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CHAPTER 1
 

INTRODUCTION
 

1. 1 Problem Evaluation 

Polluted storm water runoff from construction sites frequently flows directly 

into streets and storm sewer systems, which eventually discharge into surface 

water impoundments or rivers. The leading pollutant of concern is sediment 

entrained in construction site storm water according to water quality assessments 

conducted by the United States Environmental Protection Agency (USEPA, 

1998). Sediment loads in runoff from construction sites are typically 10 to 100 

times greater than those of agricultural lands, and 1,000 to 10,000 times greater 

than those of forested areas (Haan et aI., 1994). During a short period of time, 

construction sites can contribute more sediment to streams than can be 

deposited naturally during several decades. The resulting deposition along with 

the contribution of other pollutants from construction sites can cause physical, 

chemical, and biological harm to aquatic ecosystems (USEPA, 1995). 

Silt fence is one of many methods available for curtailing sediment-laden 

runoff from construction areas and has become an integral component of erosion 

prevention and sediment control plans in most municipalities. In fact, an 

estimated 23,000 miles of silt fence are sOild each year in the United States alone 

(GMA, 2001). At an approximate cost of six doUars per linear foot for materials 

and installation (USEPA, 1992), this represents an expenditure of nearly three 

quarters of a billion dollars for construction activities across the country each 

year. These installation costs do not account for additional expenses and 
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burdens of maintenance and disposal, which are almost equal to the cost of 

installation on an annual basis (Brown et aI., 1997). Such an investment in a 

product used to trap sediment on construction sites and to reduce the sediment 

loads transported and deposited in storm drainage systems and waterways 

demands scientific evidence to evaluate the actual effectiveness of silt fence. 

Adequate evidence is not currently available. 

A variety of recommended material specifications and installation 

practices for silt fence have been established by storm water regulating entities, 

but recommendations are often unenforceable. Forma! design considerations 

are limited and do not account for conditions commonly encountered in 

construction areas. For example, des,igns are based on the assumption of silt 

fence being installed on the contour; however site and equipment limitations 

typically prevent silt fence from being installed along a contour. Cross contour 

installation results in significant portions of the fence sloping across contour lines 

with erosion occurring along the toe trench. 

Typical standards and specifications call for the silt fence to be located on 

mildly sloping areas and to follow the land contour. When silt fence 'is properly 

installed under the best possible site conditions, the ends of the silt fence must 

be sloped upgradient of a contour line such that the silt fence functions as a 

miniature dam and runoff is not allowed to flow around the edges. Obviously, if 

the silt fence is undermined, if runoff goes around the edges of the silt fence, or if 

the silt fence is filled with sediment such that runoff overtops the fence, its 

effectiveness is significantly reduced. 
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Field evaluations by Barfield and Hayes (1992, 1999) in South Carolina 

and Kentucky indicate that actual installations are usually not on the contour but 

have signi,ficant cross contour components that create undercutting problems. 

While evaluating silt fence installations in Oklahoma, the author found that each 

site had segments of fence that sloped and each silt fence installation had been 

undercut to some extent by water flowing along the toe trench. This was due in 

part to inadequate trench depth and insufficient compaction of backfill material 

used to secure the fabric. In addition, evidence of overtopping was observed at 

most of the construction sites. Poor performance of a silt fence is almost certain 

when it is improperly installed. 

Visual inspections of silt fence failures suggest that, in spite of the best 

installation practices, site limitations often cause flow to concentrate and erode 

soil at the base of the fabric until undercutting occurs, thus compromising 

sediment-trapping effectiveness. Alternatively, flow collects at low points along a 

silt fence and overtops the fabric due to insufficient upslope storage capacity for 

storm water runoff. A silt fence can actually do more harm than good by 

adversely altering the impact of sediment-laden runoff in some instances. 

Regardless of the reason for installing silt fence across contour lines, a 

sloping segment of silt fence serves as a diversion instead of functioning as a 

flow retarding sediment barrier. When overland flow is thus diverted along a silt 

fence, flow concentrates and erodes the trench backfill material, frequently 

causing washouts like the one shown in Figure 1.1. 
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Figure 1.1: Silt fence undermined on a highway construction project near Stillwater, OK 

In summary, the final placement of silt fence is routinely determined with 

inadequate methodology since commonly accepted design specifications 

assume that silt fence is installed on the contour. Furthermore, silt fences are 

typically not designed as hydraulic structures to accommodate runoff from a 

rainfall event of a particular frequency, and failures are often caused by volumes 

of runoff that exceed the capacity of a silt fence. A lack of design considerations 

for common situations encountered on construction sites leaves the final design 

of silt fence in the hands of the person supervising installation operations. There 

is no replacement for experienced and well-trained installers; however good 

design specifications and inspection procedures that consider major factors 

affecting silt fence performance would significantly increase the effectiveness of 

silt fence and its value as a sediment control practice. 
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1.2 Objectives of Study 

This study is part of a research program aimed at modeling the 

performance of silt fence using site-specific conditions and fabric characteristics. 

Acceptable performance of silt fence is defined as the ability to effectively trap 

sediment on a construction site without experiencing undercutting or overtopping 

failure. The primary objective of this specific study was to evaluate the hydraulic 

performance of silt fence and the processes of undercutting for a range of trench 

slopes and concentrated flow conditions. An additional purpose of this study was 

to develop a process-based model for predicting the erosion of trench backfill 

material that occurs when a segment of silt fence functions as a flow diverting 

structure and converts overland flow into concentrated flow. 
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CHAPTER 2
 

LITERATURE REVIEW 

2.1 Silt Fence as a Sediment Control Structure 

Silt fence, an ubiquitous best management practice (BMP), is used to trap 

sediment primarily through impounding water and allowing for settling to occur 

(Haan et aI., 1994). sm fence, like a rock check dam, controls flow through a 

porous flow control system. The filtering capacity of silt fence (filter fabric) 

contributes only a small amount of trapping, but serves to make the fence less 

porous and hence decreases fabric discharge. The amount of trapping in these 

structures depends on the size of the structure, flow rates into the system, 

hydraulics of the flow control system, the size distribution of the sediment flowing 

into the structure, and the chemistry of the sediment-water system (Haan et aI., 

1994). The following sections will further describe the function, design, and 

previous studies of silt fence as a temporary sediment control structure. 

2.1.1 Description and function. Silt fence is a temporary geotextile 

barrier designed to retain sediment on construction sites and to reduce 

sedimentation in down-slope areas. It consists of wood or steel posts with a 

geotextile filter fabric embedded into the soil and stretched across the posts to 

which the porous fabric is attached with staples or ties. The pr~mary purpose of 

silt fence is to retain sediment from small disturbed areas by reducing the velocity 

of sediment-laden runoff and promoting sediment deposition (Smolen et aI., 

1998). The fence retains large particle sediment primarily by retarding flow and 

promoting deposition in the ponded area upslope of the fence (USEPA, 2002). 
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The placement of silt fence is critical to achieve its intended function of 

collecting and slowly releasing sediment-laden water under overland flow 

conditions. Silt fence must be prOperly oriented and installed to curtail sediment-

laden runoff from construction areas. In the case of linear construction projects, 

such as roadways and pipelines, silt fence is used to protect sensitive areas near 

streams and wetlands. Another common use is along the shoreline of lakes or 

ponds when construction has disturbed upslope areas. Silt fence may also be 

used to trap sediment on very small drainage ways with low flows (NACS, 2000) .. 

Silt fence serves no function along ridges or near drainage divides where there is 

little movement of water. Confining or diverting runoff unnecessarily with a silt 

fence may create erosion and sedimentation problems that would not otherwise 

occur, as well as increase construction costs (Barr Engineering Co., 2001). 

2.1.2 Design and installation practices. Design specifications and 

accepted installation practices can vary depending on the regulating entity, but 

generally accepted requirements are listed below: 

•	 Silt fence fabric is·embedded into the soil at a minimum depth of six 
inches (15 cm). 

•	 Wood or steel support posts are spaced a maximum of 10 feet (3 m) apart 
and driven securely into the ground at a minimum depth of 1 ft (0.3 m). 

•	 The size of the drainage area is no more than 0.25 acre (1000 m2
) per 

100 linear feet (30 m) of silt fence. 

•	 The maximum slope length behind the barrier is 100 feet (30 m), and the 
maximum gradient upslope of the barrier is 50 percent. 

•	 Under no circumstances should silt fence be constructed in swales or 
ditch lines where flows are likely to exceed 1 cfs (0.028 cms). 
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According to Richardson and Middlebrooks (1991), silt fence design 

should be based on three criteria: estimated runoff volume, estimated sediment 

volume, and geotextile selection. Barfield and Hayes (1999) suggest that the 

drainage area for a segment of silt fence should be selected based on design 

storms and local hydrologic conditions so that the silt fence is not expected to 

overtop during the peak flow from a design storm. Most silt fences should be 

designed to handle a 10-year, 24-hour design storm and have life expectancy ot 

six months (FHWA, 1998). Hydrologic design for the design storm should result 

in a silt fence that passes the peak flow without causing damage while also 

trapping the required amount of sediment (Barfield and Hayes, 1999). To 

accomplish this design criteria, design aids have been developed for silt fence 

using computer simulations from the SEOIMOT "' model. The design aids yield 

conservative estimates for silt fence performance as compared to the SEDIMOT 

III model (Hayes and Barfield, 1995). However, the results from model studies 

do not account for the impacts of clogging or lateral flow movement on trapping 

efficiency and therefore give predictions of limi!ted accuracy (USEPA, 2002). 

The installation protocol outlined in ASTM 06462 Standard Practices for 

Silt Fence Installation (ASTM,. 2003) provides specifi,c guidance on acceptable 

installation practices. This practice is applicable to the use of silt fence as a 

vertical permeable interceptor designed to remove suspended soil from overland, 

non-concentrated flow. Figure 2.1 illustrates the state-of-the-practi:ce installation 

protocol for silt fence installed by the traditional trenching method. 
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Figure 2.1: Standard slit fence installation specifications (NRCS, 2000) 
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A recent study and proposed revision to ASTM D6462 validates 

installation of silt fence by the static slicing method, which allows superior 

compaction at the toe of a silt fence when compared to traditional trench-based 

methods (CERF, 2001). Static slicing refers to a method of installing silt fence 

with a knife-like implement instead of using a traditional trench with backfill. 

CERF (2001) suggests that general installation criteria for silt fence should 

incorporate the following factors: 

•	 The fabric must have sufficient strength to counter torces created by 
contained water and sediment. 

•	 The posts must have sufficient strength to counter the forces 
transferred to them by the fabric. 

•	 The fabric must be installed to ensure that loads are all adequately 
transferred through the fabric to the posts or the ground. 

Most regulations concerning silt fence specify a maximum perpendicular 

slope length for a given perpendicular gradient. United States Department of 
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Transportation (USDOT) design recommendations in Table 2.1 specify allowable 

slope lengths for a selection of upslope g,radients perpendicular to a silt fence. 

Ideally, these slope lengths would be based on sediment load and flow rates. 

This would mean that the values given below should be adjusted for climatic 

conditions for a silt fence to ensure maximum effectiveness (Barfield and Hayes, 

2000). 

Table 2.1: Allowable slope lengths perpendicular to a slit fence (USDOT, 1995) 

Slope (%) 18-inch (460 mm) Slit Fence 30-lnch (760 mm) Slit Fence 
<2 250 ft (75 m) 500 ft (150 m) 
5 100 ft (30 m) I 

I 250 ft {75 m) 
10 50 ft (15 m) 150 ft (45 m) 
20 25 ft (8 m) 70 ft (21 m) 
25 20 ft (6 m) 55 ft (17 m) 
30 15ft (5 m) 45 ft (14 m) 
35 15 ft (5 m) 40 ft (12 m) 
40 15ft(5m) 35 ft (10 m) 
45 10 ft (3 m) 30 ft (9 m) 
50 10 ft (3 m) 25 ft (8 m) 

2.1.3 Previous research. The majority of previous silt fence research 

focuses on the trapping efficiencies and hydraulic performance of a geotextile 

fabric barrier secured across the outlet of a laboratory flume. A standard design 

mixture of water and soil is released through the filter barrier, and the comparison 

of influent and effluent sediment concentrations yields a theoretical trapping 

efficiency (Wyant, 1980; Fisher and Jarrett, 1984; Crebbin, 1988; Kouwen, 1990; 

Jiang, 1997; and Britton, 2000). 

This type of study originated with the Virginia Test Method (VTM-51) 

developed by the Virginia Highway and Transportation Research Council. 

Ongoing research has led to a better understanding of slurry flow rates and the 
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development of head-discharge relationships for both clear-water and sediment

laden flow through selected silt fence fabrics (Jiang, 1997 and Britton, 2000). 

Such studies provide important information on the hydrodynamics and sediment 

removal capabilities of silt fence under ideal conditions. 

Jiang (1997) developed a head-discharge relationship for filter fabric by 

applying the Bernoulli equation to a single opening and then extending the 

principle to the entire cross-sectional area. An opening coefficient that varied 

with hydraulic head was introduced to simulate observed head-discharge 

conditions. A similar approach was used by Britton (2000) in analyzing head

discharge relationships for three different filter fabrics. A relationship for 

manufacturer specified opening size and effective opening area was developed, 

and the effective area was calculated using fabric discharge measurements. An 

indirect measure of opening size was applied by both Britton (2000) and Jiang 

(1997). Since parts of the orifice equation were determined by experiment, it is 

probable that unconsidered influences such as fabric stretching, experimental 

error, and apparatus characteristics were absorbed in empirical coefficients of 

head-discharge equations in both studies. 

Silt fence performance studies conducted on test plots and on active 

construction sites can provide a better indication of actual field performance than 

in the lab environment. However, difficulties associated with monitoring storm 

water runoff events in the field can result in highly variable and non

representative data. In a study of silt fence installations on active highway 

construction sites, Barrett et al. (1995) observed median removal efficiencies of 
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0% for total suspended solids (TSS). The range in calculated efficiencies was 

-61 % to 54% with a standard deviation of 26%. 

A negative reduction signifies an observed increase in TSS downstream of 

the silt fence, which could result from minor sources of error such as disturbance 

of bottom sediments during sample collection. The sampling procedures allowed 

the determination of the removal efficiency of the silt fence alone and ignored 

removal attributed to sedimentation. Uncontrolled discharges caused by tears, 

overtopping, and undercutting failures were excluded from sampling, but results 

of the study still indicated poor performance of silt fence on active highway 

construction sites. 

According to CERF (2001), performance issues related to compaction 

along the silt fence toe for traditional trenching and static slicing methods were 

compared in a field evaluation overseen and coordinated by the Environmental 

Technology Evaluation Center (EvTech), a program of the Civil Engineering 

Research Foundation (CERF). Thirty test segments were installed and tested on 

a gently sloping area using 30-ft-radius "smile" configurations without significant 

cross contour components in a predominately silty clay soil. Six t2-ft-radius 

smiles were evaluated. and ten straight 1DO-linear-feet segments were 

constructed to evaluate installation efficiency. An additional six runs were 

installed to compare installation methods on steep slopes, in rocky soils, and 

through wet spoils. Concentrated flow from a 2-inch diameter hose and a 5-hp 

pump created the 1,OOO-gal'lon runoff events, which were introduced within eight 

to ten minutes. 
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Three general types of trench-based installations were identified based on 

the likelihood of obtaining a fully backfilled and densely compacted trench. A 

comparison of storm water runoff retention was performed for the trench-based 

installation practices and the static slicing method. In general, the static slicing 

method was found to provide storm water runoff retention as good as or better 

than the best trench installations, and far superior retention when compared to 

common installation practices (GERF, .2001). The CERF (2001) study did not 

evaluate the performance of silt fence installed across contour rnes; however 

performance trends from the study indicate that a greater level of compaction 

corresponds to better performance and fewer washouts. 

Sprague (2002) conducted a field evaluation of silt fence performance 

based on observed modality of failure and compaction measurements with a 

handheld cone penetrometer on 56 active construction sites selected at random 

in 12 states. Results indicate that silt fence installed by the slicing method 

achieves higher compaction at the base of the fabric and is therefore less likely 

to washout than traditional trench-based installation practices. Static sHcing was 

used on 26 sites, and the other 30 sites used trench-based installation practices. 

Forty percent of the trenched silt fences experienced undermining, and eight 

percent of the sliced silt fences expe·rienced undermining. Slicing resulted in 

average relative soil strength of 83% based on the ratio of cone penetrometer 

testing results adjacent to the fence compared to the results of nearby 

undisturbed soil. Conversely, trenching resulted in 23% relative soi!1 strength on 
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average. Average undisturbed soil strength for all sliced and trenched silt fence 

sites was approximately 300 psi (2070 kPa). 

2.2 Challenges to the Effectiveness of Silt Fence 

The irregularities and changing conditions of construction sites impact the 

performance of silt fence in a way that makes design criteria difficult to follow. 

The greatest challenges to the performance of silt fence are a result of inherent 

inadequacies, which compromise the function of silt fence as a flow retarding 

structure. The inadequacies are discussed along with their effects on 

impounding and diverting runoff in the following sections. 

2.2.1 Observed inadequacies.. Natural forces of water, wind, and sun all 

compromise the performance of silt fence even under the best design, 

installation, and maintenance conditions.. However, deficiencies in performance 

of silt fence caused by improper design, installation, and ma'intenance give rise 

for concern. Observed inadequacies include: improper fabric splices, over

topping, torn fabric, under-runs due to inadequate toe-.ins, and silt fence 

damaged or partially covered by the temporary placement of stockpiles of 

materials (Barrett et aI., 1995). AdditionaUy, CERF (2001) cites three improper 

installation practices associated wi,th trench-based silt fence systems that lead to 

many of the problems associated with their use: 

•	 Excavated soil from the trench is often inadequately backfilled or
 

improperly compacted.
 

•	 Posts are installed in the trench prior to backfilling, preventing compaction 

equipment from contacting the full width of the trench. 
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• When the silt fence is not inserted to a uniform depth, shallow areas tend 

to washout more easily. 

As previously cited, field evaluations by Barfield and Hayes (1992, 1999) in 

South Carolina and Kentucky indicate that installations on the contour as well as 

along a slope have problems with undercutting. 

2.2.2 Impounding sediment-laden runoff. In principle, a silt fence 

should distribute sediment-laden flow over an area of adequate storage, capacity 

to pass the design flow without overtopping the fabri!c. However, inconsistencies 

abound when comparing the ideal silt fence to reality. First and foremost, 

construction sites are inherently irregular and frequently changing during early 

phases of earthwork. The capability for positioning a silt fenoe to collect sheet 

runoff considering spatial variability in topography is conceivable but impractical. 

Therefore, portions of silt fence must be used to direct flow toward areas of 

collection and sediment deposition (USEPA, 2002). 

Numerous studies have shown that sediment-laden flows cause clogging 

of fabric openings, dependent on the opening size and the size of sediment 

particles (Wyant, 1980; Fisher and Jarret, 1984; Barrett et al., 1995; Britton, 

2000). In areas of quiescent flow and sediment trapping, sediment deposits 

along the base of the fabric and relatively clear water flows through the upper 

portion of unclogged fabric (Koerner, 1990). Thus, modeling studies need to be 

modified to account for the impacts of clogging on slurry flow rate. 

2.2.3 Diverting sediment-laden runoff. As previously mentioned, site 

limitations and topography make it impractical to install silt fence without di:verting 
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overland flow along the base of the fabric. Sediment transport is a natural 

processes that silt fence is intended to control by reducing flow velocities and 

allowing sediment to deposit prior to leaving construction areas. However, 

sediment can potentially be detached from soil at the base of a silt fence when 

overland flow is diverted and becomes concentrated flow. The detachment of 

soil particles by rainfall in the area upslope of a silt fence is predominantly a 

result of raindrop impact and surface runoff in rills (Zhang, 2002). Detachment of 

soil particles at the base of a silt fence is mostly a result of concentrated flow 

erosion. The upslope area and toe trench both contribute sediment to the runoff 

when a silt fence diverts flow. 

Sediment-laden flow that. reaches a silt fence has a transport capacity 

depending primarily on soil type, flow rate, sediment load, and slope in the 

direction of flow movement. Transport capacity generally refers to the value to 

which sediment concentrations approach given that discharge and channel slope 

do not change. When sediment load exceeds sediment transport capacity, 

deposition occurs. Conversely, detachment of the backfilled toe trench is likely 

when transport capacity exceeds the sediment load transported from upslope 

areas. Barrett et al. (1995) suggests that, in tlhe absence of sediment control 

measures such as silt fence, sediment-laden runoff flowing down a slope 

naturally deposits sediment at the toe of the slope as flow velocity decreases. In 

certain cases trapping or divert.ing the runoff could cause flow to concentrate and 

erode more soil than if flow was allowed to spread out with no control measures 

present. However, silt fence is often the most desirable way to curtail the flow of 
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sediment-laden runoff onto roadways and into storm drains. Its temporary nature 

promotes its use until more permanent stabilization practices can be 

implemented. The question remains: to what extent can silt fence impound or 

divert runoff and remain stable during a rainfall event of a particular design 

frequency? 

2.3 Modeling Silt Fence Performance 

Recent advances in modeling of sediment control structures have resulted 

in several new relationships. The WEPP watershed model is one example of a 

continuous simulation approach and includes computational procedures for a 

wide variety of sediment control structures (Lindley et aI., 1998). Another 

example of a single storm-based model is SEDIMOT III (Barfield et aI., 1996), 

which modifies the earlier SEDIMOT II model to include channel erosion routines 

and a wide variety of sediment control practices, including silt fence. 

Considering these major advances, a drawback to the SEDIMOT III and 

WEPP silt fence routines is that they do not have a good technique for predicting 

the impact of cross contour components on the effectiveness of a silt fence. 

However, the basic processes that impact the performance of silt fence on a 

range of slopes can be simulated individually. Therefore, the basic 

hydrodynamic prediction techniques can plausibly be combined to develop 

modeling routines that simulate silt fence as a hydraulic structure- encountering 

concentrated flow and scouring along its toe. The following sections describe 

components of a model that adequately simulates the processes influencing 

performance of a silt fence system. 
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2.3.1 Rill and Interrlll erosion. Raindrop impact and surface runoff both 

playa part in the sediment delivered from a drainage area. Commonly accepted 

methods for predicting surface runoff from a design rainfall event are the Natural 

Resource Conservation Service (NRCS) Curve Number Method (NRCS, 1985) 

and the Rational Equation (WPCF. 1969). The Rational Method has many 

limitations and shortcomings (McPherson, 1969) and will not be used. The curve 

number method has been widely used due to its simplicity and available data. 

Curve number (CN) is estimated based on hydraulic soil group, land use, and 

antecedent soil moisture. An estimated runoff vol!ume for a 10-year, 24-hour 

event can easily be determined and used for silt fence design. As a complement 

to the CN method, the NRCS-TR55 method (NRCS, 1986) is useful for 

estimating peak flow rate of a runoff event. 

Sediment yield from upland erosion for a single storm can be estimated 

using the Modified Universal Soil Loss Equation (MUSLE) developed by Williams 

and Brendt (1972) using data from 778 storms on watersheds near Reisel, Texas 

and Hastings, Nebraska. the MUSLE equation for predicting sing1le-storm 

sediment yield in tons is: 

Y = 11.8(Qxqp)o.56(K)(LS)(CP) , (2.1 ) 

where Yis single-storm sediment yield in metric tons, Q is runoff volume in m3 , qp 

is peak flow in ems, and K, LS, and CP are USLE/RUSlE parameters for the 

drainage area. Using the runoff volume calculated from NRCS methods and the 

sediment yield predicted by MUSLE. an approximation of sediiment concentration 

can be determined from a mass-based ratio of sediment to water (Haan, 1994). 
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2.3.2 Concentrated flow erosion. The focus of this thesis is on the 

impact of concentrated flow along the silt fence resulting from a cross contour 

configuration. Furthermore, i,t is postulated that the function of silt fence as an 

overland flow diversion or a flow retarding structure can be determined based on 

land slope along the fabric-soil interface. In the case of a flow diversion, spatially 

varied flow would result from runoff concentrating along a sloping segment of silt 

fence, causing concentrated flow erosion of the toe trench similar to the process 

of rill erosion. Thus it is important to review rin erosion relationships. Several 

different conceptual models for soil detachment in rills are available, including 

relationships involving flow discharge rate (Meyer and Wischmeier, 1969), 

hydraulic shear stress (Foster and Lane, 1983; Storm, 1991; and Nearing et aI., 

1989), and streampower (Yang, 1972; Nearing et aI., 1997). 

In modeling concentrated flow erosion, a relationship for detachment is 

needed. A basic detachment relationship is the shear excess concept used in 

the Foster and Lane (1983) model. The depth of flow along a silt fence creates a 

shear or tractive force on the trench backfill material, which is assumed to be 

more susceptible to detachment than the surrounding undisturbed soil. When 

estimating the erosion rate, the maximum shear force on the channel bottom is 

taken as: 

T mal< =1.35]RS , (2.2) 

where Trnax is the maximum shear force on the channel bottom (Pa), yis the 

specific weight of water (N/m3
), R is the hydraulic radius of the water in the 

channel (m), and S is the slope of the channel (m/m). 
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The potential rate of vertical erosion is then calculated by using soil 

erodibility with shear excess, or: 

Drc = KrCTm:u -Tc)b, (2.3) 

where Drc is the potential rate of vertical erosion (g/sec/m2
), K, is the soil 

erodibility (s/m), Tmax is the maximum shear force on the channel bottom (Pa), xc 

is the critical tractive force of the bed material (Pa), and b is an empirical 

coefficient generally assumed to be 1. 

Actual sediment detachment is modified to account for the ratio of 

sediment load to transport capacity as follows: 

Dr = DrcCl- Qs ITJ, (2.4) 

where Dr is actual vertical erosion at any point x along the rill (g/sec/m2 
), Dre is 

potential rate of vertical erosion at x (g/sec/m2
), Os is sediment load (g/sec), and 

Tc is transport capacity at x (g/sec). Transport capacity is discussed later. 

Rate of downward movement in each rill segment is then estimated based 

on the ratio of actual vertical erosion to soil bulk density, or: 

(2.5) 

where Mr is the rated of downward movement (m/sec), Dr is actual detachment 

(g/sec/m2
) , and Pb is soil bulk density (g/m3

). Finally, the rate of downward 

movement can be used to predict the time required to erode a certain depth of a 

specified width of toe trench backfill material along a given length of silt fence. 

An important aspect of erosion in rills and concentrated flow areas is the 

sediment transport capacity. Concentrated flow moving along a silt fence has a 
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sediment transport capacity that depends on soil type, flow rate, and slope. A 

sediment transport relationship based on unit stream power, defined as the time 

rate of potential energy expenditure per unit weight of water in an alluvial 

channel, is the dominant factor in determining total sediment concentration 

(Yang, 1972). The equation described by Yang (1972) relates transport capacity, 

or total sediment concentration, to unit stream power so that: 

]oglO C, =a + jJ]oglQ(VS - VcrS), ('2 . ( 

where Ct is sediment concentration corresponding to sediment transport capacity 

(ppm). VS is unit stream power in (m/sec), Vc,S is the critical unit stream power 

required for incipient motion, and a and {3 are parameters related to particle 

settling velocity and particle diameter. 

Equation (2.6) was verified by 1,225 sets of :Iaboratory data and 50 sets of 

fiel'd data. Most of these data showed a correlation of 0.98 or Ihigher, and a 

standard error of estimate of 0.1 or less with the computed results from the 

equation. The two major drawbacks to Eq. (2.6) are lack of dimensional 

homogeneity, Le., Ct is dimensionless. yet VS has the dimension of power per 

weight. and VcrS is not related to sediment and flow characteristics, but is 

determined by regression analysis. The Yang equation will not be used in this 

study, although Yang (1973) improves on the two drawbacks with a study of 

incipient motion. 

One of the most commonly applied transport equations for small channels 

is the Yalin bedload equation. Yalin (1963) developed his bedload transport 

model for uniform, cohesion less grains over a movable bed. The model was 
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derived using dimensional analysis and the average grain motion for uniform 

turbulent flow with a laminar sublayer that does not exceed the bed roughness. 

Yalin (1963) first presented the model as several equations that were later 

reduced by Alonso et al. (1981) to obtain an equation for sediment concentration 

as: 

SGdU. '[ 1 ]C =6.35x105 
S 1- -In(l + as) , (2.7)

vh as 

where C is sediment concentration corresponding to sediment transport capacity 

(ppm), SG is sediment specific gravity, dis average particle diameter (dso in m), 

U· is bed shear velocity (m/s), v is average velocity (m/s), h is flow depth (m), 

and a and 5, the other two terms were defined by Yalin as: 

y (2.8 and 2.9) s =--1,
Yer 

where Ycr is the critical mobility factor, and Y is a mobility number defined by the 

following equation: 

(2.10) 

To find the critical mobility factor, Shield's diagram is Llsed to determine the value 

for 'Z"c corresponding to a given roughness Reynold's number. This value for 'Z"c is 

then used to determine a critical shear velocity, U·c = ('Z"cl p)1/2, which is then 

used in Eq. (2.10) to determine Vcr. 

In summary, a combination of equations (2.2 and 2.3) for potential 

detachment, equations (2.7 to 2.10) for transport capacity, and equations (2.4 
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and 2.5) for actual detachment can be used to model the depth of erosion at any 

point along a sloping segment of silt fence. 

2.3.3 Sediment deposition and fabric flow. Fabri.c discharge and 

sediment deposition are the predominant physical processes affecting sHt fence 

performance in areas of quiescent flow when silt fence functions as a flow

retarding barrier and not as a diversion. Numerous studies (Wyant, 1980; 

Crebbin, 1988; Kouwen, 1990; Jiang, 1997; and Britton, 2000) have evaluated 

fabric discharge characteristics, which are primarily a function of water depth, 

concentration of sediment, sediment size distribution, and fabric opening size. 

The amount of trapping in silt fence structures depends on the size of the 

structure, flow rates into the system, hydraulics of the flow control system, the 

size distribution of the sediment flowing into the structure, and the chemistry of 

the sediment-water system (Haan et aI., 1994). 

For steady-state flows, the trapping that occurs behind the silt fence can 

be shown to be directly proportional to the surface area and indirectly 

proportional to flow through the system (Haan et aI., 1994). The ratio of the 

surface area to flow is known as the overflow rate, and trapping in such systems 

is predicted as a function of the ratio of overflow rate to particle settling velocity 

(Haan et aI., 1994). Although flows in nature are inherently non-steady state and 

more complex than steady-state systems, studies have shown that the best 

predictor of trapping in such systems is still the ratio of settling velocity to 

overflow rate (Hayes and Barfield, 1995). In the case of non-steady state, the 
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overflow rate is best defined by the ratio of peak discharge from the system to 

the surface area of ponding (Hayes and Barfield, 1995). 

The particle size distribution of eroded sediment is an important property 

affecting sediment transport and deposition (Haan et aI., 1994). The particle size 

distribution for the upslope area and the toe trench backfill material soil matrix 

can be obtained via sieve and hydrometer analysis or from a particle size 

analyzer. An eroded particle size distribution can be approximated for the 

upslope sediment source area based on particle size estimation equations 

developed by Foster et al. (1985). The equations give an approximate soil 

fraction of five sediment particle classes: primary clay, primary, silt, small 

aggregate, large aggregate, and primary sand. It is important to distinguish 

between particle size distribution for the eroded and parent material since only 

eroded material is transported. However, the size distribution of parent material 

is assumed to approximate the eroded size distribution for non-cohesive 

materials. 

Deposition of sediment takes place as flow velocities decrease and 

sediment load exceeds sediment transport capacity. Net deposition is calculated 

from the equation (Nearing et aI., 1990): 

Of = (V,Iq)(Tc - G), (2.11) 

Where Of is rate of deposition (kg/m2/sec), V, is effective fall velocity of the 

detached sediment (m/sec), q is runoff rate per unit width (m2/sec), Tc is 

sediment transport capacity (kg/m/sec), and G is sediment load (kg/m/sec). 

, 
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In areas of quiescent flow and sediment trapping, sediment deposits along 

the base of the fabric and relatively clear water flows through the upper portion of 

unclogged fabric (Koerner, 1990). The algorithms for fabric flow in SEDIMOT III 

are based on the assumption that clogging does not impact fabric discharge. 

However, numerous studies have shown that sediment-laden flows cause 

clogging of fabric openings, dependent on the opening size and the size of 

sediment particles (Wyant, 1980; Fisher and Jarret, 1984; Barrett et aI., 1995; 

Britton, 2000). 

Britton (2000) proposed a fabric discharge relationship that includes a 

modified orifice flow equation with a plugging coefficient related to fabric opening 

size. A bead mixture resembling the particle size distribution of a loam or silt 

loam soil was used to simulate sediment concentrations of 18000 to 43000 mg/L 

observed on an outdoor test plot of freshly tilled red sandy clay material. The 

results indicate satisfactory predictions of fabric flow for a limited selection of 

geotextile fabrics under clear-water and sediment-laden flow conditions. 

2.4 Summary 

Silt fence is one of the most cost effective and widely used measures for 

curtailing sediment-laden runoff on construction sites (DSC, 1998). Silt fences 

have been partially effective at removing large,r particle- sediment, primary 

aggregates, sands, and larger silts by capturing and slowly releasing overland 

flow (Horner, et all., 1990). Detention of sediment-laden water reduces flow 

velocities and transport capacity which leads to the deposition of sediment 
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upslope of the geotextile fabric. Although silt fence has been widely used, its 

performance in the field has not been well defined. 

Proper design, installation, and maintenance practices playa critical role 

in the effectiveness 01 silt lence. However, design guidelines are often vague 

and impractical. Advanced instaillation methods for silt fence show potential for 

improving its performance. Static slicing is a proven silt fence insertion method 

with certain advantages to traditional trenching installation practices. 

Maintenance and disposal of silt fence poses a significant burden to contractors 

and should not be ignored in evaluating the performance and cost of silt fence. 

Previous research on silt fence performance has shown high trapping 

efficiency in laboratory settings due in part to the use of sediment with larger 

diameters than the particles generally encountered in storm water runoff. 

Sediment removal by silt fences in the field has not been well documented due to 

difficulties in data collection. Information is needed on how the movement of 

water along a silt fence affects its performance and stability. Field studies could 

also be useful to characterize the performance of silt fence at various slopes and 

flow conditions. 

Common problems encountered with silt fence include overtopping and 

undercutting due to inadequate design, installation, or maintenance practices. 

Silt fence functioning as a diversion of overland flow is prone to undercutting 

since runoff concentrates at the fabric-soil interface and exposes weak points in 

the toe trench. Three processes have been identified as the main components 

affecting sUt fence performance: 
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1. Surface runoff and sediment yield from upslope areas, 

2. Concentrated flow erosion at the base of a silt fence, and 

3. Sediment deposition and factors related to fabric discharge. 

The individual processes related to silt fence performance can be 

simulated and combined to model a silt fence system. Conceptualizing silt fence 

as a system with considerable flexibility to accommodate common site conditions 

would enhance modeling efforts and result in improved silt fence design 

capabilities. A process-based model that considers site-specific conditions would 

be useful for improving the effectiveness of silt fence and evaluat,ing alternative 

design concepts. Examples of available relationships for developing such a 

model were reviewed in this section. 
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CHAPTER 3
 

EXPERIMENTAL EQUIPMENT 

3.1 Adjustable Slope Test Flume 

A series of fixed-bed and movable-bed flow tests were conducted indoors 

using a test flume located at the USDA-ARS Hydraulics Engineering Research 

Laboratory near Stillwater, Oklahoma. The apparatus shown in Figure 3.1 was 

constructed of metal, wood, and clear acrylic material and supported by a steel 

framework that allowed simple adjustment of bed slope from 0 to 8%. 

Figure 3.1: Image of O.5-ft (O.15-m) wide adjustable-slope trench with silt fence barrier 

The central component of the test flume was a O.5-ft (O.15-m) wide by 1.0

ft (0.30 m) deep channel formed from 20-gauge galvanized steel sheet material 
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to simulate a typical silt fence trench. One-inch steel ilL" material was attached to 

the steel channel at a spacing of 4 ft (1.2 m) and served as silt fence posts to 

which the geotextile fabric was secured using three plastic cable ties through 

holes drilled in each post as shown in Figure 3.2 below. 

Figure 3.2: Cross section of test flume configuration for fixed-bed study 
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An overland flow surface (see Figure 3.2 above) sloping toward the silt 

fence at 10% was secured to the support channel directly above the steel trench. 

The clear-water flow supplied to the overland flow surface created-a thin, evenly 

distributed sheet of water, such that the overland flow was clinging to the steel 

trench as it combined with the flow supplied by an upstream reservoir. An 

overland flow supply pipe. consisting of a 10ft (3.0 m) length of 4-in (10.2-cm) 

diameter PVC pipe with 40 evenly spaced 0.25-in (0.635-cm) orifices drilled 
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along its bottom was positioned above the overland flow surface. The inlet of the 

steel trench was attached to an upstream reservoir with rubber pond lining 

material (see Figure 3.3 below) that extended the length of the steel trench. 

Figure 3.3: Rubber-lined connection of upstream reservoir to inlet of trench 

Flow from a conceptualized upstream length of silt fence entered the test 

section of silt fence from the upstream reservoir as shown in Figure 3.3 above. 

The downstream end of the steel trench was connected to a 3 ft (0.9 m) clear 

acrylic channel with a matching cross section to allow for visual monitoring of 

flow depth, which was representative of flow conditions in the test section. Grid 

lines were marked at 0.1 ft (0.03 m) intervals, and an adjustable gate was used 

at the end of the test flume to control soil depth at the outlet during movable-bed 
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testing. Finally, a settling tank connected to an H-flume was positioned to collect 

and measure concentrated flow from the silt fence trench. Figure 3.4 shows the 

configuration of each component of the laboratory apparatus. 

Fig.ure 3.4: Profile view of experimental equipment configuration 
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The geotextile fabric selected for the study was a woven polypropylene 

product labeled by Amoco (2002) as ProPex® 2130. The minimum average roll 

values for various physical properties are listed in Table 3.1. 

Table 3.1: Vendor fabric specifications (Amoco, 2002) 

Property Test Method Amoco 2130 
Grab Tensile (Ibs) ASTM 04632 124 

Grab Elongation (%) ASTM D 4632 15 
Mullen Burst (psi) ASTM D 3786 300 

IPuncture (Ibs) ASTM D 4833 65 
Trapezoid Tear (Ibs) ASTM D 4533 65 

UV Resistance (%/500hrs) ASTM 04355 80 
AOS (US Sieve) ASTM 04751 30 

Permittivity (sec- ) ASTM 04491 0.05 
Flow Rate (gal/min/If) ASTM D 4491 10 
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3.2 Measuring Devices 

Test flows were delivered to the model building by a gravity flow siphon 

from Lake Carl Blackwell and metered through a2.500-inch (6.35-cm) diameter 

orifice with manometer tubes for measuring pressure drop across the orifice 

plate. The differential manometer with temperature calibration tables was used 

to regulate continuous flow with a precision of ±G.OOS cfs (±G.00014 ems) 

entering the test flume through an upstream reservoir. A flexible 1.5-inch (3.81

em) diameter hose was used to deliver f.low to a pipe with orifioes for simulating 

overland flow. The overland flow pipe was equipped with a pressure gauge, 

which was used to indicate and calibrate flow through the orifices for overland 

flow conditions. The pressure gauge had a range of 0 to 5 psi (0 to 34.5 kPa) 

and a precision of ±G.1 psi (±G.? kPa). 

A point gauge with a precision of ±O.001 ft (±D.0003 m) for measuring 

water surface and bed profiles was supported by a rolling carriage on a pair of 

level rails secured to a steel framework independent of the adjustable-slope test 

flume. A steel tape was used·to designate horizontal stations to the nearest 0.01 

ft (0.003 m) along the rails supporting the point gauge. A 10 ft (3.0 m) length of 

silt fence was designated as the test section for data collection, starting 6 ft (1.8 

m) downstream of the inlet to the steel trench and ending at a point 1 ft (0.3 m) 

upstream of the union of the steel trench and the clear acrylic channel extension. 

Flow through the fabric was divided into ten 1 ft (0.3 m) segments along 

the test section of silt fence. Flow from each segment was collected in a 

compartment, which drained through a flexible hose into a bucket. Fabric flow 
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was estimated for each segment by measuring the volume of water to the 

nearest 0.1 L collected over a set period of time, typically 15 minutes, 

representing approximately one fourth of the duration of each test. Flow that 

exited the test flume at the trench outlet was monitored with an H-flume by using 

a point gauge to record the depth of flow to the nearest 0.001 ft (0.0003 m).. The 

accuracy of flow measurements corresponding to the point gauge depth readings 

was ±O.01 cfs (0.0003 ems). 

Table 3.2: Measuring devices and corresponding accuracies 

Description of 
Measurement 

Measuring Device Range of 
Measurements1 Preclslon2 Accuracy3 

Upstream Flow Manometer 55.0 inches ± 0.1 inch ±0.02 % 

Overland Flow Dial Gauge 0.5 psi ± 0.1 psi ± 10.0 % 

Fabric Flow Beaker 3.0 L ±0.1 L ±3.3% 

Trench Flow H-Flume (Pt. Ga.) 0.5 ft ± 0.001 ft ±0.1 % 

Vertical Distance Point Gauge 3.0 ft ± 0.001 ft ±0.03% 

Horizontal Distance Steel, Tape 9.0 ft ± 0.01 ft ±0.1 % 

1. Range of measurements was based on maximum recorded value (h) .for each device. 
2. Precision was based on minimum gradation (t1h) marked on each measurement device. 
3. Accuracy was determined by linear error theory such that % .accuracy = 100.1h /2h for 
measurements of flow, and % accuracy =100t1h / h for measurements of distance. 
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CHAPTER 4
 

METHODS AND PROCEDURES
 

4. 1 Fixed-bed Study 

A rigid boundary study was first used to evaluate the hydraulics of a silt 

fence and a sloping trench with steady-state flow conditions. The bed was 

constructed by placing fabric-covered steel panels on a wood support structure 

(see Figure 3.2). The clear water flow conditions selected for the fixed-bed study 

were based on a 10-year, 24-hour design storm of 5.2 in (132 mm) in Stillwater, 

Oklahoma. A high and a low flow were determined for respective drainage areas 

of 0.06 and 0.03 acres (243 and 121 m2
) using the NRCS-TR55 method to 

calculate peak discharges corresponding to the previously defined design storm. 

Tests were conducted with and without simulated overland flow to 

evaluate the effects of spatially varied flow on the hydraulic performance of silt 

fence. The upstream reservoir, which simulated flow from an upstream length of 

silt fence, supplied the majority of flow to the test section. Overland flow was 

introduced to create spatially varied flow along the test section. Target slope and 

flow conditions for each test pair are summarized in Table 4.1. 

Table 4.1: Target flows and slit fence slopes tested In the fixed-bed stUdy 

Slope Upstream Flow Overland Flow
Test Pair (%) (ets) a, b (cfs) 

1::1 1h 0.5 0350 0007 
2a 2b 0.5 0.175 o 0.07 
3a 3b 1 0.350 o 0.07 
4a 4b 1 0.175 o 0.07 
5a 5b 2 0.350 o 0.07 
6a 6b 2 0.175 o 0.07 
7a 7b 4 0.350 0.0.07 
8a 8b 4 0.175 o 0.07 
Q::I Qh 8 o ~"o 0007 'I 

10::1 10h 8 0175 0007 
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Each test pair in Table 4.1 consisted of a specific slope and upstream flow 

setting studied with (a) and without (b) overland flow to isolate the effects of 

spatially varied flow. Three replicates of each test pair were completed using a 

random order of slopes for a total of 30 test pairs or 60 unique flow conditions. 

Each flow test typically required 60 minutes to collect all the required data. After 

allowing the flow to stabilize, measurements were taken to determine flow depth, 

fabric discharge, and trench discharge under steady-state conditions. 

Point gauge readings were collected to determine flow depth along the 

centerline of the trench adjacent to a test section of silt fence. Flow through the 

fabric was collected and directed into ten 20 L plastic buckets over a known time 

to determine fabric discharge. Point gauge readings were monitored and 

compared to recordings from an electronic water level encoder in a stilling well 

connected to the H-flume, which gave an est'imate of trench discharge based on 

the calibration curve in Appendix B relating H-flume discharge to depth of flow. 

A detailed summary of testing procedures is provided in Appendix A. 

4.2 Movable-bed Study 

Non-cohesive material (see Appendix C) was used to eval.uate the 

performance of an erodible silt fence trench under a rang.e of slope and flow 

conditions. The sand was placed in the steel trench at the base of the silt fence 

as described in Chapter 3. Wetting and draining the sand on a lev~l slope 

provided uniform consolidation along the length of the simulated trench. The 

surface of the sand was then 'leveled using a special grading tool, and the bed 

s.lope was adjusted to the desired setting using a jack and support pins. 
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After collecting the initial bed profile with the point gauge, flow was 

released into the upstream reservoir. Flow conditions similar to those studied 

under fixed bed conditions were used with a selection of bed slopes from 0.0 to 

4.5 percent. Final adjustments to the flow setting were made as the reservoir 

filled, thus allowing the desired flow to stabilize shortly after entering the trench. 

Manometer readings were checked during the brief time required to allow flow 

conditions to stabilize in the trench and catch basin connected to the H-flume. 

Data collected during each test included total inflow, duration of flow, 

trench discharge, sediment concentration of the trench discharge, flow depth in 

the trench, initial and final bed profiles, and dry bul,k density of bed material. 

Total inflow was controlled with a gate valve and metered through an orifice plate 

connected to a differential manometer. The height of the end gate at the trench 

outlet was adjusted based on visual monitoring of scour in the clear trench 

extension marked with 0.1 ft (0.03 m) grid lines. 

Two to three sequences of measurements were recorded over the 

duration of each test. Sediment samples representative of total sediment load 

were collected at the outlet of the trench and later decanted and dried to 

determine the concentration of total solids (TS) for each test. Trench discharge 

was measured at the outlet of the catch basin with an H-flume, and flow depth 

was recorded by photographing the clear trench extension. Initial ~nd final bed 

profiles were measured with a point gauge along the centerline of the trench. 
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CHAPTER 5
 

MODEL DEVELOPMENT
 

5. 1 Description 

According to Nearing et al. (1994), model development can be divided into 

two phases: creating a physical prototype and then numerically simulating the 

physical system. In this study, the process of model development began with the 

construction of a physical model of a silt fence system at the USDA ARS 

Hydraulics Laboratory near Stillwater, Oklahoma. Subsequently, a physically

based, steady-state mathematical erosion model was developed to predict the 

results of concentrated flow and sediment detachment in a simulated silt fence 

trench system. Methods and procedures related to the physical model were 

discussed in the preceding chapter, and the mathematical modet will be 

described in this chapter. 

A typical silt fence system can be conceptualized as a porous structure 

that collects runoff from a small drainage generating sediment-laden runoff. 

Under concentrated flow conditions, erosion of backfill material used to entrench 

the silt fence is similar to the process of rill eros'ion. The entrenched toe of fabric 

becomes susceptible to undercutting failure when silt fence converts overland 

flow runoff into concentrated flow along the backfilled soil in the trench. The 

processes resulting in rill formation and development have been studied and 

modeled in previous research (Meyer and Wischmeier, 1969; Foster and Meyer, 

1972; Foster and Lane, 1983; Lu et aI., 1987; Brown et aI., 1989; Nearing et aI., 
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1989; Storm, 1991; and Wilson, 1993) and were considered in the development 

of the mathematical model. 

A framework was developed for analyzing the performance of the 

idealized silt fence system installed at the laboratory. Performance of a silt fence 

was defined as the ability of an entrenched silt fence to withstand concentrated 

flow without the occurrence of undercutting under specific design conditions. 

The basic approach of the mathematical model is to segment overland flow along 

a section of silt fence and approximate spatially varied flow in order to estimate 

the detachment rate of the toe trench material at any point. Detachment potential 

of the flow, sediment load, transport capacity, and properties of the material used 

to backfill the trench are important parameters in predicting detachment rate. 

5.2 Assumptions and Input Parame,ters 

Certain assumptions were necessary to develop a mathematical model for 

predicting concentrated flow and detachment of soil in the idealized physical 

model. The assumptions related to open channel hydraulics were applied to both 

fixed-bed and movable-bed sttldies, while other assumptions were relevant only 

when modeling erosion for movable-bed conditions. The main assumption was 

that the test section of silt fence was of adequate length to develop uniform flow 

conditions without the addition of overland flow. When overland flow was added, 

segmenting the test section and assuming uniform flow in each segment gave an 

approximation of spatially varied flow conditions. In either case, the water 

moving along the test section of' silt fence was assumed to achieve a predictable 

flow depth based on continuity of flow, trench slope, and channel roughness. 
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The small variation in measurements of flow depth from the averag.e in each 

segment supported this assumption. 

When predicting detachment rate for the movable-bed study, the sediment 

concentration of the flow entering the silt fence system was negligible and clear

water conditions were assumed. Soil density measurements were made and 

assumed to be representative of the bed material eroded during movable-bed 

tests. From the initial point of channel detachment, the entire width of the trench 

is assumed to erode downward at a constant rate. Although fluctuations in 

sediment transport rate are expected, the assumption of uniform scour is 

reasonable for the steady-state conditions tested in the movable-bed study. 

For this study, a 10ft (3 m) segment of silt fence was used as a test 

section with clear water inflow to the test section. This was assumed to 

represent the final segment of a silt fence subjected to flow entering from an 

upstream reach of fence and from an upslope drainage area. The folloWing input 

parameters were required to adequately define the silt fence system: 

• Slope (8), width (W), depth (dt), and length (L) of the toe trench, 

• Manning's n for the toe trench, 

• Parameters in the head-discharge relationship for the silt fence (mAeff) , 

• Simulated drainage area (Adr) contributing overland flow to the silt fence, 

• Precipitation volume (p) for a 10 year, 24 hour design storm, 

• NACS curve number (eN) for simulated drainage area, 
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• Representative particle diameter (dso) for trench backfill, bulk density (Pb), 

critical shear stress ('l"c), and rill erodibility (Kr) for trench backfill material. 

A critical distinction is made in the input parameters concerning the 

prevailing land slope and the slope of the toe trench. The prevailing land slope 

and slope length influences the rate of overland flow entering the, fence. while the 

slope of the toe trench controls the movement of water along the silt fence and 

the resulting concentrated channel flow erosion. 

5.4 Spatially Varied Flow 

The test section of silt fence was simulated as a flow splitting structure 

with flow split between that moving down the trench and a small fraction of flow 

trickling through the porous fabric. Since overland flow was also introduced 

along the test section in part of the tests, the test section of si'lt fence was divided 

into three segments for modeling purposes to consider spatially varied flow. 

The overland flow along the test section was divided evenly between the 

three segments, and spatially varied flow was approximated by accounting for 

flow entering and leaving each of the three segments. The overland flow 

entering a segment is represented by the following equation: 

q·=qpIL. (5.1) 

where q. is the overland flow (ems) to each segment, qp is the simulated peak 

flow (ems), and L is the length of the silt fence test section (m). 

The overland flow into each segment is then added to the flow from an 

upslope segment to calculate the total segmented flow as described by: 

q,. = q. + q; -1 - qfabric, (5.2) 
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where qi is the total flow (cms) in segment i, q. is the overland flow (cms) entering 

segment i, qi-1 is the flow (cms) entering from the segment upstream of segment 

i, and qfabric is the flow through the silt fence in segment i. 

Total flow in each segment is related to the geometry of the channel by 

the continuity equation and Manning's equation as follows: 

2qi = (1 / n) 81/ Ffl3 A, (5.3) 

where n is Manning's roughness for the trench, 8 is slope of the energy gradient 

(m/m), R is hydraulic radius of the trench (m), and A is cross sectional area of 

flow (m2
). Hydraulic radius and cross sectional area of flow is related to flow 

depth by: 

R= A / (2h + w) and A= wh, 

where w is the width of the toe trench (m) and h is the' depth of flow (m). 

An objective function, g(h), is minimized to find an iterative solution for 

depth of flow, h, in each segment such that: 

g(h) = q. + q'-1 - qi - qfabric (5.4) 

The depth of flow in each segment is then used to estimate discharge 

through the silt fence fabric based on head-discharge relationships developed for 

certain fabrics by Britton (2000) or: 

qfabric = C'm Aeff(2gh)o.5, (5.5) 

where qfabric is the flow (ems), C' is an orifice coefficient (assumed to be a sharp

edged orifice with coefficient of 0.61), m is the number of openings contributing 

flow, Aeff is the effective orifice area for each opening (m2), 9 is the gravitational 

constant (32.2 m/sec2
), and h is the hydraulic head acting on the fabric (m). 
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5.5 Sediment Transport 

Soil detachment in concentrated flow channels results from excessive 

shear forces produced by concentrated flow, sidewall sloughing, and head cut 

advancement. Head cut advancement, due to its complexity and the lack of 

available physically based models, is neglected in the channel erosion model. 

For a constant flow rate, the channel shape in concentrated flow erosion has 

been shown to be rectangular with a constant width (Foster and Lane, 1983)., In 

this model, the channel was assumed to be rectangular with a constant width of 

erosion equal to the width of the trench used in the tab study. Estimates of bed 

shear were based on the following equation for a laboratory flume: 

T= yh S, (5.6) 

where Tis shear stress (Pa), yis specific weight of water (N/m3
), h is depth of 

flow (m), and S is slope (m/m). 

The potential rate of vertical erosion is then calculated by using soil 

erodibility with shear excess, or: 

(5.7) 

where Dc is the potential rate of vertical erosion (kg/sec/m2
), K, is the soil 

erodibility (s/m) (discussed in the following chapter), Tis the shear force on the 

channel bottom (Pa), and Tc is the critical shear force of the bed material (Pa). 

Actual sediment detachment was modified to account for the ratio of 

sediment load to transport capacity as follows: 

(5.8) 
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where Dr is actual vertical erosion (kglsec/m2
). Dc is potential rate of vertical 

erosion (g/sec/m2
), Os is sediment load (glsec). and Te is transport capacity 

(g/sec). 

The concentrated flow moving along the toe trench has a sediment 

transport capacity that depends on the total sediment concentration. Since no 

sediment was transported to the toe trench by overland flow during the lab tests. 

a representative particle size (dso) for the trench backfill material was used in 

sediment transport capacity calculations. Consistent with WEPP data analysis 

techniques, the sediment transport relationship used in the numerical model is 

that of Yalin (1963), represented in equations (2.7 to 2.10) .. A conversi,on of 

sediment concentration, C, to sediment load. Te, is required for Eq. (5.8). The 

relationship used in the model is as follows: 

qs = Pw h C / 106 (5.9') 

and Tc =1000 qs w. (5.10) 

where qs is the sediment transport capacity per unit width of flow (kg/sec/m), Pw is 

density of water (kg/m3), h is depth of flow (m). C is the sediment concentration 

corresponding to sediment transport capacity (ppm), Te is defined as the 

sediment transport rate corresponding to sedime,nt transport capacity (g/sec). 

and w is the width of flow (m). 

Rate of downward movement in each rill segment is then estimated based 

on the ratio of actual vertical erosion to soil bulk density, or: 

M,=D,/pb • (5.11 ) 
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where Mr is the rate of downward movement (m/sec), Dr is actual detachment 

(kglsec/m2
), and Pb is soil bulk density (kglm3

). Finally, the rate of downward 

movement can be used to predict the time required to erode a certain depth of a 

specified width of toe trench backfill material along a given length of silt fence or: 

t= dtl Mr , (5.12) 

where t is the time required to erode the depth of backfill (sec), dl is the depth of 

trench backfill material (m), and Mris the rate of downward movement (m/sec). 

Algorithms with related input parameters are listed in Table 5.1, and a 

flowchart in Figure 5.1 illustrates how the algorithms were linked in the 

spreadsheet-based model. 

Table 5.1: Algorithms and Input parameters used In the mathematical model 

Reference In Text Alaorlthm InDut Parameters 

Eq. (5.1) q.= qp/ L P, eN, L, and Adr 

Eq. (5.2) qi =q. + qi -1 - Wabric See Eq. (5.5) 

Eq. (5.3) qi =(11 n) SII2 R2I3 A nand S 

Eq. (5.4) g(h) = q. + qi-I- qi - tlJabric Iterations of h 

Eq. (5.5) q!abric = C' m Aejf(2gh)o.5 mand Asff 

Eq. (5.6) r =rh S y, S, and Eq. 5.4 

Eq. (5.7) Dr =Kr(r - rJ Krand Tc 

Eq. (5.8) Dr =D,,(l- Q.ITC> Eqs. (5.7 and 5.10) 

SGdU. [1 ] v, h, SG, d, Tc (fromEq. (2.7) C = 6.35x105 s 1--ln(1+as)
vh as Shield's diagram) 

y 
Eqs. (2.8 and 2.9) a =2.45Yc~/2 SG-{)·4 and s=--1 SG and Tc (from 

Shield's diagram) Ycr 
Eq. (2.10) Y =PwU: Ir.d Pw , d, and 'is 

Eq. (5.9 and 5.10) qs ={Jwh C 1106 and Tc =1000 qs w handpw
 

Eq. (5.11) M r = Dr/Pb Pb
 

Eq. (5.12) t =dtl M r Eq.(5.11)
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The flowchart in Figure 5.1 shows how the algorithms in Table 5.1 were 

combined to develop the framework of the mathematical model. 

Figure 5.1: Flowchart representing the framework of the mathematical model 

SILT FENCE INPUT 
w, d" A.ff, m 

SEDIMENT TRANSPORT 
dso. {Jb, Q., Tc. K, 

Tc (Eq. 2.7) 

Time required for undercutting 

The symbols used in the diagram refer to parameters defined in the text. 

In summary, the depth of flow in each segment is estimated based on a 

continuity equation relating overland flow, toe trench open channe~ hydraulics, 

and hydraulics of the fabric. Then soil detachment is determined using 

concentrated flow erosion equations based on shear excess and transport 

capacity. Finally, the time, " required to erode a specified depth is computed. 
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CHAPTER 6
 

RESULTS AND DISCUSSION
 

6.1 Introduction 

A series of laboratory tests were conducted to provide experimental data 

for evaluating model predictions, of the hydraulic and sediment transport 

processes. A fixed-bed apparatus (see section 4.1) was first used to collect 

hydraulic data and to analyze the perfonnance of silt fence with a sloping trench 

under steady-state flow conditions. All test pairs were completed using the same 

silt fence over a period of five months beginning in August 2002. A test pair was 

defined as a specific slope and upstream flow setting studied with and without 

overland flow to isolate the effects of spatially varied flow. Three replicates of 

each test pair were completed using, a random order of slopes for a total of 30 

test pairs or 60 unique flow conditions. Half of the tests were conducted with 

continuous upstream flow only, and overland flow was added for the other half of 

the tests to isolate the effects of flow addition along the test section. 

Movable-bed tests were conducted with the same piece of silt fence used 

in the fixed-bed study to collect concentrated flow erosion data and to evaluate 

the perfonnance of a silt fence trench backfi'lled with highly erodible non-cohesive 

soil for a range of slope and flow conditions (see section 4.2). Testing of 

movable-bed conditions required a total duration of three months ending in 

March 2003. Nine different flow and slope settings were studied without overland 

flow. The results of fixed-bed and movable-bed studies are presented, 

discussed, and compared to model predictions in the following sections. 
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6.2 Results ofFixed-Bed Study 

The silt fence acted as a porous structure with a small fraction of flow 

discharging, through the fabric as water moved downslope along the silt fence 

trench. Average measurements and calculations for each slope and flow setting 

used in the fixed-bed study are summarized in Table 6.1. Each row of data in 

Table 6.1 represents the average value of three repetitions at the specified slope 

and flow settings. Data for all tests are provided in Appendix C. 

Table 6.1: Data analysis for fixed-bed study (each row is average of three repetitions) 

Flow Rate, Q Fabric Ave. Ave. Ave. 
Slope, S (ems) Flow Depth, h Ve!.' Shea.-z 

3 F4(m/m) Upstream Overland (ems) (m) (m/see) (Pa) n
0.005 0.005 0.000 1.4E-05 0.044 0.753 2.18 0.009 1.2 
0.005 0.010 0.000 5,1 E-05 0.072 0.946 3.54 0.008 1.2 
0.01 0.005 0.000 1.2E-05 0.033 0.975 3.27 0.008 1.7 
0.01 0.010 0.000 2.2E-05 0.054 1.211 5.27 0.008 1.7 
0.02 0.005 0.000 6.2E-06 0.029 1.141 5.59 0,009 2.2 
0.02 0.010 0.000 2.3E-05 0.046 1.416 9.01 0,009 2.1 
0.04 0.005 0.000 8.1E-06 0.023 1.390 9.17 0.010 2.9 
0.04 0.010 0.000 1.8E-05 0.039 1.673 15.25 0.010 2.7 
0.08 0.005 0.000 6.2E-06 0.018 1.874 13.88 0.009 4.6 
0.08 0,010 0.000 1.6E-05 0.032 2.034 25.10 0.011 3.6 

0.005 0.005 0.002 4.5E-05 0.278 0.385 4.15 0.017 0.4 
0.005 0.010 0.002 1.0E-04 0.392 0.546 5.85 0.012 0.5 
0.01 0.005 0.002 4.2E-05 

I 

0.202 0.790 6.03 0.016 1..1 
0.01 0.010 0.002 6.9E-05 0.300 0.716 8.96 0.015 0.8 
0.02 0.005 0.002 1.9E-05 0.151 0.710 9.00 0.014 1.1 
0.02 0.010 0.002 3.3E-05 0.201, 1.061 12.02 0.011 1.4 
0.04 0.005 0.002 1.5E-05 0.115 0.933 13.69 0.016 1.6 
0.04 0.010 0.002 4.0E-05 0.167 1.284 19.94 0.011 1.8 
0.08 0.005 0.002 9.0E-06 0.085 1.250 20.42 0.013 2.5 
0.08 0.010 0.002 1.9E-05 0.125 1.715 29.80 0.009 2.8 

1. Ave. Vel., V =Q / A, where A =hw and width of flow in trench, W =0.15 m 

2. Ave. Shear, r =y h S, where y for water at 25°C is 9777N/m3 

3. Mannig's n =S/2 ~ / V (Eq. (6.1) was used for tests with overland flow) 

4. Froude number, F = V / (gh) 1/2 

6.2.1 Manning's 'n'. After estimating average flow velocities using the 

continuity equation described in the first annotation of Table 6.1, values of 
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Manning's "n' (roughness) were calculated for uniform flow conditions by solving 

Manning's equation for n. Flow velocity increased with slope as expected, and 

calculated values of roughness ranged from 0.007 to 0.012 for all fixed bed tests 

with only upstream flow. The average value used in calculating predicted flow 

depths was 0.009 for tests with no overland flow. 

The Manning's equation for uniform flow did not apply to the test 

conditions where overland flow was added. since the addition of overland flow 

caused spatially varied flow conditions. Therefore, the dynamic equation for 

spatially varied flow with increasing discharge was solved for Manning's n to 

determine an average channel roughness value. Chow (1959) presents the 

following equation for spatially varied flow based on momentum change along a 

representative section of channel: 

(6.1 ) 

where dy is the change in depth for a unit length (dx) of channel, So is the slope of 

the channel bed, Sf is the friction slope represented by the Manning's formula as 

Sf= (fn2 
/ 2.22A 2R4/3 

, Q is the discharge at the upstream end of the channel 

section, q. is the added discharge per unit length of channel (q. = dQldx), g is the 

gravitational constant, A is the cross sectional area, and D is the hydraulic depth. 

Measured values were substituted into Eq. (6.1) for all parar'!leters except 

n, which was determined by iteration in the relationship for S.r such that dyldx in 

Eq. (6.1) matched observed dyldx values. Average Manning's n values were 

slightly higher for the test conditions with addition of overland flow and ranged 

from 0.009 to 0.017 with an average value of 0..013 used for modeling purposes. 
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6.2.2 Depth of flow. Average values of Manning's roughness were used 

to predict flow depths in the numerical model when simul'ating the hydraulic 

performance of a s.ilt fence with a non-erodible trench. A comparison of 

observed and predicted flow depth for conditions of upstream flow without 

overland flow is presented in Figure 6.1 below. The relationship of observed and 

predicted depths of flow in Figure 6.1 has a 0.0001 m2 sum of squared error. 

Figure 6.1: Comparison of predicted and observed depths of flow for upstream flow only 

Comparison of Observed and Predicted Flow Depth 
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The comparison in Figure 6.2 shows the relationship of observed and 

predicted depths of flow with the addition of overland flow. The predicted depths 

were computed based on measured flow rates and cross sectional area with 

average Manning's n based on the spatially varied flow relationship described by 

Eq. (6.1). The sum of squared error was 0.01 m2 for the- data in Figure 6.2. More 

scatter was apparent in the overland flow comparison (see Figure 6.2) due to 

greater fluctuation in measured depths of flow. 
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Figure 6.2: Comparison of predicted and observed depths of flow for overland flow tests 

Comparison of Observed and Predicted Flow Depth 

0.10 

0.09	 ... ./../ •0.08	 • ... 
g 0.07	 • ./ 
a0.06	 

• l/ •• 
~ ~ 
~ 0.05	 • .. - 
Q)	 ~ 
~ 0.04	 ~ - 
CI l/4~ •11 0.03 
o l/	 .. 0.02 

l/0.01	 - i- 

0.00 ./ 
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

Predicted Depth (m) 

6.2.3 Bed shear. Average bed shear was estimated by Eq. (5.6) for all 

tests based on slope settings and measurements of flow depth. Figure 6.3 

shows the range of bed shear estimates for the slope and flow conditions tested. 

Figure 6.3: Range of bed shear conditions tested at each bed s10pe In fixed-bed study 

Bed'Shear as a Function of Slope 
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6.2.4 Fabric flow. Fabric discharge was measured for each 1 ft (0.3 m ) 

segment of silt fence in the 10 ft (3 m) test section. The total fabric flow for the 

test section was calculated and compared to predicted flow based on a modified 

orifice equation developed by Britton (2000) for the fabric used in this study. The 

observed relationship between depth of flow in the fabric trench and fabric 

discharge through a 3.0 m segment of si.lt fence is represent below in Figure 6.4, 

which includes all data for the sloping-trench, fixed-bed study. 

Figure 6.4: Discharge through silt fence for all fixed-bed test conditions, 

Fabric Discharge as a Function of Depth of Flow 
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The three data series in Figure 6.4 represent three repetitions of the same 

test conditions. Non-linear regression was used to fit a power function through 

each of the data sets, and the first set of data was consistently higher than the 

other two sets of data. Considering that test conditions were carefully controlled 

in a laboratory, the variation in head-discharge relationships between Series 1 
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and the other two data sets was not expected. TI 

used for all tests, and each data set required 20 t 

temperature could explain part of the variation sir 

collected prior to the other two data sets. Anothe 

of the silt fence could have been altered after the 

have been a result of a physical, chemical, or bio 

Physical clogging of the fabric openings w 

the water supply is a plausible explanation; howe 

also merits consideration. Inadvertent stretching 

of testing would result in a change in the head-di 

the fabric could increase the size of the opening~ 

area of discharge; however a converse effect is i 

more detail in the following sections. 

Observed head-discharge relationships fc 

settings were compared to expected values of fa 

depth of flow as described in Table 6.2 below. 

Table 6.2: Data analysis for fabric dis 

Fabric Flow (cms x 104
) Detenninl

'Depth of
 
Flow
 Sloping Trench Level Trench 
(m) 'Data Data 

0.00 0.0 0.0 
0.03 0.2 0.8 
0.06 0.6 2.5 
0.09 1.1 4.9 

1. Predicted values were determined from equatio/ 

2. ASTM 4491 method was used by Amoco (2002) 
value of 10 gpm per tf. which was used to ca(cu(al 
silt fence with the indicated depth of flow. 
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More unexpected discrepancies emerged when the observed data were 

compared to the predicted head-discharge relationships as shown in Figure 6.5. 

Figure 6.5: Comparison of measured and predicted fabric flow relationships 

Fabric Discharge as a Function of Depth of Flow 
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Britton (2000) results (labeled as predicted in Figure 6.5) for the filter 

fabric used in this study were based on data collected using a new piece of silt 

fence for each flow test. and the fabric used for this entire study demonstrated a 

reduction in discharge by a factor of three after the first data set was collected 

(see Figure 6.4). The observed head-discharge relationship for the level trench 

(see Figure 6.5) was expected to follow the predicted relationship developed by 

Britton (2000) for a filter fabric identical to one used in this study. However, 

fabric discharge results from the level trench tests indicate that. similar to the 

reduction in discharge illustrated in Figure 6.4, observed flow rates for the level 
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trench were lower than the predicted flows by factors of three or more as shown 

in Figure 6.5. It should be noted that the level trench tests were performed at the 

end of the fixed-bed study, thus the fabric at that time had been subjected to 

nearly 60 hours of clear-water flow taken from a lake through metal pipes. 

Prediction equations developed by Britton (2000) are dependent on an 

opening area parameter calculated from experimental data for head and 

discharge. Since the effective area of fabric openings is determined by 

experiment, the area calculations absorb unconsidered influences like stretching, 

sagging, or micro plugging of the filter fabric. A likely explanation of the factor of 

three plus variation turning up in two independent comparisons is that hydraulic 

characteristics of a silt fence are significantly altered with time even when 

subjected to flows with scant sediment loads. These results indicate that a new 

piece of silt fence can discharge three times as much flow as a silt fence that has 

experienced flow. 

Another possible explanation for the lower than expected fabric discharge 

is the movement of water parallel to the silt fence. A head loss due to the 

velocity of flow al.ong the fabric would effectively reduce the discharge through 

the fabric when compared to fabric discharge resulting from hydrostatic head 

along a section of silt fence. In the case of hydrostatic conditions, the 

momentum of flow is all directed through the silt fence. Whereas: in the case of 

flow moving parallel to the fabric, a change in momentum is required for the flow 

to pass through the silt fence, thus resulti,ng in an effective loss in head. 
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A simplistic approach to correlating the observed and predicted head

discharge relationship is to develop a correction factor based on observed fabric 

flow for the level slope setting. The correction factor could then be included in 

the modified orifice equation used to predict fabric discharge as follows: 

Cc =q" measured I q" predicted, 

where Cc is the correction factor for relating observed level slope flow to 

predicted, q" measured is the power function relating measured flow to depth of 

flow, and q" predicted is the relationship developed by Britton (2000). Since both 

relationships include a term close to H1
.
5

, the correction factor could be assumed 

to be constant for the case of a level trench. It was determined that the 

correction factor is approximately 3.5 using all measured head-discharge data 

and fabric-specific parameters developed by Britton (2000). Such a correction 

factor could potentially be used to examine the effects of concentrated channel 

flow velocity on reduction in head acting on the fabric. However, the usefulness 

of such a correction factor should be limited to conditions similar to those tested 

in the lab study. Further study is needed to develop additional relationships. 

6.2.5 Discussion of results. In summary, the flow conditions tested in a 

non-erodible silt fence trench with a rectangular cross section were predictable 

for the selected range of trench slopes. Manning's roughness estimates resulted 

in a moderate range of values with no evidence ofa trend relatecf to slope, flow 

depth, or flow velocity. The average roughness value was used in Manning's 

equation along with the continuity equation to compute depth of flow assuming 

uniform flow conditions. 
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Predicted flow depths correlated well with observed depths of flow, but 

fabric discharge measurements did not follow the expected head-discharge 

relationship developed by Britton (2000). One possible technique for correcting 

the flow prediction equation is to add an energy loss term associated with flow 

velocity along a segment of filter fabric. Another approach would be to 

reconsider the method of approximating effective opening area and introduce 

coefficients to the modified orifice equation that account for influences of fabric 

tightness on the head-discharge relationship. 

Fabric tightness logically contributes to the head discharge relationship of 

filter fabric, but determining the effects of fabric tightness was beyond the scope 

of this study. The woven configuration of fabric filaments is inherently flexible 

and allows the force of water to stretch and pass through openings when the 

filaments are not secured to posts in a taut position. Consequently, a tightly 

stretched section of silt fence would have a smaller effective opening area when 

compared to a less tightly stretched section of the same fabric. Discharge is 

most likely reduced when silt fence is secured in a taut configuration as 

compared to discharge for the same depth of water through sagging fabric. 

6.3 Results ofMovable-Bed Study 

The purpose of the movable-bed study was to determine the effects of 

trench slope on the performance and stability of a silt fence. An additional use of 

the data collected for this portion of the laboratory study was to validate the 

modeling routines developed for concentrated flow erosion al.ong a silt fence on a 

range of slopes similar to those tested in the experiments. Results for eight 
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different trench erosion test conditions were analyzed, and a summary of the 

data analysis is provided in Table 6.3 below. More complete data sets are given 

in Appendix E. 

Table 6.3: Results and data analysis for movable-bed tests 

Test Slope Q h V Q. 't Tc 

(No.) (%) (cfs) (ft) (fps) (g/sec) (Pa) (g/sec) 
1 1.0 0.17 0.18 1.89 5.0 5.4 83 

2 2.4 0.15 0.11 2.78 77.3 7.9 238 

3 0.8 0.17 0.19 1.76 3.5 4.5 56 
4 4.5 0.16 0.08 4.10 215.7 10.8 483 
5 0.4 0.17 0.20 1.71 3.3 2.4 13 
6 1.1 0.34 0.20 3.41 4.6 6.6 112 
7 2.4 0.34 0.18 3.82 95.6 12.9 418 
8 4.3 0.33 0.15 4.33 351.6 19.3 945 

Visual monitoring of bed forms during each test gave some indication of 

flow conditions. The bed forms consisted of small ripples with little effect on the 

movement of water for tests 1, 3, 5, and 6. Flow conditions were less stable, and 

bed forms began to affect the water surface during tests with slopes greater than 

one percent. Formation of dunes and anti-dunes moving upstream was noted for 

tests 2,4,7, and 8, with rapid detachment of bed material during tests 4 and 8. 

The clear channel extension provided a one-meter length of flow visualization, 

which provided a representative profile of the entire channel. Depth of flow, h, 

was determined by analyZing grid lines present in digital images recorded of the 

clear channel extension during each test. Sample images used in the analysis 

are provided in Appendix F. 

Velocities in Table 6.3 were computed based on the continuity equation 

using the ratio of direct flow measurements to cross-sectional areas determined 

from measured depths of flow. Measured sediment concentrations were 
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multiplied by flow rate to obtain the rate of sediment discharge, Os. Values of 

bed shear, T, were computed using Eq. (5.6). Transport capacity, Tc, for each 

test condition was then estimated using Eq. (5.10). The results in Table 6.3 

follow expected trends when comparing changes in slope and flow conditions to 

changes in sediment transport. 

6.3.1 Erodibility and critical shear. A method of determining rill 

erodibility and critical shear was needed to develop the required input 

parameters for the model described in section 5.5. Data analysis techniques 

used in WEPP were selected to arrive at the required input parameters. The 

transport capacity, channel width, and observed rate of sediment leaving the 

trench were first used to calculate the detachment capacity for each test 

condition according to the relationship developed by Elliott et al. (1989), which 

assumes constant shear along a rill such that: 

(6.2) 

where Lis rill length (m), W r is rill width (m), Tc is transport capacity (g/sec), and 

Os is sediment delivery rate (g/sec) measured at the downstream end of the rill. 

Dc' and E are factors related to interrill erosion, and E is zero in the case of clear 

water flow in a rill. Therefore, the final term in the 'Iogarithm of Eq. (6.2) drops out 

of the relationship for conditions tested in this study. 

As discussed in a previous chapter, detachment capacity, Dc, is the 

capacity of clear water to remove bed material" and actual detachment rate, Or, 

accounts for the effective reduction in detachment capacity due to the ratio of 
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sediment load to transport capacity. Detachment capacity, Dc, was then 

substituted into Eq. (5.8) to estimate actual detachment rates, Dr. Values for rill 

erodibility, Kr, and critical shear, ZOe, were then calculated by linear regression 

from detachment rate as a function of hydraulic bed shear as shown in Figure 6.4 

below. 

Figure 6.4: Linear approximation of detachment rate as a function of bed shear
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Rill erodibility (slope/1000) was estimated at 0.036 slm, and critical shear 

for the erodiblie bed material was approximately 4.3 Pa (x-intercept) based on the 

linear relationship of detachment capacity to bed shear as described by Eq. (5.8) 

and illustrated in Figure 6.4. A summary of detachment rates used in the 

determination of rill erodibility and critical shear is presented below in Table 6.4. 

Table 6.t: Detachment rates used to estimate soil erodibility parameters 

Test Slope h 't Dr Dc 
(No.) (%) (ft) (Pa) (g/s/m 2 

) (g/s/m2 
) 

1 1.0 0.18 5.4 7 7 
2 2.4 0.1,1 7.9 84 125 
3 0.8 0.19 4.5 5 5 
4 4.5 0.08 10.8 211 381 
5 0.4 0.20 2.4 4 5 
6 1.1 0.20 6.6 6 6 
7 2.4 0.18 12.9 112 145 
8 4.3 0.15 19.3 368 586 
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The estimated values of Kr and 'fc for the soil used in the laboratory study 

were used to predict detachment rates. A comparison of observed and predicted 

values of detachment rate 's shown in Figure 6.5 below. 

Figure 65: Comparison of detachment rate based on measured sediment loads to 

predicted detachment rate based on average erosion parameters (Kr and Tc)' 
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The values compared in Figure 6.7indicate that the use of average soil 

erodibility parameters, Kr and 'fc. resulted in predicted detachment rates 

reasonably close to the measured detachment rates for both detachment 

capacity, Dc, based on the shear excess relationship and for actual detachment, 

Dr, or the detachment that accounts for the influence of transport capacity. 

Standard error of estimation was determined to be 102 g/sec/m2 for Dc and 77 

g/sec/m2 for estimates of Dr. 

6.3.2 Evaluation of model predictions. The estimated values of Kr and 

'fc for the soil used in the laboratory study were then used to predict net 

detachment for an independent test, which was excluded from the determination 

of experimental values of Kr and 'fc- During the independent test, flow continued 
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until the average scour depth was greater than the depth required to cause 

undercutting. The modeling framework described in Chapter 5 was applied to 

arrive at a predicted depth of flow, sediment transport rate, and net scour over a 

time equal to the duration of the independent test. A summary of results for the 

independent test and model predictions is provided below in Table 6.5. 

Table 6.5: Model predictions and comparisons for an independent test 

Observed Predicted Percent
Equation No. Parameter 

Value Value Error 

5.4 Ftow Depth, h 0.037 m 0.035 m 5% 

5.5 Fabric Flow, q NA NA NA 

5.6 Bed Shear, r 15.4 14.8 4% 

6.1(obs.) 
Dc 600 g/sec/m2 378 g/seclm2 37%

5.7{pred.} 

5.8 Dr 326 g/sec/m2 206 g/sec/m2 37% 

Basis of Scour Depth, dt 0.23 m 0.23 m NAComparison 

5.12 Req. Time, t 1800 sec 1667 sec 7% 

Input parameters used to develop the comparison in Table 6.5 were as 

follows: 

• a flow rate of 0.23 cfs (0.007 cms), 

• a trench slope of 0.043 mlm, 

• average Manning's n = 0.014 (average for entire movable bed study), 

• Kr = 0.036 slm, Tc = 4.3 Pa, and bulk density of sand, Pb =:= 1.49 g/sec. 

Fabric discharge was neglected in analyzing movable-bed results because 

existing head-discharge relationships assume a constant flow depth relative to a 

point on the silt fence. Fabric flow rapidly decreased in movable-bed tests with 

significant scour. Fabric discharge became insignificant as the depth of flow 
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approached the depth of scour in the trench. A comparison of fabric discharge 

relative to flow in the trench for the fixed-bed study is provided as evidence of the 

influence of fabric discharge for various trench slopes. Figure 6.8 below 

indicates that fabric discharge was observed to be less than 0.8 percent of the 

flow in the trench for all conditions tested in the laboratory study. 

Figure 6.8: Plot of relative fabric discharge for all test conditions 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

7.1 Summary 

Sediment loads in runoff from construction sites are significantly greater 

than those of agricultural lands and forested areas. During a short period of time, 

construction sites can contribute more sediment to streams than can be 

deposited naturally during several decades. The resulting: situation, and the 

contribution of other pollutants from construction sites, can cause physical, 

chemical, and biol'ogical harm to aquatic ecosystems (USEPA, 1995). Silt fence 

is one of many methods available for curtailing sediment-laden runoff from 

construction areas, and it has proven to be an integral component of erosion 

prevention and sediment control plans in most municipalities. 

Acceptable performance of silt fence was defined as the ability to 

effectively trap sediment on a construction site without experiencing undercutting, 

or overtopping failure. The primary objective of this specific study was to 

evaluate the hydraulic performance of silt fence and the processes of 

undercutting for a range of trench slopes and concentrated flow conditions in a 

laboratory flume. An additional purpose of this study was to develop a process

based model for predicting the erosion of trench backfill material that occurs 

when a segment of silt fence functions as a flow diverting structure and converts 

overland flow into concentrated flow. 

The variables contributing to the performance of a silt fence system were 

simulated with a mathematical model, which included routines for estimating the 
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physical processes of overland flow, spatially varied channel flow, and sediment 

transport. A silt fence system was conceptualized as a porous structure that 

collects runoff from a small drainage generating sediment-laden runoff. An 

experimental apparatus was designed and constructed to study flow along a silt 

fence trench with both non-erodible and erodible bed surfaces. A range of flow 

and slope conditions were tested, and the results were compared to the 

predictions generated with the process-based model. 

7.2 Conclusions 

Predicted depths of flow correlated well with observed depths of flow, but 

fabric discharge measurements did not follow the expected head-discharge 

relationship developed by Britton (2000). This was, most I,ikely a result of using 

the same piece of silt fence for the entire study, whereas Britton (2000) results 

were based on using a new piece of fabric for each flow test. One possible 

technique for correcting the flow prediction equation is to add a head loss term 

associated with flow velocity along a segment of filter fabric. This would require 

further investigation and analys:is beyond the scope of this study. The evidence 

presented in this study suggests that silt fence that has been exposed to lake 

water discharges approximately one third of the flow that a new silt fence would 

discharge at a given head. 

-
The issue of fabric tightness and its effects on the head-discharge 

relationship was considered beyond the scope of this study. Although tighter 

fabric may allow water to pass more freely than sagging fabric, the relationship is 

probably opposite. That is, discharge is most likely reduced when silt fence is 
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secured in a taut position as compared to sagging fabric. The woven 

configuration of fabric filaments is inherently flexible and allows the force of water 

to stretch and pass through openings when the filaments are not stretched. 

Consequently, a tightly stretched section of silt fence would have a smaller 

effective opening area when compared to a less tightly stretched section of the 

same fabric. 

Predicted detachment rates were reasonably close to the measured 

detachment rates for both detachment capacity, Dc, based on the shear excess 

relationship and for actual detachment, Dr, or the detachment that accounts for 

the influence of transport capacity. Fabric discharge decreased significantly as 

the depth of flow approached the depth of scour in the trench. 

7.3 Recommendations for Future Research 

The laboratory study was designed to simulate an entrenched silt fence 

installed in a controlled environment. Certain assumptions were made to 

facilitate mathematical simulations of the silt fence system. For example, the 

trench was constructed with rectangular geometry to simpilify measurements of 

flow depth and downward rate of scour. The silt fence was secured as taut as 

possible to ensure a rectangular cross section of flow, and plastic ties were 

evenly spaced along the vertical steel posts. The plastic ties should have only 

been used above the lower six inches of the steel posts, and it is also 

recommended that future tests should use silt fence that is not pre-attached to 

wooden posts since removing the fabric from the staples in the wood creates 

holes that interfere with fabric discharge. 
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More tests should be performed at a zero-slope setting to compare fabric 

discharge for new silt fence and silt fence that has experienced certain durations 

of flow. Exposing a piece of silt fence to distilled water and comparing its 

hydraulic performance to a silt fence exposed to lake water would provide a 

better understanding of the effects of micro plugging. Fabric tightness issues 

could be evaluated independently. The influences of fabric tightness on the 

head-discharge relationship should be considered when approximating effective 

opening area in the modified orifice equation for fabric flow. 

The modeling framework developed and evaluated in this study should be 

refined to consider more accurate representations of the processes that impact 

silt fence performance. For examp'le, actual failures of silt fence should be 

carefully monitored to ascertain the most important factors involved in various 

modalities of failure. The performance of silt fence under field conditions should 

be studied in carefully controlled experiments. Results of I:aboratory studies and 

field studies could then be used to develop site-specific design g,uidelines. 

The results of the movable-bed study could be used to create design 

standards based on highly erodible trench backfill conditions. Such design 

standards would consider site-specific runoff for a 10 year, 24 hour design storm, 

and the mathematical model would be used to determine the maximum allowable 

trench length for a given fence slope and peak flow.. The backfill material should 

be of adequate depth to prevent scouring of the top half for a 30-minute duration 

of the peak flow. Low resistance to erosion should be assumed for the trench 

backfill material unless compaction standards are developed and strictly 
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enforced. Additional experiments and analysis of data would help lead to the, 

development of design criteria for allowable slope and trench length based on a 

range of soil conditions using soil characteristics from the WEPP database. 

In summary. the existing experimental equipment should be modified to 

further evaluate the effects of prior flow and fabric tightness on the head

discharge relationship of silt fence. Field tests of silt fence in a controlled 

environment would provide valuable information on failure processes. The 

mathematical model should be adapted to more accurately predict fabric 

discharge for a wider a range of conditions, and further observation of processes 

related to silt fence failure should be considered in future model development. 

The modeling framework proposed in this study should ultimately be useful in 

developing silt fence design and installation criteri'a that is applicable and 

enforceable under all conceivable conditions encountered on construction sites. 
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APPENDIX A� 

Procedures fo·r Laboratory Tests� 
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1 

Preliminary Test Preparations 

•� Flow distribution was analyzed for a section of horizontal pipe with drilled 
orifices to determine proper spacing and pressure requirements. 

•� Geometric configuration of a simulated trench was selected and� 
fabricated.� 

•� Upstream and overland flow devices were connected to existing supply 
lines in a model building with a gravity flow water supply. 

•� Filter fence hydraulics testing apparatus with an adjustable-slope trench 
was constructed in a laboratory flume. 

•� Monitoring equipment such as a point gauge was mounted on rails that 
were secured to a steel framework along the test section. 

•� An H-f1ume with catch basin was installed downstream of the adjustable 
slope filter fence test channel and the control section of the H-f1ume was 
secured to the concrete floor and leveled. 

•� Inlet and outlet connections were sealed to the test channel using a 
flexible rubber liner. 

•� A clear acrylic channel extension was constructed and attached to the 
downstream end of the silt fence test section to allow visual monitoring of 
flow and sediment movement. 

•� Desired slope and flow settings were selected and randomized to� 
determine the sequence of tests.� 

Fixed-bed Test Procedures 

1.� Point gauge support rails were leveled and bed slope was measured by 
taking point gauge readings at one-foot increments over the length of the 
test section. 

2.� Flow collection system consisting of ten five-gallon buckets was positioned 
next to filter fabric flow drains. 

3.� Orifice plate with manometer board was used to adjust upstream flow 
conditions. 

4.� Two minutes were allowed for flow stabilization before H-flume flow depth 
measurements were recorded. 

5.� Wetting the outer filter fabric surface in the test section broke surface 
tension. 

6.� Drain hoses were positioned to initiate fabric flow collection in -buckets 
after noting the time. 

7.� Bed and water surface profiles were measured with a point gauge at one
foot stations over the length of the test section. 

8.� Drain hoses were removed from the fabric flow collection system, the time 
was noted, and volume of water in each bucket was measured. 
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Movable-bed Test Procedures 

1. Small drain holes were drilled along the trench bottom. 
2. Permeable geotextile liner was placed along the trench bottom. 
3. Trench was filled with 1.1 ft of soil to allow for settling during conso idation. 
4. Soil was saturated and drained to achieve uniform consolidation. 
5. Soil density samples were collected upstream from test section. 
6. Point gauge support rails were leveled along the test section. 
7. Soil surface was graded to final level. 
8. Bed profile was measured to determine required slope adjustment. 
9. Slope setting was adjusted to achieve desired test slope.� 
1O.lnitial bed profile data was collected.� 
11. Desired flow was set using valve and manometer system. 
12. The time flow entered trench was noted. 
13. Manometer reading was checked. 
14. End gate measurement was recorded. 
15. Readings for depth of flow in H-f1ume were taken. 
16. Sediment sample was collected. 
17. Photograph was captured of flow in clear channel extension. 
18. Water surface profile was measured. 

Steps 9 through 14 were repeated at reasonable times for the duration of the test 
with a minimum of three repetitions. 
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a_til An_lysis for T.stl with Upatrum Flow Only 

8Iopo U..._mFIow Fabric: Flow H~..... _ 
Av.Depth 01 Flow V-OIA 
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Det1I Analysla tor TUb with U,..fTNm Flow Mtd Overlend Flow 
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APPENDIX C� 

Particle Size Distribution of Bed Material� 
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Soil C I 
I 

------Sample No.---
1 2 3 

Samples were taken from the west bin 
of the concrete sand material at the 

Total Sample (g) 115.01 115.59 115.47 ARS Hydraulics Laboratory. 

Sieve No. Size (mm) Mass Retained (g) Mean (g) Std. Dev. % Finer Size (mm) 
4 4.750 2.19 2.43 1.22 1.95 0.64 98.3 4.750 

10 2.000 5.64 5.58 4.53 5.25 0.62 93.7 2.000 
20 0.850 26.07 30.08 27.51 27 .. 89 2.03 69.5 0.850 
40 0.425 53.79 54.49 53.4 53.89 0.55 22.6 0.425 
60 0.250 20.71 18.33 19.6 19.55 1.19 5.6 0.250 

140 0.106 5.27 4.4 7.51 5.73 1.60 0.6 0.106 
200 0.075 0.28 0.31 0.75 0.45 0.26 0.2 0.075 

PAN 0.000 0.18 0.2 0.4 0.26 0.12 0.0 0.000 

Total Retained (9) 114.13 115.82 114.92 114.96 

Particle Size Distribution for Bed Material 

100 .... ~
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Q. I~10 ~ o . 

0.01 0.10 1.00 10.00 

Particle Size (mm) 

81� 



APPENDIX D� 

Plots of Initial and Final Bed Profiles� 
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Test No.1, Bed Profiles for 1.0% Initial Slope 
Q =0.175 cfs and Duration of Test =73 min 
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Test No.2, Bed Profiles for 2.4% Initial Slope 
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Test No.3, Bed Profiles for 0.8% Initial Slope� 
Q =0.175 efs and Duration of Test =18 min� 
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Test No.4, Bed Profiles for 4.5% Initial Slope 
Q =0.175 efs and Duration of Test =10 min 
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Test No. 5J Bed Profiles for 0.4% Initial Slope� 
Q =0.175 cfs and Duration of Test =19 min� 
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Test No.6, Bed Profiles for 1.1% Initial Slope� 
Q =0.35 cfs and Duration of Test = 23 min� 
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Test No.7, Bed Profiles for 2.4% Initial Slope� 
Q = 0.35 cis and Duration of Test =15 min� 
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Test No.8, Bed Profiles for 4.3% Initial Slope� 
Q =0.35 cfs and Duration of Test =10 min� 
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Test No.9, Bed Profiles for 4.3% Initial Slope 
Q =0.23 em and Duration of Test =30 min 
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APPENDIX E� 

Data Analysis for Movable Bed Study� 
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Summary of Results and Data Analysis for Movable-Bed Study 

Test Slope Q h V Q" '( Tc Dr Dc Time Scour 

(No.) ("!o) (cts) (ft) (fps) (glsec) {Pal (glsec) (gls/ml) (gls/ml) (min) (ft) 

1 1 0.170 0.18 1.89 5.0 5.38 82.5 6.5 6.9 73 0.052 

2 2.4 0.153 0.11 2.78 77.3 7.89 238.1 84.1 124.5 27 0.176 

3 0.8 0.167 0.19 1.76 3.5 4.54 56.2 4.6 4.9 18 -0.009 

4 4.5 0.164 0.08 4.10 215.7 10.76 483.4 210.9 380.9 10 0.479 

5 0.4 0.171 0.20 1.71 3.3 2.39 13.4 3.8 5.0 19 0.003 

6 1.1 0.341 0.20 3.41 4.6 6.57 111.5 6.0 6.3 23 -0.025 

7 2.4 0.344 0.118 3.82 95.6 12.91 418.4 111.6 144.6 15 0.086 

8 4.3 0.325 0.15 4.33 351.6 19.28 945.1 368.1 586.2 10 0.503 

9 4.3 0.225 0.12 3.75 336.9 15.42 738.6 326.2 599.8 30 0.745 
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APPENDIX F� 

Sample Images of Flow Profiles� 
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4% Trench Slope 
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