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Chapter 1

Preliminaries

1.1 Problems, Algorithms, and Complexity

A problem is a general question to be answered, and it has several parameters. To

desctibe a problem, we describe ajl its parameters, and state what properties the

answer is required to satisfy. Given a problem, if we specify particular values for all

its parameters, then it is an instance of the problem. The input length for an instance

of a problem is defined to be the number of symbols in the description of a problem

instance. If a problem I has only two possiblesolutions, either “yes” or “No”, then it
”

is a decigion problem. Such a problem I consists of an instance set D and a subset

Yn € Dp of yes-instances.

Algorithms are procedures for solving problems, they are general, step-by-step. If
an algorithm can be used for any instance of a problem and can always solve that

instance, then we say that this 2lgorithm solve the problem. In pgeneral, we are



interested in finding the most “efficient” algorithm for solving a problem. Time and

space are usually two factors determining whether or not an algorithm is efficient.

Complexity theories provide mechanisms to classify combinatorial problems and mea-
sure computational resources that are necessary to solve them. Two most important
and common measures in the computation are time and space complex{ti&s. The
time complexity is the number of steps a program takes to execute, and the space

complexity is the amount of storage used in the computation,

1.2 The Time Complexity

1.2.1 Deterministic Computation and the Class P

Deterministic Turing Machine is a particular model for computation. It is defined as

follows:

Definition 1 (Deterministic Turing Machine) [10]
A deterministic Turing machine 18 a system
M=(@, % 1,8, q, B;ﬂqam“ Greject), whHere
Q@ 1is the finite set of stoites,

[ is the finite tape alphabet,

B € T is the blank symbol,

¥ s the input alphabet, © C T - {B},
go € Q 1is the initial state,

Goccept 18 the accepling state,



Qreject s the mjecting state, and

3 is the transition function, 6 ¢ (Q - {Qoccept, Grejear}) X T = @ x T x {L, R}.

P 1s the class of all languages accepted by a deterministic Turing machine program
that runs in polynomial time in the input length. A polynomial time algorithm is the

polynomial time deterministic Turing machine program.

1.2.2 Nondeterministic Computation and the Class NP

Informally the class NP can be defined in terms of a nondeterministic algorithm.
Such an algorithm consists of two separate stages: guessing stage and checking stage.
Given a problem instance I, the guessing stage “guesses” some structure S. Then we
take I and S as inputs of checking stage and compute it in a normal deterministic
manner. A nondeterministic algorithm “solves” a decision problem if, for all instants
of the decision problem, there exists some structure S that, when guessed for input

I, will lead the checking stage to respond “yes” if and only if I is a yes-instance.

A nondeterministic algorithm is said to solve a decision problem in “polynomial time”
if, for every yes-instance, t}}ere is some guess S' that leads the deterministic checking
stage to respond “yes” in the polynomial time in the input length. The class NP
is defined informally to be the class of all decision problems that can be solved by

polynomial time nondeterministic algorithms.

A pondeterministic Turing machine is the same as a Turing machine, except that the

transition function has the following form:



61 (Q - {gaccept}) X T' = p (Q x ' x {L, R}), where p(A) is the power set of a set

A

The formal counterpart of a nondeterministic algorithm is a program for a nondeter-

ministic Turing machine.

The language recognized by a nondeterministic Turing machine is the set of all input
strings accepted by the nondeterministic Turing machine. The time required by a
nondeterministic Turing machine to accept a string is defined to be the minimum, over
al]l accepting computations of the nondeterministic Turing machine, of the number of

steps occurring in the guessing and checking stages up until the halt state is entered.

NP is the class of all languages accepted by a nondeterministic Turing machine pro-

gram that runs in polynomial time in the input length.

We usually envision a nondeterministic algorithm as guessing a structure that in some
way depends on the given instance. The guessing module of a nondeterministic Turing
machine disregards the given input. However, we always design out a nondeterministic
Turing machine program s¢ that the checking stage beging by checking whether or
not the guessed string corresponds to an appropriate guess for the given input. If

not, the program can halt immediately.



1.2.3 The Relationship between P and NP

We observe that every deterministic algorithmy can be used as the checking stage of a
nondeterministic algorithm. From this, we can conclude that every decision problem
that can be solved by a polynomial time deterministic algorithm can be also solved
by a polynomial time nondeterministic algorithm. That implies that P C NP. There
are many reasons to believe that this inclusion is proper, which means that P is not
equal to NP [8]. It is not surprising that polynomial time nondeterministic algorithms
are more powerful than polynomial time deterministic algorithms, even though it has

not been proved as yet. Therefore, it looks reasonable to assume that P # NP.

1.2.4 The Structure of NP

If P # NP, then the distinction between P and NP - P is meaningful and important.
There is no hope of showing that any problem ig in NP - P until we can prove that

P # NP.

Definition 2 (Polynomial Transformation) (8]
A polynomial transformation from one language Ly C ITj to another language Ly

r
C T3 18 a function f : L, = L, that satisfies two conditions:

1. There erists a polynomial time deterministic Turing machine program comput-

ing f, aend

2. For allz € £}, z € L, if and only +f f(z) € L,



[t is obvious that the “polynomial transformability” relation is reflexive and transitive,
but not symmetric. A language L, is defined to be NP-complete if Ly is in NP and,
for any language L, that is in NP, there exists a polynomial transformation from
L; to Ly. The NP-complete theory focuses on proving results of weaker form “if P
# NP, then a decision problem is in NP - P”. NPC is made up of all NP-complete
languages. The “polynomial transformability” relation imposes a partial o1;der on the
eq.uivalence classes of languages (or decision problems). The class P is the “least”
equivalence class under this partial order. The class of NP-complete problems contains
the “hardest” languages (or decision problems) in NP. If any NP-complete problem
can be solved in polynomial time, then all problems in NP can be solved in polynomial
time. Therefore, if P # NP, then any NP-complete problem is in NP - P. Moreover,

any NP-complete problem is in P if and oaly if P = NP.

Problems in NP are considered to be in NPI if they have not yet been proved either
in P or in NPC. Since it has been showed that there are some problerns in NPI [8], we
can conclude that if P % NP, then there exist some problems in NP neither solvable
in polynomial time nor NP-complete. That is, there exists some problems in NP but
not in P or NPC. The class-of all languages tl;at, are not in P or NPC but in NP is

the class NPI.

Assuming that P # NP, the NP class consists of three parts: P, NPC, and NPI. Their

“difficulty” levels from the least difficult to the most difficult are P, NP1, NPC.



1.2.5 Some Problems in NP

As we mentioned before, the P class includes all languages accepted by deterministic
Turing machines in polynomial time, without any regard to the degree of the polyno-
mial. Integer Divisibility by Four (8], Primes and its complement problem Composite

Numbers have been proved to be in P [9].

Integer Divisibility by Four
Instance: Given an integer n > 1.

Question: Is there an integer m > 1, such that n / m = 4 and n mod m = 0?

Primes
Instance: Given an integer k > 1.

Question: Is k a prime?

Compostte Numbers
Instance: Given an integer kK > 1.

Question: Are there two integers m, n > 2, such that mn = k?

The NPC class includes mé.';ny problems that are natural and have been solved effi-
ciently [8]. Some problems such as the Vertez Cover problem, the Hamsiton Circuit
problem, and the Cligue problem have been proved to be NP-complete [7}. For all
of these problems we can find exponential algorithms, but so far no polynomial time

algorithm has been found to solve any of the NP-complete problems.



Vertex Cover
Instance: Given a graph G = (V, F) and an integer k, where L < k£ < [V|.
Question: Is there a set V' C V, such that |V < k and, V {u, v} € E, 3 at least one

gorvinV ?

Hamiltonian Circuit
Instance: Given a graph G = (V, E).
Question: Is there an ordering of vertices of G, (v1, v2, ... ¥n), where n = {V|, such

that e; € E,V1 < i < n, where ¢ ={v;, vi;.}, V1 <i<n-1, and €, = {v5, 1 }?

Clique
Instance: Given a graph G = (V, E) and an integer j, where 1 < 7 < |V].
Question: Is there a set V' C V such that |V_'I > 7 and for any two vertices v, v; €

V’, {Ui, v,—}e E ?

NPI consists of problems in NP which have not yet. been proved either in P or in NPC.
The NPI class is not empty if P 3£ NP. Graph Isomorphism, and Linear Programming

are some examples of problemns in NPI [8].

N ed

Graph Isomorphism
Instance: Given two graphs G = (V, E) and G’ = (V, E).
Question: Is there an injective function f: V — V, such that {u, v} € E if and only

if {f(u), f(v) € E?



Linear Programming

Instance: Given an integer B and three integer vectors V; = (v4(1), v,»[2], . vn]), D
= (d1, da, ..., dry), and C = (c1, €2, ..., €n), Where 1 < 4 < m.

Question: Is there a rational vector X = (zy, I, ..., Z,,) such that V; - X < d; and

C-X>B,wherel<i<m?

1.2,6 The Class Co-NP

The class co-NP is the set of all languages whose complement is in NP. It is defined

as follows:

Definition 3 (co-NP) /8/

co— NP = {T* - L | L is a language over the alphabet T and L € NP.}

Many problems in co-NP seem not to be in NP, which .means NP # co-NP. The class
P is closed under complementation, so NP # co-NP implies P # NP, although P #
NP does not imply NP 5# co-NP. Nevertheless, there exists a link between the NP-
complete problems and the conjecture that NP # co-NP. This link is that if there is
an NP-complete problem whose complement is in NP, then NP = co-NP [8]. From
this, we can conclude that ;1 problem whose complement is in NP can not be in NPC

unless NP — co-NP.

1.2.7 Exponential Time

There are some decision problems only solvable by a Turing machine in exponential

time. The set of all decision problems that can be solved by a deterministic (respec-



tively nondeterministic] Turing machine in O(27()) time, where n is the input length,
p(n} is a polynomial function of n, is the class EXPTIME [respectively NEXPTIME).
For all polynomial functions g(n), m9(®) = 2p(") where m is any positive integer, and
p(n) is a polypomial function of n, the class EXPTIME [respectively NEXPTIME] is
also the set of all decision problems solved by a deterministic [respectively nondeter-
ministic] Turing machine in O(m%™) time, where m is any positive int.eger,l and g(n)
is a polynomial function of n. We believe that there exists some decision problems
that are beyond the class EXPTIME. That means, those problem can only be solyed
by a deterministic or nondeterministic Turing machine in O(2”7 ™)) time, where p'(n)

is an exponential function of n.

The class EXPTIME-complete is also a set of decision problemns. A decision problem is
in EXPTIME-complete (respectively NEXPTIME-complete] if it is in EXPTIME [re-
spectively NEXPTIME], and every problem in EXPTIME [respectively NEXPTIME]
has a polynomial transformation to it. EXPTIME-complete might be thought of as
the hardest problem in EXPTIME. EXPTIME is a strict superset of NP-Complete,

NP, and P.

r

One examaple of EXPTIME-complete problems is the Chess problem :10).

Chess
Instance: Given a chess or go position.

Question: Can the first player force a win?

10



For the Chess problem, actually, the games have to be generalized by playing them on
an nxn board instead of the usual board with fixed size. Since EXPTIME-complete

15 defined by asymptotic behavior as the problem size grows without bound.

1.2.8 The Polynomial Hierarchy

For two sets A and B, we can write a program that is an acceptor for 4 and allow it
to make subroutine calls of the form “y € B” . These calls return true if the Boolean
test is true and return false otherwise. Such a program is called a reduction procedure
and the set B is called an oracle set. An oracle Turing machine is a standard Turing
machine with an additional oracle tape and three special states: @, Y ES and NO.
When the Turing machine is in state @), if the word currently written on the oracle
tape is in the ora,cle_ set, then the next state is Y E'S, otherwise, the next §ta.te is NO.
A Turing reduction from one oracle set A to another oracle set B is an oracle Turing
machine M whose oracle is B such that M accepts A and M halts on every input
[11].

The polynomial hierarchy is a useful tool to classify and measure the complexity of
combinatorial problems. Aélass PY [respectively NPY] is the set of languages from
which there is a polynomial time deterministic [respectively nondeterministic] Turing
reduction to a languagein Y. A class co—Y is the set of languages whose complement

is in Y. The polynomial hierarchy is defined inductively as follows [12}:

11



For all k > 0

AL, = P& (1.2)
P = NPE: (1.3)
MR =co—%,, (1.4)

The process of inductively defining new classes can be extended infinitely and it
creates classes of greater and greater apparent difficulty. To check if a problem is in
the hierarchy at all or not, it is useful to show it is in a particular class directly rather
than apply the inductive definitions. I we can show a “hardest” problem in £}, then

it must be in F - &} _, if the two classes are not equal.

The polynomial hierarchy extends the classes P and NP. Nevertheless, under the
assumption P # NP, the polynomial hierarchy remains of theoretical interest. It is
not known whether any of the classes are distinct or whether there exists infinitely

many classes in the polynomial hierarchy so far.

F ol

1.3 The Space Complexity

1.3.1 The Class PSPACE

What we have introduced above is just on the time complexity. In practice, the space

complexity is also important. In a Turing machine computation, the time complexity

12



is the number of steps taken before a halt state is entered. The space complexity is
the number of distinct tape squares visited by the read-write head. The number of
tape squares visited is less than or equal to the number of steps in the computation.
It follows that all decision problems in polynomial time can be solved in polynomial
space, however, there still exists some decision problems in polynomial space that

cannot be solved in polynomial time.

The class PSPACE [8] is the set of languages that are recognizable by polynomial
space bounded deterministic Turing machines that halt on every input. There exist
some problems solvable in PSPACE that appear to be “harder” than problems in P

or NP,

PSPACE is a class beyond the polynomial hierarchy. A language L, is PSPACE-
complete (with respect to polynomial transformability) if Ly is in PSPACE and, for
any language L, that is in PSPACE, there exists a polynomial transformation from
L, to Ly. From this, we can conclude that if L; is PSPACE-complete, then L, is in
P(respectively NP| if and only if P[respectively NP| =. PSPACE. Quantified Boolean

Formulas and Linear Space Acceptance are PSPACE-complete.
'

Quantified Boolean Formulas
Instance: Given a formula F' = (Q121)(Q222) ... (QnZn)E, where E is a Boolean
expression over z;, and @; € {3, V}, forall 1 <2 < n.

Question: Is F true?

13



Linear Space Acceptance
Instance: Given a linear bounded deterministic Turing machine M and a finite string
z that is over the input alphabet of M.

Question: Does the Turing machine M accept the string =7

1.3.2 The Class NPSPACE

The class of NPSPACE consists of those languages that can be recognized by a non-
deterministic Turing machine in polynomial space bounded. How to deal with the
space used by the “guess” in a nondeterministic Turing machine? In fact, for many
computations, it is not necessary to remember all the symbols once they have been
read. A nondeterministic Turing machine that is used to measure space can be viewed
as an additional device from which the program can always request the immediately
following symbol of the guess without using any other space. The program records
the symbol that is needed later on its tape and use “space” for it only if the pro-
gram wants to remember the symbol. Defining the class NPSPACE to be the set of
languages recognized by programs for this additional device in polynomially bounded
space in its accepting computation, then we can ask a question: Is PSPACE equal
to NPSPACE? Savitch baA; implied that the answer is “yes” [15]. This will follow
that PSPACE-completeness is the strongest type of completeness result we have in-

troduced above.

14



1.3.3 The Class DLOGSPACE

Since an input string with length n takes up n tapes squares by itself, any deterministic
Turing machine seerns taking at least linear space. However, it is different between the
space required by the input string and the additional space in which the cor_nputatiou
is carried out. In fact, it is possible to use less than linear space for a computation.
This is the class DLOGSPACE. The class DLOGSPACE is the class in which all
langnages can be recognized by a deterministic Turing machine in a space that is

only logarithmic in the input length. It is within P and NP.

There are some nontrivial problems solvable in Jogarithmic space. It has been shown
that DLOGSPACE # P [15]. Many problems in P look to require more than log-
arithmic space. Moreover, both P = DLOGSPACE and P = PSPACE can not be

held.

Since polynomial transformation can not make distinctions within P, let us introduce

log-space transformation.

Definition 4 (Log-space Transformation)- (§/
r

A log-space transformation from one language Ly C 21 to another language L, C

¥5 is a function f - Ly — Ly that satisfies two conditions:

1. f can be computed by a deterministic Turing machine program using space

bounded by [logn + 1], where n is the input length, and

2. Forallz € 3}, z € L, if and ondy if f(z) € L.



A language L, is log-space complete for P if L, is in P and, for any Janguage L,
that is in P, there exists a log-space transformation from I, to L,. If there exists a
log-space transformation from one problem A in P to another problem B in P, then
we can conclude that problem A is also log-space complete for P. The Path System

Accessibility problem has been proved to be log-space complete for P {5]. -

Path System Accessibility

Instance: Given a finite set X, a relation R € X' x X xX, and two sets S and T of
“source” and “terminal” nodes, where S, T C X.

Question: Is there an “accessible” terminal node, where a node z € X is accessible if

z € S or if there are accessible nodes y and z such that (z, y, 2) € R?

Log-space transformation is not only used to prove log-space completeness for P. Most
transformations used to prove NP-completeness and PSPACE-completeness are also
log-space transformations. The set of all languages that are log-space complete for
NP is at least a large subset of NPC, while we can not conclude that all languages

that are log-space complete are PSPACE-coraplete.

1.3.4 The Class NLOGSPACE

The log-space transformation can be used to address another question of determinism
versus nondeterminism. Similar to the class DLOGSPACE, the class NLOGSPACE is
the class of all languages in which all langvages can be recognized by a nondetermin-

tstic Turing roachine in space-bounded of logarithmic in the input Jength. It has been

16



proved that there are some languages in NUOGSPACE but not in DLOGSPACE 16],
therefore, DLOGSPACE # NLOGSPACE. Like DLOGSPACE C P, NLOGSPACE

CP

1.3.5 Exponential Space

Similar to the time complexity, there are some decision problems unsolvable by a Tur-
ing machine in polynomial space. The class EXPSPACE [respectively NEXPSPACE]
is the set of decision problems which are soived by a deterministic [respectively nop-
deterministic] Turing machine in O(2?(")) space, where n is the input length, and
p(n) is a polynomial function of n. That is, the class EXPSPACE ([respectively
NEXPSPACE] is the set of all decision problems which are solved by a determin-
istic [respectively nondeterministic] Turing machine in O(m*™) space, where m is
any positive integer, and ¢(n) is a polynomial function of n. The class EXPSPACE-
complete is also a set of decision problems. A decision problem is EXPSPACE-
complete [respectively NEXPSPACE-completej if it is in EXPSPACE [respectively
NEXPSPACE], and every problem in EXPSPACE |[respectively NEXPSPACE] has a
polynomial transformation rt:o it. EXPSPACE-complete might be thought of as the
hardest problems in EXPSi’ACE. EXPSPACE is a superset of EXPTIME, PSPACE,
NP-complete, NP, and P. We believe that there exists some decision problems that
are beyond EXPSPACE and those problems can only be solved by a deterministic
or nondeterministic Turing machine in O(27™) space, where p’(n) is an exponential

function of n.



Figure 1.1; The world of complexity classes.

1.4 Relations of the Standard Complexity Classes

Figure 1.1 shows the relationship of complexity classes we introduced above.

18



Chapter 2

Intractable Problems for Extended

Regular Expressions

2.1 Intractability

Different algorithms process different time and space complexities, and which are “ef-
ficient enough” and which are “too inefficient” will always depend on the situation at
hand. Fortunately, the distinction between polynomial time algorithms and exponen-
tial time algorithms offers considerable insight into these matter. Polynomial time
algorithms are considered asr“good” algorithms, whereas exponential time algorithms

are not “good” algorithms.

A problem has not been “well-solved” until a polynomial time algorithm can be
found for it. Hence, a problem is said to be intractable if there is no polynomial

time algorithm that can solve it. That means, all algorithms to solve an intractable

19



problem require at least exponential time. If there exists a polynomial time bounded
algorithm to solve a problem, then this problem is tractable. Although an exponential
time algorithm may be faster than a polynomial time algorithm for a problem instance
with some limited input length, such kind of problems are quite rare in practice.

Therefore, it is appropriate to define intractability as above.

There are two reasons for the intractability of a problem: one is that the problem is
so difficult that an exponential time algorithm is needed to solve it, the other is that
the solution itself is so extensive that it can not be described with an expression with
length bounded by a polynomial function of the input length. To show a problem is
intractable, we need to show it is beyond the class P. Since several complexity classes
have been known to contain intractable sets, one approach to prove a problem is
intractable is by proving that the problem iz complete for a complexity class that is

krown to contain intractable problems.

To prove a particular problem is NP-complete or PSPACE-complete, we show how to
express an arbitrary problem in NP or PSPACE in terms of the particular problem.
Essentially the technique of~proof is simulatio;n. However, so far nobody can find a
problem in NP or PSPACE but be proved not in P. To show a problem is not in P,

we need to show there exists at least one language not accepted by any deterministic

Turing machine in polynomial time. The diagonalization techuique is usually used.

If a deterministic Turing machine whose input is a string of n 1’s halts after it takes

exactly F'(n) steps, then we call Fi(n) a time constructible function. For the time

20



complexity, even though P 5 NP is still an open question, we observed that for two
given time constructible functions 71 and 75, if T\ grows “faster” than T5, then there
is a language accepted by a deterministic Turing machine of time complexity 73 but

by no deterministic Turing machine of time complexity T7.

For the space complexity, we have observed that any multitape deterministic Turing
machine has an equivalent one-tape deterministic Turing machine, and both deter-
ministic Turing machines have the same space complexity. If a deterministic Turing
machine whose input is a string of n 1's halts afier its read-write head has visited
exactly F(n) tape squares, then we call F(n) a space constructible function. Fur-
thermore, it has been proved that for two given space constructible functions S; and
S,, if 8y grows “faster” than 53, then there is a language accepted by a deterministic
Turing machine of space complexity S, but by no deterministic Turing machine of

space complexity S).

2.2 Intractable Problems for Extended Regular Ex-
pressions
2.2.1 Regular Expressions

A regular expression is recursively defined as follows:

Definition 5 (Regular Expression) [0/

Let £ be an alphabet. The regular erpressions over ¥ and the sets that they denote

21



1. D is a regular expression and denotes the empty set.
2. € is a reqular expression and denotes the set {e}.
3. For each a in X, a i3 a regular ezpression and denotes the set {a}.

4. If r and s are reqular expressions denoting the languages R and S, respectiv
then (r+s), (rs), and (r*} are regular expressions that denote the sets R U

RS, and R*, respectively.
Some intractable problems concerning regular expressions are the followings:

Regular Expression Inequivalence
Instance: Given two regular expressions Ry and R; over an alphabet I.

Question: Does the language denoted by R, differ from the language denoted by .

Let us introduce some related definitions before giving the complexity for the Reg
Ezpression Inequivalence problem.

I

Let X be a finite alphabet, a language L C X* is bounded if there exist words
Wy, ... W, € X* such that L C wiwj..w,. If L is not bounded, then we call L
unbounded language [4]. Star height of a regular expression is a limited nesting de
of Kleene stars in the regular expression. If the star height of a regular expressic

equal to 0, then it is star free [3].

Ty



The complexity for the Regular Expression Inequivalence problem depends on R, and

If R, is a fixed expression and denoting an “unbounded” language, then the

Regular Ezpression Inequivalence problem is PSPACE-complete,

If R, is a fixed expression and denoting an infinite “bounded” language, then

the Regular Ezpression Ineguivalence problem is NP-complete,

If A, is a fixed expression and denoting an finite language, then the Regular

Ezpression Inequivalence problem is solvable in polynomial time,

If both R; and R, have star height k and k is a fixed number which is greater

than 0, then the Regular Ezpression Inequivalence problem is PSPACE-complete,

If both R, 'd..lld‘Rg are star free, then the Regular Frpression Ine:guwalence

problem is NP-complete,

If one or both of R; and R, denote bounded languages or the size of £ is exactly

equal to 1, then the Regular Exzpression Inequivalence problem is NP-complete

(6},

)

If the regular expressions are limited to four operators: umnion, concatenation,

the Kleene star, and squaring (two copies of an expression), then the Regular

Ezxpression Inequivalence problem is EXPSPACE-complete, and

If the Kleene star is left out, then the Regular Ezpression Inequivalence problem

is NEXPTIME-complete.
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For the Regular Ezpression Inequivalence problem, in the case of the size of T &

and Ry is &7, we can get the following problem.

Regular Expression Non-universality
Instance: Given a regular expression R over a finite alphabet T.

Question: Does the language denoted by R differ from I*7

The Regular Ezpression Non-universality problem is PSPACE-complete if the alpd
bet is {0,1}. But if we allow the abbreviation (a)’ denoting a - a, then the probi

will become intractable and has been shown to have exponential space complexity |

Emptiness-of-complement of Regular Expressions
Instance: Given a regular expression R over the alphabet .

Question: Is the complement of the language denoted by R empty?

By constructing of a PSPACE nondeterministic Turing machine, the Emptiness-
complement of Regular Ezpressions problem can be proved to be PSPACE-compls
[1]. Since the PSPACE class is known to include the set of intractable problems, t

Emptiness-of-complement of Regular Ezpressions problem is intractable.

2.2.2 Semiextended Regular Expressions

Since the class of regular set is closed under intersection, it does not increase the cl:
of sets described by adding the intersection operator to “ordinary” regular expr

sions. The semiextended regular expression allows the intersection operator to be



regular expressions. An intractable problem of semiextended regular expressions

the Emptiness-of-complement of Semieziended Regular Expressions problem.

Emptiness-of-complement of Semiextended Regular Expressions
Instance: Given a semiextended regular expression R over the alphabet I.

Question: Is the complement of the language denoted by R empty?

The E'mptiness-of-complement of Semiestended Regular Ezpressions problem has be
proved to not in NPSPACE, by the relationship between PSPACE and NP, we kni
that under the assumption P # NP, we have NP is a subset of PSPACE, and P i
subset of NP, hence the Emptiness-of-complement of Semiestended Regular Ezpr
sions problem is not to be in P, NP, or PSPACE, that is, there is no polynomial-tin
bounded or polynomial-space-bounded algorithm for the Emptiness-of-complement
Semiextended Regular Ezpressions problem. Furthermore, it has been shown that a
algorithm to solve the Emptiness-of-complement of Semiextended Regular Expressic
problem requires more than c’cm time and space, where ¢ > 1and ¢ > 2, 7
the length of the semiextended regular expression|1|.

[

One equivalent problem o'fl the Emptiness-of-complement of Semieztended Regu
Ezpressions problem is that whether a given semiextended regular expression deno
all strings over its alphabet, so any algorithm to decide whether a semiextend
regular expression denotes all strings over its alphabet requires at least PSPA(
complexity, particularly, it has been proved its space and time complexity are

least ¢ cV/ 8" where ¢ > 1 and ¢> 2, n is the length of the semiextended regul



expression. This leads us to consider the time and space complexities of the equival
problem for semiextended regular expressions. Fortunately, it has been proved tl
the equivalent problem for semiextended regular expression requires ¢ cV™ %87 wh,

¢ > 1and ¢> 2, and an infinity of n's.

2.2.3 Extended Regular Expressions

Similar to the intersection operator, the class of regular set is closed under the co
plementation operator. Extended regular expressions allow intersection and comp

mentation operators in regular expressions. Formally, it is defined as the following

Definition 6 (Extended Regular Expression) [1]

An extended regular expression over an alphabet ¥ is defined as follows:

1. ¢, @ and a for each in T, are estended regular expressions denoting {e},

empty sel, and {a}, respectively.

2. If R, and R, are ertended regulor erpressions denoting the longuages L, ¢
L,, respectively, then (Ry + Rz), (Ry  Ry),(R\*), (Ry N Ry), and (= Ry)
extended reqular ezpregsions, denoting L; U Ly, I1Ly, Ly", Ly N Ly, and &

L,, respectively.

Adding the intersection and complementation operators will make the length of
expressions denoting certain regular languages shorter, but some problems for

tended regular expressions require more time than regular expressions.
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One intractable problem in extended regular expressions is the Emptiness Proble

for Eztended Regular Ezpressions.

Emptiness Problem for Extended Regular Expressions
Instance: Given a extended regular expression R over the alphabet .

Question: Is the language denoted by R empty?

The Emptiness Problem for Extended Regular Expressions is harder than the Emptin
of-complement of Regular Ezpressions problem or the Fmptiness-of-complement

Semiertended Regqular Expressions problem.

If a function g(m, n) is defined as:

n form=20
g(m,n) = { 29(m=11)  for m > 0 &

Then a function is elementary if it is bounded above for all but a finite set of n’s

g(mg, n) for some fixed my.

Based on the elementary function and impossibility of construction of determinis

Turing machines for extended regular expressions, it has been shown that there
o

no elementary function S(n) for which the Emptiness Problem for Eztended Regul

Ezpressions is of space complexity with S(n) [1]. Moreover, there is no S(n)-spac

bounded or S(n)-time-bounded deterministic Turing machine to decide whether t

language denoted by a extended regular expression is empty or not.
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It has been proved that the Emptiness Problem for Eztended Regular Expressions
beyond PSPACE and any algorithm to solve the Emptiness Problem for Fztend
Regular Ezpressions requires at least exponential time and space complexity. [1].

particular, the Emptiness Problem for Eztended Regular Ezpressions requires at lea
g(m,n) time complexity, where m is any finite number. Therefore, the Eﬁzptine

Problem for Eztended Regular Ezpresstons is intractable.



Chapter 3

Emptiness Problem for Extended

Regular Expressions

3.1 An Algorithm for Solving the Emptiness Prok

lem for Extended Regular Expressions

In this thesis we present an algorithm to solve the emptiness problem for extends
regular expressions. By analyzing the complexity of our algorithm, we verify th
the emptiness problem for extended regular expressions requires at least exponenti
time and space. Our algorithm consists of two parts: one is constructions of ﬁr;i

automata, the other is the reachability algorithm.



3.1.1 Constructions of Finite Automata

Finite automata are useful tools to present regular expressions. They are defined

the followings:

Definition 7 (Finite Automaton) [0/

A finite automaton, or finite-state machine (abbreviated FA) is a 5-tuple (Q,

qO) 6' A), whm‘e

o Q is a finite set (whose elements we will think of as states),

L is a finite alphabet of input symbols,

go € Q (the initial state),

A C Q (the set of accepting states), and

8 18 a function from Q x T to Q (the transition function).

For any element ¢ € @@ and any symbol a € &, we interpret 6(q, a) as the state

which the FA moves, if it is in state g and recetves the input a.

Definition 8 (Nondeterministic Finite Automaton) [10]
A nondeterministic finite automaton, (abbreviated NFA), is a 5-tuple M = (Q,
do, A, 8), where @, &, g0, ond A are defined as for FAs, and the transition funcly

18

5:QxT - p(Q) 3

As usual, p(Q) means the power set of o set Q).
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Definition 9 (Nondeterministic Finite Automaton with A-transitions) /I
A nondeterministic finite automaton with A-transitions (abbreviated NFA-A) is
S-tuple M = (Q, T, qo, A, &), where Q, T, qo, and A are defined as for FAs, and tl

transition funciion is

§:Qx (SU{A}) - p(Q) (3.

p(Q) means the power set of a set Q.

The above three models of finite automata are equivalent. The following theorems te
us the connection between finite automata and regular expressions. In the proof .
Kleene’s theorem [10], structural induction is used, that is, construct a finite autom:
ton equivalent to the given extended regular expression by combining finite automaf

which is corresponding to the subexpressions of the given extended regular expressio:

Theorem 1 (Kleene’s Theorem) [10]

Any regular language can be accepted by o finite automaton.

The extended regular expression is obtained by adding the intersection and compl
mentation operators to the fegular expression. Kleene's theorem has showed that &
FA accepting the regular expression can be constructed. In order to construct an F
equivalent to the given extended regular expression, we only need to show that t}
complementation and intersection can be accepted by an FA. As in Kleene’s theoren

structural induction is used.
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(a) &) (c)

Figure 3.1: NFA-As for 0, {A}, {a}.

Theorem 2 Any language denoted by an extended regular ezpression can be decepie

by a finite automaton.

Proof: It is sufficient to show any language obtained by an extended regular e
pression can be accepted by an NFA-A. The set of languages obtained by extende
regular expressions over the alphabet X is defined to be the smallest set of language
containing the basic languages @, {A}, and each of the languages {2} (a € ). Tk
class of regular sets is closed under the operations of union, concatenation, Kleene'
complementation, and intersection. Using structu_rai induction to prove that any lar
guage denoted by an extended regular expression over an alphabet ¥ can be accepte
by an NFA-A, we must show that the three basic languages can be accepted by a
NFA-A, and that if L) and L, are languages that can be accepted by an NFA-A, the

their union, concatenation, Kleene®, complementation, and intersection can also b

accepted by an NFA-A.

£~

NFA-As for the three basic languages are obvious. They are shown in Figure 3.1.

Suppose that L; and L, are accepted by the NFA-As M; and M,, respectively. M

and M, are defined as the following:

M; ={(@:, Z, g, A;, 5;), where 1 <7 < 2.

o



Without loss of generality, we may assume that Q1NQ2 = @ (by renaming states,
necessary). We will construct NFA-As M, M., My, M¢om, and M;,, recognizing t}

language LyUL,, Ly Lq, L3, £* - Ly, LiNL,, respectively.

The constructions of M,,, M., and M, are given in Kleene’s theorem. Here we descril

the constructions of M., and M;,.

(1) Construction of Meom = (Qeom, Ty Geoms Acoms dcom)- Since L is accepted by tl
NFA-A M, = (Q), &, q1, A;, &), by the equivalence of NFA-A and DFA, L; can }

accepted by a DFA.

Let May = (Qa1, T, g, A1, 8a1), where

Qa = p(@1), p(Q1) means the power set of a set Q1

® gd1 = q1,
L Ad] = Al, and
® dq1 = da1.

r

be a DFA recognizing L;, then M,m can be obtained by swapping the acceptix

states with the non-accepting states of M. That is,

Mepm = (Qeomy Ty Geomy Acomy Ocom), Where

° Qcam = le)

® Jeom = 4d1,

'a¥a)



e Aom = Qa1-Aa1, and

d 6com = 6:11-

(2) Construction of M;,. There are two methods to construct M;j,.

The first one is to construct My, directly. Since L; and L, are accepted by the NFA-/

M, and M,, respectively, Ly and L, can be recognized by the DFAs.

Let Myt = (Qary £, qa1, Am, Oa1) and Myp = (Qa2, E, g2, A, 042) be two DF

recognizing L, and L,, respectively.

Then Min = (Qin, Z, Gin, Ain, 6in), where
® Qin = Qc_nXde
® gin = [Qm, Qd‘Z]
o A, = AaXAmp
e {i, is defined as follows:

r

8([p1, 2], @) = [61(p1, ), 62(p2, 0));
for all py € Qu1, P2 € Qu2, and a € ¥.

The second method is based on De Morgan’s law.
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De Morgan’s Law (10):

LN Ly = ~((=(L)) U (~(L2))) (3.4

Since languages are sets, all set operations on languages are inherited from those o
sets. De Morgan’s law applies to sets, so it also applies to languages. If L, and L, ar
regular languages, then their complements —(L;) and —(L,) are regular language
Since the regular sets are closed under union, (—(L;})U(—(L,)) is regular. Henc

~((=(Z1))U(=(L2))) is regular. Therefore, LyNL, is regular.

Since L and L, are accepted by NFA-As M; and M,, respectively, from the construc
tion of Meem, we can construct FAs M om1 and M, ,m2 accepting —(L,) and —(L,
respectively. By Kleene’s Theorem, an NFA-A M, accepting (—~(L,))U(~(L4)) ca
be constructed. Using the construction of M., again, we can construct an FA M

accepting —((=(L)))U(=(L,))). Obviously, M accepts LyNL,.

3.1.2 Reachability Problem

The two most common computational representations of graphs are adjacency lisf
r
and adjacency matrices.

The adjacency-list representation of a graph G = (V, E) consists of an array Adj ¢
|[V] lists, one for each vertex in V. For each u € V, the adjacency list Adj[u] contair

all the vertices v such that there is an edge (v, v) € E. For the adjacency-matri

representation of a graph G = (V, F), we assume that the vertices are numbere



1,2,...,, |[V] in some arbitrary manner. The adjacency-matrix representation of a grap

G that consists of a |V|x|V| matrix A = (a;;) such that

o 1 if{i,j}EE, :
% = { 0 otherwise. (3

For any constructed FA M = (Q, Z, g, A, 6) that recognizes the given extende
regular expressions, if M has & final states, i.e., k = |A|, where ¥ > 1, then we m:
convert M into an NFA-A M with exactly one final state F' by setting F = {§(F

A |FeA)

Without loss of generality, we may assume that the first vertex in the graph is t}
start state of the NFA-A, the ]ast vertex in the graph is the final state of the NFA-;
If there exists a path from the first vertex reachable to the last vertex in the grap
i.e., there exists a string accepted by the NFA-A, then the language denoted by tt
extended regular expressions is not empty. Otherwise, the language denoted by t!

extended regular expressions is empty.

We use the depth-first search algorithm to solve the reachability problem. The deptl

first search algorithm is described as follows [13]:

r

DFS(G)
1. for each vertex u € V|[G]
2. do color[u] «— WHITE

3. mfu] « NIL
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4. t1me « 0

5. for each vertex u € V|G]

6. do if colorfu] = WHITE

7. then DFS-Visit(u)

DFS-Visit(u)

1. color[u] +— GRAY

2. d[u] + time « time + 1

3. for each v € Adj[u]

ha

do if color[v] == WHITE
5. then nfv] « u
6. DFS-Visit(v)

7. color(u] + BLACK

oo

. flu] « time « time ¥ 1

In the depth-first search, each vertex is initially white, becomes grey when it is dis
covered in the search, and becomes black when it is finishes. Let the start state of th
NFA be the root of a new tree in the depth-first forest. If the final state 6f the NF/
is discovered or finished, i.e., the color of the final state of the N¥A is changed fron

white to grey or black, after the depth-first search algorithm is done, then there exis

-~



a path from the start state to the final state of the NFA, i.e., there exists & strin
accepted by the NFA, and the language denoted by the extended regular expression
is not empty, Otherwise, the language denoted by the extended regular expressior

1s empty.

3.2 A Complexity Analysis

Let us consider the time and space complexities of our algorithm.

In the procedure of constructions of FAs, since in Kleene's theorem, NFA is use
for the union, concatenation and Kleene closure operators, the number of states |
additive. The complementation operator requires a conversion from an NFA to

DFA, so the number of states increases exponentially. For the intersection operatol
if we construct the FA using the first method, then the number of states increases a
the product. If we use the second method which depends on the complementatio
operator, then the number of states increases exponentially. So the procedure c
constructions of FAs for extended regular expressions requires at least exponentiz

time and space. r

Considering the time complexity of the solution for the reachability problem, let |V
be the number of vertices, and |E| be the number of edges in the graph G(V, E
then the running time of depth-first search algorithm is ©(|V| + |E|). For the spac
complexity of the solution for the reachability problem, obviously, the adjacency lis

requires O(|V| + |E|).
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Our algorithm to solve the Emptiness Problem for Eztiended Reqular Erpression
consists of (1)constructions of FAs and (2) the reachability algorithm. Since con
structions of FAs require exponential time and space, our algorithm for solving th
Emptiness Problem for Extended Regular Bzpressions requires at least exponentia

time and space.

3.3 Conclusions

In this thesis, we solve the Emptiness Problem for Eztended Regular Erpressions b;
constructing FAs equivalent to the given extended regular expressions and applyin,

depth-first search algorithm on the reachability problem.

The procedure of constructions of FAs works by creating NFA-A for the three basi
languages 0, {A}, and {a} and then constructing FAs for the union, concatenation
and intersection of two languages accepted by FAs, and the Kleene closure, and com
plementation of a language accepted by FAs. By structural induction, all language
denoted by extended regular expressions over the alphabet £ can be accepted by al

FA.

P

For the procedure of solution to the reachability problem, all vertices can be reachec
from the start state of the NFA will be discovered in the depth-first search algorithm
The algorithm will explore all the possible paths that exist between the start stat
and the final state of the NFA. If there is a path from the start state to the fina

state, then the algorithm can find it.

39



By analyzing the time and space complexity of our algorithm, we conclude that th
Emptiness Problem for Eziended Reguler Ezpressions is intractable and it requires a

least exponential time and space.
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A PROGRAM TO SOLVE THE EMPTINESS PROBLEM FOR

EXTENDED REGULAR EXPRESSIONS

The emptiness problem for extended regular expressions is described as follows:
Instance: Given a extended regular expression R over the alphabet 2.

Questron: Is the language denoted by R empty.

The algorithm consists of two parts:
1. constructions of inite automata for the given extended regular expressions

2. the depth_first search algorithm to solve the reachability problem

The algorithm is implemented in a C/C++ program. The program includes two files:

pgml.h and main.cpp.



PROGRAMMERS’ GUIDE

This program is to solve the emptiness problem for extended regunlar expressions.

It is implemented in Microsoft Visual C++. The program consists of two files: one head

file (pgm1.h) and one C/C++ source code file (main.cpp). In the program, we define one

class, two structures, one main function and twenty-seven subroutines.

There are two following structures:

1.

State: it holds four elements: start, final, value and color. Start is a character to
check the state is the start state of the finite automaton or not. If the state 1s the
start state, then we assign "Y' to the element state, else we assign N' to the
element state. Final is a character to check the state is the final state of the
finite automaton or not. If the state is the final state, then we assign "Y' to the
element final, else we assign N' to the element final. Value is a character to
give the input data of states. In the program, let us assume that the symbol '$'
1s not in the alphabet of extended regular expressions, then we initialize values
of 2ll states in the finite automaton to be '$'. The above three elements are
used in the constructions of FAs. The fourth element of the state structure is
color, which is éﬁcharacter to assign the color to every state in the finite
automaton. It could be 'W', 'g’, or 'b’: ‘W' means white; 'g’ means grey; ‘b’ means
black. The element color is used in the depth_first search algorithm to solve

the reachability problem.



PROGRAMMERS’ GUIDE

This program is to solve the emptiness problem for extended regular expressions.

It is implemented in Microsoft Visual C++. The program consists of two files: one head

file (pgm1.h) and one C/C++ source code file (main.cpp). In the program, we define one

class, two structures, one main function and twenty-seven subroutines.

There are two following structures:

1.

State: it holds four elements: start, final, value and color. Start is a character to
check the state is the start state of the finite automaton or not. If the state is the
start state, then we assign "Y' to the element state, else we assign N' to the
element state. Final is a character to check the state is the final state of the
finite automaton or not. If the state is the final state, then we assign 'Y to the
element final, else we assign N’ to the element final. Value is a character to
give the input data of states. In the program, let us assume that the symbol '$’
is not in the alphabet of extended regular expressions, then we initialize values
of all states in the finite antomaton to be '$’. The above three elements are
used in the constructions of FAs. The fourth element of the state structure is
e
color, which is a character to assign the color to every state in the finite
automaton. It could be 'w’, 'g/, or b". ‘W’ means white; 'g' means grey; 'b’ means

black. The element color is used in the depth_ first search algorithm to solve

the reachability problem.



2. Fa: it holds two elements: node and size. Node is a two-dimension array.
Every element in the array 1s a structure of state. Size is an Integer denoting
the number of states in a fimife automaton.

There is one class named FA: it holds a variable and twenty-one functions.
1. The variable called m_fa which is a pointer pointing to a structure of fa.
2. Twenty-one functions are described as follows:
o FA()— it creates the constructor function
e ~FA()— it creates the destructor function
o GetUserlnput (char *, char *) — it gets the alphabet and extended
regular expressions from the input
» Get_Array(int *, char *) — it decides the highest priority of operators
in the extended regular expression
e Get_Max(int *, char *) — it gets the maximum in an integer array
e Get_Left(char ¥, char *, int) — it gets the left hand side of the k
elements in a given sentence of size 3
e Get_Right(char *, char *, int) — it gets the right hand side of the k
elements in a given sentence of size 3
. @ Get_Left_Op(char *, int *, char *, int) — it gets the left hand side of the
k elements in a given sentence
e Get_Right Op(char *, int *, char *, int) — it gets the right hand side of
the k elements in a given sentence |
o Is_In_Sigma (char *, char) -- it checks a character is in the alphabet or

not



Transfer Basic (fa *, char *, char) — it transfers the three basic
Janguages into a structure of fa

Get_C_Value (int n, int m) — it calculates the choice number which is
the number of ways of picking m unordered outcomes from n
possibilities

Get C_Sum_M (int n, int m_b, int m_e) — it calculates the sum of
some choice numbers, n is unchanged

Get C_Sum N (int n_b, int n_e, int m) — it calculates the sum of some
choice numbers, m is unchanged

Get_Index (int *, int, int) — it calculates the index in a DFA
corresponding to an NFA

Sort_Auray (int *, int) — it sorts one array in incr‘easing order
NFA _To DFA (fa *, fa *, char *) — it transfers an NFA to a DFA by
using the subset construction

Union (fa *, fa *, fa *) — it does the union operation on two structures
of fa

Concatenatjon (fa *, fa *, fa *)'— it does the concatenation operation on
two structixrcs of fa

Star (fa *, fa *) — it does the Kleene star operation on one structure of
fa

Complementation (fa *, fa *) — it does the complementation operation

on one structure of fa



e Intersection (fa *, fa *, fa ®*) — it does the intersection operation on two
structures of fa

o Funcl (char *, char *, int) — it does the operation on the highest
priority operator from an input string

e Func2 (fa *, char , fa *, fa *, char *¥) — it does five operators for the
given extended regular expressions

e FuncO (fa *, char *, char *, int) — it transfers the extended regular
expressions to a "tree" structure and calls the corresponding
subroutines to do five operations on structures of fa

e DFS Visit (fa *, int) — it changes the color of vertices on the path
starting from the start state of the finite automaton, it is used for
ﬁ_mction DFS

e DFS (fa *) — it uses depth-first search to solve the reachbility problem

There is one main function: it inputs the alphabet and extended regular
expressions and output the given extended regular expression is empty or not.

The program requires exponential time and space.



USERS’ MANUAL

This program is using C/C++ (o sotve the emptiness problem for extended regular
expressions. The operating system is Windows XP/2000/98/95. 1t runs in Microsoft
Visual C++ (Version 6.0).

Users may use the tools of the menu bar in Microsoft Visual C++ (Version 6.0) to
compile and execute the program. After clicking the “!” button in the tool bar, the
program executes, and one window to get the input and show the output comes out on the
screen.

In the program, we use the following denotation when defining the five operations
on extended regular expressions:

s ‘U’ denotes union

s ‘I’ denotes intersection

¢ ‘C’ denotes concatenation
o ‘!" denotes implement

e ‘¥ denotes star

The input of the program consists of two parts: the alphabet and extended regular
_ expressions. Such as the follo:vs:

1. In the program, the alphabet could be any character except ‘$” and five
operators that are ‘U’, ‘I’, ‘C’, ‘", and “*’. For example: "abcdefp”,
“1234567, etc.

o One message “please enter the alphabet” 10 ask users to input the alphabet.

e Users may enter (1) “abc”, then press the “return” key.



or (2) “a” then press the “return’ key.
2. In the program, we suppose that every extended regular expression is fully
parenthesized. For example: ((aUb)I(aUc)), (a*), (b!), etc.
¢ One message “please enter the extended regular expression” to ask users
to input the extended regular expression.
¢ Users may enter (1) “((aUb)I(aUc))” (or “a!”) then press the “return” key.
or (2) “al” then press the “return’ key.
The output of the program is one message to show that the extended regular
expression Js empty or not. Such as the output of the above input will be:
e (1) The extended regular expression js not empty.

¢ (2) The extended regular expression is empty.

e



/!
/lpgm1.h

/fpgm1.h is the head file of the program.

/11t defines all classes, structures, and functions.

//In this program, there is one class: FA,

//two structures: state and fa,

//one main function, and twenty-one called functions.

/!

/! —————

//Define a structure named state which holds four elements:
//The first three elements are: start, final, and value

/Istart is a character to check the state is the start

//state of the fintte automaton or not:

//if the state is the start state, then we assign Y’ to

/the element state, else we assign N’ to the element state.
//final is a character to check the state is the final

//state of the finite automaton or pot:

//if the state is the final state, then we assign 'Y' to

//the element final, else we assign N’ to the element final.
/fvalue is a character to give the input value of states;

/fLet us assume that the symbol '$’ is not in the alphabet

//of extended regular expressions. Then we initialize the value
//of all states in the finite automaton '$".

//The above three elements are used in the constructions of FAs.
//The last element of the state structure is color,

//which is a character to assign the color to every state in

//the finile automaton. It could be 'w’, 'g', or b'.

//'w' means white; 'g' means grey; b’ means black.

/fcolor is used in the depth_first search algorithm to

/lsolve the reachability problem

1/

typedef struct state
char start; o
char final; ’
char value;
char color;

}state;

//

//Define a structure named fa which holds two elements:
//node and size. Node is a two-dimension array. Every element
//in the array is a structure of state.

//Size is an integer denoting the number of states in a fa



——=====

typedef struct fa{
state node[80][807;
int sjze;

} fa;

/

//Define a class named FA.,
//This class has a public vaniable m_fa
/fand twenty-orne functions '

1 -

class FA {
public:
fa* m_fa;

public:

/!
//constructor and destructor

/1

FAQ;
~FA();

/!
//five operator functions: Union, Concatenation,
//Star, Complementation, and Intersection

/-
void Union (fa* pM3, fa* pMI, fa* pM2);
void Concatenation(fa* pM3, fa* pM1, fa* pM2);
void Star(fa* pM3, fa*pM1);
void Complementation(fa* pM2, fa* pMI);
void Intersection(fa* pM3, fa* pM1, fa* pM2);

1/

//function NFA_To_ DFA is to convert an NFA to a DFA

/1

void NFA_To_DFA (fa* pMd, fa* pMn, char* Sigma);

>

1f
//functions Func0, Funcl and Func2 are used to
//transfer the extended regular expressions



17 ' —

typedef struct fa{
state node[80][80};
int size;

}fa;

/1 = —_
//Define a class named FA.

//This class has a public vanable m_.fa

//and twenty-one functions

// = —
class FA {
public:

fa* m_fa;

public:

1/
//constructor and destructor

1/

FAQ;
~FAQ;

1/t

//five operator functions: Unjon, Concatenation,
//Star, Complementation, and Intersection

/1= =
void Union (fa* pM3, fa* pM1, fa* pM2);
void Concatenation(fa* pM3, fa* pM1, fa* pM2);
void Star(fa* pM3, fa*pM1),
void Complementation(fa* pM2, fa* pM1);
void Intersection(fa* pM3, fa* pM1, fa* pM2);
1/

//function NFA_To_DFA is to convert an NFA to a DFA

void NFA_To_DFA (fa* pMd, fa* pMn, char* Sigma);

// - .
//fimetions Func0, Funcl and Func2 are used to
/ftransfer the extended regular expressions




/Mo a "tree" structure and call the corresponding
//subroutines to do the operation on five operators

1/

void FuncO (fa* result0, char* Sigma0, char* sentence0, int length0);
struct fa* Func] (char* Sigmal, char* sentence, int length) ;
void Func2(fa* pRes,char op, fa* pL, fa* pR, char* Sigma);

/
/ffunction GetUserInput is to get the alphabet
//and extended regular expressions

// =

vord GetUserInput(char* sigma, char* input);

/7
//function Get_Array, Get_Max, Get_Left, Get_night,
//Get_Left_Op, and Get_Right_Op are to get the left_hand
//s1de and the right_hand side of the operator in

//a given sentence

/f

void Get_Array(int* arrayl, char* sentencel);

mt Get_Max(int* array2, char* sentence?);

void Get_Lefi(char* LHS, char* sentence2, int k);

void Get_Right(char* RHS, char* sentence3, int k);

void Get_Left_Op(char* LHS, int* array, char* sentence2, int k);
void Get_Right Op(char* RHS, int* array, char* sentence?, int k);

/t
//functions Get_C_Valune, Get_C_Sum_M, Get_C_Sum_N, and Get_Index
//are to get the index in the DFA corresponding to the NFA

/! =

int Get_C_Value(int g, int m);

int Get_ C_Sum_M(int n, int m_b, int m_e);
int Get_C_Sum_N(int n_b, int b_e, int m);
int Get_Index(int *p, int size, int n);

/=
//function Transfer_Basic is to transfer the three basic
/Nanguage into fa structures

/f

void Transfer_Basic(fa* pM, char *Sigma, char c);



1/ =
//function Is_In_Sigma is to check a character is
//in the alphabet or not

//

/f =
/function Sort_Array is to sort an array in
//increasing order

e —

void Sort_Aaray(int*p, int size);

I/

//functions DFS_Visit and DFS use depth-first search
/o solve the reachability problem

ff——-

void DFS_Visit(fa* pMM, int u);
void DFS(fa* pMM);



/f

//main.cpp

//This program is implemented in Microsoft Visual C++ 6.0
//After compiling and executing the program, one

/imessage "please enter the alphabet” appears

//on the screen. The user enters the alphabet

//such as "abedefg" and then presses the enter key.

//Another message "please enter the extended regular
//expressions” comes out. The user can enter the

//extended regular expressions and presses the enter

//key. Finally, after the user enter

//the alphabet and extended regular expressions,

//the program will output whether the languages denoted by the
//extended regular expressions

//is empty or not.

1 ===

|

#include <iostream.h>
#include <string.h>
#include <iomanip.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "pgm1.h"

1# = —
/f Functions declaration
I

void Union (fa* pM3, fa* pMI1, fa* pM2);

void Concatenation(fa* pM3, fa* pM1, fa* pM2);
void Star(fa* pM3, fa* pM1);

void Complementation(fa* pM2, fa* pM1);

void Intersection(fa* pM3, fa* pM 1, fa* pM2);

void NFA_To_DFA (fa* pMd, fa* pMn, char* Sigma);

void Func0 (fa* result0, char* Sigma0, char* sentence0, int length0);
struct fa* Funcl (char* Sigmal, char* sentence, int length) ;
void Func2(fa* pRes,char op, fa* pL, fa* pR, char* Sigma);

void GetUserlnput(char* sigma, char* input);

void Get_Array(int* arrayl, char* sentencel);

int Get_Max(int* array2, char* sentence2);

void Get_Left(char®* LHS, char* sentence2, int k);
void Get_Right(char* RHS, char* sentence3, int k);



void Get_Left_Op(char* LHS, int* array, char* sentence2, int k);
void Get_Right Op(char* RHS, int* array, char* sentence2, int k);

int Get_C Value(int n, int m);

int Get_C_Sum_M(int n, int m_b, int m_e);
int Get_C Sum_N(int n_b, int b_e, int m);
int Get Index(int *p, int size, int n);

void Transfer Basic(fa* pM, char *Sigma, char c);
bool Is In_Sigma(char *Sigma, char c);
void Sort_ Array(int*p, int size);

void DFS_Visit(fa* pMM, int u);
void DFS(fa* pMM),

1t
//constructor function

FA:FAQ {

}

/=
/ldestructor finction
/f =

FA:~FAQ { )

/==
//main fonction: its input is sigma and extended regular expressions,

/fits output is the given extended regular expression is empty or not
/1=

int main(void)

{
char sigma(80] = {0};
char input{80] = {0};

GetUserInput(sigma, input);

fa* rfa = new fa;
FA* pFA = new FA(),

if(strlen(input) = 1) //for the case of input which is only one character
{



}

I/ :
//Function GetUserlnput is to get the alphabet and extended regular

iftl(1s_ In_Sigma(sigma, input[0}) — true) && (input{0] !="0O)
/1O means empty set
cout << “the extended regular expression is not empty"” << "o}

clse
cout << "the extended regular expression is empty” << 1’}

}
else
{
for(int i=0; i<80; i++)

for(int j=0; §<80; j+t)

{

rfa->nodef1][)].final =N,
rfa->nodefi](j].start = "N’}
rfa->nodef1]{j].value ='$’;

// § denote initial value and it js not in the sigma

}
FuncO(rfa, sigma, input, strlen(sigma));
DFS(rfa);
int flag = 0;
for(int 11 = O, 1T < rfa->gize; yr+t)
{ .
tf{(rfa->node[rr][rr].color '="w") && (rfa->node[rr][rr]).final =="Y"))
flag = 1;
}
if (flag==1)
cout << "the extended regular expression is not empty" <<\n';
else
cout << "the extended regular expression 1s empty” <<"\n’;
pFA->~FA(); -~
delete pFA; .
pFA =0;
retumn O;

//expressions

1/




}

1/

if((Is_In_Sigma(sigma, input[0]) == true) && (input[0] 1="0")
//O means emptly set . ) .
cout << "the extended regular expression is not empty” << \n';

else
cout << "the extended regular expression 1s empty” << \n’;

}

else
{ .
for(int i=0; 1<80; i++)
for(int j=0; j<80; j++)
{
rfa->node(i]{j]-final = N’;
rfa->node{i]{j].start = N;
rfa->node{i}fj].value ="§",
// $ denote initial value and it 1s not in the sigma

)
FuncO(rfa, sigma, input, strlen(sigma)),
DFS(rfa);
int flag = 0;
for(int 1T = 0; r < rfa->size; r++)
{ ,
if((rfa->node[rr][1t].color {= 'w') && (rfa->node[rx][rr].final == Y")
flag=1;
}
if (flag = 1)
cout << "the extended regular expression is not empty" << \n';
else
cout << “the extended regular expression is empty” << '\n'’;
pPFA~>~FA(); P
delete pFA; -
pFA = 0;
return O;

//Function GetUserInput is to get the alphabet and extended regular
//expressions

//




void GetUserlnput(char* sigma, char* input)

{
char buff[80] = {0};

cout << "please enter an alphabet” << endl;
cin.getline(buff,80,\n");

strepy(sigma, buff);
cout << "please enter an extended regular expression” << endl;

cin.getline(buff, 80, \n");
strepy(input, buff);

}

I
// Function Get_Auray is to decide the highest pnority of operators
// in the extended regular expression

/= =
void Get_Array(int* arrayl, char* sentencet)
{
int len = strien(sentencel);
for (int index =0; index < len; index++)
{
if (sentencel[mndex] === (")
arrayl{index] = arrayl[index-1]} + 1;
else if (sentence![index] =")')
arrayl [index] = arrayl[index-1] - 1,
else
arrayl[index] = arrayl[index-1];
}
}
I/

// Function Get_Max is to getthe maximum in an integer array

1

int Get_Max(int* array2, char* sentence?)
{
int len = strlen(sentence2);
mt max_value = -1;
for(int i=0; i<len; i++)
{
if(array2[i] > max_value)
max_value = array2[i};
}

return max_value;



}

/= ===

// Function Get_Lefl is to get the left hand side of the k elements
// in a given sentence of size 3

/) —
void Get_Left(char* LHS, char* sentence2, int k)
{
char lefi[80] = {0},
for (int m=0; m<=k-2; m-++)
leftim] = sentence2[{m+1];
for (int mm = k-1; mm<80; mm-++)
lefi{mm] = "0’;
strepy(LHS, left);
}
/f — —

// Function Get Right is to get the right hand side of the k elements
// in a given sentence of size 3

1/ sz = = —_—=
void Get_Right(char* RHS, char* sentence3, int k)
{
int len = (int)strlen(sentence3);
char right[80] = {0};
for(int n=k+1; n<len-1; n++)
nght(n-k-1] = sentence3[n];
for(int nn = len-k-2; nn <80; nn++)
right[nn] ="\0';
strepy(RHS, right);,  »
}
1/ =

// Function Get_Left Op 1s to get the left hand side of the k elements
// in a given sentence

i
void Get_Left Op(char* LHS, int* array, char* sentence?2, int k)
char left[80] = {0};

int i=k;
int index = 0;



while(i>0)

if(array[i] >= array(k])
1--3
clse
exit(0);
}
index =1;
for(int j= index+1; j<k; j++)
left[j-index-1] = sentence2(j];
for(int jj = k-index-1; jj<80; jj++)
left{jj] ="0";

strepy(LHS, left);
}

/ -
// Function Get_Right_Op is to get the nght hand side of the k elements

// in a given sentence

1

void Get_Right_Op(char* RHS, int* array, char* sentence2, int k)
{

char nght[80]= {0};

int i=k;

int index = 0;

while(i< (int)strlen(sentence2))

{
if(array[1] >= array{k])
i-l—l-;
else
break;
}
index =1; s

for(int j= k+1; j<index; j++)
right[j-k-1] = sentence2[j];

for(int jj = index -k; jj<80; jj++)
right[jj] = "\0";

strepy(RHS, right);
)

([
// Function Is_In_Sigma is to check a character is in the alphabet or not

s



bool Is_In_Sigma(char *Sigma, char ¢)

{

int len = strlen(Sigma);

for (int 1=0; i<len; 1++)

if((Sigma(i] == c )|| (c ="¢e")
return true;

retumn false;
}
1

// Function Transfer Basic is to transfer the three basic languages
// 1nto an fa structure

/1 -
void Transfer Basic(fa* pM, char *Sigma, char ¢)
{
for (int i=0; 1<2; i++)
for (int j=0, j<2; j++)
{
pM->node[i][j].start = N’;
pM->node(i][j].value ='$’;
pM->node[i][j].final = N';
}
if(c =="'e") {//empty string which is epsilon
pM->node[0][0].start ="Y";
pM->node[0][1].valuc ="e";
pM->node(1][1].final ="Y";
}
else if(lc ="0") //"O" denotes empty set
pM->node[0][0].start ="Y";
else if(Is_In_Sigma(Sigma, c)) {
pM->node{0][0].start ="Y";
pM->node[0][1].value = ¢;
pM->node[1][}].final ="Y™;
} .
pM->size = 2;
}
= —

// Function Union is to do the union operator on two fa structures

/f =

votd Union (fa* pM3, fa* pMI, fa* pM2)
{

int -0, cc=0;



}

1

int rl = pM1->size;
int 12 = pM2->size;

for (ir = 1; r <rl+1; Ir++)
for (cc=1; cc <rl+l; cct+)
pM3->node[rr}[cc].value = pM1->node[m-1]fcc-11.value;
pM3->node[0][1].value — e}
pM3->node[0][r] +1].value =",
for(rr =11+1; T < rl4r2+1; )
for(ce =rl+1; cc <rl+12+1; cc++)
pM3->node[rr][cc].value = pM2->nodefrr-rl-1][cc-r1-1].value;

pM3->node[rl][r1+r2+1].value ='¢’;
pM3->node[rl+12][r]l +12+1].value = ‘e';
pM3->node{0][0].start ="Y";
pM3->node[rl+r2+1][rl+r2+1].final ='Y";
pM3->node(1][1].start =N,
pM3->node[r1+1][r1+1].start = 'N;
pM3->node[rl]{r1].final = N';
pM3->node[ri+r2}{rl1+r2].final = N';
pM3->size = pMI1->size + pM2->size + 2

// Function Concatenation 1s to do the concatenation operator on
/! two fa structures

1/

void Concatenation(fa* pM3, fa* pM], fa* pM2)

¢

int rr, cc;
int rl = pM1->size;
int r2 = pM2->size,;

for (it = 1; 1T <rl+1; m++)
for (cc =1; c¢ <ri+1; cet+)
pM3->node[rr]{cc] value = pMI->nodefrr-1fce-1].value;
pM3->node[r!lj[r1+1].value ='¢’,
for(or =rl+1; m < rl+r2+1; Im++)
for(cc =rl+1; cc < rl+12+1; cct+)
pM3->node[rr][cc].vajue = pM2->node[rr-rl-1][cc-T1-1].value;

pM3->node[r1+12][r1+r2+]].value ="e';
pM3->node[0][1].value = 'e";

pM3->node[0][0].start = "Y";



pM3->node{r1+r2+1][ri+r2+] ] final :'Y"’;
pM3->node[1][1].start = N,
pM3->nodefrl +1][r1+1].start - 'N";
pM3->node[ri]frl].final 'N';
pM3->node{r!+r2][rl+r2].final = N';
pM3->size = pM1->size + pM2->size + 2;

}

/]‘ - e _ = =

// Function Star 1s to do the Kleene star operator on one fa structure

I} —— e

void Star(fa* pM3, fa* pM1)
{

int rr, cc;

int rl =pMI->size;

pM3->node[0]{1]).value ="',

pM3->node(rl][]]).value ="e’;
for(mr=1; r <rl+1!; rt+)

for(ce — 1; cc <rl+1; cett)

pM3->node[ir][cc].value = pM L->node[rr-1][cc-1].value;

pM3->node[rl][r1+1].value = 'e’;
pM3->node(0]{rl+1].value ="¢’;
pM3->node[0](0].start - Y,
pM3->node[1}[1].start = 'N";

pM3->nodefrt+1]{rl1+1].final ~ "Y'
pM3->node[r1][rl].final =N,
pM3->size = pM1->size + 2;

£

}

fI== _ s o I
// Function Complementation is to do the complementation opertor on

// one fa structure
1/ - == =

void Complementation(fa* pM3, fa* pMl1)
{

struct fa* pM2 =" new fa;
intrl = pMl->size;



for(int T = O; i <r1; rr++)
for(int cc  0; ce <rl; cc+t) {
if{(pM 1->node{rr][cc].final =="Y")
pM2->node[rzr](cc].final = 'N";
etse 1if(pM 1->node[rr][cc].final == 'N')
pM2->nodefrr][cc).fina) - Y,
pM2->node[rr][cc].start = pM1->nodefrrifcc].start;
pM2->node[r][cc].value = pM1->node[rr][cc).value;

}

for(int r = 0; r <rl; r++)
forGntcc 0; cc <rl; cctt)
{
pM3->node[rr+1][cc+]].value - pM2->node[rr][cc].value;
pM3->node[rr+1][cc+1].final = pM2->node[rr][ce].final;
pM3->node[rr+1][cc+1].start = N,
if(pM2->node[rr][cc].start —'Y")
pM3->node[0][rr+1].value *'e’;
if(pM2->node[rr]jcc].final = 'Y")
pM3->node[rr+1][pM1->size+1].value = ¢’;

}
pM3->node[0][0].start ='Y"; :
pM3->node[pM |->s1ze+][pM1->s1ze+1].final ='Y";

pM3->sjze = pM1->size + 2;

delete pM2;
}

/)= - -
// Function Intersection 1s to do the jntersection oppration on two fa
// structures by applying De Morgan rule

/ / yal — o o i

void Intersection(fa* pM3, fa* pM1, fa* pM2)
{

struct fa *M3 = new fa;

struct fa *CM1 == new fa;

struct fa *CM2 = new fa;

Complementation(CM1,pM1);
Complementation(CM2,pM?2);
Union(M3, CM|, CM2);

Complementation(pM3, M3 );



}

// —— e =
// Function Sort_Array 1s to sort one array in increasing order
// ==

void Sort_Array(int* p, int size)

{
it t=0;
for(intj 0;i<size - 1;i!F)
{
i{f(p[i] >pli+1])
t=pli];
pli] = p[i+1};
plitl] -
}
}
3
/f _ L

// Function Get_C_Value 1s to get choice number which 1s the number of
/] ways of picking m unordered outcomes from n possibilities.
/] ===

int Get C_Value(int n, int m)
{

int Num=1;

int Den:—1;

int Value =1;

1f((n==0) || (m==0))
retumn Value;

else{ r

for(int ii=n; ii > n-m; ii--)
Num = Num*ij;

for(int )=m; j>0; )--)
Den = Den*j;

Value = (int)(Num/Den);

retum Value;

}

}

g
// Function Get_C_Sum_N is to get the sum of choice numbers
// from "n_begin choose m" to "n_end choose m"




int Get_C_Sum N(int n_begin, int n_end, int m)

{
int sum=0;
for(int 1-=n_begin; i> n_end-1;i--)
sum sum + Get C Value(i, m);
return sum;

}

/I - N

// Function Get_C_Sum_M is to get the sum of choice numbers

// from "n choose m_begin" to "'n choose m_end"”
/== - ==

mt Get_C_Sum_M(nt n, int m_begin, int m_end)

{
int sum=0;
for(int = begin; i>m_end-1;1--)
sum = sum + Get_C_Value(n, 1};
return sum:
}
/= = =

// Function Get_Index is to get the index in dfa corresponding to
// the nfa
/! s = =

int Get_Index(int™ p, int size, int n)
{

int index :0;

int s1=0;

1t §2=0;

int s3=0; r

if(size =0)
index = 0;
else if(size == 1)
index = p[0])+1;
else{
sl = Get C Sum_M(n, 1, size-1);
s3 = p[size-1] - p[size-2]; //to get s2
for(int k=0; k<= size-2, k++)
s2 =52 + Get_C_Sum_N(n-k-1, n-p[k]+1, size-2-k);
index = s1+s2+s3;



return index;

}

Nf=——= — — .
// Fanciton NFA_To_DFA is to transfer an NFA to a DFA by using the

// subset construction. It is used in doing the complementation operation

//__ o e —_—t— —= -

void NFA_To DFA (fa* pMd, fa* pMn, char *Sigma) {
int Mn_num = pMn->size;
int Md_num = (int)pow(2,Mn_num);
int 1, cc, Jj;
int k=0;

1f{(Md_num >= 65536)
{
cout << "out of space!" <<"\n';
exit(0);
}
for(rr = 0; rr < Md_num; rr++)
for(cc = 0; cc < Md_num; cc++)
{
pMd->node[rr][cc].start = 'N';
pMd->node[rt][cc].final = N';
pMd->node[ir][cc].value ="'$";
}

int count = 0;

int f count = 0;

int v_count = 0;

mt u_count = 0;

int p[20) = {0};

int f{20] = {0};//final
int v(100] = {0}; //valne
int u[20] = {0};

mt x[100] = {0};

int w[20](20] = {0};
int w_size[20] = {0};
int r_count = 0;

mt ¢_count = 0;

int x_count =0,

pMd->size = Md_num;

for(rr = 0; m < Mn_num; rr++)



1f(pMn->node[rr][r].start --="Y")
{
plcounts +] = rr;
for()j = 0; J) <Mn_num; j)++)
{
H(pMn->node[rr][jj].value = 'e’)
{
1f(J) '= p[count-1])
{
p(count] = jj;
count++;
} .
m=)J,
i o
}y 14
} //for jj
Sort_Array(p, count);
it index_dfa= Get_Index(p, count, Mn_num);
pMd->node[index_dfa][index_dfa].start = "Y";

} Ihf
} /forrr
for(rr = 0; ir < Mn_num; 1r++)
{
1f(pMn->node[rr][rT].final =="Y")
{
f[f_count++] =1r;
int index_f dfa = Get_Index({, {_count, Mn_num);
pMd->node[index_f dfa][index f dfa].final ="Y",
for(k=0; k< Mn_num-1; k++)
{ .
if(k =)
I
f{f _count] =k;
f count++;
Sort_ Array(f, f count);
int index_{_dfa — Get_Index(f, f_count, Mn_num);
pMd->node[index f dfa][index f dfa].final ="Y";
}
}
} 1 af
} /! forrr

mt S[20] = {0};



int Sub set[20]) = {0};

int index = 0;
intj—=0;
int len = strlen(Sigma);

for(k =0, k <lep; k++)
{
int flag = 0;
{
for(rr = 0; m < Mn_num,; rr++)
{
for(cc = 0; cc < Mn_num; cc++)
{
1f(pMn->nodefir}{cc].value = Sigmalk])
{
flag = 1;
viv_count++] =cc;
u{u_count++] — rr;

for(Jy :0; 3 <Mn_num; jj++)
i{f(pMn->n0de[cc][j )]-value =="¢")
i{f(jj I= v[v*count-l]).

fr[v_count] =15

v_count++;

}

ce = jj;
J=0;
A Ihf
" Y/for )
Sort_Array(v, v_count);
Sort_Array(u, u_count);
int index dfa = Get_Index(v, v_count, Mn_nam);
int index dfa_u = Get_Index(u, u_count, Mn_num);
pMd->node[index_dfa u]{index dfa].value :- Sigmafk];

while(( v_count > 2) && (v_count <= Mn _num))
{

for(int 1=0; 1<v_count; i++)

{for(ant j=0; j<Mn_num; j++)

{



}

if(pMn->node(v[i]][j].value - = Sigma[k])

{

X[x_count++] =;

} 1if

for(int m=0; m < Mn_num; m++)
{

1f(pMn->node[j|[m].value = 'e)
{

if(m != x[x_count-1))

{
x[x_count] = m;
X_count++;
} IAE
j=m;
m=0;
YAf
}//for m
} //for ]
Y/for i

Sort_ Array(x, x_count);

mt index_dfa x = Get Index(x, x_count, Mn_nuin);
pMd->node[index dfa][index dfa x].value = Sigma(k];
if((v==x) || (x_count = Mn_num))

return;

for(int n=0; n<x_count; n++)

v(n]) = x[n);

v_count == X_count;

} //while

} /4t

//for cc

if(flag == 0)

} //or r

pMd->node[rr+1][0].value = Sigmal[k];

.

} //for set_size

} //fork

for(int mm=0; mm < (int)strien(Sigma); mm++)
pMd->node(0][0].value= Sigma[mm];

for(int i= 0; i < Md_num,; i++)

{

int j=0;

int flagl =0

for(j=0; j< Md_num; j++)



1f(pMd->node[i][j].valuc !'="$")
flagl = 1;

if(flagl = = 0)
{
for(int mm=0; mm < (int)strlen(Sigma); mm+ - )
pMd->node[i][0].value= Sigma[mm)],

}

/f =
// Function Func? is to do five operators for the given extended
// regular expressions

void Func2(fa* pRes,char op, fa* pL, fa* pR, char *Sigma)
{

struct fa* pDL = new fa;
struct fa* pDR == new fa;
struct fa* pResl =new fa;

switch (op) {

case 'U"
Union(pRes, pL, pR);
break;

case 'C"
Concatenation(pRes, pL, pR);
break;

case "*":
Star(pRes, pLy);
break; ’

case "
NFA To DFA(pResl, pL, Sigma);
Complementation(pRes, pResl);
break;

case 'T"
NFA To DFA(pDL, pL, Sigma);
NFA_To DFA(pDR, pR, Sigma);
Intersection(pRes, pDL, pDR);
break;

default:
cout << "An invalid operation!" << endl;



}
%

// Function Funcl is to transfer a given string to a "tree" structure,
// then 1t do the operation on the highest priority operator

/!

struct fa* Funcl (char* Sigmal, char* sentence, int length)
{
nt count = 0;
int array{80] = {0};
char left[80] = {0};
char nght[80] = {0};
int max_op=0;
struct fa* result = new fa;
FA* Jeft result =new FA();
FA* right_result =new FA();
struct fa* Middle = new fa;

struct fa* F_left = new fa;
struct fa* F right = new fa;

Get_Array(array, sentence);

imt k=0; _
while(k< (int)strien(sentence))
{
boo! bSymbol = false;
bSymbol = sentence[k] = U’ || sentence(k] = "*’
| sentence[k] =T -
|| sentence[k] =="'C’' || sentence(k] ="!";
if (array[k] = 1 && bSymbol)
{
Get_Lefi(lefi, sentence, k);
Get_Raght(night, sentence, k);
Transfer Basic(F_left, Sigmal, left[0]);
Transfer Basic(F right, Sigmal, right[0]);
Func2(result, sentence[k], F left, F_right, Sigmal);
return result;

}

else {
kt+;

3



}

}//while
delete F_left;
delete F_nght;
return result;

}

Jf=——= = =
// Function FuncO 1s to transfer the extended regular expressions
/ to a"tree" structure and call the corresponding subroutines

// 1o do the operation on five operators

Jf= e S —

void FuncO(fa* resultO, char* Sigma0, char* sentence0, int length0)
{

int count = 0;

int array[80] = {0};

char left[80] = {0};

char right(80} = {0},

int max_op=0;

FA* left result =new FA();

FA* right_result = new FA();

struct fa* Middle :- new fa,

struct fa* F_left = new fa;
struct fa* F right =new fa;

Get Array(array, sentence0);
max_op = Get_Max(array, sentcnce0);

int k=0;
while(k< (int)strlen(sentence0))
{ ,
bool bSymbol = false;
bSymbol = sentenceO[k] == U’ || sentenceO{k] == "*'
| sentenceO[k] = "T'
|| sentenceO[k] =="'C" || sentenceO[k] - ="}

1{((array[k] = 1) && bSymbol)

{
Get_Left Op(left, array, sentence0, k);

if(strlen(left) = 1)
Transfer_Basic(F_left, Sigma0, left[0]);



else

}/while

else if(strlen(left) <= 5)

F left  Funcl(Sigma0, left, length0);
else

FuncO(F_left, Sigma0, lef, length0);

Get Right_Op(right, array, sentenceO0, k);
if(strlen(night) == 1)

Transfer_Basic(F_nght, Sigma0, nght{0));
else if(strlen(nght) < §)

F_rnight = Func1(Sigma0, right, length();
else

FuncO(F_rnight, Sigma0, right, length0);

Func2(resultO, sentence0[k], F left, F nght, Sigma0l);
return;

}
kit

//

// Function DFS_Visit is to change the color of vertices on the
// path starting from vertex u. It is used for function DFS

/f =

void DFS_Visit(fa* pMM, int u)

{

int I = pMM->size;
pMM->node[u][u].colOr = 'g";

for(int v — 0; v <1; v++)

{

if{(pMM->node[u][v].value !='$")

{
1f{(pMM->node[v][v].color — 'w")
{
DES Visit(pMM, v);
}



}
pMM->node[u][u].color - b

}

/= =
/I Function DFS 1s to use depth-first search to solve the
// reachbility problem

/1 =
void DFS(fa* pMM)
{
mtl: 1;
int S =0;
int F=0;
int len = pMM->size;
int It = 0;
for(rr = 0; 1T < len; Ir++)
{
pMM->node(rr][rr].color = 'w'
}
for(m = 0; rr < len; r++)
{ .

if((PMM->node[rt][ir].start ="Y") && (pMM->node[rr)(rr].color == 'w'))
DFS_Visit(pMM, rr);
}



}
pMM->node[u][u].color ='b";

}

/= ==
// Function DFS 1s to use depth-first search to solve the
/I reachbility problem

//~— T LT R T _————— T —_— i

void DFS(fa* pMM)
{
inti=1;
intS=0;
intF=0;
int len = pMM->size;

int rr=: 0;
for(rm = 0; 1r < len; Ir++)

{
}

pMM->node(rr]{rT].color :'w'

for(rt = 0; 1 < len; rr++)

{ .

f((pMM->node[rr][rr].start = 'Y") && (pMM->node[rr}[rr].color = ="'w"))
DFS_Visit(pMM, rr);

)
5
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