequency (CRF). In a cache miss, the block with the small st CRF is 

replaced. 

•	 Unlike many previous policies such as LRU-K, 2Q, and -LRU, which use limited 

history to make block replacement decisions, the LRFU policy uses the complete 

reference history by using only a few words for each block. 

•	 LRFU can be implemented efficiently with a time complexity ranging from 0(1) to 

0(lOg2n), corresponding to the native implementations of the LRU and the LFU 

policies [Lee et al. 99]. 

The CRF (Combined Recency and Frequency) value is calculated as follows. 

The CRF value of a block b at time t, denoted by et(b), is defined as 
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" e,(b) =LF(t-th) 

;=1 

where thi is the time of the ith reference of block b and F is a weighting function, 

F(x) = (}-it ' for °:$; A :$; 1. Here A is a controllable parameter and x is the time span 

from the reference in the past to the current time. The A value determines the weights 

given to recent and old history, and therefore makes it possible to fInd an optimal 

combination of the effects of the recency and frequency factors of the past references on 

the probability of the future re-references. 

The LRFU policy has five properties as stated in the paper by Lee and his 

colleagues [Lee et al. 99]. The following are mostly verbatim quotes with a minor 

addition in property 2 on the upper bound ofk. 

1) If A= 0, F(x) = 1, then LRFU replaces the same block as LFU. 

" 2) Vi, F(i) > L F(j), where k ~ i + 1 and k:$; logr~ (2 - 2).) 
j=;+1 

when A-I, the upper bound of k becomes co, then LRFU replaces the same block as 

LRU 

3) Because F(x+y) = F(x) F(y), C, (b) = F(8)C, (b) for 8 = t - ,andc t he ~ t 

C/ (b) =F(O)+F(t5)C, (b) for 8=th -thbit bt_l.t 4"-1 

where x and yare nonnegative integer, tc is the current time, and lh.- is the time of the 

kth reference of block b. 
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This shows that at any time the CRF value of a block can be computed using only two 

variables, the last CRF value and the last reference time for each block and these are 

all the history the block needs to maintain in order to calculate the current CRF value. 

4)	 If Ct(a) > Ct(h) and neither a nor b has been referenced after t then Ct-(a) > Ct{b) for 

all t' > t. Therefore the relative ordering between two blocks does not change until 

either of them is referenced. Hence reordering of blocks is needed only upon a block 

reference. 

This states that the number of blocks that have CRF values larger than F(O) is 

bounded by dthreshold. Hence dthreshold blocks can be maintained in a heap and the 

remaining blocks in a linked list, such that any block in the heap has a larger CRF 

value than that of any block in the linked list. With this setting, the CRF value of-the 

blocks in the linked list cannot be larger than F(O), since the number f block that 

can have CRF yalues larger than F(O) is bounded by duucshold and the numb r of 

blocks maintained in the heap is dthreshold. 

4.2 Implementation 

This section discusses the optimized implementation of the LRFU policy. For the 

materials discussed in this section and Section 4.3, four trace files, OI5.doduc.din, 

008.espresso.din, o13.spice2g6.din, and 022.li.din, were used in the experimentation. 

Please see Section 3.2 for infonnation on those trace files. 
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Because ofproperty 5, the cache was implemented as a heap and a linked list. The 

root of the heap has the smallest CRF value in the heap the blocks in the linked list are 

ordered by their CRF values with the largest at the head and the smallest at the tail. 

When /.. = 1, dthreshold = 1 and hence only one block needs to be maintained in the 

heap. This implies all other blocks are in the linked Jjst. Thjs corresponds to the native 

LRU implementation and its time complexity is O( I). 

When /.. = 0, dthreshold = 00. Therefore all blocks are maintained in the heap and the 

time complexity is O(lOg2n). This also corresponds to the native LFU implementation and 

its time complexity. 

The algorithm of the program is given below: 

A reference to block b is issued by CPU 
If the cache is not full Ilcoo] start 

if b is not in the cache Iia cache miss. b: the requested block 
if size of the heap equals dthr••hol 

remove the root of the heap and make it the head of the linked list 
fi 
update b's CRF and time stamp
 
insert b into the root of heap H, reorder the heap
 

else II b is in the cache, a cache hit
 
if b is in the heap
 

update b's CRF and time stamp
 
reorder the subheap rooted by b
 

else lib is in the linked list, which means the heap is full 
remove the root of the heap and make it the head of the linked list 
remove b from the linked list 
update b's CRF and time stamp 
insert b into heap H, reorder the heap 

fi 
fi 

else Ilcache is full 
if b is not in the cache Iia cache miss. b: the requested block 

remove the tail of the linked list 
remove the root of the heap and make it the head of the linked list 
update b's CRF and time stamp 
insert b into heap H, reorder the heap 

else II b is in the cache, a cache hit 
if b is in the heap
 

update b's CRF and time stamp
 
reorder the subheap rooted by b
 

else lib is in the linked list 
remove the root of the heap and make it the head of the linked list 
remove b from the linked list 
update b's CRF and time stamp 
insert b into heap H, reorder the heap 

20 



----

fi 
fi 

fi 

In the implementation in tbis thesis work, after a block is replaced, it memorizes 

its last CRF value and its last reference time. So when it is placed in cache again, its 

previous hits are counted. Figure 1 compares the hit rate of LRFU with and without 

history memorized from trace file 022.li.din. It indicates that when frequency is given 

more weight, this implementation produces better results than the implementation where 

a block does not memorize its history after it is replaced. 

When A > 0.03, both the original and the modified algorithms have the same hit 

rate, therefore the hit rates for A > 0.05 are not shown in Figure 1. When A< 0.03, which 

means when frequency is giving more and more weight in calculating eRF, the 

implementation with history memorized quickly outperforms the one without history 

memorized. 

Figure 1: Hit Rate of LRFU Implemented with and without History 
Memorized (Block SIze: 8 Byte; Cache Size: 512 Byte) 
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4.3 Evaluation of the LRFU Algorithm 

This section describes the evaluation of the LRFU replacement policy based on 

the hit rate. The evaluation focuses on the effect of A. and the effectiveness and limitations 

ofLRFU. 

4.3.1 Effect of A. on Hit Rate 

A. balances the weight between frequency and recency and is the main variable in 

the LRFU algorithm. Figures 2.a, 2.b, 2.c, 3.a, 3.b, 3.c, and 3.d illustrate that A. is 

important to the hit rate. Figures 2.a, 2.b, and 2.c show the hit rate ofLRFU for four trace 

files, Figures 3.a, 3.b, 3.c, and 3.d show the hit rate of LRFU for six cache sizes for trace 

file 022.1i.din. In some of the figures, the individual experimentation points are too 

crowded and hence are not shown. 

Figure 2.a: Hit Rate of LRFU for Different Trace Files at 0 < Lambda < 1 
(Block Size: 8 Byte; Cache Size: 1536 Byte) 
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Figure 2.b: Hit Rate of LRFU for Different Trace Files at 0 < Lambda < 0.01 
(Block Size: 8 Byte; Cache Size: 1536 Byte) 
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Figure 2.c: Hit Rate of LRFU for Trace File 022.11.din 
(Block Size: 8 Byte; Cache Size: 1536 Byte) 
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Figure 3.a:	 Hit Rate of LRFU for Cache Size of 128 and 256 Byte 
(Block Size: 8 Byte) 
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Figure 3.b: Hit Rate of LRFU for Cache Size of 512 to 2048 Byte 
at 0 < Lambda < 1 (Block Size: 8 Byte) 
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Figure 3.c: Hit Rate of LRFU for Cache Size of 512 to 2048 Byte 
at 0 < Lambda < 0.02 (Block Size: 8 Byte) 
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Figure 3.d: Hit Rate of LRFU for Cache Size of 512 Byte 
(Block Size: 8 Byte) 

71.0	 /r - .... - ...a- _ 

---- .... ­I	 --_ 
70.0 'I	 ------- ­

I 
r 

0'" 69.0 .f\ / 
~ T V" ' , ..... I 
~ 
<1l 68.0 ~ ....J'-"" 
0:: , 
~ 1 
I 67.0 

66.0	 ~
 
i
 

65.0 -f-----.---,-----,------r---. ­

0.000	 0.005 0.010 0.015 0.020 0.025 0.030 0.035 0.040 

Lambda 

25
 



Figures 2.a, 2.b 2.c 3.a 3.b 3.c and 3.d indicate that the improvement of hit rate 

by LRFU compared to LRU depends on two factors: 

1) The temporal locality of the trace file especially the weight of frequency. Figures 2.a 

2.b, and 2.c illustrate that when A. is 1, LRFU is on the LRU side and has the same hit rate 

as LRU. With the decrease of A., frequency is giving more weight and the hit rate 

increases very slowly until a certain point that depends on the trace files and the cache 

sizes. After that point, if frequency weighes more than recency in the trace flies, the hit 

rate increases more quickly and reaches a peak. But after the peak the hit rate decreases 

rapidly as exhibited by trace file 022.Ii.din. When 'A. is very close to zero, which means 

when LRFU is actually LFU, the hit rate may be lower than that ofLRU. After that point, 

if frequency does not weigh more than recency, the hit rate just begins decreasing and 

goes below the hit rate of LRU as exhibited by trace file 013.spice2g6.din. 

2) Cache size. Figure 3.a shows that with the decrease of A. LRFU cannot improve the 

hit rate. More decrease on A. makes the hit rate go down fmally. It indicate that when tb 

cache size is too small, even if there is temporal locality in the trace , it cannot be 

exploited because blocks are replaced too quickly. With the increase of the cache size, the 

lambda value that starts to give bad hit rate in Figure 3.a and that gives the maximum hit 

rate in Figure 3.b becomes smaller. That means that with bigger cache temporal locality 

can be exploited more, thus frequency is getting more weight in improving the hit rate. 

Figure 3.b shows that with the increase of the cache size, LRFU can improve the bit rate 

over LRU. However Figure 3.b also shows that it is not true that the larger the cache size 

is, the bigger the improvement will be. The reason might be that a larger cache size 
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naturally produces more chance to utilize temporal locality, regard) ss of the replacement 

algorithm used. 

4.3.2 Effectiveness and Limitations 

A competitive analysis of LRFU [Cohen et. al 02] shows that although LRFU is 

not optimally competitive, it may behave well in practice because it combines the 

benefits of both LRU and LFU. However, for the trace files and the test conditions that 

we used, LRFU does not perform as good as expected as listed in Table V. The scale of A 

in Table V is those A values where the highest hit rate is produced. Since in different 

trace files the correlation between the hit rate and A are different the border numbers of 

those scales have different significant digits. 

Table V: THE COMPARISON OF HIT RATE BETW N LRU AND LRFU 
ALGORITHM (CACHE SIZE: 1536 Byte; BLOCK SIZ : 8 Byte) 

Trace File LRU LRFU 

022.li.din 84.1% 86.8% (0.00056 < A< 0.00138) 

008.espresso.din 93.6% 95.6% (0.00023 < A< 0.00045) 

013.spice2g6.din 87.0% 87.1 % (0.010 < A< 0.037) 

015.doduc.din 78.9% 80.4% (0.0030 < ~ < 0.0050) 

Based on the analysis in Section 4.3.1, the reason that the performance 

improvement of LRFU over LRU is small is that not much temporal locality can be 
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utilized, which is because of either the lack of temporal locality in the workload or the 

small cache size. 

The results expose some problems with the LRFU algorithm. Th yare listed 

below. 

1) It is more complicated and the time complexity is higher than that of LRU. The 

optimized LRFU implementation has a time complexity of O(log2dthre hId) where dthreshold 

2: r(logX(1- ~r ))/Al, whereas the time complexity of LRU is just O(1). 

2) The benefit of LRFU is closely related to the type of workload, and may be very 

limited for data lacking temporal locality, thus it may not be worth imposing the 

increased complexity on the system. 

3) More importantly, A has to be well tuned for a specific system and workload in order 

to maximize the performance, otherwise the hit rate of LRFU may be even lower than 

that of LRU. And the scale of the Avalues where LRFU gives th high t hit rat i v ry 

narrow. Furthermore. it is difficult to predetermine the exact optimal cale based on the 

cache size and the type of the trace files. 

But LRFU is still a promising algorithm. Firstly, for trace that have good 

temporal locality the hit rate of LRFU is always higher than LRU for any A in [0,1). 

Secondly, the range of A values where LRFU produces bad hit rate is usually very 

narrow. Thirdly, although it is difficult to predetermine the exact optimal scale of A 

values, by using statistical methods, obtaining a rough estimate of the optimal scale is 

always possible based on a large amount of running results. Finally, a self-adjusting 

algorithm that dynamically adjusts A to its optimal values by detecting the local temporal 
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locality is possible, and LRFU with such an algorithm can produc a better hit rate than 

the non-adjusting LRFU. 
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CHAPTER V 

COMBINING LRFU WITH ADAPTIVE PREFETCHING 

To better exploit both spatial and temporal locality it makes sense to combine 

adaptive prefetching and LRFU. See Chapter IV for an introduction and discussion of the 

LRFU (Least Recently and Fequently Used) algorithm. 

5.1 Implementation 

This section describes the implementation of LRFU with adaptiv prefi tching. 

The following paragraph outlines the selection of some important parameter m 

implementing adaptive prefetching. 

The threshold values used to increment or decrement the prefetch coefficient 

counter in adaptive prefetching: Figures 3.a and 3.b indicate that if the cache size is too 

small, LRFU may not give better a hit rate than LRU. But, on the other hand if the cache 

size is too large, the bit rate will be too high and there will not be much room for LRFU 

to improve the hit rate further. Therefore a cache size of 1536 Byte was chosen. At this 

cache size, the hit rate will be relatively high. Therefore the threshold values were set to 

10 and 14 to get a high hit rate and at the same time maintain a low bus traffic. 
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The prefetched cache size: Since it is shown in Section 3.2 that the prefetched 

cache size does not have a significant effect on the hit rate, a small prefetched cache size 

of 1/12 of the total cache size was used. 

LRFU is only used to manage the main cache: The prefetched cache is too small 

and there is not a significant difference between LRFU and LRU for it. So the prefetched 

cache is still managed by LRU. 

5.2 Evaluation of the Hybrid Approach 

This section discusses the perfonnance of the combination of LRFU with adaptive 

prefetching in tenns of the hit rate. The evaluation focuses on the effect of /.. in LRFU 

and the effectiveness and limitations of the combination of LRFU and adaptive 

prefetching. Four trace files, OI5.dodue.din, 008.espresso.din, 013.spice2g6.din, and 

022.li.din, were used in the experimentation. Plea e see Section 3.2 for information on 

those trace files. 

5.2.1 Effect of /.. on Hit Rate 

Figures 4.a and 4.b illustrate the effect of changes in /.. on the hit rate. Compared 

to Figures 2.a and 2.b, all the curves change in shape to some degree except for trace file 

013.spice2g6.din. The overall trend of those curves does not change, but the 

improvements in the hit rate become smaller, and the ranges of the optimal/.. are also 
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different which means that the distribution of temporal locality in those trace files is also 

affected by adaptive prefetching. 

Figure 4.a: Hit Rate of LRFU with Adaptive Prefetching for Different Trace 
Files at 0 < Lambda < 1 (Block Size: 8 Byte; Cache Size: 1536 Byte) 
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Figure 4.b: Hit Rate· of LRFU with Adaptive Prefetching for Different Trace 
Files at 0 < Larri>da < 0.01 
(Block Size: 8 Byte; Cache Size: 1536 Byte) 
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5.2.2 Effectiveness and Limitations 

Table VI gives the hit rate of LRFU with adaptive prefetching. It shows that the 

hybrid approach produces higher hit rates than LRU by an average improvement of 8% 

for the tested cases. And it consistently gives a better hit rate, although only slightly in 

those tests, than the combination of adaptive prefetching and LRU. The reason that the hit 

rate improvement is small is mainly that the improvement of hit rate by LRFU over LRU 

is small, secondly the prefetching improves the hit rate to above 90%, thus leaveing a 

small space for the hit rate to be improved further. 

The limitations are the problems related to each algorithm, as discussed in Section 

3.3 and 4.3.2. 

TABLE VI: THE HIT RATE OF DIFFERENT ALGORITHMS 
(CACHE SIZE: 1536 Byte; BLOCK SIZE: 8 Byte) 

Adaptive LRFU+
Trace File LRU LRFU 

Prefetching Adaptive Prefetching 

022.Ii.din 84.1% 86.8% 92.3% 92.5% (0.0033 < A. < 0.0087) 

008.espresso.din 93.6% 95.6% 97.2% 97.7% (0.00002 < A. < 0.00070) 

013.spice2g6.din 87.0% 87.1% 94.3% 94.3% (0.013 < A. < 1) 

015.doduc.din 78.9% 80.4% 90.6% 91.2% (0.00037 A. < 0.00056) 
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CHAPTER VI 

SUMMARY AND FUTURE WORK 

In this thesis report, methods of exploiting localities in programs were discussed. 

Adaptive prefetching, LRFU, and a hybrid approach combining those two methods, were 

examined. 

Chapter I gives a brief definition of spatial locality. temporal locality, and cache 

mapping methods, and introduces the significance of exploiting those localities. Chapter 

II provides a review of literature on exploiting spatial and temporal localities. Chapter III 

discusses adaptive prefetching and evaluates its effectivenes . Chapter IV gives an 

introduction to the least recently and frequently used (LRFU) aJgoritlu1t, discus es tb. 

implementation issues, and evaluates the effect of A on the hit rate and the performance 

of LRFU. Chapter V explores and evaluates the combination of adaptive prefi tching and 

LRFU. 

Testing results reveal that adaptive prefetching, which exploits spatial locality, 

works well by improving the hit rate by an average amount of 11.6% in the four trace 

files and cache configurations used. However, testing results also show that the threshold 

values used to decrement or increment the prefetch coefficient counter and the size of 

prefetched cache need to be well tuned to maximize performance. 
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LRFU is a relatively new and interesting technique to exploit temporal locality. 

Results show that it does consistently give higher hit rates than LRU, but not much higher 

in the trace files tested. And the f... value has to be in a certain range which is usually 

narrow, to yield the best performance. 

Compared to adaptive prefetching and LRU, the hybrid approach which 

combines adaptive prefetching and LRFU, gives consistently higher hit rates as well. But 

similar to the performance improvement of LRFU over LRU, the improvement of hit rate 

by the combined method is low. 

The future work can focus on the following aspects. 

1) Making adaptive prefetching self-adjusting: The performance of adaptive prefetching 

depends on two important parameters: the threshold values used to decrement or 

increment the prefetch coefficient counter and the size of prefetcbed cache. Those 

parameters affect not only the hit rate, but also the bus traffic. The prefetched cache size 

does not have a big impact on the hit rate and can be fixed for a given system. But the 

optimal threshold values are closely related to the spatial locality in the workload 

therefore an algorithm that can dynamically detect the spatial locality and consecutively 

adjust the threshold values should produce the highest hit rate and lowest bus traffic at 

the same time. 

2) Making LRFU self-adjusting: The scale of f... values usually is in a narrow range to 

achieve the best performance. Thus a self-adjusting f..., which can adjust its value by 

detecting temporal locality in the workload, is very important for processing different 

type of workloads. 

35
 



3) Integrating adaptive prefetching and LRFU into a real system such as FreeBSD to 

verify their perfonnance: In a real system LRFU may work better than in our tests. 

Firstly, in our test the traces may not have had enough temporal localities either because 

they are just not the types that exhibit good temporal localities or because they are too 

short compared to real workloads. The different types and different lengths of workloads 

in a real system can give more accurate test results for LRFU. Secondly, in our test the 

cache size was very small, which may not allow temporal locality to be exploited much 

because blocks are replaced in a short time. 
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2Q: 

Adaptive Prefetch: 

Direct Mapping 
Cache: 

Fully Associative 
Cache: 

LFU: 

LRFU: 

LRU: 

LRU-K: 

APPENDIX A: 

GLOSSARY 

A frequency-based variation of LRD. Blocks in cache locate in two 
queues, a FIFO queue and a LRU queue. A new page is placed in 
the head of FIFO queue, and any re-referenced page is placed at 
the head of the LRU queue. At a miss, the tail of FIFO queue or 
LRU queue is removed. 

The method of adjusting the number of blocks to be prefetched 
into cache according to the level of spatial locality in the workload 
at run time. 

A cache placement scheme where each block in main memory can 
be placed in only a unique block frame in cache. 

A cache placement scheme where each block in main memory can 
be placed in any of the available block frames in cache, and 
therefore offering the greatest flexibility in implementing block 
replacement algorithms for a higher hit rate. 

Least Frequently Used, a memory replacement algorithm that 
replaces the page or block with the smallest frequency count. 

Least Recently and Frequently Used, a memory replacement 
algorithm that replaces the page or block with the smallest CRF 
value (combined recency and frequency). 

Least Recently Used, a memory replacement algorithm that 
replaces the page or block that has not been used for the longest 
period of time. 

LRU-K is to keep track of the times of the last K references to 
popular database pages, using this information to statistically 
estimate the inter-arrival times of references on a page by page 
basis. At a miss, the page that has the maximum Backward K­
distance is replaced. 
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OBL:
 

Prefetch:
 

Prefetch Coefficient
 
Counter:
 

Prefetch Counter:
 

Prefetch Efficiency: 

Sample Rate: 

Setor Mapping 
Cache: 

Set Associative 
Cache: 

S-LRU: 

Spatial Locality: 

Stall Cycle: 

Temporal Locality: 

One Block Lookahead a method in sequential prefetching where 
block m+ 1 is prefetched when block m is accessed. 

The fetching of blocks into cache before processors request them. 

A variable in an adaptive prefetching algorithm [pendse and 
Bhagavathula 98]. It is used to control the number of blocks to be 
prefetched. 

A variable in an adaptive prefetching algorithm [Pendse and 
Bhagavathula 98]. It stands for the level of spatial locality in the 
current piece of the workload. It has an initial value of zero and is 
incremented by every hit in the references sampled at a certain 
rate. 

The percentage of hit in the total number of prefetched blocks. 

A variable in an adaptive prefetching algorithm [pendse and 
Bhagavathula 98]. It is the number of references that are sampled 
and used to increment the prefetch counter. 

A cache placement scheme where blocks in both cache and 
memory are partitioned into sectors, and any sector in memory can 
be placed in any sector frame in cache. 

A cache placement scheme where bl.ock frames in cache are 
divided into sets, and a block in memory can be placed anywhere 
in a unique set. 

Segmented LRU, a frequency-ba ed variation of LRU. The cache 
is divided into two segments, a probationary segment and a 
protected segment. Both are managed by LRU. Misses are added to 
the head of the probationary segment, and hits are removed from 
the current segment and added to the head of the protected 
segment. Lines in the protected segment have thus been accessed 
at least twice. S-LRU protects cache against access patterns that 
can flood an LRU cache with data that will not be reused. 

The tendency for the neighboring items of a referenced item in a 
program to be referenced soon. . 

The clock cycle in CPU that is wasted by waiting for requested 
data. 

The tendency for a referenced item in a program to be referenced 
agam soon. 
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APPENDIXB: 

PROGRAM LISTING 

/*****************************************************.****************.******* 
* This is a one-level cache simulator managed by the LRU replacement 
* algorithm. 
* Inputs are arrays of block size and cache size, and trace file. The hit 
* rate and number of misses of different combinations of block size and cache 
* size are given. 

*****************************.**********************.*.*****************••• ***/ 

package lru; 

import java.io.*i 
import java.util.StringTokenizer; 

public classtestLRU { 
private static int cacheNo; 
private statlc int blockNo; 
private static int[] blockSize = new 'nt[5]; 
private static int[] cacheSize = new int[5]; 
private static double [] [] hitRate = new double [5] [5] ; 
private static int [] [] numOfMiss = ew int [5J [5J ; 

public static void main(Slring args[]l {
 
cacheNo 0; Iinumber of cache sizes
 
blockNo 0; Iinumber of block sizes
 

Caching caching = null;
 
BufferedReader inFile null;
 
String address = "";
 

1111 ;String line = 1/ a single line in the input file 
int fileLines 0; Iinumber of lines in the input file 
int usedLines = 0; I/number of processed lines in the input file 

//0: number of read in the trace
 
Ill: number of write in the trace
 
/12: number of instruction fetch in the trace
 
int[] numOfInstruction = new int[3J;
 

//identify the type of the instruction:
 
I/o: read; 1: write; 2:instruction fetch
 
int label = -1;
 
String tempStr = "";
 

String fileName = ""; 

System.out.print("This is LRU without prefetching." +
 

II\n==~=================================11 +
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"\nplease input (separate input by space):" + 
"\nArray of Block Size(Byte): "); 
BufferedReader stdin = new BufferedReader(new 

InputStreamReader(System. in» ; 

try	 { 
line = stdin.readLine(); 
System.out.println(line); 
StringTokenizer blockTokens = new StringTokenizer{line); 
fort; bloekTokens.hasMoreTokens(); bloekNo++) 

bloekSize[blockNol = Integer.parselnt(bloekTokens.nextToken(); 

System.out.print("Cache Size (Byte) : ");
 
line = stdin.readLine();
 
System.out.println(line);
 
StringTokenizer eacheTokens = new StringTokenizer(line);
 
fort; eacheTokens.hasMoreTokens(); cacheNo++)
 

caeheSize[caeheNo) = Integer.parselnt(caeheTokens.nextToken(»); 

System.out.print("File Name: h);
 
fileName = "C:\\thesisCode\\myCode\\MIPS R3000\\" +
 

stdin.readLine() ;
 
System.out.prin~ln(fileName) ;
 

foi(int c=O; eccaeheNo; c++) (
 
for(int b=O; bcblcckNo; b++) {
 

caching = new Caehing (cacheSize [c) , new
 
Block(blockSize[b));
 

fileLines = 0;
 
usedLines = 0;
 
inFile = new BufferedReader(new FileReader(fileName));
 

line = inFile.readLinel)
 
while(line !=null) {
 

fileLines++;
 

StringTokenizer tokens = new StringTokenizer(line) ; 
if (tokens.eountTokens () >= 2) 

usedLines++; 

tempStr = tokens.nextToken(); 
if (label ! = -2) { 

Ilrecord the number of read,write and fetch 
label = Integer.parselnt(tempStr); 
numOflnstruction[labell++; 

address = tokens.nextToken(); 
eaching.process(address); 

line = inFile.readLine(); 
Iione combination of cacheSize and blockSize is done 

inFile.elose() ;
 
label = -2; lito stop record
 
hitRate [e) [b) = caching.getHitRate();
 
numOfMiss[e) [b] = eaching.getNumOfMiss();
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} Ilblock array is done
 
} Ilcache array is done
 

}lltry 
catch(Exception e) {
 

System.out.println(e) ;
 

System.out.println("Processing Result(Y is cacheSize. X is blockSize: " 
+ "\nTotal Number of Lines in the File: " + fileLines + 
"\nProcessed Number of Lines in the File:' " + usedLines + 
"\nPercent of read instruction: " + numOflnstruction[O)*lOO/usedLines + 
"\nPercent of write instruction: " + numOflnstruction[l)*lOO/usedLines 
+ "\nPercent of fetch instruction: " + 
numOflnstruction(2)*10O/usedLines ); 
printHitRate(); 
System.out.println{) ; 
printNumOfMiss() ; 

} Ilend of main 

Ilprint hit rate 
private static void printHitRate(} { 

System.out.println("Hit Rate:\n------------------"); 

Ilprint blockSize
 
System.out.print(" "); 117 spaces
 
for(int i~O; i<blockNo;i++)
 

System.out.print(formatDoubleStr(Integer.toString(blockSize[i)); 
System.out.println() ; 

Ilprint cacheSize and hitRate 
Eor(int i=O; i<cacheNo; i++) { 

System.out.print(formatDoubleStr(Integer.toString(cacheSize[i)); 
for(int j=O; j<blockNo;j++) 

System.out.print(formatDoubleStr(Double.toString(hitRatell) ljl) 
) ; 

System.out.println() ; 

Ilprint number of misses 
private static void printNumOfMiss () { 

System.out.println("Number of Miss:\n------------------,,); 

I/print blockSize
 
System.out.print(" "); 117 spaces
 
for(int i=O; i<blockNo;i++l
 

System.out.print(formatDoubleStr(Integer.toString(blockSize[i)})); 
System.out.println() ; 

Ilprint cacheSize and number of miss 
for(int i=O; i<cacheNo; i++) ( 

System.out.print(formatDoubleStr(Integer.toString(cacheSize[i)); 
for(int j=O; j<blockNo;j++) 

System.out.print(setStringLength(Integer.toString(numOfMissli) 
j] ) , 7) ) ; 

System.out.println() ; 
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Ilformat double number string to "##.# 
private stati.c String formatDoubleStr(String str) 

str +=" II; 
II •

IIreturn str.substring(0,4) + , 

/Iset a string to a designated length len
 
private static String setStringLength(String str, int len)
 

String tempStr = str;
 
whi.le(tempStr.length() < len)
 

tempStr += " ";
 

return tempStr; 

/************************************************************************ •• **** 
* The class Caching used in package lru. Implement a one--level cache managed 
* by LRU. 

************************************************************************ •••• **/ 

package lru; 

import java.util.LinkedList; 

public class Caching { 
private int numBlockOffsetBits; I/number of bits in block offset 
private int size; Ilbyte 
private int blockSize; 
private LinkedList blocks; 
private int numOfBlock; 

private int numOfRef;
 
private int numOfHit;
 

1** Creates new Cache *1 
public Caching(int size, Block block)
 

this.size = size;
 
blockSize = block.getSize();
 
blocks = new LinkedList();
 
numOfRef = 0;
 
numOfHit = 0;
 
numOfBlock = size/blockSize;
 

int temp = blockSize; 
while(temp > 1) {
 

numBlockOffsetBits++;
 
temp = temp » 1;
 

for(int i=l; i<=numOfBlock; i++) 
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blocks.add(block) ; 

//process a CPU address request
 
//address16: the address in hexdecimal
 
public void process (String address16) {
 

Block tempBlock = null;
 
boolean cacheMiss = true;
 

numOfRef++; 

int addresslO = Integer.parselnt(address16,16); 

int virtualPageNo = addresslQ- » numBlockOffsetBits; 

for(int i=O; i<numOfBlock; i++) {
 
tempBlock = (Block) (blocks .get (i)) ;
 

if (tempBlock.getTag() == virtualPageNo ) { //hit 
cacheMiss = false; 
numOfHit++; 
blocks. remove (i) ; 
blocks.addFirst(tempBlock); 

if (cacheMiss) 
tempBlock fetchBlock(virtuaIPageNo); 
blocks.addFirst(tempBlock) ; 
blocks.removeLast(); 

//fetch a block with tag as the tag number
 
private Block fetchBlock(int tag) {
 

return new Block(tag, blockSize);
 

//get hit rate
 
public double getHitRate()
 
{ return ((double) (numOfHit*100)/numOfRef;
 

//get number of hit
 
public int getNumOfHit()
 
{ return numOfHit; }
 

//get number of misses
 
public int getNumOfMiss()
 
{ return numOfRef - numOfHit;
 

} 
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/*****************************"*********************.*************************** 

* The class Block used in package lru. Implement a block in a cache. 
*****************************************.**.*********.**********************/ 

packag'e I ru; 

public class Block { 

private int tag;
 
private int size;
 

1** Creates new Block *1 
public Block(int size)
 

tag = -1;
 
this. size = size;
 

/** Creates new Block *1 
public Block (int tag, int size)
 

this.tag = tag;
 
this.size = size;
 

Ilget tag of the block
 
public int getTag()
 
{ return tag;
 

/Iset tag of the block
 
public void setTag(int tag)
 
{ this.tag = tag; }
 

I/get size of the block
 
public int getSize()
 
{ return size; };
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/********************************************.********************************* 
• This is a one-level cache simulator managed by adaptive prefetching and the 
• LRU replacement algorithm. 
• Inputs are arrays of block size, cache size, ratio of prefetch, and trace 
• file. The hit rate and number of misses of different combinations of block 
• size, cache size, and ratio of prefetch are given. 

******************************************************************************/ 

package adaptivePrefetch; 

import java.io.·; 
import java.util.StringTokenizer; 

public class testAdaptivePrefetch { 
private static int ratioNo; //number of ratios of prefetch cache size 
private static int cacheNo; /Inumber of cache sizes 
private static int blockNo; Iinumber of block sizes 

//the ratio of prefetch cache, should be 2, 4, 8
 
/Ithat means 1/2, 1/4. 1/8
 
private static int[] ratio = new int[5};
 
private static int[} blockSize new int[5];
 
/Isize of the whole cache size
 
private static int[) cacheSize = new int[5];
 

private static double [] [} [) hitRate = new double [5} [5) [5) ;
 
private static int (] [) [] numOfMiss = new int [5) [5] [5) ;
 

public static void mainiString args[])
 
cacheNo 0;
 
blockNo 0;
 

ratioNo 0;
 

Caching caching = null;
 
BufferedReader inFile null;
 
String address = "";
 

OIl H •String line = , II a single line in the input file 
int fileLines 0; I/number of lines in the input file 
int usedLines = 0; I/number of processed lines in the input file 

I/O: number of read in the trace
 
//1: number of write in the trace
 
1/2: number of instruction fetch in the trace
 
int[} numOflnstruction = new int[3};
 

//identify the type of the instruction:
 
/10: read; 1: write; 2: instruction fetch
 
int label = -1;
 
String tempStr = "";
 

String fileName = ""'; 

System.out.print("This is the adaptive prefetching." + 

Il\n==========~=========================ll + 

"\nplease input (separate input by space):" + 

"\nArray of Block Size (Byte) (Max: 5 sizes): "); 
BufferedReader stdin = new BufferedReader(new 

InputStreamReader(System.in)) 
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try	 { 
line = stdin.readLine(); 
System.out.println(line) ; 
StringTokenizer strTokenizer = new StringTokenizer(line); 
forl; strTokenizer.hasMoreTokens(); blockNo++) 

blockSize[blockNo] =Integer.parselnt(strTokenizer.nextToken()); 

System.out .print ("Cache Size (Byte) (Max: 5 sizes): ");
 
line = stdin.readLine();
 
System. out .println (line) ;
 
strTokenizer = new StringTokenizer(line);
 
for(; strTokenizer.hasMoreTokens(); cacheNo++)
 

cacheSize[cacheNo] =Integer.parselnt(strTokenizer.nextToken()); 

System.out.print("Ratio of prefetch cache (Max: 5 ratios): ");
 
line = stdin.readLine();
 
System.out.println(line);
 
strTokenizer = new StringTokenizer (line) ;
 
fore; strTokenizer.hasMoreTokens(); ratioNo++)
 

ratio [ratioNo! = Integer.parselnt(strTokenizer.nextToken()); 

System.out.printl"File Name: ");
 
fileName = "C:\\thesisCode\\myCode\\MIPS R3000\\" +
 

stdin.readLine() ;
 
System.out.println(fileName + "\n");
 

for(int d=O; d<ratioNo; d++} { 
for(int c=O; c<cacheNo; c++) { 

for(int b=O; b<blockNo; b++) { 
caching = new Caching(ratio[d], cacheSize[c], new 

Block(blockSize[b])) ; 

fileLines = 0;
 
usedLines = 0;
 
inFile = new BufferedReader(new FileReader(fileName));
 

line = inFile.readLine(); 
while(line !=null) { 

fileLines++; 

strTokenizer = new StringTokenizer(line); 
if (strTokenizer.countTokens() >= 2) ( 

usedLines++; 

tempStr = strTokenizer.nextToken(); 
if(label != -2) { 

Ilrecord the number of read, write and fetch 
label = Integer.parseInt(tempStr); 
numOfInstruction[label!++; 

address strTokenizer.nextToken() ; 
caching.process(address) ; 

line = inFile.readLine(); 
Iione combination of cacheSize and blockSize is done 

inFile.close() ;
 
label = -2; lito stop record
 

50 



hit.Rat.e Id] Ic] [b] = caching. get.Hi t.Rat.e () ; 
numOfMiss [d] [c] [b] = caching. get.NumOfMiss () ; 
caching.print.CC Dist.ribut.ion(); 

} //block array do~e
 
} //cache array done
 

} //cache rat.io done
 
}//try
 
catch(Exception e) {
 

System.out.println(e); 

System.out.println("\nProcessing Result(Y is cacheSize, X is 
blockSize:" + 

"\nTotal Number of Lines in the File: " + fileLines +. 
"\nProcessed Number of Lines in the File: " + usedLines + 
"\nPercent of read instruction: " + numOflnstructionfO]*1.00/usedLines + 
"\nPercent of write instruction: " + numOflnstruction[1]*100/usedLines 
+ "\nPercent of fetch instruction: " + 
numOflnstruction[2]*100/usedLines ); 
printHitRate() ; 
System.out.println() ; 
printNumOfMiss() ; 

//end of main 

//print hit rate 
private static void printHitRate () ( 

System.out.println("Hit Rate:\n------------------"); 

for(int k=O; k<ratioNo; k++) ( 
System.out.println("Ratio of prefetch cache: 1./" + ratio[k]); 
//print blockSize 
System.out.print(" "); //7 spaces 
for(int i=O; i<blockNo;i++) 

System.out.print (formatDoubleStr(Integer.toString (blockSize[i]) 
)) ; 

System.out.println() ; 

//print cacheSize and hitRate 
for(int i=O; i<cacheNo; i++){ 

System.out.print(formatDoubleStr(Integer.toString(cacheSize[i]) 
)) ; 

for(int j=O; j<blockNo;j++) 
System.out.print(formatDoubleStr(Double.toString(hitRatelk] 
[i] [j] ) ) ) ;
 

System.out.println();
 

//print number of misses 
private static void printNumOfMiss() ( 

System.out.println("Number of Miss:\n------------------"); 

for(int k=O; k<ratioNo; k++) { 
System.out.println("Ratio of pre fetch cache: 1/" + ratio[k]); 
//print blockSize 
System.out.print(" "); //7 spaces 
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for(int i=O; i<blockNo;i++) 
System.out.print(formatDoubleStr(Integer.toString(blockSize[i]) 
» ; 

System.out.println() ; 

//print cacheSize and number of miss 
for(int i=O; i<cacheNo; i++){ 

System.out.print(formatDoubleStr(Integer.toString(cacheSize[i]) 
» ; 

for(int j=O; j<blockNo;j++) 
System.out.print(setStringLength(Integer.toString(numOfMiss 
[k] [il [jl) ,7»);
 

System.out.println() ;
 

//format double number string to "##.#
 
private static String formatDoubleStr(String str)
 

str +=" II'. 

return str.substring(O,4) + " " ,.

//set string length to designated length len
 
public static String setStringLength(String str, int len)
 

Str~ng tempStr = str;
 
while {tempStr . length (l < len)
 

tempStr += " ";
 

return tempStr'; 

/****************************************************************************** 
* The class Caching used in package adaptivePrefetch. Implement a one-level 
* cache managed by adaptive prefetching and LRU. 
**********************************************.******************************/ 

package adaptivePrefetch; 

import java.util.LinkedList; 

public class Caching { 
private int ratio; //ratio of prefetch cache size 
private int size; //byte, the whole size of cache 
private int blockSize; 
private int numBlockOffsetBits; //number of bits in block offset 

private LinkedList mainBlocks;
 
private int numOfMainBlocks;
 
private LinkedList prefetchedBlocks;
 
private int numOfPrefetchedBlocks;
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private int prefetchCounter; 
private int coefficientCounter; 

private int numOfRef; 
priva.te int numOfHit; 

//coefficientCounter distribution 
//0: times of >= 5 
Iii: times of == i 
private int(J ccDistribution; 

/** Creates new Cache */ 
public Caching(int ratio, int size, Block block) 

this.ratio = ratio; 
this. size size; 
blockSize = block.getSize(); 

numBlockOffsetBits = 0;
 
int temp = blockSize;
 
while (temp > 1) {
 

numBlockOffsetBits++;
 
temp = temp » 1;
 

prefetchedBlocks = new LinkedList();
 
numOfPrefetchedBlocks = (size/blockSize)!ratio;
 
for(int i=l; i<=numOfPrefetchedBlocks; i++)
 

prefetchedBlocks.add(block); 

mainBlocks = new LinkedList();
 
numOfMainBlocks = (size/blockSize) - numOfPrefetchedBlocKs;
 

for(int i=l; i<=numOfMainBlocks; i++)
 
mainBlocks.add(blockl;
 

prefetchCounter = 0;
 
coefficientCounter 1;
 

numOfRef 0;
 
numOfHit 0;
 

ccDistribution = new int(numOfPrefetchedBlocks+11; 
for(int i=O; i<numOfPrefetchedBlocKS+1; i++) 

cdDistribution(il = 0; 

//process a CPU address request
 
//address16: the address in hexdecimal
 
public void process (String address16) {
 

Block tempBlock = null;
 
boolean cacheMiss = true;
 

int address10 = Integer.parselnt(address16,16); 

int virtualPageNo = addressl0 » numBlockOffsetBits; 
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//firstly search the main cache 
for(int i=O; i<numOfMainBlocks; i++) { 

tempBlock = (Block) (mainBlocks.get(i»; 

if (tempBlock.getTag() == virtualPageNo ) //hit
 
cacheMiss = false;
 
numOfHit++ ;
 
mainBlocks.remove(i) ;
 
mainBlocks.addFirst(tempBlock) ;
 

prefetchCounter++; 

break; 

if (cacheMiss) ( //cache miss in main cache 
//then search the prefetched cache 
for(int i=O; i<numOfPrefetchedBlocks; i++) ( 

tempBlock = (Block) (prefetchedBlocks.get(i»); 

if (tempBlock.getTag() == virtualPageNo ) //hit 
cacheMiss = false; 
numOfHit++ ; 

//remove block hit in prefetr.hed cache 
prefetchedBlocks.remove(i) ; 

//put the block at the head of the main cache 
mainBlocks.addFirst(tempBlock); 

//remove the last block of the main cache 
tempBlock = (Block)mainBlocks.removeLast(); 

//add the last block of the main cache into the he d 
//of prefetched cache 
p'refetchedBlocks.addFirst(tempBlock) ; 

prefetchCounter++; 
break; 

if (cacheMiss) ( //cache miss in prefetched cache too 
LinkedList fetchedBlocks fetchBlocks(virtuaIPageNo, 

coefficientCounter); 

lithe head of fetchedBlock is the one CPU needs 
//remove it and add to the head of mainCache 
tempBlock = (Block) fetchedBlocks.removeFirst () ; 
mainBlocks.addFirst(tempBlock); 

tempBlock = (Block)mainBlocks.removeLast(); 
fetchedBlocks.addLast(tempBlock) ; 

while(fetchedBlocks.size() != 0) ( 
tempBlock = (Block)fetchedBlocks.removeLast(); 
prefetchedBlocks.addFirst(tempBlock) ; 
prefetchedBlocks.removeLast(); 
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numOfRef++;
 
adjustCoefficientCounter() ;
 

//adjust pre fetch coefficient counter 
private void adjustCoefficientCounter() 
{ 

if (numOfRef % 16 == 0) { //interval
 
if(prefetchCounter < 10 && coefficientCounter > 1)
 

coefficientCounter--;
 
else if (prefetchCounter > 14 && coefficientCounter <
 

numOfPrefetchedBlocks)
 
coefficientCounter++;
 

ccDistrLbution[coefficientCounter]++; 

prefetchCounter = 0; 

//print prefetch coefficient counter distribution 
public void printCC_Distribution() 
{ 

if(numOfPrefetchedBlocks == 0)
 
System. out. println ("No Prefetch 1 ") ;
 

return;
 

int sum = 0;
 
for(int i=O; i<numOfPrefetchedBlocks+1; i++)
 

sum += cqDistribution[i];
 

System.out.println("Ratio: " + ratio +" Cache Size: " + size + 
"\nPrefetched Cache Size (blocks): " + numOfPrefetchedBlocks + 
"\nBlock Size: " + blockSize +" CC Sum: " + sum I; 

for(int i=O; i<numOfPrefetchedBlocks+1; i++) 
System.out.print(testAdaptivePrefetch.setStringLength(Integer.toStri 
ng(i),4); 

System.out.println(); 

for(int i=O; i<numOfPrefetchedBlocks+1; i++)
 
System.out.print(testAdaptivePrefetch.setStringLength(
 
Integer.toString(ccDistribution[i]*100/sum), 4»);
 

System.out.println("\n") ; 

//fetch a block with tag as the tag number, 
//and prefetch the next num blocks 
private LinkedList fetchBlocks(int tag, int num) 
{ 

LinkedList fetchs = new LinkedList(); 
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for(int i=O; i<=num; i++)
 
fetchs.addLast( new Block (tag+i. blockSize»;
 

return fetchs; 

Ilget hit rate
 
public double getHitRate()
 
( return «double) (numOfHi t,* 100) ) InumOfRef;
 

Ilget number of hit
 
public int getNumOfHit()
 
{ return numOfHit; }
 

Ilget number of misses
 
public int getNumOfMiss()
 
{ return numOfRef - numOfHit;
 

/****************************.***************+*******.**~**.***.**********.***~ 

* The class Block used in package adaptivePrefetch. Implement a block in 
* cache. 
*** •• ******************************.*****,********~***************************/ 

package adaptivePrefetch; 

public class Block ( 

private int tag;
 
private int size;
 

1** Creates new Block *1 
public Block (int size) (
 

tag = -1;
 

this.size = size;
 

1** Creates new Block *1 
public Block(int tag, int size)
 

this.tag = tag;
 
this.size = size;
 

Ilget tag
 
public int getTag()
 
( return tag;
 

Iiset tag
 
public void setTag(int tag)
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this. tag tag; 

!!get size 
public int getSize() 
{ return size; }; 
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/******************************************************* •• *** ••• *************** 
* This is a one-level cache simulator managed by the LRFU replacement 
* algorithm. 
* History of each block is memorized to increase the performance of LRFU. 
* Inputs are arrays of block size, cache size and lambda values, and trace 
* file. The hit rate of different combinations of block size. cache size and 
* lambda values are given. 
**~*********.*****************.**************.******************************.*/ 

package LRFU_History; 

import java.io.*; 
import java.util.StringTokenizer; 

public class testLRFU_Heap { 
private static int lambdaNo; Iinumber of lambda 
private static int cacheNo; Iinumber of cache sizes 
private static int blockNo; Iinumber of block sizes 

private static doublet] lambda new double [30]
 
private static int[] blockSize new int [5] ;
 
Iisize of the whole cache size
 
private static int[] cacheSize = new int[5];
 

private static double [] [] [] hitRate = new double [30] [5] [5] ;
 
private static int [] [] [] numOfMiss = new int [30] [5] [5] ;
 

public static void main (String args[])
 
cacheNo = 0;
 
blockNo = 0;
 
lambdaNo = 0;
 

Caching caching = null;
 
BufferedReader inFile null;
 
String address = "U;
 

String line = ""; II a single line in the input file 
int fileLines 0; //number of lines in the input file 
int usedLines = 0; /Inumber of processed lines in the input file 

//0: number of read in the trace
 
//~: number of write in the trace
 
//2: number of instruction fetch in the trace
 
int[] numOflnstruction = new int[3];
 

Ilidentify the type of the instruction: 
110: read; ~: write; 2:instruction fetch
 
int label = -~;
 

String tempStr = uU;
 

String fileName = "U; 

System. out .print ("This is LRFU_Heap." + 

11 \n=======.============================= II + 
"\nplease input (separate input by space):" +
 

"\nArray of Block Size(Byte) (Max: 5 sizes): U);
 

BufferedReader stdin = new BufferedReader(new
 
InputStreamReader(System.in» ; 

try { 
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line = stdin.readLine{);
 
System.out.println{line);
 
StringTokenizer strTokenizer = new StringTokenizer{line);
 
for{; strTokenizer.hasMoreTokens{); blockNo++)
 

blockSize[blockNo] =Integer.parselnt(strTokenizer.nextToken(»; 

System.out.print("Cache Size (Byte) (Max: 5 sizes): II);
 

line = stdin.readLine();
 
System.out.println(line);
 
strTokenizer = new StringTokenizer(line);
 
fore; strTokenizer.hasMoreTokens(); cacheNo++)
 

cacheSize[cacheNol =Integer.parselnt(strTokenizer.nextToken(»); 

System.out.print("lambda (Max: 30 lambdas): II);
 

line = stdin.readLine();
 
System.out.println(line) ;
 
strTokenizer = new StringTokenizer{line);
 
fort; strTokenizer.hasMoreTokens(); lambdaNo++l
 

lambda [lambdaNo] =
 
Double.parseDouble(strTokenizer.nextToken(» ;
 

System.out.print{"File Name: II); 

fileName = "C:\\thesisCode\\myCode\\MIPS R3000\\" + 

stdin.readLine() ; 
System.out.println(fileName + "\n"); 

for(int d=O; d<lambdaNo; d++) { 
for (int c=O; c<cacheNo; c++l { 

for lint b=O; b<blockNo; b++) { 
caching = new Caching (lambda[dl , cacheSize(c], new 

Block(blockSize[bl)) ; 

fileLines = 0;
 
usedLines = 0;
 
inFile = new BUfferedReader(new FileReader(fileName);
 

line = inFile.readLine();
 
;"'hile (line ! =null) {
 

fileLines++;
 

strTokenizer = new StringTokenizer(line); 
if(strTokenizer.countTokens() >= 2) { 

usedLines++; 

tempStr = strTokenizer.nextToken(); 
if(label != -2) { 

Ilrecord the number of read,write and fetch 
label = Integer.parselnt(tempStr); 
numOflnstruction[label]++; 

address = strTokenizer.nextToken(); 
caching.process{address) ; 

line = inFile.readLine(); 
Iione combination of cacheSize and blockSize is done 

inFile. close () ;
 
label = -2; lito stop record
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hitRate Cd] [c] [bl = caching. getHitRate () ; 
numOfMiss [d] [c] [b] '" caching .getNumOfMiss () ; 
System.out.println("\nHashtable Size, " + 
caching.getHashtableSize(» ; 

} //block array done� 
} //cache array done� 

} //lambda array done� 
}//try� 
catch(Exception e) (� 

System.out.println(e) ; 

System.out.println("\nProcessing Result(Y is cacheSize, X is� 
blockSize:" +� 
"\nTotal Number of Lines in the File: " + fileLines +� 
"\nProcessed Number of Lines in the File: " + usedLines +� 
"\nPercent of read instruction: " + numOflnstruction[0]*100/usedLines +� 
"\nPercent of write instruction: " + numOflnstruction[1}*100/usedLines� 
+ "\nPercent of fetch instruction: " +� 
numOflnstruction[2]*100/usedLines );� 
print.LambdaAndHitRate () ;� 

fiend of main 

//print lambda and hit rate 
private static void printLambdaAndHitRate() { 

System.out.print("Hit Rate: \n----------·-- .--------- n" + 
setStringLength (" lambda", 15) ) ; 
for(int m=O;mccacheNo;m++) 

System.out.print(setStringLength(Integer.toString(cacheSize[m]),7»); 
System.out.println() ; 

for(int d=O;dclambdaNo;d++) ( 
System.out.print (setStringLength(Double.toString (lambda [d]),1S)); 
for(int c=O;cccacheNo;c++) 

System.6ut.print(setStringLength(formatDoubleStr(Double.toStrin 
g(hitRate[d] [cl [0]»),7)); 

System.out.println(); 

//format double number string to "tltI.# 
private static String formatDoubleStr(String str) 
( 

str +:::: II; 

return str.substring(O,4) + " " ,.

//set string length to designated length� 
private static String setStringLength(String str, int len)� 

String tempStr = str;� 
while (tempStr . length () c len)� 

tempStr += " ";� 

return tempStr; 
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/****************.**********************-*****************.******************** 
* The class Caching used in package LRFU_History. Implement a one-level cache 
* managed by the LRFU replacement algorithm with history memorized. 
**************************************************.*.************************/ 

package LRFU_History; 

import java.util.LinkedList; 
import java.util.Hashtable; 

public class Caching ( 
private int numBlockOffsetBits; Iinumber of bits in block offset 
private int size; Ilcache size in byte 
private int blockSize; 

private LinkedList heap; Iisimulate a heap� 
private int heapSize;� 

private int numOfRef;� 
private int numOfHit;� 

public static long clock;� 
public static double lambda;� 

private Hashtable refHistory; 

1** Creates new Cache *1� 
public Caching(double lambda ,int size, Block block)� 

this.lambda lambda;� 
this.size size;� 
blockSize = block.getSize();� 

clock = 0;� 
numOfRef O·,� 
numOfHit 0;� 

heapSize size/blockSize;� 
heap = new LinkedList();� 
for(int i=O; i<heapSize; i++)� 

heap.add(block); 

int temp = blockSize; 
while (temp > 1) {� 

numBlockOffsetBits++;� 
temp = temp » 1;� 

refHistory new Hashtable(20000); 
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//process a CPU address request 
//address16: the address in hexdecimal 
public void process (String address16) { 

Block tempBlock = null;� 
boolean cacheMiss = true;� 

numOfRef++;� 
clock++;� 

int address10 = Integer.parselnt(address16,16); 

int virtualPageNo = address10 » numBlockOffsetBits; 

Block replaced = null; 

//first search the heap� 
for(int i=O; i<heapSize; i++) {� 

tempBlock = (Block) (heap .get (i) ) ;� 

if (tempBlock.getTag() == virtualPageNo ) { //hit in heap 
cacheMiss = false; 
numOfHit++; 

heap. remove (i) ;� 
tempBlock.updateCRF() ;� 
tempBlock.updateLastRefTime() ;� 
insertlntoHeap(heap, tempBlock);� 

break; 

if (cacheMiss) //cache miss in both list and he p� 
tempBlock fetchBlock(virtuaIPageNo) ;� 

replaced = (Block)heap.removeFirst(); 
if (replaced. getTag () ! = -1) 

refHistory.put(new Integer(replaced.getTag(», 
new CRF_RefTime(replaced.getCRF(), replaced.getLastRefTime()); 

//undateCRF and updapeLastRefTime are done in fetchBlock 
insertlntoHeap(heap, tempBlock); 

//insert a block into a heap 
private void insertlntoHeap(LinkedList orderedList, Block newBlock) 

int tempSize = orderedList.size(); 
if ( tempSize + 1 ! = heapSize) { 

System.out.println("Error: orderedList size != heapSize"); 
System.exit(O) ; 

boolean find = false;� 
Block tempBlock = null;� 

for(int j=O; j<tempSize; j++) 
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tempBlock = (Block)orderedList.get(j); 
if(newBlock.isSmallerThan(tempBlock)) (� 

orderedList.add(j,newBlock) ;� 
find = true;� 
break;� 

if(find == false)� 
orderedList. addLast newBlock).;� 

//fetch a block with tag as the tag number 
private Block fetchBlock(int tag) { 

CRF RefTime crfRefTime = (CRF_RefTime)refHistory.get(new Integer(tag)) 

if(crfRefTime != null)� 
return new Block(tag, blockSize, crfRefTime);� 

else� 
return new Block(tag, blockSize);� 

//get hit rate� 
public double getHitRate()� 
{ return «double) (numOfHit*100) /numOfRef;� 

//get number of hit� 
public int getNumOfHit ()� 
{ return numOfHit; }� 

//get number of misses� 
public int getNumOfMiss()� 
( return numOfRef - numOfHit;� 

//get hash table size� 
public int getHashtableSize()� 
{ return refHistory.size();� 

/********************************************************.**.********~*.***.** 

* The class Block used in package LRFU_History. Implement a block in cache. 
* Additional properties lastCRF and lastRefTime are added. 
********************************************************* •• *****************/ 

package LRFU_History; 

public class Block { 

private int tag;� 
private int size;� 
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II CRF of last referen.ce 
private double lastCRF; 
private long lastRefTime; 

1** Creates new Block *1 
public Block(int size) { 

tag = -1; 
this. size = size; 
lastCRF = -1; 
lastRefTime = -1; 

1** Creates new Block *1 
public Block(int tag, int size) { 

this. tag =. tag; 
this.size = size; 
lastCRF = F(O); 
lastRefTime = Caching.clock; 

Iia constructor using class CRF RefTime 
public Block(int tag, int size, CRF RefTime crt)� 

this. tag = t.ag;� 
this.size = size;� 
lastCRF = crt.getLastCRF();� 
lastRefTime = crt.getLastRefTime();� 
updateCRF() ;� 
updateLastRefTime() ;� 

Ilupdate last reference Lime 
public void updateLastRefTime() 
{ 

lastRefTime = Caching. clock; 

I/update CRF value 
public void updateCRF() 
{ 

lastCRF = F(O) + F(Caching.clock - lastRefTime) * lastCRF; 

//get last reference time 
public long getLastRefTime() 
{ return lastRefTime; } 

//get CRF value 
public double getCRF() 
{ return lastCRF; } 

//get current CRF value 
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public double getCurrentCRF()� 
{ return F(O) + F(Caching.clock - lastRefTime) * lastCRF;� 

/Icompare two blocks� 
public boolean isSmallerThan(Block aBlock)� 
{� 

double left = F(Caching.clock - lastRefTime) * lastCRF;� 
double right = F(Caching.clock - aBlock.getLastRefTime(»� 

aBlock.getCRF(); 

if(� left < right� 
return true;� 

if(left == right && lastRefTime < aBlock.getLastRefTime(») 
return true; 

return false; 

Ilweighing fuction F� 
private double F( long x)� 
{ 

return Math.pow(O.5, Caching.lambda*x); 

Ilget tag� 
public int getTag()� 
{ return tag;� 

Iiset tag� 
public void setTag(int tag)� 
{ this.tag = tag;� 

Ilget size� 
public int getSize()� 
{ return size; };� 

j*********** •• ******************** ••• ***************** ************************ 
* The class CRF_RefTime used in package LRFU_History. It is used to save the 
* history information into the hash table. Compared to using class Block, it 
* saves memory space for the hash table. 
********.***** •• ************************************************************/ 

package LRFU_History; 

public class CRF RefTime { 
II CRF of last reference 
private double lastCRF; 
private long lastRefTime; 
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//construetor 
public CRF_RefTime(double erf, long time) ( 

lastCRF = crf; 
lastRefTime = time; 

//get last CRF valuse 
public double getLastCRF() 
{ return lastCRF; } 

//get last reference time 
public long getLastRefTime() 
{ return lastRefTime; } 

66� 



j************* ••• +******************** ••••• *+.* •••• *** ************************* 
* This is a one-level cache simulator managed by adaptive prefetching and the 
* LRFU replacement, algorithm. History of each block is memorized to increase 
* the performance of LRFU. 
* Inputs are arrays of block size, cache size and lambda values, and trace 
* file. The hit rate and number of misses of different combinations of block 
* size, cache size and lambda values are given. 
*.**** •• *************.****••••*** •• ******.**.*** ••••• **************.** ••• ****/ 

package combination: 

import java.io.*: 
import java.util.StringTokenizer: 

public class testCombination { 
private static int lambdaNo; Iinumber of lambda 
private static int cacheNo; Iinumber of cache sizes 
private static int blockNo; Iinumber of block sizes 

private static doublet] lambda new double [40] ;� 
private static intI] blockSize new int(S];� 
Iisize of the whole cache size� 
private static intI] cacheSize = new int (5] ;� 

private static double (] (] (] hitRate = new double [40] [5] (5) ;� 
private static int [] [] (] numOfMiss = new int [40] (5) [5] ;� 

public static void main(String args(])� 
cacheNo = 0:� 
blockNo = 0;� 
lambdaNo = 0;� 

Caching caching = null;� 
BUfferedReader inFile null:� 
String address = "";� 

String line ~ ""; II a single line in the input file 
int fileLines 0: Iinumber of lines in the input file 
int usedLines = 0; Iinumber of processed lines in the input file 

I/o: number of read in the trace� 
Ill: number of write in the trace� 
112: number of instruction fetch in the trace� 
int(] numOfInstruction = new int[3];� 

/Iidentify the type of the instruction:� 
//0: read; 1: ~rite; 2:instruction fetch� 
int label = -I:� 
String tempStr = "":� 

String fileName = ""; 

System.out.print("This is the adaptive prefetching with LRFU Heap with 
history" + 

II\n=============~====~=================" + 
"\nplease input (separate input by space):" +� 

"\nArray of Block Size(Byte) (Max: 5 sizes): ");� 
BufferedReader stdin = new BufferedReader(new� 

InputStreamReader (System. in) ) 
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try { 
line = stdin.readLine(};� 
System.out.println(line} ;� 
StringTokenizer strTokenizer = new StringTokenizer(line};� 
fore; strTokenizer.hasMoreTokens(}; blockNo++)� 

blockSize[blockNol =Integer.parselnt(strTokenizer.nextToken()}; 

System.out.print("Cache Size (Byte) (Max: 5 sizes): D);� 
line = stdin.readLine();� 
System.out.println(linel;� 
strTokenizer = new StringTokenizer(line);� 
fore; strTokenizer.hasMoreTokens(); cacheNo++)� 

cacheSize [ca,cheNo] =Integer .parselnt (strTokenizer. nextToken () ) ; 

System.out.print("lambda (Max: 5 lambdas): "I;� 
line = stdin.readLine(l;� 
System.out.println(linel;� 
strTokenizer = new StringTokenizer(line};� 
fore; strTokenizer.hasMoreTokens(); lambdaNo++}� 

lambda [lambdaNo) = 
Double.parseDouble(strTokenizer.nextToken() ; 

System.out.print("File Name: II};� 

fileName = "C:\\thesisCode\\myCode\\MIPS R3000\\" .;­�
stdin.readLine(} ;� 

System.out.println(fileName + " n");� 

for(int d=O; d<lambdaNo; d++) { 
for (int c=O; c<cacheNo; c++) { 

for(int b=O; b<blockNo; b++) { 
caching = new Caching(lambda[dl, 12, 10, 14, 

cacheSize[cl, new Block(blockSize[b)); 

fileLines = 0;� 
usedLines = 0;� 
inFile = new BufferedReader(new Fil Read r(fileName»);� 

line = inFile.readLine(); 
while(line l=null) 

fileLines++; 

strTokenizer = new StringTokenizer(line) ; 
if(strTokenizer.countTokens() >= 2) 

llsedLines++; 

tempStr = strTokenizer.nextToken(); 
if (label ! = -21 { 

Ilrecord the number of read,write and fetch 
label = Integer.parselnt(tempStr}; 
numOflnstruction[labell++; 

address = strTokenizer.nextToken(); 
caching.process(address) ; 

line = inFile.readLine(:; 
Iione combination of cacheSize and blockSize is done 

inFile.close() ; 
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label = -2; I/to stop record� 
hitRate [d) [c] [b] = caching .getHitRate () ;� 
numOfMiss [d] [c] [b] = caching .getNumOfMiss () ;� 
System.out.println("\nHashtable Size: " +� 

caching.getHashtableSize(» ;� 
caching.printCC_Distribution();� 

} //block array done� 
} /Icache array done� 

} //lambda array done� 
}//try� 
catch(Exception e) (� 

System.out.println(e) ; 

System.out.println("\nProcessing Result(Y is cacheSize, X is� 
blockSize:" +� 
"\nTotal Number of Lines in the File: " + fileLines +� 
"\nProcessed Number of Lines in the File: " + usedLines +� 
"\nPercent of read instruction: " + numOflnstruction[O)*100/usedLines +� 
"\nPercent of write instruction: " + numOflnstruction[I]*100/usedLines� 
+ "\nPercent of fetch instruction: " +� 
numOflnsLruction(2]*100/usedLines );� 
printLambdaHitRate();� 
printLambdaNumOfMiss'() .;� 

fIend of main� 

//print lambda and hit rate 
private static void printLambdaHitRate.() { 

System.out.print!"Hit Rate: \n----------------------\n" + 

setStringLength("lambda" ,15»; 
for(int m=O;m<cacheNo;m++) 

System.out.print(setStringLength(Integer.toString(cacheSize[m),7»; 
System.out.println() ; 

for(int d=O;d<lambdaNo;d++) { 
System.ou.t .print (setStringLength (Double. toString (1 mbda [d) ) .15) ) ; 
for(int c=O;c<cacheNo;c++) 

System.out.print(setStringLength(formatDoubleStr(Double.toString 
(hitRate [d] [c] (0),7)); 

System.out.println(); 

//print lambda and number of misses 
private static void printLambdaNumOfMiss() { 

System.out.print("Hit Rate: \n----------------------\n" + 
setStringLength("lambda",15»; 
for(int m=O;m<cacheNo;m++l 

System.out.print(setStringLength(Integer.toString(cacheSize[m]},7»; 
System.out.println(); 

for(int d=O;d<lambdaNo;d++) ( 
System.out.print(setStringLength(Double.toString(lambda[d]),15»; 
for(int c=O;c<caeheNo;c++) 

System.out.print(setStringLength(Integer.toString( 
numOfMiss [d) [e] [O]}, 13»; 

System.out.println() ; 
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Ilformat double number string to "##.#� 
private static String formatDoubleStr(String str)� 

str += U II; 

return str.substring(0.4) +" "; 

Iiset a string to designated length len� 
public static String setStringLength(String str. int len)� 

String tempStr = str;� 
while (tempStr.length() < len-2)� 

tempStr += " ";� 

return tempStr + " " ,.

/****~.**********~.**********.****.***********.******* **.*.***.*.*.*.**k******* 

* The class Caching used in package combination. Implement a one-level cache 
* managed by adaptive prefetching and the LRFU replacement algorithm with 
* history memorized. 
************w****************.**********************.***************** •• *****/ 

package combination; 

import java.util.LinkedList; 
import java.util.Hashtable; 

public class Caching ( 
private int ratio; Ilratio of prefetch cache size 
private int size; Ilbyte, the whole size of cache 
private int blockSize; 
private int numBlockOffsetBits; Iinumber of bits in block offset 

private LinkedList heap;� 
private int heapSize;� 
private LinkedList prefetchedBlocks;� 
private int numOfPrefetchedBlocks;� 

private int prefetchCounter;� 
private int low;� 
private int high;� 
private int coefficientCounter;� 

private int numOfRef;� 
private int numOfHit;� 

IlcoefficientCounter distribution 
110: times of >= 5� 
Iii: times of == i� 
private int(J ccDistribution;� 
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public static long clock;� 
public static double lambda;� 
private Hashtable refHistory;� 

/** Creates new Cache */� 
public Caching (double lambda, int ratio, int low, int high, int size, Block� 

block) {� 
this.lambda = lambda;� 
this.ratio = ratio;� 
this.size size;� 
blockSize = block.getSize();� 

numBlockOffsetBits = 0;� 
int temp = blockSize;� 
while(temp > 1) {� 

numBlockOffsetBits++;� 
temp = temp » 1;� 

prefetchedBlocks = new LinkedList();� 
numOfPrefetchedBlocks = (size/blockSize)/ratio;� 
for(int i=1; i<=numOfPrefetchedBlocks; i++)� 

prefetchedBlocks.add(block); 

heap = new LinkedList();� 
heapSize = (size/blockSize) - numOfPrefetchedBlocks;� 

for(int i=1; i<=heapSize; i++)� 
heap.add(block);� 

prefetchCounter = 0;� 
t.his. low = low;� 
this.high = high;� 
coefficientCounter 1;� 

numOfRef 0;� 
numOfHit 0;� 

ccDistribution = new int[numOfPrefetchedBlocks+1];� 
for(int i=O; i<numOfPrefetchedBlocks+l; i++)� 

ccDistribution[i] = 0;� 

refHistory = new Hashtable(2000); 

//process a CPU address request 
//address16: the address in hexdecimal 
public void process (String address16) ( 

Block tempBlock = null;� 
Block replaced = null;� 
boolean cacheMiss = true;� 

int address10 = Integer.parselnt(address16,16); 

int virtualPageNo = addresslO » numBlockOffsetBits; 
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//firstly search the main cache 
for(int i=O; i<heapSize; i++) { 

tempBlock = (Block) (heap.get(i»; 

if (tempBlack.getTag() == virtualPageNo //hit 
cacheMiss - false; 
numOfHit++; 
heap. remove (i) ; 
tempBlock.updateCRF(l; 
tempBlock.updateLastRefTime() ; 
insert IntoHeap (heap, tempBlock); 

prefetchCaunter++; 

break; 

if (cacheMiss) { //cache miss in main cache 
//then search the prefetched cache 
far(int i=O; i<numOfPrefetchedBlacks; i++) { 

tempBlack = (Block) (prefetchedBlacks.get(il); 

if (tempBlack.getTag() == virtualPageNo ) //hit 
cacheMiss = false; 
numOfHit++; 
//remave block hit in prefetched cache 
prefetchedBlocks.remave(iJ; 
repJ.aced = (Block)heap.removeFirst(); 

tempBlack.updateCRF() ; 
tempBlock.updateLastRefTime() ; 
insertIntoHeap(heap, tempBlock); 

//use LRU in prefetched block 
p~efetchedBlocks.addFirst(replaced); 

prefetchCounter++;� 
break;� 

if(cacheMiss) { //cache miss in prefetched cache too 
//update CRF and RefTime is done in fetchBlocks 
LinkedList fetchedBlocks fetchBlocks(virtualPageNo, 

caefficientCaunter) ; 

tempBlack = (Blocklheap.removeFirst(); 
fetchedBlocks.addLast(tempBlock); 

lithe head of fetchedBlock is the one CPU needs 
//remove it and add to the head of mainCache 
tempBlack = (BlocklfetchedBlacks.removeFirst(l; 

//update is done in fetchBlacks� 
insert IntaHeap (heap, tempBlockl;� 

while (fetchedBlacks. size () ! = 0) { 
tempBlack = (BlacklfetchedBlacks.remaveLast(); 
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prefetchedBlocks.addFirst(tempBlock) ;� 
replaced = (Block)prefetchedBlocks.removeLast();� 

if (replaced.getLastRefTime() > (-1) { 
refHistory.put(new Integer(replaced.getTag()), 
new CRF_RefTime(replaced.getCRF(), 
replaced.getLastRefTime(»); 

clock++;� 
numOfRef++;� 
adjustCoefficientCounter()� 

II insert a block into a heap 
private void insertlntoHeap(LinkedList orderedList, Block newBlockl 

int tempSize = orderedList. size () ; 
if( tempSize + 1 != heapSize) ( 

System.out.println("Error: orderedList size != heapSize"); 
System.exit(O) ; 

boolean find = false;� 
Block tempBlock = null;� 

for(int j=O;j<tempSize; j++) {� 
tempBlock = (Block) orderedLi st.. get (jl;� 
if(newBlock.isSmallerThan(tempBlock)) {� 

ordexedList.add(j,newB ock);� 
find = true;� 
break;� 

if(find false)� 
orderedList. addLast (newBlock) ;� 

Iladjust prefetch coefficient counter 
private void adjustCoefficientCounter() { 

if (numOfRef % 16 == 0) { Ilinterval 
if (prefetchCounter < low && coefficientCounter > 1) 

coefficientCounter--; 
else if (prefetchCounter > high && coefficientCounter < 

numOfPrefetchedBlocks) 
coefficientCounter++; 

ccDistribution [coefficientCounterl ++; 

prefetchCounter = 0; 
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Ilprint prefetch coefficient counter distribution 
public void printCC_Distribution () ( 

if(numOfPrefetchedBlocks == 0) ( 
System.out.println("No Prefetch! H); 
return; 

int sum = 0;� 
for(int i=O; i<numOfPrefetchedBlocks+1; i++)� 

sum += ccDistribution[il ;� 

System.out.println("Ratio: " + ratio +" Cache Size: " + size + 
"\nPrefetched Cache Size (blocks): + numOfPrefetchedBlocks +II 

"\nBlock Size: + blockSize +" CC Sum: + sum +II II 

"\nPrefetchCounter: low: + low + "; high: II + high);II 

for(int i=O; i<numOfPrefetchedBlocks+1; i++) 
System.out.print(testCombination.setStringLength(Integer.toString(i) 
,4» ; 

System.out.println() ; 

for(int i=O; i<numOfPrefetchedBlocks+1; i++)� 
System.out.print(testCombination.setStringLength(� 
Integer.toString(ccDistribution[il*100/sum), 4»;� 

System. out. println (" \n" ) ; 

II fetch a block with tag as the tag number 
II and prefetch the next num blocks 
private LinkedList fetchBlocks(int tag, int num) 

LinkedList fetchs = new LinkedList(); 
CRF_RefTime crfRefTime = null; 

for(int i=O; i<=num; i++) { 
crfRefTime (CRF_RefTimeJrefHistory.get(new Int ger(tag + i); 

if (i == 0) { 

if(crfRefTime != null) 
fetchs.addLast(new Block(tag, blockSize, crfRefTime, 
true) ) ; 

else 
fetchs.addLast(new Block (tag, blockSize, I, clock»; 

} 
else { 

if(crfRefTime != null) 
fetchs.addLast(new Block (tag + i, blockSize, 
crfRefTime,false» ; 

else 
fetchs.addLast(new Block (tag + i, blockSize, 0, -1»; 

return fetchs; 

Ilget hit rate 
public double getHitRate()� 
{ return (double) (numOfHit*lOO»!numOfRef;� 
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Ilget number of hit� 
public int getNumOfHit()� 
{ return numOfHi t; }� 

Ilget number of miss� 
public int getNumOfMiss ()� 
{ return numOfRef - numOfHit;� 

Ilget hast table size� 
public int getHashtableSize()� 

{ return refHistory.size();� 

/******************************************************.*.**********.********* 
* The class Block used in package combination. Implement a block in cache. 
* Additional properties lastCRF and lastRefTime are added. 
*****************************.'.**********************.*****************.****/ 

package combination; 

public class Block { 

private int tag;� 
private int size;� 

II CRF of last reference� 
private double lastCRF;� 
private long lastRefTime;� 

1** Creates new Block *1 
public Block(int size) {� 

tag = -1;� 
this.size = size;� 
lastCRF = 0;� 
lastRefTime = -1;� 

Ilconstructor 
public Block(int tag, int size, double lastCRF, long lastRefTime)� 

this. tag = tag;� 
this. size = size;� 
this.lastCRF = lastCRF;� 
this.lastRefTime = lastRefTime;� 

Ilconstructor to use class CRF RefTime� 
public Block (int tag, int size, CRF_RefTime crt, boolean update)� 

this.tag = tag;� 
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this. size = size;� 
lastCRF = crt.getLastCRF();� 
lastRefTime = crt.getLastRefTime();� 
if(update == true) {� 

updateCRF();� 
updateLastRefTime() ;� 

//update last Reference Time 
public void updateLastRefTime () { 

lastRefTime = Caching. clock; 

//update CRF 
public void updateCRF() { 

lastCRF = F(O} + F(Caching.clock - lastRefTime) * lastCRF; 

//get last reference time� 
public loog getLascRefTime()� 
{ return lastRefTime; )� 

//get last CRF� 
public double getCRF()� 
{ return lastCRF; }� 

//get CUrrent CRF� 
public double getCurrentCRF()� 
( return F(O) + F(Caching.clock - lastRefTime) * lastCRF;� 

//compare two blocks� 
public boolean isSmallerThan(Block aBlock) ( 

double left = F(Caching.clock - lastRefTime) * 1 stCRF; 
double right = F(Caching.clock - aBlock.getLastRefTime()} + 

aBlock.getCRF(} ; 

if(� left < right� 
return true;� 

if(left == right && lastRefTime < aBlock.getLastRefTime(}) 
return true; 

return false; 

//weighing function F 
private double F( loog xl { 

return Math.pow(O.S, Caching.lambda+x}; 

//get tag 
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public int getTag()� 
{ return tag;� 

Iiset tag� 
public void setTag(int tag)� 
{ this. tag = tag;� 

Ilget size� 
public int getSize()� 
{ return size; };� 

/*************************************************** •• ************************ 
* The class CRF_RefTime used in package combination. It is used to save the 
* history information into the hash table. It saves memory space for the hash 
* table. compared to use class Block. 
********* ••• ****************************************** •• ****** ••• ******* ••• */ 

package combination; 

public class CRF_RefTime { 
II CRF of last reference 
private double lastCRF; 
private long lastRefTim~; 

public CRF RefTime (double crf. long time)� 
lastCRF = crf;� 
lastRefTime = time;� 

public double getLastCRF()� 
return lastCRF; }� 

public long getLastRefTime()� 
{ return lastRefTime; }� 
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