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CHAPTER ]
INTRODUCTION

The Quaternary aquifer along the Arkansas River in Western Osage County,
Oklahoma (Figure 1) was thought to represent a substantial potential water resource, but
no data were available as to the quality and availability. [n response to increasing
demands for water on the Osage Reservation, the U.S.Geological Survey (USGS), in
cooperation with the Osage Tribe and the Bureau of Indian Affairs, conducted a study to
assess the availability and quality of ground water in the Quaternary aquifer on the Osage
Reservation side of the river. The project consisted primartly of the collection and
analysis of data {rom 103 test holes in the aquifer (Figures 2 and 3). The fieldwork was
conducted from January to September 2002. Data collected included clectrical
conductivity measurements, sedimeni cores, and water-quality field parameters. When
feasible, water levels in the test holes were mcasured. This thesis {ocuses primarily on
characterizing the alluvium and terrace deposits and making inferences regarding their
origin. The results of the water quality and aquifer flow study may be found in
Mashburn (2003).

Description of the Study Area (Osage Reservation)

The Osage (Reservation), also known as Osage County, consists of about 2,260
square miles. The Reservation is charactenized by gently-rolling uplands with sharp

cuestas formed by resistant sandstone and limestone ledges. The Arkansas River borders



the Reservation on the south and southwest. The western part of the Reservation, known
informally as the Bluestem Hills, is mostly open savanna. The highest altitude is about
1,350 feet above sea level along the cucsta northeast of Foraker in the northwestern part
of the Reservation; the lowest altitude is about 600 feet above sea level along Hominy
and Delaware Creeks south of Skiatook in the southeastern part of the Reservation.

Mean annual precipitation across the Reservation ranges from 34 inches near Ponca City,
on the western edge to greater than 38 inches near Tulsa, in the southeast part (Oklahoma
Climatological Survey, 2002).

Description of Quaternary Aquifer

The Quaternary aquifer along the Arkansas River in Western Osage County
covers about 125 square miles and consists of alluvium and terrace deposits of sand, silt,
clay, and gravel sized sediments (Figures 2 and 3). The contact between the alluvium
and terrace deposilts is recognized as the location where the slope changes from a low
angle on the alluvium to a greater angle on the terrace deposits (Figure 4).  Change in
slope is a good indicator of the contact between alluvial and terrace sediments, except i
areas where terrace sediments are absent, and the alluvium abuts Pennsylvaman or
Permian bedrock (Figure 5).

Aquifer infiltration and recharge 1o the Quaternary alluvium and terrace deposits
in the Reservation is from rajinfall and was estimated to be similar to the Enid isolated
terrace aquifer that receives 2.3 inches of recharge from 31 inches of precipitation or, 7.4
percent of mean annual precijpitation (Kent and others, 1982). The Lnid isolated terrace
aquifer, 50 miles west of the Reservation, is of similar age, deposition, and cementation
(Beausoleil, 1981). Based on calculations for the Enid aquifer, recharye to the

Quaternary aquifer in the Reservation may range from about 2.5 inches near Ponca City



to about 2.7 inches near Tulsa. Limited recharge, combined with recent increases in
water demands, have made understanding the thickness and internal characteristics of the
aquifer a primary concern of the Osage Tribe and the USGS.

Thickness, grain sizc characteristics, and mineralogy of the alluvial aquifer in
southern Osage county were largely unknown before the onset of this study. This is a
result of the fact that past descriptions of the alluvium and terrace deposits were based on
surface geology and or cuttings produced from the drilling of oil wells in the arca. [.ogs
and other data from these wells generally ignored the Quaternary deposits and focused
pnmarily on the deeper consolidated formations that contain the county’s oil reserves.
This information aliowed for a general understanding of the distribution of deposits, but
did not allow for the type of detailed characterization that could only be attained from the
examination of a set of continuous sediment cores whose locations are distributed across
the area.

Goals and Objectives

The overall objective of this thesis is to characterize the sediments that compose
the Quaternary aquifer. To address this objective the following tasks were formulated:

1) Examine stratigraphy of sediments using continuous cores and electrical
conductivity logs

2) Determine statistical grain size parameters including mean grain size, sorting, and
graphic skewness for samples taken {rom the sediment cores.

3) Establish detrital grain mineralogy of the sediments as well as the size and
distributions of heavy grains, (magnetite) in alluvium and terrace deposits.

4) Determine if differences in grain size, mineralogy and stratigraphy are evident

between alluvium and terrace deposits.



5) Compare the findings of this study with scientific literature and establish the
origins of the alluvium and terrace deposits along the Arkansas River in southern

Osage County.
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Figure 1. Map of study area showing Quaternary alluvium and
terrace deposits, Osage Reservation, Oklahoma
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Figure 2. Test hole locations in alluvium and terrace deposits,
western portion of study area. Profile X-X' is shown in Figure
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eastern portion of study area. Profile Y-Y' is shown in Figure

4



0p]

g B

g

s Emvaplion (feey

-
LN

Elevalipn (Tzetl) _
5 %

<
]

Cross-Section X-X’

| o e
ppp——

"

VE =1{x

Cross-Section Y-Y'

ol ICE(D 1Ca W8l

Oisranes (feet)

VvE=10x

R 102 00 5O0G [ER*

ostance (feot)

Figure 4. Cross-sectional profites X-X’ and Y-Y" that transect alluvium and terrace depostts.
Vertical exaggeration is approximately 10X. The locations of these cross sectional profiles are
shown in Figures 2 and 3.



CHAPTER II

GENERAL GEOLOGY AND PREVIOUS INVESTIGATIONS

The study area contains Quaternary sediments that are underlain by sedimentary
rocks of Permian and Pennsylvanian age that dip gently west-northwest (Figures 5 and
Rocks under the western part of the Rescrvation in the open savanna are predominately
limestone, dolomite, and shale, whereas rocks under the eastern part in the woodlands :
primarily sandstone and shale with some Iimestone and dolomite (Abbott, 1997). The
sandstones are well cemented to semi-cemented with clay and calcite (Oakes, 1952).

Pennsylvanian Ada-Vamoosa system

Outcrops of the Ada-Vamoosa systemn form a broad north-south trending band
the eastern portion of the study area (Figure 5). The Ada Formation in the Reservation
about 400 feet thick and consists of interbedded limestone and shale units ncar the
Kansas border grading into fine-grained sandstones interbedded with limestone and she
near the southern boarder of the Osage Reservation (Bingham and Bergman, 1980).

The Vamoosa Formation is approximately 630 feet thick and consists of
alternating layers of shale and fine to coarse-grained sandstone with some limestone
(Bingham and Bergman, 1980).

Pennsylvanian Vanoss group
The Pennsylvanian Vanoss group crops out in a north-south trending band near

the center of the study are (Figure 5). The Pennsylvanian Vanoss Group consists of



alternating layers of limestone and shale to the north, grading southward into limestone,
shale, and fine-grained sandstone. The thickness of the Vanoss Group is approximately
500 feet (Bingham and Bergman, 1980).
Pennsylvanian Osecar group

The Pennsylvanian Oscar group crops out in a north-south trending band in the
western portion of the study area (Figure 5). The Oscar group consists mainly of shale
with many layers of limestone that pinch-out southward, where the fine-grained
sandstones are thicker and more numerous. The thickness of the Oscar group is
approximately 400 feet (Bingham and Bergman, 1980).

Permian Wellington Formation

The Permian Wellington Formation is exposed in the far western portion of the
study area, near Ponca City (Figure 5). The Wellington is composed mostly of red-browr
shale to the North, grading into fine-grained sandstone and mudstone conglomerate
southward into Logan County. The thickness of the Wellington formation is

approximately 850 feet (Bingham and Bergman, 1980).

L0
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Figure 5. Geologic map of Pennsylvanian, Penman and Quaternary Units
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Previous Studies on the Arkansas River Alluvial Aquifer

Studies were conducted on the Arkansas River alluvial aquifer by several authors
in locations outside the study area of this thesis. Generally these studies report that the
alluvial aquifer deposits have two origins: 1) Floodplain alluvium deposited by running
water, and 2) fluvial or eolian terrace deposits.

The alluvial aquifer along the Arkansas River in Tulsa County was examined by
Oakes (1952), who described the alluvium deposits of the Arkansas as being composed of
clay, silt, and sand deposited by water. The thickness of these deposits was unknown but
a maximum thickness on the order of 100 feet was inferred. Qakes (1952) referred to the
terrace deposits as a mantle of sand, silt, and clay that covers the older rocks jn a belt up
to two miles wide, along the north side of the Arkansas River. Maximum thickness of the
terrace deposits was also estimated to be approximately 100 feet. Oakes (1952) inferred
that while part of the terrace material was deposited by the Arkansas River at a time when
it flowed at a higher level, much of the terrace deposits were likely deposited by the
prevailing wind from the southwest, which transported sand and silt from the river bed
during times of low water level and high winds. Oakes (1952) stated that these deposits
are now much dissected by tributary streams that flow into the Arkansas River from the
north.

Tanaka and Hollowell (1966) described the alluvial deposits along the Arkansas
River between Muskogee, Oklahoma and Fort Smith, Arkansas. They found that
alluvium grain size gencrally ranged from coarse sand and gravel near the base, to silt or

clay near the surface. The reported average total thickness of the alluvium was 42 feet.



Tanaka and Hollowell also stated that terrace deposits were composed mainly of silt and
fine sand, with small amounts of coarse sand and gravel near the base.

Bedinger, Emmett and Jeffery (1563), in their description of the Quatemnary
aquifer on the Arkansas River between Little Rock and Fort Smith, Arkansas, described
the alluvium as being composed of sand, gravel, silt and clay. They stated that the
alluvium graded gencrally from fine grained at the surface to coarse grained at the base.

Forman and Sharp (1980) utilized field observations, pump tests and analyses of
3-D digital simulations in a study of the hydraulic properties of the alluvial aquifer along
a stretch of the Missouri River, They noted three distinct facies that they recognized to
be typical of alluvial floodplain deposits: 1) A lower cobble facies, 2) a middle gravel-
sand facies, and 3) an upper sand-siit-clay facies.

Nature of Alluvium Deposits

Alluvium deposits along the Arkansas River were classified by Oakes (1952) and
Tanaka and Hollowell (1966), as fluvial in origin. According to Garde and Raju (1985),
the majority of sediment carried by strcams comes from the erosion of malterial in the
drainage basin. A certain amount of sediment also originates as a resull of weathering of
rocks from the bed and banks of the stream. The size of the sediment transported is
dependent on the geology of the basin as well as the distance of the reach from the source
(Garde and Raju, 1985). The amount of sediment Joad carried depends on the size of the
material, discharge. slope, and channel and catchment characteristics. When there is
reduction esther in the discharge or in the slope of an equilibrium stream, the stream
cannot transport the material supplied to it and the excess material is deposited (Garde.

and Raju, 1985).



According to (Boggs, 1987), in a meandering stream system, sedimentation may
take place essentially simultaneously in the lag channel, on point bars, and in the various
overbank environments. As shifting of these different environments takes place owing to
stream meandering, sediments from Jaterally contiguous environments wil] become
superirnposed or vertically stacked. Coarse-grained lag deposits may be overlain by
sandy, fining upward point-bar deposits, which are in turn overlain by silty and muddy
overbank deposits, producing an overall fining upward succession (Boggs, 1987).

According to (Boggs, 1987). in a braided river system, channels may fill by
aggradation during waning current flow, and flooding can cause beds tormed under
decreasing current velocily to be superimposed. These depositional processes involving
channel shifting and migration, as well as tectonic changes that affect base level, generate
vertical successions, (multiple cyclic successions). Individual cycles commonly display a
fining upward trend (Boggs, 1987).

Nature of Wjind-blown Deposits

Terrace deposits along the Arkansas River have been classificd by Oakes (1952)
and Tanaka and Followell (1966), to be partly wind-deposited (colian). The movement
of sediment by the wind has been the subject of numerous investigations. Free (1911)
stated that most of the sediment carried by the wind is moved by a series of short bounces
called “saltation”. Furthermore, it was reported by Free (1911) that the smaller the
sediment particle, the closer the approach of the path of saltation to a line parallel with
the direction of the wind. Udden (1894) asserted that quartz grains larger. than about 0.5
mm in dtarmeter and smaller than ] mumn are too heavy to be transported through the air,

but roll and slide along the surface of the ground. Bagnold (1941) termed this type of

15



sediment movement as “surface creep”. Chepil (1941) stated that grains larger than 1
mm in diameter are too large to be moved by ordinarily erosive winds.

Dijkmans, Galoway and Koster (}988) characterized the sediment attributes of 5.
eolian, (wind-blown), sediment samples and five fluvial, (river-deposited) sediment
samples taken from the central Kobuk valley in northwestern Alaska. They found that
mineralogy of the eolian sands was very similar to that of the {luvial sands, and
concluded that the eolian sands were derived from the older fluvial sediments.

Dijkmans, Galoway and Koster (1988) found the most signtficant difference
between the eolian and fluvial sands was the consistently finer grain size of the eolian
sediments. The {luvial samples taken along the Kobuk River, displayed an average mea
grain size of 1.97 phi, (0.255mm) whereas the eclian samples. displayed an average me:
grain size of 2.62 phi, (0.163mm). Although this analysis of Kobuk valley sediments w
conducted on single-depth grab samples and not multi-layer continuous cores, which m:
contain some clay as well as gravel layers, relative grain size differences between paren
material and eolian sediments are apparent. The lindings of Dijkmans. Galoway and
Koster {1988) suggest that sediments carried by the wind and redeposited away from the
nver channel are finer grained than the source material contained within the river

channel.
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CHAPTER III

METHODS OF STUDY

Site Selection

Test hole sites were placed on private land and along road right of ways underlai
by alluvium and terrace deposits. Location of test holes depended on landowner
permission and road accesstbility. The test holes were evenly distributed across the
alluvium and terrace deposits (Figures 2 and 3). Two transects of closer spaced sites
crossed the terrace deposits and ended on the alluvium near the river channel (Figures 2,
3. and 4). These transects were designed to detect changes in sediment type, water leve)
and water quality that might occur when moving from the alluvium to the tcrrace
deposits. Latitude and longitude of site locations were determined using the global
positioning system to a horizontal accuracy of approximately ten meters.

Collection of Continuous Cores

A truck-mounted Geoprobe® (Figure 7) was used to extract continuous scdimen
cores from 20 of the 103 test holes (Figures 2 and 3). Ten cores each were collected
from alluvium and terrace deposits. Cores were extracted in four feet intervals. The tot
depths of cored test holes ranged from 16 fect to 52 feet and included the entire thicknc:
of the Quaternary sediments, (i.e. from land surface to bedrock). Penetration of the corc
barrel slowed markedly at the bedrock boundary. In cases in which the underlying

bedrock consisted of weathered shale, the core barrel penetrated slightly below the

17



alluvial aquifer and some of the bedrock was recovered. A Geoprobe ® macro-core
piston rod soil sampler was used to extract the cores (Figure 8). The macro-core
sampling tube is four feet in length with a two-inch diameter. The sampling tube
contains a removable polycarbonate core liner that is 1.5 inches in diameter. The
sampling tube also contains a piston that holds the sampling tube in a closed position
until the desired sampling depth is reached (Figure 8). Complete sediment recovery is
often difficult in coarse-grained, water-saturated material, as some of the sediment often
falls out of the sampling tube before reaching the surface. This is an inherent difficulty
with macro-core sampling and despite proper field techniques; recovery of this type of

sediment was as low as 25% in some cases.

Electrical Conductivity Loga

An SCA400 probe attached to the probe rods measured the electrical conductivity
of the alluvium and terrace sediments (Figure 9). Conductivity log data were collected as
the probe advanced into the ground. Penetration rates slowed markedly at the lower
boundary of the Quaternary aquifer. Electrical conductivity logs for each cored test hole

are included in Appendix E.
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SC400 Electrical Conductivity Probe

Finer-grained sediments
typically display higher
conductivities. Coarser-grained
Sediments typically display
lower conductivities
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Description of Cores

“To maintain the stratification of sediments, cores were stored vertically in the
[aboratory and allowed to dry. After drying, the cores were placed horizontally and the
polycarbonats core liners were sliced open. The cores were described and their
properties indicated using a standard Petra-log form at a scale of 1 inch equals 1 foot of
core. Properties of the seduments noted in the descriptions included estimates of texture,
(grain size and sorting), color, and bed thickness. Grain size and sorting estimates were
made by comparing hand samples to a grain size/sorting estimator card. Conductivity
logs were correlated to cores to establish log responses (o varying sediment type and
bedrock (Figure 9). This allowed the usc of conductivity [ogs to infer sediment type
when core recovery was limited or cores were unavailable. Each core was divided into
genetic units. These units were chosen based on grain size and sorting. After the
sediment cores were described, they were photographed using a digital camera.
Photographs of the twenty continuous cores are included in Appendix E.

Core Textural Analysis

Sediment samples with a mass of approximately 100 grams were taken from each
genetic unit. The samples were placed in plastic bags and labeled for storage. A serics of
eleven wire-mesh sieves with openings ranging in size from 16mm-.045mm. (16000um-
45um), were stacked in descending order with the largest size on top. Each sample was
then sieved for approximately 12 minutes using a Ro-Tap machine. The mass of
sediment collected in each sieve was determined using an electronic balance. Mass

percent of each prain size was plotted against cumulative mass percent to produce a
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cumulative frequency curve for each sample (Figure 10). Cumulative frequency curves
for each sample arc included in Appendix D.

Grain sizes shown on the cumulative frequency curves are expressed in phi units.
The phi scale is a logarithmic scale that allows grain size data to be expressed in units of
equal value for the purpose of graphical plotting and statistical calculations. Particle size,
expressed in millimeters, decreases with increasing phi values and increases with
decreasing negative values (Boggs. 1987). The relationship of phi to millimeter diameter
1s expressed by:

Phi - -log,d
where d = diameter of grains in mm.

Each cumulative frequency curve was used Lo determine the statistical parameters
of mean grain size, sorting, (¢xpressed as standard deviation). and skewness for each
sample (Folk, 1967), (Figure 10). The formulas used to determine these statistical
parameters are provided in (Appendix A). The statistical paraneters calculated jn this
thesis were utilized by (Mashburn. 2003) to determine hydraulic conductivity and
transmissivity of the alluvial aquifer.

General Mineralogical Analysis

Mineralogical composition of selected sediment sarmples was evaluated by two
methods: 1) Thin-section microscopy of the sand-size grain size fractions and 2) visual
examination of pebble sized and Jarger grains. Thin-sections were produced from
selected samples (Tables 1 and 2). The unconsolidated sediment was embedded in epoxy
and secured to a glass slide. After hardening. the sediment-epoxy mixrure was sliced and

ground to a desired thickness and its surface polished. The completed thin-sections were
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viewed under a Nikon petrographic microscope. Mineralogy of individual grains was
1dentified and photo-micrographs of the thin sections were taken. Mineralogy and
roundness of the pebble sized and larger grains are recorded in Tables | and 2.
Heavy Grain (Magnetite) Analysis and Comparisons

After each individual sediment sample had been sieved and the mass of each grain
size had been entered into an Excel spreadsheet, samples from selected test holes were
homogenized and sieved a second time. Sediment samples from a given core were
divided into the following seven grain-size fractions: (> 1mm. 500-1000pum, 250-500pm,
125-250um, 63-125pm, 45-63um and - 45um). Sediments from each of these seven
grain-size fractions were labeled and placed in separate plastic bags. The sediments were
thoroughly homogenized within the sample bags, and a fifty-gram sample was extracted
from each of the core’s grain size fractions. These samples were subjected to a
magnetic field to determine mass percent of magnetite in the sediment and the
distribution of magnetite by grain size. Magnctite separation was achieved by placing
magnets on either side of the neck of a glass laboratory funnel, and slowly trickling the
fifty grams of sediment through the funnel (Fig 11).

Grains of magnetite and grains containing magnetite were retained inside the
funnel neck while the remaining sediment was allowed to fall freely and collect in a
beaker. This process was repeated on the sediment collected in the beaker to cnsure
complete capture of magnetite. The magnetjc grains collected durAing these two trials
were passed through the apparatus a third time 1o remove non-magnetic grains that may

have been trapped in the field by adjacent magnetic grains. Magnetite grains collected
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from each fifty-gram sample were placed in separate containers and labeled. The mass
of the extracted magnctite grains was determined and recorded in (Table 3).

Magnetite grains were systematically extracted from the sediments of erght
continuous cores. Four cores were sampled from the altuvium, and four cores were
sampled from the terrace deposits (Figures 2 and 3). For each alluvium core examined a
corresponding terrace core located in close proximity and roughly downwind, (to the
north-northeast), from the alluvium corc was examined (Figures 2 and 3). This was done
to determine if similarities or differences in grain size existed between wind-blown
terrace deposits and their alluvium source material. Magnetite was chosen because
preliminary visual examination of the samples revealed an apparent lack of magnetitc
grains in the coarser grained fractions of the terrace deposits as compared to the similar-

sized alluvium sediments.



Cumulative curves for samples taken from Test Hole 002A
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Figure 10. Example of cumulative curves used for estimating mean
grain size, sorting and skewness. (Formulas included in Appendix A)
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Lithology of Selected Alluvium Sediment Cores

Test Hale Composition | Angulanity Cored Type of Bedrock Underlving Sand Size
of Grains Farmation Compasition
>4mm
002A Limestone Sub-anpulay Weathered Shale Pennsylvanian Ada: Quartz, feldspar,
fine-grained granitic and
Chen Sub-rounded sandstones sedimentary rock
Silstone Sub-rounded nlerbedded with fragments, wilh somc
Jimestone and shale chen and magnetite
Sandstone Sub-rounded grains
Granitic Sub-rounded
0104 Chent Sub-angular Wealhered Shale Pennsylvanian No thin section
‘ Vamoosa: shale and
Silistone Sub-angular fine to coarse grained
Granitic Sub-roundeg sandstone with some
jimestone
022A [ imesione Sub-angular Not Penetrated PennsylvanianVanoss | No thin section
- Limestone, shal
Chen Sub-angular mestone. Snate
il and sandstones
Sandstone Sub-angular
Gramlic Sub-rounded
071A Limeston¢ Sub-angular Not Penelrated Pernsvivanian Oscar; | Quartz. feldspar,
Mainly shale with grantic and
Sandstone Sub-angular layess of limestone scdimenlary rock
Granitic Sub-rounded and sandslones fragments. with some
chert and magnelite
grains

Table 1. Composition of alluvium cores. Sand-sized composition is based upon thin section microscopy, and is Similar in all cores.

Composition of large grains, (>4mimn) is based upon visual inspectian of cores and seems 1o reflect local bedrock lithology.




Lithology of Selected Terrace Sediment Cores

Test Hole Composition | Angularity Cored Type of Bedrock Underlying Sand Size
of Grains Formation Composition
>4mm

028T NA NA Weathered Shale Pennsylvanian Ada: No thin section
fine-grained
sandstones interbedded
with limestone and
shale

035T NA NA Not Penetrated Pennsylvanian Oscar: Quariz, feldspar,
Mainly shale with granitic and
layers of limestone and | sedymentary rock
sandstones fragments, with some

chert and magnetite
grains

039T NA NA Weathered Shale Pennsylvanian Oscar: No thin section
Mainly shale with
layers of limestone and
sandsiones

053T NA NA Weathered Shale Permian Wellington : No thin section
Shale, fine-grained
Sandstone and
mudstone
conglomcrate

Table 2. Composition of Terrace cores. Sand-sized composition 1s based upon thin section microscopy, and 1s stmilar in all cores.
No grains larger than >4mm were found.
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Figure [1. Schematic diagram of magnetite separation apparatus



Test Hole 1D grain size fraction mass retained (grems) Well D grain size fraction mass retamed (grams)

002A >imm 0.02 onT >1mm na
002A 500-1mm 0.04 11T 500-1mm 0.01
002A 250-500pm 0.09 0117 250-500pm 0.01
002A 125-250um 0.19 04T 125-250pm 0.08
002A 63-125ym 0.13 0117 63-125um 0.13
002A 4563ym 0.12 oY 4563pm 0.05
0024 <45um 0.03 oT <45pm 0.00
056A >1mm 0537 >1mm
056A 500-1mm 0.00 ' 053T 500-1mm
056A 250-500pm 0.04 0537 250-500um 0.01
0564 125-250pm 0.04 0537 125-250pm 0.00
056A 63-125pm 0.07 0537 63-125pm 0.02
056A 4563ym 0.03 0537 4583um 0.01
056A <450m 0.00 0537 <45m 0.00
022A >{mm 0.02 0357 >1mm
022A 500-1mm 0.05 0357 500-1mm 0.02
0224  250-500um 0.0 D35T 250-500um 0.03
02A  125-250pm 0.05 035T 125-250pm 0.03
022A 83-125pm 0.09 035T 63-125pm 0.17
022A 4583y .06 0357 45-63pm 0.04
0224 <45pm 0.05 0357 <45pm 0.01
047A >imm 0.04 0277 >1mm
047A 500-1mm 0.01 0277 500-1mm 0.01
047A 250-500pm 0.11 027T 250-500pm 0.01
T047A 125250ym 0.07 027T 125-250pm 0.03
047A 83-125um 0.43 0277 63-125pm 0.13
047A 4563ym 0.14 0271 4583ym 0.04
047A <45m 0.01 0271 <A5pm 0.0?

Table 3. Mass of magnetite by size extracted from 4 terrace and 4
alluvium cores, (see figures 2 and 3 for locations)
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Chapter 1V
RESULTS AND DISCUSSION
Stratigraphy of Sediments

Cores taken from terrace deposits contained relatively uniform stratigraphy from
land-surface to bedrock. These deposits consisted mostly of coarse silt and very fine to
medium-grained sand. They contained very few clay layers or grains larger than |mm.

A typical terrace core is shown in Figures 12 through 14. A thin, organic-rich soil
horizon forms the uppermost unit (Figures 13 and 14). A color change from light brown
to reddish brown at approximately 1.75 fect (Figures 13 and 14) appears to be the result
of hematite staining. Overall sorting is moderate and other than color change, there is no
significant change in sediment character {from this point to bedrock.

Cores taken from alluvium deposits displayed significant variability in grain size
and corpositon when compared to cores taken from terrace deposits. Grain sizes of
alluvium sediments ranged from cobble to clay-sized particles. As suggested by the work
of Foreman and Sharp (1980), therec appear to be three general tacies assoctated with the
alluvium: 1) A lower cobble-pebble facies, 2) a middle coarse-medium size sand facies.
and 3) an upper silt-clay fucies. However, the alluvium sediment column along the
Arkansas River is more complex. The lower cobble-pebble facies contained multiple

smaller-scale fining-upward sequences, cach of which was approximately 2-4 feet thick,
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(Figures 15-18).  The grain size in these sequences ranged from granule-pebble to fine
grained sand with each cycle containing pebbles at its base. The middle part of the cores
was dominated by fine to medium grained sand, and the upper sections were dominated
by very fine grained sand and coarse silt.

A typical alluvium core is shown in (Figures 15-18). A thin, organic rich soil
horizon forms the uppermost unit (Figures 16 and 17). Smaller-scale fining-upward
sequences present in the lower sections of the core are evident (Figures 16 -18). In
general, fining upward sequences indicate a decrease in transporting power of currents
during deposition. These fining upward sequences are inferred to be the result relatively
brief periods of high depositional energy such as those associated with storm events.

General stratigraphy of the alluvium cores suggests that the sediments were
deposited in a fluvial system that experienced fluctuations in depositional energy. The
coarse-grained matenal was deposited during a high flow regime. As the current energy
decreased, finer grained material was deposited above these sediments. The uniform
nature of the terrace stratigraphy suggests a relatively siable depositional setting in which

energy did not fluctuate significantly.
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Figure 12. Strip log of typical terrace core (001T)
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(A) Upper Soil
Horizon

(B) Color Change

Figure 14. Close-ups of tvpical terrace featurcs: A) Upper seil horizon
B) Color change indicating possible hematite staining resulting from
oxidation
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Figure 15. Strip log of typical afluvium core (002A)
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(A) Soil Horizon

L (B) FINING-
UPWARD
SEQUENCE

=y
Medium To fine sand \E‘.

Sub-angular sandstone
rock-fragment, suggests
local source in the
Ada Formation.

(C) CHANNEL LAG
DEPOSITS

Very coarse sand and pebbl

Sub-angular liimiestone
fragments of the Ada
Formation.

Fig._ I7—Photc_)g4raphs of typical alluvium features: A) Organic rich sotl
hor_lzon B) Fining-upward scquence C) Pebble lag deposits at base of
fining-upward sequence
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(D)
FINING UPWARD
SEQUENCE

Fine Sand Quartz, fcldspar and

chen pebbles
and cobbles

Medium
Sand
Contacl between
basal alluvium unit and
underlying weathered shal
Very Coarse
Sand
Pebbles Weathered shale

of the Ada Formation

Figure 18. Photographs of typical sediment features of alluvium deposits:
D) Fining-upward sequence E) Conlact with weathered shale at base of
aquifer, where Quartz, feldspar and chert pebbles overly clayey material.
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Grain Size Statistics

Mechanical sieving of samples taken from alluvium and terrace cores generated
volumous amount of grain size data. Sieve data, in its entirety is included in Appendix B.
Data are represented graphically by the cumulative frequency curves (Appendix D). By
extracting data from the curves, average properties of the grain size population, (mean
grain size, sorting and skewness), were cvaluated through statistical methods (Appendix
A) (Figure 10).

Mecan Grain Size

The mean grain size is an arithimetic average of all the particles in a sample. Due
to the difficulties of counting the total number of grains and measuring the size of each of
these grains, the true arithmetic mean size cannot be easily determined. Instead. the
artthmetic mean can be approxtmated by picking selected percentile values from each
sample’s cumulative frequency curve and averaging these values (Boggs, 1987). The
formula used to determine each sample’s mean grain size is included in Appendix A.
Mean grain size values for each sample are included in Appendix C.

Mean grain size values far terrace samples were consistently smaller than those
associated with aliuvium samples (Appendix C). Mean grain size for terrace samples
ranged from 4.1 to 1.5®, (.06-.35mm). Mean grain sizes for alluvium samples ranged
from 4.7 to .2, (.04-.87mm).

In addition to each individual sample’s mean grain size, an average grain size for
cach test hole was estimated. This was achieved by multiplying each sample’s mean
grain size by the thickness of the genetic unit from which the sample was collected.

These interval values were summed and divided by the total thickness of cach core to
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calculate an estimated mean grain size for each test hole. Estimated Mean grain sizes for
each core are included in Appendix C. Values ranged {from 4.02 to 2.01®, (0.06-0.25
mm) for terrace test holes, and ranged from 3.69 to .64®, (0.08-0.64 mm) for alluvium
test holes. The mean of these values was 1.67®, (0.3 1 millimeters) for the alluvium test
holes and 2.73®, (0.15 millimeters) for the terrace test holes. The difference in estimated
mean grain size between cores of terrace deposits and cores of alluvium deposits 1s
statistically significant at the p = 0.0108 level.

The fine-grained nature of the terrace deposits (Figure 19) supports the notion that
they are eolian, (wind deposited). [n addition, eolian deposition is supported by the
uniform stratigraphy of the tcrrace deposits from land surface to bedrock. The coarse-
grained nature and fining-upward sequences contained in the alluvium cores suggest
fluvial depositional processes.

Sorting

The sorting of a grain population is a4 measure of the range of grain sizes present
and the magnitude of the scatter of these sizes around the mean size. The mathematical
expression of sorting is standard deviation (Boggs. 1987). The formula for calculating
standard deviation is given in Appendix A. According to Folk (1968), sorting depends on
at least three major factors: 1) Size range of the material supplied to the environment,
(samples with a large range of grain sizes will be more poorly sorted than samplcs of a
smaller range of grain sizes), 2) type of deposition, and 3) current characteristics,
(currents of relatively constant strength, will give better sorting than currents which

fluctuate rapidly). Sorting values calculated for cach sample are included in Appendix C.
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Sorting values, derived from sieve data and calculated as standard deviation
according to Folk (1968) indicated that terrace deposits were better sorted than alluvial
deposits, (Figures 20, 21 and Appendix C). 70% of the 92 alluvium samples were either
poorty or very poorly sorted, whereas only 57% of the 89 terrace samples fell within this
range. In contrast, 41% of the terrace samples were moderately sorted whereas 23% of
the alluvium samples fell in the moderately sorted range (Figure 20 and Appendix C).

Skewness

Most natural sediment grain-size populations do not exhibit a normal or log-
normal grain-size distribution. The cumulative frequency curves of such non-normal
populations are not perfect bell-shaped curves, instead they show some degree of
asymmetry, or skewness (Boggs, 1987). Skewness reflects sorting in the “tails” of a
grain size population. Populations that have a tail of excess fine particles are said to be
positively skewed or fine-skewed. Populations with a tail of excess coarse particles are
negatively skewed, or coarse skewed (Folk, 1968). According to Folk (1968), single
source sediments (beach or eolian sands) tend to have fairly normal curves, whereas
sediments from multiple sources (river sands with locally derived pebbles) show
pronounced skewness. The formula for calculating skewness is included in (Appendix
A).

Measurements of skewness, based upon sieve data and calculated according lo
Folk (1968) showed that the terrace samples were more finely skcw;d than the alluvium
samples (Figure 22) and (Appendix C). Of the 89 terrace samples analyzed, 74% were

fine-skewed 1o near symmetrical, whereas only 52% of the 92 alluvium samples fell
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within this range. 49% of the alluvium samples were categorized as either coarse-skewed

or strongly-coarse skewed, while only 26% of the terrace samples fell within this range.
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Figure 19. Histograins representing total grain size distribution of terrace
and alluvium cores. Represents total distribution of grain size from sieving
of ninety-two alluvium samples and 89 terrace samples
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Histogram Representing Sorting of Terrace Samples
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Histogram Re presenting Sorting of Alluviual Samples
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Figure 20. Histograms representing sorting of alluvium and terrace samples.
Terrace sediments are better sorted than alluvium sediments. Note that
both sediment types are predominately poorly to moderately sorted.
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Figure 22. Histograms representing skewness of alluvium and terracc
samples. Terrace samples tend to be more finely skewed, whereas
alluvium samples are move coarsely skewed.
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Mineralogy

The detrital compostition of alluvium and terrace deposits was determined by
visual examination of pebble size and coarser fragments as well as thin-section
microscopy. Mineralogy of both terrace and alluvium deposits was dominated by quartz.
feldspar and smaller amounts of other granitic mincrals including magnetite (Tables 1
and 2 . Figures 23-25). Based upon the similar nature of alluvium and terrace
mineralogy, it is likely that both 1ypes of deposits were dertved form the same granitic
source material. The major difference in mineralogy of alluvium and terrace deposits is
the presence of sedimentary rock fragments located within the coarser grain sizes of the
alluvium deposits (Tables ] and 2). These fragments include limestone. chen and
sandstone and are inferred to be the resuit of localized erosion of bedrock units by the
Arkansas River.

Analysis of Magnetite Size Distribution

A total mass of 2.0 grams of magnetite was ¢xtracted from sediment samples
taken from the alluvium cores. A total mass of .86 grams of magnetite was extracted
from sediment samples taken from the terrace cores (Table 3). The majority of magnetite
grains extracted from both terrace and alluvium samples were contained within the 63-
125 micron grain size fraction (l'able 3, Figurc 26). 52% by mass of the 10tal magnetite
extracted from the terrace samples came from the 63 ~125 micron fraction, and 36% by
mass of the total magnetite extracted 1rom the alluvium samples ca.tﬁc from the 63-125
micron fraction (Figure 26, Table 3). Mass percentages extracted from the 45-63 micron
and <45 micron fractions were 1 7% and 4% respectively for both terrace and alluvium

samples (Figure 26, Tablc 3).
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A larper percentage ot magnetite was extracted from the coarse grained fraction. (125
tnicrometers), in the alluvium samples. 8% by mass of the magnetite exiracted from
alluvium sarnples was found in the 125-250 micron fraction. whereas only 16% by mas.
of the magnetite extracted from terrace samples was found in the 125-250 micron traction
(Figure 26, Table 3). Much of the magnetite exwracted from the -250 micron fraction
occurred in rock fragments. The rock fragments contained small crystals of magnctite
that were 63-125 nmicrons in size (Figure 27). 15% by mass of the alloviam magnetite
was contained within the 250-500 micron fraction, while only 7% by mass of the terrace
magnetite was contained within the 250-500 micron fraction (Figure 26. Table 3). 5% by
mass of magnetite-beanng grains were found within 500-1000 micron fraction for both
terrace and alluvium samples (Figure 26, Table 3). 4% by mass of the magnetite bearing
grains found within the alluvium samples were greater than 1000 microns, while no
magnetite bearing grains larger than 1000 microns were found within the terrace samples
(Figure 26, Table 3).

[n contrast to larger grain sizes, almost all magnetite smaller than 125 microns
was composed of magnelité fragments that were not attached to other mineral grains.
This “clean” magnetite was apparently separated from the rock fragments by mechanical

degradation or milling of rock fragments during sediment transport.
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Figure 23. Photomicrographs showing composition of representative
Quaternary sediment. Quartz (Q) and microcline feldspar (MF) indicaie
granitic origin.  Accessory grains such as zircon (Z) and magnetite (M)
are common. A) Core 0357T, cross- polarized light (CPL). B) Core

002A plane-polarized light (PPL)
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Figure 24, Photomicrographs showing common grains 1n Quaternan
Sediments including quartz (), gramiic rock fragments (GRF), (which
contamn feldspar and quartz), and chert (C'T) Ay Core 071A PP'L

B) Core 071A CPL
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Figure 25. Photomicrograph of Quaternary sediment. Grains include

quartz (Q), granitic rock fragments (GRF), sedimentary rock fragiments
{SRF) and magnetite. A) Core 071A CPL. B) Corc 071A PPIL.
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Figure 26. Magnetite distribution in alluvium and terrace samples
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Figure 27 Photomicrograph of Quaternary sediment. Magnetite (M)
in granttic rock fragment (GR}Y). Rock fragment is - 600 microns,
(.6mm), in length, magnetite is approximately 100 simcrons  Magnetite
erains were found most frequently 1n the 63-125 micron fraction.
Other gramns include sedimentary rock fragments (SRT), plagioclase
feldspar (F) and quanz (()). Core 071 A, PPI.

54




CHAPTER YV

CONCLUSION

Analysis of sedimentary features in cores and properties of the sediments they
cortain indicate distinct differences between terrace and alluvium deposits along the
Arkansas River, Osage County Oklahoma. These ditferences suggest the alluvium is
predominately fluvial in origin. No evidence was found suggesting that the terrace
deposits were fluvial in origin. Significant evidence was found suggesting that the
terrace deposits are eolian and were formed from sediment that was transported by
prevailing southerly winds from the nearby river valley to the adjacent upland areas to the
north. This interpretation is supported by the following findings:

¢ Alluvium sediments are coarser grained and more poorly sorted than terrace
sediments.

¢ Alluvium cores contain a series of stacked tining-upward intervals that ofien
contain pebble-granule sized particles at the base of each interval. These graded
intervals indicate deposits were the result of waning current flow associated with

a braided or meandering stream.

e Terrace cores have no apparent grading and arc almost completely devoid of
sedimentary structure.
e Terrace sediments have finely skewed grain-size distributions. In contrast,

alluvium sediments have coarselyv skewed grain-size distributions.
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Alluvium and terrace sediments have similar composition of sand and silt size
particles thal are dominated by quartz, feldspar and granitic rock fragments.
Alluvium sediments contain pcbbles of sedimentary rock fragments that are
similar to local bedrock units.

Magnetite grains, which are derived from granitic rock fragmeats, are present in
both alluvium and terrace deposits. The majonty of these magnetite grains are

present in the 63-125 micrometer fraction of both deposits.
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GRAIN-SIZE STATISTICAL FORMULAS
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Appendix A
Grain Size Statistical Parameters

Graphic Mean (M,) (Folk)

M= D16 + ®50 + D84
3

Inclusive Graphic Standard Deviation (O)) (Folk)

G OD84-dlo+P9S-DS
4 6.6

O <.35®, very well sorted
.35-.500 , well sorted
.50-.71® , moderately well sorted
.71-1.0@ , moderately sorted
1.0-2.0® , poorly sorted
2.0-4.0® , very poorly sorted
>4.0®, extremely poorly sorted

Inclusive Graphic Skewness (Sk;) (Folk)

Ski= D16 + D84 —2(D50) + D5 + P95 — 2(D50)
2(D84 - B16) 2(®95 - ®S)

Sk;= .00, symmetrical
= +1.00 to +.30, strongly fine-skewed
+.30 to +.10, fine-skewed
+.10 10 - .10, near-symmetrical
-.10 to - .30, coarse-skewed
-30 to -1.00, strongly coarse-skewed
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RAW SIEVE DATA
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graln size( phi) 5 4.47 3.89 3 2 1 0 -1 -2 -2.58 -3 -4
graln size (milcran) <45 45 63 125 250 500 1000 2000 4000 6000 8000 18000

care 001T depth (ft)
' 28 34 38 20 12 1 tr 0 0 0 0 0 0
24 20 32 23 15 8 tr 0 o) ) 0 0 0
23 24 28 26 25 7 1 tr 0 0 0 0 0
20 20 24 24 25 ¢ 0 tr 0 0 ) 0 0
19 25 28 2t 20 7 1 tr 0 0 0 0 0
17 19 23 24 29 8 1 tr 0 0 0 0 0
15 24 22 24 23 7 1 tr 0 0 0 0 )
13 12 19 23 27 16 2 te 0 ) 0 0 0
11 6 0 23 44 22 5 tr 0 0 0 0 0
10 3 4 17 53 23 ! tr 0 ) 0 0 0
7 16 19 27 28 11 1 te 0 0 o) 0 0
5 5 5 19 49 33 2 tr 0 0 ) 0 0
3 6 7 18 43 25 2 tr 0 ) 0 0 0
1 16 13 15 40 23 2 tr 0 0 0 0 0
coreQ09T 30.5 2 1 7 51 33 7 tr
26.5 2 tr 5 26 68 13 tr
24 & 3 9 a7 56 15 tr
22 a 3 12 36 68 9 tr
16 2 te 4 25 52 16 tr
12 1 a 37 82 7 tr
8 tr tr 3 27 57 10 tr
1.5 177 10 13 19 34 9 tr
0.5 17 9 10 17 35 8 tr



£9

grain size( phl) 5 447 399 3 2 1 0 -1 -2 258 3 -4
grain size (mlcron) <45 45 63 125 250 500 1000 2000 4000 8000 8000 16000

Gore 011T depth(feet)
T 28 4 1 3 12 82 17 tr
24 5 3 7 24 48 22 te
20 8 8 20 47 26 2 te
18 21 13 20 33 25 3 tr
14 16 10 18 29 28 5 tr
9 15 10 18 33 32 3 tr
5 an 16 19 28 27 3 tr
3 28 19 24 s 28 3 tr
1 9 6 11 37 42 4 tr
core 027T 28 14 16 27 31 35 3 0 o]
23 2 3 11 43 45 15 0 0
17 1 1 8 49 80 4 0 0
12 2 2 6 39 69 7 tr 0
B 3 3 11 50 61 4 te 0
4 8 7 13 35 53 4 tc 0
1 20 12 18 44 238 3 o 0
core 028T 38.7 1 tr 2 4 10 33 43 32 3 tr
38 tr tr 2 4 8 23 38 41 ) 0
as5.7 27 18 9 13 20 33 15 8 1 0
27.7 6 5 16 60 32 tr tr 0 ) 0
27 24 19 22 22 8 1 tr 0 0 o]
24 1 tr 8 50 73 10 0 0 o} 0
16 4 2 11 49 56 9 tr 0 0 0
12 10 6 11 40 65 e} 0 0 0 0
4 2 1 4 30 77 12 tr 0 0 o}
1 18 8 8 3 51 5 tr 0 o] 0



grain size( phi) 5 447 398 3 2 1 0 -1 2 258 3 -4
grain alze (micron) <45 45 63 125 250 500 1000 2000 4000 6000 BOOO 16000

core 035T depth(feat)
50 1 tr 8 63 33 9 tr )
47 7 4 14 58 28 6 tr (@]
44 4 3 8 47 46 9 tr 0
40 16 12 18 44 28 12 tr 0
38 25 15 18 35 27 18 2 (8]
32 10 9 17 43 29 12 tr 0
28 12 1 24 89 38 3 tr 0
24 7 6 16 56 30 3 tr 0
23 7 7 17 58 38 4 tr (0]
16 ) a 20 56 24 3 tr a
12 7 4 9 a3 37 24 tr (6]
8 2 1 5 39 57 20 tr 0
4 1 1 3 28 59 33 3 tr
1 19 10 7 21 52 20 tr 0
core 039T 40 tr tr tr 11 43 34 22 11
386 1 tr 7 40 50 8 1 Q
32 1 1 7 34 42 22 1 0
28 8 ) 12 45 47 5 tr 0
24 2 tr 5 22 60 25 tr 0
20 7 7 19 60 25 1 tr 0
17 15 5 8 16 31 21 3 0
13 10 4 8 38 41 10 tr 0
8 27 11 15 30 29 7 tr 0
4 15 10 15 38 39 5 tr 0
core 053T 40 51 32 25 12 15 13 tr
32 43 42 21 7 7 8 tr
24 16 89 21 5 a 4 tr
16 6 90 19 3 3 tr tr
12 18 79 32 7 7 tr tr .
4 21 59 30 4 2 5 tr



¢9

grain size( phl) 5 447 399 3 2 1 0 -1 -2 -2.58 -3 -4
grain size (micron) <45 45 63 125 250 500 1000 2000 4000 6000 8000 16000

core 082T depth(feet)
42 49 36 29 20 8 tr tr
36 27 15 23 35 18 1 0
32 4 2 10 78 36 0
28 2 tr 4 73 67 tr tr
24 4 4 8 28 44 7 0
16 21 9 15 38 52 12 tr
12 14 8 13 44 58 12 tr
8 14 10 15 51 57 11 tr
4 8 8 11 31 50 16 tr
1 9 7 10 35 50 8 tr

core 094T 18 48 28 22 18 2 0 0
12 a8 28 18 10 0 1 tr
8 51 33 23 11 0 0 0
4 47 36 30 12 3 0 0
1 49 27 22 12 10 4 tr -

core 002A 29 tr tr 1 2 13 23 21 17 8 5 12
28 tr 1 1 9 40 34 16 4 0] ¢] 0
24 tr tc 1 2 4 12 14 13 5 0 6
23 tr tr tr 1 5 28 36 26 8 3 6

22.5 tr tr 1 4 27 30 28 =] 4 0 0

22 tr 1 2 6 37 35 20 3 tr 0 0
20 0 tr 1 4 3s 50 15 0 0 6] 0]
16 2 3 8 13 46 29 1 0 0 0 0
15 0 tr 2 9 27 40 22 15 4 0 (0]
13 tr 1 4 17 31 25 13 6 3 11 8
9.5 3 7 49 46 tr ir tr 0 0 0 0
6 25 32 31 10 2 0 0 0 0 0 0
2 20 20 33 25 7 tr 0] 0 0 0 0
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core O07A

core 010A

core 022A

graln size( phl)
graln size (micron) <45

depth(feet)
24
20
16
12.5
4.5
1.5

31
28
26.5
24
22
20
16
14
12
8
S
2

44
40
35
28
24
20
18
15

12
8
4
3

5

te

42
13
32

tr

tr
tr
tr
tr

a7

36
42

tr
tr
tr
tr
tr
tr
te

tr
17

447 3.99
45 63
tr tr
4 13
2 6
13 tr
" tr
18 tr
tr 1
tr tr
6 28
tr 3
tr tr
te 2
1 3
6 14
42 28
44 18
31 27
35 e
tr tr
tr tr
tr tr
tr (r
tr 3
tr 2
tr 2
1 7
4 12
tr 7
28 46
36 23

3
125

tr
56
57
28
63
35

2 1
250 500
6 40
27 tr
57 1
12 12
8 tr
7 1
7 8
4 19
15 3
38 24
6 28
37 a3
34 37
29 8
tr tr
4 tr
3 tr
14 3
17 17
19 54
1 o
12 37
42 86
17 58
23 35
54 4
45 11
64 6
8 1
9 1

0

1000 2000 4000 6000 8000

52
tr
tr
tr
tr
tr
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10
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18
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27
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ooocoonwN
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w
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-2.58
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grain size( phi) 5 4.47 3.93 3 2 1 0 -1 -2 -2.58 -3 -4
graln size (micron) <45 45 63 125 250 500 1000 2000 4000 6000 8000 18000

depth(feet)

core 026A 38 tr 1 1 4 22 43 32 20 7 1 16
32 1 tr 2 5 10 24 32 28 10 tr 7

28 tr tr 2 5 27 35 20 13 3 tr 2

20 1 5 42 45 12 6 5 2 0 0

14 tr tr 4 17 34 44 20 12 1 1 tr

6 tr tr 10 75 30 1 tr e} 0 0 0

. 1 (S} 5 12 48 27 6 tr o} 0 0 0

core 0454 41.9 tr tr tr 2 11 43 26 23 g 5 5
32 1 tr - tr 3 6 21 41 49 10 1 1

28 tr tr tr 3 31 36 25 18 2 0 a

22 tr tr tr 4 73 20 2 tr 0 0 D

20 tr tr 3 19 33 21 14 16 5 tr tr

16 tr tr 3 9 13 22 33 38 12 4 4

8 tr tr 7 69 12 5 8 0 0 0 0

4 tr tr tr 42 47 12 2 tr 0 0 a]

1.5 6 4 6 16 46 29 tr 0 0 0 0

core D47A 47.8 tr 1 4 15 28 25 18 Q tr 0
44 tr tr 1 9 32 46 21 11 3 tr 2

42 tr tr tr 1 6 18 21 25 13 4 36

39 1 tr 1 2 9 23 31 35 13 2 3

35.5 1 1 5 16 12 15 15 18 7 3 7

26 (¢ tr tr 5 20 36 28 15 3 tr 4

20 0 tr 8 55 25 20 10 0 0 0 0

16 tr tr tr 21 11 23 30 10 0 0 o)

8 1 4 pic} 64 6 5 3 tr 0 0 0

5 67 21 9 11 11 2 tr 0 0 0 0

1 14 14 25 28 13 4 tr 0] 0] 0 0
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grain size( phi) 5 447 399 3
grain size (micron) <45 45 63 125
core 056A depth(feet)
37 1 3 7
33 tr 2 7 18
24 2 2 6 17
23 1 tr tr tr
16 tr tr 2 12
. 12 1 12 87
' 8 1 1 5 77
3 24 9 12 15
core 071A 38 tr tr tr 5
28 tr tr 3 14
24 1 tr 5 22
20 tr tr 3 14
16 2 2 16 56
12 41 32 30 11
4 19 31 40 15
4 7 9 16 43
Wel!l 092A 16 22 23 42 25
11 35 28 21 7
7 39 15 7 6
3 50 37 24 3
1 35 19 18 9
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GRAIN SIZE STATISTICS
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well depth thickness (ft) sample mean sorting skewness well mean

001T 28 3.0 4.1 0.77 -0.37 3.25
24 1.5 3.8 1.03 -0.43
23 1.5 3.6 1.04 -0.31
20 1.5 3.6 1.01 -0.29
19 1.5 3.7 1.06 -0.38
17 3.0 3.6 1.07 -0.12
15 2.0 3.6 1.07 -0.27
13 2.0 3.1 1.18 -0.10
11 2.0 2.7 1.09 0.11
10 1.0 2.5 ©.91 0.04
7 3.0 3.3 1.10 -0.05
5 3.0 2.5 0.92 0.26
3 2.0 2.6 0.98 0.23
1 1.0 2.9 1.15 0.30
009T 30.5 2.5 2.1 0.84 -0.05 2.01
26.5 1.5 1.8 0.79 0.20
24 3.0 2.0 1.07 0.22
22 3.5 2.0 0.91 0.30
18 50 1.8 0.84 0.08
12 50 1.8 0.65 0.24
8 5.0 1.8 0.72 .08
1.5 2.5 2.7 1.47 0.21
0.5 2.5 2.7 1.43 0.29
011T 28 4.0 1.5 0.76 0.20 2.60
24 2.0 1.8 1.15 0.22
20 2.0 2.7 1.08 0.12
19 3.0 3.0 1.29 0.09
14 5.0 2.8 1.30 .18
g 4.0 2.8 1.29 0.18
5 4.0 3.2 1.35 -0.09
3 2.0 3.1 1.30 0.01
1 2.0 2.4 1.15 0.31
0277 28 3.5 2.9 1.24 0.06 2.22
23 8.5 2.0 0.08 0.04
17 7.0 2.0 0.74 0.18
12 4.0 1.9 0.78 0.31
8 4.0 2.1 0.84 0.22
4 4.5 2.3 1.12 0.35
1 2.5 2.8 1.29 0.22
028T 27.7 4.5 2.5 0.91 0.16 2.20
27 1.5 3.6 1.12 -0.23
24 2.0 2.0 0.74 0.086
16 10.0 2.0 0.88 6.13
12 6.0 2.2 1.13 0.39
4 5.0 1.8 0.76 - 012
1 3.0 2.6 1.35 0.45
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well depth thickness (ft) sample mean sorting skewness well mean

035T 50 3.0 2.1 0.81 -0.20 2.33
47 3.0 2.4 1.01 0.13
44 4.0 2.1 0.95 0.07
40 3.0 2.7 1.17 -0.32
a8 5.0 2.7 1.56 0.01
32 4.0 2.6 1.29 0.06
28 4.0 2.6 1.09 0.20
24 4.0 2.5 1.02 0.19
23 4.0 2.5 1.03 0.18
16 3.0 2.7 1.06 0.15
12 3.0 1.9 114 0.23
8 5.0 1.8 0.87 0.10
4 3.0 1.5 0.90 -0.03
1 2.0 2.4 1.53 0.41
039T 36 4.0 1.9 0.82 0.03 2.06
32 4.0 1.8 0.98 0.02
28 2.0 2.3 1.07 0.24
24 T 4.0 1.6 0.90 0.11
20 4.0 2.6 1.00 0.17
17 4.0 2.3 1.65 0.32
13 4.0 2.3 1.20 0.24
8 6.0 2.9 1.41 0.09
053T 40 6.5 3.5 1.42 -0.58 3.89
32 B.O 3.9 1.17 -0.56
24 4.0 4.0 0.81 -0.57
16 8.0 4.1 0.41 -0.33
12 4.0 3.9 0.72 -0.46
4 12.0 4.0 0.81 -0.49
082T 42 5.0 3.9 0.93 -0.42 2.54
36 3.0 3.3 1.20 0.01
32 3.0 ) 2.3 0.74 -0.02
28 4.0 2.0 0.65 0.03
24 7.0 2.2 0.99 0.20
16 5.0 2.6 1.40 0.28
12 4.0 2.4 1.23 0.37
8 3.0 2.4 1.23 0.27
4 4.0 2.2 1.26 0.32
1 4.0 2.3 1.17 0.32
094T 16 4.5 4.0 0.88 -0.40 - 4.02
12 4.0 4.1 0.79 -0.43
8 4.0 4.1 0.74 -0.44
4 4.0 4.1 0.82 -0.38
1 4.0 3.8 1.14 -0.54
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well depth thickness (ft) sample mean sorting skewness well mean

002A 29 2.0 1.2 1.72 -0.18 2.23
28 1.0 0.7 1.04 -0.09
24 4.0 1.8 2.49 -1.02
23 1.0 0.5 2.15 -1.73
22.5 0.5 0.2 0.60 -0.59
22 1.5 0.8 1.06 -0.05
20 1.0 a.e 0.81 0.01
16 50 2.1 1.14 0.22
15 1.0 0.5 1.01 -0.57
13 2.0 1.3 2.14 -0.37
9.5 3.0 1.4 0.96 0.16
6 50 1.8 0.79 -0.32
2 4.0 1.6 1.01 -0.18

007A 28 4.0 1.8 0.76 0.77 2.48
24 2.0 0.9 0.78 0.04
20 2.5 1.2 0.93 0.14
168 3.5 1.4 0.73 0.08
12.5 5.0 2.0 1.52 -0.58
4.5 7.0 2.8 1.06 0.47
1.5 4.0 1.6 1.14 -0.50

O010A 31 2.0 1.3 1.64 0.19 1.95
28 2.5 1.3 1.53 -0.15

26.5 2.0 1.0 1.00 0.01
24 2.0 1.1 1.56 -0.37
22 2.0 1.1 1.37 -0.02
20 2.0 1.1 1.61 -0.20
16 4.5 1.9 111 0.06
14 2.5 1.2 0.99 0.00
12 3.0 1.0 0.54 -0.46
8 3.0 1.1 070 -0.39
5 3.0 1.2 0.85 -0.39
2 3.0 1.2 1.23 -0.86

022A' 44 1.0 1.1 1.4 0.33 0.64
40 50 2.0 1.55 -0.42
35 6.0 2.6 1.39 0.27
28 50 21 1.15 0.03
24 4.0 1.7 1.18 -0.12
20 4.0 1.7 1.18 -0.04
16 4.0 1.9 1.71 -0.05
15 2.5 1.1 0.75 0.04
12 1.5 1.0 1.19 0.33
a 5.0 2.0 0.69 0.16
4 4.0 1.8 0.95 -0.19
3 3.0 1.2 0.97 -0.45

026A 38 60 2.1 1.62 -0.22 1,19
32 5.0 2.2 157 0.06
28 2.0 1.1 1.34 0.13
20 13.0 4.6 1.19 -0.27
14 3.0 1.4 1.33 -0.02
6 10.0 3.5 Q.67 -0.11
1 20 1.1 1.09 0.09
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well depth thickness (ft) sample mean sorting skewness well mean

045A 41.9 9.0 3.4 1.37 -0.23 0.81
- 32 2.0 1.1 1.17 0.17
28 4.0 1.7 1.23 -0.15
22 50 1.6 0.38 -0.49
20 2.0 1.1 1.59 -0.26
16 9.0 36 1.860 0.22
8 5.0 1.8 0.97 -0.45
4 4.0 1.6 0.79 -0.07
1.5 2.0 1.2 1.23 0.25
047A 47.8 0.5 0.6 1.40 -0.01 1.00
44 3.5 1.5 1.22 -0.10
42 2.5 1.3 1.28 0.13
39 4.5 2.0 1.30 0.14
35.5 2.0 1.3 1.93 0.10
26 13.0 4.7 1.20 -0.04
20 9.0 3.3 1.14 -0.38
16 4.0 1.9 1.43 0.23
8 3.0 1.3 0.88 0.05
5 3.0 1.1 1.10 -0.72
1 3.0 1.4 1.19 -0.05
056A 37 4.5 2.2 2.06 0.11 1.01
33 4.5 2.3 2.25 0.25
24 5.5 2.3 1.27 0.02
23 3.0 1.4 1.17 0.05
16 3.5 1.6 1.48 -0.29
12 8.0 2.9 0.91 -0.25
8 4.0 1.5 0.63 -0.15
3 4.0 1.9 1.66 0.11
071A 38 6.0 3.2 1.47 216 1.68
28 4.0 1.8 1.22 0.09
24 5.0 2.0 0.79 0.06
20 5.0 2.0 1.33 -0.22
16 2.0 0.9 1.02 -0.17
12 4.0 1.5 0.77 -0.37
4 10.0 3.6 0.93  -0.23
1 2.0 1.1 1.09 0.26
"092A' 16 5.0 2.0 0.88 -0.01 3.69
11 3.0 1.3 1.34 -0.56
7 3.0 1.3 1.53 -0.71
3 3.0 1.1 0.58 0.24
1 2.0 1.0 1.52 -0.56
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CUMULATIVE CURVES
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