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Abstract

Shallow water equations are based on conservation of mass and momentum and
can be used to model the hydrodynamic behavior of oceans, coastal areas, estuaries and
lakes. The model used in this research ADCIRC, an advanced three-dimensional
circulation model, is based on the shallow water equations. ADCIRC provides elevation
changes and velocity profiles that can be utilized by themselves or coupled with other
models, such as water quality models, thus lending itself to awide-variety of applications.
Three research areas are investigated in this dissertation in an effort to improve the
predictive capabilities of ADCIRC through improved numerics.

First, the current time marching algorithm is semi-implicit, with the nonlinear
terms evaluated explicitly. It has been hypothesized that the explicit treatment of the
nonlinear terms can lead to instabilities. An iterative, implicit treatment of the nonlinear
terms is implemented and studied. Results show an increase in the maximum time step of
at least eight-fold, depending on the domain, and an increase in temporal accuracy from
first to second order. A pardlel implementation of the algorithm scales as well as the
original algorithm.

Second, nearly all GWC-based models utilize a velocity-based, non-conservative
momentum equation (NCM) to obtain the depth-averaged velocity profile. It has been

hypothesized that the conservative momentum equation (CM) may improve accuracy,

XX



mass balance and stability. Results show that the CM equation improves mass balance,
both globally and locally, especially in areas of steep bathymetry gradients, and improves
local spatial accuracy in these same regions, yet does so without significantly impacting
stability, temporal accuracy and global spatial accuracy.

Third, baroclinic models that are used to simulate density-driven flows require an
accurate and stable computation of the baroclinic pressure gradient (BPG). In this study,
four methods for computing the BPG are investigated, along with resolution requirements
(horizontal and vertical). Numerical experiments thus far indicate that the z-coordinate
method provides the least amount of error, and a hybrid method, which switches from

sigmato z-coordinates at a prescribed depth, also shows promising results.
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Chapter 1. Introduction

This dissertation addresses some algorithmic improvements to the ADCIRC (an
ADvanced 3D CIRCulation, [59]) model and subsequent analyses of these improvements.
ADCIRC uses the shallow water equations as its theoretical basis. These equations, based
on the depth-averaged equations of motion, are utilized by researchers and engineers to
model the hydrodynamic behavior of oceans, coastal areas, estuaries, lakes and
impoundments [50]. ADCIRC gives elevation changes and velocity profiles, which can
then be linked to other models to obtain water quality or pollutant transport information.
ADCIRC is based on an algorithm with a 25 year history of research and applications; the
present model was primarily coded by Luettich and Westerink [59], and its initial
application was for the Coastal Dredging Research Program of the United States Army
Corp of Engineers[59]. Thismodel hasbeen validated against analytical solutionsandfield
data, e.g. the quarter annular harbor, North Sea, and the Western North Atlantic [59,85].
Currently, ADCIRC has awide variety of usersincluding the Navy, Army, State of Texas,
private consultants and several universities. Applications of the model include, but are not
limited to the following: the effects of dredging on circulation [5,74], hurricane storm
surges [10,11], Naval fleet operations [13], transport of species, both chemical and
biologica [58], tidal and wind-driven circulation [85,86] and wave-driven flow [24]. A

noteworthy example is modeling hurricane storm surges in Southern Louisiana/City of



New Orleans. As described in the June 2003 cover story of ASCE's Civil Engineering

magazine, ADCIRC is being used to design levy heights in order to withstand future
hurricanes of Category 4 or 5 [16]. Although the ADCIRC model has been used
successfully in a variety of applications, it is desired to further enhance its predictive
capabilities through improved numerics. With this in mind, we have identified three
specific issues for study within this dissertation; the goal is to provide more accurate 2D

and 3D simulations.

Regarding thefirst study, we know that the current version of ADCIRC has stability
problems with nonlinear applications unless a Courant number restriction is imposed,
which severely restricts the time step and increases the computational cost of the model. In
practice, a practical upper bound for the Courant number is approximately 0.5 in order to
maintain the stability of the model; an even tighter constraint must be imposed if the
smulation includes barrier islands and constricted inlets due to the small elementsin these
areas. In order to relax the Courant number restriction, an aternative time marching
procedure was proposed that treats al of the nonlinear terms implicitly [53]. Herein, we
implement and evaluate the implicit time marching algorithm in 2D and rigorously assess
any gainsin stability and accuracy with the new algorithm.

ADCIRC and other finite element shallow water models based on the GWC
equation suffer from local mass conservation problems, especially in flow regimesthat are
highly nonlinear [1,51,52,54]. Through the implementation of mass conserving boundary
conditions, several studies [52,65] have found that global mass conservation errors
decreased, while one study [52] also showed decreases in local mass conservation errors

with the proper choice of a numerical parameter. Also, past investigations determined that



reformulating the advective terms in the GWC equation to follow the momentum equation
provides gainsin stability (as well as mass conservation); however, the resulting algorithm
isawkward, sinceit involves mixed (space and time) derivatives[54]. Asan alternative, the
second study herein examines the form of the momentum equation used in the ADCIRC
model, specifically non-conservative vs. conservative.

Third, as applications of ADCIRC expand to include density-driven flows, it has
been observed that the computed baroclinic pressure gradient (BPG) can become either
unstable or unreadlistic in shelf regions due to the steep bathymetry gradients (e.g. [17,42]).
These unstable or unrealistic values of the BPG are aso influenced by the vertical
coordinate system utilized in the calculation of the BPG, which lead to further problemsin
the velocity values. Several vertical coordinate systems and associated algorithms for
determining the BPG exist in the literature of both finite difference and finite element
models [17,34,42,83]. Herein, we investigate four approaches to compute the BPG in
ADCIRC, and assess the impacts of grid resolution on each approach. In particular, the
interplay between the vertical and horizontal resolution, bathymetry and density profilesis
of interest.

This dissertation consists of six chapters, including thisintroductory chapter. Some
of the chaptersin this dissertation are extensions of published or in-press journal articles.
As such, some of the background information is repeated between chapters. Chapter 2
provides background on the shallow water equations and the ADCIRC model that is used
to perform the analyses herein. Chapter 3 discusses an implicit time-marching a gorithm; it
is an extension of a journal article published in the International Journal of Numerical

Methods in Fluids [30]. Chapter 4 provides results from an implementation of the



conservative form of the momentum equation; it is an extension of ajournal article that is
in-pressin Advancesin Water Resources [29]. Chapter 5 discusses the computation of the
BPG using multiple coordinate frameworks and examines the effect of resolution,
bathymetry and density structure on simulation results; it is a compilation of work
published in two conference proceedings (references [31] and [32]). Chapter 6 discusses
some future work to be done with ADCIRC that is adirect extension of what isreported in

earlier chapters.



Chapter 2. Background on the Shallow Water Equations
and the ADCIRC Model

This chapter presentsthe background of the model and grid structuresused in future
chapters. The first section addresses the basis of the shallow water equations for both 2D
and 3D forms of the ADCIRC model. We present the equations and assumptions utilized in
our evaluations with the model, along with the background on the development of the
generalized wave continuity (GWC) equation. Section 2.2 covers some of the numerical
methods that can be used in the solution of the shallow water equations. In Section 2.3, we
discuss the ADCIRC model and the solution techniques for both 2D and 3D forms of the
model. Lastly, we close with a section discussing the variety of grid generating techniques

that are used in the subsequent chapters.

2.1 Shallow Water Equations - 2D and 3D

Shallow water models are based on the physical conservation laws, specifically the
conservation of mass and momentum equations. The full 3D equations are averaged over a
time scale of turbulent fluctuations, called Reynolds averaging, and then over the water
column to devel op the depth-averaged primitive equations for shallow water models [87].
For the shallow water equations used in the subsequent chapters of this dissertation, we
present the assumptions used in the development of the equations along with a discussion

of each assumption’simplication:



* We assume a hydrostatic pressure distribution in the vertical. This
assumption means that if we examine the magnitude of the terms in the
horizontal and vertical momentum equations we find that the vertical
velocity values are much smaller than the horizontal velocities and the
distance in the horizontal direction is much greater than the depth. Based on
ascaling analysis, the vertical momentum equation reduces to the pressure
and gravity terms; a balance must exist between these two terms, which
indicates a hydrostatic pressure distribution [25,72].

* We assume a static bed in the development of the shallow water equations.
This assumption alows us to develop the depth-averaged form of the
equations with bathymetry independent of time and assume that the bottom
kinematic boundary condition is equal to zero.

* We assume that there is no exchange of mass with the environment other
than specified boundary fluxes. This assumption means that there are no
source or sink terms in the equations.

» Lastly, we assume the Boussinesq approximation in the development of the
momentum equation. This means that density is taken to be constant except
for the gravity terms [72]. This assumption allows for all of the density
terms in the momentum equation, except for those of the gravity and

pressure terms, to use a reference density, p, [72].

We also notethat either standard Cartesian coordinates or spherical coordinates can be used

in the shallow water equations.



2.1.1 2D Shallow Water Equations

The primitive equations are shown in Equations (2.1)-(2.3). Equation (2.1) is the
conservation of mass (continuity equation); while Equations (2.2) and (2.3) are the
conservation of momentum in conservative form and conservation of momentum in non-

conservative form, respectively. Nomenclature is defined in Appendix 1.

L= %% +Ve(Hv) = 0 (21)
MCE"’J%) + Veo(HVV) + THV + Hf x v + HV[%‘W(C—OM)] -

A —%V-(HT) =0 (2.2)
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Early finite element solutions based on the primitive form of the shallow water
equations were plagued with spurious oscillations from short wave (2Ax) noise that
appeared superimposed on the true solution [80]. Spurious oscillations result from afolded
dispersion relationship, meaning that there are two wavelengths (short wave noise and
physical long waves) for each frequency. In a effort to eliminate the spurious oscillations,
several researchers investigated using artificial damping or special numerical techniques,
such as finding an algorithm that would propagate or dissipate these spurious oscillations
[49]. Artificial damping techniques ranged from unrealistically large viscous terms [84] to
large friction coefficients [76]. Numerical techniques included using time marching

algorithms that offered dissipative qualities or a post-processing step that averaged or



smoothed the solution [49]. The drawback of all of these methods is that they tended to

damp out some of the physical components in the solution.

In 1979, Lynch and Gray [64] introduced the wave continuity equation (WCE),
shown in Equation (2.4), which eliminated the spurious oscillations in the solution without

having to dampen the solution numerically or artificially.
WE%HL—V-MC =0 (2.4)

wherethe nomenclatureisgivenin Appendix 1. The WCE provides amonotonic dispersion

relationship, thus allowing only one wavelength for each frequency.

Kinnmark [48] determined in 1986 that there was no loss in the propagation
characteristics of the WCE if the t term was replaced with a numerical parameter, G, in
order to obtain what he called the generalized wave continuity (GWC) equation, which is
written as follows:

WGE%—l;+GL—VoMC=O (25)

This numerical parameter allows the equation to vary anywhere from a pure wave form of
the equation to the primitive form of the continuity equation, if the parameter is chosen to
be small or large, respectively. An expansion of the GWC equation for the case of
barotropic flows and spatially-varying G is:

=E£§ Eig ° o Ve &]‘ — _1‘ °
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fov+rHv—'ﬁ—GHv] =0 (2.6)

The GWC equation presented above along with the momentum equations in either
conservative or non-conservative forms, shown in Equations (2.2) and (2.3), respectively

describe spatial and temporal elevation and velocity changes.

2.1.2 3D Shallow Water Equations

The three-dimensional (3D) shallow water equations utilize the same assumptions
as the two-dimensional (2D) equations; in the 3D shallow water equations, the hydrostatic
pressure distribution only applies if the vertical velocity is small in comparison to the
horizontal velocity. Thustheflow must beweakly 3D for the model to remain accurate [81].
If such conditions are met, a 3D simulation can be obtained using pseudo-3D equations
rather than the full 3D non-hydrostatic equations. The pseudo-3D equations still utilize a
2D depth-averaged form of the continuity equation for the elevation changes, and then use
a 3D momentum equation to find the vel ocity changes. For the problems considered herein,

such amodel is appropriate.

Many prominent 3D shallow water models [15,41] invoke a mode splitting
technique to solve the pseudo-3D equations. The mode splitting technique consists of two
modes, external and internal, which can be delineated by the speed of the waves from the
types of flows. Gravity waves, or barotropic flows, are defined from the externa mode.
These type of waves tend to be fast moving and change rapidly over time. The internal
mode tends to be associated with the baroclinic flows. This type of flow tends to evolve
more slowly over time. Based on thisinformation, some 3D model s solve the external mode

equation more frequently than the internal mode equations [15].
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The initial step of the mode splitting technique, the external mode, is to determine
the elevation changes using a 2D depth-averaged continuity equation. In ADCIRC, we
again use the GWC equation, as shown below.

=Eﬁ§ Eig_ ° —Ve Ve &l - -
V\/G_at2+c3at Hv e VG v[v (va)+Hv[p+g(C Om)] M+

Tp A
Hf v+ -2 —5-GHv+B+D] =0 (2.7)

Po

where the terms are defined in the nomenclature section in Appendix 1. Comparing
Equations (2.6) and (2.7), one sees that two new terms, B and D , were added to Equation
(2.7). The B termisintroduced in order to include baroclinic effects into the equations; it
is computed by depth-averaging the baroclinic pressure gradient results over the vertical.
Also the equation brings in momentum dispersion effects through the D term. This term
can only beincluded in the 3D model becauseit requires knowledge of the vertical profile
of the horizontal velocities in order to determine its magnitude [60]. Lastly, the bottom
frictionterm ;—Z in Equation (2.7) differsfrom the onein Equation (2.6) because it does not
utilize a depth-averaged velocity value; instead it employs the velocity from the bottom
layer initsevaluation. Also, notethat the lateral stressterm isrepresented by M instead of

1
=Ve(HT).
pV( )

Next, the internal mode solution is used to obtain the 3D velocity field. This
solution is forced with the elevation changes given by the external mode solution. Full
derivation of the 3D equations is given in reference [60]. We summarize some of the

information from this reference and present the equations used in the 3D solution scheme.
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The non-conservative momentum equation in Cartesian coordinates (X, Y, z) is

given as.
_aV pa d Tz —
M =§+v3D-Vv—fxv+ny[p—o+g(C—om)J—a—Zp—o—m+b =0 (28)

where the variables are defined in Appendix 1. In order to determine the 3D velocity field,
the 3D momentum equations utilize a vertical coordinate system based on a generalized
sigma or stretched coordinate system, which varies from ¢ = a at the free surface to
6 = b at the bottom. Both of these values are constant in ADCIRC, (i.e.,, a = 1 and
b = —1) and the number of vertical nodes between these two values remains the same no
matter the change in the bathymetry [81]. The mapping between the generalized stretched

coordinate system and the Cartesian z-coordinate system is defined as:

_ a-b
o = a+(222)(z-0) (29
wherethevariablesare givenin Appendix 1. Intraditional sigma coordinates, the nodesare
uniformly spaced over the vertical; however, in ADCIRC, the generalized sigma or

stretched coordinates allow for variation in the vertical [60].

Based on the relationship between the generalized sigma or stretched coordinate
and Cartesian z-coordinate systems given in Equation (2.9), derivatives between the two
systems can be related to one another through the chain rule (a full derivation shown in

Appendix 2) as follows:

7 = 5% La=n) e (a8 5uLoz 210
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where the coordinate system in which the derivatives are evaluated is given by the
subscript. By utilizing these relationships, the momentum equation in the generalized

sigma or stretched coordinate system is as follows in operator notation:

V. a—b)yov_ Pa _ _
M=8t+v v, v,V Wc( v )ac fxv+ny[po+g(§ om)}
a=byo (2 _
( . )%(po)—mc+b -0 (2.13)
where
o b 0 c—a
W, = we (a : 5% [ b)vxyg _b)vxyh] (2.14)

and w, represents the actua vertical velocity, w, combined with the coordinate

transformations for the advective terms (afull derivation occursin Appendix 2). Also

M, =V, @ (Vs V) (2.15)

The equationsfor the baroclinic pressure gradient, b, are presented in Chapter 5. Note that
thefifth term in Equation (2.13) is not afunction of depth so whether it isevaluated in the
Cartesian z-coordinates or generalized sigma or stretched coordinates it would produce

identical results.
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Asafina step, after the horizontal velocities are found using Equation (2.13), the

vertical velocity is determined using the 3D primitive continuity equation:

Vev,, = 0 (2.16)

subject to kinematic boundary conditions at the free surface and bottom; and where the

terms are defined in Appendix 1.

2.2 Numerical solutions

The shallow water equations presented in the previous section cannot be solved
analytically except for the simplest problems; therefore we must use numerical methodsin
order to solvethem. Some shallow water model s use these equationsin their primitive form
(“native” form), while other manipulate these equations to obtain stable or non-
oscillationary solutions for the numerical method they employ. Higtoricaly, finite
difference and finite element methods are commonly used to solve the shallow water
equations, but recently, a numerical method new to ocean modeling that uses the
discontinuous Galerkin finite element method has begun to be investigated as a possible
aternative [22,26]. We provide a short comparison of these methods and some of the pros

and cons below.

The most commonly used numerical method to solve the shallow water equations
is the finite difference method, which converts the continuum equations to difference
expressions[19]. Over many years, models utilizing the finite difference numerical method
on staggered grids have produced stable results [15,18,69]. By using staggered grids, this
method excludes the shortwaves that can cause oscillationsin the solutions, and these grids

allow the use of the alternating direction implicit algorithm, which provides fast solutions
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[15]. This method is also considered to be both globally and locally mass conservative.
However the staggered grids make it difficult to accurately provide high levels of local
refinement in portions of the shallow coastal areas or in areas of changing topography
because the level of refinement used in these areas must extend throughout the entire grid.
Also, itisdifficult to accurately map an irregular coastal boundary due to the meshes using
rectangular or square elements. Irregular coastal boundaries can be captured to a certain
extent using orthogonal or non-orthogonal curvilinear coordinate transformation; however,
they do not capture highly irregular coastal geometry, such as that around barrier islands or

inlets[21].

Another numerical method used in shallow water equations is the finite element
method, which approximates the form of the solution to the differential equation, while
maintaining the origina differential operator in weak form [19]. In contrast to the finite
difference techniques, finite element models can use triangular, quadrilaterals or curved
elements. These types of elements allow the user to describe irregular coastal boundaries,
and they can be selectively refined in shallow coastal areas and in areas of changing
topography. Also, the flux-type boundary conditions enter the weak form of the problem
naturally in the finite element technique, thus alowing for an easy treatment of these
boundary conditions. However, the finite element method needs to solve sparse, banded
matricesto obtain solutions, which costs more in terms of computer memory and CPU time
than the alternating direction implicit finite difference models [50]. Also, traditional finite
element methods tend not to be locally mass conserving, an issue that isexplored further in

Chapter 4 of this dissertation.

Another successful algorithm for solving the shallow water equations using the

14



finite element method employs the quasi-bubble scheme [43] in the development of the
equations. The quasi-bubble scheme obtains it name from the use of the linear
approximation of the bubble function (a bubble function uses an additional quadratic
interpolating function in discretization of the momentum equation), hence the name quasi-
bubble [73]. One difference between this method and the typical finite element
discretization isthe extrainformation provided to the velocity solution from the additional
node at the center of the triangle, and also by subdividing each triangle into three linear
velocity subtriangles[4]. It provides undamped, well-behaved solutions; experimental tests
done by Atkinson et a. [4] indicate that quasi-bubble and GWC-based codes produce

similar results and have similar dispersion relations.

Over the past decade, another finite element method, called the discontinuous
Galerkin (DG) method, has been applied to the shallow water equations; it uses
discontinuous approximations of the shallow water equations [3,22,26]. The DG finite
element method is similar to the finite volume methods and utilizes the primitive form of
the equations [27]. This method can capture shocks or jumps that occur in the system,
which are stabilized through upwinding schemes and stability post-processing (“slope-
limiters’) [27]. DG methods can use unstructured grids similar to the continuous finite
element method, so they can still captureirregular coastal boundaries and provide selective
refinement in areas of shallow coastal regions and in areas of changing topography. This
method utilizes the shallow water equation in a weak sense on a element-wise bas's,
therefore it is a'so considered to be both globally and locally mass conservative [27]. The
disadvantage to the DG method is its computational expense; DG equations have more

degrees of freedom in the solution because they are based on the elements, not nodes like
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the continuous finite element method, thus requiring more computational time to obtain a
solution. Therefore, recent studies have looked at coupling the continuous and

discontinuous finite element methods [26,27].

In this dissertation, we chose to use the finite element method over the finite
difference method due to the grid flexibility that it offers in the coastal regions, which is
important in expected applications. We note that there are several methods discussed in the
previous paragraphs that use the finite element technique: one method using the GWC
equation with the continuous Galerkin formulation; one using the quasi-bubble scheme
with the continuous Galerkin formulation; and one that uses elements based on the
discontinuous Galerkin formulations. In previous experimental studies by Atkinson et al.
[4], they found that the dispersion relationship isthe same for the quasi-bubble scheme and
for the GWC-based model and that they produce similar results. In the case of the
discontinuous Galerkin formul ation, we note that the method is mass conservative globally
and locally; however, the computational expense of the method does not make it a
completely viable aternative to the other finite element methods. Because of the
computational expense of the DG formulation, we seek to improve the GWC-based
formulation by looking at some of the issues that need to be addressed, such as mass

conservation and calculation of the baroclinic pressure gradient.

2.3 ADCIRC Model Development - 2D and 3D

ADCIRC, the model utilized in this dissertation, is a finite element model that
solves the GWC eqguation to obtain elevation changes and the momentum equations to

obtain velocities.
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The development of the 2D ADCIRC model entails the following steps:

Spatial discretization of the equations utilizes standard Galerkin finite
elements with C° elements, which means only the functions, not their
derivatives, are continuous between discrete points. We employ piece-wise
linear functions in the model with exact quadrature rules. Product termsin
the equations are simplified by linearly interpolating the products of the
variables, not the individual variables. L, interpolation, which means that
we use elemental averages, is applied to the non-conservative advective
terms.

Temporal discretization of the equations uses a three time-level scheme
centered at k for the GWC equation, and a two time-level scheme centered
a k+1/2 for the non-conservative momentum equation (i.e., Crank-
Nicholson treatment). Nonlinear terms are evaluated explicitly.

This temporal solution strategy of ADCIRC allows a sequential technique,
wherein the GWC equation is first solved to determine elevations and then
the velocities are updated with the non-conservative momentum equation.
This helps limit the size of the matrices that the computer must store and

invert.

The development of the 3D ADCIRC mode isasfollows:

Spatial discretization of the equations utilizes standard Galerkin finite
elements with C° elements, which means only the functions, not their
derivatives, are continuous between discrete points. We employ piece-wise

linear functions in the model with exact quadrature rules. Product termsin
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the equations are simplified by linearly interpolating the products of the
variables, not the individual variables. L, interpolation, which means that
we use elemental averages, is applied to the non-conservative advective
terms. (same as 2D.)

Temporal discretization of the equations uses a three time-level scheme
centered at k for the GWC equation, and atwo time-level scheme centered
a k+1/2 for the non-conservative momentum equation (i.e., Crank-
Nicholson treatment). Nonlinear terms are evaluated explicitly. (same as
2D.)

The solution strategy in the 3D ADCIRC code utilizes a mode splitting
scheme to obtain the solution to the 3D equations. This technique defines
the external mode as the 2D continuity equation; the GWC equationis used
in ADCIRC to obtain the free surface elevation. These elevations are then
fed into the internal mode solution of the 3D momentum equations to find
velocities. By lumping some of the terms, the solution is allowed to take on
an explicit-like character in the horizontal. Lumping occurs with matrices
by putting all the emphasis on the diagonal terms and zeroing out the off-
diagona terms. Thus, the horizontal velocities are determined for every
node at each layer in the vertical, avoiding globally-coupled matrices. The
horizontal gradients given in Equation (2.13) are evaluated in the sigma
coordinate system, except for the baroclinic pressure gradient, which is
evaluated using a level or z-coordinate system in the current ADCIRC

model configuration.
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et al. [59,60].

A _ JoghxT
AX

To obtain the vertical velocities, we utilize Equation (2.16). In this step,
matrices are unlumped (meaning that the eval uation of the matricesincludes
both the diagonal and off-diagonal terms) in the vertical, but the coupling
resultsin easy-to-solve tridiagonal matricesfor each string of vertical nodes
associated with every horizontal node. Equation (2.16) has boundary
conditions at both the bottom and at the water surface, but it isonly afirst
order equation. The boundary condition at the bottom is used as a starting
point for the calculations. Results are determined for the rest of the water
column, and then the boundary condition at the water surface is used to
correct the initia results. The correction for these results was devel oped by
Muccino et al. [75] and Luettich et al. [57] and utilizes an adjoint method
that adjusts the calculated results to produce an optimal solution. It was
determined by Luettich et al. [57] that this correction is needed due to the

errorsin local mass conservation of the fluid.

Further explanation of the discretization of both the 2D and 3D equations occursin L uettich

2.4 Development of Grids

Throughout this dissertation, we utilize grids developed using one of two
techniques. The first technique employ a A/ AXx ratio to determine node placement, where

theratio isdefined as;

(2.17)

19



where the terms are discussed in Appendix 1. For constant nodal spacing, we divide the
reach into N equal-sized elements, where N is chosen to produce the desired A /Ax ratio
(e.g., A/Ax = 200) for the M, wave, which is chosen as it is the dominate wave, in the
shallowest (i.e., most critical due to the depth change) region. Of course, this meansthat in

the deeper portions of these domains, the M, wave is even more finely resolved.

For variable node spacing, we keep the A/Ax ratio constant (e.g., A/Ax = 300)
and use that value to determine the Ax values for all of the domain. In this method, the
initial node is placed at the land boundary, the wavelength is determined by the wave speed
Jgh, which is dependent only on depth for shallow water waves, and then a Ax value is

calculated from the ratio shown in Equation (2.17).

Second, we use a grid development technique that employs local truncation errors
of the linearized non-conservative momentum equation. This grid development technique
was developed by Hagen et al. [39,40] and is abbreviated LTEA. This method places more
nodes in areas where high local truncation error exists. These areas tend to be where there
are steep topography changes, such as the continental rise or the shelf break. In most of the
domains herein, the number of nodes between the A/Ax and LTEA grids varies only
dightly, however the nodes are placed differently. In particular, for LTEA grids, more nodes
are placed on the continental shelf break and less in the shallower regions of the domain,
whereas the A/Ax grid places more nodes in the shallower region with the spacing
increasing as the bathymetry increases. We note that in the following chapters of this
dissertation, we utilize grids based on these aforementioned techniques and look at the

impact of the grid generating techniques on algorithmic performance.
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Chapter 3. Improving the Computational Efficiency of
ADCIRC Through Implicit Time Marching and Its
Parallel | mplementation®

3.1 Introduction

In a previous article [33], we discussed and analyzed a predictor-corrector time-
marching algorithm (abbreviated predictor-corrector algorithm or just PC, herein) in aone-
dimensional (1D) setting, which utilizes the finite element framework and the generalized
wave continuity (GWC) equation. This chapter builds upon that work and extends it to a
two-dimensional (2D) setting, wherein it is assessed for stability, accuracy, parameter

sensitivity, and parallel efficiency.

Herein, the finite-element code is based on Lynch and Gray’s [64] wave continuity
equation (WCE), which suppresses spurious oscillations without having to dampen the
solution either numerically or artificialy. Further studies by Kinnmark [48] determined that
there was no loss in the wave propagation characteristics of the WCE if a numerical
parameter, G, isintroduced. This parameter expresses a balance between the primitive form
and the pure wave form of the shallow water equations. The model utilized here, ADCIRC

(an ADvanced three-dimensional CIRCulation model) [59] is based on the GWC equation.

Currently, nonlinear applications with ADCIRC have stability problems unless a

a. This chapter appearsin an abbreviated form in the International Journal of Numerical Methods
in Fluids. The referenceis given in Chapter 7, number [30].
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severe Courant number restriction isimposed. The Courant number is defined as

C X At
C, = Ax (3.0

where ¢ = ./gh isthelinear wave celerity, Ax isthe node spacing and At isthetime step.
In practice, the Courant number varies over the grid, we assign a single value to agrid by
choosing the smallest. We have found in practice that for deep ocean flows, a practical
upper bound of the Courant number (C;) is 0.5 in order to maintain the stability of the
model; however, an even tighter constraint (e.g., C, «0.1) must be imposed if the
simulation includes barrier islands, constricted inlets, or wetting and drying of near-shore
elements. In order to relax this restriction, an aternative time-marching procedure was

proposed that treats the nonlinear terms implicitly [53].

Asreported in[33] (and repeated here for completeness), anumber of earlier studies
looked at time-marching, but often from a noise suppression point-of-view. For example,
Leeand Froehlich [56] summarize several time-marching proceduresintheir shallow water
equation review paper, which covers everything from the trapezoidal rule to three-level
semi-implicit schemes. Lynch and Gray [37] showed severa of the same time-marching
proceduresin greater detail. They indicate that the best scheme for finite element shallow
water models is the three-level semi-implicit scheme. Several years later Kinnmark and
Gray [47] examined asemi-implicit wave equation that produced accurate results, yet still
treated the nonlinear terms explicitly. Most of the more recent work with GWC-based
models has focused either on incorporating more physics or minimizing spatial error, e.g.,
alternative meshing criteria [10,11,39], wetting and drying [62], treatment of boundary

conditions [52,65], 3D baroclinic simulations [66,68], and more accurate estimates of the
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vertical velocity [75]. Furthermore, attempts to achieve timely ssmulations have led to
parallel codes [23,46]. Little recent work with GWC-based models has been devoted to
aternative time-marching algorithms. The intent of this study is to fill this gap, viz, an

implicit treatment of nonlinear terms in both the GWC and momentum equations.

Animplicit treatment can be realized by either simultaneous integration of the full
nonlinear equations or a predictor-corrector algorithm. A predictor-corrector algorithm was
chosen over the simultaneous integration for the following reasons: 1) it can be easly
implemented within the framework of the existing ADCIRC code; 2) it minimizesthe size
of the matricesthat must be stored and inverted; and 3) it ismore computationally efficient

than the smultaneous integration of the full nonlinear equations.

In this chapter, we examine the impact of the 2D predictor-corrector algorithm on
stability, G sengitivity, and temporal accuracy, both globaly and locally. Also, we
implement a combined parallel/predictor-corrector algorithm and assess the scalability of
the resulting code. In our earlier paper, we provided the background on the shallow water
equations and indicated the proposed changes to the time-marching algorithm [33]; a

summary of these sectionsis included below for compl eteness.

3.2 Shallow Water Equations

The full shallow water equations can be found in severa sources [48,50,59,64,67]
and in Chapter 2; the GWC equation and non-conservative form of the momentum (NCM)
equation, which form the basis of the ADCIRC model, are given below. Using operator
notation, where L represents the primitive continuity equation, and M © the conservative

form of the momentum equation, we present the GWC equation
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\A/GE%+GL—V-MC (3.2)

where G isa numerical parameter. Lynch and Gray’s [64] WCE can be obtained by setting
G =1, where t is the bottom friction. It should be noted that the higher the value of G, the
more the GWC equation approaches the primitive equation. Expanded versions of the
GWC equation and NCM equation are shown below, Equations (3.3) and (3.4), respectively
for the case of constant parameter G. All terms are described in Appendix 1, but the
predominant variables are noted after the equations. The abbreviations appearing above

certain terms in these equations will be discussed in subsequent sections.

82 3 “Gg” “agand at” “cg” “bg’
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where ( is the elevation of the water surface above the datum, t is time, v is the depth-

averaged velocity, and H isthe total fluid depth, h+ C.

Algorithms based on these two equations result in solutions that compare well with
analytical solutions and field data for both elevation and velocity. The codes typically use
equal-order finite element interpolating functions (linear c’ elements). As presently
coded, semi-implicit time discretization of the GWC equation uses a three-time-level

approximation centered at k, while time discretization of the NCM equation uses alumped
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two-time-level approximation centered at k+1/2. Equations are linearized by formulating
the nonlinear terms explicitly. Exact quadrature rules are used. Product terms in the
equations are simplified by linearly interpolating the products of the variables, not the
individual variables. L, interpolation is applied to the advective terms. A time-splitting
solution procedure is adopted wherein the GWC equation is first solved for nodal
elevations and then the NCM equation is solved for the velocity field. Resulting discrete

equations can be found in Luettich et al.[59]

3.3 Description of the Implicit Time-Marching Algorithm

As noted, the current semi-implicit algorithm evaluates the linear terms implicitly
and the nonlinear termsexplicitly. At the past and present timelevelsin ADCIRC, elevation
and velocity values are known (either from initial conditions or previous calculations). The
original algorithm takes the elevation and velocity values for the past (k-1) and the present
(K) and usesthem to calcul ate the values for the future (k+1) timelevel for thelinear terms.
However, the nonlinear terms are evaluated using only the elevation and velocity values at
the present time level (k). Kolar et al. [53] hypothesized that the stability constraint stems

primarily from this explicit evaluation of nonlinear terms.

In order to evauate the nonlinear terms implicitly, a predictor-corrector time-
marching algorithm is introduced. The predictor stage, which is equivalent to the original
algorithm, evaluates the nonlinear terms using values from the present. Predicted future
values, caled k*, and the already-known present (k) and past (k-1) values are then used to
obtain corrected values for the future (k+1) time level. The corrector stage can be repeated

as many times as necessary until convergence; however, previous studies [33] indicate that
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one corrector iteration is sufficient.

Nonlinear terms exist in both governing equations for ADCIRC - the NCM and
GWC equation. Our study focuseson all eight nonlinear termsidentified in Equations (3.3)

and (3.4). Six reside in the GWC equation: advective (abbreviated “ag and at”), in which

ag” is associated with the spatial derivative and “at” is associated with the temporal
derivative®, finite amplitude (abbreviated “fg’), Coriolis (abbreviated “cg’), GWC
equation flux times G (abbreviated “Gg”) and GWC equation flux times t (abbreviated
“bg”) and two are from the NCM equation, the advective term (abbreviated “am”) and the

bottom friction term (abbreviated “bm”).

Through the use of time weight coefficients, we have the option to distribute the
relative contribution of the nonlinear terms over the three time levels. Exhaustive 1D
studies [33] showed that optimal coefficients are problem dependent, but that near-optimal
results for any domain are found by centering the GWC equation time weights at k
(meaning that the time weights for the nonlinear terms are weighted equally between k+1
(or k*), k, k-1) and centering NCM time weights at k+1/2 (meaning that the terms are
weighted equally between k and k+1 (or k*)). This near-optimal time weighting scheme is
used for all studies herein. Also from the 1D studies, we determined that significant gains
in the time step could be realized when just one or two nonlinear terms were treated
implicitly; however, the increases were not as large aswhen all of the nonlinear termswere

treated implicitly. Therefore, studies herein look at treating all nonlinear terms implicitly.

b. Earlier modificationsto the ADCIRC code converted the advection term in the GWC equation to
non-conservative form by using the primitive continuity equation to split it into two terms, onein-
volving a spatial derivative and one involving atemporal derivative. See [54] for full details.
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3.4 Two-Dimensional Domains

In this chapter, we examine a gorithm behavior on anumber of domains: the quarter
annular harbor (denoted “quarter annular”), a fictional grid that has a well-documented
analytical solution, and several application domains - Bight of Abaco (denoted

“Bahamas’), Western North Atlantic (denoted “ Eastcoast”), and Gulf of Mexico.

The quarter annular harbor grid is shown in Figure 3.1. Boundaries are marked on

— Ocean
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Boundary ———
Figure3.1 Quarter annular harbor domain (10 x 10

resolution).

the figure, with either ocean or land indicated. The boundary condition for the open ocean
boundary is the M5, tidal constituent, while the land boundaries are no flow. Resolutions
used in comparison studies include 5x5, 10x10, 15x15, 20x20, 25x25 and 30x30 (radial

divisions x 6 divisions).

The application domains (Eastcoast, Gulf of Mexico and Bahamas) are shown in

Figure 3.2; boundary conditions are indicated on thefigure. Table 3.1 contains information
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Table 3.1 Application domain information.

Bahamas Gulf of Mexico Eastcoast
Meshing Criteria AAX AJAX LTEA AAX
# nodes 926 11701 11934 32947
# elements 1696 21970 22870 61705
Min. Bathymetry (m) 1.0 1.0 0.7 3.0
Max. Bathymetry (m) | =9.0 ~3600.0 ~3600.0 ~6000.0
origina G 0.009 0.009 0.009 0.005
value (sec’))
M, amplitude (m) 0.395 0.07-0.173 | 0.07 - 0.173 | 0.0652-0.5580
O, amplitude (m) 0.075
K, amplitude (m) 0.095
S, amplitude (m) 0.06
N, amplitude (m) 0.10

regarding parameters, boundary, and grid information for each of the application domains.
In all of the domains, the land boundaries are treated as no flow. Two meshing criteriaare
used in developing the Gulf of Mexico grids. A/AX, which is commonly used in grid
development, and the Local Truncation Error Analysis (LTEA), developed by Hagen et
al.[39,40] In the LTEA technique, nodes are placed in order to minimize spatial truncation

error.

3.5 Numerical Experiments and Discussion

3.5.1 Sability

Dominant nonlinear terms preclude the use of traditional stability studies, such as

Fourier analysis. Therefore, we utilize heuristic methods. In particular stability changes
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with the new agorithm were determined from these steps. 1) Each domain was evaluated
using the original algorithm to obtain the maximum stable time step (to the nearest five
seconds) for each type of spatial discretization; 2) Each domain was evaluated using the
predictor-corrector algorithm to obtain the maximum stable time step for each spatial
discretization; 3) Results from the two previous steps were compared to one another and a
percent change between the two resulting time steps was obtained. Because the corrector
iteration requires another solution of the system matrix, we need to achieve more than a
nx 100% change for the predictor-corrector algorithm to be considered cost-effective,
where n isthe number of corrector steps. Thisisaconservative estimate because it assumes
the entire load vector is re-evaluated with each iteration, while in redlity, only the k*/k+1
portion of the nonlinear terms needs to be updated. Previous results showed no significant
gains in performing more than one iteration of the corrector step, therefore only one

iteration is considered herein.

Results for each of the domains are summarized in Table 3.2 with the maximum
allowable time steps shown along with the maximum Courant number. In all the domains,
results show that the Courant number restriction relaxes with the predictor-corrector
algorithm. Generally, Courant numbers with the original algorithm are lessthan 0.5, while
Courant numbers greater than 1.0 can be realized with the predictor-corrector agorithm.
All domains obtain the needed 100% increase (single corrector iteration) for the new
algorithm to be cost-effective, with the greatest increase in the maximum stable time step

occurring with the Eastcoast domain, which shows an eight-fold increase.

For the different spatial discretizations, resultsfrom the quarter annular and Gulf of

Mexico domainsindicate that resolution changes do affect the stability results. In particular
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Table 3.2 Numerical stability experiments - maximum stable time step and associated
Courant number for various domains.

Domains Original Predictor-Corrector Percent
At, sec. (C)) At, sec. (Cy) Increase
Quarter annular
55 2205 (0.50) 7095 (1.50) 222%
10x10 1120 (0.47) 5140 (2.14) 359%
15x15 730 (0.45) 4250 (2.47) 482%
20x20 550 (0.45) 3685 (3.00) 569%
25x25 445 (0.45) 3400 (3.40) 664%
30x30 370 (0.45) 3060 (3.74) 727%
Bahamas
A/AX 245 (0.57) 885 (2.06) 261%
Gulf of Mexico
A/AX 200 (0.52) 580 (1.54) 190%
LTEA 100 (0.17) 360 (0.62) 260%
Eastcoast
A/AX 55 (0.032) 470 (0.27) 754%

for the quarter series, the maximum Courant number with the original algorithm remains
constant with increasing resolution; however, the maximum Courant number with the
predictor-corrector algorithm increases with increasing resolution. For the Gulf of Mexico
domain, we evaluated two different meshing techniques, the typical A/Ax and the LTEA.
The LTEA method adds refinement in the grid where truncation errors are high, which
usually coincided with the continental rise and shelf break. For these two refinements, we
analyzed the spatial variability of the Courant number over the domain. From these studies,

we found that the LTEA grid tends to even out the magnitude of the Courant number over
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the break, with the most restrictive Courant number occurring in the shallow, near-shore

region; in contrast, the A/Ax grid shows alimiting Courant number at the shelf break.

3.5.2 G Senditivity

Sengitivity studies provide information on how parameter changes impact
algorithm performance. Herein, we are especialy interested in how G, the numerical
parameter in the GWC equation, impacts the maximum stable time step. Sensitivity
analyseswere conducted on three domains, with several spatial resolutions: quarter annular
domain with two spatial resolutions, 10x10 and 30x30; Bahamas domain; Gulf of Mexico
domain with two meshing techniques, A/Ax and LTEA and Eastcoast domain. In each of
these domains, we analyzed arange of G values between 0.00001 sec'! and 0.1 sec’t. Using
the PC algorithm, for each G parameter value we obtained the maximum stable time step,
which we compared to the maximum stable time step from the original algorithm with the

G parameter fixed at its original value.

Percent changes between these two scenarios are shown in Figure 3.3. Figure 3.3a
shows that the quarter annular domain (two resolutions), along with the Bahamas domain.
For the quarter annular domains, the greatest increase in stability occurs with G between
0.001 to 0.0001 sec™?, with peaks at G=0.0004 sec™ for the 10x10 resol ution and G=0.0007
sec! for the 30x30 resolution. For the Bahamas domain, the greatest increase occurs with
G between 0.01 and 0.001 sec’?, with the peak at G=0.0025 sec’!. Figure 3.3b shows the
results from the two Gulf of Mexico meshes and the Eastcoast domain. For the A/Ax grid,
the greatest increase in stability occurs when G is between 0.001 to 0.0001 sec’ with the
peak occurring at G=0.00068 sec’!, while for the LTEA grid, the greatest increase in

stability occurs between 0.01 to 0.0001 sec™! with two peaks - one at a G=0.002 sec’! and
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Figure 3.3 Sengitivity of the G parameter to stability for two-dimensional

bathymetry: a) quarter annular domains (10x10 (solid line) and 30x30
(dashed line) resolution) and Bahamas domain (dot-dash line), b) Gulf of
Mexico, A/Ax (dashed line) and LTEA (solid line) resolution and the
Eastcoast domain (dot-dashed line). Arrows, using the same line styles,

indicate where 1< G/1,,,,, < 10 for each domain.
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the other at G=0.00045 sec’’. In the Eastcoast domain, the greatest increase in stability
occurs between 0.01 and 0.001 sec™! with the peak at 0.0022 sec’t. A common feature of

al isthat stability is highly sensitive to the value of G used in the ssimulation.

An optimum range for G/t,,,5 should lie between 1 and 10 in order to minimize the
mass balance errors and errors in the generation of nonlinear constituents, as indicated in
previous work by Kolar et a. [54] They also indicated that when G/t increases above
10, oscillations can appear in the solution. We looked at this ratio for each of the domains
analyzed herein to determine if the stability peak lies within this recommended range. In

<10 for each domain. In short, for all domains

Figure 3.3, weindicate where 1< G/, <

tested, the maximum increase in stability coincides with the recommended range that
minimizes the mass balance errors and errors in the generation of nonlinear constituents.

Thus, asingle value of G can meet both criteria

3.5.3 Temporal Accuracy

In this section, we investigate the influence of the predictor-corrector algorithm on
temporal accuracy, both globally and locally. Globally, we analyze the temporal accuracy
using L, and L., error measures and determine the changes to the order of accuracy
(convergence rate) between the two agorithms. L, error measures are obtained by
comparing a fine (“true”) solution to the coarse solution at the same point using the

following:

N e —1)?
L, error = JZ':lﬁ' ) (3.5)

where ¢; isthe coarse solution, f; isthe fine solution and N is the number of node in the
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coarse grid. The L, error is defined as the magnitude of the maximum difference of the
coarse and fine solutions over the entire domain. Discussion of these results occursin the
first subsection. In the second subsection, CAFE (Cumulative Area Fraction Errors)

analysis [61] is used to study the local behavior of temporal accuracy.

3.5.3a Global Temporal Accuracy (Convergence Rates)

In order to evaluate the global behavior of temporal accuracy, including the overall
convergence rate, we compare solutions from a coarse temporal resolution to a“true” (fine
At) solution of 10 seconds. Spatial resolution is kept the same. Accuracy changes were
quantified by analyzing the global error, as measured by the L, norm and the L, norm. For
all domains, we evaluated both norms at 120 discrete times covering 10 complete tidal
cycles of the M5, tide, which isthe dominant tidal signal. For the L, norm, we averaged the
results over time, while for the L_, norm, we determined the maximum absolute value over
time. We performed the temporal accuracy experiments on all of the domains. quarter
annular (30x30 resolution), Bahamas, Gulf of Mexico (A/Ax grid) and Eastcoast. Figure 3.4
shows the elevation L, norms for each of these domains: quarter annular (Figure 3.4a),

Bahamas (Figure 3.4b), Gulf of Mexico (Figure 3.4c), and Eastcoast (Figure 3.4d).

In all domains, results show that the error for the predictor-corrector algorithm plots
below the original agorithm (less absolute error). Also, we determined the slope of theline
(i.e., order of accuracy) for each of the time-marching algorithms, which is shownin Table
3.3. In al the domains analyzed, we find that the order of accuracy increases from
approximately first order for the original agorithm to second order for the predictor-

corrector algorithm (see Table 3.3). Results using either the L., norm or the velocity field
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Table 3.3 Order of accuracy from slope of L, norm.

Domains Original | Predictor-Corrector
Quarter annular (30x30) 1.15 2.03
Bahamas 1.27 1.89
Gulf of Mexico 1.19 1.97
Eastcoast 1.53 192
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are similar.

These results mimic what we found with the 1D experiments [33]. Noteworthy is
that the predictor-corrector algorithm shows the greatest increase in accuracy for domains
where the bathymetry gradients are significant over much of the domain, such as the Gulf
of Mexico. In contrast, the least gains are seen with the Eastcoast domain, which may be
due to the fact that the majority of domain is deep water, where the wave propagation is
more nearly linear. In these instances, updating the nonlinear terms does not provide as

much improvement to the accuracy.

3.5.3b Local Temporal Accuracy

Next, we evaluated the behavior of the temporal accuracy over the spatial domain
utilizing CAFE plots [61]. CAFE plots provide both absolute and relative errors between
two simulations of the same domain with the same spatial resolution, but different temporal
resolutions. Absolute errors are obtained from: ¢, = |(¢;—f;)| where ¢; is the coarse
solution and f; is the fine solution; while relative errors (%) are determined from:
g = (‘C'f—_f'g 100 [40]. A frequency graph is developed based on these differences, viz,
for each erlror level, the cumulative area fraction is computed, which is calculated as the

ratio of area of the grid associated with a certain difference compared to the total area of

the grid.

Elevation, being a scalar field, can be represented by amplitude and phase errors.
However the velocity field is a vector field, so direction needs to be quantified. If one
considers that the velocity vector at a point in space and maps its position as time evolves,

an ellipse istraced out, as Figure 3.5 shows. The five components of the velocity error are:
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major semi-axis
direction

Figure3.5 A schematic of the velocity tidal ellipse that describes the coarse or fine
velocity fields and their components.

the mgjor and minor semi-axis velocity is obtained from lengths of the maximum and
minimum current vector over atidal cycle (a and b in Figure 3.5, respectively); the mgor
semi-axis phase difference is determined from the phase lag that the major semi-axis
velocity makes with the tidal forcing; eccentricity is obtained from the ratio of the major
and minor semi-axis velocity results (eccentricity = a/b where a and b are defined in
Figure 3.5) and the major semi-axis direction differenceis determined from the angle of the

major semi-axis current and the positive x-axis [40].

The following steps are used to develop the CAFE curves for this study: 1)
Harmonic datais recorded for the original algorithm over several tidal cyclesfor coarseand
fine temporal resolutions; 2) Harmonic data is recorded for the predictor-corrector
algorithm over several tidal cycles for coarse and fine temporal resolutions; 3) Absolute
and relative errors are calculated for each agorithm; 4) Cumulative errors for both
algorithms are computed; 5) Results from the original and predictor-corrector agorithms

are plotted against each other to determine the percent area exceeding a certain criteriafor
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convergence.

Figure 3.6 shows two sample CAFE plots. To read these plots, one must first realize
that a perfect solution (no error) would plot as a vertical line located at x = 0, indicated
by the vertical solid linein Figure 3.6. Any deviations from thisline represent errorsin the
simulation; the further the graph is from x = 0, the more the error. For a given
convergence criteria, one finds the associated percent of cumulative areain the domain that
exceeds the given criteria. For example in Figure 3.6a, one first selects a convergence
criteria (in this case, +/- 0.02 cm.) then follows that value to where it intersects the CAFE
plot and obtains the cumulative area that exceeds this convergence criteria (in this case,
0.095% overprediction and 0.02% underprediction). Note that in Figure 3.6a, the short-
dashed line plots underneath the curve of the long-dashed line, indicating less error. Also,
by examining the shape of the CAFE plots, we can infer the spatial distribution of the
temporal error, e.g., if the curves are “skinny” (narrow at the top), the temporal error is
confined to a small portion of the domain, but if the curves are “fat” (wider at the top -

shown in Figure 3.6b), temporal error permeates the domain

Figures 3.7-3.12 show CAFE plots for three domains. quarter annular (30x30
resolution), Eastcoast and Gulf of Mexico (A/AXx). Tables 3.4-3.9 present the error levels
obtained from the CAFE results for the same three domains: Results are representative of
the accuracy changes for all the domains. These tables show the error levels for all of the
velocity and elevation componentsfor the indicated temporal resolutions. The criteriaused
in these tables are based on tolerance levels that exceed required accuracy for most
applications. In the tables, the bold valuesindicate the lowest error. In analyzing the results

shown in these tables, we observe that when the time step is the same between the two
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Table 3.4 Elevation error measures for quarter annular domain.

Quarter annular Quarter annular
(same At) (different At)
Origina PC Origind PC
Time step (sec) 150 150 150 300
Elevation Amplitude (Absolute)
% exceeding -0.001 ft <0.0001 <0.0001 <0.0001 <0.0001
% exceeding 0.001 ft 40 <0.0001 40 <0.0001
% exceeding +/-0.001 ft 40 <0.0002 40 <0.0002
Elevation Amplitude (Relative)
% exceeding -0.02% <0.0001 <0.0001 <0.0001 20
% exceeding 0.02% 80 <0.0001 80 <0.0001
% exceeding +/-0.02% 80 <0.0002 80 20
Elevation Phase Difference
% exceeding -0.02 ° <0.0001 <0.0001 <0.0001 20
% exceeding 0.02 ° 60 <0.0001 60 <0.0001
% exceeding +/-0.02 ° 60 <0.0002 60 20
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Table 3.5 Velocity error measures for quarter annular domain.

Quarter annular Quarter annular
(same At) (different At)
Origind PC Origina PC
Time step (sec.) 150 150 150 300
Major Semi-Axis (Absolute)
% exceeding -0.0005 ft st <0.0001 <0.0001 <0.0001 10
% exceeding 0.0005 ft st 95 <0.0001 95 <0.0001
% exceeding +/-0.0005 ft st 95 <0.0002 95 10
Major Semi-Axis (Relative)
% exceeding -5% 0.03 0.09 0.03 01
% exceeding 5% <0.0001 <0.0001 <0.0001 <0.0001
% exceeding +/-5% 0.03 0.09 0.03 01
Magjor Semi- Axis Phase Difference
% exceeding -0.05 ° 0.08 0.04 0.08 0.04
% exceeding 0.05 ° <0.0001 <0.0001 <0.0001 <0.0001
% exceeding +/-0.05 ° 0.08 0.04 0.08 0.04
Eccentricity
% exceeding -0.0002 1 <0.0001 1 <0.0001
% exceeding 0.0002 25 <0.0001 25 <0.0001
% exceeding +/-0.0002 35 <0.0002 35 <0.0002
Magjor semi-axis direction
% exceeding -0.1 ° 0.02 <0.0001 0.02 <0.0001
% exceeding 0.1 ° 0.6 <0.0001 0.6 <0.0001
% exceeding +/-0.1 ° 0.62 <0.0002 0.62 <0.0002
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Table 3.6 Elevation error measures for Eastcoast domain.

Eastcoast Eastcoast
(same At) (different At)
Origind PC Origina PC
Time step (sec) 40 40 40 100
Elevation Amplitude (Absolute)
% exceeding -0.01 cm 0.3 0.001 0.3 0.03
% exceeding 0.01 cm 0.3 <0.0001 0.3 0.04
% exceeding +/-0.01 cm 0.6 <0.0011 0.6 0.07
Elevation Amplitude (Relative)
% exceeding -0.1% 01 0.0009 0.1 0.01
% exceeding 0.1% 0.08 0.007 0.08 0.004
% exceeding +/-0.1% 0.18 0.0079 0.18 0.014
Elevation Phase Difference
% exceeding -0.1 ° 0.025 <0.0001 0.025 0.0008
% exceeding 0.1 ° 0.02 0.003 0.02 0.002
% exceeding +/-0.1 ° 0.045 <0.0031 0.045 0.0028
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Table 3.7 Velocity error measures for Eastcoast domain.

Eastcoast Eastcoast
(same At) (different At)
Origind PC Origina PC
Time step (sec.) 40 40 40 100
Major Semi-Axis (Absolute)
% exceeding -0.01 cm st 0.2 <0.0001 0.2 <0.0001
% exceeding 0.01 cm st 0.04 <0.0001 0.04 <0.0001
% exceeding +/-0.01 cm st 0.24 <0.0002 0.24 <0.0002
Major Semi-Axis (Relative)
% exceeding -0.1% 0.08 0.0009 0.08 0.002
% exceeding 0.1% 0.003 0.002 0.003 0.006
% exceeding +/-0.1% 0.083 0.0029 0.083 0.008
Major Semi- Axis Phase Difference
% exceeding -0.05 ° 0.14 0.003 0.14 0.04
% exceeding 0.05 ° 0.9 0.001 0.9 0.04
% exceeding +/-0.05 ° 1.04 0.004 1.04 0.08
Eccentricity
% exceeding -0.0002 1 0.015 1 0.8
% exceeding 0.0002 2 0.012 2 04
% exceeding +/-0.0002 3 0.027 3 12
Magjor semi-axis direction
% exceeding -0.1 ° 0.07 <0.0001 0.007 0.0005
% exceeding 0.1 ° 0.016 <0.0001 0.0016 0.004
% exceeding +/-0.1 ° 0.086 <0.0002 0.0086 0.0045
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Table 3.8 Elevation error measures for Gulf of Mexico domain.

Gulf of Mexico Gulf of Mexico
(same At) (different At)
Origind PC Origind PC
Time step (sec.) 50 50 50 150
Elevation Amplitude (Absolute)
% exceeding -0.002 cm 4 <0.0001 4 3
% exceeding 0.002 cm 2 <0.0001 2 0.7
% exceeding +/-0.002 cm 6 <0.0002 6 3.7
Elevation Amplitude (Relative)
% exceeding -0.1% 04 0.007 04 0.25
% exceeding 0.1% 0.15 0.02 0.15 0.4
% exceeding +/-0.1% 0.55 0.027 0.55 0.65
Elevation Phase Difference
% exceeding -0.1 ° 0.07 0.015 0.07 0.1
% exceeding 0.1 ° 0.08 <0.0001 0.08 0.1
% exceeding +/-0.1 ° 0.15 <0.0151 0.15 0.2
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Table 3.9 Velocity error measures for Gulf of Mexico domain.

Gulf of Mexico Gulf of Mexico
(same At) (different At)
Origind PC Origind PC
Time step (sec.) 50 50 50 150
Major Semi-Axis (Absolute)
% exceeding -0.001 cm st 25 0.08 25 6
% exceeding 0.001 cm st 35 <0.0001 35 0.04
% exceeding +/-0.001 cm st 6 <0.0801 6 6.04
Major Semi-Axis (Relative)
% exceeding -0.02% 60 0.005 60 5
% exceeding 0.02% 2 0.01 2 5
% exceeding +/-0.02% 62 0.015 62 10
Magjor Semi- Axis Phase Difference
% exceeding -0.02 ° 2 0.002 2 8
% exceeding 0.02 ° 10 0.022 10 15
% exceeding +/-0.02 ° 12 0.024 12 9.5
Eccentricity
% exceeding -0.0002 35 <0.0001 35 15
% exceeding 0.0002 4 <0.0001 4 1.25
% exceeding +/-0.0002 75 <0.0002 75 2.75
Magjor semi-axis direction
% exceeding -0.02 ° 2 0.0004 2 0.8
% exceeding 0.02 ° 15 <0.0001 15 2
% exceeding +/-0.02 ° 35 <0.0005 35 2.8
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algorithms, the predictor-corrector algorithm produces less error for al of the components
except for onein the quarter annular domain. (Notethat all bold numbersare under the*PC,
same At” column.) And in the figures for the same time step (Figures 3.8, 3.10, and 3.12),
the predictor-corrector algorithm plots underneath the curve of the original agorithm in
nearly all instances, thusindicating less error. Noteworthy isthat the error measure is often
two orders of magnitude less. When the time step for the predictor-corrector algorithm is
2.5 timesthat of the original algorithm for Eastcoast, 3 times that of the original algorithm
for the Gulf of Mexico and 2 times that of the original algorithm for the quarter annular
domain, the tables show that the predictor-corrector algorithm still producesless error than
the original algorithm at alower time step in most ( = 83%) of the cases. (Note in the tables
that the majority of bold numbers are still under the “PC, different At” column.) Moreover,
many of these predictor-corrector errors for the Eastcoast domain are still an order of
magnitude less than the original algorithm. Also note that in a mgjority (= 70%) of the
CAFE plots (Figures 3.7, 3.9, and 3.11), the predictor-corrector algorithm plots underneath

the original algorithm.

3.5.4 Testing of the Combined Parallel/Predictor-Corrector Algorithm

Complex applications on larger, more intricate domains require that we utilize
paralel computing to obtain results in a time-efficient manner. Therefore, the last
component of thiswork with the predictor-corrector algorithm wasto code and analyze the
algorithmin parallel. Theoriginal parallel codeisreported in Dawson et al. [28], and it uses
the METIS agorithm [45] to decompose grids. Ghost nodes and MPI (Message Passing
Interface) [38] are used to pass information between the subdomains at each iteration.

Further information on the parallel code can befound in Dawson et al. [28] We adapted this
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Figure 3.13 Example of the domain decomposition. The quarter annular domain with
100,000 nodes is shown for a4 processor decomposition.

paradigm for the combined predictor-corrector/parallel code.

Figure 3.13 shows an example of the decomposition of the quarter annular grid
(100x100 resolution) on four processors. Figure 3.14 shows the surface to volume ratio
(computed astheratio of the number of nodes on the boundary of the subdomain to thetotal
number of nodes in the subdomain) versus the number of processors for two applications
discussed herein, quarter annular and Eastcoast. For computational efficiency, this ratio
should be kept as low as possible in order to keep communication cost low. Here, for the
guarter annular domain, an ideal surface to volume ratio can be computed because it is
topologically similar to a square, which, of all rectangular figures, is the one that has the
maximum area for given perimeter. Thus, if a larger square is divided so that each
subdomain is square, it will maintain the minimum possible surface to volume ratio. Such

a computation for a square with the same number of nodes as the quarter annular domain
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isshown as the dashed-dot line in Figure 3.14. As can be seen, the actual surface to volume
ratio for the quarter annular domain (see the dashed line in Figure 3.14) nearly matches the
ideal curve for the square. Surprisingly, the Eastcoast domain also shows very good surface
to volume behavior even though it is avery irregular domain (see the solid line in Figure

3.14). Thus, the METIS algorithm appears to be producing near-optimal subdomains.

3.5.4a Methodology and Domains Evaluated for the Benchmarking Sudies

The paralel code was benchmarked on two platforms. Table 3.10 describes the
characteristics of the two parallel computing environments, which are two 16-processor
clusters: one consisting of Sun UltraSparc Ile processors, and another consisting of Intel

Pentium |11 processors.

In order to determine the performance of the new combined algorithm, we
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Table 3.10 Comparison of the two computer architectures.

Attributes Sun UltraSparc lle | Intel Pentium 11

Speed 500 MHz 1GHz
Operating System Solaris 8 Linux

Cache 256 KB 256 KB

Memory 128 MB 256 MB

Communication 100 Mbl/s 100 Mb/s

Compiler Sun Forte 6.0 NAG
MPI Sun ClusterTools MPIch

Table 3.11 Benchmarking studies - parameters.

Quarter
Parameters/ annular Eastcoast grl:r?rufg %ﬁ:}g
Domains { study} (100x100) {1}
() {2 {3
number of nodes 100000 32947 5000 - 80000 50 - 280000
avg. number of nodes/ varies varies 5000 varies
processor
time step (original) 30 60 25 varies
time step (predictor- 180 515 25 NA
corrector)

investigated three scenarios, which are presented in Table 3.11. Two scenarios (quarter
annular - 100x100 resolution and Eastcoast domains) provide information on scaling and
the effects of the additional stability associated with the predictor-corrector algorithm. In
the third study, we want to minimize the impact of communication overhead on scaling by
keeping the number of nodes per processor constant, as indicated in the table. Under this

scenario, the computational workload per processor is kept constant.
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3.5.4b Results of the Benchmarking Sudies

In this section, we focus on three main comparisons: 1) results when the global
number of nodes remains constant; 2) results when the average number of local nodes per
processor remains constant; and 3) results when the global number of nodes varies on one

[Processor.

Resultsfrom thefirst study are shownin Figure 3.15. Figure 3.15a shows the actual
run time information and Figure 3.15b shows the scaling results for the quarter annular
domain. For the timing information, wall-clock times were obtained for both algorithms at
the time step indicated in Table 3.11 for the Sun and Intel platforms. To develop the scaling
results, we compared the timing results from each processor to the two processor
simulation, which served as the baseline. In theory, the four processor simulation should
run twice as fast as the two processor simulation, etc.; this theoretical speed-up isshownin

Figure 3.15b as a solid line. From these figures, we observe the following:

» Asexpected, the paralel version of the predictor-corrector algorithm also
shows significant stability gains. For example, with the quarter annular
domain, we found a six-fold increase in the maximum time step with both
serial and parallel versions.

* Resultsfor both the Sun and Intel platformsindicate the predictor-corrector
algorithm significantly reduces wall-clock time because of the gains in
stability. Comparing the two platforms, we see that Intel results show a

dightly faster wall-clock time as compared to the Sun results, which is most
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likely due to the higher cpu speed of the Intel processors.

Scalability results for both platforms show a near linear speed-up through
the six-processor simulation, with a dight decrease as the number of
processor increases. For both algorithms, we find the same trend with a

dight decrease at the higher number of processors being more pronounced
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Figure 3.16 Benchmarking results for the Eastcoast scenario with a) showing the
wall-clock time while b) shows the speed-up vs. two processors. (PO -
original time-marching algorithm (Pentium), PPC - predictor-corrector
time-marching agorithm (Pentium), SO - original time-marching
algorithm (Sun) and SPC - predictor-corrector time-marching algorithm
(Sun)). Salid line on b) indicates the theoretical speed-up (linear).

for the predictor-corrector agorithm.

* We aso evauated the Eastcoast domain (shown in Figure 3.16) with the
combined parallel, predictor-corrector algorithm and observed similar
behavior, e.g. an eight-fold increase in the maximum time step with both

serial and parallel versions, good scaling, and lower wall-clock time for the
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predictor-corrector algorithm.

Figure 3.17 shows the timing results for the second study, where the quarter annular
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Figure 3.17 Benchmarking study results for the two time-marching
algorithms where the time step is constant between the two
algorithms in the quarter annular domain. (PO - original time-
marching algorithm (Pentium), PPC - predictor-corrector time-
marching algorithm (Pentium), SO - original time-marching
algorithm (Sun) and SPC - predictor-corrector time-marching
algorithm (Sun)).

0 2 4

domain is used and the average number of nodes per processor is held constant. Significant
differences in wall-clock time between the two algorithms exist because we use the same
time step for both algorithms (recall the predictor-corrector algorithm requires twice the
computation time per time step, thus causing the simulation to take approximately twice as
long). In this study, the wall-clock time should theoretically remain constant as the number
of processors increases because the average workload per processor remains constant.
Resultsindicate the Sun platform has asignificant increase in the wall-clock time from one
to two processors, which does not occur for the Intel platform. This deviation from the

constant theoretical results indicates communication overhead is greater for the Sun
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platform than for the Intel platform. For the Sun platform, wall-clock time continues to
increase through the ten processor simulation, then levels out. For the Intel platform, the
wall-clock times show less increase as the number of processors increases. Differences
between the two platforms may be due to the communication configurations and MPI

implementation.

Lastly, Figure 3.18 shows the results for the third study, where the quarter annular
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Figure 3.18 Benchmarking study results for the single processor experiment
utilizing the original time-marching algorithm in the quarter
annular domain on the Sun cluster.

domain is used, the number of nodes varies, but the study utilizes only one processor. For
this study, the number of time steps in the simulation remains constant but the size of time
step varies with the increasing number of nodesin order to maintain stability. Here, we are

interested in determining the number of nodes that can be processed on one processor
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without having to utilize swap memory. These experiments use the original algorithm,
however, the predictor-corrector algorithm should provide similar results with a dight
increase in thework per unit time (if analyzed with the same time step). Work per unit time
is determined from calculating the total memory used for all the arrays for each grid and
then dividing that total by the wall-clock time for each of grids. As shown in Figure 3.18,
the results show a steady decrease in the work per unit time as the number of nodes
increases with a sharp decline occurring near 100000 nodes mark. Thisindicates where the
computer starts swapping information in and out of cache in order for one processor to be
able to complete the simulation. Thus, for this cluster, the analysisindicates that we should
decompose our big domains into enough subdomains so that we have less than 100000
nodes per processor in order to complete the simulation utilizing only cache memory. We
would expect to see similar results for the Pentium platform since both machines have the

same size cache.

3.6 Conclusions

In this chapter, we develop and analyze a predictor-corrector algorithm for 2D,
GWC-based shallow water models. We quantify the effects of this new time-marching
algorithm with respect to the stability and temporal accuracy (both globally and locally) for
a wide variety of 2D domains and also looked at the influence of mesh generating
techniques (A/Ax versus LTEA) on the results for the Gulf of Mexico domain. Lastly, we
evaluate the computational performance of the combined parallel/predictor-corrector
algorithm, as compared to the original algorithm. The hypothesis put forth in Kolar et al.

[53] suggest that the stability constraint stems primarily from the explicit evaluation of
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nonlinear terms. From the results presented in this chapter, it is evident that the stability

constraint relaxes with the implicit evaluation of the nonlinear terms, therefore confirming

this hypothesis. Other major findings from this 2D study are listed below.

With all of the nonlinear terms treated implicitly, stability shows dramatic
improvement, ranging from a minimum of a three-fold increase with the
Gulf of Mexico domain (A/Ax resolution) to a maximum of an eight-fold
increase with the Eastcoast domain. As mentioned earlier, for thisalgorithm
to be considered cost-effective, we must obtain at least a 100% change
between the two algorithms.

Mesh generating techniques influence the allowable Courant number in the
Gulf of Mexico. In particular, the LTEA mesh evens out the allowable
Courant number over the shelf break region, which coincides with the area
where the extrarefinement occurs in this mesh.

Resolution studies for the quarter annular domain show that the allowable
Courant number with the origina algorithm remains constant with
increasing resolution; however, allowable Courant numbers increase with
resolution for the predictor-corrector algorithm.

From the G sensitivity study, we see that the G values that produce minimal
mass balance errors and errors in the generation of the nonlinear
constituents coincide with those that allow the maximum stable time step
(i.e, 1=G/1,,, < 10).

Global temporal accuracy (convergence rate) studies show that the

predictor-corrector algorithm reduces absol ute error and increases the order
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of accuracy from approximately first order to nearly second order.

From the local temporal accuracy studies, we determined the predictor-
corrector algorithm decreases errors by approximately two orders of
magnitude, as compared to the original algorithm at the same time step.
When eval uating the predictor-corrector algorithm with atime step that isat
least twice that of the original algorithm, we found that the predictor-
corrector algorithm till produces less error in most of the components
(approximately 81%) than the original algorithm.

Results from the combined parallel/predictor-corrector algorithm show that
it significantly reduces simulation time as compared to the parallel
algorithm that does not use predictor-corrector time marching. For example,
suppose a scalar simulation of a hurricane storm surge application on the
eastcoast of the United States using the origina time marching algorithm
takes approximately 80 hours to obtain results. The same simulation on an
ideal 10-node cluster using the parallel algorithm and the original time
marching algorithm would take approximately 8 hoursto obtain results, but
with the predictor-corrector time marching algorithm, we could obtain
results on the same cluster in approximately 3 hours. Thus, the enhanced
stability allows us to produce results more quickly for time-sensitive
applications.

For both computing platforms (Intel and Sun) the combined algorithm
achieves nearly ideal speedup through six processors, with slight tapering-

off as the number of processors is increased. More importantly, when the
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workload per processor is kept nearly constant, the scaling at a higher

number of processorsis more ideal.
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Chapter 4. Form of the Momentum Equation in
ADCIRC?

4.1 Introduction

Shallow water equations are used to describe the hydrodynamic behavior of oceans,
estuaries, coastal regions, lakes and impoundments. The depth-averaged versions of the
conservation of mass and momentum form the basis of the shallow water equationsin their
native or primitive form. Early finite-element based shallow water models that utilized the
primitive form of the shallow water equation suffered from stability problems due to
spurious oscillations in the solutions. In 1979, Lynch and Gray [64] introduced the wave
continuity equation (WCE), which eliminated the spurious oscillations in the solution
without having to dampen the solution numerically or artificially. Kinnmark [48]
determined in 1986 that there was no loss in the propagation characteristics of the wave
continuity equation if a numerical parameter, G, was introduced, thus obtaining the
generaized wave continuity (GWC) equation (see Section 4.2 and Chapter 2 for more

details on the GWC).

Finite element shallow water models based on the GWC equation may be prone to
errorsin local mass conservation [1,48,51,52,54,65], as measured by direct integration of

the continuity equation, also referred to in the literature as a “finite volume” approach.We

a. This chapter appearsin an abbreviated form in Advances in Water Resources. The referenceis
given in Chapter 7, number [29].
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acknowledge the recent work of Hughes et al. [44] and Berger et a. [8], who argue that
continuous Galerkinfinite elementsarelocally conservative, provided that the external flux
is computed in a method consistent with the discretization, e.g., weighted residual
boundary integral. A full comparison of the two approaches (finite volume vs. weighted
residual) is beyond the scope of this dissertation, but our experience with the “consistent
flux” approach of Hughes and Berger indicates it is not sensitive to grid resolution (mass
balance error does not change with decreasing resolution). Hence, it does not provide a
measure of solution accuracy. On the other hand, the finite volume approach can provide

such information, which is an issue that we explore later in this chapter.

K eeping with the finite volume method of computing mass balance errors, we note
that the errors are particularly large for highly nonlinear flows, which include shallow,
converging sections around barrier islands and flood waves propagating onto dry land
[51,54]. Kinnmark provided thefirst theoretical analysis of the mass conserving properties
of the GWC equation [48]. The GWC equation, which is part of the class of derivative
equations, allows for alarger solution space than does the primitive form of the equations.
In order to restrict this solution space, Kinnmark determined that severa auxiliary
conditions must be met. He obtained the auxiliary conditions by determining the
equivalence between the primitive form of the shallow water equations, including the
conservative form of the momentum and continuity equations, and other formulations, such
as the wave continuity equation. Kinnmark determined that the continuity equation,
including its boundary conditions, must be exactly satisfied during spin-up (for most
applications, the model is ramped up from at-rest conditions) in order for mass to be

conserved. However, because of roundoff errors and other noise that occurs during spin-up
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of anumerical model, this can not always be guaranteed. Supporting this observation were
Walters and Carey, who hypothesized that the vanishing of the derivative of the continuity
equation with respect to time alone is not sufficient to ensure that mass is conserved [82].
Because the first condition cannot be satisfied, Kinnmark investigated two other auxiliary
conditions, of which one must be met. First, if the non-conservative momentum (NCM)
equation is used, then G>V e v (where G is the GWC equation numerical parameter and
v is the depth-averaged velocity field). In practice, because an upper bound exists on G
above which spurious modes are generated, one cannot guarantee that this requirement is
satisfied for a time-dependent velocity field. Second, if the conservative form of the
momentum equation (CM) isused, then G > 0, which isacondition that can always be met

[48].

Aldamaet al. analyzed mass conservation of the GWC equation and NCM equation
in their continuous and discrete forms, using both a Taylor-Frechet and Fourier series
analysis [1]. In their analysis for the discrete form of the equations, they found that the
GWC formulation is not consistent with the mass conservation principle, and the mass
conservation error was proportional to e t. For a given time, as G — «, the error
approaches zero. A balance between the choice of G and the amount of residual error must
be obtained, because, as G — <, the GWC equation approaches the primitive form of the

continuity equations and produces spurious oscillations.

In concurrent studies, Kolar et al. [51,52,54] examined the sensitivity of mass
conservation to the G parameter and boundary conditions. In two of these studies, they
determined that implementing mass conserving boundary conditionsimproves global mass

balance errors without increasing G and improves local mass balance errors with a lesser
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values of G [51,52]. Also, Lynch and Holboke analyzed the mass conservation boundary
conditions in a 3D framework and determined the boundary conditions could be
implemented differently to improve the global mass conservation; however, loca mass

conservation was not analyzed [65].

In another study, Kolar et a. aso examined recasting the advective term in the
GWC equation into non-conservative form so that it mimics the formulation of the NCM
equation [54]. They found that the global mass conservation is improved; however, local
mass conservation errors persisted. In summary, they recommended that GWC models

match the form of the advective terms and that the ratio of G/ 1., IS 1< G/ 7, <10,

max —

where 1 is the bottom friction coefficient as determined from a quadratic friction law:

(4.1)

and t,,,, isthelargest magnitude of t over the spatial domain. In Equation (4.1), u and v
are depth-averaged velocities, H is the total water depth, and C; is the bottom friction
parameter. When the ratio falls within this range, the nonlinear constituent errors and the
global and local mass balance errors are both minimized without introducing spurious

modes [54].

Several studies examined the relationship between the meshing criteria and
convergence [11,39,40,61]. In particular, Hagen et al. [39,40] developed a meshing
technique that examinesthelocal truncation error associated with the linearized form of the
NCM equation. This study showed that refinement in areas where truncation error is large

(e.g., in areas where steep bathymetry gradients occur) and coarsening in areas where
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truncation error is small, improves the overall accuracy of the solution without increasing
the computational burden. These areas correspond to where the velocity-based NCM

solution changes rapidly.

From the literature cited above, we observe the following about NCM-based GWC
equation models: 1) local mass balance errors (as measured by direct integration of the
continuity equation) and instabilities can occur, particularly in regions with highly
nonlinear flows; 2) numerical and analytical studies demonstrate that the problem can be
lessened, but not eliminated, by proper choice of G, by reformulating the advective terms,
and by proper treatment of the boundary conditions; and 3) high levels of grid refinement
are needed in areas with steep bathymetry gradients to minimize truncation errors. Based
on these observations, we hypothesize that changing to the conservative form of the
momentum equation, which isflux-based and not vel ocity-based, will improve both global
and local mass conservation, eliminate the need to reformul ate the advective term between
the governing equations, and lessen the need for extensive refinement in areas with steep
bathymetry gradients due to flux varying more slowly than velocity in these regions. Also,
use of the conservative form of the momentum equation makes it more natural to bring in
flux boundary conditions and facilitates coupled models (e.g., discontinuous and
continuous Galerkin methods [26,27]). Thus, the primary objective of this chapter is to
assess the impact of the conservative form of the momentum equation on mass
conservation, stability, temporal and spatia accuracy for GWC-based finite element
models. Numerical smulations will be conducted with the ADCIRC (ADvanced
CIRCulation model [59]) family of models. In this chapter, some assessments utilize a

combined predictor-corrector (see Chapter 3)/conservative momentum code in the
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evauation.

4.2 Background

Testing of the conservative form of the momentum equation (CM) was done with
both the 1D and 2D version of ADCIRC. If the operator L represents the primitive
continuity equation and M the conservative form of the momentum equation, then the

GWC equation is obtained from the following operation.

WG——+GL VeM® = 0 (4.2)

In Equation (4.2) G controls the relative weight of the primitive continuity equation, such
that if G — 0, the equation becomes a pure wave continuity equation, whereasif G — oo,

the equation is a pure primitive continuity equation.

In the 1D, we neglect atmospheric and tidal potential forcings and assume the eddy
viscosity is constant; the standard form of the ADCIRC model equations (GWC, NCM and

CM, Equations (4.3), (4.4) and (4.5), respectively) are as follows:

a_g c%_2C _ 9 [dau or_ ()] _
W= O ax{ ox (GTmareRG e )| T O (43)
o(u) ,  Au) o; _ e[| _
M = pn +u X +ru+gax H(axz 0 (4.9
c_ Q) , Aqu) o, _ (%) _
M~ = pn + I +rq+gHaX s(axz 0 (4.5

where g = Hu isthedepth-averaged flux, uisthe depth-averaged vel ocity, T isdetermined
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from the following T = C(|u[/H), € is the eddy viscosity, tistime, { is the elevation of
the water surface above the datum, x is the distance, G is the GWC numerical parameter

and H = h+ ( istotal water column depth.

In the 1D studies with the GWC-NCM model, the advective terms in the GWC
equation takes on two different forms, consistent or inconsistent. The inconsistent form
develops from Equations (4.3) and (4.4) because the advective term in the GWC equation
isin conservative form and the advective term in the NCM equation isin non-conservative
form. In the consistent formulation, the advective term in the GWC equation is atered to
the non-conservative form (as reported in [54]) by introducing the primitive continuity
equation so that a second-order space derivative is replaced by a mixed space and time

derivative.

Equations for the 2D ADCIRC model (GWC, NCM and CM, Equations (4.6), (4.7)

and (4.8), respectively) with a constant eddy viscosity are as follows:

3¢, 0 Pa
W = §z§ + Ggg—qv-(G)—v-[v-(qv) +fxq+(G-1)q+ HV[E +9(C —Om)] -

A-e(V(q)]1 =0 (4.6)
M = %%2 FVVe(V) + TV + XV + v[%w g(g—om)J —'ﬁ —E(V2(HV)) = 0 (4.7)

M=% 4 ve(qu) +1q +1xq +HY 2+ g —om) | -A-e(VA@) =0 (4

New terms in these equations are asfollows: g = Hv isthe depth-averaged flux, v isthe
depth-averaged velocity, f is the Coriolis parameter, given by 2Qsin¢, Q is the angular

velocity of the earth and ¢ islatitude, g isgravity, a isthe Earth elasticity factor, A isthe
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wind stress on the water surface, ) isthe Newtonian equilibriumtidal potential, p isdensity,

and p, is barometric pressure.

In ADCIRC, linear finite elements are used for the spatial discretization, while for
the temporal discretization, a three time-level scheme centered at k is used in Equations
(4.3) and (4.6), and atwo time-level scheme centered at k + 1/2 isused in Equations (4.4),
(4.5), (4.7) and (4.8). Flux-based (CM equation) solutions are obtained by first solving
Equations (4.3) or (4.6) for the elevation changes and then using Equations (4.5) or (4.8),
depending on 1D or 2D; in either case, new velocity values are obtained by dividing the
nodal flux by the total water depth at that point. Velocity-based (NCM equation) solutions
substitute Equation (4.4) for (4.5) and Equation (4.7) for (4.8). Ocean boundaries are
treated as essential conditions in the continuity equation, while flux boundaries are treated
as natural in the continuity equation and essentia in the momentum equation. This
implementation is often referred to as* conventional” treatment. In order to keep the focus
on the form of the momentum equation, we did not examine aternative treatments of the

boundary conditions.

4.3 Procedures

4.3.1 Mass Conservation

In order to evaluate the changes to mass balance errors (see second paragraph in
Section 4.1), we compared the accumul ation of mass to the net flux of the mass|eaving the
element or domain by directly integrating the primitive continuity equation, which is
similar to studies by Kolar and others [54]. For completeness, we summarize their

algorithm and provide a modified algorithm suitable for use with the CM equation.

73



First, the primitive continuity is integrated over space and time to obtain

I:JQ [%% + V-(Hv)Jdet: 0 (4.9)

Next, the first term in Equation (4.9) isintegrated over time and the divergence theorem is

applied to the second term to obtain
t
I (gt—gto)dg+j UHv-nd(aQ)}dt = 0 (4.10)
Q toly,

Next, the dependent variables in Equation (4.10) were evaluated by approximating with

linear basis functions to obtain
S REEED Yi AN (4.12)
e

where A, isthe area of the element, { isthe arithmetic average of the nodal values of {
over the element, and the sum is over all elementsin the domain of interest. Next evaluate
the boundary integral in Equation (4.10), which represents the net flux into the domain
when n is taken as the unit outward normal. When expanding H and v in terms of their
linear basis functions, they can be evaluated exactly for linear triangular elements as

follows

W,
Qe = IQ HY - nd(0Q)= " 12H 1V, + HyVip + HaViy + 2H,V ] (4.12)

€

where w,, isthelength of the boundary segment of element e, v,, = v - n, thesumisover
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all elements on the boundary, and subscripts 1 and 2 refer to the nodes (numbered locally)
at the end of the boundary segment. Now the time integral of Qnet is approximated using

the trapezoidal rule, i.e,

t
t
I UHV- nd(ag)}dt - It Qnetdtzz%[Qtonet+Qtnet]At (4.13)
tolg, 0 k
where k is the time-step index. This formation is used to evaluate the original algorithm,

which uses the non-conservative momentum equation.

For the new algorithm based on the conservative momentum equation, we evaluate
Equation (4.10) again and replaced the Hv term with the g flux term, which isthe natural
dependent variable. All terms remain the same except Equation (4.14) replaces Equation

(4.12).

Q™ = NdOQ)= S (g +q | (4.14)
—qu (0Q)= % =[Gy, + 0, :
€
where w, isthe length of the boundary segment of element e, ¢, = g - n,thesumisover
all elements on the boundary, and subscripts 1 and 2 refer to the nodes (numbered locally)

at the end of the boundary segment.

In this chapter, we present the mass balance errors as the average absol ute error over
the simulation time. We average these errors over timefor both the local and global results
and plot these errors on alog scale. The derivation given above isin 2D, however we can
evaluate the 1D results in a similar fashion because the flux at the boundary reduces to a

point evaluation, and the accumulation calculations in Equation (4.11) are evaluated on a
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length basis. As noted in Section 4.1, we are purposely using the finite volume approach of

checking mass balance because of the diagnostics it provides (see Section 4.4.6).

4.3.2 Sability

To evaluate stability heuristically, we obtain the maximum stable time step from the
following procedures: 1) Find the maximum allowabl e time step with the NCM equation to
the nearest five seconds; 2) Find the maximum allowable time step with the CM equation
to the nearest five seconds; 3) Compare the results from both equations and determine the

percent change between the two resullts.

4.3.3 Accuracy

4.3.3a Analytical

By using the Taylor Series expansion, we can expand the dependent variables of the
discrete equations around a common point to evaluate them on a theoretical basis and to
determine the accuracy of the equations. The full equations are given in Appendix 3. From
these truncation errors, we determined that the GWC equationisfirst-order accurateintime
if the advective terms are in non-conservative form, while it is second-order accurate in
time if the advective terms are in conservative form. In space, the GWC equation is first-
order accurate for variable spacing; while, it is second-order accurate for constant spacing.
For the NCM and CM equations, we found that they are first-order accurate in time and
gpace if we use variable spacing while it is second-order accurate in space if we use
constant spacing. Also, both momentum equations become second-order accurate in time

if the equations are linearized.

76



4.3.3b Numerical

Temporal

Numerically, temporal accuracy isdetermined by comparing a coarse solution using
a larger time step to a ‘true’ solution, i.e., one based on a fine time step. For the true
solutions, we used a one second time step for the 1D experiments, while a ten second time
step was used in the 2D experiments. These were chosen based on previous temporal
accuracy experiments that evaluated a new time-marching algorithm, described in Chapter
3 and in [30,33]. Changes in the temporal accuracy are then quantified by evaluating the
error vs. step size, as measured by both the L, norm and L, norm. An L, norm evaluates
the errors over several discrete times during the ssimulation and averagesthe error, while an
L., norm looks at the error over several discrete times during a smulation and finds the

maximum error.

Spatial
Global Spatial Accuracy

Numerically, the “true solutions’ for the 1D experiments were chosen by
performing a grid convergence test where refinement of the grid occurred until a chosen
convergence criterion (errors on the order of 10® m or m/s) was met. We then compared
fine and coarse grid results to measure the errors, as expressed by L, norm and L., norm.
For the L, errors, we averaged these errors over time to provide one point value for every

grid resolution studied.

Local Spatial Accuracy

For 1D, we utilized the same grid convergence procedures outlined under global
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accuracy to establish the “true solution”. We then compared fine and coarse grid results to
measure the errors, as expressed by the average nodal error over the number of tidal cycles.
In this case, the errors are averaged over time but not over space, so the results are shown
on a nodal basis. For the 2D spatia accuracy experiments, CAFE (Cumulative Area
Fraction Error) [61] plots provide the information on local accuracy changes. CAFE plots
produce absol ute and rel ative errors between two simul ations of the same domainswith the
same temporal resolution, but different spatial resolutions. A discussion of the CAFE plots
and how to read them can be found in reference [30,40] and the previous chapter. To
develop CAFE plots for this study, we used the following steps: 1) Harmonic data is
recorded for the NCM equation over severa tidal cycles for both a coarse and fine spatial
resolution; 2) Harmonic datais recorded for the CM equation over several tidal cycles for
both a coarse and fine spatial resolution; 3) Absolute and relative errors are calculated for
each eguation; 4) Cumulative errors for both equations are computed; and 5) Results are
plotted on the same graph to determine the percent area exceeding a certain criteria for

convergence.

4.4 One-Dimensional Numerical Experiments

4.4.1 Domains Evaluated

Four 1D domains were used to evaluate the effects of the conservative form of the
momentum equation (CM equation): a constant bathymetry of 5 m (Figure 4.1a); a
parabolic bathymetry (Figure 4.1b, also denoted “quadratic”), which has a rate of rise that
varies as a second-order polynomial; the Western North Atlantic bathymetry (Figure 4.1c,

also denoted “ eastcoast”), which isa 1D slice of the eastern United States seaboard out into
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Figure4.1 Schematics of the 1D domains. a- constant, b - quadratic, ¢ - eastcoast
and d - sinusoidal.

the Atlantic Ocean; and a sinusoidal varying bathymetry (Figure 4.1d, also denoted
“sinusoidal”). The sinusoidal bathymetry induces diverging and converging flow fieldsin
a 1D setting. Each of the domains use the following simulation conditions. an eddy visocity
parameter of zero, a1-meter M, tidal forcing at the ocean boundary (aforcing that we have
found through experience to produce critical responses in the system), and no normal flux
at the land boundary. M aximum and minimum bathymetry valuesfor the parabolic domain
are 300 and 3 meters, respectively; for the Western North Atlantic, the maximum and
minimum bathymetry values are 5000 and 20 meters, respectively; for the sinusoidal
domain, the maximum and minimum bathymetry values are 200 and 2.5 meters,
respectively, with the minimum depth occurring in the center of the domain. Discussion of
the grid generation techniques can be found in Chapter 2. In the following 1D experiments,

the bottom friction parameter varies from a constant value of 0.0001 sect, which was used
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for the constant, quadratic and eastcoast domains, to avariable value used for the sinusoidal
domain where the coefficient of the equation is 0.003. The eddy viscosity parameter, €,
remains zero and the numerical parameter of the GWC equation is G = 0.001 sec

throughout all of these experiments.

A summary of the meshing criteriafor all the 1D numerical experimentsisprovided
in Table4.1. For each of the 1D experiments, we indicate the nodal spacing technique used
and the meshing criteria, which is either the number of nodes for constant nodal spacing or
the A/Ax ratio for variable nodal spacing. Multiple values are included when the

experiment called for multiple grids, such as an analysis of spatial accuracy.
4.4.2 Mass Conservation

Wefirstinvestigated the impacts of the CM equation on mass conservation, an issue
that has been noted to plague nonlinear applications when measured using a finite volume
approach [1,48,51,52,54,65] (also see second paragraph in Section 4.1). Experiments in
this section utilize the procedures presented in Section 4.3.1. In the studies herein, we
computed mass conservation errors for the NCM equation using the following
formulations. 1) the inconsistent form of the advective terms, which means that both the
GWC equation advective terms are in conservative form and the NCM advectiveterms are
in non-conservative form; and 2) the consistent form of the advective terms, which means
the GWC equation and NCM advective terms are in the non-conservative form (requires
manipulation of the GWC equation, as reported in [54]). We evaluated the errorsin global

and local mass conservation for six M tidal cyclesfor all domains utilizing a5-second time

step.
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Table 4.1 Meshing criteria for the 1D numerical experiments.

Numerical Experiments

Mass Spatial .
Conservation Accuracy Stability
Domains | Spacing | Global | Local Global Local
Criteria
Constant | Constant? | 51 | NAP NA NA 51
Quadratic | Constant | 201 76°¢ varies- NA 201
11 to 1001
Quadratic Variable® 300 300 varies - NA 300
25 to 5000

Eastcoast | Constant 201 101 varies - 101, 201
11t0 2001 | 201,
401,
801

Eastcoast Variable 300 300 varies - 300, 300
25t0 5000 | 1200,

5000
Eastcoast LTEA NA 46 NA 46 NA
Sinusoidal | Constant 100 41 varies - NA 43
11 to 1001
Sinusoidal | Variable 300 300 varies - 300, 300
100 to 1000,
10000 5000

a. Number of nodesis given for constant spacing.

b. NA - experiments were not performed with this domain and nodal spacing.

c¢. Chosen to have approximately same # of nodes as the variable spacing criteria.
d. The A/AX ratio is given for variable spacing.

4.4.2a Global Mass Conservation

Figure 4.2 presents the absolute average error in the global mass balance for the
NCM and CM equations for all domains, using two types of meshing, constant (C) and

variable (V). All parameter values are the same within each domain.Results show that
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Domain Name
Abbreviations:
Const- constant
Quad- quadratic
EC - eastcoast
Sin- sinusoidal
Nodal Spacing:
C- congtant

V- variable

I3
S

0.01 ~

Global mass error (1074 m”3)

0.001
Const-C Quad-C  Quad-V EC-C EC-V Sin-C Sin-V

Domains
Figure4.2 Errorsinthe globa mass conservation for all the domains; NCM equation
- no changes to GWC advective formulation (filled bars), NCM equation
- changes to GWC advective formulation (striped bars), CM equation
(open bars).

adopting the CM equation improves global mass balance in most of the domains.
Improvement in the global mass balance errors for the CM algorithm is less evident with
the variable nodal spacing than with the constant nodal spacing (for a given domain); the
latter shows up to two orders of magnitude improvement, except for the eastcoast domain.
The behavior of the eastcoast results can be explained by noting the large percentage of the
domain with deep bathymetry where the nonlinear terms are not significant, thus the form
of the advective termsisinsignificant. (Wewill further explore thisissuein Section 4.4.6.)
A consistent treatment of the advective terms (striped bars) partialy offsets the mass
balance improvement realized by the CM equation, thus indicating that both the form of the
advective terms and the choice of dependent variable plays arole. Thisis also explored

further in Section 4.4.6.

4.4.2b Local Mass Conservation

For local mass conservation, we looked at three domains with steep bathymetry

gradients. the quadratic (Figure 4.1b), the eastcoast (Figure 4.1c) and the sinusoidal (Figure
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4.1d). All three cases use both constant and variable nodal spacing. Results using the
variable nodal spacing are shown in Figure 4.3, while Figure 4.4 shows results using the

constant nodal spacing. A schematic of the bathymetry for each domain is a'so shown by
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Figure4.3 Local mass conservation results for two formulations of the momentum
equation using variable spacing for a) quadratic, b) eastcoast, c)
sinusoidal. (Longer dashes - bathymetry (not to scale), Solid line- NCM
(no changes to the GWC advective formulation), medium dashes -
NCM (changes to the GWC advective formulation) and short dashes -
CM).

the longer dashed line in thefigures. In these experiments, we evaluated local mass balance
errors for the NCM equation with two forms of the GWC advective terms; the inconsistent
form and the consistent (see Section 4.2). As can be seen, the CM formulation provides a
significant error reduction in areas where there is a steep bathymetry gradient. In contrast,

we find that the NCM results show large local mass balance errors where a steep
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bathymetry gradient occurs, regardless of the treatment of the advective terms. For the
eastcoast domain, we determined from numerical experiments that the grid spacing for the
NCM simulation would have to be decreased by afactor of 20 (consistent advective terms)
or 115 (inconsistent advective terms) in order to have the same level of local mass balance

error asthe CM equation.

In Figure 4.3, note that the open boundary (element 74 in Figure 4.3a, 107 in Figure
4.3b, 40 in Figure 4.3c) shows larger local mass balance errors than the land boundary,

which correspondsto earlier findings for “conventional” treatment of boundary conditions
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[54]. As mentioned, because this chapter focuses on the form of the momentum equation,
we did not revisit the boundary condition issue. Also, note that for the quadratic
bathymetry, we observed a decrease in the local mass errors at the land boundary for the
CM equation as compared to the NCM equation. Overall, the CM equation improves the
local mass balance errorsin the domains evaluated, with the greatest gains seen in areas of
steep bathymetry changes, which correspond to areas where the nonlinear terms are

dominant.

We aso examined the influence of type of spatial discretization (constant vs.
variable node spacing) on local mass conservation. Similar results as shown in Figure 4.3
were found for constant nodal spacing (results shown in Figure 4.4) using approximately
the same number of nodes, but with higher differences between the local mass balance
errors for the two forms of the momentum equations. For examplein the eastcoast domain,
the errors increased by approximately 30% for the NCM equation in the area of the steep
bathymetry change. In al cases, the local mass balance errors for the CM equation are

much less than the local mass balance errors for NCM equation.

4.4.3 Sability

Several numerical experiments were set up to examine the impact of the CM
equation on stability, following the procedures discussed in Section 4.3.2. In all of the
domains evaluated, results show no significant change in stability between the two
algorithms, thusindicating that the CM equation does not influence stability. Similar results

were found when comparing the two predictor-corrector time-marching versions.
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4.4.4 Accuracy
4.4.4a Temporal Accuracy

We evaluated the CM algorithm’s impact on temporal accuracy following the
procedures presented in Section 4.3.3. To quantify temporal accuracy, we recorded 50
discrete times over two complete M, tidal cycles for all four domains with the following
parameters. the constant bathymetry domain used a constant nodal spacing (51 nodes) and
the time step ranged from 1 to 100 sec with the original time-marching algorithm and 1 to
50 sec with the predictor-corrector time-marching algorithm; the quadratic domain used
variable nodal spacing with A/Ax = 300 and the time step ranged from 1 to 80 sec with
the original time-marching algorithm and 1 to 400 sec with the predictor-corrector time-
marching algorithm; the eastcoast domain also used variable node spacing with
A/Ax = 300 and the time step ranged from 1 to 125 sec with the original time-marching
algorithm and 1 to 1000 sec with the predictor-corrector time-marching algorithm; and the
sinusoidal domain used variable node spacing with A/Ax = 300 and the time step ranged
from 1 to 125 sec with the original time-marching algorithm and 1 to 250 sec with the
predictor-corrector time-marching algorithm. In these experiments, the bottom friction
parameter varies from a constant value of 0.0001 sec’!, which was used for the constant,
guadratic and eastcoast domains, to a variable value used for the sinusoidal domain where
the coefficient of the equation is 0.003. Results of these accuracy studies are shown in
Figure 4.5 for the original time-marching algorithm; while, Figure 4.6 showsresultsfor the

predictor-corrector time-marching algorithm described in Chapter 3.

In Figure 4.5, results show that the NCM equation has a dightly lower absolute
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Figure4.5 Tempora accuracy results (elevation) for all four domains using the
origina time-marching algorithm: a) constant (constant), b) quadratic
(variable), c) eastcoast (variable) and d) sinusoidal (variable). Solid line -

NCM, Dot-dash - CM. (Note: first three results use a constant bottom
friction while the last result uses a variable bottom friction.)

Table 4.2 Convergence rates for the 1D temporal accuracy.

original time predictor-corrector time
marching algorithm marching algorithm
NCM CM NCM CM
constant bathymetry 1.14 1.14 1.53 2.06
quadratic bathymetry 1.23 117 181 1.96
eastcoast bathymetry 1.39 121 1.83 2.02
sinusoidal bathymetry 1.49 1.17 1.73 1.10
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Figure4.6 Tempora accuracy results (elevation) for all four domains using the
predictor-corrector algorithm: a) constant (constant), b) quadratic
(variable), c) eastcoast (variable) and d) sinusoidal (variable). Solid line -
NCM, Dot-dash - CM. (Note: first three results use a constant bottom
friction while the last result uses a variable bottom friction.)

error in al the domains than the CM equation. We determined the order of accuracy or
convergence rate for the original time-marching algorithm viaaleast squaresfit to the data.
Results, shownin Table 4.2, show that the results are similar for the constant, quadratic and
eastcoast domains while they are different sinusoidal domain. The results in Figure 4.6
indicate that for three of the domains the NCM equation and CM eguation have the same
errors at the larger time steps; while, at smaller time steps the CM equation produces lower
absolute error than the NCM equation. The convergence rates for these domains are given
in Table 4.2, which shows that the CM equation provides higher convergence rates than the

NCM equation except for the sinusoidal domain; of the first three, the rates are

88



approximately second order. In the sinusoidal domain, the results indicated that a higher
absolute error is present in the CM equation than in the NCM equation results, with the
convergence rates showing that the CM equation is first order accurate while the NCM
equation is almost second order accurate. Note that these results are only for the elevation
changes; however, velocity and L., norm results show similar trends. Therefore, the
different form of the momentum equation does not significantly influence the convergence
rates for the temporal accuracy whether using the original or the predictor-corrector time-
marching algorithms, except for the sinusoidal domain. Thisis also evident in the Taylor
Series expansions of the discrete equations (given in Appendix 3), in which both

momentum equations are first order accurate in time for nonlinear problems.

4.4.4b Spatial Accuracy

Global Spatial Accuracy
We evaluated the CM algorithm’s impact on global spatial accuracy following the

procedures presented in Section 4.3.3. For the 1D experiments, we looked at two
techniques of obtaining the “true solution”, one based on the A/ AX ratio and one based on
successively refining Ax on a uniform mesh by afactor of two. For the A/Ax approach,
we found that aratio of 5000 provided the desired convergence criteriafor all the domains
evaluated; while for the other method, we found that a resolution of Ax =61 m for
eastcoast domain, Ax = 25 m for the sinusoidal domain, and Ax = 24 m for the quadratic
domain meets the convergence criteria. A cross comparison of these “true solutions’ shows
that the results were nearly identical, so the A/AXx ratio is used in the remainder of this
subsection. The global spatial accuracy experiments used both constant and variable nodal
spacing, with the ranges of grid refinement shown in Table 4.1, and a time step of one
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Figure4.7 Spatia accuracy results (elevation) for all four domains using the original
time-marching algorithm: a) constant (constant), b) quadratic (variable),
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friction while the last result used a variable bottom friction.)

second. Results using both the original and predictor-corrector time-marching algorithms
(Figures4.7 and 4.8, respectively) produced similar convergenceratesfor both formsof the
momentum equation. Therefore, no significant effect is seen on the global spatial accuracy

results when utilizing the conservative form of the momentum equation.

Local Spatial Accuracy

Next, we looked at the CM algorithm’s impact on local spatial accuracy following
the procedures presented in Section 4.3.3. Based on the local mass conservation results, we
focused on the eastcoast and sinusoidal domains, asthese show the greatest change in local
mass conservation errors. The “true solution” based on a uniform mesh was employed for

both domains. The grid resolution parameters are shown in Table 4.1.
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Results for the variable-spaced grids for these domains are shown in Figure 4.9,
with aschematic of the bathymetry shown by the longer dashed lines. The figures indicate
that the CM equation increases the local spatial accuracy, particularly along areas of steep
topography changes. The highest error with the non-conservative form of the momentum
equation occurs at the top of the continental shelf area for the eastcoast domain. In the
sinusoidal domain, we find that the non-conservative momentum equation has higher errors
before and after the bathymetry rise than the conservative momentum equation results;
while, the conservative momentum equation shows an increase in error at the peak of the
bathymetry. In Figure 4.9b, it isinteresting and important to note that the NCM local spatial
errors show asimilar 3-peak pattern as the local mass errors of Figure 4.3c. Note that both
momentum equations show an error near the land boundary in both domains. Local
accuracy results differ from global accuracy because the latter averages the errors over the

domain, which tends to smooth out the local errors.

Finally, we looked at the interaction of the meshing criteria with the form of the
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Figure4.10 Loca spatia accuracy results (average velocity errors) for the eastcoast
domain: @) A./Ax and b) LTEA. Long dashes - NCM (inconsistent GWC
advective terms), Short dashes - CM, Longer dashes - bathymetry. Node
spacing isgivenin Table 4.1. Results utilize a variable nodal spacing with
A/AX = 125.
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momentum equation. In particular, for the eastcoast domain, we analyzed two variable
meshes with the same number of nodes; one using the A./AXx ratio and one based on the
LTEA (seeChapter 2). In Figure 4.10, results show that the CM formulation isless sensitive
to the meshing criteria, but that the LTEA reduces peak errorsin the NCM formulation by
two orders of magnitude (i.e., reducesit to the same as the CM formulation). Such aresult
isnot surprising in that the LTEA method uses truncation error estimates from the vel ocity-

based NCM equation.

4.4.5 Impact of Changing the Tidal Constituents

All previous experiments utilize a M, tidal constituent as the elevation boundary
condition; however, in 2D applications there can be several tidal constituents included in
the simulation. Therefore, we investigated this by changing the amplitude in the 1D

eastcoast domain in order to simulate other tidal constituents. Figure 4.11 showsthe results
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Figure4.11 The effect of changing the amplitude on local spatia accuracy. a8) NCM
(inconsistent GWC advective terms) and b) CM. Medium dashes- 2 m
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from these tests for both formulations of the momentum equations. The errors decrease or
increase based on how the amplitude of the tidal congtituent is changed in the simulation.
However, the important thing to note is that the CM equation is less sensitive to amplitude
changes than the NCM equation, thus indicating that when other tidal constituents are
present, we will still obtain a decrease in the local spatial accuracy results with the CM

equation.

4.4.6 Discussion

A broader look at the results of the previous sections suggeststwo trends. First, both
the CM and NCM equations produce similar resultsin parts of the domain, e.g., in the deep
water portion of the eastcoast domain, where the flow physics is nearly linear, neither the
CM or NCM show large local mass balance errors (see Figure 4.3b). But in regions of sharp
bathymetric gradients, they differ significantly. In particular, note that the CM equation
does not show the same local mass balance error spikes in these regions as does the NCM
algorithm, as can been seen in Figure 4.3b over the continental rise and Figure 4.3c over
the rise in bathymetry. It is precisely in these same regions where the nonlinear advective

terms are significant, so we will look for a correlation through simulation and analyses.

Second, the parallel behavior of the error in the local mass balance graph and the
error in the local accuracy graph (cf Figures 4.3b and 4.9a) and the similar 3-peak pattern
of the NCM results between Figures 4.3c and 4.9b suggests that the two are related. In other
words, can the finite volume method of computing mass balance serve as a surrogate

variable for truncation error? Thisissue is also explored in this section.

To examinethe behavior of thelocal truncation error for the advective termsfurther,
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we present the truncation error expressions for the advective terms in the NCM and CM
equations below, as obtained from a Taylor Series expansion of the discrete equations. (The
full expansion is too lengthy to be repeated here, but the interested reader can find the

resultsin reference [55] and in Appendix 3)

advective _ 1 aui 2 azui
> 1( 9y; a u) 1 83u
(AX; = AXAX; 4 1 + Ax, +1) axy *5l Yo e +H.O.T (4.15)
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2 2
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é(AXi — A% AX . +AX|+1)U 3'
oX
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é—LS(AxiZ—AxiAxi +AXI+1)q'a '+ H.OT. (4.16)
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Note that the truncation error for each is formally first order accurate for unequal nodal
spacing, but is second order accurate for constant grid spacing, as would be expected for
linear Galerkin finite elements. Because the flux varies more sowly than velocity in
regions where the topography is changing rapidly, one would expect the magnitude of the
derivatives of q, which appear in the CM truncation error expression, to be less than the
corresponding derivatives of u, which appear in the NCM equation. To verify this, we

carried out a scaling analysis of the leading error terms shown in Equations (4.15) and
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(4.16) using elevation and velocity values taken from eastcoast results over the continental
rise (i.e., aregion of high advection). After correcting for the differencesin units between
Equations (4.15) and (4.16) by dividing by the water column depth, we found that the
truncation error for the CM advective terms is two orders of magnitude less than the
corresponding terms for the NCM equation. In addition, when the scaling analysis is
repeated for the deep water portion of the eastcoast domain, where the NCM and CM
equations give similar results (i.e., a region of low advection, small flux and velocity
gradients, and nearly linear physics), the two truncation error expressions scale to nearly

identical values.

Physical arguments, simulations, and analysis thus lead us to believe that local
truncation error is less for the CM equation than the NCM equation in regions of high
advection. It then follows that the local mass balance error must also be less for the CM
equation in these regions. To wit, in the limit as Ax and At tend toward zero, truncation
error disappears and the discrete sol ution approaches the continuum sol ution (sans roundoff
errors), so one would expect that local mass balance errors, as computed from direct
integration of the continuum equations, would also tend toward zero. This is indeed the
case. Increasing the resolution for simulation results shown in Figures 4.3b and 4.9a
decreases both thelocal spatial truncation error and thelocal mass balance error at the same
rate. Figure 4.12 showsresultsfor both local spatial accuracy and local massbalanceerrors

for two refined grid resolutions from these shown in Figures 4.3b and 4.9a.

If the advective terms do indeed dominate the error behavior (mass balance or
gpatial accuracy), one would expect less error if they were omitted from the equation (a

guasi-linear simulation). The simulations used to produce Figure 4.3b were re-run without
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these advective terms; the results (see Figure 4.13) show that the peak local mass balance
errorsfor the quasi-linear run are 40% less than those shown in Figure 4.3b. In addition, if
one removes the remaining nonlinear terms from the equations and runs a full linear
simulation, the local mass balance errors diminish only slightly from simulations with just
the advective terms excluded, thus suggesting that the advective terms are the primary

contributor to errorsin these regions.

All of this leads us to conclude that the choice of dependent variable (flux vs.
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with inconsistent treatment of the advective terms. Results for the quasi-
linear and fully linear smulations have similar errors. a) full results and b)
zoomed in on a section of the results.

velocity) and the form of the advective terms (conservative vs. non-conservative) in the
discrete equations are the primary causes for the difference in behavior between the NCM
and CM simulations, with the CM equation offering increased accuracy in areas with high
advective gradients. Furthermore, local mass balance error, when measured by direct
integration of the continuity equation, parallelslocal truncation error and can thus be used
as asurrogate variable for local truncation error. As such, among other applications, it can
be used to identify regions where mesh refinement is necessary. Such a conclusion is also

consistent with earlier studies[54]. It remains to be demonstrated in this chapter that these

1D observations carry over to 2D simulations.

4.5 Two-Dimensional Numerical Experiments

45.1 Domains Evaluated

In 2D, we examined behavior of the two formulations of the momentum equation
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on the quarter annular harbor (denoted “quarter annular”), a fictional grid that has a well-
documented analytical solution, and several application domains - Bight of Abaco (denoted

“Bahamas’), Western North Atlantic (denoted “WNAT”), Gulf of Mexico, and Persian

Gulf.
/
e
~Z \\
L
N INA N

Boundary /

Figure4.14 Quarter annular harbor domain (10 x 10
resolution).

The quarter annular grid is shown in Figure 4.14. Boundaries are marked on the
figure, with either ocean or land indicated. The boundary condition for the open ocean
boundary is the M5, tidal constituent with a 1-meter amplitude, while the land boundaries
are no flow. For the experiments herein, we utilized a 10x10 resolution (radial divisions x
6 divisions), which gives a A/Ax of 26, an accepted value in practice [59]. Bathymetry
varies from a minimum of 3 m to a maximum of 19 m with inner radius at a distance of
60690 m and the outer radius at a distance of 152400 m. The following parameters were
used in these experiments. eddy viscosity, ¢, is set to zero, C; = 0.003 and

G = 0.001 sec *
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Figure4.15 Persian Gulf domain.

Figure 4.15 shows the Persian Gulf domain, while the three other application
domains (WNAT, Gulf of Mexico and Bahamas) are shown in Figure 4.16. Boundary
conditions are indicated on the figures. Table 4.3 contains information regarding
parameters, boundary and grid data for each of the application domains (i.e., number of
nodes, range of nodal spacing, etc.). In all of the domains, the land boundaries are treated
as no flow and the ocean boundaries utilize the tidal constituents presented in Table 4.3. In
these domains, we set the eddy viscosity term, €, to zero except for the WNAT domain

where a eddy viscosity value of 10 m%/sis used.
45.2 Mass Conservation
45.2a Global Mass Conservation

We analyzed the impact of the CM equation on the global mass balance errors
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Table 4.3 Application domain information.

Bahamas Gulf of Mexico WNAT | Persian Gulf
Meshing Criteria AAX A AX LTEA AMAX AAX
# nodes 926 11701 11934 32947 8550
# elements 1696 21970 22870 61705 15724
Min. 1.0 1.0 0.7 3.0 1.0
Bathymetry (m)
Max. =90 ~3600.0 | =3600.0 | =6000.0 ~ 3700.0
Bathymetry (m)
Cs value (-) 0.009 0.003 0.003 0.003 0.0015
G value (sec)) 0.009 0.009 0.009 0.005 0.01
M, 0.395 0.07 - 0.07 - 0.0652 - 0.496 -
amplitude (m) 0.173 0.173 0.5580 0.6517
01 0.075 0.185 -
amplitude (m) 0.194
Kq 0.095 0.35-
amplitude (m) 0.37
0.06 0.193 -
amplitude (m) 0.256
N, 0.10 0.115-
amplitude (m) 0.149
Q1 N.A. 0.0036 -
amplitude (m) 0.0037
P1 0.113-
amplitude (m) 0.118
Ko 0.0042 -
amplitude (m) 0.0058
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utilizing the procedures presented in Section 4.3.1. Resultsare shownin Figure 4.17, which
shows the average over timefor both formul ations of the momentum equation. (Recall that
throughout this 2D section, the NCM advective terms are consistent with the GWC
equation.) The CM results show slight to moderate decreases in the global mass
conservation errors in four of the domains. In two domains, the WNAT and the Gulf of
Mexico (LTEA resolution), we observe that the NCM equation produces slightly better or
similar resultsto the CM equation. In the WNAT domain, the similar error behavior is due
to the fact that the mgjority of the domain isin deeper water where the nonlinear terms do
not play a significant role; these 2D WNAT results parallel the 1D resultsfor the eastcoast

dice (cf Figure 4.2) with the consistent treatment of the advective terms.

Regarding the Gulf of Mexico results, we note that the LTEA method providesextra
resolution on the shelf break [39,40]. The extra shelf resolution decreases the global mass
error in the NCM equation results. On the other hand, the CM equation results are only
dightly less than the A/Ax resolution (Figure 4.17, Gulf of Mexico open bars), which
indicatesthat the CM eguation isless sensitive to the method of node placement on the shelf
break. Such behavior is consistent with the 1D experiments and consistent with the fact that

the LTEA usesthe velocity-based NCM truncation errors to determine node placement.

45.2b Local Mass Conservation

Next we analyzed the impact of the CM equation on the local mass conservation
utilizing the procedures presented in Section 4.3.1. Results are presented as contour plots
in Figures 4.18-4.23 with the scales showing the log of the errors. Note that the scales for

any given pair of NCM and CM graphs are the same. We also present in Figure 4.24 the
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Figure4.17 Global mass conservation results for the domains analyzed. Plot of the
average global mass errors for both forms of the momentum equation
(open bars - conservative momentum, filled bars - non-conservative
momentum).

differencesin the mass bal ance errors where the scale showsthe log of the errors. In Figures
4.20-4.23, we include the bathymetric contours to indicate where the steep bathymetry
gradients occur. Resultsindicate that the CM equation reducesthe local mass balanceerrors
over a significant portion of the domain, with the largest gains occurring in the shelf and
shelf break regions. (Observe the relative amount of blue and light pink between graph
pairs or the amount of blue in the difference graphsin Figure 4.24.) Thisismost evident in
Figures 4.22 and 4.24c (WNAT), where we see decreases in local mass balance errors
(changesfrom pink to light blue or the blue areain Figure 4.24) with the CM equation along
the continental shelf and shelf break region in the Gulf of Mexico and along the eastern
seaboard of the United States. In the WNAT and Gulf of Mexico (LTEA resolution)
domains, we find that the differences in local mass balance errors between the two

formulations indicate NCM local mass balance errors are less along the ocean boundaries,
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Figure4.18 Loca mass conservation results for the quarter annular domain. Red
coloring indicates higher mass balance errors while the blue coloring
indicates the lower mass balance errors. Conservative momentum results
are shown on the left with the non-conservative momentum results
shown on the right. The legend shows the log of the errors for the CM
and NCM results.
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Figure4.19 Local mass conservation results for the Bahamas domain. Red coloring
indicates higher mass balance errors while the blue coloring indicates
the lower mass balance errors. Conservative momentum results are
shown on the left with the non-conservative momentum results shown
on the right. The legend shows the log of the errors for the CM and
NCM results.
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Figure4.20 Local mass conservation results for the Gulf of Mexico domain - A/AX.
Red coloring indicates higher mass balance errors while the blue
coloring indicates the lower mass balance errors. Conservative
momentum results are shown on the left with the non-conservative
momentum results shown on the right. The legend shows the log of the

errors for the CM and NCM results.
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Figure4.21 Loca massconservation resultsfor the Gulf of Mexico domain - LTEA.
Red coloring indicates higher mass balance errors while the blue
coloring indicates the lower mass balance errors. Conservative
momentum results are shown on the left with the non-conservative
momentum results shown on the right. The legend shows the log of the
errors for the CM and NCM results.
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Figure4.22 Loca mass conservation results for the WNAT domain. Red coloring
indicates higher mass balance errors while the blue coloring indicates
the lower mass balance errors. Conservative momentum results are
shown on the left with the non-conservative momentum results shown
on theright. The legend shows the log of the errors for the CM and
NCM results.
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Figure4.23 Loca mass conservation results for the Persian Gulf domain. Red
coloring indicates higher mass balance errors while the blue coloring
indicates the lower mass balance errors. Conservative momentum
results are shown on the left with the non-conservative momentum
results shown on theright. The legend showsthe log of the errorsfor the
CM and NCM results.
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Figure4.24 Loca mass conservation results for the Gulf of Mexico and WNAT
domains: a8) GOM - A/Ax, b) GOM - LTEA, ¢) WNAT - A/Ax and d)
Bahamas - A/Ax. Red coloring indicates where the NCM equation results
are better while the blue coloring indicates where the CM equation results
are better. The legend shows the difference in thelog of the errors between
the CM and NCM results.
land boundaries near the ocean boundary also have high mass balance errors that decrease

as one moves away from the ocean boundary. These results parallel the 1D observations.

We analyzed the influence of the meshing criteria on the local mass balance errors
in the Gulf of Mexico domain by using the LTEA method to provide extraresolution at the
shelf break. (Recall from Table 4.3 that the total number of nodes is approximately the
same.) Ascan be seenin Figures 4.24aand 4.24b or between Figures4.20 and 4.21, the CM

equation produces less error than the NCM equation, regardless of meshing techniques.
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This is notable because the LTEA method is designed to reduce truncation errors for

velocity-based sections.

4.5.3 Sability

We analyzed the impact of the CM equation on stability using the procedures
presented in Section 4.3.2. Resultsin all of the domains show no impact on stability due to
the CM equation. In fact, we found that the two momentum equations produced a nearly
identical maximum allowable time step. Therefore, the CM equation does not influence

stability, aresult that is similar to the 1D findings.

4.5.4 Accuracy

4.5.4a Temporal Accuracy

We utilized the procedures presented in Section 4.3.3 to determine the impact of the
CM equation on temporal accuracy. For these experiments, we evaluated 120 discrete
timesteps over several M, tidal cycles. The timestep varied from 10 to 900 sec for the
quarter annular domain (10x10 resolution), while for the Gulf of Mexico (A/Ax resolution)
the timestep varied from 10 to 180 sec. With the predictor-corrector agorithm included, the
timestep varied from 10 to 3600 sec for the quarter annular domain and from 20 to 360 sec

for the Gulf of Mexico.

Figure 4.25 shows the temporal accuracy results for the original time-marching
algorithm. For both domains, results using the original time-marching agorithm indicate
that the two momentum equations provide the same error behavior, and both show afirst

order convergence rate (shown in Table 4.4). For the case of the predictor-corrector time-
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Figure4.25 Temporal accuracy results (elevation) for two domains using the original
time-marching algorithm: a) quarter annular (10x10 resolution), b) Gulf
of Mexico - A/Ax. Solid line - NCM, Long dashes- CM.

Table 4.4 Convergence rates for the 2D temporal accuracy.

quarter annular Gulf of Mexico

NCM CM NCM CM

origina time 1.16 1.16 1.23 1.23
marching algorithm

predictor-corrector time 1.72 2.06 1.89 1.31
marching algorithm

marching algorithm, the quarter annular results (shown in Figure 4.26) indicate that the
NCM equation has less temporal error in the smaller time steps; however, as the time step
increases, the results between the two momentum equations converge. As for the Gulf of
Mexico domain, we find that the NCM equation errors are less than for the CM equation
when using the predictor-corrector time-marching algorithm. Convergence rates (shownin
Table 4.4) for the predictor-corrector time-marching algorithm shows mixed results, with
the quarter annular domain providing second order accuracy for both forms of the

momentum equation, while the Gulf of Mexico is second order accurate with the NCM
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equation, but only first order accurate with the CM equation. In three out of the four 1D
domains and one of the 2D domains, the form of the momentum equation does not
significantly influence the convergence rates for the temporal accuracy whether using the

original or predictor-corrector time-marching algorithm, which is smilar to the 1D

findings.
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Figure4.26 Temporal accuracy results (elevation) for two domains using the
predictor-corrector time-marching algorithm: @) quarter annular (10x10
resolution), b) Gulf of Mexico - A/Ax. Solid line - NCM, Long dashes -
CM.

4.5.4b Spatial Accuracy

Results from the 1D spatial accuracy experiments indicate that the CM equation
does not impact the global spatial accuracy significantly; therefore, we only analyze local

gpatia accuracy for the 2D domains.

We evaluate the effect of the CM equation on local spatial accuracy using CAFE
(Cumulative Area Fraction Errors) curves [61]. Procedures followed in this section are
presented in Section 4.3.3. To obtain the “true solution”, we refined the quarter annular
domain until the convergence criteria was met, which resulted in aresolution of 200x200.

Note that CM vs. NCM solutions are nearly indistinguishable at thisfine resolution (A/Ax
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Table 4.5 Elevation error measures for quarter annular and Gulf of Mexico domains.

quarter annular Gulf of Mexico
NCM CM NCM CM
Resol ution Comparison 10x10vs. | 10x10vs. | A/AXvs. MAX VS,

200x200 | 200x200 | splitby 4 | splitby 4
(A/AX) (MAX)

Elevation Amplitude (Absolute)

% exceeding -0.005 ft (quarter) 8.4 12 88 67
% exceeding -0.005 cm (GOM)
% exceeding 0.005 ft (quarter) 13 0.56 10 31
% exceeding 0.005 cm (GOM)

% exceeding +/-0.005 ft (quarter) 9.7 18 98 98

% exceeding +/-0.005 cm (GOM)

Elevation Amplitude (Relative)

% exceeding -0.5% 0.12 <0.001 84 65
% exceeding 0.5% 051 0.051 7 25
% exceeding +/-0.5% 0.63 0.051 91 90

Elevation Phase Difference

% exceeding -0.2 ° 14 0.0083 25 33
% exceeding 0.2 ° 2.6 25 64 60
% exceeding +/-0.2 ° 17 25 89 93
ratio over 500).

Tables 4.5-4.6 present a snapshot of the error levels obtained from the CAFE
analysisfor two domains: the quarter annular and Gulf of Mexico, while Figures 4.27-4.28
show the CAFE plots for the same two domains comparing coarse and fine (“true”)
resolution. Spatial resolution is indicated in the tables. The values in bold type highlight
which form of the momentum equation provides the least error. This data, combined with

an analysis of the full CAFE plots, revealsthat the CM equation significantly improves the
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Table 4.6 Velocity error measures for quarter annular and Gulf of Mexico domains.

quarter annular

Gulf of Mexico

NCM CM NCM CM
Resolution 10x10vs. | 10x10vs. | A/AXvs. | AAXVs.
200x200 | 200x200 | splitby4 | splitby 4
(MAX) (A/AX)
Major Semi-Axis (Absolute)
% exceeding -0.05 ft st (quarter) 0.66 1.0 15 20
% exceeding -0.05 cm s (GOM)
% exceeding 0.05 ft st (quarter) 0.0062 0.054 9.2 15
% exceeding 0.05 cm s (GOM)
% exceeding +/-0.05 ft st (quarter) 0.67 11 24 35
% exceeding +/-0.05 cm s (GOM)
Major Semi-Axis (Relative)
% exceeding -1% 75 78 49 57
% exceeding 1% 19 15 23 28
% exceeding +/-1% 94 93 72 85
Major Semi- Axis Phase Difference
% exceeding -10 ° 0.086 0.092 13 13
% exceeding 10 ° 0.14 0.13 11 0.66
% exceeding +/-10 ° 0.23 0.22 24 20
Eccentricity
% exceeding -0.1 0.29 0.23 23 12
% exceeding 0.1 0.040 0.19 10 0.92
% exceeding +/-0.1 0.33 0.42 33 21
Major semi-axis direction
% exceeding -5 ° 13 14 3.7 3.0
% exceeding 5 ° 0.23 0.19 4.4 3.7
% exceeding +/-5 ° 15 1.6 8.1 6.7
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Figure4.27 CAFE plotsfor quarter annular domain comparing the two momentum
equations using the original time-marching algorithm. Dotted line- NCM
equation and dashed line - CM equation.
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Figure 4.28 CAFE plotsfor Gulf of Mexico domain comparing the two momentum
equations using the original time-marching algorithm. Dotted line- NCM
equation and dashed line - CM equation.
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elevation response over the entire domain for the quarter annular. For four of the five
velocity components, the CM and NCM algorithms have very similar errors, while for one
velocity component (major semi-axis, absolute), NCM is better over much of the quarter

annular domain.

Asfor the Gulf of Mexico domain, we find mixed results, which is most likely due
to how the fine grid was devel oped. For real domains, bathymetry isknown only at discrete
points from field measurements. To interpolate between these as the grid is refined
(“triangles split by 4”) introduces additional errors besides truncation errors into the
measured response, so that spatial resolution studies are inconclusive for the Gulf of

Mexico.

In contrast, for the fictitious quarter annular domain, one can refine the grid
indefinitely because the bathymetry and coastline can be determined from known analytical
equations at all spatial locations. Lastly, we evaluated the spatial accuracy with the
predictor-corrector time-marching algorithm for quarter annular domain and found similar

results. Altogether, the CM a gorithm shows improved local spatial accuracy.

4.6 Conclusions

Herein, we analyzed the impact of using the flux-based, conservative form of the
momentum equation instead of the velocity-based, non-conservative form to compute the
depth-averaged velocitiesin 1D and 2D shallow water models. Our hypothesisin this study
was that the use of the conservative momentum equation would improve both global and
local mass conservation, eliminate the need to reformulate the advective terms between the

GWC and NCM equations, and lessen the need for extensive refinement in areas with steep
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bathymetry gradients. Through a set of extensive numerical experiments, supported with
truncation error analysis, we show that the use of the conservative momentum equation
does improve globa mass conservation in most simulations, and it greatly improves local
mass conservation in regions of steep topography for all of the domains, as measured in the
finite volume sense. Paralleling the local mass balance results, local spatia accuracy also
improves. The analysis in Section 4.4.6 demonstrates that both the choice of dependent
variable and the form of the advective terms in the discrete equations causes adifferencein
behavior between the NCM and CM simulations, with the CM equation offering increased
accuracy in areas of high advective gradients. Also, local mass balance error, when
measured by direct integration of the primitive continuity equation, parallels local
truncation error and can thus be used as a surrogate variable for local truncation error. As
such, among other applications, it can be used to identify regions where mesh refinement
is necessary. Furthermore, the use of the conservative form of the momentum equation
eliminatesthe need for reformul ating the advective terms between the governing equations.
However, results are inconclusive regarding the third hypothesis, that is, for some
simulationsthe LTEA mesh does not impact the CM results, whilein othersthe LTEA mesh

reduces both NCM and CM loca mass balance errors.

In the end, the significant decrease in local mass balance error and corresponding
increase in local spatial accuracy for the CM formulation, with no loss of global spatial
accuracy and stability, provides sufficient evidence for its use in GWC-based, finite

element shallow water modéls.
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Chapter 5. Algorithmic and Resolution I nfluences on
Diagnostic Baroclinic Simulations?

5.1 Introduction

Ocean flows are frequently categorized by one of two different dynamic modes,
barotropic and baroclinic, that describe different wave speeds. Barotropic flows include
motion driven by the tides and wind and only take into account pressure differences with
respect to depth. Baroclinic flows include motion driven by density changes caused by
temperature and salinity differences in the ocean [72]. These density variations create
pressure gradients that vary with depth, thus creating a driving force called the baroclinic

pressure gradient.

In areas where the topography changes rapidly, such as a seamount or continental
rise region, many three-dimensional hydrodynamic models have problems computing a
stable and realistic baroclinic pressure gradient (BPG). Aninitial study into the calculation
of the BPG term serves as the main topic of this chapter. The motivation for this work
stems, in part, from anomalous results observed by Blain [12] in baroclinic Arabian Gulf
simulations using a wave continuity based FE model. Figure 5.1 illustrates the problem,
where the source of error was identified as an unrealistic (and unstable) BPG computed by

the model in aregion of steep bathymetry and density gradients. Thisis shown by the large

a. This chapter has appeared as two abbreviated conference proceedings, the Estuarine and Coastal
Modeling conference and Computational Methodsin Water Resources. The references for these two
proceedings are given in Chapter 7, numbers. [32] and [31], respectively.
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Figure5.1 Instabilities caused by errorsin the
calculation of the BPG during smulations
of the Arabian Gulf [12].

arrows in the area of steep contour changesin Figure 5.1.

Four common vertical coordinate systems utilized in ocean models are as follows:
sigma coordinates, which are terrain-following [17]; z-coordinates (also caled level
coordinates), which follow a fixed depth [9]; isopycnal, which follow lines of constant
density [14]; and hybrid, which includes any combination of sigma coordinates, z-
coordinates or isopyncal coordinates[20,69]. Advantages and disadvantages exist for all of
these coordinate systems, which several investigators have mentioned in their studies (e.g.,
[9,17,69]). To summarize, sigma coordinates provide a constant number of vertical layers,
regardless of depth, and capture the bottom and free moving surfaces, thus alowing the
boundary conditions to be implemented easily. One disadvantage of the sigma coordinate
system involves the “ hydrostatic inconsistency” condition, first discussed in the context of
oceanographic models by Haney [42]. Figure 5.2 shows one set of vertical nodes that are
considered hydrostatically inconsistent (Figure 5.2a) and one set of vertical nodes that are
hydrostatically consistent (Figure 5.2b). This condition indicates that in areas of steep
topography, there needs to be an appropriate amount of horizontal resolution in order to

obtain stable and realistic BPG results. However, in some cases, the amount of horizontal
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Figure5.2  Schematic of vertical nodesthat are @) hydrostatically inconsistent and b)
hydrostatically consistent. Graphically, in a) we can tell the vertical
nodes are hydrostatically inconsistent because node 21 does not fall in
layer 20 in the adjacent vertical string of nodes, whereasin b), node 21
doesfall in layer 20 in the adjacent vertical string of nodes.

resol ution needed to produce accurate results leads to excessive computational costs. If the
hydrostatic inconsistency condition is not met, then spurious modes tend to be introduced
into the solution through truncation errors obtained from the transformation of the BPG
term to the sigma coordinate system. Thusin the areas of steep bathymetry gradients, large
truncation errors can mask the true BPG [17]. Suggestions from some researchers have
reduced these errors, but the problem has not been completely solved. In some models, this
problem has been reduced by subtracting off a mean vertical density gradient or an area-
averaged density from the initial dengity field [69-71]. Stelling and van Kester introduced
afinite volume approach that first switches from sigma coordinates to aredefined (smilar
to z-coordinates) system, where the BPG results are calculated, and then utilizes a smple
filter to correct the BPG results. Results showed that they could obtain stable results for
simulations that had steep bottom dlopes [79]. However, further studies by Sordal [77]

determined that this method tended to underestimate the BPG results so a modified method
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was introduced. The modification makes it equivalent to linearly interpolating the density
values in the vertical and then computing the gradients. Slordal [77] found that this
improved the results but was more computationally time consuming than the traditional
sigma coordinate method. Another disadvantage of the modified evaluation is that errors
still develop in the results when a sharp vertical change occurs in the density field, just as

it does with traditional sigma coordinates [77].

Asfor the z-coordinates, they do not suffer from the truncation error problems that
occur with the sigma coordinate and its transformation. They a so tend to be ableto capture
steep pynocline changes or maintain layered density fields better. However, the
disadvantage of the z-coordinate system isits inability to properly resolve the flow around
the bottom topography in areas of doping bathymetry (“stair-step” resolution), and the
correct flow at the surface is often not captured [17]. To obtain an accurate BPG where
doping bathymetries come into play for z-coordinates, several researchers suggest using
extrapolation techniques. e.g. Beckmann and Haidvogel utilized a Chebyshev polynomial
[7]. Beckmann and Haidvogel found that the use of Chebyshev polynomials to extrapolate
BPG values at the bottom helped reduce the errors in the BPG values as compared to the
traditional sigma coordinates. However, they indicated that the results tend not to be as
stable as the results using traditional sigma coordinates. They suggest that thisinstability is
dueto the extrapol ation of the results using the Chebyshev polynomial s because these types
of polynomials tend to have oscillation problems if they are not extrapolating values over

a“small” distance [7].

Another method that has been used in global ocean models is the isopycna

coordinates, which follows lines of constant density [14]. This type of coordinate system
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does well in the deeper parts of the ocean because the density profile tends to be stably
stratified. However, this coordinate system does not do well in shallower parts of the ocean,
such as the continental shelf, due to the mixing and advection processes that tend to be
dominant in this part of the ocean [17]. It also has the same “stair-step” resolution problem
at the bottom boundary that the z-coordinate method has because the lines of constant
density do not follow the topography changes [14]. Thus, the method is not widely used for

near-coastal models, such as ADCIRC.

Hybrid methods have been suggested that take advantage of the strengths of sigma
and z-coordinate methods and have been used in several models (e.g, NCOM [69] and Spall
and Robinson [78]). The degree of hybridization between the two coordinate systems and
the technique of the hybridization can both vary in the model. For example, Beckers [6]
examined a hybrid scheme that only used one z-coordinate (fixed) with sigma coordinates
above and below it. Also, Spall and Robinson [78] analyzed a hybrid scheme that used z-
coordinatesin the upper layers and sigma coordinates in the bottom layers. Another hybrid
scheme, which is used by NCOM (Navy Coastal Ocean Model) [69], applies sigma
coordinatesin the upper layers and the z-coordinates in the bottom layers. We a so note that
other types of hybrid methods have been devel oped, such asHY COM [20], which switches
from isopycnal in deep water to sigma coordinatesin the coastal areas and then switchesto
z-coordinatesin the surface mixed layer/unstratified seaareas. In a study with the HY COM
model, researchers found that the hybrid model using multiple coordinate systems provided
better results than only using one coordinate system [20]. Burchard and Petersen [17] also
mentioned that the hybrid methods may provide better results than those of the sigma

coordinates or z-coordinates. However, hybrid methods can suffer from problems in the
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areas where the coordinate systems switch from one method to another [78]. Finally, an

additional issue is the depth at which to switch between coordinate systems.

Several researchers have investigated the unstable or unrealistic results of the BPG
term in the context of finite difference models (e.g., [17,42,70]), however, only a few
studies have been done in the context of finite element or unstructured grid models. Finite
element formulations using triangular elements of the BPG term differ from finite
difference formulations using square elements because they include more information from
neighboring nodes. In contrast finite difference formulations tend to include only the
neighboring nodes that are forward, behind or next to the node being evaluated. Using a
finite element model, Walters and Foreman looked at the influence of resolution on the
velocity field using sigma coordinates, first varying the horizontal resolution for a fixed
vertical resolution and then vice versa [83]. They determined that the sigma coordinate
system produced either second- or first-order accurate solutions, depending on the density
profile, for the continental shelf region. From their studies, they suggested that the sigma
coordinate system should be replaced with z-coordinates. Alternatively, they suggest post-

processing the BPG field in order to minimize the sigma coordinate transformation errors.

Fortunato and Baptista evaluated the vertica placement of nodes in sigma
coordinates within the framework of finite elements for a barotropic model [36]. They
found that an efficient placement of the vertical nodes may take care of the strong
dependence of errors on the local flow properties. In order to realize this, they introduced
localized sigma coordinates, which alow for more flexibility in the placement of nodes.
Theselocalized sigma coordinates differ from anonuniform sigmacoordinate systemin the

fact that they allow for the vertical nodes to be placed independently for each horizontal
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node, while the nonuniform sigma coordinates use the same placement algorithm at each
horizontal node. Fortunato and Baptistafound that the localized sigma coordinates provide

astrong aternative to the traditional sigma coordinates and z-coordinates.

Another investigation by Fortunato and Baptista evaluated al of the horizontal
gradients in the momentum equation in either sigma coordinates or z-coordinates in a 2D
(width-averaged) barotropic and baroclinic (diagnostic) model [34]. They determined that
evaluating all of the horizontal gradientsin the sigma coordinate system provided the best
approach in most cases, however, in certain cases the z-coordinates proved to be better, in
particular for the case study presented in Walters and Foreman [83]. They aso provided
some guidelines to obtain the proper horizontal resolution for a sigma coordinate model

near steep bathymetry gradients[34].

Herein, we build onthisearlier work and investigate BPG cal cul ations using several
of these coordinate system in the context of a finite element model. This study will only
look at different coordinate systems to calculate the BPG term; while all other horizontal
gradients in the momentum equation will use sigma coordinates. In this respect, it differs
from the work done by Fortunato and Baptista [34], since their work analyzed all the
gradientsin the momentum equation with either sigma or z-coordinates, independently. We
are only analyzing the BPG term with these different coordinate systems since thisterm has
been shown in the applications to be problematic [12]. This study also extends the work
done by Walters and Foreman [83] by looking at other coordinate systems for calculating
the BPG term besidesthe sigma coordinates. In this study, we will investigate four different
coordinate systems for determining the BPG results: sigma coordinates, z-coordinates and

two hybrid systems composed of these two coordinate systems. We look at these coordinate

124



systems and the effect of grid resolution (horizontal, vertical, and combined) on diagnostic

simulation results.

5.2 Background Of The Model
The model utilized in this study is a 2D lateraly-averaged (x-z) shallow water

model that uses the finite element method,; it follows the same devel opment steps asthe 3D
ADCIRC model [60], as discussed in Chapter 2. We also employ a mode splitting scheme
in the solution technique, similar to that of the 3D ADCIRC, in which the external mode
solves a 1D (depth-averaged) continuity equation for the elevation field and a 2D (x-2)
momentum equation to resolve the velocity field. The depth-averaged velocity values
utilized in the continuity equation are obtained from the integration of the 2D momentum
equation results. As afina step, we calculate the vertical velocity values using the 2D (x-

Z) continuity equation.

We replace the primitive continuity equation with the generalized wave continuity
(GWC) equation to eliminate the spurious modes that occur with finite element models
using the primitive equations [e.g., 48,59,60,64]. The GWC equation is as follows:

_9%, 598,88 _0[aHUY) , 3L\ T
WG_at2+Gat HUax ax[ ox +gH8x My *

Tox -
¥ ~GHU-B,~D, | = 0 (5.1)
0

where { issurface elevation above adatum, H isthetotal fluid depth, and U is the depth-

averaged velocity, g is gravity, D, is the depth-integrated momentum dispersion

X

(momentum transfer due to a non-uniform velocity profile), B, is the depth-integrated

125



baroclinic forcing, M, isthe depth-averaged lateral stress term, which is determined from

2
T
M, = E,MH—ZUQ where E; isthe eddy viscosity coefficient, f = KgipUp isthe bottom
ox 0
friction term, where Kg;; isthe linear dip coefficient and uj, isthe velocity at the bottom

Tsx

Po

that allows either a pure wave form of the equation when the parameter is small or the

boundary, and is atmospheric forcing. In Equation (5.1), G is a numerical parameter
primitive form of the continuity equation if the parameter is large. This code does not
include the Coriolis forcing terms. We currently utilize a constant eddy viscosity

coefficient, E;, inthe lateral stressterm.

The current model employs the non-conservative form of the momentum equation,

which is as follows:

M_a_u+ au+ ou ('ig_i(rzx

=at TUx Yoz T 9 "oz p_o) them, =0 (52)

where Tax _ Ez@—lzj) is the consgtitutive law for vertical stress gradient with vertical eddy
0

viscosity E,; m, = (,?—X(E,g—)l:) is the condtitutive law for the lateral stress gradient with a

horizontal eddy viscosity parameter, E,, which isthe same as that used in Equation (5.1).

We are using the non-conservative form of the momentum equation because the current

production code of ADCIRC utilizes this form. In Equation (5.2), we define

C_
b = gl (P —Pp)

. = gﬁ — dz (5.3

which isthe BPG.

To evaluate Equation (5.2), we map the terms in the equation onto a generalized
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sigma or stretched coordinate system (referred to hereafter as either sigma coordinates or
sigma coordinate system), where ¢ ranges from a at the surface (aisset to 1 herein) to b
at the bottom (b is set to -1 herein) and these values remain the same regardless of the
change in the bathymetry. The relationship between the sigma coordinate system and the z-
coordinate system (referred to hereafter as either z-coordinates or z-coordinate system) is

determined from the following:

o = a+(%))(z—§) (54)

Based on this relationship between the sigma coordinate system and z-coordinate system,
derivatives from the two systems can be related to one another, as shown in Chapter 2 and

Appendix 2. The momentum equation in the sigma coordinate system thus becomes:

_ou, 9u a-byou, 9 (a=b\d (Tx\,,. . _
_ 0 Ju . . .
wherem, = pa E'EV and w,; incorporatestermsfrom the variable transformation (see
() (&)

reference [60] and Chapter 2 for more details). The evaluation of the m, term occurs along

the stretched surfaces directly with no coordinate transformation.

These equations use C° linear finite elements for the horizontal and vertical spatial
discretization with the exact quadrature rules. For the temporal discretization, athreetime-
level scheme centered at kis used in Equation (5.1), and a two time-level scheme centered
a k+1/2 isused in Equation (5.5). Except for the BPG, al of the horizontal derivatives
are evaluated in the sigma coordinate system; the BPG term uses different coordinate

systems, as described bel ow.
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In this work, we have isolated the BPG term (b, in Equation (5.5)) and only

implement this term differently in accordance with the different coordinate systems. We

isolate this term because it has been shown to cause unstable or unredlistic results (as

discussed in Section 5.1). Initialy, we define a buoyancy term, § (shown in Equation

(5.6)), which is then used to evaluate the horizontal gradient in the appropriate coordinate

system:

_ Yp-po)
B_gJ.z Po dz

In z-coordinates, the BPG is given as

b = 9B

X, ox,

while in the sigma coordinate system, the BPG isgiven as

. - b _9z0p

2 Ox; 0x0z

(5.6)

(5.7)

(5.8)

Using the coordinate transformations presented in Chapter 2, Equation (2.10), Equation

(5.8) becomes the following:

@ (b)

by = 9B _ [(G—_ED%*(E a_hj(@)@@

s a-b/ox \a-b/oxJ\ H /oo

(5.9

In this study, we utilize Equations (5.7) and (5.9), along with a combination of the two, to

develop the two hybrid systems investigated in this study. One of the hybrid systems
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Figure5.3  Schematic of the four coordinate systems utilized in
calculating the BPG term in the momentum balance for the
cross-section shown to the left: a) sigma coordinates, b) z-
coordinates c) NCOM, and d) SZS. Arrows indicate z-
coordinate system calculation of the BPG.

employed in this study follows the system used in NCOM [69], which switches from the
sigma coordinates to z-coordinates as the depth increases. In what follows, we refer to this
hybrid system asNCOM system or NCOM. The second hybrid system switchesfrom sigma
coordinatesto z-coordinates at a specific depth then back to sigma coordinates at a second
deeper depth. This system is referred to as the SZS (sigma coordinates, z-coordinates,
sigma coordinates) system or SZS and issimilar to the system for computing the BPG used

by Beckers[6].

Figure 5.3 shows aschematic of each coordinate system. In the z-coordinate system
BPG implementation, we compute horizontal gradients by interpolating values between
adjacent vertical sigma nodes in Figure 5.3b [7,35]. Near bottom boundaries a linear

extrapolation techniqueis used in regions where gradients based on z-coordinates “ run into
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o 4 Figure54  Schematic of the “run into the
ground” problem with the z-
coordinates. In the extrapolation

3 technique, we utilize the two prior
ocean vertical node results (i.e., nodes 3
boundary and 4) to obtain the result for node 2

b 2 because it has the “run into the
ground” problem.

the ground.” This linear extrapolation technique can be described using Figure 5.4. For
example, if we are computing the gradient at node 2, then we look to the left and right (or
all neighborsin 3D) of that node to obtain the density valuesin the adjacent string of nodes.
In this case, when we look to the left and the right we find that there are no adjacent nodes
because the ocean ison theright and the horizontal extension to theleft runsinto the bottom
boundary. In this case, the gradient is determined using the previously calculated gradients
for the nodes above it. Therefore, we take the gradient values from nodes 3 and 4 in Figure
5.4, and use them to extrapolate a gradient value for node 2. Note that we obtain the
gradients for nodes 3 and 4 by using information from the nodes to the left of the ocean

boundary.

5.3 Model Validation

The domain used for the model validation is an idealized basin, which provides a
good check on the numerical algorithms since, for smple density fields, it has an analytic
solution. The idealized basin is48 km long with 51 nodes in the horizontal (Ax = 960 m)
and 21 layers (Ac = 0.05) in the vertical. We use a constant bathymetry of 10 m depth

(“flat bottom™). Boundary conditions on both ends of the ideal basin are land boundaries
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with no-flux boundary conditions. Other conditions of this smulation are as follows:
horizontal eddy viscosity mixing processes are neglected (negligible horizontal velocity
gradients), vertical eddy viscosity utilizes a constant value of 0.0011 m?s, cold start with
a 0.1 day ramp, 1-day smulation time with a one second time step which alows the
simulation to reach a steady state, G in the GWC solution set to 0.001/sec, linear dip
bottom condition with a coefficient of 0.001/sec, and all the nonlinear termsturned on. The
dengsity field for this idealized basin varies horizontally from 1024 to 1028 kg/m3 (left to

right) and is constant over depth at each x-location. In this test case, the BPG simplifiesto

go(°

¢
b = 42
PoOXJ 2

podx) 2 o 510

_go
(p--po)dZ--p aX(pZ--pOZ) 0g O

(p —pg)dz =

where p isaknown function of x only, p, isthe reference density, which remains constant
at 1000 kg/m3, and it is assumed that the elevation set-up is small when evauating this

integral (i.e., { isset to zero). Numerical tests subsequently verified this assumption.

For the conditions of this idealized basin, Luettich and Westerink [63] derived an

analytic solution for the surface elevation and vel ocity, as given below

kh
1+
5 gl 5E)

ox 28x(1+m (5.11)
3E)
2
- _ 993, Yy, gdff2 K
: GEzax(Z T +2Ezax(Z 3) (5.12)

where k istheslip condition, h isthebathymetry, z isthe depth and E, isthevertical eddy
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Figure55  Model validation results with the analytical solution shown as black dots

and all four coordinate systems used in the cal culation of the BPG shown
as plots laying on top of the analytical solution. (a-BPG, b-horizontal
velocity)

viscosity. A full derivation of the analytical solution occurs in Appendix 4. Figure 5.5
shows the results from this model validation test case for both the BPG and horizontal
velocity field. Ascan be seen all the coordinate system results match the anal ytical solution.
This identical behavior from all of the coordinate systems is expected because of the
constant bathymetry of the problem. In such a case, the sigma coordinates and z-
coordinates are nearly identical because the coordinate transformation terms (Equation

5.9b) do not play a significant role because oh isO and e

™ X is very small, thus Equation

(5.99) islike Equation (5.7).

5.4 Procedures

Recall that for thisstudy, all test caseswere conducted utilizing the diagnostic mode

of the baroclinic model.
5.4.1 Global Spatial Accuracy

The “true solutions’ for these 2D x-z experiments were determined either by

performing a grid convergence test, where the grid is refined until a chosen convergence
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criterion (errors on the order of 106 m/s) was met, or from known analytical solutions. A
discussion of what constitutes a true solution for each domain occurs in the subsequent
section. We compared the results from these true solutions to the coarse grid results to
measure the errors utilizing the L, norm (refer to Equation (3.5)). These errors are
determined for the BPG, horizontal velocity and vertical velocity. For each of the domains
analyzed, we chose twelve different stations (shown in Figure 5.7) at which to compare
results. These twelve stations are representative of the entire domain because we placed
them across the domain and in areas where there are significant changes in the bathymetry
or density fields. For ameasure of global accuracy, we averaged the L, errors over time for
each of the twelve stations and then averaged the results over the twelve stationsto provide
one data point for every grid resolution studied. For each of the domains, we analyzed the
effects of both horizontal and vertical resolution on the BPG, horizontal and vertical
velocities. Horizontal resolution studies hold the number of vertical nodes constant and
vary the number of horizontal nodes; while, the vertical resolution studies hold the number

of horizontal nodes constant and vary the number of vertical nodes.
5.4.2 Local Spatial Accuracy

To analyze the local spatial accuracy, we followed the same procedures for
obtaining a true solution as described in the previous section. We obtain the errors from:
e = |c;—f| where ¢; isthecoarse solutionand f; isthefineor true solution. These errors
are determined for the BPG, horizontal velocity and vertical velocity. We find the errors at
every vertical node for al twelve stations, which are the same stations used in the global

gpatial accuracy, and average the errors over time. These errors are then graphed for each
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vertical node at the twelve stations in the form of a density plot. For two of the domains
analyzed, we first hold the vertical resolution constant and then look at the errors for two
horizontal resolutions, coarse and fine. Next, we hold the horizontal resolution constant and
then look at the errorsfor two vertical resolutions, coarse and fine. For each of the domains,
we also show aplot of the density field and thelocation of the twelve stationsfor discussion

pUrposes.

5.4.3 Horizontal/Vertical Resolution Interplay

Next, we analyzed the interplay between horizontal and vertical resolution by
varying the number of nodes and looking at the global spatial accuracy results. For each of

the domains analyzed, we utilize the resolution matrix presented in Table 5.1, which is

Table 5.1 Matrix for theinterplay of horizontal and vertical resolutions.

Horizontal nodes
Vertical nodes 9 17 33 65 129
5 X X X X X
9 X X X X X
17 X X X X X
33 X X X X X
65 X X X X X
129 X X X X X

based on interval halving. We evaluated L, errors for the BPG, horizontal velocity and
vertical velocity by comparing ssmulation results to the true solution for the domains

analyzed. Here again we averaged the L, errors over time and then averaged over the
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twelve stations in order to obtain one point for each grid resolution. For some of the grid
resolutions, we found that stable results could not be obtained, and we note this in the

results (presented in Section 5.6.2 and Section 5.6.3).
5.4.4 Depth for Hybrid Systems

Last, we examined the best placement for the depth changes for each of the hybrid
systems by looking at how the placement impacts global spatial accuracy. For example in
the NCOM scheme, we vary the interface between the sigma coordinates and z-coordinates
from a shallow depth to a deeper depth in order to determine how the placement of the

interface affects the accuracy of the solution.

5.5 Numerical Experiments

Three domains and two different density profiles serve as the test cases for this

portion of the study.
5.5.1 Linear Sloping Bathymetry

For this test case, we employ a 48 km long domain with a constant bottom slope
varying from 10 m at the shallow end to 100 m at the deep end (approximately a 2% slope),
and the density profile varies linearly from 1026 kg/m3 (shallow) to 1028 kg/m3 (deep) in
the horizontal direction, with no variation in the vertical direction. Boundary conditionsare
no-flux land boundaries on both sides of the domain. This study utilizes all the nonlinear
termsin the equations. Eddy viscosity parametersin both the lateral and vertical directions
remain constant at O and 0.051 m?/s, respectively, and bottom friction utilizesalinear dip

condition with a Kg;, value of 0.05 m/s. In this test case, the GWC equation numerical
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parameter, G, is set to 0.001 sec’], thetime step set to 0.1 sec, and the simulation time set
to 1 day which allows the simulation to reach a steady state. Resultswere recorded 90 times

over the course of the simulation.

A “true solution” for thistest case was obtained by refining the grid in the horizontal
direction until the L, error changes were within machine accuracy and had reached
convergence, which occurred with a constant nodal spacing of approximately 180 m. This
served as the true solution for the horizontal resolution study. Similarly, for the vertical
resolution study, we refined the grid in the vertical until the L, error showed that the
solution had converged, which occurred with 129 (Ac = 0.016) uniformly distributed
vertical nodes. For the interplay study, a horizontal nodal spacing of approximately 180 m
with 129 vertical nodes provided the true solution. The true solution was obtained using the
z-coordinate system for calculating the BPG term; however, we also looked at the results
with the sigma coordinate system and found that results were ssimilar (BPG/velocity error

difference is on order of magnitude 108106, respectively.
5.5.2 |dealized Shelf

The second test case, adapted from both Walters and Foreman [83] and Fortunato
and Baptista [34], mimics the shelf break region with bathymetry that varies linearly in
three different regions along a 50 km coastal dice, as shown in Figure 5.6. Density varies
only in the vertical and depends on depth, as shown in Figure 5.6 (equations also shown).
Boundary conditions were no-flux land boundaries on both sides of the domain. Note that
if we change the boundary conditions to a no-flux land boundary on one side and a zero

elevation boundary condition on one side, the magnitude of the results change; however the
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Figure5.6  Bathymetry and density profiles for the idealized shelf test case.
Density values are shown changing from blue in the lighter water to
red in the heavier water.

trends are the same. This study utilized all the nonlinear terms in the equations, in
particular, we included the advective terms; however, results were similar whether
including or excluding the advective terms. Eddy viscosity parameters in both the lateral
and vertical directions remained constant at 0 and 0.051 m?/s, respectively, and bottom
friction utilized alinear slip condition with a K;, value of 0.001 nvs. In thistest case, the
GWC equation numerical parameter, G, was set to 0.001 sec’l, thetime step set to 0.1 sec,
and the simulation time set to 1 day which allows the simulation to reach a steady state.

Results were recorded 90 times over the course of the simulation.

For this test case, we compared the results to an analytical solution. As noted by
Walters and Foreman [83] and Fortunato and Baptista [34], the analytical solution for this

test caseis zero for the BPG and velocity field because there are no boundary forcings, and
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Figure5.7  Schematic of the bathymetry (shown asablack line) for: a) the idealized
shelf test case and b) the seamount test case along with the 12 points
(shown as the red dots) used as the comparison stations.

the density varies only in the vertical direction (stable stratification) and not horizontally.

The location of the twelve stations for this test case are givenin Figure 5.7a.

5.5.3 Seamount

In this test case, we analyzed a different bathymetry with the same density profile
astheidealized shelf test case. For the bathymetry, we developed a domain that includes a
seamount, along with a change in topography that mimics the continental shelf region (see
Figure 5.8). We utilized the following boundary conditions: a no-flux land boundary and
elevation boundary of zero on the opposite side of the domain. This study utilized all the
nonlinear termsin the equations. Eddy viscosity parametersin both the lateral and vertical
directions remained constant at 0 and 0.051 m?/s, respectively, and bottom friction utilized
a linear dlip condition with a Kdip value of 0.001 m/s. Here again, the GWC equation
numerical parameter, G, was set to 0.001 sec’l, the time step set to 0.1 sec, and the
simulation time set to 1 day which allows the simulation to reach a steady state. Results

were recorded 90 times over the course of the simulation.
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Figure5.8  Bathymetry and density profilesfor seamount test case. Density values
are shown changing from blue in the lighter water to red in the heavier
water.

Aswith the idealized shelf test case, we compared the results from this test case to
an analytical solution of zero for the BPG and velocity fields, since there are no boundary
forcings and the density varies only in the vertical direction (stable stratification) and not

horizontally. The locations of the twelve stations for thistest case are givenin Figure 5.7b.

5.6 Experimental Results

5.6.1 Linear Sloping Bathymetry

Figure 5.9 shows the results of the horizontal resolution study for the BPG,
horizontal velocity and vertical velocity. The results of this horizontal resolution study

show that the only significant difference between the three coordinate systems for
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(SZS system not evaluated for this test case.)

calculating the BPG was in the value of the BPG itself. For al the refinements in the

horizontal, the z-coordinate system exhibits nearly constant rate of decrease in the BPG

error; however, the sigma coordinates and hybrid schemes show that the BPG errors

decreases rapidly until the nodal spacing is approximately 6000 m and then decreases

dowly for the more refined grids. These trendsin the BPG errorsfor the sigma coordinates

can be explained by looking at the terms in Equation (5.9). For the coarse horizontal

resolution, we note that in the sigma coordinates the BPG errors develop more from the

truncation errors associated with the coordinate transformation term (Equation 5.9b), but

aswerefine the horizontal resolution thisterm in the equation becomes less significant and
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the errors are driven more from the truncation errors associated with the derivative of the
pressure field over the sigma surface, given by Equation 5.9a. Asfor the z-coordinates, the
errors change more uniformly as the grid is refined because of the nature of the density
field, specifically, the density field changes only in the horizontal direction. The averageL ,
errors for the horizontal and vertical velocity fields do not show any appreciable changes
based on the different coordinate systemsfor cal culating the BPG. We believe thisis dueto
other driving forces besides the BPG valuesinfluencing the velocity field, such as changes
in the surface gradient. Note that the velocity fields show second order convergence, the

theoretical maximum for linear Galerkin schemes.

The vertical resolution study shows that all coordinate systems for computing the
BPG produce nearly identical results, as was expected since the variation of the density
field is only in the horizontal direction. Similarly, for this model problem, there are no
observable changes between the different coordinate systemswhen looking at the interplay

of the horizontal and vertical resolution.

5.6.2 Idealized Shelf

5.6.2.a Horizontal Resolution Sudies

Global Spatial Accuracy

Figure 5.10 shows the global spatial accuracy results of the horizontal resolution
study for the BPG, horizontal velocity and vertical velocity for the idealized shelf. As can
be seen, evaluating the BPG with z-coordinates produce the lowest errors, while sigma

coordinates produce the highest errors. Results for the z-coordinates produce the lowest
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Ao = 0.031): a) BPG, b) horizontal velocity and c) vertical velocity.
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errors due to the density field varying in a stably stratified nature, thus the changes occur
in layers. Thus derivatives evaluated on a level surface show the minimum error. On the
other hand, the higher sigma error is expected because sigma coordinates are more prone
to errors in evaluating the BPG when the fluid is stably dratified. For the sigma
coordinates, we find high errors at the coarse horizontal resolutions due to the truncation
errors associated with coordinate transformation terms (Equation 5.9b). As we refine the
horizontal resolution, the errors associated with this term decrease (the numerical

approximation of the x-derivatives improve) and truncation errors associated with the
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derivatives of the pressure terms (Equation 5.9a) along the sigma surfaces begin to
dominate. In evaluating the term given in Equation (5.9a), the stretching of the coordinate
system in the vertical causesthereto be two different density values between two adjacent
sigma nodes [34], which leads to nonzero gradients. We also note that errorsfor the sigma
coordinatesreach an asymptotic val ue above the z-coordinate asymptote, whichis probably
due to the sigma coordinates inability to effectively capture a stably stratified density field
because of the stretching of the coordinate system and straddling of interfaces. For the z-
coordinates, we find that higher errors also exist at the coarser resolutions, which is due to
truncation errors that develop with this system; however, we note that these errors are less
than with the sigma coordinates by approximately two orders of magnitude. At the finer
horizontal resolutions, we find that the errorsfor the z-coordinates reach al so an asymptotic
value, and these errors devel op from the interpol ation errorsthat occur in the z-coordinates,
that is no matter how much werefine the grid horizontally, we still have vertical nodes that

straddle an interface.

Looking at the NCOM results, we notice that when grid resolution islow, the results
are closer to the sigma coordinate system since the grid contains more sigma coordinates
than z-coordinates. But as we increase the grid resolution, this allows for more horizontal
nodes, thus increasing the number of z-coordinates and causing the results to approach that
of the pure z-coordinate system. To illustrate this, we examined the z/c ratio for two
different horizontal resolutions, 9 and 33 nodes, with a constant vertical resolution of 17
nodes. We found that for the coarse resolution, the ratio is 1.31, while for the fine
resolution, we obtain a ratio of 1.41; thus indicating that adding horizontal resolution

increases the relative number of z-coordinates used in the NCOM system. The NCOM

143



system in this test case switches from sigma coordinates to z-coordinates in an upper layer
(at z = =25 m), just before there are large changes in density field. Note that the depth at
which we switch the coordinate system and bathymetry of the problem also playsarole, an
issue that is examined in Section 5.6.2d. Finally as expected, the SZS scheme produces
results that fall between the NCOM and sigma coordinate systems, as more of the layers
utilize sigma coordinates instead of z-coordinates. However, we should note that the results
improve relative to full sigmacoordinates by including some z-coordinates. In this scheme,
we switch from sigma coordinates to z-coordinates at z = —25 m and change back to
sigmacoordinatesat z = —75 m; these two depths are where there are large changesin the
density fluid. These results follow that of Fortunato and Baptista [34] in indicating that z-
coordinates provide the best solution to this test case; however, the NCOM scheme shows

promising results.

Also, note that errors in the BPG produce corresponding errors in the horizontal
velocity field (as shown in Figure 5.10b). The horizontal velocity results approach nearly

the same value for all four coordinate systemsfor a highly resolved horizontal grid.

Finally, we looked at the vertical velocity errors (shown in Figure 5.10c), which
follow a smilar pattern as the horizontal velocity errors; however, we find that when
looking at the results of the fine resolution there is a upward trend in the results. This

upward trend could be due to mass balance errors with the horizontal velocity field.

Local Spatial Accuracy

Next, we examined local spatial accuracy for one coarse horizontal resolution and

one fine horizontal resolution to determine where in space the errors occur. The number of
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vertical layers was kept constant at 65 nodes or A = 0.031.

First, we analyzed the coarse grid (Ax = 3125 m or 17 nodes) results for the BPG
errors, which are shown in Figure 5.11. In this figure, we include results from all four
coordinate systems used in the calculation of the BPG; while Figure 5.12 shows a plot of
the diagnostic density field and the location of the twelve stations. Aswith the global spatial
accuracy anaysis, results show that the z-coordinate system aways has the lowest error
values by two orders of magnitude (note the scale), while sigma coordinates produce the
highest error values. The two hybrid scheme results fall in-between the results for sigma

coordinates and z-coordinates.

In the sigma coordinates, we find that most of the errors (red regions) occur over
the shelf break region (stations 5-8) where the density field is changing rapidly along with
the bathymetry. The errors in the sigma coordinates results occur in this region due to the
truncation errors associated with the coordinate transformation terms (see Equation 5.9b),
which are approximated over the region with significant changes in the bathymetry
between the coarse grid nodes. As for errors in the z-coordinates, we see that most of the
errors occur in the same area as the errors in the sigma coordinates but are clustered near
the bottom for stations 5-9 and near the upper layers for stations 9-12. The errors with the
z-coordinates for stations 5-9 are due to the fact that we must extrapolate the values from
some of the results in the upper portion of the water column, since we encounter the “run
into the ground” problem shown in Figure 5.4. Regarding the errors at stations 9-12, we see
that thisis an areawhere the density values are changing rapidly, which means that we run
into interpolation errors. These errors exist whenever we have vertical sigma nodes that

straddle an interface between two density values, from which we must interpolate to z-
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Figure5.12 Schematic of the density field of the idealized shelf test case for the
coarse horizontal resolution with the twelve stations represented by the
white lines (see also Figure 5.7).

coordinates.

The NCOM and SZS systems incorporate the errors of both the sigma coordinates
and z-coordinates. In the areas that have more sigma coordinates, the results follow those
of the sigmacoordinates, whilein areasthat have more z-coordinates, theresultsare ssmilar
to the z-coordinate results. Similar patterns are found for the horizontal and vertical

velocity errors (not shown), since these errors result from errorsin the BPG field.

Next, we looked at the fine grid (Ax = 391 m or 129 nodes) results for the BPG
errors, which are shown in Figure 5.13. In Figure 5.14, we show a plot of the diagnostic
density field and the location of the twelve stations. In these results, we find that the
magnitude of the errorsfor all four coordinate systems are within one order of magnitude
difference (note the scales) with z-coordinates and NCOM being the lowest. In sigma
coordinates, we find that the errors now occur mostly in the regions where the density field
changes (stations 5-12, cf to density field in Figure 5.14). We note that these errors are due

to the truncation errors associated with the derivative of the pressure term (Equation 5.9a)
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Figure5.13 BPG error results for the idealized shelf test case for fine horizontal
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Figure5.14 Schematic of the density field of the idealized shelf test casefor thefine
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along the sigma surfaces. For the z-coordinates, we find that errors occur in the same
location as the sigma coordinates (stations 5-12) and also occur where the density field
changes. These errors result from the af orementioned interpolation errors. The behavior of
NCOM and SZS systemsis similar to the behavior in the coarse resol ution study in that they
incorporate patterns from both the sigma coordinates and z-coordinates. The horizontal and
vertical velocity errors (not shown) are similar to the BPG results since these errors result

from errorsin the BPG field.

When comparing the fine and coarse grid results, we note that adding more
horizontal resolution decreases the magnitude of errors for all coordinate systems.
However, we find that the errors decrease in the sigma coordinates more than the z-
coordinates because the z-coordinates are not as significantly influenced by the addition of
horizontal resolution for this type of density field (use of z-coordinates on alevel density
field resultsin small gradient errors). Such behavior issimilar to the results from the global

gpatia accuracy study. As mentioned in that analysis, the errors for the sigma coordinate
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system decrease rapidly as more horizontal resolution is added due to the decrease in the

influence of the truncation errors associated with the coordinate transformation (see

Equation 5.9b).

5.6.2.b Vertical Resolution Sudies

Global Spatial Accuracy

We next evaluated the influence of vertical resolution on the BPG and velocity

fields. Figure 5.15 shows the results for the BPG, horizontal velocity and vertical velocity.
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Figure5.15 Global accuracy results for the idealized shelf test case for vertical

resolution (horizontal number of nodes held constant at 65 nodes or
Ax = 781 m): a) BPG, b) horizontal velocity and c) vertical velocity.
L ong dashes indicate sigma coordinates, dot-dashes indicate the SZS
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As can be seen, the errors in the z-coordinate and NCOM systems continue to decrease
when more vertical resolution is added; however, for the sigma coordinate and SZS
systems, as further vertical resolution is added, the errors start to separate from the other
methods (z-coordinates and NCOM) and appear to reach an asymptotic value. For the
sigma coordinates, we note that the errors at the coarse vertical resolution develop from the
truncation errors associated with both of the termsin Equation (5.9); however, as vertical
resolution is added the truncation errors associated with the derivative of the pressure term
along the sigmasurfaces (Equation 5.9a) decreases, but the errorsfrom the truncation errors
associated with the coordinate transformation terms (see Equation 5.9b) plateau out due to
the presence of the % terms in the transformation (remember Ax is held constant). The
errorsin the z-coordinate continue to decrease as we add more vertical resolution because
the coordinate field starts to coincide with the density field. Also, this system relies on
interpolation of density valuesto alevel surface and the interpolation error decreases asthe
vertical spacing is reduced. In theory, we should be able to approach zero with the errors
for the z-coordinate system aswe continually refine the vertical grid; however, numerically
we cannot because of roundoff errors introduced in the interpolation and extrapolation
techniques. The NCOM resultslay near to the results using z-coordinates due to the relative
amount of z-coordinates used in the vertical, whilethe SZS resultslay near the results using
sigma coordinates due to the amount of sigma coordinates used in the vertical. Similar

trends are found in the horizontal and vertical velocity errors since the BPG is the driving

forcein this test case.
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Local Spatial Accuracy

Next, we examined local spatial accuracy, where we look at one coarse vertical
resolution and one fine vertical resolution, to determine where in space the errors occur.

The number of horizontal nodes remains constant at 65 nodesor Ax = 781 m.

The coarse grid (Ac = 0.25 or 9 nodes) results for the BPG errors are shown in
Figure 5.16. In Figure 5.17, we show aplot of the diagnostic density field and the location
of the twelve stations. In these results, we find that the magnitude of the errors for z-
coordinates and NCOM are nearly identical, and that the magnitude of the errors for the
sigma coordinates and SZS are very close to one another. Such behavior is not unexpected
due to the relative number of z-coordinates and sigma coordinates in the respective hybrid
methods. For sigma coordinates, we find that the highest errors occur near the shelf break
region (stations 5-7) with other significant errors obtained in the regions where the density
field ischanging rapidly (stations9-12). The errorslocated along the shelf break region and
those located where the density field is changing are due to truncation errors that are
associated with both terms in Equation (5.9). Asfor errors in the z-coordinates, we notice
that they occur mostly in the region where the density field changes (stations 7-12), which
is indicative of interpolation errors across stratified density fields. Note that the error
patterns for the NCOM system more closely follows the pattern for z-coordinates since we
have more z-coordinates in this hybrid system; however, the pattern for the SZS system
tendsto follow the pattern for sigma coordinates since we have more sigma coordinatesin
this hybrid system. An exception is that in the SZS system, we are able to see some of the
influence of the z-coordinatesin thelowering of the scale and the error pattern. Overall, we

note that most of the errors for the sigma coordinates resides in areas where we have both
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density and bathymetry changes; while, the z-coordinate errors mostly develop in the
regions where density changes occur. Similar patterns are found in the horizontal and

vertical velocity errors (not shown) since the BPG is the driving force in this test case.

Next, we looked at the fine grid (Ac = 0.031 or 65 nodes) results for the BPG
errors, which is shown in Figure 5.18. In Figure 5.19, we show a plot of the diagnostic
density field and the location of the twelve stations. Aswith the coarse results, wefind that
the magnitude of the errors are similar for the z-coordinate and NCOM systems, while the
magnitude of the errors are similar for the sigma coordinate and SZS systems. In sigma
coordinates, we find that errors occur in areas where the density field changes (stations 5-
12) with the greatest errors occurring near the shelf break region (stations 5-7). In this shelf
break region, the errors most likely come from the truncation errors associated with the
coordinate transformation term (Equation 5.9b) because we are not changing the horizontal
resolution. As for the z-coordinates, we notice that most of the errors also occur in the

regions where the density field changes (stations 5-12, particularly the upper layers in
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Figure5.19 Schematic of the density field of the idealized shelf test case for the fine
vertical resolution with the twelve stations represented by the white
lines (see also Figure 5.7).

stations 8-12). These errors arise because of the aforementioned interpolation errors. Inthe
NCOM system results, we find that the errors are similar to the errors for z-coordinates
since this hybrid system uses more z-coordinates; however, we do see the influence of the
sigma coordinate system with some of the higher errors over the shelf break region (red
coloring at station 5, layers 38-54). In the SZS system, we find that the errors are more a
combination of the patterns from sigma coordinates and z-coordinates. In particular, we
notice the influence of the sigma coordinate system in the higher errors over the shelf break
region (red coloring at station 5, layers 38-54); while the influence of the z-coordinate
system is seen in errors that occur between stations 9 through 12 in layers 40 through 60.
Similar patterns are found in the horizontal and vertical velocity errors (not shown) since

the BPG isthedriving forcein this test case.

When comparing fine and coarse grid results, we notice that the magnitude of the
errors decrease by approximately one order of magnitude for all four coordinate systems.

Also, note that the magnitude of the errors are always less for the z-coordinates than the
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sigma coordinates. At both resolutions, we find that most of the errors for all of the

coordinate systems occur in regions where the density field changes the most.

5.6.2.c Horizontal/Vertical Resolution Interplay

We examined the interplay between horizontal and vertical resolution for BPG
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Figure5.20 BPG errorsfor theidealized shelf test case for the interplay study.
Results are from a) sigma coordinates, b) z-coordinates, c) NCOM
system, and d) SZS system.
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Figure5.21 Horizontal velocity errors for the idealized shelf test case for the
interplay study. Results are from a) sigma coordinates, b) z-coordinates,
c) NCOM system, and d) SZS system.

horizontal velocity and vertical velocity errors, asshown in Figures 5.20-5.22, respectively.
A matrix of the horizontal and vertical resolutions is given in Table 5.1. Note that if the
simulation is unstable, then that result is noted with an arbitrarily high error value for
plotting purposes. For example, the smulation using 129 nodes in the horizontal and
vertical direction does not produce stable results, so alarge error value (1 for BPG or 1 m/
s for velocities) is assigned in order to generate Figure 5.20a. In Figures 5.20-5.22, the

errors within a given figure are shown on the same scale.
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Errorsinthe sigma coordinate and the SZS systems are higher by approximately an
order of magnitude than the z-coordinates and NCOM (lowest BPG errors for sigma
coordinates and SZS are on the order of 107, and for z-coordinates and NCOM they areon
the order of 10'8). Overall, we find that the z-coordinate system produces the least overall
error. As discussed in the previous section, this is due to the density field being stably
stratified, so the z-coordinate system more naturally describes the density changes than the

sigma coordinate system. Results also indicate that the NCOM system and z-coordinates
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have similar error patterns as refinement occurs in both horizontal and vertical directions.
The NCOM systemissimilar dueto the high number of z-coordinates; however, theresults
withthe NCOM system differ from the pure z-coordinate system since it does contain some
sigma coordinates particularly at the coarser horizontal resolutions. Thisis similar to our
findings with the global spatial accuracy resultsfor the horizontal resolution study. We also
note that the SZS system results are similar to the pure sigma coordinates due to the

significant number of sigma coordinates in the SZS system.

We also find that the results from the z-coordinates are influenced more by adding
more vertical resolution than by adding horizontal resolution, which is similar to findings
from the global spatial accuracy study (see discussion in Section 5.6.2a). Asfor the sigma
coordinates, we notice that this coordinate system is influenced by adding horizontal
resolution and vertical resolution. Horizontal and vertical velocity results (shown in
Figures 5.21 and 5.22) show the same trends as the BPG because the BPG is the driving

forcein this test case.

5.6.2.d Depth for Hybrid Systems

Lastly for this test case, we evaluated the depth(s) at which the hybrid systems
switch coordinate systems. An analysis of global spatial accuracy showsthat for the NCOM
scheme, the depth at which sigma coordinates are switched to z-coordinates should be
between 20 m and 40 m to provide the lowest errors. This depth range corresponds to the
region above the rapid change in the density field (see Figure 5.6). Based on previous
discussions, this makes sense because z-coordinates are more adept at handling layered

dengity fields. In the case of the SZS scheme, we found that the depth at which sigma
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coordinates are switched to z-coordinates should be between 30 m to 40 m, while the switch
back to sigma coordinates should be between 90 m to 100 m. These depth ranges
correspond to the region above and below the rapid change in the density field, similar to

the NCOM results.

5.6.3 Seamount

The major difference between this test case and the previous one is the bathymetry;
the density field is the same. In this section, we present major results from each of the
studies; reasons for observed patterns are given in Section 5.6.2 and are not repeated here

for the sake of brevity.

5.6.3.a Horizontal Resolution Sudies

Global Spatial Accuracy

For this test case, the horizontal resolution study shows similar results as the
idealized shelf test case (Section 5.6.2a), with the sigma coordinates error being higher than
the other three vertical coordinate systems (see Figure 5.23). BPG results indicate that
errorsin the NCOM scheme (which switches from sigma coordinates to z-coordinates at

= —25 m) coincide with those of the z-coordinates asthe grid isrefined, while the errors
with the sigma coordinates are approximately one-half log cycle higher. The SZS (changes
from sigma coordinates to z-coordinates at z = —25 m and switches back to sigma
coordinatesat z = —75 m, the depths correspond to the regions above and below the rapid
change in the density field) results fal in-between the sigma coordinates and NCOM

system. These BPG errorstrandate into similar error patternsin the horizontal velocity for
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Figure5.23 Global spatial accuracy results for the seamount test case for horizontal
resolution (vertical number of nodes held constant at 17 nodes or
Ao =0.125): a) BPG, b) horizontal velocity and c) vertical velocity.
Long dashes indicate sigma coordinates, dot-dashes indicate the SZS
system, solid line indicates the z-coordinates and short dashes or dots
indicate the NCOM system.

all of the vertical coordinate systems (cf Figures 5.23aand 5.23b). Wefind that the vertical

velocity errors have the same trends as the horizontal velocity errors.

Local Spatial Accuracy

Next, we examine local spatial accuracy, where we look at one coarse horizontal

resolution and one fine horizontal resolution, to determine where in space the errors occur.

The number of vertical nodes remains constant at 17 nodes or Ac = 0.125.

Figure 5.24 showsthe coarse grid (Ax = 3125 m or 17 nodes) resultsfor the BPG

errors, for al four coordinate systems. In Figure 5.25, we show a plot of the diagnostic
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Figure5.25 Schematic of the density field of the seamount test case for the coarse
horizontal resolution with the twelve stations represented by the white
lines (see also Figure 5.7).

density field and the location of the twelve stations. Results indicate that for the sigma
coordinate system the largest errors appear in the trough and crest parts of the seamount
region (stations 6-9); this changing bathymetry causes the truncation errors with the
coordinate transformation term (see Equation 5.9b) to influence the errors more in the
trough and crest regions than in other regions of the domain. In the z-coordinate system, we
find the highest errors where the density field changes in the deeper water (stations 9-12);
however, the magnitude of these errors are less than that of the sigma coordinate system.
Errors in the calculation of the BPG are high in the deeper water because of the
interpolation technique used in the upper layers and the extrapolation technique used in the
lower layers. Note that the NCOM and SZS results show a combination of the sigma
coordinate and z-coordinate results, as expected. However, it is interesting to note that
some of the larger BPG errors that occur in these systems do not appear in the sigma
coordinates and z-coordinates, for example, the errorsinthemiddielayersin thetrough and

crest region of the bathymetry (stations 7-9). This phenomenon may arise because of the
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switch in the coordinate schemes. We aso find similar error patternsin the horizontal and

vertical velocity (not shown) since the driving forcing is the BPG in this test case.

Next, we analyzed the fine grid (Ax = 391m or 129 nodes) results for BPG errors,
which are shown in Figure 5.26. In Figure 5.27, we show a plot of the diagnostic density
field and the location of the twelve stations. Results indicate that at this finer horizontal
resolution the errors decrease for al four coordinate systems with z-coordinates and
NCOM being lowest for reasons discussed in Section 5.6.2a. The errors with the sigma
coordinates occur in areas where the density field and bathymetry changes rapidly asin the
crest of the seamount (stations 7-9) and also in the deeper portion of the domain (stations
10-12). These errors are influenced by both the truncation errors associated with the
pressure terms along the sigma surfaces and the coordinate transformation term (see
Equation 5.9). As for the z-coordinates, we find that the errors exist mostly in the deep
portion of the ocean (stations 10-12) where the density field changes. These develop from
the interpolation errors in mapping the density values to z-coordinates, in calculating the
BPG. The NCOM system shows similar results to the z-coordinate system since it uses
more z-coordinates than the sigma coordinates. For the SZS system, we find that the errors
are smilar to those of the sigma coordinates since it uses more sigma coordinates.
However, theinfluence of the z-coordinates can be seen in the reduction of the errorsfound
near the crest of the seamount (stations 7-9). Finally, we find similar error patternsin the
horizontal and vertical velocity (not shown) since the driving forcing isthe BPG in thistest

case.
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Figure5.27 Schematic of the density field of the seamount test case for the fine
horizontal resolution with the twelve stations represented by the white
lines (see also Figure 5.7).

5.6.3.b Vertical Resolution Sudies

Global Spatial Accuracy

Figure 5.28 indicates how vertical resolution affects the errors in the BPG,
horizontal velocity and vertical velocity. Resultsfrom the z-coordinatesand NCOM system
havelesserror than the resultsfrom the sigmacoordinates and SZS system. Also, the sigma
coordinate and SZS systems tend toward an asymptote for the BPG. Horizontal and vertical
velocity have similar errors due to the BPG being the driving force. The patterns are very
similar to the idealized shelf case (Section 5.6.2b), and the reasons for this behavior are

discussed therein.
Local Spatial Accuracy

Next, we examine local spatial accuracy, where we look at one coarse vertical

resolution and one fine vertical resolution, to determine where in space the errors occur.
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The number of vertical nodes remains constant at 65 nodesor Ax = 781 m.

Coarse grid (Ao = 0.25 or 9 nodes) results for BPG errors are shown in Figure
5.29. In Figure 5.30, we show a plot of the diagnostic density field and the location of the
twelve stations. As can be seen, the errorsfor sigma coordinate system are largest at stations
1 through 6 and 8 through 10 in the bottom layer. If one examinesFigure 5.7 in conjunction
with Figure 5.8, we find that these are the |ocations where the bathymetry and density field
change rapidly. Thus truncation errors associated with both terms in Equation (5.9)

contribute to the BPG errors. In the z-coordinate system, we find the highest errors occur
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Figure5.30 Schematic of the density field of the seamount test case for the coarse
vertical resolution with the twelve stations represented by the white
lines (see also Figure 5.7).

in the area where the density field changes rapidly. These areas show high errors because
of the interpolation techniques used in the calculation of the BPG. As before, we note that
the NCOM and SZS system BPG errors show a combination of the patterns for the sigma
coordinates and z-coordinates. We also note that the horizontal and vertical velocity errors

(not shown) are similar to the BPG errors since the driving force isthe BPG.

Next, we analyzed the fine grid (Ac = 0.031 or 65 nodes) results for the BPG
errors, which are shown in Figure 5.31. In Figure 5.32, we show a plot of the diagnostic
density field and the location of the twelve stations. Asbefore, wefind that thelowest errors
occur with the z-coordinate system. Results show that the errors for both the sigma
coordinates and z-coordinates increase by half an order of magnitude relative to the coarse
grid results. The sigma coordinate results show BPG errorsthat are higher in the trough and
crest regions of the seamount (stations 7-10) due to both the evaluation of the gradients of
the pressure term along the sigma coordinates and the coordinate transformation term

(Equation 5.9). In the z-coordinate system, we find the highest errorsin the areas where the
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Figure5.32 Schematic of the density field of the seamount test case for the fine
vertical resolution with the twelve stations represented by the white
lines (see also Figure 5.7).

density field changes significantly, and some errors occur in regions where we suffer from
extrapolation issue at the bottom boundary (stations 7-10). We note again that NCOM and
SZS results show a combination of patterns from the sigma coordinates and z-coordinates.
The SZS results show how the z-coordinates influence errors in the area over the crest of
the seamount. For example, the lower layers of stations 7 through 10 are areas where the
sigma coordinate errors are high, but using the z-coordinates in this region for the SZS
scheme reduces the errors. Lastly, we note that the horizontal and vertical velocity errors

(not shown) are similar to the BPG errors since the driving force isthe BPG.

5.6.3.c Horizontal/\Vertical Resolution Interplay

Next, we analyzed the interplay of horizontal and vertical resolution on the BPG,
horizontal velocity and vertical velocity results (shown in Figures 5.33-5.35, respectively).
A matrix of the horizontal and vertical resolutionsisgiven in Table 5.1. Again, note that if

the results are unstable then that value is assigned an arbitrary error value (1 for BPG or 1
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Figure5.33 BPG errorsfor the seamount test case for the interplay study. Results
are from a) sigma coordinates, b) z-coordinates, c) NCOM system, and
d) SZS system.
m/s for velocities) in order to generate the figures (e.g. the simulation using 129 nodesin

the horizontal and vertical directions). In Figures 5.33-5.35, the errorswithin agiven figure
are shown on the same scale.

From these results, we find that the z-coordinate system produces the least overall
error, which is due to the density field being stably stratified, and thus the z-coordinate

system more closely coincideswith the density profile. The sigma coordinate system shows

higher errors than the other coordinate systems used in calculating the BPG, refining the
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grid decreases these errors but not to the level of the z-coordinates. The NCOM coordinate
system provides similar resultsto the z-coordinates due to the high number of z-coordinates
used in this system; the SZS coordinate system has results similar to sigma coordinates due

to the high number of sigma coordinates used in this system. Also note that we find similar

behavior in the horizontal and vertical velocity errors.

5.6.3.d Depth for Hybrid Systems

Lastly for thistest case, we evaluated the depth at which the hybrid systems switch
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coordinate systems. Global accuracy resultsindicate that the NCOM scheme should switch
from sigma coordinates to z-coordinates between 10 m to 30 m for minimal error. For the
SZS scheme, the switch from sigma coordinates to z-coordinates should occur between 20
m and 30 m, and the switch back to sigma coordinates should be between 90 m and 100 m
in order to minimize errors. These switches correspond to the region above and below the

rapid change in the density field. In short, z-coordinates should be used through layered

fields in order to minimize error.
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5.7 Conclusions

Herein, we present results from an assessment of how thevertical coordinate system
used to calculate the BPG and resolution (horizontal/vertical) impacts simulation results.
This study uses a 2D laterally-averaged model to investigate these changes. Evidence thus
far indicates that the z-coordinate system for calculating the BPG minimizes the error.
However, two of the test cases used in this chapter are more favorable for the z-coordinate
system. An analysis of the spatial error distribution shows that results from the z-
coordinates have highest errors in areas where the density field changes rapidly
(interpolation issues) and also has problems when the horizontal resolution istoo coarse to
address the “running into the ground” problem. Results from simulations with sigma
coordinates show that errors occur due to the stretching of the coordinate system, and if the
grid resolution is not fine enough in the horizontal, the errors associated with the coordinate
transformation term begin to influence the results. The hybrid systems show improvements
over the results from the pure sigma coordinates and tend to obtain results that are near the
dominate coordinate system. Interplay results show that the errors from sigma coordinates
are influenced both by the addition of horizontal and vertical resolution; whereasthe errors
in the z-coordinates tend to be impacted more by the addition of vertical resolution rather

than the addition of horizonta resolution.
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Chapter 6. Future Work

The following sections outline future work in each of the topical areas that formed

the basis of this dissertation.

6.1 Implicit Time-Marching Algorithm

The implicit time-marching algorithm is currently being implemented into the
production code of ADCIRC and studies on this algorithm are complete. Thus there are no

plans for any additional analyses of this algorithm.

6.2 Form of the Momentum Equation

This portion of the dissertation work has also been implemented into the production
code of ADCIRC. However during thisimplementation, several new issues arose that must
be addressed in the near future. These issues apply to the lateral stress (last terms in
Equations (2.2) and (2.3)) and advective terms (second termsin Equations (2.2) and (2.3))

in the two governing equations, GWC and momentum.

Lateral stress terms, which model momentum dissipation, arise from the time
averaging of the advective terms in the momentum equation and the viscous term in the
original Navier-Stokes equations [87]. The viscous term represents the averaged effects of

molecular motions; however, thisis a scale not resolved by the equations utilized in ocean

177



flows. The time-averaged advective terms in the momentum equation represent the
turbulent Reynol ds stresses, which describe the averaged effects of momentum transfer due
to the turbulent fluctuations[87]. These turbulent or high frequency fluctuationsin the flow
field tend not to be modeled explicitly, so aturbulence closure model, based on constitutive

laws, is needed to describe these fluctuations in terms of the dependent variable [60].

Lateral stress terms tend to be used to help stabilize the numerical solution;
however, they also represent physical processes which cannot be represented by the scale
of the spatial and temporal grids (called “subgrid scale” processes) [41]. These processes
range from molecular diffusion and viscosity to larger scale eddies [41]. The turbulence
closure models used to evaluate these terms range from the simple, which only use asingle
parameter to model dissipation, to the complex, which use coupled differential transport
equations to describe the distribution of turbulent momentum [2]. In the ssimplest model, a
single parameter, referred to as the eddy viscosity, is defined and istypically selected to be
a congtant value over the entire domain. This type of formulation works well for depth-
averaged flows in large water bodies [2] because there is not much need for additional
numerical stability and the small scale processes do not play a significant role in the
circulation. However, for widely-varying flow regimes, such asthose that exist in the near
shore region where small scale processes can influence circulation and numerical stability,
more complex closure models are required. For these applications, the eddy viscosity
parameter is allowed to vary in space or time; the functional dependence ranges from
empirical rulesthat express eddy viscosity asafunction of some static information, such as
grid spacing, to equations that actually model momentum dissipation [2]. An example of

this more complex formulation is the so-called k-¢ model, a two equation formulation
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where k is the turbulent kinetic energy and ¢ is the dissipation rate of k. The k- model is
frequently utilized in areas that have small-scal e turbulent features, such asflowsnear river
beds [2]. Other formulations that fall between the two extremes include mixing-length

models and one-equation formulations, such as the k-equation model [2].

Currently, ADCIRC uses the simplest lateral stress closure model, where constant
eddy viscosity parameter is used over the entire domain. Future work will look at
continuing the use of the eddy viscosity parameter but expressing the lateral stresses in
terms of either flux or velocity, as follows. For the GWC equation, we plan to investigate
five forms of the lateral stressterms: 1) one that uses flux and elevation (default method in
ADCIRC); 2) one that is flux-based and non-symmetric; 3) one that is velocity-based and
non-symmetric; 4) one that is flux-based and symmetric; and 5) one that is velocity-based
and symmietric. For the momentum equations, we will investigate four forms of the lateral
stressterm: 1) onethat is velocity-based and non-symmetric (default method in ADCIRC);
2) one that is flux-based and non-symmetric; 3) one that is velocity-based and symmetric;
and 4) one that is flux-based and symmetric. Lastly, we will aso investigate using the
Smagorinsky formulation for obtaining the eddy viscosity parameter, which is spatially-

varying.

Another issue is with the form of the advective terms between the governing
equations. Recall from Chapter 4, that we investigated both the consistent form of the
advective terms, which means that these terms utilize the same form (e.g., both
conservative), and the inconsistent form of the advective term, which means that these
terms utilize a different form (e.g., conservative and non-conservative). We found that the

best results occur when using the consistent form of the advective terms. Future work will
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analyze the advective term in the conservative momentum equation to determine if it
should be evaluated as it appears naturaly in the equation or in an expanded form

(derivatives expanded using the product rule).

To investigate these two issues, we will utilize two domains, an idealized inlet and
Beaufort Inlet in North Carolina. These two domains offer diverging and converging flow
fields around the inlet entrances; such flow regimes are often characterized by high

advection and turbulence. Figure 6.1 shows the idealized inlet using a resolution of 250 m

20 km

land
boundary

land
boundary

- \ boundary
50 km -

Figure6.1 Idealized inlet domain (250 m resolution).

on each side of the triangle, which gives a A/Ax ratio of 1250 for the M, wave. Note
equilatera triangles were used throughout (except around the curved inlet) to minimize
truncation error. Boundaries are marked on the figure, with either ocean or land indicated.
The boundary forcing for the open ocean boundary will be the M5, tidal constituent with a
0.15 meter amplitude, while the land boundaries are no normal flow. Bathymetry varies

from aminimum of 5 m to a maximum of 14 m. The depth in the inlet and in the entrance
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to the inlet remains constant at 5 m, while in the larger basin off-shore, the depth varies
linearly from 5 m at the inlet entrance to 14 m near the ocean boundary.
Figure 6.2 shows the coastal North Carolina area and Figure 6.3 shows an
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Figure6.2 Coastal North Carolina area.

enlargement of the Beaufort Inlet area. The domain extends from the tip of Virginiato the
South Carolina border with Georgia, and it includes Cape Fear, Cape Lookout and Cape
Hatteras, North Carolina[58]. A detailed map of the Beaufort Inlet and surrounding areas
is given in Luettich et a. [58]. This domain includes the barrier islands of the North
Carolinashoreline and many of the associated channels. Bathymetry values vary from 5000
minthe deep part of the ocean, which isincluded in order to more accurately enforce ocean

boundary conditions, to a2 m depth intheinlet areas. Resolution in the domain ranges from
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Figure6.3 Beaufort Inlet, North Carolina.

approximately 25 m in the inlet region to approximately 25 km in the deeper waters.
Boundaries are marked in Figure 6.2, with either ocean or land indicated. The boundary
forcing of the open ocean boundary consists of 5 tidal constituents, the M,, Sy, K4, O; and

N5, while the land boundaries are no normal flow.

In order to quantify the impact of the various latera stress and advective
formulations, we will look at the mass conservation, stability and local spatial accuracy.
The mass conservation errors will be determined by comparing the accumulation of mass
to the net flux of the mass leaving the element or domain by directly integrating the
primitive continuity equation, which has been used in previous studies [54]. The
development of the mass conservation algorithm is presented in Chapter 4, Section 4.3.1.
Asmentioned in Chapter 4, we purposely use afinite volume approach for computing mass
error because of the diagnogtics it provides. To investigate the stability of the algorithms,

we will utilize the same procedures presented in Chapter 4, Section 4.3.2 followed by an
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additional step to find the maximum allowable time step using the CM equation with the

expanded form of the advective term.

Lastly, we will evaluate local spatial accuracy. CAFE [61] plots will be used to
quantify changesin local accuracy; adiscussion of these plots occursin references [30,40]
and in Chapter 3, Section 3.5.3b. Procedures for this study will follow those presented in
Chapters 3 and 4 but will also include an additional evaluation of the results from the CM
equation with the expanded form of the advective term. Table 6.1 shows the matrix of the
numerical experiments that will be analyzed and details the form of the lateral stressterms
used in the GWC and momentum equations. Also note that in Table 6.1, we will analyze
each one of thetest cases using the three formulations of the advective terms, one using the
non-conservative formulation (thiswill serve as the control for the experiments), one using
the conservative formulation with the native form of the advective terms, one using the
conservative formulation with the expanded form of the advectiveterms. Therefore, in this
study, 60 different permutations of the lateral stress and advection term formulations will

be examined.

Someinitial results for the idealized inlet test case have been completed; they look
at both global and local mass conservation errors. Results are shownin Table 6.2. To obtain
the global and local mass conservation errors, we normalized the errors based on the
number of horizontal nodes. We analyzed a small region around the inlet that encompassed
the inlet, the entrance to the inlet and a comparable portion of the waters outside the inlet
entrance for the local mass conservation errors. From these results, we note that the lowest
global and local mass errors are seen with the conservative formulation of the advective

terms, either in the native or expanded forms (note the highlighted results). If we divide
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Table 6.1 Matrix of numerical experiments.

Test case Lateral stress term - Lateral stress term -
GWC equation. momentum equation.

12 original formulation velocity-based (N Sb)
2 original formulation flux-based (NS)

3 original formulation velocity-based (S°)

4 original formulation flux-based (S)

5 flux-based (NS) velocity-based (NS)
6 flux-based (NS) flux-based (NS)

7 flux-based (NS) velocity-based (S)

8 flux-based (NS) flux-based (S)

9 velocity-based (NS) velocity-based (NS)
10 velocity-based (NS) flux-based (NS)

11 velocity-based (NS) velocity-based (S)
12 velocity-based (NS) flux-based (S)

13 flux-based (S) velocity-based (NS)
14 flux-based (S) flux-based (NS)

15 flux-based (S) velocity-based (S)
16 flux-based (S) flux-based (S)

17 velocity-based (S) velocity-based (NS)
18 velocity-based (S) flux-based (NS)

19 velocity-based (S) velocity-based (S)
20 velocity-based (S) flux-based (S)

a. Note each test case eval uated the advective terms in non-conservative form, conservative form
with the native form of the advective terms, and conservative form with the expanded form of the
advective terms.

b. NS - Non symmetric

C. S- Symmetric
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Table 6.2 Global and local mass conservation results (lowest errors are in bold).

Advective term treatment
non-conservative conservative conservative
formulation formulation (native) | formulation (expanded)
Test case | global local global local global local
1 1849 | 2815 1.772 2.738 1.772 2.740
2 1874 | 2.818 1.787 2.728 1.788 2.730
3 1857 | 2.820 1.778 2.746 1.778 2.745
4 1874 | 2.818 1.787 2.728 1.787 2.730
5 1849 | 2815 1.772 2.738 1.772 2.740
6 1874 | 2.818 1.787 2.728 1.787 2.729
7 1857 | 2.820 1.778 2.745 1.778 2.745
8 1874 | 2.818 1.787 2.728 1.787 2.729
9 1849 | 2815 1.772 2.738 1.772 2.740
10 1874 | 2818 1.787 2.728 1.787 2.729
11 1874 | 2.818 1.778 2.746 1.778 2.745
12 1874 | 2.818 1.787 2.728 1.787 2.729
13 1849 | 2815 1.772 2.738 1.772 2.740
14 1874 | 2.818 1.787 2.728 1.788 2.730
15 1857 | 2.820 1.778 2.746 1.778 2.745
16 1874 | 2.818 1.787 2.728 1.788 2.730
17 1849 | 2815 1.772 2.738 1.772 2.740
18 1874 | 2.818 1.787 2.728 1.788 2.730
19 1857 | 2.820 1.778 2.746 1.778 2.745
20 1874 | 2.818 1.787 2.728 1.788 2.730
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Table 6.2 into the five forms of the lateral stress term used in the GWC equation (see Table
6.1), wefind that there is no impact on global or local mass errors (note the results from the
first four test cases compared to the second four test cases). When examining the different
forms of the advective termsin the equations, we have observed some trends. K eeping with
just the non-conservative formulation, we find the lowest global and local errors when
using the velocity-based, non-symmetric form of the latera stress term in the momentum
equation (notethevaluesintest cases 1, 5, 9, 13 and 17, first column) regardless of theform

of the lateral stressterm in the GWC equation.

When looking at the conservative formulation we find that, regardiess of the
advectiveterm treatment or theform of lateral stresstermsinthe GWC equation, thelowest
global mass errors occur when the lateral stress terms in the momentum equation use the
velocity-based, non-symmetric form (note the values in test cases 1, 5, 9, 13 and 17, third
and fifth columns). In the local mass balance analysis, the results indicate that the lowest
errors exist when the lateral stress terms in the momentum equation use the flux-based,
non-symmetric or symmetric forms, regardliess of the lateral stress terms in the GWC
equation (e.g., note values for even number test cases) and regardless of whether or not the

advective terms are native or expanded (fourth column and sixth column).

We plan to useresults from the idealized inlet to narrow the number of permutations

from 60 down to 10 or less. Then, these will be further tested on the Beaufort Inlet domain.

6.3 Baroclinic Pressure Gradient

Recall from Chapter 5 that the evidence thus far indicates that the z-coordinate

system for calculating the BPG providesthe lowest error; however, the two of the test cases
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used in that chapter were more favorable to the z-coordinate system. Therefore in the
future, we will look at other test cases in which the density and bathymetry profiles do not

favor the z-coordinate system.

Furthermore, the BPG errors and the interaction of other terms cannot be fully
evaluated with diagnostic simulations, so future work will also include making
comparisons within the framework of a prognostic model. In order to evaluate prognostic
BPG and velocity errors, we plan to look at density and bathymetry profiles that can be
validated with results from either laboratory data or from fine grid resolution results. One
such laboratory data set is the “dam break” problem [41], which initially has water of two
different densities, freshwater and salt water, at rest with adivider between them. When the
divider is removed the water is allowed to mix. Laboratory experiments are currently
underway to provide the validation data. This data will aso provide information in which

we can compare the different coordinate systems to one another.

Next, we will investigate the “gravity adjustment problem” [41], which again
entailsthe use of water that hastwo different densities, e.g. freshwater and salt water, at rest
with adivider between them. The salt water resides at the top of the slope so that when the

divider is removed, the denser water should move down the bathymetry slope.

Lastly, we will investigate a density field referred to as a sat wedge. The
bathymetry in this test case also contains a doped area where we expect to see salt water
intruding into freshwater, as what happens near the mouth of ariver. In these latter two test
cases, wewill utilize afine grid resolution to provide a*“true” solution, as done for some of

the accuracy experimentsin Chapters 3 and 4.
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All of the test cases thus far have used constant mesh spacing. Therefore, future
work on the calculation of the BPG needs to analyze test cases with variable grids.
Fortunato and Baptista[34] in their studies suggest that the use of these unstructured grids
may help address some of the problems seen in the sigma coordinate system. As mentioned
earlier in Chapter 5, they provide a set of guidelines; this work will examine these

guidelines and offer improvements.

Also, we currently use interpolation to obtain density values between two layersin
order to determine the BPG in the z-coordinate system. We will look at alternative
interpolation methods. The extrapolation method used to define bottom layer BPG also

needs to be assessed.

Lastly based on outcome of future work discussed in Section 6.2, we may decide to
change the form of the momentum equation in the 3D ADCIRC model from non-
conservative form to conservative form. In 2D (Chapter 4), we have seen that changing the
form of the momentum equation decreases local mass conservation errors, which can
become an issue when incorporating the transport model needed for prognostic

smulations.
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Appendix 1. Nomenclature

Symbols

Roman Letters

jo—hoccm%écﬁﬁgggl—Im_mU
o

atmospheric forcing

vertically-integrated baroclinic pressure gradient

Courant number, equals cAt/Ax

set of continuous functions over Q whose first derivative is,
discontinuous at afinite number of pointsin Q

momentum dispersion

lateral eddy viscosity

numerical parameter in the generalized wave continuity equation
total fluid depth, equalsh + {

symbol for primitive continuity equation

lateral stress gradient

symbol for primitive momentum equation, non-conservative form
symbol for primitive momentum equation, conservative form
time period for wave period

macroscopic stress tensor

depth-averaged velocity

symbol for the wave continuity equation

symbol for the generalized wave continuity equation

top value for the sigma coordinate mapping (a = 1)

bottom value for the sigma coordinate mapping (b = —1)
baroclinic pressure gradient

linear wave celerity, equals ./gh

Coriolis parameter, equals 2Q2sin¢

magnitude of gravity |g|

bathymetry
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©

a

< s < c —~+ T

<
w
W)

N N < X

gpatia index

time weighting parameter

lateral stress gradient

unit outward normal vector

pressure

atmospheric pressure

atmospheric pressure at the sea surface

time

velocity component in the x-coordinate direction
velocity component in the y-coordinate direction
velocity component in the z-coordinate direction
velocity of the fluidin2D u, v

velocity of the fluidin 3D u, v, w

Cartesian space coordinate

Cartesian space coordinate

Cartesian space coordinate

depth

Greek Letters

T >3 0o Q 0D

< D
o

spatial domain (R", forn =1, 2, or 3)

angular velocity of the earth

Earth elagticity factor

lateral eddy viscosity

surface elevation above the datum

Newtonian equilibrium tidal potential

wavelength

density

reference density

latitude (north of the equator positive)

2D bottom friction term, which is determined from either a linear
relationship or through the Chezy formulation

bottom friction term for the 3D shallow water equations, which is
based on the bottom velocity

imposed surface stress

vertical stress vector
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Special Symbols and Operators

\Y nabla (grad) operator

Ve divergence operator

A forward difference operator

0/0X partial derivative in the x-direction along the sigma surfaces

0/9y, partial derivative in the y-direction along the sigma surfaces

Vi divergence operator in the x and y-directions

nyc divergence operator in the x and y-directions along the sigma
surfaces
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Appendix 2. Derivation of the Sigma Coordinate
Transformations

The linear mapping between z-coordinates and sigma coordinates is given by

c = a+(%))(z—§) (A2.1)

where a and b are constants, o = o(x,y,zt), H = hXxy) +{(xyt) and

€ = C(x v, t). By rearranging Equation (A2.1), we find the inverse mapping:
z = ("—‘E‘) H+( (A2.2)
a_

where z = z(o, X y,t), H = H(x, y,t) and L = {(x,y,t). Inthez expression, ¢ and t

are considered independent variables.

Now, we can take derivatives of Equation (A2.2) with respect to the variables

shown above. First, we look at the derivative with respect to time:

f;_f - %K" L2 =3 (h(x, y) + L06 Y. ) + LV, t)] (A2:3)

0z _ (c—a\dl , dC 1 Ydo
at (a—b) oot (a—Ea ot (A2.4)
since ¢ is considered an independent variable. Now, by using a common denominator we
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find that the derivative reduces to:

Now, we need to evaluate the derivative with respect to the x-direction:

az = a o X, ’Zat —a

x gﬂ P )(h(x, Y) + 8%y, ) + L%, t)} (A2.6)
dz _ (o—a\oh (o—a\df  df

ox (a— ax+(a—b) ax T ox (A2.7)

Using a common denominator, we obtain the following:

0z _ (c—a\oh  (c—b\dC

ox (a— ax+(a—b) oX (A2.8)
Next, we evaluate the derivative with respect to the y-direction.

0z _ 9 [(o(xy,zt)—a

dy - @K 2D )(h(x, y)+ (% Y, 1) + 5% Y, t)] (A2.9)

0z _ (c—adh, (c-a\dL, &

ay (a— oy * (a—b) oy * oy (A2.10)

Using a common denominator, we obtain the following:

%Z/ - (ZT_@ 3_:', ¥ (ZT@% (A2.11)

Next, we evaluate the derivative of ¢ with respect to the independent variables. In

this derivation we utilize the sigma coordinate relationship shown in Equation (A2.1).
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0= 9as(72 o) (206 % 0.0 ~E0ey. )] (A2.12)
do _ (a=b
£ (o2 s

since H and { isindependent of z.

Next, we evaluate the derivative for the time derivative:

W= Har (a2 ey o0 -ty )] (A2.14)
- (- (DH(EDecd ves
- (e (o o

Now for the derivative in the x-direction:

0 -3/, (s t))(z(x Y00 =Ly, ) (A2.20)
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06 _ a a b
%0 = @S (2 ( Dy (A2.21)

do - (a=by &), (a=p)( H)(o=8)y, ¢ ¢) (A2.22)
2 - 200 () Bw-w (Do w2
s - =tire=al ) () Bo-o we
- R RIS #

Following the same steps we find the derivative in the y-direction.

do _ (c=b)( 0 c—a\(_dh

= ) (FG) (220
Lastly, the derivativein the z-direction is

06 _ (a—-Db)

~ - A (A2.28)

Now, using the chain rule, we obtain the following for aderivative of avariable, u,

in the z-direction.

uX ¥, zt) _ du(X Y, 0(% Y.z 1), t)do(X. ¥, 2 t) (A2.29)
0z Jdo 0z '
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o _ (a=bjon

2z~ UH Jao (A2.30)

We can expressthe derivatives in z-coordinates as derivativesin sigma coordinates.

First, we look at the time derivative term of the momentum equation: %—l: By using the

chain rule, we obtain the following:

u(x Y, z(x Y, 0, ), t)

4 UG Y. 20 Y. 6.9, 92 _ du(x Y. 6 Y. 2. 1) (a5 3y)

at , 0z ot ot
ou| _ du| _dudz
ot|. ~ ot|_ ozot (A2.32)
z o
ou| _ du| (a—=b)dufoc—b)d¢
at|, ~ atl, B n (A233)
oul _ ou| _ G—E)Qg a—b)au
at|,  ot|_ Ka— BJ( H )ac (A2.34)
Now, we can look at the derivatives in the sigma coordinates and see if we get the
same resullt.

au(x Y, 2(x Y, o, t), t)

_ U Y. 0% Y. zt). )| | JuUXY.0(XY.z1).t)do (A2.35)
ot~

ot , ot G do

204



which is the same as Equation (A2.34) if you cancel the a—b in that equation.

Next, we look at one of the space derivative terms for the x and y-directions of the

momentum equation: E;—:J( : g—; By using the chain rule, we can obtain the following:
QU(X, ¥, (% ¥, G, 1), 1) |, QU(X, ¥, Z(%, ¥, G, 1), )9z _ Ju(X% Y, 6(% ¥, Z 1), 1) (A2.38)
ox 0z oX oX 5 '

ou| ,dudz _ du

OX z+ 0zox  0x|_ (A239)

ou| _ du| _oudz

x|, ox|_~ 9zdx (A240)

For the x-direction, we obtain the following equation:

du| _oaul r[(oc—ayoh (o-Db)\dlj a=b)\du

x|, ox|_ Ka—b) x " (a—b) BXJ( H )ao (A241)

In the y-direction, we obtain the following equation:

dul _ du| [(o—a\oh_ (c-Db\dl] a—Db)du

ay|, C oy 5 Ka—b) oy * (a—b) ayJ( H )ac (A242)
Now, we determinethe derivativesin the x- and y-directionsin the sigma coordinate

system.

u(x Y, 2(x Y, 0, ), t)

- U0y, 006y 20,0, UGV, 0(% Y. 2. 09 25 43

ox ox do ox
z 9
au| _ du| , dudo
ox|, = ax|_"doox (Az44)
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For the x-direction, we find the following:

While for the y-direction, we find the following:
B - Db %) (ona)( ) w240

which are the same as Equations (A2.41) and (A2.42), if you cancel the (a—b) inthetwo

equations.

Lastly, we looked at the development of the w,; term, which utilizes the first four

terms on the left hand side of the momentum equationsin 3D (Equation (A2.47)) and their

evaluation in the sigma coordinate system.

ou au au ou
at |, Yax|, " Vayl, T Vel
u

ot

AERFEG S RS CRRIE5e

B S CIEREE e

We can write it compactly as:

ou ou ou oul _du ou ou a—b\du

at| TUax FVayl TWaz| T ol TYax| tVay +wo H )80 (A248)
z z z z G o o

where
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w = w-(02p) 5 G5 Gl G5+ G205y e

which is the same as that given in Luettich and Westerink [60].
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Appendix 3. Truncation Errorsfor the Governing
Equations

Herein, we examine the truncation errors for the 1D equations of ADCIRC (GWC,
NCM and CM equations). To evaluate the truncation errors, we utilize Taylor series

expansions of the discrete form of each term shown in the governing equations below:

_9C, <0G 0 [a@u), o oc_ o] _
\/\/G_at2+c5at 45— | S+ (G-m)g+ gHE: . =0 (A3.1)
), ) . ed’g _
M = +u +Tu+g=—=—= =0 (A3.2
ot - ox X Hy,2
c_o(q) , d(qu) 9 g _
M~ = ot + I +rq+gHaX Eaxz =0 (A3.3)

By using the Taylor series, we expand the dependent variables around a common node
point for evaluation purposes. The results are then subtracted from the continuum equations

in order to obtain the truncation error, that is TE = continuum — discrete approximation .

The discrete form of the equations come from using c® linear finite element for the
gpatial discretization. For the temporal discretization, athree time-level scheme centered at
k isused inthe GWC equation (Equation (A3.1)) and atwo time-level scheme centered at
k +1/2 isused in the momentum equations (Equations (A 3.2) and (A3.3)). The nonlinear

termsin the equations employ an explicit formulation. We utilize exact quadrature rulesand
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averaged terms are based on an elemental average.

To find the truncation error expressions, we employ Mathematicag to expand the
Taylor Seriesto the seventh order terms; however, we report errors only to the leading two
orders. In Mathematicag), derivatives are shown in both time and space using the following
notation: q©¥(j, k) , where the j indicates the space index, K is the time index and the
(0,1) above the dependent variable indicates the order of the derivative in space and time.
Thus @Y}, k) indicatesafirst derivativein time for the dependent variable, q at nodej,
time k. Also, notethat dt indicates the change intime, while dx(i + 1) and dx(i) indicate
the node spacing and i is associated with the element number. Finally, parameters, such as
T or €, are shown astau or eddy, respectively. Note: analyses provided herein are only for

the interior discrete equations.
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Truncation Errors for the Generalized Wave Continuity Equation

First Term - (9°¢)/ (ot

-% 2%, k) dt? + % @x ) —dx ( + 1) ¥ G, k) dt> - 7—12 @x ()? —dx ( + ) dx () +dx ( + 1) 22? G, k) dt® +

% (dx () —dx G + 1) Z? (, k)—%(dx(j)z—dx(j +Ddx () +dx( +1DH 722, k)

Second Term - G((9%)/(at))
—% G223, k)dt2+% Gdx () —dx ( +1)) 23, k)dtz—% G@Ax () —dx ( + D) dx () +dx  + D22V, k) dt® +

% G(dx () —dx ( +1) 2V, k)—% G (P —dx( +Ddx () +dx( + DA P (, k)

Finite Amplitude Term - part 1 - gh((aZC)/(axz))
% gh®®(j, ko 22(j, ky di® + % g(dx(j +1) —dx()) 22(j, W H?O(j, Ky dt* + % gh(j, K 2%2(j, Ky dt® +
% g@x(j + D —dx(j)) 0, b 222(j, K dt* + % 9(@x(j)* —dx(j + D dx(j) +ax(j + D) h?O(j, K 222(]j, ky dt® +
% g(@x(j)* —ax(j +1) dx(j) +dx(j + 1% 2*2(], W hO(j, kydt* + % g@x(j +1) —ax(pnh(j, k) 2%2(j, ky dt® +
% g(@x(j)* —ax(j +1) dx(j) +dx(j + D) hO(j, K 2°2(], kydt® +
% g(Ax(j)? —dx(j +1) dx(j) +ax(j + DA (], K 242(], k)dt2+% g(ax(j +1)—dx(}) 20}, K h2O(j, k) +
% g(ax(j + 1) —dx()) (], K 229, k)+% g(Ax(j)? = dx(j + D dx(j) +dx(j + 1D K20}, k) 220(j, K +
% g(@x(j)” = ax(j + 1) dx(j) +dx(j + % 29, k h®O(j, k)+% g@x(j + D -ax(Hh, b 22, K+
% g(@x(j)* —dx(j + D dx(j) +dx(j + D) N, 230G, k) +

% gx(j)? —dx(j + 1) dx(j) +dx(j + DA h(j, K 249, k)

Finite Amplitude Term - part 2 - g((9°(2%))/(3x%))

% g@x(+D—-dx (N z=®0 G, k) + 2—149(d><(i)2—d><(i +Ddx () +dx( +DHzg*? G, k)

Advective Term - conservative form - (az(qu))/(axz)

% @x(j + 1) = dx()) qu®O(j, k) + 1—12 (dx(j)? = dx(j + 1) dx(j) + dx(j + D?) qu*O(j, k)
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Advective Term - non-conservative form part 1 - o(u((9¢)/at))/ (9x)

~2 29, U9, od - = UG R, a+ — @) -0k DU, 02, R+

@x(j) —ax(j +1) 2°7(j, U2, ky dt2-2—14 @) = ax(j +D () +ax(j + 27 29, U, Ky ot® +
@(j)—ax(j + D) w(j, Z*(j, K dt2-2—14 (@) =ax(j + D ax(j) +ax(j + DU, k0 229, K o® ~

(@) =ax(j + D () +ex(j +17) 299, W USO(j, Ky at® ~

legleRlegleolF

(@x()? —ax(j + D ax(j) +ax(j + DA u(j, K 233, k)dt2+% 229}, W U0, Ky ot +% u(j, K 242, K dt +
@x(j +1) —dx(NH U0, k) 212(, kot +711 @x(j +D—dx(j) 2°2(j, KW U*2(j, kydt +
@ —dx(j + D dx(j) +dx(j +D?) 22, W U?2(j, kyot +711 @x(j +D—ax()u(j, K 222(j, kot +

(@x(j)? —ax(j + D ax(j) +ax(j +DIHUO(j, W Z%2(j, Ky dt +

= Ol ol A

(@ (j)? —ax(j + D ax(j) +ax(j + D7) 2°2(j, K UPO(j, Ky dt +

(@Y =ax(j + D ax(j) +ax(j + DA u(j, K 232(], Kydit +% @x(j) —ax(j + DYUO(j, b 20(j, k) +

NE Sl e Rl

= (@(j)—ax(j +1) 2°P(j, kyuOyj, k)—;l1 @Y = ax(j + D adx(j) +ax(j + DA ZP(j, K U0, k) +
1 . . . . 1 . . . . . .
5 @)= +)ul, K 2], 0= @X(j)* = ax(j +2) ax(j) +ax(j + D UTO(j, k) 22P(j, K —

% (@2 —ax(j + D) dx(j) +ax(j +1%) 2°P(j, W U2, k)—% @) = ax(j + ) ax(j) +ax(j + DI u(j, K 23V, K

Advective Term - non-conservative form part 2 - 9(q((du)/(9x)))/(9x)
~ 5 @)= k(] + DU, R G200, K+ 5 @ =]+ )+ + DA UG, K o2, o+
2 @+ D= A0 KU, K+ < @ =0 + Do) + 8 + DU, o0, o+
% @x(j +D—dx(p) a(j, U, K+ % (@x(j)* = dx(j + 1) dx(j) +dx(j + D)) ¢, K UG, k) +

1—12 (OX()2 = 0] + D Ak(j) + X} + DD o], U9, Ky

GWC Flux Terms - (G —1)((9q)/(9x))

% (G—-tau) (dx () —dx ( +1) g2, k)—% (G —tau) @x ()*—dx  +D dx () +dx ( +1H g2 (, k)

Viscous Term - £((2°0)/(9x°at))
% eddy 229 (j, k) dt? + 1—18 eddy (dx ( +1) —dx () 22 @, k) dt® +
7—12 eddy (dx ()2 —dx ( +1)dx () +dx G + DD 2 G, k) dt> + % eddy (dx G +2) —dx ) 23V G, k) +

1—12 eddy (dx ()? —dx ( +1) dx () +dx G +1)%) 24V G, k)
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Truncation Errors for the Non-Conservative Momentum Equation
Accumulation Term - du/at
~ 2 U0, 0+ = (@) =G+ D) U K~ (@ = + D)+ + 1) U] Ky -
> 692, R = @) =0 + D) UG, Kk == (P =0 + D))+ + AU, R+

% (@) —x(j + DYV, k) — % (@Y =] + D () +x(] + AU, Ky

Advective Term - u(ou/ox)
% (@x(j) = dx(j + D) U9}, K~ % @x(j)* = dx(j + 1 dx(j) +dx(j + DH U], U0, kK +
% @x(j)—ax(j + Dy u(j, K u?2(j, k- % @x(j)” = dx(j + 1) dx(j) +dx(j + DA u(j, WU®2(j, K
Bottom Friction Term - tu
—% tau U%2(j, K ot + % tau (dx(j) —ax(j + D) U2(j, K ot? —
2—14 tau (A(j )P —ax(j +D ax(j) +ax(j + DI U?2(], K dtz—% taut®0(j, kyct +% tau (a(j) —ax(j + D) uP(j, Kydt —
% tau (AX(j )7 —ax(j + D) ox(j) +ax(j + DA U>D(j, Kot +§ tau (@x(j) —ax(j + D) u*(j, k) -

% tau (A(j)° —ax(j +2) ax(j) +ax(j + DA U0, k)

Finite Amplitude Term - g((9¢)/(9x))
—% g2*(j, k)dt2+% gax(j) —ax(j +1) 222(j, k)dtz—% g(Ax(j ¥ —ax(j + D) dx(j) +dx(j + 1A 232(j, K dt® -
% g2+, k)dt+;l1 g@x(j) —dx(j +1)) 2%P(j, ky ot —% g@x(j? —ax(j + D ax(j) +ax(j + DA Z30(j, K ot +

1 . . . 1 . . . . .
2 9@ +1) 2%9(j, k- 3 g@x(j)* —ax(j + 1 ax(j) +ax(j + A 239(j, K

Viscous Term- (e/H)((9°q)/(9x°))
% eddy u®2(j, k) dt? + % eddy (dx(j + 1) —dx(j)) U®2(j, k) dt? +
% eddy (Ax(j)? — dx(j +1) dx(j) +dx(j + D u2(j, Ky di2 + % eddy u®(j, K dt +
% eddy (dx(j + 1) —dx())) u®V(j, k) dt + 2—14 eddy (dx(j)? — dx(j + 1) dx(j) +dx(j + D U@P(j, k) dt +

% eddy (@x(j +1) —ax(}) u®(j, k) + 1—12 eddy (dx(j)* —dx(j + 1) dx(j) +dx(j + 1A u“9(j, k)
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Truncation Errors for the Conservative Momentum Equation
Accumulation Term - 9q/ot
~ 2 49 0+ — (@) =0 + DY), R = — (@) = + D () + e + DG o =
2 201, o+ = @)= + DY) Kt = = (@ 0] + D)+ + DI, R+

1 i i i 1 i i . . .
3 @D -] +1) ™, k- 5 @x())? = dx(j + D dx(j) +dx(j + DA P (j, k)

Advective Term - (9(qu)/ox)
@x(j) = dx(j + D) of*0(j, u™o(j, ky —% @x(j)? = dx(j + 1) dx(j) +ax(j + DI >}, U0, k) -
% (@Y7 = dx(j + D) dx(j) +dx(j + DA 2O, kyuO(j, k) +
% @x(j)—dx(j + ) u(j, W >0, b+, K u?2(j, k) —% (@x(j)? —dx(j + 1) dx(j) +ax(j + DA u(j, K o], k) -

% (@) =X + 1) () + ok + D o, W UEO, K

Bottom Friction Term - 1q
—% taud®d(j, k)dt—%tau q°2(j, k)dt2+%tau @x(j) —ax(j + D) *2(j, k)+%tau @(j)—dx(j + ) I, K dt +
1—12 tau @x(j) —dx(j + D) *2(j, Ky dt*+ % tau (@x(j) —ax(j + D) (. kydt® -
?15 tau (ax(j)* — dx(j + 1) dx(j) +ax(j + D?) *(j, k) - 1—12 tau (dx(j)° — dx(j + 1) dx(j) +ax(j + DA >V, Ky dt -

2—14 tau (dx(j)* — dx(j + 1) dx(j) +dx(j + DA %], k) dt?

Viscous Term - e((9%q)/(3x))
% eddy (], k) di? + 1—12 eddy (dx(j +1) —dx(})) d*2(j, K dt? +
% eddy (dx(j)? = dx(j + 1) dx(j) + dx(j + 1% d*2(j, K dt® + % eddy ?V(j, K dt +
% eddy (dx(j +1) = dx(j) *V(j, kydt + 2—14 eddy (dx(j)? = dx(j + D dx(j) +dx(j + D) *P(j, Ky dt +

1 . . . 1 . i i . .
7 eddy (@x(j + - dx(})) o9, k) + - eddy (Ax(j)? = dx(j + ) dx(j) +dx(j + DA d*9(j, k)
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Finite Amplitude Term - Part 1 - gh((9¢)/(9x))
—% gh(j, K 22(j, kydt* + % g@x(j)—ax(j + 1) h*0(j, kb 22(j, Ky dt* -
1—16 9(@x(j)* = dx(j + 1y dx(j) +dx(j + %) 2+2(], k hO(j, K dt* + % g@x(j) —dx(j + D) (j, k) 222(j, ky dt® —
1—16 g(@x(j)* = ax(j + D dx(j) +dx(j + 1 0}, k) 2*2(j, Ky dt* -
2—14 g@x(jy’ —ax(j + 1y dx(j) +ax(j + DA h(j, K 2%(j, Ky dt* - % gh(j, k2, kydt +
% g(@x(j) —dx(j + 1) K9], ky 2, Ky dt - % 9(@x(j)* —dx(j + 1) dx(j) +dx(j + D7) Z4V(], W hO(j, kydt +
% g(@x(j) —ax(j + ) h(j, kI 220(j, Ky dt - % 9(@x(j)* —dx(j + Dy dx(j) +dx(j + D) h*(j, k) 227(j, kydt -
1—12 g@x(jy’ —ax(j + D dx(j) +dx(j + DI h(j, K 220(j, Ky dt + % g(@x(j) —dx(j + ) h*O(j, ky 29(j, K -
% g@x(jy* —dx(j + 1y dx(j) +dx(j + 17 249(j, W h?0(j, k) + % g@x(j)—dx(j + ) h(j, K 229, k-
% g@x(jy* —dx(j + 1 dx(j) +dx(j + D) h*O(j, k) 229(j, k) -

£ QX =0 + D)+ (] + 1A, 200, 0

Finite Amplitude Term - Part 2 - (g/2)((3(¢%))/(dx))
—% 9=, K dt2+% 9(ax()) —o(j + 1) =*2(j, kot —
% g —ax(j + D ax(j) +ax(j + 1P =42, k)dtz—% gz, Kot +% g(a(j) —ax(j + 1) =>(j, Kot —
2—14 gax(j)? —ax(j + D) ax(j) +ax(j +1) 23, I<)o|t+;11 ge(j) —ax(j +1) =20}, ky -
% g —ax(j +D ax(j) +ax(j + D7) =39, k)

From these truncation errors, we can prove that the GWC equation is first-order
accurate in time if the advective terms are in non-conservative form, while it is second-
order accurate in time if the advective terms are in conservative form. In space, the GWC
equation is first-order accurate for variable spacing; while, it is second-order accurate for
constant spacing. For the NCM and CM equations, we found that they are first-order
accurate in time and space if we use variable spacing, while it is second-order accurate in
gpace if we use constant spacing. Also, both momentum equations become second-order

accurate in time if the equations are lineari zed.
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Appendix 4. Derivation of the Analytical Solution for the
BPG Test Case

For the analytical solution to this smplified baroclinic problem, we followed the
same procedures and assumptions as L uettich and Westerink did in their paper on baroclinic
additions [63]. Briefly, the problem uses a idealized basin that is 48 km long with 51
horizontal nodes (Ax = 960 m) and 21 vertical nodes (Ac = 0.05). A constant
bathymetry of 10 m depth (“flat bottom”) is used throughout the domain. We utilize land

boundary conditions on both ends of the idealized basin so there isano normal flow.

The first step is to find the horizontal velocity using the x-direction momentum
equation. Note that there is no flow in the y-direction, so the y-direction momentum

equation is omitted. Equation (2.8) from Chapter 2 is the starting point of the derivation.

R R R o A e e Nt T

where we assume steady-state, linear, no Coriolis forcing and no lateral stress. Therefore,

we obtain the following simplified momentum balance:

where the b, is determined from the following
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43l

Note that in Equation (A4.3), we assume  varies little from the datum so that the upper
limit of integration is 0, not C. In Equation (A4.3), p, is constant and p' is afunction of

x only for this problem so the equation becomes
9p I 0
b, = dz A4.4
X g(ax . ) ( )

wherep = g— Now if we evaluate the integral we obtain:
0

- g2
b, = gzax (A4.5)

Substituting b, into Equation (A4.2), we obtain

0054 () 4 000 =
Jox B_Z(po)-'-gzax - (A4.6)

Rearranging the equation, we find

3 (T dp . 9
_(_ZX) = —g2 +ga—)§( (A4.7)

T
Now subgtituting in p—zx = Ez(lzJ and assuming the vertical eddy viscosity parameter E,

0
remains constant, Equation (A4.7) becomes

oG (A4.8)

216



If we integrate both sides of Equation (A4.8) with respect to z, we obtain:

2 - B0+ oerc,

where C, is the first constant of integration, which can be determined from the top

boundary condition: E,= ou

255 = 0 (no surface stress).

=0

du

Ezaz

g(%g(( D %(0)+c1 (A4.10)

z=0
Evaluating the equation above we find the first constant of integration is
0=0+C;=>C; =0 (A4.11)

Therefore, we obtain

Now integrating Equation (A4.12) gives us the following:

e = -2(3(5) - E5(5) v, (ha13

where C,, isthe second constant of integration, which can be determined from the bottom

boundary condition: E (3 = ku(-h), i.e. linear dip at the bottom. Using Equations
z=-h

(A4.12) and (A4.13), wefind

- g e(hy

ou aC
S ox\ 2 D BN - (A4.19)

Eza—z

217



kx u(-h) = —EOLZ(%%‘—QEDM Eolzfai)g((ﬁ‘—gf)k+ kC, (A4.15)

Equating Equations (A4.14) and (A4.15), we get:
h2
—kh d kh
o 2(D)-oL = (L) 22X D) s e, (A416

Solving Equation (A4.16) for the second constant of integration gives

() 50225

Thus, substituting Equation (A4.17) into Equation (A4.13) for C,, we obtain

u(z) = __Eg;(%g((zg)) E, ax Z k) gax k)

—h

By rearranging Equation (A4.18), we find

@ = - g (G o) « S-SR o5 (419

For a closed basin at steady-state, the depth-averaged velocity (U) is zero, thus we can

integrate Equation (A4.19) from 0 to —h to obtain an expression for Eai)% :

d¢ _ dp(3h 4E, + K
ox ax( 8)(3EZ+ K (A4.20)
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9C _ dp(h\(12E,+ 3K
ox _ax(z)(12E2+4k (A4.22)

1+ X0
L _  _op(h| __4&
- ) 5 a2
3E
B

which the same as found in Luettich and Westerink’s baroclinic paper [63]. For constant
parameters, depth and density gradient, this gives {(x) = Bx+ o.. The mass balance for
the closed basin requires {(L/2) = 0= a = B(L/2) so {(x) = B(x—(L/2)). Now to

determine the final form for u(z), we substitute in the results from Equation (A4.22) into

Equation (A4.19).
o - -(BP ) LD N BOE) o

To verify this is indeed a solution, we need to ensure it satisfies the origina
differential equation and the top and bottom boundary conditions, along with the depth-
averaged results.

du

First, we will look at the top boundary condition is EzaZ = 0. The top
z=0
boundary condition from the u(z) equation, given in Equation (A4.23), is obtained by
taking a derivative of this equation and then rearranging it to get Ezg—lzj :
U _ _ g (9032, 99
oz 6Ez(ax(32 )+ 26, ox ) (A424)
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g - —g(%?((zz)) —Q(z) (A4.25)

20z
Now if we evaluate Equation (A4.25) at the top boundary conditions, we find

Ezg—lzj =0 (A4.26)

z=0

therefore the top boundary condition is met.

Next check the bottom boundary condition where E 3 = ku(-h). If we
z=-h

evaluate Equation (A4.25) and Equation (A4.23) at the bottom boundary then we obtain:

9090 (2 _§ gk (9p 9k I 22
5™+ oS = — (S o) + E S -n) -

th (%)) (A427)

Evaluating and rearranging Equation (A4.27), we find

2% 2) g% = o2(% 2) ~9&m) (A4.28)

0=0 (A4.29)
therefore the bottom boundary condition is met.
Next, we need to verify that the depth-averaged velocity is zero, i.e.

0
U = I u(z)dz = 0 (A4.30)
h
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Substituting in the u(z) equation, given in Equation (A4.23), and evaluating the integral

we obtain the following equations.

0= | [kl o B ) A D e e

(A4.32)

4 3 0
T C R R G IR

After evaluating the integral, we obtain the following

9 dp(hy g odp g 9&(h™\ g d¢
Y= &E, ax( 6E, TR+ 2E, ax( 2E, )

2

) =

Rearranging Equation (A4.33), we find

£t 2% (1)) (201 s

Now, if we substitute in the value of Eai)% , given in Equation (A4.20), we find that

_ ") QQBh 4E, + k hz) D
EaX 3E 3E, + kh

(23 (ha35

Simplifying Equation (A4.35) shows the following result
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u = _d0(h'g _dp(gh’ L _7gh' ),
ox| 8E,) ox\2k/ = ox(8(3E,+kh)

3
op( SEGM | op( _ gh’k (A4.36)
ox| 2K(3E, + khy) * ox| BE(3E, + kn) '

Now, if we find the common denominator for Equation (A4.36), we have the following

4 4
U = _p (3E, + kh)kgh 9 4E,(3E, + kh)gh +QQ 7kgh'E, N
ox\ 8KE,(3E,+ kh)) ox( 8KE,(3E,+kh) ox|\ 8KE,(3E, + kh)

3
op( _4E,(3E,6h) | ap(__ gh’K’ (A437)
9| 8KE,(3E, +kh) ~ ox|BKE,(3E, + kh) '

U - _@(Wk%lﬁ/i@rﬁ%4

ox 24KE + 8E_k°h

@(—W—u%gﬁg .

(A4.38)
ox 24KE> + 8EKk°h
All termscancdl, i.e.,
U= _%9( - ZJ (A4.39)
X\ 24KE; + 8Ek

so U = 0 and therefore the depth-averaged condition is met.

Lastly, we need to determine if u(z), given in Equation (A4.23), satisfies the

original equation.
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o) = (B2 w)  LEE B e

Starting from Equation (A4.25), we find
2
£ = —o( L) + o2 (A4.41)

Rearranging Equation (A4.41), we obtain

2
’u, (9 oy _
e+ o 52) -0 - (A4.42)
°u _ 0 (Tx _ - - -
where E, 22 = a_z(po) and b, 9z5. - If we substitute these expressions back in, we

get the following equation, which is the same as the original equation (Equation (A4.2)).

—g%)% (,;’Z( ) b, =0 (A4.43)

Thus u(z), as expressed in Equation (A4.23), must be a solution.

If we do asimilar check with the solution presented by L uettich and Westerink in

their baroclinic paper (shown in Equation (A4.44)), we find that the solution obtains the

uz) = 3) 2E%§< (7 g) (Ad.44)

same value for Ei@ (shown in Equation (A4.20)). Now, we need to determineif it satisfies

ou

25, = 0.

=0

the top boundary condition of E,=
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£ = -9(%2A) + g%z (na.45)

e 2

S =0 (A4.46)

z=0

We also checked the bottom boundary condition of E,= ou

75, = ku(-h). Using

=—-h
Equation (A4.44) at the bottom boundary, we find:

~9(L((hy) +gZx(- = g’é(%ﬁ((—m%“;)) +§,§Z%§((—h>2—“—) (A4.47)

Evaluating and rearranging Equation (A4.47) gives

_g(%g(((_h)z)) +g%( - = _6E 3h3) " 2E, Eaii 2h (A4.48)
2 3 2
oo - S0

Substituting in the value of %)% , givenin Equation (A4.20), we find that

(15 +of ) 22 -

3 2
2 (B() B i

2
_9p op[ 12E,h" +3kh™))
gax( )J’g(ax( 24E,+8kh )|
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3 2, 4
o[ h3k)) (ap(12E,h°k +3K'h
g(ax(8EJj _g(ax(Ez( 72E, + 24kh) (A4.51)

Now, if we find the common denominator for Equation (A4.51), we have the following

2 3
) @(4EZ(72|52+ 24kh)h2] . (@(24EZ(12EZh +3kh )D B

Jox\ "8E,(72E, + 24kh) x| 8E,(T2E, + 24kh)
g0 (72E,+ 24kh)h°K))  (5p(8(12E,h°k + 3k*h?)

g B| == —g &£ Z (A4.52)
ox| 8E(72E, + 24kh) x| 8E,(72E, + 24kh)

QQ(W+M—Z&%E§#— KT

~Iox 8E,(72E, + 24kh)

2
dp(ZRESK+ 24kPh" - QBE K- (A453)
Iox 8E,(72E, + 24kh) '
All terms cancdl, i.e,,
0=0 (A4.54)

Thus the bottom boundary condition is met.

Next, we need to verify that the depth-averaged velocity is zero, i.e.

0
U = I_hu(z)dz = 0

Substituting in the u(z) equation, given in Equation (A4.44), and evaluating the integral
we obtain the following equation.
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2
_ _9_ 9p 9 9¢(Z M
U= (ax( 7 ZD 2E, ax( 3 Z) ) (A4.55)
After evaluating the integral, we obtain the following
4 3
_ _ 0 (3p(h’ hy), g ath’ hj)
V 6Ez(ax(4 4 )+2Ezax( 3 '3 (A4.50)
All terms cancel, so
Uu=>0 (A4.57)
therefore the depth-averaged condition is met.
Lastly, we need to determineif u(z) satisfiesthe origina equation.
— Eig 2 h
u@@ = 3) " 2E, ax 3) (A4.58)
Thus we take two derivatives of Equation (A4.58) with respect to z
o’u, (9p o; _
e o 5h@) o5 = (A459)
T
where E 8_121 = i(ﬁ‘) and b, = —ngQ If we substitute these expressions back in
o7  9Z\Pg ox

Equation (A4.59), we get Equation (A4.43), which is the same as the origina equation.

Thus u(z), as expressed in Equation (A4.44), must be a solution.

Therefore, both forms of u(z) must be solutions (Equations (A4.23) and (A4.44))
to this problem and must be equal to one another. If we equate the two equations, we end
up with the following:
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2
3) 2Eax 5) -

) (&)Y

Evaluating and rearranging Equation (A4.60), we obtain the following:
3 2
() T (D -
6E,\ox/ 4 0 2E,\ox/ 3
2
_ 9 (943 g (90),°, 9 (2 __9_6132_ dp\ h” fig)b
E/Z%Ej? 6E2(a><)h * 35;%3? 2E2(a h g(ax)Zk_g(a k (A461)
a 3h 2h? a h
6E, _E) 2E _>§<) _E)Zk _3 (A4.62)
2 85T = () ol 5 (p453)

Now substituting in the value of %)% , given in Equation (A4.20), we find the following:

3 2 2
B - o o B e

i3 12E_h° + 3kh? 12E,h° + 3kh
o227 )_ o[ 12 _g k) ‘39 (A4.65)
9x\8E,) Jox\ E(T2E, + 24kh)) ~ ~ 9ox 24E k + 8K°h

Now, if we find the common denominator for Equation (A4.65), we obtain the following
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op( h°(T2E,+24kh)(2K) | p( 16K(12E,h°+ 3kh®)
99x| BE(72E, + 24kh)(2k)) Iox| BE(72E, + 24kh)(2k)) ~

dp BEN’(72E,+24kh) | o[ 4BE,(12E,h° + 3kh*)
- +
99x| BE(72E, + 24kh)(2k) ) * J9x| BE(72E, + 24kh)(2k)

Qg(y/m:/ﬁghggkzﬁ‘ — 12E k-

9% 8E(72E, + 24kh)(2K)

9% 8E(72E, + 24kh)(2Kk)

QQ(HBE?/ 1926 7Kk + 56 + M}

All terms cancdl, i.e,,

Therefore both forms provide the same results.
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