
THEENWTThffiSSPROBLEMFOREXTENDED

REGULAR EXPRESSIONS

By

MINCAI

Bachelor of Science

Shantou University

Shantou, China

1997 .

Submitted to the Faculty of the�
Graduate College oftbe�

Oklahoma State University�
in partial fulfillment of�

the requirements for�
the Degree of�

MASTER OF SCIENCE�
May, 2003�

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my major advisor, Dr. H. K. Dai for

his intelligent supervision, constructive guidance, inspiration and encouragement. My

sincere appreciation extends to my other committee members Dr. Hedrick and Dr.

Chandler, whose guidance, assistance and support are also invaluable.

More over, I wish to express my sincere gratitude to Dr. H. G. W. Burchard,

who provided suggestions and assistance for this study.

I would also like to give my special appreciation to my parents in Hong Kong,

my two elder brothers, Ben Tsoi, and Yingcnao Cai whose support, encouragement and

love go through my study in us.

ill

Contents

1 Preliminaries 1

1.1 Problems, Algorithms, and Complexity 1

1.2 The Time Complexity 2

1.2.1 Deterministic Computation and the Class P 2

1.2.2 Nondeterministic Computation and the Class NP 3

1.2.3 The Relationship between P and NP 5

1.2.4 The Structure of NP 5

1.2.5 Some Problems in NP 7

1.2.6 The Class Co-NP . 9

1.2.7 Exponential Time . 9

.1"'

1.2.8 The Polynomial Hierarchy 11

1.3 The Space Complexity 12

1.3.1 The Class PSPACE . 12

1.3.2 The Class NPSPACE . 14

1.3.3 The Class DLOGSPACE . 15

1.3.4 The Class NLOGSPACE . 16

IV

1.3.5 Exponential Space .	 17

1.4 Relations of the Standard Complexity Classes	 18

2 Intractable Problems for Extended Regular Expressions	 19

2.1 Intractability 19

2.2 Intractable Problem.s for Extended Regular Expressions	 21

2.2.1 Regular Expressions	 21

2.2.2 Semiextended Regular Expressions	 24

2.2.3 Extended Regular Expressions . . .	 26

3·	 Emptiness Problelll for Extended Regular Expressions 29

3.1	 An Algorithm for Solving the Emptiness Problem for Extended Regular

Expressions . . _ 29

3.1.1 Constructions of Finite Automata.	 30

3.1.2 Reachability Problem ..	 35

3.2 A Complexity Analysis	 38

3.3 Conclusions . . - . . .	 39

Bibliography	 41

Appendixes	 44

A	 A Program to Solve the Emptiness ProblelIl for Extended Regular

Expressions 44

v

LIST OF FIGURES

Figure Page

1. The World of Complexity Classes 18

2. NFA-As for <1>, {A}, {a} 32

·f'

vi

Chapter 1

Preliminaries

1.1 Problems, Algorithms, and Complexity

A problem is a general question to be answered, and it has several parameters. To

describe a problem, we describe all its parameters, and state what properties the

answer is required to satisfy.. Given a problem, if we specify particular values for all

its parameters, then it is an instance of the problem. The input length for an instance

of a problem is defined to be the number of symbols in the description of a problem

instance. If a problem IT has only two possible·solutions, either "yes" or "No", then it
.f'

is a decision problem. Such a problem IT consists of an instance set D rr and a subset
. .

Yrr ~ D n of yes-instances.

Algorithms are procedures for solving problems, they are general, step-by-step.. If

an algorithm can be used for any instance of a problem and can always solve that

instance, then we say that this algorithm solve the problem. In general, we· are

1

I

interested in finding the most "efficient" algorithm for solving a problem. Time and

space are usually two factors determining whether or not an algorithm is efficient.

Complexity theories provide mechanisms to classify combinatorial problems and mea

sure computational resources that are necessary to solve them. Two most important

and common measures in the computation are time and space complexities. The

time complexity is the number of steps a program takes to execute, and the space

complexity is the amount of storage used in the computation.
:

1.2 The Time Complexity

1.2.1 Deterministic Computation and the Class P

Deterministic Thring Machine is a particular model for computation. It is defined as

follows:

Definition 1 (Deterministic Turing Machine) (10J

A deterministic Turing machine is a system

M = (Q, :E, r, 0, qo, H, qaccept, qreject), where
.t·

Q is the finite set of states,

r is the finite tape alphabet,

B E r is the blank symbol,

:E is the input alphabet, :E c r - {B},.

qo E Q is the initial state,

qaccept is the accepting state,

2

qreject is the rejecting state, and

o is the transition junction, 0 : (Q - {qaccept, qrejecd) x r ----t Q x r x {£, R}.

P is the class of all languages accepted by a deterministic Turing machine program

that runs in polynomial time in the input length. A polynomial time algorithm is the

polynomial time deterministic Turing machine program.

1.2.2 Nondeterministic Computation and the Class NP

Informally the class NP can be defined in terms of a nondeterministic algorithm.

Such an algorithm consists of two separate stages: guessing stage and checking stage.

Given a problem instance I, the guessing stage "guesses" some structure S. Then we

take I and S as inputs of checking stage and compute it in a normal deterministic

. .
manner. A nondeterministic algorithm "solves" a decision problem if, for all instants

of the decision problem, there exists some structure S that, when guessed for input

I, will lead the checking stage to respond "yes" if and only if I is a yes-instance.

A nondeterministic algorithm is said to solve a decision problem in "polynomial time"

if, for every yes-instance, th~e is some guess S that leads the deterministic checking

stage to respond "yes" in the polynomial time in the input length. The class NP

is defined informally to be the class of all decision problems that can be solved by

polynomial time nondeterministic algorithms.

A nondeterministic 'lUring machine is the same as a Thring machine, except that the

transition function has the fonowing form:

3

6: (Q - {qaccept}) x. r --7 p (Q x r x {L, R}), where p(A) is the power set of a set

A.

The formal counterpart of a nondeterministic algorithm is a program for a nondeter

ministic Thring machine.

The language recognized by a nondeterministic 'lUring machine is the set of all input

strings accepted by the nondeterministic Turing machine. The time required by a

nondeterministic Turing machine to accept a string is defined to be the minimum, over

all accepting computations of the nondeterministic Turing machine, of the number of

steps occurring in the guessing and checking stages up until the halt state is entered.

NP is the class of all languages accepted by a nondeterministic Turing machine pro

gram that runs in polynomial time in the input length.

We usually envision a nondeterministic algorithm as guessing a structure that in some

way depends on the given instance. The guessing module of a nondeterministic Thring

machine disregards the given input. However, we always design out a nondeterministic

'lUring machine program s}1' that the checking stage begins by checking whether or

not the guessed string corresponds to an appropriate guess for the given input. If

not, the program can halt immediately.

4

1.2.3 The Relationship between P and NP

We observe that every deterministic algorithm can be used as the checking stage of a

nondeterministic algorithm. From this, we can conclude that every decision problem

that can be solved by a polynomial time deterministic algorithm can be also solved

by a polynomial time nondeterministic algorithm. That implies that P ~ NP. There

are many reasons to believe that this inclusion is proper, which means that P is not

equal to NP [8]. It is not surprising that polynomial time nondeterministic algorithms

are more powerful than polynomial time deterministic algorithms, even though it has

not been proved as yet. Therefore, it looks reasonable to assume that P =I=- NP.

1.2.4 The -Structure of NP

If P =I=- NP, then the distinction between P and NP - P is meaningful and important.

There is no hope of showing that any problem is in NP - P until we can prove that

P =I=- NP.

Definition 2 (Polynomial Transformation) fB}

A polynomial transformation from one language L 1 ~ Ei to another language L2

.r>

~	 E; is a function f : L 1 f=...---+ L2 that satisfies two conditions:

1.	 There exists a polynomial time deterministic Turing machine program comput

ing f, and

2.	 For all x E Ei, x E L 1 if and only if f(x) E L 2 •

5

It is obvious that the "polynomial transformability" relation is reflexive and transitive,

but not symmetric. A language L 1 is defined to be NP-complete if L 1 is in NP and,

for any language L 2 that is in NP, there exists a polynomial transformation from

L 2 to £1' The NP-complete theory focuses on proving results of weaker form "if P

f:. NP, then a decision problem is in NP - P". NPC is made up of all NP-complete

languages. The "polynomial transformability" relation imposes a partial order on the

equivalence classes of languages (or decision problems). The class P is the Hleast"

equivalence class under this partial order. The class of NP-complete problems contains

the "hardest" languages (or decision problems) in NP. If any NP-complete problem

can be solved in polynomial time, then all problems in NP can be solved in polynomial

time. Therefore, if P =f: NP, then any NP-complete problem is in NP - P. Moreover,

any NP-complete problem is in P if and only if P = NP.

Problems in NP are considered to be in NPI if they have not yet been proved either

in P or in NPC. Since it has been showed that there are some problems in NPI [8], we

can conclude that if P f:. NP, then there exist some problems in NP neither solvable

in polynomial time nor NP-complete.. That is, there exists some problems in NP but

not in P or NPC. The clasStJOf all languages that are not in P Or NPC but in NP is

the class NPL

Assuming that P =1= NP, the NP class consists of three parts: P, NPC, and NPl. Their

"difficulty" levels from the least difficult to the most difficult are P, NPl, NPC.

6

1.2.5 Some Problems in NP

As we mentioned before, the P class includes all languages accepted by deterministic

'lUring machines in polynomial time, without any regard to the degree of the polyno

mial. Integer Divisibility by Four [8], Primes and its complement problem Composite

Numbers have be~m proved to be in P [9].

Integer Divisibility by Four

Instance: Given an integer n > 1.
,

Question: Is there an integer m 2::: 1, such that n I m = 4 and n mod m = O?

Primes

Instance: Given an integer k 2::: 1.

Question: Is k a prime?

Composite Numbers

Instance: Given an integer k ~ 1.

Question: Are there two integers m, n ~ 2, such that mn = k?

.f'

The NPC class includes many problems that are natural and have been solved effi

ciently [8]. Some problems such as the Vertex Cover problem, the Hamilton Circuit

problem, and the Clique problem have been proved to be NP-complete [7]. For all

of these problems we can find exponential algorithms, but so far no polynomial time

algorithm has been found to solve any of the NP-complete problems.

7

-

Vertex Cover

Instance: Given a graph G = (V, E) and an integer k, where 1 :S k :S IVl·

Question: Is there a set V' ~ V, such that IV' I :S k and, V {u, v} E E, 3 at least one

u or v in V' ?

Hamiltonian Circuit

Instance: Given a graph G = (V, E).

Question: Is there an ordering of vertices of G, (Vb V2, vn), where n = lVI, such

that ei E E, V 1 :S i < n, where ei ={Vi1 Vi+l}, V 1 :S i :S n -1, and en = {Vn , VI}?

Clique

Instance: Given a graph G = (V, E) and an integer j, where 1 :S j :::; IVI·

Question: Is there a set V' ~ V such that I~ I 2: j and for any two vertices Vi, Vj E

V', {ViI Vj}E E?

NPI consists of problems in NP which have not yet been proved either in P or in NPC.

The NPI class is not empty if P =I NP. Graph Isomorphism, and Linear Programming

are some examples of problems in NPI [8].

Graph Isomorphism

Instance: Given two graphs G = (V, E) and d = (V, E').

Question: Is there an injective function f: V -t V, such that {u, v} E E if and only

if {f(u), f(v) } E E' ?

8

Linear Programming

I

,

I

Instance: Given an integer B and three integer vectors Vi = (vi[l], vd2], ... , vdn]), D

Question: Is there a rational vector X = (Xl, X2, .•. , xn) such that Vi . X ::; di and

c . X > B, where 1 ::;: i < m ?

1.2.6 The Class Co-NP

The class co-NP is the set of all languages whose complement is in NP. It is defined

as follows:

Definition 3 (co-NP) [8}

co - N P = {B* - L I L is a language ove, the alphabet Band LENP.}

Many problems in co-NP seem not to be in NP, which means NP =I co-NP. The class

P is closed under complementation, so NP =1= co-NP implies P =f. NP, although P =1=

NP does not imply NP =f. co-NP. Nevertheless, there exists a link between the NP-

complete problems and the conjecture that NP =I co-NP. This link is that if there is

an NP-complete problem whose complement is in NP, then NP = co-NP [8]. From
.f'

this, we can conclude that a problem whose complement is in NP can not .be in NPC

unless NP = co-NP.

1.2.7 Exponential Time

There are some decision problems only solvable by a Turing machine in exponential

time. The set of an decision problems that can be solved by a deterministic [respec

9

tively nondeterministic] Turing machine in O(2P(n» time, where n is the input length,

pen) is a polynomial function of n, is the class EXPTIME [respectively NEXPTIME].

For all polynomial functions q(n), mq(n) = 2P(n), where m is any positive integer, and

pen) is a polynomial function of n, the class EXPTIME [respectively NEXPTIME] is

also the set of all decision problems solved by a deterministic [respectively nondeter

ministic] Turing machine in O(mq(n» time, where m is any positive integer, and q(n)

is a polynomial function of n. We believe that there exists some decision problems

that are beyond the class EXPTIME. That means, those problem can only be solved

by a deterministic or nondeterministic Turing machine in O(2P/(n» time, where p'(n)

is an exponential function of n.

The class EXPTIME-complete is also a set of decision problems. A decision problem is

in EXPTIME-complete [respectively NEXPTIME-complete] if it is in EXPTIME ~re-

spectively NEXPTIME], and every problem in EXPTIME [respectively NEXPTIME]

has a polynomial transformation to it. EXPTIME-complete might be thought of as

the hardest problem in EXPTIME. EXPTIME is a strict superset of NP-Complete,

NP, and P.

.ft

One example of EXPTIME-complete problems is the Chess problem [10].

Chess

Instance: Given a chess or go position.

Question: Can the first player force a win?

10

For the Chess problem, actually, the games have to be generalized by playing them on

an nxn board instead of the usual board with fixed size. Since EXPTIME-complete

is defined by asymptotic behavior as the problem size grows without bound.

1.2.8 The Polynomial Hierarchy

For two sets A and B, we can write a program that is an acceptor for A and allow it

to make subroutine calls of the form "y E B" . These calls return true if the Boolean

test is true and return false otherwise. Such a program is called a reduction procedure

and the set B is called an oracle set. An oracle TUring machine is a standard Thring

machine with an additional oracle tape and three special states: Q, YES and NO.

When the Turing machine is in state Q, if the word currently written on the oracle

tape is in the oracle set, then the next state is YES, otherwise, the next state is NO. . .

A Thring reduction from one oracle set A to another oracle set B is an oracle TUring

machine M whose oracle is B such that M accepts A and M halts on every input

[11].

The polynomial hierarchy is a useful tool to classify and measure the complexity of
,f'

combinatorial problems. A' class pY [respectively N pYj is the set of languages from

which there is a polynomial time deterministic [respectively nondeterministic] Turing

reduction to a language in Y. A class co- Y is the set oflanguages whose complement

is in Y. The polynomial hierarchy is defined inductively as foHows [12]:

~p - IIP - A P - PL10 - 0 - L..lo - (1.1)

11

For all k ~ 0

(1.2)

(1.3)

(1.4)

The process of inductively defining new classes can be extended infinitely and it

creates classes of greater and greater apparent difficulty.. To check if a problem is in

the hierarchy at all or not, it is useful to show it is in a particular class directly rather

than apply the inductive definitions. If we can show a "hardest" problem in L;~, then

it must be in L;~ - L;t-l if the two classes are not equal.

The polynomial hierarchy extends the classes P and NP. Nevertheless, under the

assumption P i= NP, the polynomial hierarchy remains of theoretical interest. It is

not known whether any of the classes are distinct or whether there exists infinitely

many classes in the polynomial hierarchy so far.

1.3 The Space Complexity

1.3.1 The Class PSPACE

What we have introduced above is j,ust on the time complexity. In practice, the space

complexity is also important. In a Turing machine computation, the time complexity

12

is the number of steps taken before a halt state is entered. The space complexity is

the number of distinct tape squares visited by the read-write head. The number of

tape squares visited is less than or equal to the number of steps in the computation.

It follows that all decision problems in polynomial time can be solved in polynomial

space, however, there stiU exists some decision problems in polynomial space that

cannot be solved in polynomial time.

The class PSPACE [8] is the set of languages that are recognizable by polynomial

space bounded deterministic Turing machines that halt on every input. There exist

some problems solvable in PSPACE that appear to be "harder" than problems in P

orNP.

PSPACE is a class beyond the poly~omial hierarchy. A language L 1 is PSPACE-

complete (with respect to polynomial transformability) if L 1 is in PSPACE and, for

any language L 2 that is in PSPACE, there exists a polynomial transformation from

L 2 to L 1 . From this, we can conclude that if L} is PSPACE-complete, then L 1 is in

P[respectively NP] if and only if P(respectively NP] = PSPACE. Quantified Boolean

Formulas and Linear Space Acceptance are PSPACE-complete.
.;'

Quantified Boolean Formulas

Instance: Given a formula F = (Q1xd(Q2XZ) ... (Qnxn)E, where E is a Boolean

expression over Xi, and Qi E {3, V}, for all 1 ~ i ~ n.

Question: Is F true?

13

r ~~'----,-~------------------------l

Linear Space Acceptance

Instance: Given a linear bounded deterministic Turing machine M and a finite string

x that is over the input alphabet of M.

Question: Does the Turing machine M accept the string x?

1.3.2 The Class NPSPACE

The class of NPSPACE consists of those languages that can be recognized by a non

deterministic Turing machine in polynomial space bounded. How to deal with the

space used by the "guess" in a nondeterministic 'lUring machine? In fact, for many

computations, it is not necessary to remember an the symbols once they have been

read. A nondeterministic Turing machine that is used to measure space can be viewed

as an additional device from which the program can always request the immediately

following symbol of the guess without using any other space. The program records

the symbol that is needed later on its tape and use "space" for it only if the pro

gram wants to remember the symbol. Defining the class NPSPACE to be the set of

languages recognized by programs for this additional device in polynomialiy bounded

.
space in its accepting comp)1tation, then we can ask a question: Is PSPACE equal

to NPSPACE? Savitch has implied that the answer is "yes" [15]. This will follow

that PSPACE-completeness is the strongest type of completeness result we have in

troduced above.

14

1.3.3 The Class DLOGSPACE

Since an input string with length n takes up n tapes squares by itself, any deterministic

Turing machine seems taking at least linear space. However, it is different between the

space required by the input string and the additional space in which the computation

is carried out. In fact, it is possible to use less than linear space for a computation.

This is the class DLOGSPACE. The class DLOGSPACE is the class in which an

languages can be recognized by a deterministic Turing machine in a space that is

only logarithmic in the input length. It is within P and NP.

There are some nontrivial problems solvable in logarithmic space. It has been shown

that DLOGSPACE =I P [15]. Many problems in P look to require more than log

arithmic space. Moreover,. both P = DLOGSPACE and P = PSPACE can not be

held.

Since polynomial transformation can not make distinctions within P, let us introduce

log-space transformation.

Definition 4 (Log-space Transformation)- [8j
·f·

A log-space transformation from one language L 1 S; Ei to another language L2 C

E; is a function f : L 1 I---t L2 that satisfies two conditions:

1.	 f can be computed by a deterministic Turing machine program using space

bounded by rlogn + 11, where n is the input length, and

2.	 For all x E Ei, x E L 1 if and only if f (x) E £2'

15

A language L 1 is log-space complete for P if L 1 is in P and, for any language L 2

that is in P, there exists a log-space transformation from L 2 to L 1 • If there exists a

log-space transformation from one problem A in P to another problem B in P, then

we can conclude that problem A is also log-space complete for P. The Path System

Accessibility problem has been proved to be log-space complete for P [5]. .

Path System Accessibility

Instance: Given a finite set X, a relation R ~ XxX xX, and two sets S and T of

"source" and "terminal" nodes, where S, T ~ X.

Question: Is there an "accessible" terminal node, where a node x E X is accessible if

xES or if there are accessible nodes y and z such that (x, y, z) E R?

Log-space t~ansformation is not only used to prove log-space com?leteness for P. Most

transformations used to prove NP-completeness and PSPACE-completeness are also

log-space transformations. The set of all languages that are log-space complete for

NP is at least a large subset of NPC, while we can not conclude that all languages

that are log-space complete are PSPACE-complete.

·f'

1.3.4 The Class NLOGSPACE

The log-space transformation can be used to address another question of determinism

versus nondeterminism. Similar to the class DLOGSPACE, the class NLOGSPACE is

the class of all languages in which all languages can be recognized by a nondetermin

istic Turing machine in space-bounded of logarithmic in the input length. It has been

16

proved that there are some languages in NLOGSPACE but not in DLOGSPACE [16],

therefore, DLOGSPACE =1= NLOGSPACE. Like DLOGSPACE ~ P, NLOGSPACE

~ P.

1.3.5 Exponential Space

Similar to the time complexity, there are some decision problems unsolvable by a 1\1r

ing machine in polynomial space. The class EXPSPACE [respectively NEXPSPACE]

is the set of decision problems which are solved by a deterministic [respectively non

deterministic] Turing machine in O(2P(n» space, where n is the input length, and

p(n) is a polynomial function of n. That is, the class EXPSPACE [respectively

NEXPSPACE] is the set of all decision problems which are solved by a determin

istic [respectively nondeterministic] Turing machine in O(mq(n» space, where m is . .

any positive integer, and q(n) is a polynomial function of n. The class EXPSPACE-

complete is also a set of decision problems. A decision problem is EXPSPACE-

complete !respectively NEXPSPACE-complete] if it is in EXPSPACE [respectively

NEXPSPACE], and every problem in EXPSPACE [respectively NEXPSP.ACE] has a

polynomial transformation to it. EXPSPACE-complete might be thought of as the
.T'

hardest problems in EXPSPACE. EXPSPACE is a superset of EXPTIME, PSPACE~

NP-complete, NP, and P. We believe that there exists some decision problems that

are beyond EXPSPACE and those problems can only be solved by a deterministic

or nondeterministic Turing machine in O(2P'(n» space, where p'(n) is an exponential

function of n.

17

Figure l.i: The world of complexity classes.

1.4 Relations of the Standard COIllplexity Classes

Figure 1.1 shows the relationship of complexity classes we introduced above.

18

Chapter 2

Intractable Problems for Extended

Regular Expressions

2.1 Intractability

Different algorithms process different time and space complexities, and which are "ef

ficient enough" and which are "too inefficient" will always depend on the situation at

hand. Fortunately, the distinction between polynomial time algorithms and exponen

tial time algorithms offers considerable insight into these matte.r. Polynomial time

.f'
algorithms are considered as "good" algorithms, whereas exponential time algorithms

are not "good" algorithms.

A problem has not been "well-solved" until a polynomial time algorithm can be

found for it. Hence, a problem is said to be intractable if there is no polynomial

time algorithm that can solve it. That means, all algorithms to solve an intractable

19

problem require at least exponential time. If there exists a polynomial time bounded

algorithm to solve a problem, then this problem is tractable. Although an exponential

time algorithm may be faster than a polynomial time algorithm for a problem instance

with some limited input length, such kind of problems are quite rare in practice.

Therefore, it is appropriate to define intractability as above.

There are two reasons for the intractability of a problem: one is that the problem is

so difficult that an exponential time algorithm is needed to solve it, the other is that

the solution itself is so extensive that it can not be described with an expression with

length bounded by a polynomial function of the input length. To show a problem is

intractable, we need to show it is beyond the class P. Since several complexity classes

have been known to contain intractable sets, one approach to prove a problem is

intractable is by proving that the problem is complete for a complexity class that is

known to contain intractable problems.

To prove a particular problem is NP-complete or PSPACE-complete, we show how to

express an arbitrary problem in NP or PSPACE in terms of the particular problem.

Essentially the technique oft.proof is simulation. However, so far nobody can find a

problem in NP or PSPACE but be proved not in P. To show a problem is not in P,

we need to show there exists at least one language not accepted by any deterministic

'lUring machine in polynomial time. The diagonalization technique is usually used.

If a deterministic Turing machine whose input is a string of n 1's halts after it takes

exactly F(n) steps, then we call F(n) a time constructible function. For the time

20

complexity, even though P ::f:. NP is still an open question, we observed that for two

given time constructible functions TI and T2 , if T1 grows "faster" than T2 , then there

is a language accepted by a deterministic Turing machine of time complexity T2 but

by no deterministic Turing machine of time complexity T I .

For the space complexity, we have observed that any multi tape deterministic Thring

machine has an equivalent one-tape deterministic 'lUring machine, and both deter

ministic Turing machines have the same space complexity. If a deterministic Thring

machine whose input is a string of n l's halts after its read-write head has visited

exactly F(n) tape squares, then we call F(n) a space constructible function. Fur

thermore, it has been proved that for two given space constructible functions 8 1 and

8 2 , if 8 1 grows "faster" than 8 2 , then there is a language accepted by a deterministic

Turing machine of space complexity 82 but by no deterministic Thring machine of

space complexity 8 1 0

2.2 Intractable Problems for Extended Regular Ex

.
pressIons

2.2.1 Regular Expressions

A regular expression is recursively defined as follows:

Definition 5 (Regular Expression) flO}

Let ~ be an alphabet. The regular expressions over 'E and the sets that they denote

21

are defined recursively as follows.

1. 0 is a regular expression and denotes the empty set.

2. E· is a regular expression and denotes the set {E}.

3. For each a in E, a is a regular expression and denotes the set {a}.

4. If l' and 8 are regular expressions denoting the languages Rand S, respectivf

then (r+s), (1'8), and (1'*) are regular expressions that denote the sets R U

RS, and R*, respectively.

Some intractable problems concerning regular expressions are the followings:

Regular Expression Inequivalence

Instance: Gi~en two regular expressions R1 and R2 over an alphabet E.

Question: Does the language denoted by R1 differ from the language denoted by 1

Let us introduce some related definitions before giving the complexity for the Reg'/;

Expression Inequivalence problem.

·r·

Let X be a finite alphabet, a language L ~ X* is bounded if there exist words

W2, ... Wn E X* such that L ~ w;W2"'w~, If L is not bounded, then we call L

unbounded language [4]. Star height of a regular expression is a limited nesting de

of Kleene stars in the regular expression. If the star height of a regular expressio

equal to 0, then it is star free [3].

22

'The complexity for the Regular Expression lneq'l.tivalence problem depends on R 1 and

•	 If Rz is a fixed expression and denoting an {(unbounded" language, then the

Regular Expression lnequivalence problem is PSPACE--complete,

•	 If Rz is a fixed expression and denoting an infinite "bounded" language, then

the Regular Expression lnequivalence problem is NP-complete,

•	 If R z is a fixed expression and denoting an finite language, then the Regular

Expression lnequivalence problem is solvable in polynomial time,

•	 If both R 1 and R2 have star height k and k is a fixed number which is greater

than 0, then the Regular Expression lnequivalence problem is PSPACE-complete,

•	 If both R 1 and R z are star free, then the Regular Expression lnequivalence

problem is NP-complete,

•	 If one or both of R 1 and R z denote bounded languages or the size of L; is exactly

equal to 1, then the Regular Expression Inequivalence problem is NP-complete

1

[

I

.ft
/

•	 If the regular expressions are limited to four operators: union, concatenation,

the Kleene star, and squaring (two copies of an expression), then the Regular

Expression Inequivalence problem is EXPSPACE-complete, and

•	 If the Kleene star is left out, then the Regular Expression Inequivalence problem

is NEXPTIME-complete.

23

-

For the Regular Expression Ineq1Livalence pmhlem, in the ca...~ ill the. ~~ of E is

and R2 is ~"', we can get the following problem.

Regular Expression Non-universality

Instance: Given a regular expression R over a finite alphabet E.

Question: Does the language denoted hy R differ from ~?

The Regular Expression Non-universality prohlem is PSPACB-t..'>{}mpiete if th-e aipn

bet is {O,l}. But if we allow the abbreviation (ar~ denoting a ~ a, then the pro~

will become intractable and has been shown to have eA.'])onential spaee complail;J ~

Emptiness-of-complement of Regular Expressions

Instance: Given a regular expression R over the alphabet E.

Question: Is the complement of the language denoted by R empty?

By constructing of a PSPACE nondeterministic Turing machine, the Emptiness-I

complement oj Regular Expressions problem can be proved to be PSPACE-compl~

[1]. Since the PSPACE class is known to include the set of intractil-ble problems, t

Emptiness-oj-complement qf Regular Expressions problem is intractable.

2.2.2 Semiextended Regular Expressions

Since the class of regular set is closed under intersection, it does not increase the ell

of sets described by adding the intersection operator to "ordinary" regular expn

sions. The semiextended regular expression allows the intersection operator to be

24

regular expressions. An intractable problem of semiextended regular expressions

the Emptiness-oj-complement oj Semiextended Regular Expressions problem.

Emptiness-of-complement of Semiextended Regular Expressions

Instance: Given a semiextended regular expression R over the alphabet L:.

Question: Is the complement of the language denoted by R empty?

The Emptiness-oj-complement oj Semiextended Regular Expressions problem has beE

. proved to not in NPSPACE, by the relationship between PSPACE and NP, we kno

that under the assump~ion P =I NP, we have NP is a subset of PSPACE, and P is

subset of NP, hence the Emptiness-oj-complement oj Semiextended Regular Expre

sions problem is not to be in P, NP, or PSPACE, that is, there is no polynomial-tim

bounded or polynomial-space-bounded a:lgorithm for the Emptiness-oj-complement

Semiextended Regular Expressions problem. Furthermore, it has been shown that aI

algorithm to solve the Emptiness-oj-complement oj Semiextended Regular Expressio'

problem requires more than c' cvn/logn time and space, where c' ~ 1 and c ~ 2, n

the length of the semiextended regular expression[l].

,tt

One equivalent problem of the Emptiness-oj-complement oj Semiextended Regul

Expressions problem is that whether a given semiextended regular expression denot

all strings over its alphabet, so any algorithm to decide whether a semiextendl
'f

regular expression denotes all strings over its alphabet requires at least PSPAC

complexity, particularly, it has been proved its space and time complexity are

least c' cvn/logn, where c' ~ 1 and c~ 2, n is the length of the semiextended regul

25

expression. This leads us to consider the time and space complexities of the equivale

problem for semiextended regular expressions. Fortunately, it has been proved th

the equivalent problem for semiextended regular expression requires c' cvn/logn, wh€

c' ~ 1 and c~ 2, and an infinity of n's.

2.2.3 Extended Regular Expressions

Similar to the intersection operator, the class of regular set is closed under the COl

plementation operator. Extended regular expressions allow intersection and comp:

mentation operators in regular expressions. Formally, it is defined as the following

Definition 6 (Extended Regular Expression) [1]

An extended regular expression over an alphabet L: is defined as follows:

1.	 E, '/) and a for each in L:, are extended regular expressions denoting {€}, t

empty set, and {a}, respectively.

2.	 If R 1 and R 2 are extended regular expressions denoting the languages £1 a

£2J respectively, then (R1 + R 2), (R1 • R 2), (R1*), (R1 n R 2), and (. R 1) (

extended regular expr~,*sions, denoting £1 U £2, £1£2J £1 *, £1 n £2, and E

£1, respectively.

Adding the intersection and complementation operators will make the length of 1

expressions denoting certain regular languages shorter, but some problems for

tended regular expressions require more time than regular expressions.

26

l

One intractable problem in extended regular expr~ssions is the Emptiness Proble

Jor Extended Regular Expressions.

Emptiness Problem for Extended Regular Expressions

Instance: Given a extended regular expression R over the alphabet :E.

Question: Is the language denoted by R empty?

The Emptiness Problem Jor Extended Regular Expressions is harder than the Emptin<

oj-complement oj Regular Expressions problem or the Emptiness-oj-complement

Semiextended Regular Expressions problem.

If a function g(m, n) is defined as:

n for m = 0
(2.:g(m, n) = { 29(m-l,n) for m > 0

Then a function is elementary if it is bounded above for all but a finite set of n's 1

g(mo, n) for some fixed mo.

Based on the elementary function and impossibility of construction of determinist

Turing machines for extended regular expressions, it has been shown that there
.'"

no elementary function S(n) for which the Emptiness Problem Jor Extended Regul

Expressions is of space complexity with S(n) [1]. Moreover, there is no S(n)-spa(

bounded or S(n)-time-bounded deterministic Turing machine to decide whether t

language denoted by a extended regular expression is empty or not.

27

It has been proved that the Emptiness Problem for Extended Regular Expressions

beyond PSPACE and any algorithm to solve the Emptiness Problem for Extend(

Regular Expressions requires	 at least exponential time and space complexity. [1].]

r	 particular, the Emptiness Problem for Extended Regular Expressions requires at lea:

g(m,n) time complexity, where m is any finite number. Therefore, the Emptine.

Problem for Extended Regular Expressions is intractable.

28

I

Chapter 3

Emptiness Problem for Extended

Regular Expressions

3.1	 An Algorithm for Solving the Emptiness Prob

lem for Extended Regular Expressions

In this thesis we present an algorithm to solve the emptiness problem for extendE

regular expressions. By analyzing the complexity of our algorithm, we verify th;

the emptiness problem for .e~tended regular expressions requires at least exponenti

.	 .
time and space. Our algorithm consists of two parts: one is constructions of fini

automata, the other is the reachability algorithm.

29

1

3.1.1 Constructions of Finite Automata

Finite automata are useful tools to present regular expressions. They are defined (

the followings:

Definition 7 (Finite Automaton) [10]

A finite automaton, or finite-state machine (abbreviated FA) is a 5-tuple (Q, ~

qo, <5, A), where

• Q is a finite set (whose elements we will think of as states),

• ~ is a finite alphabet of input symbols,

• qo E Q (the initial state),

• A ~ Q (the set of accepting states), and

• <5 is a function from Q x ~ to Q (the transition function).

For any element q E Q and any symbol a E ~, we interpret <5(q, a} as the state

which the FA moves, if it is in state q and receives the input a.

Definition 8 (Nondeterministic Finite Automaton) [10]

A nondeterministic finite automaton, (abbreviated NFA), is a 5-tuple M = (Q, :

qo, A, <5), where Q, ~, qo, and A are defined as for FAs, and the transition functi.

1,S

<5 : Q x ~ -+ p(Q) (3.

As usual, p(Q) means the power set of a set Q.

30

Definition 9 (Nondeterministic Finite Automaton with A-transitions) [ll

A nondeterministic finite automaton with A-transitions (abbreviated NFA-A) is

5-tuple M = (Q, L:, qo, A, 0), where Q, L:, qo, and A are defined as jar FAs, and th

transition junction is

0: Q x (L:U {A}) -+ p(Q) (3.2

p(Q) means the power set oj a set Q.

The above three models of finite automata are equivalent. The following theorems te

us the connection between finite automata and regular expressions. In the proof (

Kleene's theorem [10], structural induction is used, that is, construct a finite automc

ton equivalent to the given extended regular expression by combining finite automat

which is corresponding to the subexpressions of the given extended regular expressior

Theorem 1 (Kleene's Theorem) [10]

Any regular language can be accepted by a finite automaton.

The extended regular expression is obtained by adding the intersection and complE

mentation operators to the,t~gular expression. Kleene's theorem has showed that a

FA accepting the regular expression can be constructed. In order to construct an F.

equivalent to the given extended regular expression, we only need to show that tb

complementation and intersection can be accepted by an FA. As in Kleene's theoren

structural induction is used.

31

-0 -0

(b)(a) (c)

Figure 3.l: NFA-As for fIJ, {A}, {a}.

Theorem 2 Any language denoted by an extended regular expression can be accepte

by a finite automaton.

Proof: It is sufficient to show any language obtained by an extended regular ex

pression can be accepted by an NFA-A. The set of languages obtained by extende<

regular expressions over the alphabet L; is defined to be the smallest set of language

containing the basic languages fIJ, {A}, and each of the languages {a} (a E L;). Th<

class of regular sets is closed under the operations of union, concatenation, Kleene*

complementation, and intersection. Using structural induction to prove that any Ian

guage denoted by an extended regular expression over an alphabet L; can be accepte(

by an NFA-A, we must show that the three basic languages can be accepted by al

NFA-A, and that if £1 and £2 are languages that can be accepted by an NFA-A, thel

their union, concatenation, Kleene*, complementation, and intersection can also b

accepted by an NFA-A. .f'

NFA-As for the three basic languages are obvious. They are shown in Figure 3.1.

Suppose that £1 and £2 are accepted by the N FA-As M 1 and M2 , respectively. M

and M2 are defined as the following:

32

1

Without loss of generality, we may assume that Q1nQ2 = (/) (by renaming states, :

necessary). We will construct NFA-As Mu, Me' Mk, Mcom , and Min, recognizing th

The constructions of Mu, Me, and Mk are given in Kleene's theorem. Here we describ

the constructions of Mcom and Min'

(1) Construction of M corn = (Qcorn, E, qcom, Acorn, ocom). Since £1 is accepted by th

NFA-A M1 = (Ql, E, ql, AI, 01), by the equivalence of NFA-A and DFA, £1 can b

accepted by a DFA.

• Qdl = P(Ql)' p(Qd means the power set of a set Qll

be a DFA recognizing £1,' then Mcom can be obtained by swapping the acceptin

states with the non-accepting states of Mdl . That is,

33

• Acorn = Qdl-Ad1, and

(2) Construction of Min- There are two methods to construct Min'

The first one is to construct Min directly. Since £1 and £2 are accepted by the NFA-A

M 1 and M 2 , respectively, £1 and £2 can be recognized by the DFAs.

Let Md1 = (Qdl' E, qdl, Ad1 , Od1) and M d2

recognizing £1 and £2, respectively.

• Oin is defined as follows:

,f'

(3.~

for all PI E Qdl, P2 E Qd2, and a E E.

The second method is based on De Morgan's law.

34

De Morgan's Law [10]:

(3.4

Since languages are sets, all set operations on languages are inherited from those OJ

sets. De Morgan's law applies to sets, so it also applies to languages. If L1 and L2 arl

regular languages, then their complements -,(L1) and -,(L2) are regular languages

Since the regular sets are closed under union, (-,(L}))U(-,(L2)) is regular. Henci

-,((-,(Ld)u(-'(L2))) is regular. Therefore, L1nL2 is regular.

Since L} and L2 are accepted by NFA-As M} and M2 , respectively, from the construe

tion of M com , we can construct FAs M com1 and M com2 accepting -,(L1) and -,(L2)

respectively. By Kleene's Theorem, an NFA-A MU1 accepting (-,(L1))U(-,(L2)) cal

be constructed. Using the construction of M com again, we can construct an FA M

accepting -,((-,(Ld)u(-,(L2))). Obviously, M
J

accepts L}nL2 .

3.1.2 Reachability Problem

The two most common computational representations of graphs are adjacency list

and adjacency matrices.

The adjacency-list representation of a graph G = (V, E) consists of an array Adj c

IVllists, one for each vertex in V. For each U E V, the adjacency list Adj[u] contain

all the vertices v such that there is an edge (u, v) E E. For the adjacency-matri

representation of a graph G = (V, E), we assume that the vertices are numberel

35

1,2, ... , IVI in some arbitrary manner. The adjacency-matrix representation of a grapl

G that consists of a IV Ix IVI matrix A. = (aij) such that

a.. = {1 if {i, j} EE, (3.5
tJ 0 otherwise.

For any constructed FA M = (Q, L;, q, A, 0) that recognizes the given extendel

regular expressions, if M has k final states, i.e., k = IAI, where k ~ 1, then we rna:

convert M into an NFA-A M' with exactly one final state F by setting F = {o(~

A) I Fi E A }.

Without loss of generality, we may assume that the first vertex in the graph is th

start state of the NFA-A, the last vertex in the graph is the final state of the NFA-A

If there exists a path from the first vertex reachable to the last vertex in the graph

i.e., there exists a string accepted by the NFA-A, then the language denoted by th

extended regular expressions is not empty. Otherwise, the language denoted by th

extended regular expressions is empty.

We use the depth-first search algorithm to solve the reachability problem. The depth

first search algorithm is described as follows [1.3}:
.r<

DFS(G)

1. for each vertex u E V[G]

2. do colorful +- WHITE

3. 1f[u] +- NIL

36

4. time ~ 0

5. for each vertex u E V[C]

6. do if colorful = WHITE

7. then DFS-Visit(u)

DFS-Visit(u)

1. colorful ~ GRAY

2. d[u] ~ time ~ time + 1

3. for each v E Adj[u]

1 4. do if color[vl = WHITE

5. then 7f[v] ~ U

6. DFS-Visit(v)

7. colorful ~ BLACK

8. flu] ~ time ~ time/too 1

In the depth-first search, each vertex is initially white, becomes grey when it is dis·

covered in the search, and becomes black when it is finishes. Let the start state of the

NFA be the root of a new tree in the depth-first forest. If the final state of the NFA

is discovered or finished, Le., the color of the final state of the NFA is changed frorr

white to grey or black, after the depth-first search algorithm is done, then there exis1

37

a path from the start state to the final state of the NFA, i.e., there exists a strinl

accepted by the NFA, and the language denoted by the extended regular expression:

is not empty, Otherwise, the language denoted by the extended regular expression:

is empty.

3.2 A Complexity Analysis

Let us consider the time and space complexities of our algorithm.

In the procedure of constructions of FAs, since in Kleene's theorem, NFA is usee

for the union, concatenation and Kleene closure operators, the number of states ii

additive. The complementation operator requires a conversion from an NFA to (

DFA, so the number of states increases exponentially. For the intersection operator

if we construct the FA using the first method, then the number of states increases a:

the product. If we use the second method which depends on the complementatiOI

operator, then the number of states increases exponentially. So the procedure 0

constructions of FAs for extended regular expressions requires at least exponentia

time and space.

Considering the time complexity of the solution for the reachability problem, let IV

be the number of vertices, and lEI be the number of edges in the graph G(V, E)

then the running time of depth-first search algorithm is 8(IVI + lEI). For the spaCI

complexity of the solution for the reachability problem, obviously, the adjacency lis'

requires O(IVI + lEI)·

Our algorithm to solve the Emptiness Problem for Extended Regular Expressionl

consists of (l)constructions of FAs and (2) the reachability algorithm. Since con

structions of FAs require exponential time and space, our algorithm for solving thE

Emptiness Problem for Extended Regular Expressions requires at least exponential

time and space.

3.3 Conclusions

In this thesis, we solve the Emptiness Problem for Extended Regular Expressions by

constructing FAs equivalent to the given extended regular expressions and applying

depth-first search algorithm on the reachability problem.

The pr?cedure of constructions of FAs works by creating N~A-A for the three basic

. languages 0, {A}, and {a} and then constructing FAs for the union, concatenation

and intersection of two languages accepted by FAs, and the Kleene closure, and com

plementation of a language accepted by FAs. By structural induction, all language~

denoted by extended regular expressions over the alphabet 2; can be accepted by an

FA.

.t'

For the procedure of solution to the reachability problem, all vertices can be reached

from the start state of the NFA will be discovered in the depth-first search algorithm

The algorithm will explore all the possible paths that exist between the start statE

and the final state of the NFA. If there is a path from the start state to the fina.

state, then the algorithm can find it.

39

By analyzing the time and space complexity of our algorithm, we conclude that thE

Emptiness Problem for Extended Regular Expressions is intractable and it requires at

least exponential time and space.

,f'

40

Bibliography

[1]	 AHO, HOPCROFT, AND ULLMAN. NP-complete problems. The Design anc

Analysis of Computer Algorithm (1974), pp. 395-423.

[2]	 G. L. MILLER. Riemann's hypothesis and tests for primary. J. Comput. Syste17l

Sci. (1976), pp. 300-317.

[3]	 H. B. HUNT. On the time and tape complexity of languages. Doctoral Thesis)

Dept. of Computer Science, Cornell University, Ithaca, NY. (1973).

[4]	 H. B. HUNT, AND T. G. SZYMANSKI. Complexity metatheorems for context-

free grammar problems. J. Comput. System Sci. 13 (1976), pp. 318-334.

[5]	 J. S. VITTER, AND R. A. SIMONS. Parallel algorithms for unification and

other complete problems in P. In Proceedings of the 1984 Annual Conference o•
.ft

the	 ACM on the Fifth Generation Challenge (1984), pp. 75-84.

[6]	 1. J. STOCKMEYER. Planar 3-colorability is NP-complete. SIGACT New.

(1973), pp. 19-25.

41

[7]	 M. R. GAREY, D. S. JOHNSON, AND 1. STOCKMEYER. Some simplified

NP-complete problems. In Proceedings of the Sixth Annual ACM Symposium on

Theory of Computing (1974), pp. 47-63.

[8]	 M. R. GAREY, AND D. S. JOHNSON. Computers and Intractability.. W.H.

Freeman and Company, 1979.

[9]	 M. AGRAWAL, N. KAYAL, AND N. SAXENA. Primes is III P.

http://www.cse.iitk.ac.in/news/primality.html (2002).

[10]	 M. SIPSER. Introduction to the Theory of Computation. PWS Publishing Com

pany, 1997.

[11]	 S. HOMER, AND A. L. SELMAN. Computability and Complexity Theory.

Springer, 2001.

[12]	 S. R. BUSS. The polynomial hierarchy and fragments of bounded arithmetic. In

Proceedings of the Seventeenth Annual A CM Symposium on Theory of Computing

(1985), pp. 285-290.

[13)	 T. H. CORMEN, C. E. LEISERSON, AND R. 1. RIVEST. Introduction to Al
·ft

gorithms. The MIT Press, 1999.

[14]	 V. PRATT. Every prime has a succinct certificate. SIAM J. Comput. (1975), pp.

214-220.

[15]	 W. J. SAVITCH. Relationship between nondeterministic and deterministic tape

complexities. J. Comput. System Sci. (1970), pp. 177-192.

42

[16] W. J. SAVITCH. Nondeterministic log n space. In Proceedings 8th Ann. Prince

ton Conf. on Information Science and Systems (1974), pp. 21-23.

·ft

43�

Appendix A

A Program to Solve the Elllptiness

Problem for Extended Regular

Expressions

44�

A PROGRAM TO SOLVE THE EMPTINESS PROBLEM FOR

EXTENDED REGULAR EXPRESSIONS

The emptiness problem for extended regular expressions is described as follows:�

Instance: Given a extended regular expression R over the alphabet]; .�

Question: Is the language denoted by R empty.�

The algorithm consists of two parts:

1. constructions of finite automata for the given extended regular expressions

2. the depth_fIrst search algoritlun to solve the reachability problem

,The algorithm is implemented in a C/C++ program. Th~ program includes two files:

pgm1.h and main.cpp.

.,..

PROGRAMMERS' GUIDE

This program is to solve the emptiness problem for extended regular expressions.

It is implemented in Microsoft Visual C++. The program consists of two files: one head

file (pgml.h) and one C/C++ source code .file (main.cpp). In the program, we define one

class,. two structures, one main function and twenty-seven subroutines.

There are two following structures:

1.� State: it holds four elements: start,. final, value and color. Start is a character to

check the state is the start state ofthe finite automaton or not. Ifthe state is the

start state, then we assign 'Y' to the element state, else we assign 'N' to the

element state. Final is a character to check the state is the final state of the

finite automaton or not. If the state ~s the final state, then we assign 'Y' to the

element final, else we assign 'N' to the element final. Value is a character to

give the input data of states. In the program, let us assume that the symbol '$'

is not in the alphabet of extended regular expressions,. then we initialize values

of all states in the finite automaton to be '$'. The above three elements are

used in the constructions of FAs. The fourth element of the state structure is
.r

color, which is a character to assign the color to every state in the finite

automaton. It could be 'w', 'g', or 'h': 'w' means white; 'g' means grey; 'h' means

black. The element color is used in the depth_first search algorithm to solve

the reachability problem.

PROGRAMMERS' GUIDE

This program is to solve the emptiness problem for extended regular expressions.

It is implemented in Microsoft Visual C++. The program consists of two files: one head

file (pgm1.h) and one C/C++ source code file (main.cpp). In the program, we define one

class, two structures, one main function and twenty-seven subroutines.

There are two following structures:

1.� State: it holds fOUf elements: start, final, value and color. Start is a character to

check the state is the start state of the finite automaton or not. If the state is the

start state, then we assign 'Y' to the element state, else we assign 'N' to the

element state. Final is a character to check the state is the final state of the

finite automaton or not. If the state ~s the final state, then we assign 'Y' to the

element final, else we assign 'N' to the element final. Value is a character to

give the input data of states. In the program, let us assume that the symbol '$'

is not in the alphabet of extended regular expressions, then we initialize values

of all states in the finite automaton to be '$'. The above three elements are

used in the constructions of FAs. The fourth element 01 the state structure is
,f'

color, which is it character to assign the color to every state in the finite

automaton. It could be 'w', 'g', or 'h': 'w' means white; 'g' means grey; 'h' means

black. The element color is used in the depth_first search algorithm to solve

the reachability problem.

2.� Fa: it holds two elements: node and size. Node is a two-dimension array.

Every element in the array is a structure of state. Size is an integer denoting

the number of states in a finite automaton.

There" is one class named FA: it holds a variable and twenty-one functions.

1.� The variable called m_fa which is a pointer pointing to a structure of fa.

2.� Twenty-one functions are described as follows:

•� FA() - it creates the constructor function

•� ~FA() - it creates the destructor function

•� GetUserInput (char *, char *) - it gets the alphabet and extended

regular expressions from the input

•� Get_Array(int *, char *) - it decides the highest priority ofoperators

in the extended regular expression

•� Get_Max(int *, char *) - it gets the maximum in an. integer array

•� Get_Left(char *, char *, int} - it gets the left hand side of the k

elements in a given sentence of size 3

•� Get_Right(char *, char *, int) - it gets the right hand side of the k

elements in a given sentence ofsize 3

•� Get_Left...L{)p(char *, int *, char *, int) - it gets the left hand side ofthe

k elements in a given sentence

•� Get_Right_Op(char *, int *, char *, int) - it gets the right hand side of

the k elements in a given sentence

•� Is_In_Sigma (char *, char) - it checks a character is in the alphabet or

not

•� Transfer_Basic (fa *, char *, char) - it transfers the tlrree basic

languages into a structure of fa

•� Get_C_Value (int n, int m) - it calculates the choice number which is

the number of ways of picking m unordered outcomes from n

possibilities

•� Get C Sum M (int n, int m_b, int m_e) - it calculates the sum of

some choice numbers, n is unchanged

choice numbers, m is unchanged

•� Get_Index (int *, int, int) - it calculates the index III a DFA

corresponding to an NFA

•� Sort_Array (int *, int) - it sorts one array in increasing order

•� NFA_To_DFA (fa *, fa *, char *) - it transfers an NFA to a DFA by

using the subset construction

•� Union (fa *, fa *, fa *) - it does the union operation on two structures

of fa

.
•� Concatenatj.on (fa *, fa *, fa *) - it does the concatenation operation on

two structures of fa

•� Star (fa *, fa *) - it does the Kleene star operation on one structure of

fa

•� Complementation (fa *, fa *) - it does the complementation operation

on one structure of fa

•� Intersection (fa *, fa *, fa *) - it does the intersection operation on two

structures of fa

•� Func1 (char *, char *, int) - it does the operation on the highest

priority operator from an input string

•� Func2 (fa *, char, fa *, fa *, char *) - it does five operators for the

given extended regular expressions

•� FuncO (fa *, char *, char *, int) - it transfers the extended regular

expressions to a "tree" structure and calls the corresponding

subroutines to do five operations on structures of fa

•� DFS_Visit (fa *,. int) - it changes the color of vertices on the path

starting from the start state of the finite automaton, it is used for

function DFS

• DFS (fa *) - it uses depth-first search to solve the reachbility problem

There IS one main function: it inputs the alphabet and extended regular

expressions and output the given extended regular expression is empty or not

The program requires exponential time and space.

USERS' MANUAL�

This program is using C/C++ to solve the emptiness problem for extended regular

expressions. The operating system is Windows XP/2000/98/95. It runs in Microsoft

Visual C++ (Version 6.0).

Users may use the tools of the menu bar in Microsoft Visual C++ (Version 6.0) to

compile and execute the program. After clicking the "!" button in the tool bar, the

program executes, and one window to get the input and show the output comes out on the

screen.

In the program, we use the following denotation when defining the five operations

on extended regular expressions:

•� 'u' denotes union

•� '1' denotes intersection

•� 'c' denotes concatenation

•� '!' denotes implement

• ,*, denotes star

The input of the program consists of two parts: the alphabet and extended regular
.f'

expressions. Such as the follows:

1.� fu the program, the alphabet could be any character except'$' and five

operators that are 'U', '1', 'C', or', and '*'. For example: "abcdefg",

"1234567", etc.

•� One message "please enter the alphabet" to ask users to input the alphabet.

•� Users may enter (1) "abc", then press the "return" key.

!~.'------------------------------------\

or (2) «a" then press the «return" key.

2.� In the program, we suppose that every extended regular expression is fully

parenthesized. For example: «aUb)I(aUc)), (a*), (b!), etc.

•� One message "please enter the extended regular expression" to ask users

to input the extended regular expression.

•� Users may enter (1) "«aUb)I(aUc)" (or «a!") then press the "return" key.

or (2) "a!" then press the "return" key..

The output of the program is one message to show that the extended regular

expression is empty or not. Such as the output ofthe above input will be:

•� (1) The extended regular expression is not empty.

•� (2) The extended regular expression is empty.

.f·

II�
Ilpgrn1.h�
Ilpgm1.h is the head file of the program.�
IIIt defines all classes, structures, and functions.�
11m this program, there is one class: FA,�
I/two struotures: state and fa,�
Iione main function, and twenty-one called functions.�
II�

11==
I!Define a structure named state which holds four elements:�
liThe first three elements are: start, final, and value�
Iistart is a character to check the state is the start�
Iistate of the finite automaton or not:�
llifthe state is the start state, then we assign 'Y' to�
lithe element state, else we assign 'N' to the element state.�
lifinal is a character to check the state is the final�
Iistate of the finite automaton or not:�
Ilif the state is the final state, then we assign 'Y' to�
lithe element final, else we assign 'N' to the element final.�
Ilvalue is a character to give the input value of states:�
IILet us assume that the symbol '$' is not in the alphabet�
Ilof extended regular expressions. Then we initialize the value�
IlofaU states in the finite automaton '$'.�
liThe above three elements are used in the constructions ofFAs.�
liThe last element of the state structure is color,�
Ilwhich is a character to assign the color to every state in�
lithe finite automaton. It could be 'w', 'g', or 'b'.�
II'w' means white; 'g' means grey; 'h' means black.�
Ilcolor is used in the depth_first search algorithm to�
Iisolve the reachability problem�
11==========

typedef stroct state{
char start; .-f'

char final;
char value;
char color;

}state;

11================
l!Define a structure named fa which holds two elements:�
I/node and size. Node is a two-dimension array. Every element�
Ilin the array is a structure of state.�
IISize is an integer denoting the number of states in a fa�

II

typedefstruct fa {
state node[SO][80J;
int size;

}fa;

//==�
I!Define a class named FA.�
IIThis class has a public variable m fa�
Iland twenty-one functions ~

1/=========================�

class FA {
public:

fa* ill_fa;

public:

1/
I/constructor and destructor
/1'=========================

FAO; .
~FAO;

/1======================
lifive operator functions: Union, Concatenation,
118tar, Complementation, and Intersection
11'===================

void Union (fa* pM3, fa* pMl, fa* pM2);�
void Concatenation(fa* pM3, fa* pM!, fa* pM2);�
void Star(fa* pM3, fa;'pMl);�
void Complementation(fa* pM2, fa* pM!);�
void Intersection(fa* pM3, fa* pM!, fa* pM2);�

II
lifunction NFA To DFA is to convert an NFA to a DFA
11===================- =====

void NFA_To_DFA (fa* pMd, fa* pMn, char* Sigma);

II ===---:::=: =====
lifunctions FuncO, Func! and Func2 are used to
/Itransfer the extended regular expressions

//'=================

typedef struct fa {
state node[80] [80];
int size;

}fa;�

//'==============='�
/fDefine a class named FA.�
//This class has a public variable rn_fa�
//and twenty-one functions "�
//'=========================�

class FA {
public:

fa* rn- fa",

public:

//'========================
//constructor and destructor
//'========================

FAO; .�
-FAO;�

/1'==============,===========
//five operator functions: Union, Concatenation,
//Star, Complementation, and Intersection
//'===================

void Union (fa* pM3, fa* pMI, fa* pM2);�
void Concatenation(fa* pM3, fa* pMI, fa* pM2);�
void Star(fa* pM3, fa"pMI);�
void Complementation(fa* pM2, fa* pMl);�
void Intersection(fa* pM3, fa* pMl, fa* pM2);�

//'========================
//function NFA_To_DFA is to convert an NFA to a DFA
//'=========================

void NFA_To_DFA (fa* pMd, fa* pMn, char* Sigma);

//'========================
//functions FuncO, Funcl and Func2 are used to
//transfer the extended regular expressions

/Ito a "tree" structure and call the corresponding
llsubroutines to do the operation on five operators
1/

void FuncO (fa* resultO, char* SigrnaO, char* sentenceO, int lengthO);
struct fa* Func1 (char* Sigmal, char* sentence, int length) ;
void Func2(fa* pRes,char op, fa* pL, fa* pR, char* Sigma);

//'====:=======================

//function GetUserInput is to get the alphabet
//and extended regular expressions
/1'=========================

void GetUserInput(char* sigma, char* input);

//'=========================

IIfunction Get_Array, Get_Max, Get_Left, Get_right,
I/Get_Left_Op, and Get_Right_Op are to get the left_hand
/Iside and the right_hand side of the operator in
//a given sentence
1/==================:========

void Get_Array(int* arrayl, char* sentencel);�
int Get_Max(int*· array2, char* sentence2);�
void Get_Left(char* LHS, char* sentence2, int k);�
void Get_Right(char* RHS, char* sentence3, int k);�
void Get_Left_Op(char* LHS, int* array, char* sentence2, int k);�
void Get_Right_Op(char* RHS, int* array, char* sentence2, int k);�

/f================:======

f/ftmctions Get_C_Value, Get_C_SuID_M, Get:-C_Sum_N, and Get_Index
flare to get the index in the DFA corresponding to the NFA
//'============================

int Get_C_Value(int l}.. int m);�
int Get:.-C_SuID_M(int n, int ill_b, int ill_e);�
int Get_C_Suffi_N(int n_b, int b_e, int m);�
int Get_Index(int *p, int size, int n);�

11'=========================

flftmction Transfer_Basic is to transfer the three basic
Ilianguage into fa structures
1/'=========================

void Transfer_Basic(fa* pM, char *Sigma, char c);

!�

11=========

lifunction Is_In_Sigma is to check a character is
Ilin the alphabet or not
11============

bool Is_In_Sigma(char *Sigma, char c);

11'============================

lifunction Sort_Array is to sort an array in
/Iincreasing order
11=================,======,===

void Sort_Array(int*p, int size);

11==========================

lifunctions DFS_Visit and DFS use depth-first search
lito solve the reachability problem
11=========================

void DFS_Visit(fa* pMM, int u);�
void DFS(fa* pMM);�

};

·ft

1/====
/Imain.cpp
/IThis program is implemented in Microsoft Visual C++ 6.0
1/After compiling and executing the program, one
I/message "please enter the alphabet" appears
lion the screen. The user enters the alphabet
/Isuch as "abcdefg" and then presses the enter key.
IIAnother message "please enter the extended regular
/Iexpressions" comes out. The user can enter the
/Iextended regular expressions and presses the enter
l/key. Finally, after the user enter
lithe alphabet and extended regular expressions,
lithe program will output whether the languages denoted by the
/Iextended regular expressions
/lis empty or not.
11'======

#include <iostream.h>
#inc1ude <string.h>
#include <iomanip.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "pgm1.h"

1/==============
II Functions declaration
11======:=====

void Union (fa* pM3, fa* pMl, fa* pM2);�
void Concatenation(fa* pM3, fa* pMl, fa* pM2);�
void Star(fa* pM3, fa* pMl);�
void Complementation(fa* pM2, fa* pMl);�
void lntersection(fa* pM3, fa* pM!, fa* pM2);�

.f"
void NF'A_To_DFA (fa* pMd, fa* pMn, char* Sigma);

void FuncO (fa* resultO, char* SigmaO, char* sentenceO, iut lengthO);
struct fa* Funcl (char* Sigma!, char* sentence, int length) ;
void Func2(fa* pRes,char op, fa* pL, fa* pR, char* Sigma);

void GetUserInput(char* sigma, char* input);�
void Get_Array(int* arrayl, char* sentencel);�
int Get_Max(int* array2, 'char* sentence2);�
void Get_Left(char* LHS, char* sentence2, int k);�
void Get_Right(char* RHS, char* sentence3, int k);�

~~-----------------------------~-----..'.

- - - -

void Get_Left_Op(char* LHS, int* array, char* sentence2, int k);
void GetYight_Op(char* RRS, int* array, char* sentence2, int k);

int Get C Value(int n, int m);
int Get-C-Sum M(int n, int rn_b, int m_e);
int Get-C-Sum-N(int n b, int b_e, int m);
int Get_Index(int *p, int size, int n);

void Transfer Basic(fa* pM, char *Sigma, char c);
bool Is In Sigma(char *Sigma, char c);
void Sort_Array(int*p, int size);

void DFS_Visit(fa* pMM, int u);
void DFS(fa* pMM);

//========================

//constructor function
//==================

FA::FAO {

}

1/===============�
Iidestructor function�
1/'==============================�

FA::~FAO {}

1/=========:==
/Imain function: its input is sigma and extended regular expressions,
I/its output is the given extended regular expression is empty or not
11=================-==

·r'
int main(void)
{

char sigma[80} = {O};
char input[80] = {O};

GetUserInput(sigma, input);

fa* rfa = new fa;�
FA* pFA = new FAO;�

if(strlen(input) = 1) Ilfor the case of input which is only one character
{

ij{(Is_In_Sigma(sigma, input[O)) = tme) && (input[O] !="Ol))
/f0 means empty set

cout « "the extended regular expression is not empty'" « '\0';
else

cout « "the extended regular expression is empty" «\n';
}
else
{
for(mt i=O; i<80; i++)

for(mt j=O; j<80; j++)
{

rfa->node{ilf.j].final = 'Nf~

rfa->node[i][j].start = 'N';
rfa->node[i][j].value = '$';

1/ $ denote initial value and it is not in the sigma

}

FuncO{rfa, sigma, input, strlen(sigma»;�
DFS(tfa);�

intflag=O;�
fortin! IT = 0; IT <: rfa->size; rr++)�
{�

if«rfa->node[rr][rr].color != 'w') && (rfa->node[rr][rr].final = 'Y'»
flag = 1;

}
if (flag = 1)

cout« "the extended regular expression is not empty"« '\n';
else

cout « "the extended regular expression is empty" « '\n';

}

pFA->~FAO;

delete pFA;.
pFA=O;
return 0;

}

//'==========================

/lFllnction GetUserInput is to get the alphabet and extended regular
//expressions
//'====================='

if((ls_In_Sigma(sigrna, input[O]) = true) && (input[O] != 'a'»
I/O means empty set

cout « "the extended regular expression is not empty" « '\n';

else
cout « "the extended regular expression is empty" « '\n';

}
else
{
for(int i=O; i<80; i++)

for(int j=O; j<80; j++)
{

rfa->node[i][j].final = 'N';
rfa->node[i)[j].start = 'N';
rfa->node[i][j].value = '$';

1/ $ denote initial value and it is not in the sigma

}

FuncO(rfa, sigma, input, strlen(sigma»;
DFS(rfa);

int flag = 0;
for(int IT = 0; rr < rfa->size; rr++)
{

if((rfa->node[rr][rr].color != 'w') && (rfa->node[rr][rr].final = 'Y'»
flag = 1;

}
if (flag = 1)

cout« "the extended regular expression is not empty" « '\il";
else

cout « "the extended regular expression is empty" « '\n';

}

pFA->-FAO;
delete pFA;
pFA=O;
return 0;

}

11'=========================
I/Function GetUserInput is to get the alphabet and extended regular
Ilexpressions
1/'========================

void GetUserInput(char* sigma, char* input)
{

char buffI80] = {O};

cout « "please enter an alphabet" « end!;�
cin.getline(buff,80,'\n');�
strcpy(sigma, buff);�
cout « "please enter an extended regular expression" « endl;�
cin.getline(buff, 80, '\n');�
strcpy(input, buff);�

}

/1'=========================
II Function Get_Array is to decide the highest priority of operators
II in the extended regular expression
1/'====:======================,

void Get_ArraY(int* array1, char* sentencel)
{

int len = strlen(sentencel);
for (int index =0; index < len; index++)
{

if (sentence I [index] = '(')
arrayI [index] = arrayI [index-I] + 1;
else if (sentenceI [index] = '}')

arrayl[index] = arrayI [index-I] - 1;�
else�

arrayI [index] = array1[index-I];�
}�

}

//==========================
II Function Get_Max is to gettthe maximum in an integer array
II . .

int Get_Max(int* array2, char* sentence2)
{

int len = strlen(sentence2);�
int max_value = -1;�
for(int i=O; i<len; i++)�
{�

if(array2[i] > max_value)�
max_value = array2[i];�

}�
return max_value;

}

//==========================
// Function Get_Left is to get the left hand side ofthe k elements
II in a given sentence ofsize 3
11====:=====================

void Get_Left(char* LHS. char* sentence2. int k)
{

char Ieft[80] = {O};
for (int m=O; m<=k-2; m++)
left[m] = sentence2[m+l];
for (int rom = k-l; mm<80; mm++)

left[mm] = '\0';

strcpy(LHS, left);
}

11=========================
II Function Get_Right is to get the right hand side ofthe k elements
II in a given sentence ofsize 3
11====:=====================

void Get_Right(char* RHS, char* sentence3, int k)
{

int len = (int)strlen(sentence3);
char right[80] = {O};
for(int n=k+1; n<len-l; n++)
right[n-k-l] = sentence3[n];
for(int nn = len-k-2; nn <80; nn++)
rigbt[nn] = '\0';

strcpy(RHS, right); .f'

}

11==========:===============
II Function Get_Left_Op is to get the left hand side of the k elements
II in a given sentence
11'=======================

void Get_Left_Op(char* LHS, int* array, char* sentence2, int k)
{

char left[80] = {O};

int i=k;

int index = 0;

while(i>O)
{

if(array[i] >= array[kJ)

i--;

else

exit(O);

}

index = i;

for(int j= index+1; j<k; j++)

left[j-index-I] =sentence2[H;

for(intjj =k-index-l;jj<80;jj++)

left[jj] = '\0';

strcpy(LHS, left);
}

11'=====:==:::==================
II Function Get_Right_Op is to get the right hand side oillie k elements
II in a given sentence
/1===========================

void Get_Right_Op(char* RHS, int* array, char* sentence2, int k)
{

charright[80]-= {OJ;

int i=k;

int index = 0;

while{i< (int)strlen{sentence2»

{

if(array[i] >= array[k])

i++;

else

break;

}

index = i; ,r'

for(int j= k+1; j<:index; j++)

rightfj-k-l] = sentence2fj];

forCint jj = index -k; jj<80; jj++)

right[jj] = '\0';

strcpy(RHS, right);
}

11'========================
/I Function ls_In_Sigma is to check a character is in the alphabet or not
1/===============

bool Is_In_Sigma(char *Sigma, char c)
{

int len = strlen(Sigma);

for (int i=O; i<len; i++)

if(Sigma[i] = c)\1 (c = 'e'»

return true;

return false;

}

//'==================:=======
// Function Transfer_Basic is to transfer the three basic languages
/1 into an fa structure
//

void Transfer~asic(fa*pM, char *Sigma, char c)
{

for (int i=O; i<2; i++)
for (intj=O;j<2; j++)

{

pM->node[i] [j].start = 'N';

pM->node[i][j].value = '$';

pM->node[i)[j].final = 'N';

}

if(c =	 'e') {//empty string which is epsilon

pM->node[O][O].start = 'Y';

pM->node[O] [l].value = 'e';

pM->node[l][l].final = 'Y';

}
else if(c = '0') /1"0" denotes empty set

pM->node[O][O].start = 'Y';

else if(Is_In_Sigma(Sigma, c» {

pM->node[O][O].start = 'Y';

pM->node[O][l).value = c;

pM->node[l][J..,].final = 'Y';

}
pM->size = 2;

}

//=========================
// Function Union is to do the union operator on two fa structures
//==========================

void Union (fa* pM3, fa* pMl, fa* pM2)
{

int rr=O, cc=O;

int d = pM 1->size;�
int r2 = pM2->size;�

for(rr= 1; rr<rl+l; rr++)�
for (ee = 1; ec < rl +1; cc++)�

pM3->node[rr], [ec].value = pMl->node[rr-I] [ec-I].value;
pM3->node[O][I].value = 'e';
pM3->node[O][r1+I].value = 'e';
for(rr = rl + 1; rr < rl +r2+ 1; rr++)

for(ec =r1+1; ce <r1+r2+1; cc++)
pM3->node[rr], [ee].value = pM2->node[rr-r1-1] [ec-rl-l].value;

pM3->node[rl][rl +r2+1].value = 'e';�
pM3->node[r1+r2][r1+r2+1].value = 'e';�
pM3->node[O][O].start = 'V';�
pM3->node[rl +r2+ 1][r1+r2+l].final = 'Y';�
pM3->node[1][1].start = 'Nt;�
pM3->node[rl+ I][rl+ 1].start = 'N';�
pM3->node[r1],[rl].final = 'N';�
pM3->node[r1 +r2Url+r2].final = 'N';�
pM3->size = pM1->size + pM2->size + 2;�

}

11===========================
II Function Concatenation is to do the concatenation operator on
II two fa structures
If

void Concatenation(fa* pM3, fa* pMl, fa* pM2)
{

int rr, cc;
int r 1 = pM l->size;
int r2 = pM2->size;

for (rr = I; IT < rl +1; H++)�
for(cc= 1; cc <r1+1; cc++)�

pM3->node[IT], [cc],.value = pMI->node[rr-I] [cc-l].value;
pM3->node[rl][rl + l).value = 'e';
for(rr = rl +1; IT < rl+r2+ 1; rr++)

forecc = Jj1+1; cc < r I +r2+ 1; cc++)
pM3->node[rr],[cc].value = pM2->node[rr-rl-1],[cc-rl-I].value;

pM3->node[rl+r2][rl+r2+1],.value = te';�
pM3->node[O)[I].va1ue = 'e';�

pM3->node[O][O).start = 'Y\

pM3->node[rl +r2+1][rl +r2+1].final = 'Y';

pM3->node[1][1].start = 'N';�
pM3->node[rl +1][rl +1].start = 'N';�
pM3->node[rl][rl].final = 'N';�
pM3->node[rl +r2][rl +r2].final = 'N';�

pM3->size = pM l->size + pM2->size + 2;

}

11'==
II Function Star is to do the Kleene star operator on one fa structure
11'====

void Star(fa* pM3, fa* pMl)
{

int IT, cc;�
int rl = pMl->size;�

pM3->node[O][1].value = 'e';

pM3->node[rl][l].value = 'e';�
for(IT = 1; IT < rl +1; IT++)�

forecc = 1; cc < r1+1; cc++)�
pM3->node[IT] [CC].value = pM l->node[IT-1] [cc-1].value;

pM3->node[r1][rl +1].value = 'e';
pM3->node[O][rl+1].value = 'e';
pM3->node[O][O].start = 'Y';
pM3->node[1][1].start = 'N';

pM3->node[rl+l][rl+1].final = 'Y';�
pM3->node[rl][rl].final = 'N';�
pM3->size = pMl->size + 2;�

.,.
}

11'====================
II Function Complementation is to do the complementation opertor on
Ilone fa structure
11'===

void Complementation(fa* pM3, fa* pMl)
{

struct fa* pM2 = new fa;
int rl = pMl->size;

for(int rr = 0; rr < r1; rr++)

for(int cc = 0; cc < r1; cc++) {

if(pM 1->node[rr] [cc].final = 'Y')

pM2->node[rr][cc].final = 'N';

else if(pM l->node[rr] [cc].final = 'N')

pM2->node[rr] [cc].final = 'Y';

pM2->node[rr] [cc].start = pMl->node[rr][cc].start;
pM2->node[rr] [cc].value = pM l->node[rr] [cc].value;

}

for(int r = 0; r < rl; r++)

for(int cc' = 0; cc < r1 ; cc++)

{

pM3->node[rr+1][cc+l].value = pM2->node[rr][cc].value;
pM3->node[rr+1][cc+1].final = pM2->node[rr][cc].final;
pM3->node[rr+1][cc+l].start = 'N';
if(pM2->node[rr][cc].start = 'Y')

pM3->node[0][rr+l].value = 'e';
if(pM2->node[rr][cc].final = 'Y')

pM3->node[rr+l][pMl->size+l].value = 'e';

}

pM3->node[O][0].start = 'Y';

pM3->node[pM l->size+1][pM1->size+1] .final = 'Y';

pM3->size = pMl->size + 2;

delete pM2;
}

11==============
II Function Intersection is to do the intersection operation on two fa
II structures by applying De Morgan rule .
II ,~.r=='===:=== ====--

void Intersection(fa* pM3, fa* pMl, fa* pM2)
{

struct fa *M3 = new fa;
struct fa *CM 1 = new fa;
struct fa *CM2 = new fa;

Complementation(CMl,pMl);

Complementation(CM2,pM2);

Union(M3, CMl, CM2);

Complementation(pM3, M3);

}

II
II Function Sort_Array is to sort one array in increasing order
II

void Sort_Array(int* p, int size)
{

int t=O;
for(int i=O; i<size - 1; i++)
{

if(p[i] > p[i+1J)
{�

t = p[i];�
p[iJ = p[i+ IJ;�
p[i+l] = t;�

}
}

}

11===:==
// Function Get_C_Value is to get choice number which is the number of
1/ ways of picking m unordered outcomes from n possibilities.
II

int Get_C_Value(int n, int m)
{

intNum=l;�
int Den=l;�
int Value = 1;�

if((n=O) II (m=O))
return Value;�

else{ ,r'�

for(int ii=n; ii > n-m;'ii--)�
Num = Num*ii;�

for(int j=nl; j>O; j--)�
Den = Den*j;�

Value = (int)(NumlDen);�
return Value;�
}

}

/1===========================
// Function Get_C_Sum_N is to get the sum of choice numbers
II from lin_begin choose mil to lin_end choose mil

II

int Get_C_Sum_N(int n_begin, int n_end, int m)
{

int sum=O;

for(int i=n_begin; i> n_end-I; i--)

sum = sum + Get_C_Value(i, m);

return sum;

}

II
II Function Get_C_Sum_Mis to get the sum of choice numbers
II from "n choose m_begin" to "n choose m_end"
II

int Get_C_Sum_M(int n, int m_begin, int m_end)
{

int sum=O;

for(int i=m_begin; i>m_end-l; i--)

sum = sum + Get C Value(n, i);

return sum;

}

11·====
II Function Get_Index is to get the index in dfa corresponding to
II the nfa
11====

int Get_Index(int* p, int size, int n)
{
int index=O;

int sl=O;

int s2=0;

ints3=0;"

if(size = 0)

index = 0;

else if(size = 1)

index = p[O]+1;

else{

sl = Get_C_Sum_M(n, 1, size-I);

s3 = p[size-l] - p[size-2]; lito get s2

for(int k=O; k<= size-2; k++)

s2 = s2 + Get_C_Sum_N(n-k-l, n-p[k]+l, size-2-k);
index = sl+s2+s3;

}

return index;
}

II
II Funciton NFA_To_DFA is to transfer an NFA to a DFA by using the
II subset construction. It is used in doing the complementation operation
II ==

void NFA_To_DFA (fa* pMd, fa* pMn, char *Sigma) {
int Mn_num = pMn->size;
int Md_num = (int)pow(2,Mn_num);
int rr, cc, jj;
int k=O;

if(Md_num >= 65536)
{

cout« "out of space! " «'m';

exit(O);

}
for(rr = 0; rr < Md_num; rr++)

for(cc = 0; cc < Md_num; cc++)

{

pMd->node[rr][cc].start = 'N';
pMd->node[rr][cc].final = 'N';
pMd->node[rr] [cc].value = '$';

}

int count = 0;

int Ccount = 0;

int v_count = 0;

int u_count =0;

int p[20] = {O};

int fl20] = {O};//final

int v[lOO] = {O}; Ilvalne

int u[20] = {O};

int x[lOO] = {O};

int w[20][20] = {O};

int w_size[20] = {O};

int r_count = 0;

int c_count = 0;

int x_count = 0;

pMd->size = Md_num;

for(rr = 0; rr < Mn_num; rr++)

if(pMn->node[rr] [rr].start = 'V')
{

p[count++] = IT;
for(jj = 0; jj < Mn_num; jj++)
{

if(pMn->node[rr][jj].value = 'e')
{

if(jj != p[count-I])

{

p[count] = jj;

count++;

}

IT = JJ;

jj=O;

} l/if
} Ilfor jj

Sort_Array(p, count);
int index_dfa= Get_Index(p, count, Mn_num);
pMd->node[index_dfa][index_dfa].start = 'Y';

} l/if
} Ilfor IT

for(rr = 0; rr < Mn_num; rr++)
{

if(pMn->node[rr][IT].final = 'Y')
{

f[C count++] = IT;

int index_Cdfa = Get_Index(f, Ccount, Mn_num);

pMd->node[index_Cdfa][index_Cdfa].final = 'Y';

for(k=O; k< Mn_num-I; k++)

{
if(k !~)

, {

f[Ccount] = k;

Ccount++;

Sort_Array(f, Ccount);

int index_Cdfa = Get_Index(f, Ccount, Mn_num);

pMd->node[index_Cdfa][index_Cdfa].final = 'Y';

}

}
} II if

} II for rr

int S[20] = {O};

int SUb_set[20] = {O};

int index = 0;

intj =0;

int len = strlen(Sigma);

for(k = 0; k < len; k++)
{

iut flag = 0;
{
for(rr = 0; IT < Mn_num; rr++)
{

for(cc = 0; cc < MU_l1um; cc++)
{

if(pMn->node[rr][cc].value = Sigma(k])
{
flag = 1;

v[v_count++] = cc;

u[u_count++] = IT;

for(jj = 0; jj < Mn_num; jj++)

{

if(pMn->node[cc] [jj].value = 'e')

{

if(jj != v[v_count-I])
{
v[v_count] = jj;
v_count++;

}

cc = JJ;

jj = 0;

or} Ilif
, }//for jj

Sort-..:.Array(v, v_count);
Sort_Array(u, u_count);
int index_dfa = Get_Index(v, v_count, Mn_num);
int index_dfa_u = Get_Index(u, u_count, Mn.-num);
pMd->node[index_dfa_u] [index_dfa]. value = Sigma[k];

while« v_count >= 2) && (v_count <= Mn_num»
{
for(int i=O; i<v_count; i++)
{for(int j=O; j<Mn_num; j++)
{

if(pMn->node[v[i]][j].value = Sigma[kD
{
x[x_count++] = j;
} llif
for(int m=O; m < Mn_num; m++)
{
if(pMn->node[j] [m].value = 'e')
{

if(m != x[x_count-ID
{

x[x_count] = m;
x_count++;

} llif
J =m;
m=O;

}/lif
}llfor m
} Ilfor j

}llfor i

Sort_Array(x, x_count);

int index_dfa_x = Get_Index(x, x_count, Mn_num);

pMd->node[index_dfa] [index_dfa_x].value = Sigma[k];

if((v == x) II (x_count = Mn_num))

return;

for(int n=O; n<x_count; n++)

v[n] = x[n];

v_count = x_count;

} Ilwhile

} llif

} Ilfor cc

if(flag == 0)

pMd->node[IT+ l][O].value = Sigma[k];

} Ilfor IT .r'

} Ilfor set_size

} Ilfor k

for(int mm=O; mm < (int)strlen(Sigma); mm++)
pMd->node[O] [O].value= Sigma[mm];

for(int i= 0; i < Md_num; i++)
{

intj=O;
int flag1 = 0;
for(j=O; j< Md_num; j++)

{

if(pMd->node[i][j].value != '$')

flagl = I;

}

if(flagl == 0)

{

for(int mm=O; mm < (int)strlen(Sigma); mm++)
pMd->node[i][O].value= Sigma[mm];

}
}

}

//============ === ===c===

// Function Func2 is to do five operators for the given extended

// regular expressions

//=======:====

void Func2(fa* pRes,char op, fa* pL, fa* pR, char *Sigma)

{

struct fa* pDL = new fa;

struct fa* pDR = new fa;

struct fa* pResl = new fa;

switch (op) {
case 'U':

Union(pRes, pL, pR);

break;

case 'C':

Concatenation(pRes, pL, pR);

break;

case '*':

Star(pRes, plJ);

break; ,

case '!':

NFA_To_DFA(pResl, pL, Sigma);

Complementation(pRes, pRes l);

break;

case'!':

NFA_To_DFA(pDL, pL, Sigma);

NFA_To_DFA(pDR, pR, Sigma);

Intersection(pRes, pDL, pDR);

break;

default:

cout« "An invalid operation!" «endl;

II

}
}

II Function Func1 is to transfer a given string to a "tree" structure,
II then it do the operation on the highest priority operator
11===='

struct fa* Func1 (char* Sigmal, char* sentence, int length)
{

int count = 0;

int array[80] = {O};

char left[80] = {O};

char right[80] = {O};

int max_op=O;

struct fa* result = new fa;

FA* left_result = new FAO;

FA* rightJesult = new FAO;

struct fa* Middle = new fa;

struct fa* F_left = new fa;

struct fa* F_right = new fa;

Get_Array(array, sentence);

int k=O;

while(k< (int)strlen(sentence))

{

booI bSymbol = false;

bSymbol = sentence[k] = 'U' II sentence[k] = '*'

II sentence[k] = 'I'
" sentence[k] ~ 'C' II sentence[k] = 'l';
if (array[k] / 1 && bSymbol)
{
Get_Left(left, sentence, k);
Get_Right(right, sentence, k);
Transfer_Basic(F_left, Sigmal, left[O]);
Transfer_Basic(F_right, Sigmal, right[O]);
Func2(result, sentence[k], F_left, F_right, Sigmal);
return result;
}

else {

k++;

}

}I/while

delete F_left;

delete F_right;

return result;

}

1/======
II Function FuncO is to transfer the extended regular expressions
II to a "tree" structure and call the corresponding subroutines
II to do the operation on five operators
1/=========

void FuncO(fa* resultO, char* SigmaO, char* sentenceO, int lengthO)
{

int count = 0;

int array[80] = {O};

char left[80] = {O};

charright[80] = {O};

int max_op=O;

FA* leftJesult = new FAO;

FA* right_result = new FAO;

struct fa* Middle = new fa;

struct fa* F_left = new fa;

struct fa* F_right = new fa;

Get_Array(array, sentenceO);

max_op = Get_Max(array, sentenceO);

int k=O;
while(k< (int)strlen(s(ffitenceO))

{ ,

bool bSymbol = false;
bSymbol = sentenceO[k] = 'U' " sentenceO[k] = '*'

" sentenceO[k] = 'I'
II sentenceO[k] = 'C' " sentenceO[k] = 'l';

if((array[k] = 1) && bSymbol)
{

Get_Left_Op(left, array, sentenceO, k);

if(strlen(left) = 1)
Transfer_Basic(F_left, SigmaO, left[O]);

else if(strlen(left) <= 5)

F_left = Func 1(SigmaO, left, lengthO);

else

FuncO(F_left, SigmaO, left, lengthO);

Get_Right_Op(right, array, sentenceO, k);
if(strlen(right) = 1)

Transfer_Basic(F_right, SigmaO, right[O]);
else if(strlen(right) <= 5)

F_right = Func 1(SigmaO, right, lengthO);
else

FuncO(F_right, SigmaO, right, lengthO);

Func2(resultO, sentenceO[k], F_left, F_right, SigmaO);
return;

}
else

k++;

}llwhile

}

11====
II Function DFS_Visit is to change the color of vertices on the
II path starting from vertex u. It is used for function DFS
11===

void DFS_Visit(fa* pMM, int u)
{

int 1= pMM->size;

pMM->node[u] [u].co}or = 'g';

for(int v = 0; v < 1; v++)

{

if(pMM->node[u][v].value != '$')
{

if(pMM->node[v] [v].color = 'w')
{

DFS_Visit(pMM, v);
}

}

II

}
pMM->node[u][u].color = 'b';

}

II Function DFS is to use depth-first search to solve the
II reachbility problem
11=====:===

void DFS(fa* pMM)
{

int 1= 1;
int S = 0;
int F = 0;
int len = pMM->size;

int IT = 0;

for(IT = 0; IT < len; IT++)

{

pMM->node[IT][rr].color = 'w';

}

for(rr = 0; rr < len; IT++)
{
if((pMM->node[IT] [IT]. start = 'Y') && (pMM->node[rr][IT].color = 'w'))

DFS_Visit(pMM, IT);
}

}

.ft

}
pMM->node[u)[u).color = 'b';

}

11==========
II Function DFS is to use depth-first search to solve the
II reachbility problem
II

void DFS(fa* pMM)
{

int 1= 1;

int S = 0;

int F = 0;

int len = pMM->size;

int rr = 0;

for(rr = 0; rr < len; rr++)

{

pMM->node[rr][rr].color = 'w';

}

for(rr = 0; rr < len; rr++)
{
if((pMM->node[rr) [rr].start = 'Y') && (pMM->node[rr) [rr].color = 'w'))

DFS_Visit(pMM, rr);
}

}

VITA

Min Cai

Candidate for the Degree of

Master of Science

Thesis:� THE EMPTINESS PROBLEM FOR EXTENDED REGULAR
EXPRESSIONS

Major Field:� Computer Science

Biographical:

Education: Graduated from Jinshan High School, Chanzhou, Guan,gdong, China
in July 1993. Received Bachelor of Science degree in Mathematics from
Shantou University, Shantou, Guangdong, China in June 1997. Completed
the requirements for the Master of Science degree with a major in
Computer Science at Oklahoma State University in December, 2002.

Experience: Employed by PULON Computing Company as a programmer and
system analyst, Shantou, Guangdong, China in 1997. Employed by Nokia
Mobile Phone Company as a part-time programmer, HongKong, March
1999 to May 1999.

