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      Abstract

Shallow water equations are based on conservation of mass and momentum and 

can be used to model the hydrodynamic behavior of oceans, coastal areas, estuaries and 

lakes. The model used in this research ADCIRC, an advanced three-dimensional 

circulation model, is based on the shallow water equations. ADCIRC provides elevation 

changes and velocity profiles that can be utilized by themselves or coupled with other 

models, such as water quality models, thus lending itself to a wide-variety of applications. 

Three research areas are investigated in this dissertation in an effort to improve the 

predictive capabilities of ADCIRC through improved numerics.

First, the current time marching algorithm is semi-implicit, with the nonlinear 

terms evaluated explicitly. It has been hypothesized that the explicit treatment of the 

nonlinear terms can lead to instabilities. An iterative, implicit treatment of the nonlinear 

terms is implemented and studied. Results show an increase in the maximum time step of 

at least eight-fold, depending on the domain, and an increase in temporal accuracy from 

first to second order. A parallel implementation of the algorithm scales as well as the 

original algorithm. 

Second, nearly all GWC-based models utilize a velocity-based, non-conservative 

momentum equation (NCM) to obtain the depth-averaged velocity profile. It has been 

hypothesized that the conservative momentum equation (CM) may improve accuracy, 
xx



mass balance and stability. Results show that the CM equation improves mass balance, 

both globally and locally, especially in areas of steep bathymetry gradients, and improves 

local spatial accuracy in these same regions, yet does so without significantly impacting 

stability, temporal accuracy and global spatial accuracy. 

Third, baroclinic models that are used to simulate density-driven flows require an 

accurate and stable computation of the baroclinic pressure gradient (BPG). In this study, 

four methods for computing the BPG are investigated, along with resolution requirements 

(horizontal and vertical). Numerical experiments thus far indicate that the z-coordinate 

method provides the least amount of error, and a hybrid method, which switches from 

sigma to z-coordinates at a prescribed depth, also shows promising results. 
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 Chapter 1.  Introduction

This dissertation addresses some algorithmic improvements to the ADCIRC (an 

ADvanced 3D CIRCulation, [59]) model and subsequent analyses of these improvements. 

ADCIRC uses the shallow water equations as its theoretical basis. These equations, based 

on the depth-averaged equations of motion, are utilized by researchers and engineers to 

model the hydrodynamic behavior of oceans, coastal areas, estuaries, lakes and 

impoundments [50]. ADCIRC gives elevation changes and velocity profiles, which can 

then be linked to other models to obtain water quality or pollutant transport information. 

ADCIRC is based on an algorithm with a 25 year history of research and applications; the 

present model was primarily coded by Luettich and Westerink [59], and its initial 

application was for the Coastal Dredging Research Program of the United States Army 

Corp of Engineers [59]. This model has been validated against analytical solutions and field 

data, e.g. the quarter annular harbor, North Sea, and the Western North Atlantic [59,85]. 

Currently, ADCIRC has a wide variety of users including the Navy, Army, State of Texas, 

private consultants and several universities. Applications of the model include, but are not 

limited to the following: the effects of dredging on circulation [5,74], hurricane storm 

surges [10,11], Naval fleet operations [13], transport of species, both chemical and 

biological [58], tidal and wind-driven circulation [85,86] and wave-driven flow [24]. A 

noteworthy example is modeling hurricane storm surges in Southern Louisiana/City of 
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New Orleans. As described in the June 2003 cover story of ASCE’s Civil Engineering

magazine, ADCIRC is being used to design levy heights in order to withstand future 

hurricanes of Category 4 or 5 [16]. Although the ADCIRC model has been used 

successfully in a variety of applications, it is desired to further enhance its predictive 

capabilities through improved numerics. With this in mind, we have identified three 

specific issues for study within this dissertation; the goal is to provide more accurate 2D 

and 3D simulations.

Regarding the first study, we know that the current version of ADCIRC has stability 

problems with nonlinear applications unless a Courant number restriction is imposed, 

which severely restricts the time step and increases the computational cost of the model. In 

practice, a practical upper bound for the Courant number is approximately 0.5 in order to 

maintain the stability of the model; an even tighter constraint must be imposed if the 

simulation includes barrier islands and constricted inlets due to the small elements in these 

areas. In order to relax the Courant number restriction, an alternative time marching 

procedure was proposed that treats all of the nonlinear terms implicitly [53]. Herein, we 

implement and evaluate the implicit time marching algorithm in 2D and rigorously assess 

any gains in stability and accuracy with the new algorithm. 

ADCIRC and other finite element shallow water models based on the GWC 

equation suffer from local mass conservation problems, especially in flow regimes that are 

highly nonlinear [1,51,52,54]. Through the implementation of mass conserving boundary 

conditions, several studies [52,65] have found that global mass conservation errors 

decreased, while one study [52] also showed decreases in local mass conservation errors 

with the proper choice of a numerical parameter. Also, past investigations determined that 
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reformulating the advective terms in the GWC equation to follow the momentum equation 

provides gains in stability (as well as mass conservation); however, the resulting algorithm 

is awkward, since it involves mixed (space and time) derivatives [54]. As an alternative, the 

second study herein examines the form of the momentum equation used in the ADCIRC 

model, specifically non-conservative vs. conservative. 

Third, as applications of ADCIRC expand to include density-driven flows, it has 

been observed that the computed baroclinic pressure gradient (BPG) can become either 

unstable or unrealistic in shelf regions due to the steep bathymetry gradients (e.g. [17,42]). 

These unstable or unrealistic values of the BPG are also influenced by the vertical 

coordinate system utilized in the calculation of the BPG, which lead to further problems in 

the velocity values. Several vertical coordinate systems and associated algorithms for 

determining the BPG exist in the literature of both finite difference and finite element 

models [17,34,42,83]. Herein, we investigate four approaches to compute the BPG in 

ADCIRC, and assess the impacts of grid resolution on each approach. In particular, the 

interplay between the vertical and horizontal resolution, bathymetry and density profiles is 

of interest.

This dissertation consists of six chapters, including this introductory chapter. Some 

of the chapters in this dissertation are extensions of published or in-press journal articles. 

As such, some of the background information is repeated between chapters. Chapter 2 

provides background on the shallow water equations and the ADCIRC model that is used 

to perform the analyses herein. Chapter 3 discusses an implicit time-marching algorithm; it 

is an extension of a journal article published in the International Journal of Numerical 

Methods in Fluids [30]. Chapter 4 provides results from an implementation of the 
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conservative form of the momentum equation; it is an extension of a journal article that is 

in-press in Advances in Water Resources [29]. Chapter 5 discusses the computation of the 

BPG using multiple coordinate frameworks and examines the effect of resolution, 

bathymetry and density structure on simulation results; it is a compilation of work 

published in two conference proceedings (references [31] and [32]). Chapter 6 discusses 

some future work to be done with ADCIRC that is a direct extension of what is reported in 

earlier chapters. 
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 Chapter 2. Background on the Shallow Water Equations 
and the ADCIRC Model 

This chapter presents the background of the model and grid structures used in future 

chapters. The first section addresses the basis of the shallow water equations for both 2D 

and 3D forms of the ADCIRC model. We present the equations and assumptions utilized in 

our evaluations with the model, along with the background on the development of the 

generalized wave continuity (GWC) equation. Section 2.2 covers some of the numerical 

methods that can be used in the solution of the shallow water equations. In Section 2.3, we 

discuss the ADCIRC model and the solution techniques for both 2D and 3D forms of the 

model. Lastly, we close with a section discussing the variety of grid generating techniques 

that are used in the subsequent chapters. 

2.1   Shallow Water Equations - 2D and 3D 

Shallow water models are based on the physical conservation laws, specifically the 

conservation of mass and momentum equations. The full 3D equations are averaged over a 

time scale of turbulent fluctuations, called Reynolds averaging, and then over the water 

column to develop the depth-averaged primitive equations for shallow water models [87]. 

For the shallow water equations used in the subsequent chapters of this dissertation, we 

present the assumptions used in the development of the equations along with a discussion 

of each assumption’s implication: 
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• We assume a hydrostatic pressure distribution in the vertical. This 

assumption means that if we examine the magnitude of the terms in the 

horizontal and vertical momentum equations we find that the vertical 

velocity values are much smaller than the horizontal velocities and the 

distance in the horizontal direction is much greater than the depth. Based on 

a scaling analysis, the vertical momentum equation reduces to the pressure 

and gravity terms; a balance must exist between these two terms, which 

indicates a hydrostatic pressure distribution [25,72]. 

• We assume a static bed in the development of the shallow water equations. 

This assumption allows us to develop the depth-averaged form of the 

equations with bathymetry independent of time and assume that the bottom 

kinematic boundary condition is equal to zero. 

• We assume that there is no exchange of mass with the environment other 

than specified boundary fluxes. This assumption means that there are no 

source or sink terms in the equations.

• Lastly, we assume the Boussinesq approximation in the development of the 

momentum equation. This means that density is taken to be constant except 

for the gravity terms [72]. This assumption allows for all of the density 

terms in the momentum equation, except for those of the gravity and 

pressure terms, to use a reference density,  [72]. 

We also note that either standard Cartesian coordinates or spherical coordinates can be used 

in the shallow water equations. 

ρ0
6



2.1.1  2D Shallow Water Equations

The primitive equations are shown in Equations (2.1)-(2.3). Equation (2.1) is the 

conservation of mass (continuity equation); while Equations (2.2) and (2.3) are the 

conservation of momentum in conservative form and conservation of momentum in non-

conservative form, respectively. Nomenclature is defined in Appendix 1.

(2.1)

(2.2)

(2.3)

Early finite element solutions based on the primitive form of the shallow water 

equations were plagued with spurious oscillations from short wave ( ) noise that 

appeared superimposed on the true solution [80]. Spurious oscillations result from a folded 

dispersion relationship, meaning that there are two wavelengths (short wave noise and 

physical long waves) for each frequency. In a effort to eliminate the spurious oscillations, 

several researchers investigated using artificial damping or special numerical techniques, 

such as finding an algorithm that would propagate or dissipate these spurious oscillations 

[49]. Artificial damping techniques ranged from unrealistically large viscous terms [84] to 

large friction coefficients [76]. Numerical techniques included using time marching 

algorithms that offered dissipative qualities or a post-processing step that averaged or 

L
ζ∂
t∂

----- Hv( )∇•+≡ 0=

Mc Hv( )∂
t∂

--------------- Hvv( )∇• τHv Hf v H
pa

ρ
----- g ζ αη–( )+ –∇+×+ + +≡

A
1
ρ
--- HT( )∇•– 0=

M v∂
t∂

----- v v∇• τv f v
pa

ρ
----- g ζ αη–( )+∇+×+ + +≡ A

H
----–

1
ρH
------- HT( )∇•– 0=

2∆x
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smoothed the solution [49]. The drawback of all of these methods is that they tended to 

damp out some of the physical components in the solution.

In 1979, Lynch and Gray [64] introduced the wave continuity equation (WCE), 

shown in Equation (2.4), which eliminated the spurious oscillations in the solution without 

having to dampen the solution numerically or artificially.

(2.4)

where the nomenclature is given in Appendix 1. The WCE provides a monotonic dispersion 

relationship, thus allowing only one wavelength for each frequency. 

Kinnmark [48] determined in 1986 that there was no loss in the propagation 

characteristics of the WCE if the  term was replaced with a numerical parameter, G, in 

order to obtain what he called the generalized wave continuity (GWC) equation, which is 

written as follows:

(2.5)

This numerical parameter allows the equation to vary anywhere from a pure wave form of 

the equation to the primitive form of the continuity equation, if the parameter is chosen to 

be small or large, respectively. An expansion of the GWC equation for the case of 

barotropic flows and spatially-varying G is:

W
L∂
t∂

------ τL Mc∇•–+≡ 0=

τ

W
G L∂

t∂
------ GL Mc∇•–+≡ 0=

W
G ζ2∂

t2∂
-------- G

ζ∂
t∂

----- Hv G∇•– Hvv( ) H
pa

ρ
----- g ζ αη–( )+∇+∇• 1

ρ
--- HT( ) +∇•–∇•–+≡
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(2.6)

The GWC equation presented above along with the momentum equations in either 

conservative or non-conservative forms, shown in Equations (2.2) and (2.3), respectively 

describe spatial and temporal elevation and velocity changes. 

2.1.2  3D Shallow Water Equations

The three-dimensional (3D) shallow water equations utilize the same assumptions 

as the two-dimensional (2D) equations; in the 3D shallow water equations, the hydrostatic 

pressure distribution only applies if the vertical velocity is small in comparison to the 

horizontal velocity. Thus the flow must be weakly 3D for the model to remain accurate [81]. 

If such conditions are met, a 3D simulation can be obtained using pseudo-3D equations 

rather than the full 3D non-hydrostatic equations. The pseudo-3D equations still utilize a 

2D depth-averaged form of the continuity equation for the elevation changes, and then use 

a 3D momentum equation to find the velocity changes. For the problems considered herein, 

such a model is appropriate. 

Many prominent 3D shallow water models [15,41] invoke a mode splitting 

technique to solve the pseudo-3D equations. The mode splitting technique consists of two 

modes, external and internal, which can be delineated by the speed of the waves from the 

types of flows. Gravity waves, or barotropic flows, are defined from the external mode. 

These type of waves tend to be fast moving and change rapidly over time. The internal 

mode tends to be associated with the baroclinic flows. This type of flow tends to evolve 

more slowly over time. Based on this information, some 3D models solve the external mode 

equation more frequently than the internal mode equations [15]. 

Hf v× τHv
A
H
----– GHv–+ 0=
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The initial step of the mode splitting technique, the external mode, is to determine 

the elevation changes using a 2D depth-averaged continuity equation. In ADCIRC, we 

again use the GWC equation, as shown below. 

(2.7)

where the terms are defined in the nomenclature section in Appendix 1. Comparing 

Equations (2.6) and (2.7), one sees that two new terms,  and , were added to Equation 

(2.7). The  term is introduced in order to include baroclinic effects into the equations; it 

is computed by depth-averaging the baroclinic pressure gradient results over the vertical. 

Also the equation brings in momentum dispersion effects through the  term. This term 

can only be included in the 3D model because it requires knowledge of the vertical profile 

of the horizontal velocities in order to determine its magnitude [60]. Lastly, the bottom 

friction term  in Equation (2.7) differs from the one in Equation (2.6) because it does not 

utilize a depth-averaged velocity value; instead it employs the velocity from the bottom 

layer in its evaluation. Also, note that the lateral stress term is represented by  instead of 

.

Next, the internal mode solution is used to obtain the 3D velocity field. This 

solution is forced with the elevation changes given by the external mode solution. Full 

derivation of the 3D equations is given in reference [60]. We summarize some of the 

information from this reference and present the equations used in the 3D solution scheme. 

W
G ζ2∂

t∂ 2
--------≡ G
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t∂

----- H– v G∇• Hvv( )∇• H
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ρ
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H
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ρ
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The non-conservative momentum equation in Cartesian coordinates ( ) is 

given as: 

(2.8)

where the variables are defined in Appendix 1. In order to determine the 3D velocity field, 

the 3D momentum equations utilize a vertical coordinate system based on a generalized 

sigma or stretched coordinate system, which varies from  at the free surface to 

 at the bottom. Both of these values are constant in ADCIRC, (i.e.,  and 

) and the number of vertical nodes between these two values remains the same no 

matter the change in the bathymetry [81]. The mapping between the generalized stretched 

coordinate system and the Cartesian z-coordinate system is defined as: 

 (2.9)

where the variables are given in Appendix 1. In traditional sigma coordinates, the nodes are 

uniformly spaced over the vertical; however, in ADCIRC, the generalized sigma or 

stretched coordinates allow for variation in the vertical [60]. 

Based on the relationship between the generalized sigma or stretched coordinate 

and Cartesian z-coordinate systems given in Equation (2.9), derivatives between the two 

systems can be related to one another through the chain rule (a full derivation shown in 

Appendix 2) as follows:

(2.10)

x y z, ,

M
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ρ0
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(2.11)

(2.12)

where the coordinate system in which the derivatives are evaluated is given by the 

subscript. By utilizing these relationships, the momentum equation in the generalized 

sigma or stretched coordinate system is as follows in operator notation:

(2.13)

where

 (2.14)

and  represents the actual vertical velocity, w, combined with the coordinate 

transformations for the advective terms (a full derivation occurs in Appendix 2). Also

 (2.15)

The equations for the baroclinic pressure gradient, , are presented in Chapter 5. Note that 

the fifth term in Equation (2.13) is not a function of depth so whether it is evaluated in the 

Cartesian z-coordinates or generalized sigma or stretched coordinates it would produce 

identical results.
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As a final step, after the horizontal velocities are found using Equation (2.13), the 

vertical velocity is determined using the 3D primitive continuity equation:

(2.16)

subject to kinematic boundary conditions at the free surface and bottom; and where the 

terms are defined in Appendix 1. 

2.2   Numerical solutions

The shallow water equations presented in the previous section cannot be solved 

analytically except for the simplest problems; therefore we must use numerical methods in 

order to solve them. Some shallow water models use these equations in their primitive form 

(“native” form), while other manipulate these equations to obtain stable or non-

oscillationary solutions for the numerical method they employ. Historically, finite 

difference and finite element methods are commonly used to solve the shallow water 

equations, but recently, a numerical method new to ocean modeling that uses the 

discontinuous Galerkin finite element method has begun to be investigated as a possible 

alternative [22,26]. We provide a short comparison of these methods and some of the pros 

and cons below.

The most commonly used numerical method to solve the shallow water equations 

is the finite difference method, which converts the continuum equations to difference 

expressions [19]. Over many years, models utilizing the finite difference numerical method 

on staggered grids have produced stable results [15,18,69]. By using staggered grids, this 

method excludes the shortwaves that can cause oscillations in the solutions, and these grids 

allow the use of the alternating direction implicit algorithm, which provides fast solutions 

v3D∇• 0=
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[15]. This method is also considered to be both globally and locally mass conservative. 

However the staggered grids make it difficult to accurately provide high levels of local 

refinement in portions of the shallow coastal areas or in areas of changing topography 

because the level of refinement used in these areas must extend throughout the entire grid. 

Also, it is difficult to accurately map an irregular coastal boundary due to the meshes using 

rectangular or square elements. Irregular coastal boundaries can be captured to a certain 

extent using orthogonal or non-orthogonal curvilinear coordinate transformation; however, 

they do not capture highly irregular coastal geometry, such as that around barrier islands or 

inlets [21]. 

Another numerical method used in shallow water equations is the finite element 

method, which approximates the form of the solution to the differential equation, while 

maintaining the original differential operator in weak form [19]. In contrast to the finite 

difference techniques, finite element models can use triangular, quadrilaterals or curved 

elements. These types of elements allow the user to describe irregular coastal boundaries, 

and they can be selectively refined in shallow coastal areas and in areas of changing 

topography. Also, the flux-type boundary conditions enter the weak form of the problem 

naturally in the finite element technique, thus allowing for an easy treatment of these 

boundary conditions. However, the finite element method needs to solve sparse, banded 

matrices to obtain solutions, which costs more in terms of computer memory and CPU time 

than the alternating direction implicit finite difference models [50]. Also, traditional finite 

element methods tend not to be locally mass conserving, an issue that is explored further in 

Chapter 4 of this dissertation.

Another successful algorithm for solving the shallow water equations using the 
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finite element method employs the quasi-bubble scheme [43] in the development of the 

equations. The quasi-bubble scheme obtains it name from the use of the linear 

approximation of the bubble function (a bubble function uses an additional quadratic 

interpolating function in discretization of the momentum equation), hence the name quasi-

bubble [73]. One difference between this method and the typical finite element 

discretization is the extra information provided to the velocity solution from the additional 

node at the center of the triangle, and also by subdividing each triangle into three linear 

velocity subtriangles [4]. It provides undamped, well-behaved solutions; experimental tests 

done by Atkinson et al. [4] indicate that quasi-bubble and GWC-based codes produce 

similar results and have similar dispersion relations. 

Over the past decade, another finite element method, called the discontinuous 

Galerkin (DG) method, has been applied to the shallow water equations; it uses 

discontinuous approximations of the shallow water equations [3,22,26]. The DG finite 

element method is similar to the finite volume methods and utilizes the primitive form of 

the equations [27]. This method can capture shocks or jumps that occur in the system, 

which are stabilized through upwinding schemes and stability post-processing (“slope-

limiters”) [27]. DG methods can use unstructured grids similar to the continuous finite 

element method, so they can still capture irregular coastal boundaries and provide selective 

refinement in areas of shallow coastal regions and in areas of changing topography. This 

method utilizes the shallow water equation in a weak sense on a element-wise basis, 

therefore it is also considered to be both globally and locally mass conservative [27]. The 

disadvantage to the DG method is its computational expense; DG equations have more 

degrees of freedom in the solution because they are based on the elements, not nodes like 
15



the continuous finite element method, thus requiring more computational time to obtain a 

solution. Therefore, recent studies have looked at coupling the continuous and 

discontinuous finite element methods [26,27]. 

In this dissertation, we chose to use the finite element method over the finite 

difference method due to the grid flexibility that it offers in the coastal regions, which is 

important in expected applications. We note that there are several methods discussed in the 

previous paragraphs that use the finite element technique: one method using the GWC 

equation with the continuous Galerkin formulation; one using the quasi-bubble scheme 

with the continuous Galerkin formulation; and one that uses elements based on the 

discontinuous Galerkin formulations. In previous experimental studies by Atkinson et al. 

[4], they found that the dispersion relationship is the same for the quasi-bubble scheme and 

for the GWC-based model and that they produce similar results. In the case of the 

discontinuous Galerkin formulation, we note that the method is mass conservative globally 

and locally; however, the computational expense of the method does not make it a 

completely viable alternative to the other finite element methods. Because of the 

computational expense of the DG formulation, we seek to improve the GWC-based 

formulation by looking at some of the issues that need to be addressed, such as mass 

conservation and calculation of the baroclinic pressure gradient. 

2.3   ADCIRC Model Development - 2D and 3D

ADCIRC, the model utilized in this dissertation, is a finite element model that 

solves the GWC equation to obtain elevation changes and the momentum equations to 

obtain velocities.
16



The development of the 2D ADCIRC model entails the following steps:

• Spatial discretization of the equations utilizes standard Galerkin finite 

elements with C0 elements, which means only the functions, not their 

derivatives, are continuous between discrete points. We employ piece-wise 

linear functions in the model with exact quadrature rules. Product terms in 

the equations are simplified by linearly interpolating the products of the 

variables, not the individual variables. L2 interpolation, which means that 

we use elemental averages, is applied to the non-conservative advective 

terms.

• Temporal discretization of the equations uses a three time-level scheme 

centered at  for the GWC equation, and a two time-level scheme centered 

at  for the non-conservative momentum equation (i.e., Crank-

Nicholson treatment). Nonlinear terms are evaluated explicitly.

• This temporal solution strategy of ADCIRC allows a sequential technique, 

wherein the GWC equation is first solved to determine elevations and then 

the velocities are updated with the non-conservative momentum equation. 

This helps limit the size of the matrices that the computer must store and 

invert.

The development of the 3D ADCIRC model is as follows:

• Spatial discretization of the equations utilizes standard Galerkin finite 

elements with C0 elements, which means only the functions, not their 

derivatives, are continuous between discrete points. We employ piece-wise 

linear functions in the model with exact quadrature rules. Product terms in 

k

k 1 2⁄+
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the equations are simplified by linearly interpolating the products of the 

variables, not the individual variables. L2 interpolation, which means that 

we use elemental averages, is applied to the non-conservative advective 

terms. (same as 2D.)

• Temporal discretization of the equations uses a three time-level scheme 

centered at  for the GWC equation, and a two time-level scheme centered 

at  for the non-conservative momentum equation (i.e., Crank-

Nicholson treatment). Nonlinear terms are evaluated explicitly. (same as 

2D.)

• The solution strategy in the 3D ADCIRC code utilizes a mode splitting 

scheme to obtain the solution to the 3D equations. This technique defines 

the external mode as the 2D continuity equation; the GWC equation is used 

in ADCIRC to obtain the free surface elevation. These elevations are then 

fed into the internal mode solution of the 3D momentum equations to find 

velocities. By lumping some of the terms, the solution is allowed to take on 

an explicit-like character in the horizontal. Lumping occurs with matrices 

by putting all the emphasis on the diagonal terms and zeroing out the off-

diagonal terms. Thus, the horizontal velocities are determined for every 

node at each layer in the vertical, avoiding globally-coupled matrices. The 

horizontal gradients given in Equation (2.13) are evaluated in the sigma 

coordinate system, except for the baroclinic pressure gradient, which is 

evaluated using a level or z-coordinate system in the current ADCIRC 

model configuration. 

k

k 1 2⁄+
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• To obtain the vertical velocities, we utilize Equation (2.16). In this step, 

matrices are unlumped (meaning that the evaluation of the matrices includes 

both the diagonal and off-diagonal terms) in the vertical, but the coupling 

results in easy-to-solve tridiagonal matrices for each string of vertical nodes 

associated with every horizontal node. Equation (2.16) has boundary 

conditions at both the bottom and at the water surface, but it is only a first 

order equation. The boundary condition at the bottom is used as a starting 

point for the calculations. Results are determined for the rest of the water 

column, and then the boundary condition at the water surface is used to 

correct the initial results. The correction for these results was developed by 

Muccino et al. [75] and Luettich et al. [57] and utilizes an adjoint method 

that adjusts the calculated results to produce an optimal solution. It was 

determined by Luettich et al. [57] that this correction is needed due to the 

errors in local mass conservation of the fluid.

Further explanation of the discretization of both the 2D and 3D equations occurs in Luettich 

et al. [59,60].

2.4   Development of Grids

Throughout this dissertation, we utilize grids developed using one of two 

techniques. The first technique employ a  ratio to determine node placement, where 

the ratio is defined as: 

(2.17)

λ ∆x⁄

λ
∆x
------ gh T×

∆x
--------------------=
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where the terms are discussed in Appendix 1. For constant nodal spacing, we divide the 

reach into N equal-sized elements, where N is chosen to produce the desired  ratio 

(e.g., ) for the M2 wave, which is chosen as it is the dominate wave, in the 

shallowest (i.e., most critical due to the depth change) region. Of course, this means that in 

the deeper portions of these domains, the M2 wave is even more finely resolved. 

For variable node spacing, we keep the  ratio constant (e.g., ) 

and use that value to determine the  values for all of the domain. In this method, the 

initial node is placed at the land boundary, the wavelength is determined by the wave speed 

, which is dependent only on depth for shallow water waves, and then a  value is 

calculated from the ratio shown in Equation (2.17). 

Second, we use a grid development technique that employs local truncation errors 

of the linearized non-conservative momentum equation. This grid development technique 

was developed by Hagen et al. [39,40] and is abbreviated LTEA. This method places more 

nodes in areas where high local truncation error exists. These areas tend to be where there 

are steep topography changes, such as the continental rise or the shelf break. In most of the 

domains herein, the number of nodes between the  and LTEA grids varies only 

slightly, however the nodes are placed differently. In particular, for LTEA grids, more nodes 

are placed on the continental shelf break and less in the shallower regions of the domain, 

whereas the  grid places more nodes in the shallower region with the spacing 

increasing as the bathymetry increases. We note that in the following chapters of this 

dissertation, we utilize grids based on these aforementioned techniques and look at the 

impact of the grid generating techniques on algorithmic performance.

λ ∆x⁄

λ ∆x 200=⁄

λ ∆x⁄ λ ∆x 300=⁄

∆x

gh ∆x

λ ∆x⁄

λ ∆x⁄
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 Chapter 3. Improving the Computational Efficiency of 
ADCIRC Through Implicit Time Marching and Its 
Parallel Implementationa

3.1   Introduction

In a previous article [33], we discussed and analyzed a predictor-corrector time-

marching algorithm (abbreviated predictor-corrector algorithm or just PC, herein) in a one-

dimensional (1D) setting, which utilizes the finite element framework and the generalized 

wave continuity (GWC) equation. This chapter builds upon that work and extends it to a 

two-dimensional (2D) setting, wherein it is assessed for stability, accuracy, parameter 

sensitivity, and parallel efficiency. 

Herein, the finite-element code is based on Lynch and Gray’s [64] wave continuity 

equation (WCE), which suppresses spurious oscillations without having to dampen the 

solution either numerically or artificially. Further studies by Kinnmark [48] determined that 

there was no loss in the wave propagation characteristics of the WCE if a numerical 

parameter, G, is introduced. This parameter expresses a balance between the primitive form 

and the pure wave form of the shallow water equations. The model utilized here, ADCIRC 

(an ADvanced three-dimensional CIRCulation model) [59] is based on the GWC equation. 

Currently, nonlinear applications with ADCIRC have stability problems unless a 

a.  This chapter appears in an abbreviated form in the International Journal of Numerical Methods 
in Fluids. The reference is given in Chapter 7, number [30].
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severe Courant number restriction is imposed. The Courant number is defined as 

(3.1)

where  is the linear wave celerity,  is the node spacing and  is the time step. 

In practice, the Courant number varies over the grid, we assign a single value to a grid by 

choosing the smallest. We have found in practice that for deep ocean flows, a practical 

upper bound of the Courant number (Cr) is 0.5 in order to maintain the stability of the 

model; however, an even tighter constraint (e.g., ) must be imposed if the 

simulation includes barrier islands, constricted inlets, or wetting and drying of near-shore 

elements. In order to relax this restriction, an alternative time-marching procedure was 

proposed that treats the nonlinear terms implicitly [53].

As reported in [33] (and repeated here for completeness), a number of earlier studies 

looked at time-marching, but often from a noise suppression point-of-view. For example, 

Lee and Froehlich [56] summarize several time-marching procedures in their shallow water 

equation review paper, which covers everything from the trapezoidal rule to three-level 

semi-implicit schemes. Lynch and Gray [37] showed several of the same time-marching 

procedures in greater detail. They indicate that the best scheme for finite element shallow 

water models is the three-level semi-implicit scheme. Several years later Kinnmark and 

Gray [47] examined a semi-implicit wave equation that produced accurate results, yet still 

treated the nonlinear terms explicitly. Most of the more recent work with GWC-based 

models has focused either on incorporating more physics or minimizing spatial error, e.g., 

alternative meshing criteria [10,11,39], wetting and drying [62], treatment of boundary 

conditions [52,65], 3D baroclinic simulations [66,68], and more accurate estimates of the 

Cr
c ∆t×

∆x
--------------=

c gh= ∆x ∆t

Cr 0.1«
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vertical velocity [75]. Furthermore, attempts to achieve timely simulations have led to 

parallel codes [23,46]. Little recent work with GWC-based models has been devoted to 

alternative time-marching algorithms. The intent of this study is to fill this gap, viz, an 

implicit treatment of nonlinear terms in both the GWC and momentum equations. 

An implicit treatment can be realized by either simultaneous integration of the full 

nonlinear equations or a predictor-corrector algorithm. A predictor-corrector algorithm was 

chosen over the simultaneous integration for the following reasons: 1) it can be easily 

implemented within the framework of the existing ADCIRC code; 2) it minimizes the size 

of the matrices that must be stored and inverted; and 3) it is more computationally efficient 

than the simultaneous integration of the full nonlinear equations. 

In this chapter, we examine the impact of the 2D predictor-corrector algorithm on 

stability, G sensitivity, and temporal accuracy, both globally and locally. Also, we 

implement a combined parallel/predictor-corrector algorithm and assess the scalability of 

the resulting code. In our earlier paper, we provided the background on the shallow water 

equations and indicated the proposed changes to the time-marching algorithm [33]; a 

summary of these sections is included below for completeness. 

3.2   Shallow Water Equations

The full shallow water equations can be found in several sources [48,50,59,64,67] 

and in Chapter 2; the GWC equation and non-conservative form of the momentum (NCM) 

equation, which form the basis of the ADCIRC model, are given below. Using operator 

notation, where L represents the primitive continuity equation, and  the conservative 

form of the momentum equation, we present the GWC equation

M
C
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(3.2)

where G is a numerical parameter. Lynch and Gray’s [64] WCE can be obtained by setting 

G = τ, where τ is the bottom friction. It should be noted that the higher the value of G, the 

more the GWC equation approaches the primitive equation. Expanded versions of the 

GWC equation and NCM equation are shown below, Equations (3.3) and (3.4), respectively 

for the case of constant parameter G. All terms are described in Appendix 1, but the 

predominant variables are noted after the equations. The abbreviations appearing above 

certain terms in these equations will be discussed in subsequent sections.

(3.3)

(3.4)

where ζ is the elevation of the water surface above the datum, t is time, v is the depth-

averaged velocity, and H is the total fluid depth, .

Algorithms based on these two equations result in solutions that compare well with 

analytical solutions and field data for both elevation and velocity. The codes typically use 

equal-order finite element interpolating functions (linear  elements). As presently 

coded, semi-implicit time discretization of the GWC equation uses a three-time-level 

approximation centered at k, while time discretization of the NCM equation uses a lumped 
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two-time-level approximation centered at k+1/2. Equations are linearized by formulating 

the nonlinear terms explicitly. Exact quadrature rules are used. Product terms in the 

equations are simplified by linearly interpolating the products of the variables, not the 

individual variables. L2 interpolation is applied to the advective terms. A time-splitting 

solution procedure is adopted wherein the GWC equation is first solved for nodal 

elevations and then the NCM equation is solved for the velocity field. Resulting discrete 

equations can be found in Luettich et al.[59]

3.3   Description of the Implicit Time-Marching Algorithm 

As noted, the current semi-implicit algorithm evaluates the linear terms implicitly 

and the nonlinear terms explicitly. At the past and present time levels in ADCIRC, elevation 

and velocity values are known (either from initial conditions or previous calculations). The 

original algorithm takes the elevation and velocity values for the past (k-1) and the present 

(k) and uses them to calculate the values for the future (k+1) time level for the linear terms. 

However, the nonlinear terms are evaluated using only the elevation and velocity values at 

the present time level (k). Kolar et al. [53] hypothesized that the stability constraint stems 

primarily from this explicit evaluation of nonlinear terms. 

In order to evaluate the nonlinear terms implicitly, a predictor-corrector time-

marching algorithm is introduced. The predictor stage, which is equivalent to the original 

algorithm, evaluates the nonlinear terms using values from the present. Predicted future 

values, called k*, and the already-known present (k) and past (k-1) values are then used to 

obtain corrected values for the future (k+1) time level. The corrector stage can be repeated 

as many times as necessary until convergence; however, previous studies [33] indicate that 
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one corrector iteration is sufficient. 

Nonlinear terms exist in both governing equations for ADCIRC - the NCM and 

GWC equation. Our study focuses on all eight nonlinear terms identified in Equations (3.3)

and (3.4). Six reside in the GWC equation: advective (abbreviated “ag and at”), in which 

“ag” is associated with the spatial derivative and “at” is associated with the temporal 

derivativeb, finite amplitude (abbreviated “fg”), Coriolis (abbreviated “cg”), GWC 

equation flux times G (abbreviated “Gg”) and GWC equation flux times τ (abbreviated 

“bg”) and two are from the NCM equation, the advective term (abbreviated “am”) and the 

bottom friction term (abbreviated “bm”). 

Through the use of time weight coefficients, we have the option to distribute the 

relative contribution of the nonlinear terms over the three time levels. Exhaustive 1D 

studies [33] showed that optimal coefficients are problem dependent, but that near-optimal 

results for any domain are found by centering the GWC equation time weights at k 

(meaning that the time weights for the nonlinear terms are weighted equally between k+1 

(or k*), k, k-1) and centering NCM time weights at k+1/2 (meaning that the terms are 

weighted equally between k and k+1 (or k*)). This near-optimal time weighting scheme is 

used for all studies herein. Also from the 1D studies, we determined that significant gains 

in the time step could be realized when just one or two nonlinear terms were treated 

implicitly; however, the increases were not as large as when all of the nonlinear terms were 

treated implicitly. Therefore, studies herein look at treating all nonlinear terms implicitly.

b.  Earlier modifications to the ADCIRC code converted the advection term in the GWC equation to 
non-conservative form by using the primitive continuity equation to split it into two terms, one in-
volving a spatial derivative and one involving a temporal derivative. See [54] for full details.
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3.4   Two-Dimensional Domains

In this chapter, we examine algorithm behavior on a number of domains: the quarter 

annular harbor (denoted “quarter annular”), a fictional grid that has a well-documented 

analytical solution, and several application domains - Bight of Abaco (denoted 

“Bahamas”), Western North Atlantic (denoted “Eastcoast”), and Gulf of Mexico. 

The quarter annular harbor grid is shown in Figure 3.1. Boundaries are marked on 

the figure, with either ocean or land indicated. The boundary condition for the open ocean 

boundary is the M2 tidal constituent, while the land boundaries are no flow. Resolutions 

used in comparison studies include 5x5, 10x10, 15x15, 20x20, 25x25 and 30x30 (radial 

divisions x θ divisions). 

The application domains (Eastcoast, Gulf of Mexico and Bahamas) are shown in 

Figure 3.2; boundary conditions are indicated on the figure. Table 3.1 contains information 

Land
Boundary

Ocean
Boundary

Figure 3.1 Quarter annular harbor domain (10 x 10 
resolution).
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regarding parameters, boundary, and grid information for each of the application domains. 

In all of the domains, the land boundaries are treated as no flow. Two meshing criteria are 

used in developing the Gulf of Mexico grids: λ/∆x, which is commonly used in grid 

development, and the Local Truncation Error Analysis (LTEA), developed by Hagen et 

al.[39,40] In the LTEA technique, nodes are placed in order to minimize spatial truncation 

error. 

3.5   Numerical Experiments and Discussion

3.5.1  Stability

Dominant nonlinear terms preclude the use of traditional stability studies, such as 

Fourier analysis. Therefore, we utilize heuristic methods. In particular stability changes 

Table 3.1  Application domain information.

Bahamas Gulf of Mexico Eastcoast

Meshing Criteria λ/∆x λ/∆x LTEA λ/∆x

# nodes 926 11701 11934 32947

# elements 1696 21970 22870 61705

Min. Bathymetry (m) 1.0 1.0 0.7 3.0

Max. Bathymetry (m) 9.0 3600.0 3600.0 6000.0

original G 
value (sec-1)

0.009 0.009 0.009 0.005

M2 amplitude (m) 0.395 0.07 - 0.173 0.07 - 0.173 0.0652-0.5580

O1 amplitude (m) 0.075

K1 amplitude (m) 0.095

S2 amplitude (m) 0.06

N2 amplitude (m) 0.10

≈ ≈ ≈ ≈
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with the new algorithm were determined from these steps: 1) Each domain was evaluated 

using the original algorithm to obtain the maximum stable time step (to the nearest five 

seconds) for each type of spatial discretization; 2) Each domain was evaluated using the 

predictor-corrector algorithm to obtain the maximum stable time step for each spatial 

discretization; 3) Results from the two previous steps were compared to one another and a 

percent change between the two resulting time steps was obtained. Because the corrector 

iteration requires another solution of the system matrix, we need to achieve more than a 

% change for the predictor-corrector algorithm to be considered cost-effective, 

where n is the number of corrector steps. This is a conservative estimate because it assumes 

the entire load vector is re-evaluated with each iteration, while in reality, only the k*/k+1 

portion of the nonlinear terms needs to be updated. Previous results showed no significant 

gains in performing more than one iteration of the corrector step, therefore only one 

iteration is considered herein. 

Results for each of the domains are summarized in Table 3.2 with the maximum 

allowable time steps shown along with the maximum Courant number. In all the domains, 

results show that the Courant number restriction relaxes with the predictor-corrector 

algorithm. Generally, Courant numbers with the original algorithm are less than 0.5, while 

Courant numbers greater than 1.0 can be realized with the predictor-corrector algorithm. 

All domains obtain the needed 100% increase (single corrector iteration) for the new 

algorithm to be cost-effective, with the greatest increase in the maximum stable time step 

occurring with the Eastcoast domain, which shows an eight-fold increase. 

For the different spatial discretizations, results from the quarter annular and Gulf of 

Mexico domains indicate that resolution changes do affect the stability results. In particular 

n 100×
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for the quarter series, the maximum Courant number with the original algorithm remains 

constant with increasing resolution; however, the maximum Courant number with the 

predictor-corrector algorithm increases with increasing resolution. For the Gulf of Mexico 

domain, we evaluated two different meshing techniques, the typical λ/∆x and the LTEA. 

The LTEA method adds refinement in the grid where truncation errors are high, which 

usually coincided with the continental rise and shelf break. For these two refinements, we 

analyzed the spatial variability of the Courant number over the domain. From these studies, 

we found that the LTEA grid tends to even out the magnitude of the Courant number over 

.

Table 3.2  Numerical stability experiments - maximum stable time step and associated 
Courant number for various domains. 

Domains
Original

∆t, sec. (Cr)
Predictor-Corrector

∆t, sec. (Cr)
Percent 
Increase

Quarter annular

5x5 2205 (0.50) 7095 (1.50) 222%

10x10 1120 (0.47) 5140 (2.14) 359%

15x15 730 (0.45) 4250 (2.47) 482%

20x20 550 (0.45) 3685 (3.00) 569%

25x25 445 (0.45) 3400 (3.40) 664%

30x30 370 (0.45) 3060 (3.74) 727%

Bahamas

λ/∆x 245 (0.57) 885 (2.06) 261%

Gulf of Mexico

λ/∆x 200 (0.52) 580 (1.54) 190%

LTEA 100 (0.17) 360 (0.62) 260%

Eastcoast

λ/∆x 55 (0.032) 470 (0.27) 754%
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the break, with the most restrictive Courant number occurring in the shallow, near-shore 

region; in contrast, the λ/∆x grid shows a limiting Courant number at the shelf break. 

3.5.2  G Sensitivity

Sensitivity studies provide information on how parameter changes impact 

algorithm performance. Herein, we are especially interested in how G, the numerical 

parameter in the GWC equation, impacts the maximum stable time step. Sensitivity 

analyses were conducted on three domains, with several spatial resolutions: quarter annular 

domain with two spatial resolutions, 10x10 and 30x30; Bahamas domain; Gulf of Mexico 

domain with two meshing techniques, λ/∆x and LTEA and Eastcoast domain. In each of 

these domains, we analyzed a range of G values between 0.00001 sec-1 and 0.1 sec-1. Using 

the PC algorithm, for each G parameter value we obtained the maximum stable time step, 

which we compared to the maximum stable time step from the original algorithm with the 

G parameter fixed at its original value. 

Percent changes between these two scenarios are shown in Figure 3.3. Figure 3.3a 

shows that the quarter annular domain (two resolutions), along with the Bahamas domain. 

For the quarter annular domains, the greatest increase in stability occurs with G between 

0.001 to 0.0001 sec-1, with peaks at G=0.0004 sec-1 for the 10x10 resolution and G=0.0007 

sec-1 for the 30x30 resolution. For the Bahamas domain, the greatest increase occurs with 

G between 0.01 and 0.001 sec-1, with the peak at G=0.0025 sec-1. Figure 3.3b shows the 

results from the two Gulf of Mexico meshes and the Eastcoast domain. For the λ/∆x grid, 

the greatest increase in stability occurs when G is between 0.001 to 0.0001 sec-1 with the 

peak occurring at G=0.00068 sec-1, while for the LTEA grid, the greatest increase in 

stability occurs between 0.01 to 0.0001 sec-1 with two peaks - one at a G=0.002 sec-1 and 
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the other at G=0.00045 sec-1. In the Eastcoast domain, the greatest increase in stability 

occurs between 0.01 and 0.001 sec-1 with the peak at 0.0022 sec-1. A common feature of 

all is that stability is highly sensitive to the value of G used in the simulation.

An optimum range for G/τmax should lie between 1 and 10 in order to minimize the 

mass balance errors and errors in the generation of nonlinear constituents, as indicated in 

previous work by Kolar et al. [54] They also indicated that when G/τmax increases above 

10, oscillations can appear in the solution. We looked at this ratio for each of the domains 

analyzed herein to determine if the stability peak lies within this recommended range. In 

Figure 3.3, we indicate where  for each domain. In short, for all domains 

tested, the maximum increase in stability coincides with the recommended range that 

minimizes the mass balance errors and errors in the generation of nonlinear constituents. 

Thus, a single value of G can meet both criteria.

3.5.3  Temporal Accuracy

In this section, we investigate the influence of the predictor-corrector algorithm on 

temporal accuracy, both globally and locally. Globally, we analyze the temporal accuracy 

using L2 and L∞ error measures and determine the changes to the order of accuracy 

(convergence rate) between the two algorithms. L2 error measures are obtained by 

comparing a fine (“true”) solution to the coarse solution at the same point using the 

following:

(3.5)

where  is the coarse solution,  is the fine solution and  is the number of node in the 

1 G τmax⁄ 10≤ ≤

L2 error
ci fi–( )2

i 1=

N
∑

N
------------------------------------=

ci fi N
34



coarse grid. The L∞ error is defined as the magnitude of the maximum difference of the 

coarse and fine solutions over the entire domain. Discussion of these results occurs in the 

first subsection. In the second subsection, CAFE (Cumulative Area Fraction Errors) 

analysis [61] is used to study the local behavior of temporal accuracy. 

  3.5.3a Global Temporal Accuracy (Convergence Rates)

In order to evaluate the global behavior of temporal accuracy, including the overall 

convergence rate, we compare solutions from a coarse temporal resolution to a “true” (fine 

∆t) solution of 10 seconds. Spatial resolution is kept the same. Accuracy changes were 

quantified by analyzing the global error, as measured by the L2 norm and the L∞ norm. For 

all domains, we evaluated both norms at 120 discrete times covering 10 complete tidal 

cycles of the M2 tide, which is the dominant tidal signal. For the L2 norm, we averaged the 

results over time, while for the L∞ norm, we determined the maximum absolute value over 

time. We performed the temporal accuracy experiments on all of the domains: quarter 

annular (30x30 resolution), Bahamas, Gulf of Mexico (λ/∆x grid) and Eastcoast. Figure 3.4

shows the elevation L2 norms for each of these domains: quarter annular (Figure 3.4a), 

Bahamas (Figure 3.4b), Gulf of Mexico (Figure 3.4c), and Eastcoast (Figure 3.4d).

In all domains, results show that the error for the predictor-corrector algorithm plots 

below the original algorithm (less absolute error). Also, we determined the slope of the line 

(i.e., order of accuracy) for each of the time-marching algorithms, which is shown in Table 

3.3. In all the domains analyzed, we find that the order of accuracy increases from 

approximately first order for the original algorithm to second order for the predictor-

corrector algorithm (see Table 3.3). Results using either the L∞ norm or the velocity field 
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Figure 3.4 Temporal accuracy results for: a) quarter annular b) Bahamas, c) Gulf of 
Mexico and d) Eastcoast. All results are based on the L2 norm of elevation 
(dot-dash line - original algorithm (labeled OA), solid line - predictor-
corrector algorithm (labeled PC)). 
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Table 3.3  Order of accuracy from slope of L2 norm.

Domains Original Predictor-Corrector

Quarter annular (30x30) 1.15 2.03

Bahamas 1.27 1.89

Gulf of Mexico 1.19 1.97

Eastcoast 1.53 1.92
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are similar.

These results mimic what we found with the 1D experiments [33]. Noteworthy is 

that the predictor-corrector algorithm shows the greatest increase in accuracy for domains 

where the bathymetry gradients are significant over much of the domain, such as the Gulf 

of Mexico. In contrast, the least gains are seen with the Eastcoast domain, which may be 

due to the fact that the majority of domain is deep water, where the wave propagation is 

more nearly linear. In these instances, updating the nonlinear terms does not provide as 

much improvement to the accuracy. 

  3.5.3b Local Temporal Accuracy 

Next, we evaluated the behavior of the temporal accuracy over the spatial domain 

utilizing CAFE plots [61]. CAFE plots provide both absolute and relative errors between 

two simulations of the same domain with the same spatial resolution, but different temporal 

resolutions. Absolute errors are obtained from:  where  is the coarse 

solution and  is the fine solution; while relative errors (%) are determined from: 

 [40]. A frequency graph is developed based on these differences, viz, 

for each error level, the cumulative area fraction is computed, which is calculated as the 

ratio of area of the grid associated with a certain difference compared to the total area of 

the grid. 

Elevation, being a scalar field, can be represented by amplitude and phase errors. 

However the velocity field is a vector field, so direction needs to be quantified. If one 

considers that the velocity vector at a point in space and maps its position as time evolves, 

an ellipse is traced out, as Figure 3.5 shows. The five components of the velocity error are: 

εa ci fi–( )= ci

fi

εr

ci fi–

fi

---------------- 
 100=
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the major and minor semi-axis velocity is obtained from lengths of the maximum and 

minimum current vector over a tidal cycle (  and  in Figure 3.5, respectively); the major 

semi-axis phase difference is determined from the phase lag that the major semi-axis 

velocity makes with the tidal forcing; eccentricity is obtained from the ratio of the major 

and minor semi-axis velocity results (  where  and  are defined in 

Figure 3.5) and the major semi-axis direction difference is determined from the angle of the 

major semi-axis current and the positive x-axis [40]. 

The following steps are used to develop the CAFE curves for this study: 1) 

Harmonic data is recorded for the original algorithm over several tidal cycles for coarse and 

fine temporal resolutions; 2) Harmonic data is recorded for the predictor-corrector 

algorithm over several tidal cycles for coarse and fine temporal resolutions; 3) Absolute 

and relative errors are calculated for each algorithm; 4) Cumulative errors for both 

algorithms are computed; 5) Results from the original and predictor-corrector algorithms 

are plotted against each other to determine the percent area exceeding a certain criteria for 

Figure 3.5 A schematic of the velocity tidal ellipse that describes the coarse or fine 
velocity fields and their components. 
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convergence. 

Figure 3.6 shows two sample CAFE plots. To read these plots, one must first realize 

that a perfect solution (no error) would plot as a vertical line located at , indicated 

by the vertical solid line in Figure 3.6. Any deviations from this line represent errors in the 

simulation; the further the graph is from , the more the error. For a given 

convergence criteria, one finds the associated percent of cumulative area in the domain that 

exceeds the given criteria. For example in Figure 3.6a, one first selects a convergence 

criteria (in this case, +/- 0.02 cm.) then follows that value to where it intersects the CAFE 

plot and obtains the cumulative area that exceeds this convergence criteria (in this case, 

0.095% overprediction and 0.02% underprediction). Note that in Figure 3.6a, the short-

dashed line plots underneath the curve of the long-dashed line, indicating less error. Also, 

by examining the shape of the CAFE plots, we can infer the spatial distribution of the 

temporal error, e.g., if the curves are “skinny” (narrow at the top), the temporal error is 

confined to a small portion of the domain, but if the curves are “fat” (wider at the top - 

shown in Figure 3.6b), temporal error permeates the domain

Figures 3.7-3.12 show CAFE plots for three domains: quarter annular (30x30 

resolution), Eastcoast and Gulf of Mexico ( ). Tables 3.4-3.9 present the error levels 

obtained from the CAFE results for the same three domains: Results are representative of 

the accuracy changes for all the domains. These tables show the error levels for all of the 

velocity and elevation components for the indicated temporal resolutions. The criteria used 

in these tables are based on tolerance levels that exceed required accuracy for most 

applications. In the tables, the bold values indicate the lowest error. In analyzing the results 

shown in these tables, we observe that when the time step is the same between the two 

x 0=

x 0=

λ ∆x⁄
39



-0.004 -0.002 0 0.002 0.004 0.006 0.008

0.01

0.1

1

10

100

0 0.05 0.1 0.15

0.01

0.1

1

10

100
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Figure 3.7 CAFE plots for quarter annular domain - different time step for both 
time-marching algorithms (orig ∆t = 150 sec, PC ∆t = 300 sec). Dotted 
line - original time-marching algorithm and dashed line - predictor-
corrector time-marching algorithm.
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Figure 3.8 CAFE plots for quarter annular domain - same time step for both time-
marching algorithms (∆t = 150 sec). Dotted line - original time-marching 
algorithm and dashed line - predictor-corrector time-marching algorithm.
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Figure 3.9 CAFE plots for Eastcoast domain - different time step for both time-
marching algorithms (orig ∆t = 40 sec, PC ∆t = 100 sec). Dotted line - 
original time-marching algorithm and dashed line - predictor-corrector 
time-marching algorithm.
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Figure 3.10 CAFE plots for Eastcoast domain - same time step for both time-
marching algorithms (∆t = 40 sec). Dotted line - original time-marching 
algorithm and dashed line - predictor-corrector time-marching algorithm.

C
um

ul
at

iv
e 

A
re

a 
(%

)
C

um
ul

at
iv

e 
A

re
a 

(%
)

C
um

ul
at

iv
e 

A
re

a 
(%

)
C

um
ul

at
iv

e 
A

re
a 

(%
)

C
um

ul
at

iv
e 

A
re

a 
(%

)

C
um

ul
at

iv
e 

A
re

a 
(%

)
C

um
ul

at
iv

e 
A

re
a 

(%
)

C
um

ul
at

iv
e 

A
re

a 
(%

)

Major Semi-Axis Direction Diff. (deg.)Eccentricity Diff.

Major Semi-Axis Phase Diff. (deg.)Relative Major Semi-Axis Diff. (%)

Absolute Major Semi-Axis Diff. (cm/s) Elevation Phase Diff. (deg)

Relative Elevation Amplitude Diff. (%)Absolute Elevation Amplitude Diff. (cm) 
0 0.05 0.1 0.15

0.01

0.1

1

10

100

-0.5 0 0.5 1

0.01

0.1

1

10

100

-0.4 -0.2 0 0.2 0.4 0.6

0.01

0.1

1

10

100

-0.02 0 0.02 0.04 0.06

0.01

0.1

1

10

100

-0.6 -0.4 -0.2 0 0.2 0.4

0.01

0.1

1

10

100

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

0.01

0.1

1

10

100

-0.001 0 0.001 0.002

0.01

0.1

1

10

100

-0.6 -0.4 -0.2 0 0.2 0.4

0.01

0.1

1

10

100
44



Figure 3.11 CAFE plots for Gulf of Mexico domain - different time step for both 
time-marching algorithms (orig ∆t = 50 sec, PC ∆t = 150 sec). Dotted 
line - original time-marching algorithm and dashed line - predictor-
corrector time-marching algorithm.
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Figure 3.12 CAFE plots for Gulf of Mexico domain - same time step for both time-
marching algorithms (∆t = 50 sec). Dotted line - original time-marching 
algorithm and dashed line - predictor-corrector time-marching algorithm.
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Table 3.4  Elevation error measures for quarter annular domain.

Quarter annular
(same ∆t)

Quarter annular
(different ∆t)

Original PC Original PC

Time step (sec) 150 150 150 300

Elevation Amplitude (Absolute) 

% exceeding -0.001 ft <0.0001 <0.0001 <0.0001 <0.0001

% exceeding 0.001 ft 40 <0.0001 40 <0.0001

% exceeding +/-0.001 ft 40 <0.0002 40 <0.0002

Elevation Amplitude (Relative) 

% exceeding -0.02% <0.0001 <0.0001 <0.0001 20

% exceeding 0.02% 80 <0.0001 80 <0.0001

% exceeding +/-0.02% 80 <0.0002 80 20

Elevation Phase Difference

% exceeding -0.02 <0.0001 <0.0001 <0.0001 20

% exceeding 0.02 60 <0.0001 60 <0.0001

% exceeding +/-0.02 60 <0.0002 60 20

°

°

°
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Table 3.5  Velocity error measures for quarter annular domain.

Quarter annular
(same ∆t)

Quarter annular
(different ∆t)

Original PC Original PC

Time step (sec.) 150 150 150 300

Major Semi-Axis (Absolute) 

% exceeding -0.0005 ft s-1 <0.0001 <0.0001 <0.0001 10

% exceeding 0.0005 ft s-1 95 <0.0001 95 <0.0001

% exceeding +/-0.0005 ft s-1 95 <0.0002 95 10

Major Semi-Axis (Relative) 

% exceeding -5% 0.03 0.09 0.03 0.1

% exceeding 5% <0.0001 <0.0001 <0.0001 <0.0001

% exceeding +/-5% 0.03 0.09 0.03 0.1

Major Semi- Axis Phase Difference

% exceeding -0.05 0.08 0.04 0.08 0.04

% exceeding 0.05 <0.0001 <0.0001 <0.0001 <0.0001

% exceeding +/-0.05 0.08 0.04 0.08 0.04

Eccentricity

% exceeding -0.0002 1 <0.0001 1 <0.0001

% exceeding 0.0002 2.5 <0.0001 2.5 <0.0001

% exceeding +/-0.0002 3.5 <0.0002 3.5 <0.0002

Major semi-axis direction

% exceeding -0.1 0.02 <0.0001 0.02 <0.0001

% exceeding 0.1 0.6 <0.0001 0.6 <0.0001

% exceeding +/-0.1 0.62 <0.0002 0.62 <0.0002

°

°

°

°

°

°
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Table 3.6  Elevation error measures for Eastcoast domain.

Eastcoast
(same ∆t)

Eastcoast 
(different ∆t)

Original PC Original PC

Time step (sec) 40 40 40 100

Elevation Amplitude (Absolute) 

% exceeding -0.01 cm 0.3 0.001 0.3 0.03

% exceeding 0.01 cm 0.3 <0.0001 0.3 0.04

% exceeding +/-0.01 cm 0.6 <0.0011 0.6 0.07

Elevation Amplitude (Relative) 

% exceeding -0.1% 0.1 0.0009 0.1 0.01

% exceeding 0.1% 0.08 0.007 0.08 0.004

% exceeding +/-0.1% 0.18 0.0079 0.18 0.014

Elevation Phase Difference

% exceeding -0.1 0.025 <0.0001 0.025 0.0008

% exceeding 0.1 0.02 0.003 0.02 0.002

% exceeding +/-0.1 0.045 <0.0031 0.045 0.0028

°

°

°
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Table 3.7  Velocity error measures for Eastcoast domain.

Eastcoast 
(same ∆t)

Eastcoast
(different ∆t)

Original PC Original PC

Time step (sec.) 40 40 40 100

Major Semi-Axis (Absolute) 

% exceeding -0.01 cm s-1 0.2 <0.0001 0.2 <0.0001

% exceeding 0.01 cm s-1 0.04 <0.0001 0.04 <0.0001

% exceeding +/-0.01 cm s-1 0.24 <0.0002 0.24 <0.0002

Major Semi-Axis (Relative) 

% exceeding -0.1% 0.08 0.0009 0.08 0.002

% exceeding 0.1% 0.003 0.002 0.003 0.006

% exceeding +/-0.1% 0.083 0.0029 0.083 0.008

Major Semi- Axis Phase Difference

% exceeding -0.05 0.14 0.003 0.14 0.04

% exceeding 0.05 0.9 0.001 0.9 0.04

% exceeding +/-0.05 1.04 0.004 1.04 0.08

Eccentricity

% exceeding -0.0002 1 0.015 1 0.8

% exceeding 0.0002 2 0.012 2 0.4

% exceeding +/-0.0002 3 0.027 3 1.2

Major semi-axis direction

% exceeding -0.1 0.07 <0.0001 0.007 0.0005

% exceeding 0.1 0.016 <0.0001 0.0016 0.004

% exceeding +/-0.1 0.086 <0.0002 0.0086 0.0045

°

°

°

°

°

°
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Table 3.8  Elevation error measures for Gulf of Mexico domain.

Gulf of Mexico 
(same ∆t)

Gulf of Mexico 
(different ∆t)

Original PC Original PC

Time step (sec.) 50 50 50 150

Elevation Amplitude (Absolute) 

% exceeding -0.002 cm 4 <0.0001 4 3

% exceeding 0.002 cm 2 <0.0001 2 0.7

% exceeding +/-0.002 cm 6 <0.0002 6 3.7

Elevation Amplitude (Relative) 

% exceeding -0.1% 0.4 0.007 0.4 0.25

% exceeding 0.1% 0.15 0.02 0.15 0.4

% exceeding +/-0.1% 0.55 0.027 0.55 0.65

Elevation Phase Difference

% exceeding -0.1 0.07 0.015 0.07 0.1

% exceeding 0.1 0.08 <0.0001 0.08 0.1

% exceeding +/-0.1 0.15 <0.0151 0.15 0.2

°

°

°
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Table 3.9  Velocity error measures for Gulf of Mexico domain.

Gulf of Mexico 
(same ∆t)

Gulf of Mexico 
(different ∆t)

Original PC Original PC

Time step (sec.) 50 50 50 150

Major Semi-Axis (Absolute) 

% exceeding -0.001 cm s-1 2.5 0.08 2.5 6

% exceeding 0.001 cm s-1 3.5 <0.0001 3.5 0.04

% exceeding +/-0.001 cm s-1 6 <0.0801 6 6.04

Major Semi-Axis (Relative) 

% exceeding -0.02% 60 0.005 60 5

% exceeding 0.02% 2 0.01 2 5

% exceeding +/-0.02% 62 0.015 62 10

Major Semi- Axis Phase Difference

% exceeding -0.02 2 0.002 2 8

% exceeding 0.02 10 0.022 10 1.5

% exceeding +/-0.02 12 0.024 12 9.5

Eccentricity

% exceeding -0.0002 3.5 <0.0001 3.5 1.5

% exceeding 0.0002 4 <0.0001 4 1.25

% exceeding +/-0.0002 7.5 <0.0002 7.5 2.75

Major semi-axis direction

% exceeding -0.02 2 0.0004 2 0.8

% exceeding 0.02 1.5 <0.0001 1.5 2

% exceeding +/-0.02 3.5 <0.0005 3.5 2.8

°

°

°

°

°

°
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algorithms, the predictor-corrector algorithm produces less error for all of the components 

except for one in the quarter annular domain. (Note that all bold numbers are under the “PC, 

same ∆t” column.) And in the figures for the same time step (Figures 3.8, 3.10, and 3.12), 

the predictor-corrector algorithm plots underneath the curve of the original algorithm in 

nearly all instances, thus indicating less error. Noteworthy is that the error measure is often 

two orders of magnitude less. When the time step for the predictor-corrector algorithm is 

2.5 times that of the original algorithm for Eastcoast, 3 times that of the original algorithm 

for the Gulf of Mexico and 2 times that of the original algorithm for the quarter annular 

domain, the tables show that the predictor-corrector algorithm still produces less error than 

the original algorithm at a lower time step in most ( %) of the cases. (Note in the tables 

that the majority of bold numbers are still under the “PC, different ∆t” column.) Moreover, 

many of these predictor-corrector errors for the Eastcoast domain are still an order of 

magnitude less than the original algorithm. Also note that in a majority ( %) of the 

CAFE plots (Figures 3.7, 3.9, and 3.11), the predictor-corrector algorithm plots underneath 

the original algorithm. 

3.5.4  Testing of the Combined Parallel/Predictor-Corrector Algorithm

Complex applications on larger, more intricate domains require that we utilize 

parallel computing to obtain results in a time-efficient manner. Therefore, the last 

component of this work with the predictor-corrector algorithm was to code and analyze the 

algorithm in parallel. The original parallel code is reported in Dawson et al. [28], and it uses 

the METIS algorithm [45] to decompose grids. Ghost nodes and MPI (Message Passing 

Interface) [38] are used to pass information between the subdomains at each iteration. 

Further information on the parallel code can be found in Dawson et al. [28] We adapted this 

83≈

70≈
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paradigm for the combined predictor-corrector/parallel code. 

Figure 3.13 shows an example of the decomposition of the quarter annular grid 

(100x100 resolution) on four processors. Figure 3.14 shows the surface to volume ratio 

(computed as the ratio of the number of nodes on the boundary of the subdomain to the total 

number of nodes in the subdomain) versus the number of processors for two applications 

discussed herein, quarter annular and Eastcoast. For computational efficiency, this ratio 

should be kept as low as possible in order to keep communication cost low. Here, for the 

quarter annular domain, an ideal surface to volume ratio can be computed because it is 

topologically similar to a square, which, of all rectangular figures, is the one that has the 

maximum area for given perimeter. Thus, if a larger square is divided so that each 

subdomain is square, it will maintain the minimum possible surface to volume ratio. Such 

a computation for a square with the same number of nodes as the quarter annular domain 

Figure 3.13 Example of the domain decomposition. The quarter annular domain with 
100,000 nodes is shown for a 4 processor decomposition. 
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is shown as the dashed-dot line in Figure 3.14. As can be seen, the actual surface to volume 

ratio for the quarter annular domain (see the dashed line in Figure 3.14) nearly matches the 

ideal curve for the square. Surprisingly, the Eastcoast domain also shows very good surface 

to volume behavior even though it is a very irregular domain (see the solid line in Figure 

3.14). Thus, the METIS algorithm appears to be producing near-optimal subdomains.

  3.5.4a Methodology and Domains Evaluated for the Benchmarking Studies

The parallel code was benchmarked on two platforms. Table 3.10 describes the 

characteristics of the two parallel computing environments, which are two 16-processor 

clusters: one consisting of Sun UltraSparc IIe processors, and another consisting of Intel 

Pentium III processors. 

In order to determine the performance of the new combined algorithm, we 

Figure 3.14 Surface to volume ratio for various subdomains. Dashed line - quarter 
annular domain (100x100 resolution) - labeled QA, Solid line with 
diamonds - Eastcoast domain - labeled EC. Theoretical values are shown 
with the dashed-dot-dot line - labeled TH. 
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investigated three scenarios, which are presented in Table 3.11. Two scenarios (quarter 

annular - 100x100 resolution and Eastcoast domains) provide information on scaling and 

the effects of the additional stability associated with the predictor-corrector algorithm. In 

the third study, we want to minimize the impact of communication overhead on scaling by 

keeping the number of nodes per processor constant, as indicated in the table. Under this 

scenario, the computational workload per processor is kept constant. 

Table 3.10  Comparison of the two computer architectures.

Attributes Sun Ultra Sparc IIe Intel Pentium III 

Speed 500 MHz 1 GHz

Operating System Solaris 8 Linux

Cache 256 KB 256 KB

Memory 128 MB 256 MB

Communication 100 Mb/s 100 Mb/s

Compiler Sun Forte 6.0 NAG

MPI Sun ClusterTools MPIch 

 

Table 3.11  Benchmarking studies - parameters.

Parameters/
Domains {study}

Quarter 
annular 

(100x100) 
{1}

Eastcoast 
{1}

Quarter 
annular

{2}

Quarter 
annular

{3}

number of nodes 100000 32947 5000 - 80000 50 - 280000

avg. number of nodes/
processor

varies varies 5000 varies

time step (original) 30 60 25 varies

time step (predictor-
corrector) 

180 515 25 NA
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  3.5.4b Results of the Benchmarking Studies 

In this section, we focus on three main comparisons: 1) results when the global 

number of nodes remains constant; 2) results when the average number of local nodes per 

processor remains constant; and 3) results when the global number of nodes varies on one 

processor. 

Results from the first study are shown in Figure 3.15. Figure 3.15a shows the actual 

run time information and Figure 3.15b shows the scaling results for the quarter annular 

domain. For the timing information, wall-clock times were obtained for both algorithms at 

the time step indicated in Table 3.11 for the Sun and Intel platforms. To develop the scaling 

results, we compared the timing results from each processor to the two processor 

simulation, which served as the baseline. In theory, the four processor simulation should 

run twice as fast as the two processor simulation, etc.; this theoretical speed-up is shown in 

Figure 3.15b as a solid line. From these figures, we observe the following: 

• As expected, the parallel version of the predictor-corrector algorithm also 

shows significant stability gains. For example, with the quarter annular 

domain, we found a six-fold increase in the maximum time step with both 

serial and parallel versions. 

• Results for both the Sun and Intel platforms indicate the predictor-corrector 

algorithm significantly reduces wall-clock time because of the gains in 

stability. Comparing the two platforms, we see that Intel results show a 

slightly faster wall-clock time as compared to the Sun results, which is most 
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likely due to the higher cpu speed of the Intel processors.

• Scalability results for both platforms show a near linear speed-up through 

the six-processor simulation, with a slight decrease as the number of 

processor increases. For both algorithms, we find the same trend with a 

slight decrease at the higher number of processors being more pronounced 
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Figure 3.15 Benchmarking results for the quarter annular scenario with a) showing 
the wall-clock time while b) shows the speed-up vs. two processors. (PO 
- original time-marching algorithm (Pentium), PPC - predictor-corrector 
time-marching algorithm (Pentium), SO - original time-marching 
algorithm (Sun) and SPC - predictor-corrector time-marching algorithm 
(Sun)). Solid line on b) indicates the theoretical speed-up (linear).
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for the predictor-corrector algorithm. 

• We also evaluated the Eastcoast domain (shown in Figure 3.16) with the 

combined parallel, predictor-corrector algorithm and observed similar 

behavior, e.g. an eight-fold increase in the maximum time step with both 

serial and parallel versions, good scaling, and lower wall-clock time for the 

Figure 3.16 Benchmarking results for the Eastcoast scenario with a) showing the 
wall-clock time while b) shows the speed-up vs. two processors. (PO - 
original time-marching algorithm (Pentium), PPC - predictor-corrector 
time-marching algorithm (Pentium), SO - original time-marching 
algorithm (Sun) and SPC - predictor-corrector time-marching algorithm 
(Sun)). Solid line on b) indicates the theoretical speed-up (linear).
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predictor-corrector algorithm. 

Figure 3.17 shows the timing results for the second study, where the quarter annular 

domain is used and the average number of nodes per processor is held constant. Significant 

differences in wall-clock time between the two algorithms exist because we use the same 

time step for both algorithms (recall the predictor-corrector algorithm requires twice the 

computation time per time step, thus causing the simulation to take approximately twice as 

long). In this study, the wall-clock time should theoretically remain constant as the number 

of processors increases because the average workload per processor remains constant. 

Results indicate the Sun platform has a significant increase in the wall-clock time from one 

to two processors, which does not occur for the Intel platform. This deviation from the 

constant theoretical results indicates communication overhead is greater for the Sun 

Figure 3.17 Benchmarking study results for the two time-marching 
algorithms where the time step is constant between the two 
algorithms in the quarter annular domain. (PO - original time-
marching algorithm (Pentium), PPC - predictor-corrector time-
marching algorithm (Pentium), SO - original time-marching 
algorithm (Sun) and SPC - predictor-corrector time-marching 
algorithm (Sun)).
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platform than for the Intel platform. For the Sun platform, wall-clock time continues to 

increase through the ten processor simulation, then levels out. For the Intel platform, the 

wall-clock times show less increase as the number of processors increases. Differences 

between the two platforms may be due to the communication configurations and MPI 

implementation. 

Lastly, Figure 3.18  shows the results for the third study, where the quarter annular 

domain is used, the number of nodes varies, but the study utilizes only one processor. For 

this study, the number of time steps in the simulation remains constant but the size of time 

step varies with the increasing number of nodes in order to maintain stability. Here, we are 

interested in determining the number of nodes that can be processed on one processor 
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Figure 3.18 Benchmarking study results for the single processor experiment 
utilizing the original time-marching algorithm in the quarter 
annular domain on the Sun cluster.
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without having to utilize swap memory. These experiments use the original algorithm, 

however, the predictor-corrector algorithm should provide similar results with a slight 

increase in the work per unit time (if analyzed with the same time step). Work per unit time 

is determined from calculating the total memory used for all the arrays for each grid and 

then dividing that total by the wall-clock time for each of grids. As shown in Figure 3.18, 

the results show a steady decrease in the work per unit time as the number of nodes 

increases with a sharp decline occurring near 100000 nodes mark. This indicates where the 

computer starts swapping information in and out of cache in order for one processor to be 

able to complete the simulation. Thus, for this cluster, the analysis indicates that we should 

decompose our big domains into enough subdomains so that we have less than 100000 

nodes per processor in order to complete the simulation utilizing only cache memory. We 

would expect to see similar results for the Pentium platform since both machines have the 

same size cache. 

3.6   Conclusions

In this chapter, we develop and analyze a predictor-corrector algorithm for 2D, 

GWC-based shallow water models. We quantify the effects of this new time-marching 

algorithm with respect to the stability and temporal accuracy (both globally and locally) for 

a wide variety of 2D domains and also looked at the influence of mesh generating 

techniques (λ/∆x versus LTEA) on the results for the Gulf of Mexico domain. Lastly, we 

evaluate the computational performance of the combined parallel/predictor-corrector 

algorithm, as compared to the original algorithm. The hypothesis put forth in Kolar et al. 

[53] suggest that the stability constraint stems primarily from the explicit evaluation of 
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nonlinear terms. From the results presented in this chapter, it is evident that the stability 

constraint relaxes with the implicit evaluation of the nonlinear terms, therefore confirming 

this hypothesis. Other major findings from this 2D study are listed below.

• With all of the nonlinear terms treated implicitly, stability shows dramatic 

improvement, ranging from a minimum of a three-fold increase with the 

Gulf of Mexico domain (λ/∆x resolution) to a maximum of an eight-fold 

increase with the Eastcoast domain. As mentioned earlier, for this algorithm 

to be considered cost-effective, we must obtain at least a 100% change 

between the two algorithms.

• Mesh generating techniques influence the allowable Courant number in the 

Gulf of Mexico. In particular, the LTEA mesh evens out the allowable 

Courant number over the shelf break region, which coincides with the area 

where the extra refinement occurs in this mesh.

• Resolution studies for the quarter annular domain show that the allowable 

Courant number with the original algorithm remains constant with 

increasing resolution; however, allowable Courant numbers increase with 

resolution for the predictor-corrector algorithm.

• From the G sensitivity study, we see that the G values that produce minimal 

mass balance errors and errors in the generation of the nonlinear 

constituents coincide with those that allow the maximum stable time step 

(i.e., ). 

• Global temporal accuracy (convergence rate) studies show that the 

predictor-corrector algorithm reduces absolute error and increases the order 

1 G τmax⁄ 10≤ ≤
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of accuracy from approximately first order to nearly second order. 

• From the local temporal accuracy studies, we determined the predictor-

corrector algorithm decreases errors by approximately two orders of 

magnitude, as compared to the original algorithm at the same time step. 

• When evaluating the predictor-corrector algorithm with a time step that is at 

least twice that of the original algorithm, we found that the predictor-

corrector algorithm still produces less error in most of the components 

(approximately 81%) than the original algorithm. 

• Results from the combined parallel/predictor-corrector algorithm show that 

it significantly reduces simulation time as compared to the parallel 

algorithm that does not use predictor-corrector time marching. For example, 

suppose a scalar simulation of a hurricane storm surge application on the 

eastcoast of the United States using the original time marching algorithm 

takes approximately 80 hours to obtain results. The same simulation on an 

ideal 10-node cluster using the parallel algorithm and the original time 

marching algorithm would take approximately 8 hours to obtain results, but 

with the predictor-corrector time marching algorithm, we could obtain 

results on the same cluster in approximately 3 hours. Thus, the enhanced 

stability allows us to produce results more quickly for time-sensitive 

applications.

• For both computing platforms (Intel and Sun) the combined algorithm 

achieves nearly ideal speedup through six processors, with slight tapering-

off as the number of processors is increased. More importantly, when the 
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workload per processor is kept nearly constant, the scaling at a higher 

number of processors is more ideal. 
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 Chapter 4.  Form of the Momentum Equation in 
ADCIRCa

 4.1  Introduction

Shallow water equations are used to describe the hydrodynamic behavior of oceans, 

estuaries, coastal regions, lakes and impoundments. The depth-averaged versions of the 

conservation of mass and momentum form the basis of the shallow water equations in their 

native or primitive form. Early finite-element based shallow water models that utilized the 

primitive form of the shallow water equation suffered from stability problems due to 

spurious oscillations in the solutions. In 1979, Lynch and Gray [64] introduced the wave 

continuity equation (WCE), which eliminated the spurious oscillations in the solution 

without having to dampen the solution numerically or artificially. Kinnmark [48] 

determined in 1986 that there was no loss in the propagation characteristics of the wave 

continuity equation if a numerical parameter, G, was introduced, thus obtaining the 

generalized wave continuity (GWC) equation (see Section 4.2 and Chapter 2 for more 

details on the GWC). 

Finite element shallow water models based on the GWC equation may be prone to 

errors in local mass conservation [1,48,51,52,54,65], as measured by direct integration of 

the continuity equation, also referred to in the literature as a “finite volume” approach.We 

a.  This chapter appears in an abbreviated form in Advances in Water Resources. The reference is 
given in Chapter 7, number [29].
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acknowledge the recent work of Hughes et al. [44] and Berger et al. [8], who argue that 

continuous Galerkin finite elements are locally conservative, provided that the external flux 

is computed in a method consistent with the discretization, e.g., weighted residual 

boundary integral. A full comparison of the two approaches (finite volume vs. weighted 

residual) is beyond the scope of this dissertation, but our experience with the “consistent 

flux” approach of Hughes and Berger indicates it is not sensitive to grid resolution (mass 

balance error does not change with decreasing resolution). Hence, it does not provide a 

measure of solution accuracy. On the other hand, the finite volume approach can provide 

such information, which is an issue that we explore later in this chapter. 

Keeping with the finite volume method of computing mass balance errors, we note 

that the errors are particularly large for highly nonlinear flows, which include shallow, 

converging sections around barrier islands and flood waves propagating onto dry land 

[51,54]. Kinnmark provided the first theoretical analysis of the mass conserving properties 

of the GWC equation [48]. The GWC equation, which is part of the class of derivative 

equations, allows for a larger solution space than does the primitive form of the equations. 

In order to restrict this solution space, Kinnmark determined that several auxiliary 

conditions must be met. He obtained the auxiliary conditions by determining the 

equivalence between the primitive form of the shallow water equations, including the 

conservative form of the momentum and continuity equations, and other formulations, such 

as the wave continuity equation. Kinnmark determined that the continuity equation, 

including its boundary conditions, must be exactly satisfied during spin-up (for most 

applications, the model is ramped up from at-rest conditions) in order for mass to be 

conserved. However, because of roundoff errors and other noise that occurs during spin-up 
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of a numerical model, this can not always be guaranteed. Supporting this observation were 

Walters and Carey, who hypothesized that the vanishing of the derivative of the continuity 

equation with respect to time alone is not sufficient to ensure that mass is conserved [82]. 

Because the first condition cannot be satisfied, Kinnmark investigated two other auxiliary 

conditions, of which one must be met. First, if the non-conservative momentum (NCM) 

equation is used, then  (where G is the GWC equation numerical parameter and 

v is the depth-averaged velocity field). In practice, because an upper bound exists on G

above which spurious modes are generated, one cannot guarantee that this requirement is 

satisfied for a time-dependent velocity field. Second, if the conservative form of the 

momentum equation (CM) is used, then , which is a condition that can always be met 

[48]. 

Aldama et al. analyzed mass conservation of the GWC equation and NCM equation 

in their continuous and discrete forms, using both a Taylor-Frechet and Fourier series 

analysis [1]. In their analysis for the discrete form of the equations, they found that the 

GWC formulation is not consistent with the mass conservation principle, and the mass 

conservation error was proportional to . For a given time, as , the error 

approaches zero. A balance between the choice of G and the amount of residual error must 

be obtained, because, as , the GWC equation approaches the primitive form of the 

continuity equations and produces spurious oscillations. 

In concurrent studies, Kolar et al. [51,52,54] examined the sensitivity of mass 

conservation to the G parameter and boundary conditions. In two of these studies, they 

determined that implementing mass conserving boundary conditions improves global mass 

balance errors without increasing G and improves local mass balance errors with a lesser 

G ∇ v•>

G 0>

e Gt– G ∞→

G ∞→
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values of G [51,52]. Also, Lynch and Holboke analyzed the mass conservation boundary 

conditions in a 3D framework and determined the boundary conditions could be 

implemented differently to improve the global mass conservation; however, local mass 

conservation was not analyzed [65].

In another study, Kolar et al. also examined recasting the advective term in the 

GWC equation into non-conservative form so that it mimics the formulation of the NCM 

equation [54]. They found that the global mass conservation is improved; however, local 

mass conservation errors persisted. In summary, they recommended that GWC models 

match the form of the advective terms and that the ratio of  is: , 

where τ is the bottom friction coefficient as determined from a quadratic friction law:

 (4.1)

and  is the largest magnitude of  over the spatial domain. In Equation (4.1),  and  

are depth-averaged velocities, H is the total water depth, and  is the bottom friction 

parameter. When the ratio falls within this range, the nonlinear constituent errors and the 

global and local mass balance errors are both minimized without introducing spurious 

modes [54]. 

Several studies examined the relationship between the meshing criteria and 

convergence [11,39,40,61]. In particular, Hagen et al. [39,40] developed a meshing 

technique that examines the local truncation error associated with the linearized form of the 

NCM equation. This study showed that refinement in areas where truncation error is large 

(e.g., in areas where steep bathymetry gradients occur) and coarsening in areas where 

G τmax⁄ 1 G τmax⁄ 10≤ ≤
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2
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truncation error is small, improves the overall accuracy of the solution without increasing 

the computational burden. These areas correspond to where the velocity-based NCM 

solution changes rapidly.

From the literature cited above, we observe the following about NCM-based GWC 

equation models: 1) local mass balance errors (as measured by direct integration of the 

continuity equation) and instabilities can occur, particularly in regions with highly 

nonlinear flows; 2) numerical and analytical studies demonstrate that the problem can be 

lessened, but not eliminated, by proper choice of G, by reformulating the advective terms, 

and by proper treatment of the boundary conditions; and 3) high levels of grid refinement 

are needed in areas with steep bathymetry gradients to minimize truncation errors. Based 

on these observations, we hypothesize that changing to the conservative form of the 

momentum equation, which is flux-based and not velocity-based, will improve both global 

and local mass conservation, eliminate the need to reformulate the advective term between 

the governing equations, and lessen the need for extensive refinement in areas with steep 

bathymetry gradients due to flux varying more slowly than velocity in these regions. Also, 

use of the conservative form of the momentum equation makes it more natural to bring in 

flux boundary conditions and facilitates coupled models (e.g., discontinuous and 

continuous Galerkin methods [26,27]). Thus, the primary objective of this chapter is to 

assess the impact of the conservative form of the momentum equation on mass 

conservation, stability, temporal and spatial accuracy for GWC-based finite element 

models. Numerical simulations will be conducted with the ADCIRC (ADvanced 

CIRCulation model [59]) family of models. In this chapter, some assessments utilize a 

combined predictor-corrector (see Chapter 3)/conservative momentum code in the 
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evaluation.

 4.2  Background 

Testing of the conservative form of the momentum equation (CM) was done with 

both the 1D and 2D version of ADCIRC. If the operator  represents the primitive 

continuity equation and  the conservative form of the momentum equation, then the 

GWC equation is obtained from the following operation.

(4.2)

In Equation (4.2) G controls the relative weight of the primitive continuity equation, such 

that if , the equation becomes a pure wave continuity equation, whereas if , 

the equation is a pure primitive continuity equation. 

In the 1D, we neglect atmospheric and tidal potential forcings and assume the eddy 

viscosity is constant; the standard form of the ADCIRC model equations (GWC, NCM and 

CM, Equations (4.3), (4.4) and (4.5), respectively) are as follows:

(4.3)

(4.4)

(4.5)

where  is the depth-averaged flux, u is the depth-averaged velocity, τ is determined 
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from the following , ε is the eddy viscosity, t is time, ζ is the elevation of 

the water surface above the datum, x is the distance, G is the GWC numerical parameter 

and  is total water column depth.

In the 1D studies with the GWC-NCM model, the advective terms in the GWC 

equation takes on two different forms, consistent or inconsistent. The inconsistent form 

develops from Equations (4.3) and (4.4) because the advective term in the GWC equation 

is in conservative form and the advective term in the NCM equation is in non-conservative 

form. In the consistent formulation, the advective term in the GWC equation is altered to 

the non-conservative form (as reported in [54]) by introducing the primitive continuity 

equation so that a second-order space derivative is replaced by a mixed space and time 

derivative. 

Equations for the 2D ADCIRC model (GWC, NCM and CM, Equations (4.6), (4.7)

and (4.8), respectively) with a constant eddy viscosity are as follows:

(4.6)

(4.7)

(4.8)

New terms in these equations are as follows:  is the depth-averaged flux, v is the 

depth-averaged velocity, f is the Coriolis parameter, given by , Ω is the angular 

velocity of the earth and  is latitude, g is gravity, α is the Earth elasticity factor, A is the 
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wind stress on the water surface, η is the Newtonian equilibrium tidal potential, ρ is density, 

and pa is barometric pressure.

In ADCIRC, linear finite elements are used for the spatial discretization, while for 

the temporal discretization, a three time-level scheme centered at k is used in Equations 

(4.3) and (4.6), and a two time-level scheme centered at  is used in Equations (4.4), 

(4.5), (4.7) and (4.8). Flux-based (CM equation) solutions are obtained by first solving 

Equations (4.3) or (4.6) for the elevation changes and then using Equations (4.5) or (4.8), 

depending on 1D or 2D; in either case, new velocity values are obtained by dividing the 

nodal flux by the total water depth at that point. Velocity-based (NCM equation) solutions 

substitute Equation (4.4) for (4.5) and Equation (4.7) for (4.8). Ocean boundaries are 

treated as essential conditions in the continuity equation, while flux boundaries are treated 

as natural in the continuity equation and essential in the momentum equation. This 

implementation is often referred to as “conventional” treatment. In order to keep the focus 

on the form of the momentum equation, we did not examine alternative treatments of the 

boundary conditions. 

 4.3  Procedures

4.3.1  Mass Conservation

In order to evaluate the changes to mass balance errors (see second paragraph in 

Section 4.1), we compared the accumulation of mass to the net flux of the mass leaving the 

element or domain by directly integrating the primitive continuity equation, which is 

similar to studies by Kolar and others [54]. For completeness, we summarize their 

algorithm and provide a modified algorithm suitable for use with the CM equation.

k 1 2⁄+
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First, the primitive continuity is integrated over space and time to obtain

(4.9)

Next, the first term in Equation (4.9) is integrated over time and the divergence theorem is 

applied to the second term to obtain 

(4.10)

Next, the dependent variables in Equation (4.10) were evaluated by approximating with 

linear basis functions to obtain

(4.11)

where  is the area of the element,  is the arithmetic average of the nodal values of  

over the element, and the sum is over all elements in the domain of interest. Next evaluate 

the boundary integral in Equation (4.10), which represents the net flux into the domain 

when n is taken as the unit outward normal. When expanding  and  in terms of their 

linear basis functions, they can be evaluated exactly for linear triangular elements as 

follows

(4.12)

where  is the length of the boundary segment of element , , the sum is over 
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all elements on the boundary, and subscripts 1 and 2 refer to the nodes (numbered locally) 

at the end of the boundary segment. Now the time integral of  is approximated using 

the trapezoidal rule, i.e,

(4.13)

where  is the time-step index. This formation is used to evaluate the original algorithm, 

which uses the non-conservative momentum equation. 

For the new algorithm based on the conservative momentum equation, we evaluate 

Equation (4.10) again and replaced the  term with the  flux term, which is the natural 

dependent variable. All terms remain the same except Equation (4.14) replaces Equation 

(4.12). 

(4.14)

where  is the length of the boundary segment of element , , the sum is over 

all elements on the boundary, and subscripts 1 and 2 refer to the nodes (numbered locally) 

at the end of the boundary segment. 

In this chapter, we present the mass balance errors as the average absolute error over 

the simulation time. We average these errors over time for both the local and global results 

and plot these errors on a log scale. The derivation given above is in 2D, however we can 

evaluate the 1D results in a similar fashion because the flux at the boundary reduces to a 

point evaluation, and the accumulation calculations in Equation (4.11) are evaluated on a 
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length basis. As noted in Section 4.1, we are purposely using the finite volume approach of 

checking mass balance because of the diagnostics it provides (see Section 4.4.6).

4.3.2  Stability

To evaluate stability heuristically, we obtain the maximum stable time step from the 

following procedures: 1) Find the maximum allowable time step with the NCM equation to 

the nearest five seconds; 2) Find the maximum allowable time step with the CM equation 

to the nearest five seconds; 3) Compare the results from both equations and determine the 

percent change between the two results.

4.3.3  Accuracy 

4.3.3a  Analytical

By using the Taylor Series expansion, we can expand the dependent variables of the 

discrete equations around a common point to evaluate them on a theoretical basis and to 

determine the accuracy of the equations. The full equations are given in Appendix 3. From 

these truncation errors, we determined that the GWC equation is first-order accurate in time 

if the advective terms are in non-conservative form, while it is second-order accurate in 

time if the advective terms are in conservative form. In space, the GWC equation is first-

order accurate for variable spacing; while, it is second-order accurate for constant spacing. 

For the NCM and CM equations, we found that they are first-order accurate in time and 

space if we use variable spacing while it is second-order accurate in space if we use 

constant spacing. Also, both momentum equations become second-order accurate in time 

if the equations are linearized.
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4.3.3b  Numerical

Temporal

Numerically, temporal accuracy is determined by comparing a coarse solution using 

a larger time step to a ‘true’ solution, i.e., one based on a fine time step. For the true 

solutions, we used a one second time step for the 1D experiments, while a ten second time 

step was used in the 2D experiments. These were chosen based on previous temporal 

accuracy experiments that evaluated a new time-marching algorithm, described in Chapter 

3 and in [30,33]. Changes in the temporal accuracy are then quantified by evaluating the 

error vs. step size, as measured by both the L2 norm and L∞ norm. An L2 norm evaluates 

the errors over several discrete times during the simulation and averages the error, while an 

L∞ norm looks at the error over several discrete times during a simulation and finds the 

maximum error.

Spatial

Global Spatial Accuracy

Numerically, the “true solutions” for the 1D experiments were chosen by 

performing a grid convergence test where refinement of the grid occurred until a chosen 

convergence criterion (errors on the order of 10-6 m or m/s) was met. We then compared 

fine and coarse grid results to measure the errors, as expressed by L2 norm and L∞ norm. 

For the L2 errors, we averaged these errors over time to provide one point value for every 

grid resolution studied.

Local Spatial Accuracy

For 1D, we utilized the same grid convergence procedures outlined under global 
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accuracy to establish the “true solution”. We then compared fine and coarse grid results to 

measure the errors, as expressed by the average nodal error over the number of tidal cycles. 

In this case, the errors are averaged over time but not over space, so the results are shown 

on a nodal basis. For the 2D spatial accuracy experiments, CAFE (Cumulative Area 

Fraction Error) [61] plots provide the information on local accuracy changes. CAFE plots 

produce absolute and relative errors between two simulations of the same domains with the 

same temporal resolution, but different spatial resolutions. A discussion of the CAFE plots 

and how to read them can be found in reference [30,40] and the previous chapter. To 

develop CAFE plots for this study, we used the following steps: 1) Harmonic data is 

recorded for the NCM equation over several tidal cycles for both a coarse and fine spatial 

resolution; 2) Harmonic data is recorded for the CM equation over several tidal cycles for 

both a coarse and fine spatial resolution; 3) Absolute and relative errors are calculated for 

each equation; 4) Cumulative errors for both equations are computed; and 5) Results are 

plotted on the same graph to determine the percent area exceeding a certain criteria for 

convergence. 

 4.4  One-Dimensional Numerical Experiments

4.4.1  Domains Evaluated

Four 1D domains were used to evaluate the effects of the conservative form of the 

momentum equation (CM equation): a constant bathymetry of 5 m (Figure 4.1a); a 

parabolic bathymetry (Figure 4.1b, also denoted “quadratic”), which has a rate of rise that 

varies as a second-order polynomial; the Western North Atlantic bathymetry (Figure 4.1c, 

also denoted “eastcoast”), which is a 1D slice of the eastern United States seaboard out into 
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the Atlantic Ocean; and a sinusoidal varying bathymetry (Figure 4.1d, also denoted 

“sinusoidal”). The sinusoidal bathymetry induces diverging and converging flow fields in 

a 1D setting. Each of the domains use the following simulation conditions: an eddy visocity 

parameter of zero, a 1-meter M2 tidal forcing at the ocean boundary (a forcing that we have 

found through experience to produce critical responses in the system), and no normal flux 

at the land boundary. Maximum and minimum bathymetry values for the parabolic domain 

are 300 and 3 meters, respectively; for the Western North Atlantic, the maximum and 

minimum bathymetry values are 5000 and 20 meters, respectively; for the sinusoidal 

domain, the maximum and minimum bathymetry values are 200 and 2.5 meters, 

respectively, with the minimum depth occurring in the center of the domain. Discussion of 

the grid generation techniques can be found in Chapter 2. In the following 1D experiments, 

the bottom friction parameter varies from a constant value of 0.0001 sec-1, which was used 
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Figure 4.1   Schematics of the 1D domains. a - constant, b - quadratic, c - eastcoast 
and d - sinusoidal.
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for the constant, quadratic and eastcoast domains, to a variable value used for the sinusoidal 

domain where the coefficient of the equation is 0.003. The eddy viscosity parameter, , 

remains zero and the numerical parameter of the GWC equation is  

throughout all of these experiments. 

A summary of the meshing criteria for all the 1D numerical experiments is provided 

in Table 4.1. For each of the 1D experiments, we indicate the nodal spacing technique used 

and the meshing criteria, which is either the number of nodes for constant nodal spacing or 

the  ratio for variable nodal spacing. Multiple values are included when the 

experiment called for multiple grids, such as an analysis of spatial accuracy.

4.4.2  Mass Conservation

We first investigated the impacts of the CM equation on mass conservation, an issue 

that has been noted to plague nonlinear applications when measured using a finite volume 

approach [1,48,51,52,54,65] (also see second paragraph in Section 4.1). Experiments in 

this section utilize the procedures presented in Section 4.3.1. In the studies herein, we 

computed mass conservation errors for the NCM equation using the following 

formulations: 1) the inconsistent form of the advective terms, which means that both the 

GWC equation advective terms are in conservative form and the NCM advective terms are 

in non-conservative form; and 2) the consistent form of the advective terms, which means 

the GWC equation and NCM advective terms are in the non-conservative form (requires 

manipulation of the GWC equation, as reported in [54]). We evaluated the errors in global 

and local mass conservation for six M2 tidal cycles for all domains utilizing a 5-second time 

step. 

ε

G 0.001 sec
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=
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4.4.2a Global Mass Conservation 

Figure 4.2 presents the absolute average error in the global mass balance for the 

NCM and CM equations for all domains, using two types of meshing, constant (C) and 

variable (V). All parameter values are the same within each domain.Results show that 

Table 4.1 Meshing criteria for the 1D numerical experiments.

Numerical Experiments

Mass
Conservation

Spatial
Accuracy

Stability

Domains Spacing
Criteria

Global Local Global Local

Constant Constanta

a. Number of nodes is given for constant spacing.

51 NAb

b. NA - experiments were not performed with this domain and nodal spacing.

NA NA 51

Quadratic Constant 201 76c

c. Chosen to have approximately same # of nodes as the variable spacing criteria.

varies-
11 to 1001

NA 201

Quadratic Variabled

d. The  ratio is given for variable spacing.

300 300 varies - 
25 to 5000

NA 300

Eastcoast Constant 201 101 varies -
11 to 2001

101,
201,
401,
801

201

Eastcoast Variable 300 300 varies - 
25 to 5000

300,
1200,
5000

300

Eastcoast LTEA NA 46 NA 46 NA

Sinusoidal Constant 100 41 varies - 
11 to 1001

NA 43

Sinusoidal Variable 300 300 varies - 
100 to 
10000

300,
1000,
5000

300

λ ∆x⁄
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adopting the CM equation improves global mass balance in most of the domains. 

Improvement in the global mass balance errors for the CM algorithm is less evident with 

the variable nodal spacing than with the constant nodal spacing (for a given domain); the 

latter shows up to two orders of magnitude improvement, except for the eastcoast domain. 

The behavior of the eastcoast results can be explained by noting the large percentage of the 

domain with deep bathymetry where the nonlinear terms are not significant, thus the form 

of the advective terms is insignificant. (We will further explore this issue in Section 4.4.6.) 

A consistent treatment of the advective terms (striped bars) partially offsets the mass 

balance improvement realized by the CM equation, thus indicating that both the form of the 

advective terms and the choice of dependent variable plays a role. This is also explored 

further in Section 4.4.6.

4.4.2b  Local Mass Conservation

For local mass conservation, we looked at three domains with steep bathymetry 

gradients: the quadratic (Figure 4.1b), the eastcoast (Figure 4.1c) and the sinusoidal (Figure 
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1

Const-C Quad-C Quad-V EC-C EC-V Sin-C Sin-V

Figure 4.2   Errors in the global mass conservation for all the domains; NCM equation 
- no changes to GWC advective formulation (filled bars), NCM equation 
- changes to GWC advective formulation (striped bars), CM equation 
(open bars).
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Abbreviations:
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4.1d). All three cases use both constant and variable nodal spacing. Results using the 

variable nodal spacing are shown in Figure 4.3, while Figure 4.4 shows results using the 

constant nodal spacing. A schematic of the bathymetry for each domain is also shown by 

the longer dashed line in the figures. In these experiments, we evaluated local mass balance 

errors for the NCM equation with two forms of the GWC advective terms; the inconsistent 

form and the consistent (see Section 4.2). As can be seen, the CM formulation provides a 

significant error reduction in areas where there is a steep bathymetry gradient. In contrast, 

we find that the NCM results show large local mass balance errors where a steep 

0 10 20 30 40
0

0.01

0.02

0.03

0.04

0 10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0 20 40 60 80 100
0

0.5

1

1.5

2

2.5

Figure 4.3   Local mass conservation results for two formulations of the momentum 
equation using variable spacing for a) quadratic, b) eastcoast, c) 
sinusoidal. (Longer dashes - bathymetry (not to scale), Solid line - NCM 
(no changes to the GWC advective formulation), medium dashes - 
NCM (changes to the GWC advective formulation) and short dashes - 
CM).
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bathymetry gradient occurs, regardless of the treatment of the advective terms. For the 

eastcoast domain, we determined from numerical experiments that the grid spacing for the 

NCM simulation would have to be decreased by a factor of 20 (consistent advective terms) 

or 115 (inconsistent advective terms) in order to have the same level of local mass balance 

error as the CM equation.

In Figure 4.3, note that the open boundary (element 74 in Figure 4.3a, 107 in Figure 

4.3b, 40 in Figure 4.3c) shows larger local mass balance errors than the land boundary, 

which corresponds to earlier findings for “conventional” treatment of boundary conditions 
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Figure 4.4   Local mass conservation results for two formulations of the momentum 
equation using constant spacing for a) quadratic, b) eastcoast, c) 
sinusoidal. (Longer dashes - bathymetry (not to scale), Solid line - NCM 
(no changes to the GWC advective formulation), medium dashes - 
NCM (changes to the GWC advective formulation) and short dashes - 
CM).
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[54]. As mentioned, because this chapter focuses on the form of the momentum equation, 

we did not revisit the boundary condition issue. Also, note that for the quadratic 

bathymetry, we observed a decrease in the local mass errors at the land boundary for the 

CM equation as compared to the NCM equation. Overall, the CM equation improves the 

local mass balance errors in the domains evaluated, with the greatest gains seen in areas of 

steep bathymetry changes, which correspond to areas where the nonlinear terms are 

dominant.

We also examined the influence of type of spatial discretization (constant vs. 

variable node spacing) on local mass conservation. Similar results as shown in Figure 4.3

were found for constant nodal spacing (results shown in Figure 4.4) using approximately 

the same number of nodes, but with higher differences between the local mass balance 

errors for the two forms of the momentum equations. For example in the eastcoast domain, 

the errors increased by approximately 30% for the NCM equation in the area of the steep 

bathymetry change. In all cases, the local mass balance errors for the CM equation are 

much less than the local mass balance errors for NCM equation.

4.4.3  Stability

Several numerical experiments were set up to examine the impact of the CM 

equation on stability, following the procedures discussed in Section 4.3.2. In all of the 

domains evaluated, results show no significant change in stability between the two 

algorithms, thus indicating that the CM equation does not influence stability. Similar results 

were found when comparing the two predictor-corrector time-marching versions.
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4.4.4  Accuracy

4.4.4a  Temporal Accuracy 

We evaluated the CM algorithm’s impact on temporal accuracy following the 

procedures presented in Section 4.3.3. To quantify temporal accuracy, we recorded 50 

discrete times over two complete M2 tidal cycles for all four domains with the following 

parameters: the constant bathymetry domain used a constant nodal spacing (51 nodes) and 

the time step ranged from 1 to 100 sec with the original time-marching algorithm and 1 to 

50 sec with the predictor-corrector time-marching algorithm; the quadratic domain used 

variable nodal spacing with  and the time step ranged from 1 to 80 sec with 

the original time-marching algorithm and 1 to 400 sec with the predictor-corrector time-

marching algorithm; the eastcoast domain also used variable node spacing with 

 and the time step ranged from 1 to 125 sec with the original time-marching 

algorithm and 1 to 1000 sec with the predictor-corrector time-marching algorithm; and the 

sinusoidal domain used variable node spacing with  and the time step ranged 

from 1 to 125 sec with the original time-marching algorithm and 1 to 250 sec with the 

predictor-corrector time-marching algorithm. In these experiments, the bottom friction 

parameter varies from a constant value of 0.0001 sec-1, which was used for the constant, 

quadratic and eastcoast domains, to a variable value used for the sinusoidal domain where 

the coefficient of the equation is 0.003. Results of these accuracy studies are shown in 

Figure 4.5 for the original time-marching algorithm; while, Figure 4.6 shows results for the 

predictor-corrector time-marching algorithm described in Chapter 3.

In Figure 4.5, results show that the NCM equation has a slightly lower absolute 

λ ∆x⁄ 300=

λ ∆x⁄ 300=

λ ∆x⁄ 300=
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Figure 4.5   Temporal accuracy results (elevation) for all four domains using the 
original time-marching algorithm: a) constant (constant), b) quadratic 
(variable), c) eastcoast (variable) and d) sinusoidal (variable). Solid line - 
NCM, Dot-dash - CM. (Note: first three results use a constant bottom 
friction while the last result uses a variable bottom friction.)

Table 4.2 Convergence rates for the 1D temporal accuracy.

original time
marching algorithm

predictor-corrector time
marching algorithm

NCM CM NCM CM

constant bathymetry 1.14 1.14 1.53 2.06

quadratic bathymetry 1.23 1.17 1.81 1.96

eastcoast bathymetry 1.39 1.21 1.83 2.02

sinusoidal bathymetry 1.49 1.17 1.73 1.10
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error in all the domains than the CM equation. We determined the order of accuracy or 

convergence rate for the original time-marching algorithm via a least squares fit to the data. 

Results, shown in Table 4.2, show that the results are similar for the constant, quadratic and 

eastcoast domains while they are different sinusoidal domain. The results in Figure 4.6

indicate that for three of the domains the NCM equation and CM equation have the same 

errors at the larger time steps; while, at smaller time steps the CM equation produces lower 

absolute error than the NCM equation. The convergence rates for these domains are given 

in Table 4.2, which shows that the CM equation provides higher convergence rates than the 

NCM equation except for the sinusoidal domain; of the first three, the rates are 
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Figure 4.6   Temporal accuracy results (elevation) for all four domains using the 
predictor-corrector algorithm: a) constant (constant), b) quadratic 
(variable), c) eastcoast (variable) and d) sinusoidal (variable). Solid line - 
NCM, Dot-dash - CM. (Note: first three results use a constant bottom 
friction while the last result uses a variable bottom friction.) 
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approximately second order. In the sinusoidal domain, the results indicated that a higher 

absolute error is present in the CM equation than in the NCM equation results, with the 

convergence rates showing that the CM equation is first order accurate while the NCM 

equation is almost second order accurate. Note that these results are only for the elevation 

changes; however, velocity and L∞ norm results show similar trends. Therefore, the 

different form of the momentum equation does not significantly influence the convergence 

rates for the temporal accuracy whether using the original or the predictor-corrector time-

marching algorithms, except for the sinusoidal domain. This is also evident in the Taylor 

Series expansions of the discrete equations (given in Appendix 3), in which both 

momentum equations are first order accurate in time for nonlinear problems. 

4.4.4b  Spatial Accuracy 

Global Spatial Accuracy

We evaluated the CM algorithm’s impact on global spatial accuracy following the 

procedures presented in Section 4.3.3. For the 1D experiments, we looked at two 

techniques of obtaining the “true solution”, one based on the  ratio and one based on 

successively refining  on a uniform mesh by a factor of two. For the  approach, 

we found that a ratio of 5000 provided the desired convergence criteria for all the domains 

evaluated; while for the other method, we found that a resolution of  for 

eastcoast domain,  for the sinusoidal domain, and  for the quadratic 

domain meets the convergence criteria. A cross comparison of these “true solutions” shows 

that the results were nearly identical, so the  ratio is used in the remainder of this 

subsection. The global spatial accuracy experiments used both constant and variable nodal 

spacing, with the ranges of grid refinement shown in Table 4.1, and a time step of one 

λ ∆x⁄
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second. Results using both the original and predictor-corrector time-marching algorithms 

(Figures 4.7 and 4.8, respectively) produced similar convergence rates for both forms of the 

momentum equation. Therefore, no significant effect is seen on the global spatial accuracy 

results when utilizing the conservative form of the momentum equation. 

Local Spatial Accuracy

Next, we looked at the CM algorithm’s impact on local spatial accuracy following 

the procedures presented in Section 4.3.3. Based on the local mass conservation results, we 

focused on the eastcoast and sinusoidal domains, as these show the greatest change in local 

mass conservation errors. The “true solution” based on a uniform mesh was employed for 

both domains. The grid resolution parameters are shown in Table 4.1. 
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Figure 4.7   Spatial accuracy results (elevation) for all four domains using the original 
time-marching algorithm: a) constant (constant), b) quadratic (variable), 
c) eastcoast (variable) and d) sinusoidal (variable). Solid line - NCM, 
Long dashes - CM. (Note: first three results used a constant bottom 
friction while the last result used a variable bottom friction.)
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Figure 4.8   Spatial accuracy results (elevation) for all four domains using the 
predictor-corrector time-marching algorithm: a) constant (constant), b) 
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Results for the variable-spaced grids for these domains are shown in Figure 4.9, 

with a schematic of the bathymetry shown by the longer dashed lines. The figures indicate 

that the CM equation increases the local spatial accuracy, particularly along areas of steep 

topography changes. The highest error with the non-conservative form of the momentum 

equation occurs at the top of the continental shelf area for the eastcoast domain. In the 

sinusoidal domain, we find that the non-conservative momentum equation has higher errors 

before and after the bathymetry rise than the conservative momentum equation results; 

while, the conservative momentum equation shows an increase in error at the peak of the 

bathymetry. In Figure 4.9b, it is interesting and important to note that the NCM local spatial 

errors show a similar 3-peak pattern as the local mass errors of Figure 4.3c. Note that both 

momentum equations show an error near the land boundary in both domains. Local 

accuracy results differ from global accuracy because the latter averages the errors over the 

domain, which tends to smooth out the local errors.

Finally, we looked at the interaction of the meshing criteria with the form of the 

Figure 4.10   Local spatial accuracy results (average velocity errors) for the eastcoast 
domain: a)  and b) LTEA. Long dashes - NCM (inconsistent GWC 
advective terms), Short dashes - CM, Longer dashes - bathymetry. Node 
spacing is given in Table 4.1. Results utilize a variable nodal spacing with 
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momentum equation. In particular, for the eastcoast domain, we analyzed two variable 

meshes with the same number of nodes; one using the  ratio and one based on the 

LTEA (see Chapter 2). In Figure 4.10, results show that the CM formulation is less sensitive 

to the meshing criteria, but that the LTEA reduces peak errors in the NCM formulation by 

two orders of magnitude (i.e., reduces it to the same as the CM formulation). Such a result 

is not surprising in that the LTEA method uses truncation error estimates from the velocity-

based NCM equation.

4.4.5  Impact of Changing the Tidal Constituents 

All previous experiments utilize a M2 tidal constituent as the elevation boundary 

condition; however, in 2D applications there can be several tidal constituents included in 

the simulation. Therefore, we investigated this by changing the amplitude in the 1D 

eastcoast domain in order to simulate other tidal constituents. Figure 4.11 shows the results 

λ ∆x⁄

Figure 4.11   The effect of changing the amplitude on local spatial accuracy. a) NCM 
(inconsistent GWC advective terms) and b) CM. Medium dashes - 2 m 
amplitude, long dashes - 1 m amplitude, short dashes - 0.5 m amplitude 
and longer dashes - bathymetry.
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from these tests for both formulations of the momentum equations. The errors decrease or 

increase based on how the amplitude of the tidal constituent is changed in the simulation. 

However, the important thing to note is that the CM equation is less sensitive to amplitude 

changes than the NCM equation, thus indicating that when other tidal constituents are 

present, we will still obtain a decrease in the local spatial accuracy results with the CM 

equation. 

4.4.6  Discussion

A broader look at the results of the previous sections suggests two trends. First, both 

the CM and NCM equations produce similar results in parts of the domain, e.g., in the deep 

water portion of the eastcoast domain, where the flow physics is nearly linear, neither the 

CM or NCM show large local mass balance errors (see Figure 4.3b). But in regions of sharp 

bathymetric gradients, they differ significantly. In particular, note that the CM equation 

does not show the same local mass balance error spikes in these regions as does the NCM 

algorithm, as can been seen in Figure 4.3b over the continental rise and Figure 4.3c over 

the rise in bathymetry. It is precisely in these same regions where the nonlinear advective 

terms are significant, so we will look for a correlation through simulation and analyses. 

Second, the parallel behavior of the error in the local mass balance graph and the 

error in the local accuracy graph (cf Figures 4.3b and 4.9a) and the similar 3-peak pattern 

of the NCM results between Figures 4.3c and 4.9b suggests that the two are related. In other 

words, can the finite volume method of computing mass balance serve as a surrogate 

variable for truncation error? This issue is also explored in this section. 

To examine the behavior of the local truncation error for the advective terms further, 
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we present the truncation error expressions for the advective terms in the NCM and CM 

equations below, as obtained from a Taylor Series expansion of the discrete equations. (The 

full expansion is too lengthy to be repeated here, but the interested reader can find the 

results in reference [55] and in Appendix 3)

(4.15)

(4.16)

Note that the truncation error for each is formally first order accurate for unequal nodal 

spacing, but is second order accurate for constant grid spacing, as would be expected for 

linear Galerkin finite elements. Because the flux varies more slowly than velocity in 

regions where the topography is changing rapidly, one would expect the magnitude of the 

derivatives of , which appear in the CM truncation error expression, to be less than the 

corresponding derivatives of , which appear in the NCM equation. To verify this, we 

carried out a scaling analysis of the leading error terms shown in Equations (4.15) and 

TENCM
advective 1

2
--- ∆xi 1+ ∆xi–( )

ui∂
x∂

------- 
 

2
ui

u
2

i∂
x2∂

---------
 
 
 

+ –=

∆xi
2 ∆xi∆xi 1+ ∆xi 1+

2
+–( ) 1

2
---

ui∂
x∂

-------
x

2

2

∂

∂ ui

 
 
  1

6
--- ui

u
3

i∂
x3∂

---------
 
 
 

+ H.O.T+

TECM
advective ∆xi 1+ ∆xi–( )=

qi∂
x∂

-------
ui∂
x∂

------- 
  1

2
---+ ui

q
2

i∂
x∂ 2

--------- qi

u
2

i∂
x∂ 2

---------+
 
 
 

–

1
2
--- ∆xi

2 ∆xi∆xi 1+ ∆xi 1+
2

+–( )
qi∂
x∂

-------
x

2

2

∂

∂ ui 1
2
--- ∆xi

2 ∆xi∆xi 1+ ∆xi 1+
2

+–( )
ui∂
x∂

-------
x

2

2

∂

∂ qi– –

1
6
--- ∆xi

2 ∆xi∆xi 1+ ∆xi 1+
2

+–( )ui
x

3

3

∂

∂ qi –

1
6
--- ∆xi

2 ∆xi∆xi 1+ ∆xi 1+
2

+–( )qi
x

3

3

∂

∂ ui H.O.T.+

q

u

95



(4.16) using elevation and velocity values taken from eastcoast results over the continental 

rise (i.e., a region of high advection). After correcting for the differences in units between 

Equations (4.15) and (4.16) by dividing by the water column depth, we found that the 

truncation error for the CM advective terms is two orders of magnitude less than the 

corresponding terms for the NCM equation. In addition, when the scaling analysis is 

repeated for the deep water portion of the eastcoast domain, where the NCM and CM 

equations give similar results (i.e., a region of low advection, small flux and velocity 

gradients, and nearly linear physics), the two truncation error expressions scale to nearly 

identical values. 

Physical arguments, simulations, and analysis thus lead us to believe that local 

truncation error is less for the CM equation than the NCM equation in regions of high 

advection. It then follows that the local mass balance error must also be less for the CM 

equation in these regions. To wit, in the limit as  and  tend toward zero, truncation 

error disappears and the discrete solution approaches the continuum solution (sans roundoff 

errors), so one would expect that local mass balance errors, as computed from direct 

integration of the continuum equations, would also tend toward zero. This is indeed the 

case. Increasing the resolution for simulation results shown in Figures 4.3b and 4.9a 

decreases both the local spatial truncation error and the local mass balance error at the same 

rate. Figure 4.12  shows results for both local spatial accuracy and local mass balance errors 

for two refined grid resolutions from these shown in Figures 4.3b and 4.9a.

If the advective terms do indeed dominate the error behavior (mass balance or 

spatial accuracy), one would expect less error if they were omitted from the equation (a 

quasi-linear simulation). The simulations used to produce Figure 4.3b were re-run without 

∆x ∆t
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these advective terms; the results (see Figure 4.13) show that the peak local mass balance 

errors for the quasi-linear run are 40% less than those shown in Figure 4.3b. In addition, if 

one removes the remaining nonlinear terms from the equations and runs a full linear 

simulation, the local mass balance errors diminish only slightly from simulations with just 

the advective terms excluded, thus suggesting that the advective terms are the primary 

contributor to errors in these regions. 

All of this leads us to conclude that the choice of dependent variable (flux vs. 
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velocity) and the form of the advective terms (conservative vs. non-conservative) in the 

discrete equations are the primary causes for the difference in behavior between the NCM 

and CM simulations, with the CM equation offering increased accuracy in areas with high 

advective gradients. Furthermore, local mass balance error, when measured by direct 

integration of the continuity equation, parallels local truncation error and can thus be used 

as a surrogate variable for local truncation error. As such, among other applications, it can 

be used to identify regions where mesh refinement is necessary. Such a conclusion is also 

consistent with earlier studies [54]. It remains to be demonstrated in this chapter that these 

1D observations carry over to 2D simulations. 

 4.5  Two-Dimensional Numerical Experiments

4.5.1  Domains Evaluated

In 2D, we examined behavior of the two formulations of the momentum equation 

Figure 4.13   Local mass conservation errors for fully nonlinear simulation (medium 
dashes), quasi-linear, i.e. no advective terms (long dashes) and fully linear 
simulation (short dashes). Results here are only for the NCM equation 
with inconsistent treatment of the advective terms. Results for the quasi-
linear and fully linear simulations have similar errors. a) full results and b) 
zoomed in on a section of the results.
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on the quarter annular harbor (denoted “quarter annular”), a fictional grid that has a well-

documented analytical solution, and several application domains - Bight of Abaco (denoted 

“Bahamas”), Western North Atlantic (denoted “WNAT”), Gulf of Mexico, and Persian 

Gulf.    

The quarter annular grid is shown in Figure 4.14. Boundaries are marked on the 

figure, with either ocean or land indicated. The boundary condition for the open ocean 

boundary is the M2 tidal constituent with a 1-meter amplitude, while the land boundaries 

are no flow. For the experiments herein, we utilized a 10x10 resolution (radial divisions x 

θ divisions), which gives a  of 26, an accepted value in practice [59]. Bathymetry 

varies from a minimum of 3 m to a maximum of 19 m with inner radius at a distance of 

60690 m and the outer radius at a distance of 152400 m. The following parameters were 

used in these experiments: eddy viscosity, , is set to zero,  and 

.

Land
Boundary

Ocean
Boundary

Figure 4.14   Quarter annular harbor domain (10 x 10 
resolution).

λ ∆x⁄

ε Cf 0.003=

G 0.001 sec
1–

=
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Figure 4.15 shows the Persian Gulf domain, while the three other application 

domains (WNAT, Gulf of Mexico and Bahamas) are shown in Figure 4.16. Boundary 

conditions are indicated on the figures. Table 4.3 contains information regarding 

parameters, boundary and grid data for each of the application domains (i.e., number of 

nodes, range of nodal spacing, etc.). In all of the domains, the land boundaries are treated 

as no flow and the ocean boundaries utilize the tidal constituents presented in Table 4.3. In 

these domains, we set the eddy viscosity term, , to zero except for the WNAT domain 

where a eddy viscosity value of 10 m2/s is used. 

4.5.2  Mass Conservation 

4.5.2a  Global Mass Conservation

We analyzed the impact of the CM equation on the global mass balance errors 

Figure 4.15   Persian Gulf domain.
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Figure 4.16   WNAT domain 
with the Gulf of 
Mexico and 
Bahamas domains 
zoomed in. 
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Table 4.3 Application domain information.

Bahamas Gulf of Mexico WNAT Persian Gulf

Meshing Criteria λ/∆x λ/∆x LTEA λ/∆x λ/∆x

# nodes 926 11701 11934 32947 8550

# elements 1696 21970 22870 61705 15724

Min. 
Bathymetry (m)

1.0 1.0 0.7 3.0 1.0

Max. 
Bathymetry (m)

9.0 3600.0 3600.0 6000.0 3700.0

Cf value (-) 0.009 0.003 0.003 0.003 0.0015

G value (sec-1) 0.009 0.009 0.009 0.005 0.01

M2 
amplitude (m)

0.395 0.07 - 
0.173

0.07 - 
0.173

0.0652 -
0.5580

0.496 -
0.6517

O1 
amplitude (m)

0.075 0.185 -
0.194

K1 
amplitude (m)

0.095 0.35 -
0.37

S2 
amplitude (m)

0.06 0.193 -
0.256

N2 
amplitude (m)

0.10 0.115 -
0.149

Q1
amplitude (m)

N.A. 0.0036 -
0.0037

P1
amplitude (m)

0.113 -
0.118

K2
amplitude (m)

0.0042 -
0.0058

≈ ≈ ≈ ≈ ≈
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utilizing the procedures presented in Section 4.3.1. Results are shown in Figure 4.17, which 

shows the average over time for both formulations of the momentum equation. (Recall that 

throughout this 2D section, the NCM advective terms are consistent with the GWC 

equation.) The CM results show slight to moderate decreases in the global mass 

conservation errors in four of the domains. In two domains, the WNAT and the Gulf of 

Mexico (LTEA resolution), we observe that the NCM equation produces slightly better or 

similar results to the CM equation. In the WNAT domain, the similar error behavior is due 

to the fact that the majority of the domain is in deeper water where the nonlinear terms do 

not play a significant role; these 2D WNAT results parallel the 1D results for the eastcoast 

slice (cf Figure 4.2) with the consistent treatment of the advective terms. 

Regarding the Gulf of Mexico results, we note that the LTEA method provides extra 

resolution on the shelf break [39,40]. The extra shelf resolution decreases the global mass 

error in the NCM equation results. On the other hand, the CM equation results are only 

slightly less than the λ/∆x resolution (Figure 4.17, Gulf of Mexico open bars), which 

indicates that the CM equation is less sensitive to the method of node placement on the shelf 

break. Such behavior is consistent with the 1D experiments and consistent with the fact that 

the LTEA uses the velocity-based NCM truncation errors to determine node placement.

4.5.2b  Local Mass Conservation 

Next we analyzed the impact of the CM equation on the local mass conservation 

utilizing the procedures presented in Section 4.3.1. Results are presented as contour plots 

in Figures 4.18-4.23 with the scales showing the log of the errors. Note that the scales for 

any given pair of NCM and CM graphs are the same. We also present in Figure 4.24 the 
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differences in the mass balance errors where the scale shows the log of the errors. In Figures 

4.20-4.23, we include the bathymetric contours to indicate where the steep bathymetry 

gradients occur. Results indicate that the CM equation reduces the local mass balance errors 

over a significant portion of the domain, with the largest gains occurring in the shelf and 

shelf break regions. (Observe the relative amount of blue and light pink between graph 

pairs or the amount of blue in the difference graphs in Figure 4.24.) This is most evident in 

Figures 4.22 and 4.24c (WNAT), where we see decreases in local mass balance errors 

(changes from pink to light blue or the blue area in Figure 4.24) with the CM equation along 

the continental shelf and shelf break region in the Gulf of Mexico and along the eastern 

seaboard of the United States. In the WNAT and Gulf of Mexico (LTEA resolution) 

domains, we find that the differences in local mass balance errors between the two 

formulations indicate NCM local mass balance errors are less along the ocean boundaries; 
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quarter annular Bahama Gulf Of Mexico Gulf Of Mexico -
LTEA

WNAT Persian Gulf

Figure 4.17   Global mass conservation results for the domains analyzed. Plot of the 
average global mass errors for both forms of the momentum equation 
(open bars - conservative momentum, filled bars - non-conservative 
momentum).
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Conservative Momentum Non-Conservative Momentum

Figure 4.18   Local mass conservation results for the quarter annular domain. Red 
coloring indicates higher mass balance errors while the blue coloring 
indicates the lower mass balance errors. Conservative momentum results 
are shown on the left with the non-conservative momentum results 
shown on the right. The legend shows the log of the errors for the CM 
and NCM results.

Conservative Momentum Non-Conservative Momentum

Figure 4.19   Local mass conservation results for the Bahamas domain. Red coloring 
indicates higher mass balance errors while the blue coloring indicates 
the lower mass balance errors. Conservative momentum results are 
shown on the left with the non-conservative momentum results shown 
on the right. The legend shows the log of the errors for the CM and 
NCM results.
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Figure 4.20   Local mass conservation results for the Gulf of Mexico domain - λ/∆x. 
Red coloring indicates higher mass balance errors while the blue 
coloring indicates the lower mass balance errors. Conservative 
momentum results are shown on the left with the non-conservative 
momentum results shown on the right. The legend shows the log of the 
errors for the CM and NCM results.

Non-Conservative MomentumConservative Momentum

Figure 4.21   Local mass conservation results for the Gulf of Mexico domain - LTEA. 
Red coloring indicates higher mass balance errors while the blue 
coloring indicates the lower mass balance errors. Conservative 
momentum results are shown on the left with the non-conservative 
momentum results shown on the right. The legend shows the log of the 
errors for the CM and NCM results.

Non-Conservative MomentumConservative Momentum
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Figure 4.22   Local mass conservation results for the WNAT domain. Red coloring 
indicates higher mass balance errors while the blue coloring indicates 
the lower mass balance errors. Conservative momentum results are 
shown on the left with the non-conservative momentum results shown 
on the right. The legend shows the log of the errors for the CM and 
NCM results.

Non-Conservative MomentumConservative Momentum

Figure 4.23   Local mass conservation results for the Persian Gulf domain. Red 
coloring indicates higher mass balance errors while the blue coloring 
indicates the lower mass balance errors. Conservative momentum 
results are shown on the left with the non-conservative momentum 
results shown on the right. The legend shows the log of the errors for the 
CM and NCM results.

Conservative Momentum Non-Conservative Momentum
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land boundaries near the ocean boundary also have high mass balance errors that decrease 

as one moves away from the ocean boundary. These results parallel the 1D observations.

We analyzed the influence of the meshing criteria on the local mass balance errors 

in the Gulf of Mexico domain by using the LTEA method to provide extra resolution at the 

shelf break. (Recall from Table 4.3 that the total number of nodes is approximately the 

same.) As can be seen in Figures 4.24a and 4.24b or between Figures 4.20 and 4.21, the CM 

equation produces less error than the NCM equation, regardless of meshing techniques. 

Figure 4.24   Local mass conservation results for the Gulf of Mexico and WNAT 
domains: a) GOM - λ/∆x, b) GOM - LTEA, c) WNAT - λ/∆x and d) 
Bahamas - λ/∆x. Red coloring indicates where the NCM equation results 
are better while the blue coloring indicates where the CM equation results 
are better. The legend shows the difference in the log of the errors between 
the CM and NCM results. 

b)a)

c) d)
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This is notable because the LTEA method is designed to reduce truncation errors for 

velocity-based sections.

4.5.3  Stability

We analyzed the impact of the CM equation on stability using the procedures 

presented in Section 4.3.2. Results in all of the domains show no impact on stability due to 

the CM equation. In fact, we found that the two momentum equations produced a nearly 

identical maximum allowable time step. Therefore, the CM equation does not influence 

stability, a result that is similar to the 1D findings. 

4.5.4  Accuracy 

4.5.4a  Temporal Accuracy 

We utilized the procedures presented in Section 4.3.3 to determine the impact of the 

CM equation on temporal accuracy. For these experiments, we evaluated 120 discrete 

timesteps over several M2 tidal cycles. The timestep varied from 10 to 900 sec for the 

quarter annular domain (10x10 resolution), while for the Gulf of Mexico (λ/∆x resolution) 

the timestep varied from 10 to 180 sec. With the predictor-corrector algorithm included, the 

timestep varied from 10 to 3600 sec for the quarter annular domain and from 20 to 360 sec 

for the Gulf of Mexico. 

Figure 4.25 shows the temporal accuracy results for the original time-marching 

algorithm. For both domains, results using the original time-marching algorithm indicate 

that the two momentum equations provide the same error behavior, and both show a first 

order convergence rate (shown in Table 4.4). For the case of the predictor-corrector time-
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marching algorithm, the quarter annular results (shown in Figure 4.26) indicate that the 

NCM equation has less temporal error in the smaller time steps; however, as the time step 

increases, the results between the two momentum equations converge. As for the Gulf of 

Mexico domain, we find that the NCM equation errors are less than for the CM equation 

when using the predictor-corrector time-marching algorithm. Convergence rates (shown in 

Table 4.4) for the predictor-corrector time-marching algorithm shows mixed results, with 

the quarter annular domain providing second order accuracy for both forms of the 

momentum equation, while the Gulf of Mexico is second order accurate with the NCM 
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Figure 4.25   Temporal accuracy results (elevation) for two domains using the original 
time-marching algorithm: a) quarter annular (10x10 resolution), b) Gulf 
of Mexico - λ/∆x. Solid line - NCM, Long dashes - CM. 
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Table 4.4 Convergence rates for the 2D temporal accuracy.

quarter annular Gulf of Mexico

NCM CM NCM CM

original time
marching algorithm

1.16 1.16 1.23 1.23

predictor-corrector time
marching algorithm

1.72 2.06 1.89 1.31
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equation, but only first order accurate with the CM equation. In three out of the four 1D 

domains and one of the 2D domains, the form of the momentum equation does not 

significantly influence the convergence rates for the temporal accuracy whether using the 

original or predictor-corrector time-marching algorithm, which is similar to the 1D 

findings. 

4.5.4b  Spatial Accuracy 

Results from the 1D spatial accuracy experiments indicate that the CM equation 

does not impact the global spatial accuracy significantly; therefore, we only analyze local 

spatial accuracy for the 2D domains.

We evaluate the effect of the CM equation on local spatial accuracy using CAFE 

(Cumulative Area Fraction Errors) curves [61]. Procedures followed in this section are 

presented in Section 4.3.3. To obtain the “true solution”, we refined the quarter annular 

domain until the convergence criteria was met, which resulted in a resolution of 200x200. 

Note that CM vs. NCM solutions are nearly indistinguishable at this fine resolution (  
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Figure 4.26   Temporal accuracy results (elevation) for two domains using the 
predictor-corrector time-marching algorithm: a) quarter annular (10x10 
resolution), b) Gulf of Mexico - λ/∆x. Solid line - NCM, Long dashes - 
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ratio over 500).

Tables 4.5-4.6 present a snapshot of the error levels obtained from the CAFE 

analysis for two domains: the quarter annular and Gulf of Mexico, while Figures 4.27-4.28

show the CAFE plots for the same two domains comparing coarse and fine (“true”) 

resolution. Spatial resolution is indicated in the tables. The values in bold type highlight 

which form of the momentum equation provides the least error. This data, combined with 

an analysis of the full CAFE plots, reveals that the CM equation significantly improves the 

Table 4.5 Elevation error measures for quarter annular and Gulf of Mexico domains.

quarter annular Gulf of Mexico

NCM CM NCM CM

Resolution Comparison 10x10 vs. 
200x200

10x10 vs. 
200x200

λ/∆x vs.
split by 4 

(λ/∆x)

λ/∆x vs.
split by 4 

(λ/∆x)

Elevation Amplitude (Absolute) 

% exceeding -0.005 ft (quarter)
% exceeding -0.005 cm (GOM)

8.4 1.2 88 67

% exceeding 0.005 ft (quarter)
% exceeding 0.005 cm (GOM)

1.3 0.56 10 31

% exceeding +/-0.005 ft (quarter)
% exceeding +/-0.005 cm (GOM)

9.7 1.8 98 98

Elevation Amplitude (Relative) 

% exceeding -0.5% 0.12 <0.001 84 65

% exceeding 0.5% 0.51 0.051 7 25

% exceeding +/-0.5% 0.63 0.051 91 90

Elevation Phase Difference

% exceeding -0.2 14 0.0083 25 33

% exceeding 0.2 2.6 2.5 64 60

% exceeding +/-0.2 17 2.5 89 93

°

°

°
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Table 4.6 Velocity error measures for quarter annular and Gulf of Mexico domains.

quarter annular Gulf of Mexico 

NCM CM NCM CM

Resolution 10x10 vs. 
200x200

10x10 vs.
200x200

λ/∆x vs.
split by 4 

(λ/∆x)

λ/∆x vs.
split by 4 

(λ/∆x)

Major Semi-Axis (Absolute) 

% exceeding -0.05 ft s-1 (quarter)
% exceeding -0.05 cm s-1 (GOM)

0.66 1.0 15 20

% exceeding 0.05 ft s-1 (quarter)
% exceeding 0.05 cm s-1 (GOM)

0.0062 0.054 9.2 15

% exceeding +/-0.05 ft s-1 (quarter)
% exceeding +/-0.05 cm s-1 (GOM)

0.67 1.1 24 35

Major Semi-Axis (Relative) 

% exceeding -1% 75 78 49 57

% exceeding 1% 19 15 23 28

% exceeding +/-1% 94 93 72 85

Major Semi- Axis Phase Difference

% exceeding -10 0.086 0.092 1.3 1.3

% exceeding 10 0.14 0.13 1.1 0.66

% exceeding +/-10 0.23 0.22 2.4 2.0

Eccentricity

% exceeding -0.1 0.29 0.23 2.3 1.2

% exceeding 0.1 0.040 0.19 1.0 0.92

% exceeding +/-0.1 0.33 0.42 3.3 2.1

Major semi-axis direction

% exceeding -5 1.3 1.4 3.7 3.0

% exceeding 5 0.23 0.19 4.4 3.7

% exceeding +/-5 1.5 1.6 8.1 6.7

°

°

°

°

°

°
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Figure 4.27   CAFE plots for quarter annular domain comparing the two momentum 
equations using the original time-marching algorithm. Dotted line - NCM 
equation and dashed line - CM equation.
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Figure 4.28   CAFE plots for Gulf of Mexico domain comparing the two momentum 
equations using the original time-marching algorithm. Dotted line - NCM 
equation and dashed line - CM equation.
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elevation response over the entire domain for the quarter annular. For four of the five 

velocity components, the CM and NCM algorithms have very similar errors, while for one 

velocity component (major semi-axis, absolute), NCM is better over much of the quarter 

annular domain. 

As for the Gulf of Mexico domain, we find mixed results, which is most likely due 

to how the fine grid was developed. For real domains, bathymetry is known only at discrete 

points from field measurements. To interpolate between these as the grid is refined 

(“triangles split by 4”) introduces additional errors besides truncation errors into the 

measured response, so that spatial resolution studies are inconclusive for the Gulf of 

Mexico. 

In contrast, for the fictitious quarter annular domain, one can refine the grid 

indefinitely because the bathymetry and coastline can be determined from known analytical 

equations at all spatial locations. Lastly, we evaluated the spatial accuracy with the 

predictor-corrector time-marching algorithm for quarter annular domain and found similar 

results. Altogether, the CM algorithm shows improved local spatial accuracy. 

 4.6  Conclusions

Herein, we analyzed the impact of using the flux-based, conservative form of the 

momentum equation instead of the velocity-based, non-conservative form to compute the 

depth-averaged velocities in 1D and 2D shallow water models. Our hypothesis in this study 

was that the use of the conservative momentum equation would improve both global and 

local mass conservation, eliminate the need to reformulate the advective terms between the 

GWC and NCM equations, and lessen the need for extensive refinement in areas with steep 
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bathymetry gradients. Through a set of extensive numerical experiments, supported with 

truncation error analysis, we show that the use of the conservative momentum equation 

does improve global mass conservation in most simulations, and it greatly improves local 

mass conservation in regions of steep topography for all of the domains, as measured in the 

finite volume sense. Paralleling the local mass balance results, local spatial accuracy also 

improves. The analysis in Section 4.4.6 demonstrates that both the choice of dependent 

variable and the form of the advective terms in the discrete equations causes a difference in 

behavior between the NCM and CM simulations, with the CM equation offering increased 

accuracy in areas of high advective gradients. Also, local mass balance error, when 

measured by direct integration of the primitive continuity equation, parallels local 

truncation error and can thus be used as a surrogate variable for local truncation error. As 

such, among other applications, it can be used to identify regions where mesh refinement 

is necessary. Furthermore, the use of the conservative form of the momentum equation 

eliminates the need for reformulating the advective terms between the governing equations. 

However, results are inconclusive regarding the third hypothesis, that is, for some 

simulations the LTEA mesh does not impact the CM results, while in others the LTEA mesh 

reduces both NCM and CM local mass balance errors. 

In the end, the significant decrease in local mass balance error and corresponding 

increase in local spatial accuracy for the CM formulation, with no loss of global spatial 

accuracy and stability, provides sufficient evidence for its use in GWC-based, finite 

element shallow water models.
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 Chapter 5.  Algorithmic and Resolution Influences on 
Diagnostic Baroclinic Simulationsa

 5.1  Introduction

Ocean flows are frequently categorized by one of two different dynamic modes, 

barotropic and baroclinic, that describe different wave speeds. Barotropic flows include 

motion driven by the tides and wind and only take into account pressure differences with 

respect to depth. Baroclinic flows include motion driven by density changes caused by 

temperature and salinity differences in the ocean [72]. These density variations create 

pressure gradients that vary with depth, thus creating a driving force called the baroclinic 

pressure gradient.

In areas where the topography changes rapidly, such as a seamount or continental 

rise region, many three-dimensional hydrodynamic models have problems computing a 

stable and realistic baroclinic pressure gradient (BPG). An initial study into the calculation 

of the BPG term serves as the main topic of this chapter. The motivation for this work 

stems, in part, from anomalous results observed by Blain [12] in baroclinic Arabian Gulf 

simulations using a wave continuity based FE model. Figure 5.1 illustrates the problem, 

where the source of error was identified as an unrealistic (and unstable) BPG computed by 

the model in a region of steep bathymetry and density gradients. This is shown by the large 

a.  This chapter has appeared as two abbreviated conference proceedings, the Estuarine and Coastal 
Modeling conference and Computational Methods in Water Resources. The references for these two 
proceedings are given in Chapter 7, numbers. [32] and [31], respectively.
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arrows in the area of steep contour changes in Figure 5.1. 

Four common vertical coordinate systems utilized in ocean models are as follows: 

sigma coordinates, which are terrain-following [17]; z-coordinates (also called level 

coordinates), which follow a fixed depth [9]; isopycnal, which follow lines of constant 

density [14]; and hybrid, which includes any combination of sigma coordinates, z-

coordinates or isopyncal coordinates [20,69]. Advantages and disadvantages exist for all of 

these coordinate systems, which several investigators have mentioned in their studies (e.g., 

[9,17,69]). To summarize, sigma coordinates provide a constant number of vertical layers, 

regardless of depth, and capture the bottom and free moving surfaces, thus allowing the 

boundary conditions to be implemented easily. One disadvantage of the sigma coordinate 

system involves the “hydrostatic inconsistency” condition, first discussed in the context of 

oceanographic models by Haney [42]. Figure 5.2 shows one set of vertical nodes that are 

considered hydrostatically inconsistent (Figure 5.2a) and one set of vertical nodes that are 

hydrostatically consistent (Figure 5.2b). This condition indicates that in areas of steep 

topography, there needs to be an appropriate amount of horizontal resolution in order to 

obtain stable and realistic BPG results. However, in some cases, the amount of horizontal 

Figure 5.1 Instabilities caused by errors in the 
calculation of the BPG during simulations 
of the Arabian Gulf [12]. 
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resolution needed to produce accurate results leads to excessive computational costs. If the 

hydrostatic inconsistency condition is not met, then spurious modes tend to be introduced 

into the solution through truncation errors obtained from the transformation of the BPG 

term to the sigma coordinate system. Thus in the areas of steep bathymetry gradients, large 

truncation errors can mask the true BPG [17]. Suggestions from some researchers have 

reduced these errors, but the problem has not been completely solved. In some models, this 

problem has been reduced by subtracting off a mean vertical density gradient or an area-

averaged density from the initial density field [69-71]. Stelling and van Kester introduced 

a finite volume approach that first switches from sigma coordinates to a redefined (similar 

to z-coordinates) system, where the BPG results are calculated, and then utilizes a simple 

filter to correct the BPG results. Results showed that they could obtain stable results for 

simulations that had steep bottom slopes [79]. However, further studies by Slordal [77] 

determined that this method tended to underestimate the BPG results so a modified method 

Figure 5.2 Schematic of vertical nodes that are a) hydrostatically inconsistent and b) 
hydrostatically consistent. Graphically, in a) we can tell the vertical 
nodes are hydrostatically inconsistent because node 21 does not fall in 
layer 20 in the adjacent vertical string of nodes, whereas in b), node 21 
does fall in layer 20 in the adjacent vertical string of nodes.

a) b)node 21

node 20

node 20

node 21

node 20

node 21
node 20

node 21

node 20

node 21

layer 20

layer 20

layer 20

layer 20

layer 20
120



was introduced. The modification makes it equivalent to linearly interpolating the density 

values in the vertical and then computing the gradients. Slordal [77] found that this 

improved the results but was more computationally time consuming than the traditional 

sigma coordinate method. Another disadvantage of the modified evaluation is that errors 

still develop in the results when a sharp vertical change occurs in the density field, just as 

it does with traditional sigma coordinates [77]. 

As for the z-coordinates, they do not suffer from the truncation error problems that 

occur with the sigma coordinate and its transformation. They also tend to be able to capture 

steep pynocline changes or maintain layered density fields better. However, the 

disadvantage of the z-coordinate system is its inability to properly resolve the flow around 

the bottom topography in areas of sloping bathymetry (“stair-step” resolution), and the 

correct flow at the surface is often not captured [17]. To obtain an accurate BPG where 

sloping bathymetries come into play for z-coordinates, several researchers suggest using 

extrapolation techniques. e.g. Beckmann and Haidvogel utilized a Chebyshev polynomial 

[7]. Beckmann and Haidvogel found that the use of Chebyshev polynomials to extrapolate 

BPG values at the bottom helped reduce the errors in the BPG values as compared to the 

traditional sigma coordinates. However, they indicated that the results tend not to be as 

stable as the results using traditional sigma coordinates. They suggest that this instability is 

due to the extrapolation of the results using the Chebyshev polynomials because these types 

of polynomials tend to have oscillation problems if they are not extrapolating values over 

a “small” distance [7]. 

Another method that has been used in global ocean models is the isopycnal 

coordinates, which follows lines of constant density [14]. This type of coordinate system 
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does well in the deeper parts of the ocean because the density profile tends to be stably

stratified. However, this coordinate system does not do well in shallower parts of the ocean, 

such as the continental shelf, due to the mixing and advection processes that tend to be 

dominant in this part of the ocean [17]. It also has the same “stair-step” resolution problem 

at the bottom boundary that the z-coordinate method has because the lines of constant 

density do not follow the topography changes [14]. Thus, the method is not widely used for 

near-coastal models, such as ADCIRC. 

Hybrid methods have been suggested that take advantage of the strengths of sigma 

and z-coordinate methods and have been used in several models (e.g, NCOM [69] and Spall 

and Robinson [78]). The degree of hybridization between the two coordinate systems and 

the technique of the hybridization can both vary in the model. For example, Beckers [6] 

examined a hybrid scheme that only used one z-coordinate (fixed) with sigma coordinates 

above and below it. Also, Spall and Robinson [78] analyzed a hybrid scheme that used z-

coordinates in the upper layers and sigma coordinates in the bottom layers. Another hybrid 

scheme, which is used by NCOM (Navy Coastal Ocean Model) [69], applies sigma 

coordinates in the upper layers and the z-coordinates in the bottom layers. We also note that 

other types of hybrid methods have been developed, such as HYCOM [20], which switches 

from isopycnal in deep water to sigma coordinates in the coastal areas and then switches to 

z-coordinates in the surface mixed layer/unstratified sea areas. In a study with the HYCOM 

model, researchers found that the hybrid model using multiple coordinate systems provided 

better results than only using one coordinate system [20]. Burchard and Petersen [17] also 

mentioned that the hybrid methods may provide better results than those of the sigma 

coordinates or z-coordinates. However, hybrid methods can suffer from problems in the 
122



areas where the coordinate systems switch from one method to another [78]. Finally, an 

additional issue is the depth at which to switch between coordinate systems. 

Several researchers have investigated the unstable or unrealistic results of the BPG 

term in the context of finite difference models (e.g., [17,42,70]), however, only a few 

studies have been done in the context of finite element or unstructured grid models. Finite 

element formulations using triangular elements of the BPG term differ from finite 

difference formulations using square elements because they include more information from 

neighboring nodes. In contrast finite difference formulations tend to include only the 

neighboring nodes that are forward, behind or next to the node being evaluated. Using a 

finite element model, Walters and Foreman looked at the influence of resolution on the 

velocity field using sigma coordinates, first varying the horizontal resolution for a fixed 

vertical resolution and then vice versa [83]. They determined that the sigma coordinate 

system produced either second- or first-order accurate solutions, depending on the density 

profile, for the continental shelf region. From their studies, they suggested that the sigma 

coordinate system should be replaced with z-coordinates. Alternatively, they suggest post-

processing the BPG field in order to minimize the sigma coordinate transformation errors. 

Fortunato and Baptista evaluated the vertical placement of nodes in sigma 

coordinates within the framework of finite elements for a barotropic model [36]. They 

found that an efficient placement of the vertical nodes may take care of the strong 

dependence of errors on the local flow properties. In order to realize this, they introduced 

localized sigma coordinates, which allow for more flexibility in the placement of nodes. 

These localized sigma coordinates differ from a nonuniform sigma coordinate system in the 

fact that they allow for the vertical nodes to be placed independently for each horizontal 
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node, while the nonuniform sigma coordinates use the same placement algorithm at each 

horizontal node. Fortunato and Baptista found that the localized sigma coordinates provide 

a strong alternative to the traditional sigma coordinates and z-coordinates. 

Another investigation by Fortunato and Baptista evaluated all of the horizontal 

gradients in the momentum equation in either sigma coordinates or z-coordinates in a 2D 

(width-averaged) barotropic and baroclinic (diagnostic) model [34]. They determined that 

evaluating all of the horizontal gradients in the sigma coordinate system provided the best 

approach in most cases; however, in certain cases the z-coordinates proved to be better, in 

particular for the case study presented in Walters and Foreman [83]. They also provided 

some guidelines to obtain the proper horizontal resolution for a sigma coordinate model 

near steep bathymetry gradients [34]. 

Herein, we build on this earlier work and investigate BPG calculations using several 

of these coordinate system in the context of a finite element model. This study will only 

look at different coordinate systems to calculate the BPG term; while all other horizontal 

gradients in the momentum equation will use sigma coordinates. In this respect, it differs 

from the work done by Fortunato and Baptista [34], since their work analyzed all the 

gradients in the momentum equation with either sigma or z-coordinates, independently. We 

are only analyzing the BPG term with these different coordinate systems since this term has 

been shown in the applications to be problematic [12]. This study also extends the work 

done by Walters and Foreman [83] by looking at other coordinate systems for calculating 

the BPG term besides the sigma coordinates. In this study, we will investigate four different 

coordinate systems for determining the BPG results: sigma coordinates, z-coordinates and 

two hybrid systems composed of these two coordinate systems. We look at these coordinate 
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systems and the effect of grid resolution (horizontal, vertical, and combined) on diagnostic 

simulation results.

 5.2  Background Of The Model

The model utilized in this study is a 2D laterally-averaged (x-z) shallow water 

model that uses the finite element method; it follows the same development steps as the 3D 

ADCIRC model [60], as discussed in Chapter 2. We also employ a mode splitting scheme 

in the solution technique, similar to that of the 3D ADCIRC, in which the external mode 

solves a 1D (depth-averaged) continuity equation for the elevation field and a 2D (x-z) 

momentum equation to resolve the velocity field. The depth-averaged velocity values 

utilized in the continuity equation are obtained from the integration of the 2D momentum 

equation results. As a final step, we calculate the vertical velocity values using the 2D (x-

z) continuity equation. 

We replace the primitive continuity equation with the generalized wave continuity 

(GWC) equation to eliminate the spurious modes that occur with finite element models 

using the primitive equations [e.g., 48,59,60,64]. The GWC equation is as follows:

(5.1)

where  is surface elevation above a datum,  is the total fluid depth, and  is the depth-

averaged velocity, g is gravity,  is the depth-integrated momentum dispersion 

(momentum transfer due to a non-uniform velocity profile),  is the depth-integrated 
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baroclinic forcing,  is the depth-averaged lateral stress term, which is determined from 

 where  is the eddy viscosity coefficient,  is the bottom 

friction term, where  is the linear slip coefficient and  is the velocity at the bottom 

boundary, and  is atmospheric forcing. In Equation (5.1), G is a numerical parameter 

that allows either a pure wave form of the equation when the parameter is small or the 

primitive form of the continuity equation if the parameter is large. This code does not 

include the Coriolis forcing terms. We currently utilize a constant eddy viscosity 

coefficient, , in the lateral stress term. 

The current model employs the non-conservative form of the momentum equation, 

which is as follows:

(5.2)

where  is the constitutive law for vertical stress gradient with vertical eddy 

viscosity ;  is the constitutive law for the lateral stress gradient with a 

horizontal eddy viscosity parameter, , which is the same as that used in Equation (5.1). 

We are using the non-conservative form of the momentum equation because the current 

production code of ADCIRC utilizes this form. In Equation (5.2), we define

 (5.3)

which is the BPG. 

To evaluate Equation (5.2), we map the terms in the equation onto a generalized 
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sigma or stretched coordinate system (referred to hereafter as either sigma coordinates or 

sigma coordinate system), where  ranges from a at the surface (a is set to 1 herein) to b

at the bottom (b is set to -1 herein) and these values remain the same regardless of the 

change in the bathymetry. The relationship between the sigma coordinate system and the z-

coordinate system (referred to hereafter as either z-coordinates or z-coordinate system) is 

determined from the following: 

 (5.4)

Based on this relationship between the sigma coordinate system and z-coordinate system, 

derivatives from the two systems can be related to one another, as shown in Chapter 2 and 

Appendix 2. The momentum equation in the sigma coordinate system thus becomes:

(5.5)

where  and  incorporates terms from the variable transformation (see 

reference [60] and Chapter 2 for more details). The evaluation of the  term occurs along 

the stretched surfaces directly with no coordinate transformation. 

These equations use C0 linear finite elements for the horizontal and vertical spatial 

discretization with the exact quadrature rules. For the temporal discretization, a three time-

level scheme centered at k is used in Equation (5.1), and a two time-level scheme centered 

at  is used in Equation (5.5). Except for the BPG, all of the horizontal derivatives 

are evaluated in the sigma coordinate system; the BPG term uses different coordinate 

systems, as described below.
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In this work, we have isolated the BPG term (  in Equation (5.5)) and only 

implement this term differently in accordance with the different coordinate systems. We 

isolate this term because it has been shown to cause unstable or unrealistic results (as 

discussed in Section 5.1). Initially, we define a buoyancy term,  (shown in Equation 

(5.6)), which is then used to evaluate the horizontal gradient in the appropriate coordinate 

system: 

(5.6)

In z-coordinates, the BPG is given as

(5.7)

while in the sigma coordinate system, the BPG is given as

(5.8)

Using the coordinate transformations presented in Chapter 2, Equation (2.10), Equation 

(5.8) becomes the following:

(5.9)

In this study, we utilize Equations (5.7) and (5.9), along with a combination of the two, to 

develop the two hybrid systems investigated in this study. One of the hybrid systems 
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employed in this study follows the system used in NCOM [69], which switches from the 

sigma coordinates to z-coordinates as the depth increases. In what follows, we refer to this 

hybrid system as NCOM system or NCOM. The second hybrid system switches from sigma 

coordinates to z-coordinates at a specific depth then back to sigma coordinates at a second 

deeper depth. This system is referred to as the SZS (sigma coordinates, z-coordinates, 

sigma coordinates) system or SZS and is similar to the system for computing the BPG used 

by Beckers [6]. 

Figure 5.3 shows a schematic of each coordinate system. In the z-coordinate system 

BPG implementation, we compute horizontal gradients by interpolating values between 

adjacent vertical sigma nodes in Figure 5.3b [7,35]. Near bottom boundaries a linear 

extrapolation technique is used in regions where gradients based on z-coordinates “run into 

B
a)

 A

Figure 5.3 Schematic of the four coordinate systems utilized in 
calculating the BPG term in the momentum balance for the 
cross-section shown to the left: a) sigma coordinates, b) z-
coordinates c) NCOM, and d) SZS. Arrows indicate z-
coordinate system calculation of the BPG.

A
B
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z=0
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the ground.” This linear extrapolation technique can be described using Figure 5.4. For 

example, if we are computing the gradient at node 2, then we look to the left and right (or 

all neighbors in 3D) of that node to obtain the density values in the adjacent string of nodes. 

In this case, when we look to the left and the right we find that there are no adjacent nodes 

because the ocean is on the right and the horizontal extension to the left runs into the bottom 

boundary. In this case, the gradient is determined using the previously calculated gradients 

for the nodes above it. Therefore, we take the gradient values from nodes 3 and 4 in Figure 

5.4, and use them to extrapolate a gradient value for node 2. Note that we obtain the 

gradients for nodes 3 and 4 by using information from the nodes to the left of the ocean 

boundary. 

 5.3  Model Validation

The domain used for the model validation is an idealized basin, which provides a 

good check on the numerical algorithms since, for simple density fields, it has an analytic 

solution. The idealized basin is 48 km long with 51 nodes in the horizontal ( ) 

and 21 layers ( ) in the vertical. We use a constant bathymetry of 10 m depth 

(“flat bottom”). Boundary conditions on both ends of the ideal basin are land boundaries 

Figure 5.4 Schematic of the “run into the 
ground” problem with the z-
coordinates. In the extrapolation 
technique, we utilize the two prior 
vertical node results (i.e., nodes 3 
and 4) to obtain the result for node 2 
because it has the “run into the 
ground” problem. 

1

2

3

4

ocean
boundary

land
boundary

∆x 960 m=

∆σ 0.05=
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with no-flux boundary conditions. Other conditions of this simulation are as follows: 

horizontal eddy viscosity mixing processes are neglected (negligible horizontal velocity 

gradients), vertical eddy viscosity utilizes a constant value of 0.0011 m2/s, cold start with 

a 0.1 day ramp, 1-day simulation time with a one second time step which allows the 

simulation to reach a steady state, G in the GWC solution set to 0.001/sec, linear slip 

bottom condition with a coefficient of 0.001/sec, and all the nonlinear terms turned on. The 

density field for this idealized basin varies horizontally from 1024 to 1028 kg/m3 (left to 

right) and is constant over depth at each x-location. In this test case, the BPG simplifies to

(5.10)

where  is a known function of x only,  is the reference density, which remains constant 

at 1000 kg/m3, and it is assumed that the elevation set-up is small when evaluating this 

integral (i.e.,  is set to zero). Numerical tests subsequently verified this assumption. 

For the conditions of this idealized basin, Luettich and Westerink [63] derived an 

analytic solution for the surface elevation and velocity, as given below

(5.11)

(5.12)
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viscosity. A full derivation of the analytical solution occurs in Appendix 4. Figure 5.5

shows the results from this model validation test case for both the BPG and horizontal 

velocity field. As can be seen all the coordinate system results match the analytical solution. 

This identical behavior from all of the coordinate systems is expected because of the 

constant bathymetry of the problem. In such a case, the sigma coordinates and z-

coordinates are nearly identical because the coordinate transformation terms (Equation 

5.9b) do not play a significant role because  is 0 and  is very small, thus Equation 

(5.9a) is like Equation (5.7).

 5.4  Procedures

Recall that for this study, all test cases were conducted utilizing the diagnostic mode 

of the baroclinic model.

5.4.1  Global Spatial Accuracy

The “true solutions” for these 2D x-z experiments were determined either by 

performing a grid convergence test, where the grid is refined until a chosen convergence 

Figure 5.5 Model validation results with the analytical solution shown as black dots 
and all four coordinate systems used in the calculation of the BPG shown 
as plots laying on top of the analytical solution. (a-BPG, b-horizontal 
velocity)
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criterion (errors on the order of 10-6 m/s) was met, or from known analytical solutions. A 

discussion of what constitutes a true solution for each domain occurs in the subsequent 

section. We compared the results from these true solutions to the coarse grid results to 

measure the errors utilizing the L2 norm (refer to Equation (3.5)). These errors are 

determined for the BPG, horizontal velocity and vertical velocity. For each of the domains 

analyzed, we chose twelve different stations (shown in Figure 5.7) at which to compare 

results. These twelve stations are representative of the entire domain because we placed 

them across the domain and in areas where there are significant changes in the bathymetry 

or density fields. For a measure of global accuracy, we averaged the L2 errors over time for 

each of the twelve stations and then averaged the results over the twelve stations to provide 

one data point for every grid resolution studied. For each of the domains, we analyzed the 

effects of both horizontal and vertical resolution on the BPG, horizontal and vertical 

velocities. Horizontal resolution studies hold the number of vertical nodes constant and 

vary the number of horizontal nodes; while, the vertical resolution studies hold the number 

of horizontal nodes constant and vary the number of vertical nodes. 

5.4.2  Local Spatial Accuracy 

To analyze the local spatial accuracy, we followed the same procedures for 

obtaining a true solution as described in the previous section. We obtain the errors from: 

 where  is the coarse solution and  is the fine or true solution. These errors 

are determined for the BPG, horizontal velocity and vertical velocity. We find the errors at 

every vertical node for all twelve stations, which are the same stations used in the global 

spatial accuracy, and average the errors over time. These errors are then graphed for each 

ε ci fi–= ci fi
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vertical node at the twelve stations in the form of a density plot. For two of the domains 

analyzed, we first hold the vertical resolution constant and then look at the errors for two 

horizontal resolutions, coarse and fine. Next, we hold the horizontal resolution constant and 

then look at the errors for two vertical resolutions, coarse and fine. For each of the domains, 

we also show a plot of the density field and the location of the twelve stations for discussion 

purposes. 

5.4.3  Horizontal/Vertical Resolution Interplay

Next, we analyzed the interplay between horizontal and vertical resolution by 

varying the number of nodes and looking at the global spatial accuracy results. For each of 

the domains analyzed, we utilize the resolution matrix presented in Table 5.1, which is 

based on interval halving. We evaluated L2 errors for the BPG, horizontal velocity and 

vertical velocity by comparing simulation results to the true solution for the domains 

analyzed. Here again we averaged the L2 errors over time and then averaged over the 

Table 5.1  Matrix for the interplay of horizontal and vertical resolutions.

Horizontal nodes

Vertical nodes 9 17 33 65 129

5 x x x x x

9 x x x x x

17 x x x x x

33 x x x x x

65 x x x x x

129 x x x x x
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twelve stations in order to obtain one point for each grid resolution. For some of the grid 

resolutions, we found that stable results could not be obtained, and we note this in the 

results (presented in Section 5.6.2 and Section 5.6.3).

5.4.4  Depth for Hybrid Systems 

Last, we examined the best placement for the depth changes for each of the hybrid 

systems by looking at how the placement impacts global spatial accuracy. For example in 

the NCOM scheme, we vary the interface between the sigma coordinates and z-coordinates 

from a shallow depth to a deeper depth in order to determine how the placement of the 

interface affects the accuracy of the solution. 

 5.5  Numerical Experiments

Three domains and two different density profiles serve as the test cases for this 

portion of the study. 

5.5.1  Linear Sloping Bathymetry

For this test case, we employ a 48 km long domain with a constant bottom slope 

varying from 10 m at the shallow end to 100 m at the deep end (approximately a 2% slope), 

and the density profile varies linearly from 1026 kg/m3 (shallow) to 1028 kg/m3 (deep) in 

the horizontal direction, with no variation in the vertical direction. Boundary conditions are 

no-flux land boundaries on both sides of the domain. This study utilizes all the nonlinear 

terms in the equations. Eddy viscosity parameters in both the lateral and vertical directions 

remain constant at 0 and 0.051 m2/s, respectively, and bottom friction utilizes a linear slip 

condition with a  value of 0.05 m/s. In this test case, the GWC equation numerical Kslip
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parameter, G, is set to 0.001 sec-1, the time step set to 0.1 sec, and the simulation time set 

to 1 day which allows the simulation to reach a steady state. Results were recorded 90 times 

over the course of the simulation. 

A “true solution” for this test case was obtained by refining the grid in the horizontal 

direction until the L2 error changes were within machine accuracy and had reached 

convergence, which occurred with a constant nodal spacing of approximately 180 m. This 

served as the true solution for the horizontal resolution study. Similarly, for the vertical 

resolution study, we refined the grid in the vertical until the L2 error showed that the 

solution had converged, which occurred with 129 ( ) uniformly distributed 

vertical nodes. For the interplay study, a horizontal nodal spacing of approximately 180 m 

with 129 vertical nodes provided the true solution. The true solution was obtained using the 

z-coordinate system for calculating the BPG term; however, we also looked at the results 

with the sigma coordinate system and found that results were similar (BPG/velocity error 

difference is on order of magnitude 10-8/10-6, respectively. 

5.5.2  Idealized Shelf

The second test case, adapted from both Walters and Foreman [83] and Fortunato 

and Baptista [34], mimics the shelf break region with bathymetry that varies linearly in 

three different regions along a 50 km coastal slice, as shown in Figure 5.6. Density varies 

only in the vertical and depends on depth, as shown in Figure 5.6 (equations also shown). 

Boundary conditions were no-flux land boundaries on both sides of the domain. Note that 

if we change the boundary conditions to a no-flux land boundary on one side and a zero 

elevation boundary condition on one side, the magnitude of the results change; however the 

∆σ 0.016=
136



trends are the same. This study utilized all the nonlinear terms in the equations, in 

particular, we included the advective terms; however, results were similar whether 

including or excluding the advective terms. Eddy viscosity parameters in both the lateral 

and vertical directions remained constant at 0 and 0.051 m2/s, respectively, and bottom 

friction utilized a linear slip condition with a  value of 0.001 m/s. In this test case, the 

GWC equation numerical parameter, G, was set to 0.001 sec-1, the time step set to 0.1 sec, 

and the simulation time set to 1 day which allows the simulation to reach a steady state. 

Results were recorded 90 times over the course of the simulation.

For this test case, we compared the results to an analytical solution. As noted by 

Walters and Foreman [83] and Fortunato and Baptista [34], the analytical solution for this 

test case is zero for the BPG and velocity field because there are no boundary forcings, and 

Figure 5.6 Bathymetry and density profiles for the idealized shelf test case. 
Density values are shown changing from blue in the lighter water to 
red in the heavier water.
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the density varies only in the vertical direction (stable stratification) and not horizontally. 

The location of the twelve stations for this test case are given in Figure 5.7a.

5.5.3  Seamount 

In this test case, we analyzed a different bathymetry with the same density profile 

as the idealized shelf test case. For the bathymetry, we developed a domain that includes a 

seamount, along with a change in topography that mimics the continental shelf region (see 

Figure 5.8). We utilized the following boundary conditions: a no-flux land boundary and 

elevation boundary of zero on the opposite side of the domain. This study utilized all the 

nonlinear terms in the equations. Eddy viscosity parameters in both the lateral and vertical 

directions remained constant at 0 and 0.051 m2/s, respectively, and bottom friction utilized 

a linear slip condition with a  value of 0.001 m/s. Here again, the GWC equation 

numerical parameter, , was set to 0.001 sec-1, the time step set to 0.1 sec, and the 

simulation time set to 1 day which allows the simulation to reach a steady state. Results 

were recorded 90 times over the course of the simulation.
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Figure 5.7 Schematic of the bathymetry (shown as a black line) for: a) the idealized 
shelf test case and b) the seamount test case along with the 12 points 
(shown as the red dots) used as the comparison stations.
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As with the idealized shelf test case, we compared the results from this test case to 

an analytical solution of zero for the BPG and velocity fields, since there are no boundary 

forcings and the density varies only in the vertical direction (stable stratification) and not 

horizontally. The locations of the twelve stations for this test case are given in Figure 5.7b.

 5.6  Experimental Results

5.6.1  Linear Sloping Bathymetry

Figure 5.9 shows the results of the horizontal resolution study for the BPG, 

horizontal velocity and vertical velocity. The results of this horizontal resolution study 

show that the only significant difference between the three coordinate systems for 

Figure 5.8 Bathymetry and density profiles for seamount test case. Density values 
are shown changing from blue in the lighter water to red in the heavier 
water.
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calculating the BPG was in the value of the BPG itself. For all the refinements in the 

horizontal, the z-coordinate system exhibits nearly constant rate of decrease in the BPG 

error; however, the sigma coordinates and hybrid schemes show that the BPG errors 

decreases rapidly until the nodal spacing is approximately 6000 m and then decreases 

slowly for the more refined grids. These trends in the BPG errors for the sigma coordinates 

can be explained by looking at the terms in Equation (5.9). For the coarse horizontal 

resolution, we note that in the sigma coordinates the BPG errors develop more from the 

truncation errors associated with the coordinate transformation term (Equation 5.9b), but 

as we refine the horizontal resolution this term in the equation becomes less significant and 
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Figure 5.9 Global accuracy results for the linear sloping bathymetry test case for 
horizontal resolution (vertical number of nodes held constant at 65 
nodes or ): a) BPG, b) horizontal velocity and c) vertical 
velocity. Long dashes indicate sigma coordinates, solid line indicates 
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the errors are driven more from the truncation errors associated with the derivative of the 

pressure field over the sigma surface, given by Equation 5.9a. As for the z-coordinates, the 

errors change more uniformly as the grid is refined because of the nature of the density 

field, specifically, the density field changes only in the horizontal direction. The average L2

errors for the horizontal and vertical velocity fields do not show any appreciable changes 

based on the different coordinate systems for calculating the BPG. We believe this is due to 

other driving forces besides the BPG values influencing the velocity field, such as changes 

in the surface gradient. Note that the velocity fields show second order convergence, the 

theoretical maximum for linear Galerkin schemes.

The vertical resolution study shows that all coordinate systems for computing the 

BPG produce nearly identical results, as was expected since the variation of the density 

field is only in the horizontal direction. Similarly, for this model problem, there are no 

observable changes between the different coordinate systems when looking at the interplay 

of the horizontal and vertical resolution. 

5.6.2  Idealized Shelf

5.6.2.a  Horizontal Resolution Studies

Global Spatial Accuracy

Figure 5.10 shows the global spatial accuracy results of the horizontal resolution 

study for the BPG, horizontal velocity and vertical velocity for the idealized shelf. As can 

be seen, evaluating the BPG with z-coordinates produce the lowest errors, while sigma 

coordinates produce the highest errors. Results for the z-coordinates produce the lowest 
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errors due to the density field varying in a stably stratified nature, thus the changes occur 

in layers. Thus derivatives evaluated on a level surface show the minimum error. On the 

other hand, the higher sigma error is expected because sigma coordinates are more prone 

to errors in evaluating the BPG when the fluid is stably stratified. For the sigma 

coordinates, we find high errors at the coarse horizontal resolutions due to the truncation 

errors associated with coordinate transformation terms (Equation 5.9b). As we refine the 

horizontal resolution, the errors associated with this term decrease (the numerical 

approximation of the x-derivatives improve) and truncation errors associated with the 
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Figure 5.10 Global accuracy results for the idealized shelf test case for horizontal 
resolution (vertical number of nodes held constant at 65 nodes or 

): a) BPG, b) horizontal velocity and c) vertical velocity. 
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derivatives of the pressure terms (Equation 5.9a) along the sigma surfaces begin to 

dominate. In evaluating the term given in Equation (5.9a), the stretching of the coordinate 

system in the vertical causes there to be two different density values between two adjacent 

sigma nodes [34], which leads to nonzero gradients. We also note that errors for the sigma 

coordinates reach an asymptotic value above the z-coordinate asymptote, which is probably 

due to the sigma coordinates inability to effectively capture a stably stratified density field 

because of the stretching of the coordinate system and straddling of interfaces. For the z-

coordinates, we find that higher errors also exist at the coarser resolutions, which is due to 

truncation errors that develop with this system; however, we note that these errors are less 

than with the sigma coordinates by approximately two orders of magnitude. At the finer 

horizontal resolutions, we find that the errors for the z-coordinates reach also an asymptotic 

value, and these errors develop from the interpolation errors that occur in the z-coordinates, 

that is no matter how much we refine the grid horizontally, we still have vertical nodes that 

straddle an interface. 

Looking at the NCOM results, we notice that when grid resolution is low, the results 

are closer to the sigma coordinate system since the grid contains more sigma coordinates 

than z-coordinates. But as we increase the grid resolution, this allows for more horizontal 

nodes, thus increasing the number of z-coordinates and causing the results to approach that 

of the pure z-coordinate system. To illustrate this, we examined the  ratio for two 

different horizontal resolutions, 9 and 33 nodes, with a constant vertical resolution of 17 

nodes. We found that for the coarse resolution, the ratio is 1.31, while for the fine 

resolution, we obtain a ratio of 1.41; thus indicating that adding horizontal resolution 

increases the relative number of z-coordinates used in the NCOM system. The NCOM 

z σ⁄
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system in this test case switches from sigma coordinates to z-coordinates in an upper layer 

(at ), just before there are large changes in density field. Note that the depth at 

which we switch the coordinate system and bathymetry of the problem also plays a role, an 

issue that is examined in Section 5.6.2d. Finally as expected, the SZS scheme produces 

results that fall between the NCOM and sigma coordinate systems, as more of the layers 

utilize sigma coordinates instead of z-coordinates. However, we should note that the results 

improve relative to full sigma coordinates by including some z-coordinates. In this scheme, 

we switch from sigma coordinates to z-coordinates at  and change back to 

sigma coordinates at ; these two depths are where there are large changes in the 

density fluid. These results follow that of Fortunato and Baptista [34] in indicating that z-

coordinates provide the best solution to this test case; however, the NCOM scheme shows 

promising results. 

Also, note that errors in the BPG produce corresponding errors in the horizontal 

velocity field (as shown in Figure 5.10b). The horizontal velocity results approach nearly 

the same value for all four coordinate systems for a highly resolved horizontal grid.

Finally, we looked at the vertical velocity errors (shown in Figure 5.10c), which 

follow a similar pattern as the horizontal velocity errors; however, we find that when 

looking at the results of the fine resolution there is a upward trend in the results. This 

upward trend could be due to mass balance errors with the horizontal velocity field. 

Local Spatial Accuracy

Next, we examined local spatial accuracy for one coarse horizontal resolution and 

one fine horizontal resolution to determine where in space the errors occur. The number of 

z 25 m–=

z 25 m–=

z 75 m–=
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vertical layers was kept constant at 65 nodes or .

First, we analyzed the coarse grid (  or 17 nodes) results for the BPG 

errors, which are shown in Figure 5.11. In this figure, we include results from all four 

coordinate systems used in the calculation of the BPG; while Figure 5.12 shows a plot of 

the diagnostic density field and the location of the twelve stations. As with the global spatial 

accuracy analysis, results show that the z-coordinate system always has the lowest error 

values by two orders of magnitude (note the scale), while sigma coordinates produce the 

highest error values. The two hybrid scheme results fall in-between the results for sigma 

coordinates and z-coordinates. 

In the sigma coordinates, we find that most of the errors (red regions) occur over 

the shelf break region (stations 5-8) where the density field is changing rapidly along with 

the bathymetry. The errors in the sigma coordinates results occur in this region due to the 

truncation errors associated with the coordinate transformation terms (see Equation 5.9b), 

which are approximated over the region with significant changes in the bathymetry 

between the coarse grid nodes. As for errors in the z-coordinates, we see that most of the 

errors occur in the same area as the errors in the sigma coordinates but are clustered near 

the bottom for stations 5-9 and near the upper layers for stations 9-12. The errors with the 

z-coordinates for stations 5-9 are due to the fact that we must extrapolate the values from 

some of the results in the upper portion of the water column, since we encounter the “run 

into the ground” problem shown in Figure 5.4. Regarding the errors at stations 9-12, we see 

that this is an area where the density values are changing rapidly, which means that we run 

into interpolation errors. These errors exist whenever we have vertical sigma nodes that 

straddle an interface between two density values, from which we must interpolate to z-

∆σ 0.031=

∆x 3125 m=
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Figure 5.11 BPG error results for the idealized shelf test case for coarse horizontal 
resolution (vertical number of nodes held constant at 65 nodes or 

): a) sigma coordinates, b) z-coordinates, c) NCOM 
system, and d) SZS system.
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coordinates. 

The NCOM and SZS systems incorporate the errors of both the sigma coordinates 

and z-coordinates. In the areas that have more sigma coordinates, the results follow those 

of the sigma coordinates, while in areas that have more z-coordinates, the results are similar 

to the z-coordinate results. Similar patterns are found for the horizontal and vertical 

velocity errors (not shown), since these errors result from errors in the BPG field.

Next, we looked at the fine grid (  or 129 nodes) results for the BPG 

errors, which are shown in Figure 5.13. In Figure 5.14, we show a plot of the diagnostic 

density field and the location of the twelve stations. In these results, we find that the 

magnitude of the errors for all four coordinate systems are within one order of magnitude 

difference (note the scales) with z-coordinates and NCOM being the lowest. In sigma 

coordinates, we find that the errors now occur mostly in the regions where the density field 

changes (stations 5-12, cf to density field in Figure 5.14). We note that these errors are due 

to the truncation errors associated with the derivative of the pressure term (Equation 5.9a) 
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Figure 5.12 Schematic of the density field of the idealized shelf test case for the 
coarse horizontal resolution with the twelve stations represented by the 
white lines (see also Figure 5.7).
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Figure 5.13 BPG error results for the idealized shelf test case for fine horizontal 
resolution (vertical number of nodes held constant at 65 nodes or 
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along the sigma surfaces. For the z-coordinates, we find that errors occur in the same 

location as the sigma coordinates (stations 5-12) and also occur where the density field 

changes. These errors result from the aforementioned interpolation errors. The behavior of 

NCOM and SZS systems is similar to the behavior in the coarse resolution study in that they 

incorporate patterns from both the sigma coordinates and z-coordinates. The horizontal and 

vertical velocity errors (not shown) are similar to the BPG results since these errors result 

from errors in the BPG field.

When comparing the fine and coarse grid results, we note that adding more 

horizontal resolution decreases the magnitude of errors for all coordinate systems. 

However, we find that the errors decrease in the sigma coordinates more than the z-

coordinates because the z-coordinates are not as significantly influenced by the addition of 

horizontal resolution for this type of density field (use of z-coordinates on a level density 

field results in small gradient errors). Such behavior is similar to the results from the global 

spatial accuracy study. As mentioned in that analysis, the errors for the sigma coordinate 
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Figure 5.14 Schematic of the density field of the idealized shelf test case for the fine 
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lines (see also Figure 5.7).
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system decrease rapidly as more horizontal resolution is added due to the decrease in the 

influence of the truncation errors associated with the coordinate transformation (see 

Equation 5.9b). 

5.6.2.b  Vertical Resolution Studies

Global Spatial Accuracy

We next evaluated the influence of vertical resolution on the BPG and velocity 

fields. Figure 5.15 shows the results for the BPG, horizontal velocity and vertical velocity. 
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As can be seen, the errors in the z-coordinate and NCOM systems continue to decrease 

when more vertical resolution is added; however, for the sigma coordinate and SZS 

systems, as further vertical resolution is added, the errors start to separate from the other 

methods (z-coordinates and NCOM) and appear to reach an asymptotic value. For the 

sigma coordinates, we note that the errors at the coarse vertical resolution develop from the 

truncation errors associated with both of the terms in Equation (5.9); however, as vertical 

resolution is added the truncation errors associated with the derivative of the pressure term 

along the sigma surfaces (Equation 5.9a) decreases, but the errors from the truncation errors 

associated with the coordinate transformation terms (see Equation 5.9b) plateau out due to 

the presence of the  terms in the transformation (remember  is held constant). The 

errors in the z-coordinate continue to decrease as we add more vertical resolution because 

the coordinate field starts to coincide with the density field. Also, this system relies on 

interpolation of density values to a level surface and the interpolation error decreases as the 

vertical spacing is reduced. In theory, we should be able to approach zero with the errors 

for the z-coordinate system as we continually refine the vertical grid; however, numerically 

we cannot because of roundoff errors introduced in the interpolation and extrapolation 

techniques. The NCOM results lay near to the results using z-coordinates due to the relative 

amount of z-coordinates used in the vertical, while the SZS results lay near the results using 

sigma coordinates due to the amount of sigma coordinates used in the vertical. Similar 

trends are found in the horizontal and vertical velocity errors since the BPG is the driving 

force in this test case. 
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Local Spatial Accuracy

Next, we examined local spatial accuracy, where we look at one coarse vertical 

resolution and one fine vertical resolution, to determine where in space the errors occur. 

The number of horizontal nodes remains constant at 65 nodes or .

The coarse grid (  or 9 nodes) results for the BPG errors are shown in 

Figure 5.16. In Figure 5.17, we show a plot of the diagnostic density field and the location 

of the twelve stations. In these results, we find that the magnitude of the errors for z-

coordinates and NCOM are nearly identical, and that the magnitude of the errors for the 

sigma coordinates and SZS are very close to one another. Such behavior is not unexpected 

due to the relative number of z-coordinates and sigma coordinates in the respective hybrid 

methods. For sigma coordinates, we find that the highest errors occur near the shelf break 

region (stations 5-7) with other significant errors obtained in the regions where the density 

field is changing rapidly (stations 9-12). The errors located along the shelf break region and 

those located where the density field is changing are due to truncation errors that are 

associated with both terms in Equation (5.9). As for errors in the z-coordinates, we notice 

that they occur mostly in the region where the density field changes (stations 7-12), which 

is indicative of interpolation errors across stratified density fields. Note that the error 

patterns for the NCOM system more closely follows the pattern for z-coordinates since we 

have more z-coordinates in this hybrid system; however, the pattern for the SZS system 

tends to follow the pattern for sigma coordinates since we have more sigma coordinates in 

this hybrid system. An exception is that in the SZS system, we are able to see some of the 

influence of the z-coordinates in the lowering of the scale and the error pattern. Overall, we 

note that most of the errors for the sigma coordinates resides in areas where we have both 
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Figure 5.16 BPG error results for the idealized shelf test case for coarse vertical 
resolution (horizontal number of nodes held constant at 65 nodes or 

): a) sigma coordinates, b) z-coordinates, c) NCOM 
system, and d) SZS system. 
∆x 781 m=

station number

station number

station number

station number

la
ye

r 
nu

m
be

r
la

ye
r 

nu
m

be
r

la
ye

r 
nu

m
be

r
la

ye
r 

nu
m

be
r

b)

d)

c)

a)
153



density and bathymetry changes; while, the z-coordinate errors mostly develop in the 

regions where density changes occur. Similar patterns are found in the horizontal and 

vertical velocity errors (not shown) since the BPG is the driving force in this test case.

Next, we looked at the fine grid (  or 65 nodes) results for the BPG 

errors, which is shown in Figure 5.18. In Figure 5.19, we show a plot of the diagnostic 

density field and the location of the twelve stations. As with the coarse results, we find that 

the magnitude of the errors are similar for the z-coordinate and NCOM systems, while the 

magnitude of the errors are similar for the sigma coordinate and SZS systems. In sigma 

coordinates, we find that errors occur in areas where the density field changes (stations 5-

12) with the greatest errors occurring near the shelf break region (stations 5-7). In this shelf 

break region, the errors most likely come from the truncation errors associated with the 

coordinate transformation term (Equation 5.9b) because we are not changing the horizontal 

resolution. As for the z-coordinates, we notice that most of the errors also occur in the 

regions where the density field changes (stations 5-12, particularly the upper layers in 
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Figure 5.17 Schematic of the density field of the idealized shelf test case for the 
coarse vertical resolution with the twelve stations represented by the 
white lines (see also Figure 5.7).
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stations 8-12). These errors arise because of the aforementioned interpolation errors. In the 

NCOM system results, we find that the errors are similar to the errors for z-coordinates 

since this hybrid system uses more z-coordinates; however, we do see the influence of the 

sigma coordinate system with some of the higher errors over the shelf break region (red 

coloring at station 5, layers 38-54). In the SZS system, we find that the errors are more a 

combination of the patterns from sigma coordinates and z-coordinates. In particular, we 

notice the influence of the sigma coordinate system in the higher errors over the shelf break 

region (red coloring at station 5, layers 38-54); while the influence of the z-coordinate 

system is seen in errors that occur between stations 9 through 12 in layers 40 through 60. 

Similar patterns are found in the horizontal and vertical velocity errors (not shown) since 

the BPG is the driving force in this test case. 

When comparing fine and coarse grid results, we notice that the magnitude of the 

errors decrease by approximately one order of magnitude for all four coordinate systems. 

Also, note that the magnitude of the errors are always less for the z-coordinates than the 
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Figure 5.19 Schematic of the density field of the idealized shelf test case for the fine 
vertical resolution with the twelve stations represented by the white 
lines (see also Figure 5.7).
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sigma coordinates. At both resolutions, we find that most of the errors for all of the 

coordinate systems occur in regions where the density field changes the most. 

5.6.2.c  Horizontal/Vertical Resolution Interplay

We examined the interplay between horizontal and vertical resolution for BPG, 
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Figure 5.20 BPG errors for the idealized shelf test case for the interplay study. 
Results are from a) sigma coordinates, b) z-coordinates, c) NCOM 
system, and d) SZS system.
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horizontal velocity and vertical velocity errors, as shown in Figures 5.20-5.22, respectively. 

A matrix of the horizontal and vertical resolutions is given in Table 5.1. Note that if the 

simulation is unstable, then that result is noted with an arbitrarily high error value for 

plotting purposes. For example, the simulation using 129 nodes in the horizontal and 

vertical direction does not produce stable results, so a large error value (1 for BPG or 1 m/

s for velocities) is assigned in order to generate Figure 5.20a. In Figures 5.20-5.22, the 

errors within a given figure are shown on the same scale. 
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Errors in the sigma coordinate and the SZS systems are higher by approximately an 

order of magnitude than the z-coordinates and NCOM (lowest BPG errors for sigma 

coordinates and SZS are on the order of 10-7, and for z-coordinates and NCOM they are on 

the order of 10-8). Overall, we find that the z-coordinate system produces the least overall 

error. As discussed in the previous section, this is due to the density field being stably 

stratified, so the z-coordinate system more naturally describes the density changes than the 

sigma coordinate system. Results also indicate that the NCOM system and z-coordinates 
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Figure 5.22 Vertical velocity errors for the idealized shelf test case for the interplay 
study. Results are from a) sigma coordinates, b) z-coordinates, c) 
NCOM system, and d) SZS system.
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have similar error patterns as refinement occurs in both horizontal and vertical directions. 

The NCOM system is similar due to the high number of z-coordinates; however, the results 

with the NCOM system differ from the pure z-coordinate system since it does contain some 

sigma coordinates particularly at the coarser horizontal resolutions. This is similar to our 

findings with the global spatial accuracy results for the horizontal resolution study. We also 

note that the SZS system results are similar to the pure sigma coordinates due to the 

significant number of sigma coordinates in the SZS system. 

We also find that the results from the z-coordinates are influenced more by adding 

more vertical resolution than by adding horizontal resolution, which is similar to findings 

from the global spatial accuracy study (see discussion in Section 5.6.2a). As for the sigma 

coordinates, we notice that this coordinate system is influenced by adding horizontal 

resolution and vertical resolution. Horizontal and vertical velocity results (shown in 

Figures 5.21 and 5.22) show the same trends as the BPG because the BPG is the driving 

force in this test case. 

5.6.2.d  Depth for Hybrid Systems

Lastly for this test case, we evaluated the depth(s) at which the hybrid systems 

switch coordinate systems. An analysis of global spatial accuracy shows that for the NCOM 

scheme, the depth at which sigma coordinates are switched to z-coordinates should be 

between 20 m and 40 m to provide the lowest errors. This depth range corresponds to the 

region above the rapid change in the density field (see Figure 5.6). Based on previous 

discussions, this makes sense because z-coordinates are more adept at handling layered 

density fields. In the case of the SZS scheme, we found that the depth at which sigma 
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coordinates are switched to z-coordinates should be between 30 m to 40 m, while the switch 

back to sigma coordinates should be between 90 m to 100 m. These depth ranges 

correspond to the region above and below the rapid change in the density field, similar to 

the NCOM results. 

5.6.3  Seamount

The major difference between this test case and the previous one is the bathymetry; 

the density field is the same. In this section, we present major results from each of the 

studies; reasons for observed patterns are given in Section 5.6.2 and are not repeated here 

for the sake of brevity.

5.6.3.a  Horizontal Resolution Studies

Global Spatial Accuracy

For this test case, the horizontal resolution study shows similar results as the 

idealized shelf test case (Section 5.6.2a), with the sigma coordinates error being higher than 

the other three vertical coordinate systems (see Figure 5.23). BPG results indicate that 

errors in the NCOM scheme (which switches from sigma coordinates to z-coordinates at 

) coincide with those of the z-coordinates as the grid is refined, while the errors 

with the sigma coordinates are approximately one-half log cycle higher. The SZS (changes 

from sigma coordinates to z-coordinates at  and switches back to sigma 

coordinates at , the depths correspond to the regions above and below the rapid 

change in the density field) results fall in-between the sigma coordinates and NCOM 

system. These BPG errors translate into similar error patterns in the horizontal velocity for 

z 25 m–=

z 25 m–=

z 75 m–=
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all of the vertical coordinate systems (cf Figures 5.23a and 5.23b). We find that the vertical 

velocity errors have the same trends as the horizontal velocity errors.

Local Spatial Accuracy

Next, we examine local spatial accuracy, where we look at one coarse horizontal 

resolution and one fine horizontal resolution, to determine where in space the errors occur. 

The number of vertical nodes remains constant at 17 nodes or .

Figure 5.24 shows the coarse grid (  or 17 nodes) results for the BPG 

errors, for all four coordinate systems. In Figure 5.25, we show a plot of the diagnostic 
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Figure 5.23 Global spatial accuracy results for the seamount test case for horizontal 
resolution (vertical number of nodes held constant at 17 nodes or 

): a) BPG, b) horizontal velocity and c) vertical velocity. 
Long dashes indicate sigma coordinates, dot-dashes indicate the SZS 
system, solid line indicates the z-coordinates and short dashes or dots 
indicate the NCOM system.
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Figure 5.24 BPG errors for the seamount test case for coarse horizontal resolution 
(vertical number of nodes held constant at 17 nodes or ): a) 
sigma coordinates, b) z-coordinates, c) NCOM system, d) SZS system.
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density field and the location of the twelve stations. Results indicate that for the sigma 

coordinate system the largest errors appear in the trough and crest parts of the seamount 

region (stations 6-9); this changing bathymetry causes the truncation errors with the 

coordinate transformation term (see Equation 5.9b) to influence the errors more in the 

trough and crest regions than in other regions of the domain. In the z-coordinate system, we 

find the highest errors where the density field changes in the deeper water (stations 9-12); 

however, the magnitude of these errors are less than that of the sigma coordinate system. 

Errors in the calculation of the BPG are high in the deeper water because of the 

interpolation technique used in the upper layers and the extrapolation technique used in the 

lower layers. Note that the NCOM and SZS results show a combination of the sigma 

coordinate and z-coordinate results, as expected. However, it is interesting to note that 

some of the larger BPG errors that occur in these systems do not appear in the sigma 

coordinates and z-coordinates; for example, the errors in the middle layers in the trough and 

crest region of the bathymetry (stations 7-9). This phenomenon may arise because of the 

0 2.5 5 7.5 10 12.5 15

0

2.5

5

7.5

10

12.5

15

-2
0. 10

2.0

la
ye

r 
nu

m
be

r

horizontal node number

Figure 5.25 Schematic of the density field of the seamount test case for the coarse 
horizontal resolution with the twelve stations represented by the white 
lines (see also Figure 5.7).
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switch in the coordinate schemes. We also find similar error patterns in the horizontal and 

vertical velocity (not shown) since the driving forcing is the BPG in this test case.  

Next, we analyzed the fine grid (  or 129 nodes) results for BPG errors, 

which are shown in Figure 5.26. In Figure 5.27, we show a plot of the diagnostic density 

field and the location of the twelve stations. Results indicate that at this finer horizontal 

resolution the errors decrease for all four coordinate systems with z-coordinates and 

NCOM being lowest for reasons discussed in Section 5.6.2a. The errors with the sigma 

coordinates occur in areas where the density field and bathymetry changes rapidly as in the 

crest of the seamount (stations 7-9) and also in the deeper portion of the domain (stations 

10-12). These errors are influenced by both the truncation errors associated with the 

pressure terms along the sigma surfaces and the coordinate transformation term (see 

Equation 5.9). As for the z-coordinates, we find that the errors exist mostly in the deep 

portion of the ocean (stations 10-12) where the density field changes. These develop from 

the interpolation errors in mapping the density values to z-coordinates, in calculating the 

BPG. The NCOM system shows similar results to the z-coordinate system since it uses 

more z-coordinates than the sigma coordinates. For the SZS system, we find that the errors 

are similar to those of the sigma coordinates since it uses more sigma coordinates. 

However, the influence of the z-coordinates can be seen in the reduction of the errors found 

near the crest of the seamount (stations 7-9). Finally, we find similar error patterns in the 

horizontal and vertical velocity (not shown) since the driving forcing is the BPG in this test 

case. 
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Figure 5.26 BPG errors for the seamount test case for fine horizontal resolution 
(vertical number of nodes held constant at 17 nodes or ): a) 
sigma coordinates, b) z-coordinates, c) NCOM system, and d) SZS 
system.
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5.6.3.b  Vertical Resolution Studies

Global Spatial Accuracy

Figure 5.28 indicates how vertical resolution affects the errors in the BPG, 

horizontal velocity and vertical velocity. Results from the z-coordinates and NCOM system 

have less error than the results from the sigma coordinates and SZS system. Also, the sigma 

coordinate and SZS systems tend toward an asymptote for the BPG. Horizontal and vertical 

velocity have similar errors due to the BPG being the driving force. The patterns are very 

similar to the idealized shelf case (Section 5.6.2b), and the reasons for this behavior are 

discussed therein.

Local Spatial Accuracy

Next, we examine local spatial accuracy, where we look at one coarse vertical 

resolution and one fine vertical resolution, to determine where in space the errors occur. 
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Figure 5.27 Schematic of the density field of the seamount test case for the fine 
horizontal resolution with the twelve stations represented by the white 
lines (see also Figure 5.7).

1 2 3 4 5 6 7 8 9 10 11 12station number
167



The number of vertical nodes remains constant at 65 nodes or .

Coarse grid (  or 9 nodes) results for BPG errors are shown in Figure 

5.29. In Figure 5.30, we show a plot of the diagnostic density field and the location of the 

twelve stations. As can be seen, the errors for sigma coordinate system are largest at stations 

1 through 6 and 8 through 10 in the bottom layer. If one examines Figure 5.7 in conjunction 

with Figure 5.8, we find that these are the locations where the bathymetry and density field 

change rapidly. Thus truncation errors associated with both terms in Equation (5.9)

contribute to the BPG errors. In the z-coordinate system, we find the highest errors occur 
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Figure 5.28 Global spatial accuracy results for the seamount test case for vertical 
resolution (horizontal number of nodes held constant at 65 nodes or 

): a) BPG, b) horizontal velocity and c) vertical velocity. 
Long dashes indicate sigma coordinates, dot-dashes indicate the SZS 
system, solid line indicates the z-coordinates and short dashes or dots 
indicate the NCOM system.
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Figure 5.29 BPG error results for the seamount test case for coarse vertical 
resolution (horizontal number of nodes held constant at 65 nodes or 

): a) sigma coordinates, b) z-coordinates, c) NCOM 
system, d) SZS system.
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in the area where the density field changes rapidly. These areas show high errors because 

of the interpolation techniques used in the calculation of the BPG. As before, we note that 

the NCOM and SZS system BPG errors show a combination of the patterns for the sigma 

coordinates and z-coordinates. We also note that the horizontal and vertical velocity errors 

(not shown) are similar to the BPG errors since the driving force is the BPG.

Next, we analyzed the fine grid (  or 65 nodes) results for the BPG 

errors, which are shown in Figure 5.31. In Figure 5.32, we show a plot of the diagnostic 

density field and the location of the twelve stations. As before, we find that the lowest errors 

occur with the z-coordinate system. Results show that the errors for both the sigma 

coordinates and z-coordinates increase by half an order of magnitude relative to the coarse 

grid results. The sigma coordinate results show BPG errors that are higher in the trough and 

crest regions of the seamount (stations 7-10) due to both the evaluation of the gradients of 

the pressure term along the sigma coordinates and the coordinate transformation term 

(Equation 5.9). In the z-coordinate system, we find the highest errors in the areas where the 
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Figure 5.30 Schematic of the density field of the seamount test case for the coarse 
vertical resolution with the twelve stations represented by the white 
lines (see also Figure 5.7).

12 3 4 5 6 7 8 9 10 11 12station number

∆σ 0.031=
170



0 2 4 6 8 10 12

0

10

20

30

40

50

60

-15
0. 10

-7
9. 10

0 2 4 6 8 10 12

0

10

20

30

40

50

60

-15
0. 10

-7
4. 10

0 2 4 6 8 10 12

0

10

20

30

40

50

60

-15
0. 10

-6
3. 10

0 2 4 6 8 10 12

0

10

20

30

40

50

60

-15
0. 10

-7
1. 10
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density field changes significantly, and some errors occur in regions where we suffer from 

extrapolation issue at the bottom boundary (stations 7-10). We note again that NCOM and 

SZS results show a combination of patterns from the sigma coordinates and z-coordinates. 

The SZS results show how the z-coordinates influence errors in the area over the crest of 

the seamount. For example, the lower layers of stations 7 through 10 are areas where the 

sigma coordinate errors are high, but using the z-coordinates in this region for the SZS 

scheme reduces the errors. Lastly, we note that the horizontal and vertical velocity errors 

(not shown) are similar to the BPG errors since the driving force is the BPG. 

5.6.3.c  Horizontal/Vertical Resolution Interplay

Next, we analyzed the interplay of horizontal and vertical resolution on the BPG, 

horizontal velocity and vertical velocity results (shown in Figures 5.33-5.35, respectively). 

A matrix of the horizontal and vertical resolutions is given in Table 5.1. Again, note that if 

the results are unstable then that value is assigned an arbitrary error value (1 for BPG or 1 
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Figure 5.32 Schematic of the density field of the seamount test case for the fine 
vertical resolution with the twelve stations represented by the white 
lines (see also Figure 5.7).
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m/s for velocities) in order to generate the figures (e.g. the simulation using 129 nodes in 

the horizontal and vertical directions). In Figures 5.33-5.35, the errors within a given figure 

are shown on the same scale. 

From these results, we find that the z-coordinate system produces the least overall 

error, which is due to the density field being stably stratified, and thus the z-coordinate 

system more closely coincides with the density profile. The sigma coordinate system shows 

higher errors than the other coordinate systems used in calculating the BPG, refining the 
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grid decreases these errors but not to the level of the z-coordinates. The NCOM coordinate 

system provides similar results to the z-coordinates due to the high number of z-coordinates 

used in this system; the SZS coordinate system has results similar to sigma coordinates due 

to the high number of sigma coordinates used in this system. Also note that we find similar 

behavior in the horizontal and vertical velocity errors. 

5.6.3.d  Depth for Hybrid Systems

Lastly for this test case, we evaluated the depth at which the hybrid systems switch 
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coordinate systems. Global accuracy results indicate that the NCOM scheme should switch 

from sigma coordinates to z-coordinates between 10 m to 30 m for minimal error. For the 

SZS scheme, the switch from sigma coordinates to z-coordinates should occur between 20 

m and 30 m, and the switch back to sigma coordinates should be between 90 m and 100 m 

in order to minimize errors. These switches correspond to the region above and below the 

rapid change in the density field. In short, z-coordinates should be used through layered 

fields in order to minimize error.
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study. Results are from a) sigma coordinates, b) z-coordinates, c) 
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 5.7  Conclusions

Herein, we present results from an assessment of how the vertical coordinate system 

used to calculate the BPG and resolution (horizontal/vertical) impacts simulation results. 

This study uses a 2D laterally-averaged model to investigate these changes. Evidence thus 

far indicates that the z-coordinate system for calculating the BPG minimizes the error. 

However, two of the test cases used in this chapter are more favorable for the z-coordinate 

system. An analysis of the spatial error distribution shows that results from the z-

coordinates have highest errors in areas where the density field changes rapidly 

(interpolation issues) and also has problems when the horizontal resolution is too coarse to 

address the “running into the ground” problem. Results from simulations with sigma 

coordinates show that errors occur due to the stretching of the coordinate system, and if the 

grid resolution is not fine enough in the horizontal, the errors associated with the coordinate 

transformation term begin to influence the results. The hybrid systems show improvements 

over the results from the pure sigma coordinates and tend to obtain results that are near the 

dominate coordinate system. Interplay results show that the errors from sigma coordinates 

are influenced both by the addition of horizontal and vertical resolution; whereas the errors 

in the z-coordinates tend to be impacted more by the addition of vertical resolution rather 

than the addition of horizontal resolution.
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 Chapter 6.  Future Work

The following sections outline future work in each of the topical areas that formed 

the basis of this dissertation.

 6.1  Implicit Time-Marching Algorithm

The implicit time-marching algorithm is currently being implemented into the 

production code of ADCIRC and studies on this algorithm are complete. Thus there are no 

plans for any additional analyses of this algorithm.

 6.2  Form of the Momentum Equation

This portion of the dissertation work has also been implemented into the production 

code of ADCIRC. However during this implementation, several new issues arose that must 

be addressed in the near future. These issues apply to the lateral stress (last terms in 

Equations (2.2) and (2.3)) and advective terms (second terms in Equations (2.2) and (2.3)) 

in the two governing equations, GWC and momentum. 

Lateral stress terms, which model momentum dissipation, arise from the time 

averaging of the advective terms in the momentum equation and the viscous term in the 

original Navier-Stokes equations [87]. The viscous term represents the averaged effects of 

molecular motions; however, this is a scale not resolved by the equations utilized in ocean 
177



flows. The time-averaged advective terms in the momentum equation represent the 

turbulent Reynolds stresses, which describe the averaged effects of momentum transfer due 

to the turbulent fluctuations [87]. These turbulent or high frequency fluctuations in the flow 

field tend not to be modeled explicitly, so a turbulence closure model, based on constitutive 

laws, is needed to describe these fluctuations in terms of the dependent variable [60]. 

Lateral stress terms tend to be used to help stabilize the numerical solution; 

however, they also represent physical processes which cannot be represented by the scale 

of the spatial and temporal grids (called “subgrid scale” processes) [41]. These processes 

range from molecular diffusion and viscosity to larger scale eddies [41]. The turbulence 

closure models used to evaluate these terms range from the simple, which only use a single 

parameter to model dissipation, to the complex, which use coupled differential transport 

equations to describe the distribution of turbulent momentum [2]. In the simplest model, a 

single parameter, referred to as the eddy viscosity, is defined and is typically selected to be 

a constant value over the entire domain. This type of formulation works well for depth-

averaged flows in large water bodies [2] because there is not much need for additional 

numerical stability and the small scale processes do not play a significant role in the 

circulation. However, for widely-varying flow regimes, such as those that exist in the near 

shore region where small scale processes can influence circulation and numerical stability, 

more complex closure models are required. For these applications, the eddy viscosity 

parameter is allowed to vary in space or time; the functional dependence ranges from 

empirical rules that express eddy viscosity as a function of some static information, such as 

grid spacing, to equations that actually model momentum dissipation [2]. An example of 

this more complex formulation is the so-called k-ε model, a two equation formulation 
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where k is the turbulent kinetic energy and ε is the dissipation rate of k. The k-ε model is 

frequently utilized in areas that have small-scale turbulent features, such as flows near river 

beds [2]. Other formulations that fall between the two extremes include mixing-length 

models and one-equation formulations, such as the k-equation model [2].

Currently, ADCIRC uses the simplest lateral stress closure model, where constant 

eddy viscosity parameter is used over the entire domain. Future work will look at 

continuing the use of the eddy viscosity parameter but expressing the lateral stresses in 

terms of either flux or velocity, as follows. For the GWC equation, we plan to investigate 

five forms of the lateral stress terms: 1) one that uses flux and elevation (default method in 

ADCIRC); 2) one that is flux-based and non-symmetric; 3) one that is velocity-based and 

non-symmetric; 4) one that is flux-based and symmetric; and 5) one that is velocity-based 

and symmetric. For the momentum equations, we will investigate four forms of the lateral 

stress term: 1) one that is velocity-based and non-symmetric (default method in ADCIRC); 

2) one that is flux-based and non-symmetric; 3) one that is velocity-based and symmetric; 

and 4) one that is flux-based and symmetric. Lastly, we will also investigate using the 

Smagorinsky formulation for obtaining the eddy viscosity parameter, which is spatially-

varying.

Another issue is with the form of the advective terms between the governing 

equations. Recall from Chapter 4, that we investigated both the consistent form of the 

advective terms, which means that these terms utilize the same form (e.g., both 

conservative), and the inconsistent form of the advective term, which means that these 

terms utilize a different form (e.g., conservative and non-conservative). We found that the 

best results occur when using the consistent form of the advective terms. Future work will 
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analyze the advective term in the conservative momentum equation to determine if it 

should be evaluated as it appears naturally in the equation or in an expanded form 

(derivatives expanded using the product rule). 

To investigate these two issues, we will utilize two domains, an idealized inlet and 

Beaufort Inlet in North Carolina. These two domains offer diverging and converging flow 

fields around the inlet entrances; such flow regimes are often characterized by high 

advection and turbulence. Figure 6.1 shows the idealized inlet using a resolution of 250 m 

on each side of the triangle, which gives a  ratio of 1250 for the M2 wave. Note 

equilateral triangles were used throughout (except around the curved inlet) to minimize 

truncation error. Boundaries are marked on the figure, with either ocean or land indicated. 

The boundary forcing for the open ocean boundary will be the M2 tidal constituent with a 

0.15 meter amplitude, while the land boundaries are no normal flow. Bathymetry varies 

from a minimum of 5 m to a maximum of 14 m. The depth in the inlet and in the entrance 
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Figure 6.1 Idealized inlet domain (250 m resolution).
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to the inlet remains constant at 5 m, while in the larger basin off-shore, the depth varies 

linearly from 5 m at the inlet entrance to 14 m near the ocean boundary. 

Figure 6.2 shows the coastal North Carolina area and Figure 6.3 shows an 

enlargement of the Beaufort Inlet area. The domain extends from the tip of Virginia to the 

South Carolina border with Georgia, and it includes Cape Fear, Cape Lookout and Cape 

Hatteras, North Carolina [58]. A detailed map of the Beaufort Inlet and surrounding areas 

is given in Luettich et al. [58]. This domain includes the barrier islands of the North 

Carolina shoreline and many of the associated channels. Bathymetry values vary from 5000 

m in the deep part of the ocean, which is included in order to more accurately enforce ocean 

boundary conditions, to a 2 m depth in the inlet areas. Resolution in the domain ranges from 

Figure 6.2 Coastal North Carolina area.
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approximately 25 m in the inlet region to approximately 25 km in the deeper waters. 

Boundaries are marked in Figure 6.2, with either ocean or land indicated. The boundary 

forcing of the open ocean boundary consists of 5 tidal constituents, the M2, S2, K1, O1 and 

N2, while the land boundaries are no normal flow. 

In order to quantify the impact of the various lateral stress and advective 

formulations, we will look at the mass conservation, stability and local spatial accuracy. 

The mass conservation errors will be determined by comparing the accumulation of mass 

to the net flux of the mass leaving the element or domain by directly integrating the 

primitive continuity equation, which has been used in previous studies [54]. The 

development of the mass conservation algorithm is presented in Chapter 4, Section 4.3.1. 

As mentioned in Chapter 4, we purposely use a finite volume approach for computing mass 

error because of the diagnostics it provides. To investigate the stability of the algorithms, 

we will utilize the same procedures presented in Chapter 4, Section 4.3.2 followed by an 

Figure 6.3 Beaufort Inlet, North Carolina.
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additional step to find the maximum allowable time step using the CM equation with the 

expanded form of the advective term. 

Lastly, we will evaluate local spatial accuracy. CAFE [61] plots will be used to 

quantify changes in local accuracy; a discussion of these plots occurs in references [30,40] 

and in Chapter 3, Section 3.5.3b. Procedures for this study will follow those presented in 

Chapters 3 and 4 but will also include an additional evaluation of the results from the CM 

equation with the expanded form of the advective term. Table 6.1 shows the matrix of the 

numerical experiments that will be analyzed and details the form of the lateral stress terms 

used in the GWC and momentum equations. Also note that in Table 6.1, we will analyze 

each one of the test cases using the three formulations of the advective terms, one using the 

non-conservative formulation (this will serve as the control for the experiments), one using 

the conservative formulation with the native form of the advective terms, one using the 

conservative formulation with the expanded form of the advective terms. Therefore, in this 

study, 60 different permutations of the lateral stress and advection term formulations will 

be examined. 

Some initial results for the idealized inlet test case have been completed; they look 

at both global and local mass conservation errors. Results are shown in Table 6.2. To obtain 

the global and local mass conservation errors, we normalized the errors based on the 

number of horizontal nodes. We analyzed a small region around the inlet that encompassed 

the inlet, the entrance to the inlet and a comparable portion of the waters outside the inlet 

entrance for the local mass conservation errors. From these results, we note that the lowest 

global and local mass errors are seen with the conservative formulation of the advective 

terms, either in the native or expanded forms (note the highlighted results). If we divide 
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Table 6.1 Matrix of numerical experiments. 

Test case
Lateral stress term - 

GWC equation.
Lateral stress term - 

momentum equation.

1a

a. Note each test case evaluated the advective terms in non-conservative form, conservative form 
with the native form of the advective terms, and conservative form with the expanded form of the 
advective terms.

original formulation velocity-based (NSb)

b. NS - Non symmetric

2 original formulation  flux-based (NS)

3 original formulation velocity-based (Sc)

c. S - Symmetric

4 original formulation flux-based (S)

5 flux-based (NS) velocity-based (NS)

6 flux-based (NS)  flux-based (NS)

7 flux-based (NS) velocity-based (S)

8 flux-based (NS) flux-based (S)

9 velocity-based (NS) velocity-based (NS)

10 velocity-based (NS)  flux-based (NS)

11 velocity-based (NS) velocity-based (S)

12 velocity-based (NS) flux-based (S)

13 flux-based (S) velocity-based (NS)

14 flux-based (S)  flux-based (NS)

15 flux-based (S) velocity-based (S)

16 flux-based (S) flux-based (S)

17 velocity-based (S) velocity-based (NS)

18 velocity-based (S)  flux-based (NS)

19 velocity-based (S) velocity-based (S)

20 velocity-based (S) flux-based (S)
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Table 6.2 Global and local mass conservation results (lowest errors are in bold).

Advective term treatment

non-conservative
formulation

conservative 
formulation (native)

conservative
formulation (expanded)

Test case global local global local global local

1 1.849 2.815 1.772 2.738 1.772 2.740

2 1.874 2.818 1.787 2.728 1.788 2.730

3 1.857 2.820 1.778 2.746 1.778 2.745

4 1.874 2.818 1.787 2.728 1.787 2.730

5 1.849 2.815 1.772 2.738 1.772 2.740

6 1.874 2.818 1.787 2.728 1.787 2.729

7 1.857 2.820 1.778 2.745 1.778 2.745

8 1.874 2.818 1.787 2.728 1.787 2.729

9 1.849 2.815 1.772 2.738 1.772 2.740

10 1.874 2.818 1.787 2.728 1.787 2.729

11 1.874 2.818 1.778 2.746 1.778 2.745

12 1.874 2.818 1.787 2.728 1.787 2.729

13 1.849 2.815 1.772 2.738 1.772 2.740

14 1.874 2.818 1.787 2.728 1.788 2.730

15 1.857 2.820 1.778 2.746 1.778 2.745

16 1.874 2.818 1.787 2.728 1.788 2.730

17 1.849 2.815 1.772 2.738 1.772 2.740

18 1.874 2.818 1.787 2.728 1.788 2.730

19 1.857 2.820 1.778 2.746 1.778 2.745

20 1.874 2.818 1.787 2.728 1.788 2.730
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Table 6.2 into the five forms of the lateral stress term used in the GWC equation (see Table 

6.1), we find that there is no impact on global or local mass errors (note the results from the 

first four test cases compared to the second four test cases). When examining the different 

forms of the advective terms in the equations, we have observed some trends. Keeping with 

just the non-conservative formulation, we find the lowest global and local errors when 

using the velocity-based, non-symmetric form of the lateral stress term in the momentum 

equation (note the values in test cases 1, 5, 9, 13 and 17, first column) regardless of the form 

of the lateral stress term in the GWC equation. 

When looking at the conservative formulation we find that, regardless of the 

advective term treatment or the form of lateral stress terms in the GWC equation, the lowest 

global mass errors occur when the lateral stress terms in the momentum equation use the 

velocity-based, non-symmetric form (note the values in test cases 1, 5, 9, 13 and 17, third 

and fifth columns). In the local mass balance analysis, the results indicate that the lowest 

errors exist when the lateral stress terms in the momentum equation use the flux-based, 

non-symmetric or symmetric forms, regardless of the lateral stress terms in the GWC 

equation (e.g., note values for even number test cases) and regardless of whether or not the 

advective terms are native or expanded (fourth column and sixth column).

We plan to use results from the idealized inlet to narrow the number of permutations 

from 60 down to 10 or less. Then, these will be further tested on the Beaufort Inlet domain.

 6.3  Baroclinic Pressure Gradient

Recall from Chapter 5 that the evidence thus far indicates that the z-coordinate 

system for calculating the BPG provides the lowest error; however, the two of the test cases 
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used in that chapter were more favorable to the z-coordinate system. Therefore in the 

future, we will look at other test cases in which the density and bathymetry profiles do not 

favor the z-coordinate system. 

Furthermore, the BPG errors and the interaction of other terms cannot be fully 

evaluated with diagnostic simulations, so future work will also include making 

comparisons within the framework of a prognostic model. In order to evaluate prognostic 

BPG and velocity errors, we plan to look at density and bathymetry profiles that can be 

validated with results from either laboratory data or from fine grid resolution results. One 

such laboratory data set is the “dam break” problem [41], which initially has water of two 

different densities, freshwater and salt water, at rest with a divider between them. When the 

divider is removed the water is allowed to mix. Laboratory experiments are currently 

underway to provide the validation data. This data will also provide information in which 

we can compare the different coordinate systems to one another. 

Next, we will investigate the “gravity adjustment problem” [41], which again 

entails the use of water that has two different densities, e.g. freshwater and salt water, at rest 

with a divider between them. The salt water resides at the top of the slope so that when the 

divider is removed, the denser water should move down the bathymetry slope. 

Lastly, we will investigate a density field referred to as a salt wedge. The 

bathymetry in this test case also contains a sloped area where we expect to see salt water 

intruding into freshwater, as what happens near the mouth of a river. In these latter two test 

cases, we will utilize a fine grid resolution to provide a “true” solution, as done for some of 

the accuracy experiments in Chapters 3 and 4. 
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All of the test cases thus far have used constant mesh spacing. Therefore, future 

work on the calculation of the BPG needs to analyze test cases with variable grids. 

Fortunato and Baptista [34] in their studies suggest that the use of these unstructured grids 

may help address some of the problems seen in the sigma coordinate system. As mentioned 

earlier in Chapter 5, they provide a set of guidelines; this work will examine these 

guidelines and offer improvements.

Also, we currently use interpolation to obtain density values between two layers in 

order to determine the BPG in the z-coordinate system. We will look at alternative 

interpolation methods. The extrapolation method used to define bottom layer BPG also 

needs to be assessed. 

Lastly based on outcome of future work discussed in Section 6.2, we may decide to 

change the form of the momentum equation in the 3D ADCIRC model from non-

conservative form to conservative form. In 2D (Chapter 4), we have seen that changing the 

form of the momentum equation decreases local mass conservation errors, which can 

become an issue when incorporating the transport model needed for prognostic 

simulations. 
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 Appendix 1.  Nomenclature 

Symbols

Roman Letters

atmospheric forcing

vertically-integrated baroclinic pressure gradient 

Courant number, equals 

set of continuous functions over  whose first derivative is, 

discontinuous at a finite number of points in 

momentum dispersion

lateral eddy viscosity

numerical parameter in the generalized wave continuity equation

total fluid depth, equals 

symbol for primitive continuity equation

lateral stress gradient

symbol for primitive momentum equation, non-conservative form

symbol for primitive momentum equation, conservative form

time period for wave period

macroscopic stress tensor

depth-averaged velocity

 symbol for the wave continuity equation

symbol for the generalized wave continuity equation

top value for the sigma coordinate mapping ( )

bottom value for the sigma coordinate mapping ( )

baroclinic pressure gradient 

linear wave celerity, equals 

Coriolis parameter, equals 

magnitude of gravity  

bathymetry 

A

B

Cr c∆t/∆x

C0 Ω
Ω

D

El

G

H h ζ+

L

M

M

Mc

T

T

U

W

WG

a a 1=

b b 1–=

b

c gh

f 2Ω φsin

g g

h
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spatial index

time weighting parameter

lateral stress gradient 

unit outward normal vector

pressure 

atmospheric pressure 

atmospheric pressure at the sea surface 

time

velocity component in the x-coordinate direction 

velocity component in the y-coordinate direction 

velocity component in the z-coordinate direction 

velocity of the fluid in 2D 

velocity of the fluid in 3D 

Cartesian space coordinate 

Cartesian space coordinate 

Cartesian space coordinate 

depth 

Greek Letters

spatial domain ( , for  = 1, 2, or 3)

angular velocity of the earth

Earth elasticity factor

lateral eddy viscosity

surface elevation above the datum

Newtonian equilibrium tidal potential

wavelength

density

reference density

latitude (north of the equator positive)

2D bottom friction term, which is determined from either a linear 

relationship or through the Chezy formulation

bottom friction term for the 3D shallow water equations, which is 

based on the bottom velocity

imposed surface stress

vertical stress vector

i

k

m

n

p

pa

Ps

t

u

v

w

v u v,
v3D u v w, ,
x

y

z

z

Ω R
n

n

Ω
α
ε
ζ
η
λ
ρ
ρ0

φ
τ

τb

τs

τz ρ0⁄
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Special Symbols and Operators 

nabla (grad) operator 

divergence operator 

forward difference operator 

partial derivative in the x-direction along the sigma surfaces

partial derivative in the y-direction along the sigma surfaces

divergence operator in the x and y-directions

divergence operator in the x and y-directions along the sigma 

surfaces

∇
∇•

∆
∂/∂xσ
∂/∂yσ
∇xy

∇xyσ
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 Appendix 2. Derivation of the Sigma Coordinate 
Transformations

The linear mapping between z-coordinates and sigma coordinates is given by 

(A2.1)

where  and  are constants, ,  and 

. By rearranging Equation (A2.1), we find the inverse mapping:

(A2.2)

where ,  and . In the z expression,  and  

are considered independent variables.

Now, we can take derivatives of Equation (A2.2) with respect to the variables 

shown above. First, we look at the derivative with respect to time:

(A2.3)

(A2.4)

since  is considered an independent variable. Now, by using a common denominator we 
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find that the derivative reduces to:

(A2.5)

Now, we need to evaluate the derivative with respect to the x-direction:

(A2.6)

(A2.7)

Using a common denominator, we obtain the following:

(A2.8)

Next, we evaluate the derivative with respect to the y-direction. 

(A2.9)

(A2.10)

Using a common denominator, we obtain the following:

(A2.11)

Next, we evaluate the derivative of  with respect to the independent variables. In 

this derivation we utilize the sigma coordinate relationship shown in Equation (A2.1). 
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(A2.12)

(A2.13)

since  and  is independent of . 

Next, we evaluate the derivative for the time derivative:

(A2.14)

(A2.15)

(A2.16)

(A2.17)

(A2.18)

(A2.19)

Now for the derivative in the x-direction:

(A2.20)
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(A2.21)

(A2.22)

(A2.23)

(A2.24)

(A2.25)

(A2.26)

Following the same steps we find the derivative in the y-direction.

(A2.27)

Lastly, the derivative in the z-direction is

(A2.28)

Now, using the chain rule, we obtain the following for a derivative of a variable, , 

in the z-direction.

(A2.29)
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(A2.30)

We can express the derivatives in z-coordinates as derivatives in sigma coordinates. 

First, we look at the time derivative term of the momentum equation: . By using the 

chain rule, we obtain the following:

(A2.31)

(A2.32)

(A2.33)

(A2.34)

Now, we can look at the derivatives in the sigma coordinates and see if we get the 

same result.

(A2.35)

(A2.36)

(A2.37)
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which is the same as Equation (A2.34) if you cancel the  in that equation.

Next, we look at one of the space derivative terms for the x and y-directions of the 

momentum equation: , . By using the chain rule, we can obtain the following:

(A2.38)

(A2.39)

(A2.40)

For the x-direction, we obtain the following equation:

(A2.41)

In the y-direction, we obtain the following equation:

(A2.42)

Now, we determine the derivatives in the x- and y-directions in the sigma coordinate 

system.

(A2.43)

(A2.44)
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For the x-direction, we find the following:

(A2.45)

While for the y-direction, we find the following:

(A2.46)

which are the same as Equations (A2.41) and (A2.42), if you cancel the  in the two 

equations. 

Lastly, we looked at the development of the  term, which utilizes the first four 

terms on the left hand side of the momentum equations in 3D (Equation (A2.47)) and their 

evaluation in the sigma coordinate system. 

(A2.47)

We can write it compactly as:

(A2.48)

where
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(A2.49)

which is the same as that given in Luettich and Westerink [60].
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 Appendix 3.  Truncation Errors for the Governing 
Equations

Herein, we examine the truncation errors for the 1D equations of ADCIRC (GWC, 

NCM and CM equations). To evaluate the truncation errors, we utilize Taylor series 

expansions of the discrete form of each term shown in the governing equations below:  

By using the Taylor series, we expand the dependent variables around a common node 

point for evaluation purposes. The results are then subtracted from the continuum equations 

in order to obtain the truncation error, that is .

The discrete form of the equations come from using  linear finite element for the 

spatial discretization. For the temporal discretization, a three time-level scheme centered at 

 is used in the GWC equation (Equation (A3.1)) and a two time-level scheme centered at 

 is used in the momentum equations (Equations (A3.2) and (A3.3)). The nonlinear 

terms in the equations employ an explicit formulation. We utilize exact quadrature rules and 

(A3.1)

(A3.2)

(A3.3)
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averaged terms are based on an elemental average. 

To find the truncation error expressions, we employ Mathematica® to expand the 

Taylor Series to the seventh order terms; however, we report errors only to the leading two 

orders. In Mathematica®, derivatives are shown in both time and space using the following 

notation: , where the  indicates the space index,  is the time index and the 

 above the dependent variable indicates the order of the derivative in space and time. 

Thus  indicates a first derivative in time for the dependent variable,  at node , 

time . Also, note that  indicates the change in time, while  and  indicate 

the node spacing and  is associated with the element number. Finally, parameters, such as 

 or , are shown as tau or eddy, respectively. Note: analyses provided herein are only for 

the interior discrete equations. 

qH0,1LH j, kL j k

0 1( , )

qH0,1LH j, kL q j

k dt dx i 1+( ) dx i( )

i

τ ε
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Truncation Errors for the Generalized Wave Continuity Equation

First Term - 

Second Term - 

Finite Amplitude Term - part 1 - 

Finite Amplitude Term - part 2 - 

Advective Term - conservative form - 

-
1
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zH0,4L Hj, kLdt2 +

1
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Hdx HjL - dx Hj + 1LL zH1,4L Hj, kLdt2 -
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3
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Advective Term - non-conservative form part 1 - 

Advective Term - non-conservative form part 2 - 

GWC Flux Terms - 

Viscous Term - 

-
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HdxHjL2 -dxH j +1LdxH jL+dxH j +1L2LuH j, kL zH3,1LHj, kL

u ζ∂( ) t∂⁄( )( ) x∂( )⁄∂

-
1

2
HdxH jL- dxH j + 1LLuH1,0LH j, kLqH2,0LH j, kL+

1

4
HdxH jL2 - dxH j + 1LdxH jL+ dxH j + 1L2LuH2,0LH j, kLqH2,0LH j, kL+

1

2
HdxH j + 1L- dxH jLLqH1,0LH j, kLuH2,0LH j, kL+

1

6
HdxH jL2 - dxH j + 1LdxH jL + dxH j + 1L2LuH1,0LH j, kLqH3,0LH j, kL+

1

3
HdxH j + 1L- dxH jLLqH j, kLuH3,0LH j, kL+

1

6
HdxH jL2 - dxH j + 1LdxH jL+ dxH j + 1L2L qH1,0LH j, kLuH3,0LH j, kL+

1

12
HdxH jL2 - dxH j + 1LdxH jL+ dxH j + 1L2L qH j, kLuH4,0LH j, kL

q u∂( ) x∂( )⁄( )( ) x∂( )⁄∂

1

2
HG-tauL Hdx HjL-dx Hj +1LLqH2,0L Hj, kL-

1

6
HG -tauL Hdx HjL2 -dx Hj +1Ldx HjL+dx Hj +1L2LqH3,0L Hj, kLG τ–( ) q∂( ) x∂( )⁄( )

1

6
eddy zH2,3L Hj, kLdt2 +

1

18
eddy Hdx Hj +1L - dx HjLL zH3,3L Hj, kLdt2 +

1

72
eddy Hdx HjL2 - dx Hj +1Ldx HjL+ dx Hj +1L2L zH4,3L Hj, kLdt2 +

1

3
eddy Hdx Hj + 1L - dx HjLL zH3,1L Hj, kL+

1

12
eddy Hdx HjL2 - dx Hj +1Ldx HjL+ dx Hj +1L2L zH4,1L Hj, kL

ε ζ3∂( ) x
2

t∂∂( )⁄( )
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Truncation Errors for the Non-Conservative Momentum Equation

Accumulation Term - 

Advective Term - 

Bottom Friction Term - 

Finite Amplitude Term - 

Viscous Term- 

u t∂⁄∂

-
1

6
uH0,3LH j, kLdt2 +

1

18
HdxH jL -dxH j +1LLuH1,3LH j, kLdt2 -

1

36
HdxH jL2 -dxH j +1LdxH jL+dxH j +1L2LuH2,3LH j, kLdt2 -

1

2
uH0,2LH j, kLdt +

1

6
HdxH jL-dxH j +1LLuH1,2LH j, kLdt -

1

12
HdxH jL2 -dxH j +1LdxH jL+dxH j +1L2LuH2,2LH j, kLdt +

1

3
HdxH jL-dxH j +1LLuH1,1LH j, kL-

1

6
HdxH jL2 -dxH j +1LdxH jL+dxH j +1L2LuH2,1LH j, kL

1

2
HdxH jL- dxH j + 1LLuH1,0LH j, kL2 -

1

2
HdxH jL2 - dxH j + 1LdxH jL+ dxH j + 1L2LuH2,0LH j, kLuH1,0LH j, kL+

1

2
HdxH jL- dxH j + 1LLuH j, kLuH2,0LH j, kL-

1

6
HdxH jL2 - dxH j + 1LdxH jL +dxH j + 1L2LuH j, kLuH3,0LH j, kL

u u x∂⁄∂( )

τu

-
1

4
tauuH0,2LHj, kLdt2 +

1

12
tauHdxHjL-dxH j +1LLuH1,2LH j, kLdt2 -

1

24
tauHdxHjL2 -dxH j +1LdxHjL+dxH j +1L2LuH2,2LHj, kLdt2 -

1

2
tauuH0,1LHj, kLdt +

1

6
tauHdxHjL-dxHj +1LLuH1,1LH j, kLdt -

1

12
tauHdxHjL2 -dxH j +1LdxHjL+dxH j +1L2LuH2,1LHj, kLdt +

1

3
tauHdxHjL-dxHj +1LLuH1,0LHj, kL-

1

6
tauHdxH jL2 -dxHj +1LdxHjL+dxH j +1L2LuH2,0LHj, kL

-
1

4
gzH1,2LH j, kLdt2 +

1

8
gHdxH jL-dxH j +1LLzH2,2LH j, kLdt2 -

1

24
gHdxH jL2 -dxHj +1LdxH jL+dxH j +1L2LzH3,2LH j, kLdt2 -

1

2
gzH1,1LH j, kLdt +

1

4
gHdxH jL-dxH j +1LL zH2,1LH j, kLdt -

1

12
gHdxH jL2 -dxH j +1LdxH jL+dxH j +1L2LzH3,1LHj, kLdt +

1

2
gHdxH jL-dxH j +1LLzH2,0LH j, kL-

1

6
gHdxH jL2 -dxH j +1LdxH jL+dxH j +1L2LzH3,0LH j, kL

g ζ∂( ) x∂( )⁄( )

ε H⁄( ) q
2∂( ) x

2∂( )⁄( )
1

4
eddy uH2,2LH j, kLdt2 +

1

12
eddy HdxH j + 1L - dxH jLLuH3,2LH j, kLdt2 +

1

48
eddy HdxH jL2 - dxH j + 1LdxH jL+ dxH j + 1L2LuH4,2LH j, kLdt2 +

1

2
eddy uH2,1LH j, kLdt +

1

6
eddy HdxH j + 1L - dxH jLLuH3,1LH j, kLdt +

1

24
eddy HdxH jL2 - dxH j + 1LdxH jL + dxH j + 1L2LuH4,1LH j, kLdt +

1

3
eddy HdxH j + 1L - dxH jLLuH3,0LH j, kL+

1

12
eddy HdxH jL2 - dxH j + 1LdxH jL + dxH j + 1L2LuH4,0LH j, kL
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Truncation Errors for the Conservative Momentum Equation

Accumulation Term - 

Advective Term - 

Bottom Friction Term - 

Viscous Term - 

-
1

6
qH0,3LH j, kLdt2 +

1

18
HdxH jL -dxH j +1LLqH1,3LH j, kLdt2 -

1

36
HdxH jL2 - dxH j + 1LdxH jL+ dxH j + 1L2LqH2,3LH j, kLdt2 -

1

2
qH0,2LH j, kLdt +

1

6
HdxH jL- dxH j + 1LLqH1,2LH j, kLdt -

1

12
HdxH jL2 -dxH j + 1LdxH jL+ dxH j + 1L2LqH2,2LH j, kLdt +

1

3
HdxH jL-dxH j +1LLqH1,1LH j, kL-

1

6
HdxH jL2 - dxH j +1LdxH jL+dxH j + 1L2LqH2,1LH j, kL

q t∂⁄∂

HdxH jL- dxH j +1LLqH1,0LH j, kLuH1,0LH j, kL -
1

2
HdxH jL2 -dxH j +1LdxH jL+dxH j + 1L2LqH2,0LH j, kLuH1,0LH j, kL -

1

2
HdxH jL2 -dxH j +1LdxH jL+dxH j +1L2LqH1,0LH j, kLuH2,0LH j, kL+

1

2
HdxH jL-dxH j +1LL HuH j, kLqH2,0LH j, kL+ qH j, kLuH2,0LH j, kLL -

1

6
HdxH jL2 -dxH j +1LdxH jL+ dxH j + 1L2LuH j, kLqH3,0LH j, kL-

1

6
HdxH jL2 -dxH j +1LdxH jL+dxH j +1L2LqH j, kLuH3,0LH j, kL

qu( ) x∂⁄∂( )

-
1

2
tau qH0,1LH j, kLdt -

1

4
tau qH0,2LH j, kLdt2 +

1

3
tau HdxH jL- dxH j +1LLqH1,0LH j, kL+

1

6
tau HdxH jL-dxH j +1LLqH1,1LH j, kLdt +

1

12
tau HdxH jL-dxH j +1LLqH1,2LH j, kLdt2 +

1

36
tauHdxH jL-dxH j +1LLqH1,3LH j, kLdt3 -

1

6
tau HdxH jL2 -dxH j +1LdxH jL+dxH j +1L2LqH2,0LH j, kL-

1

12
tau HdxH jL2 -dxH j +1LdxH jL+dxH j +1L2LqH2,1LH j, kLdt -

1

24
tau HdxH jL2 -dxH j +1LdxH jL+dxH j +1L2LqH2,2LH j, kLdt2

τq

1

4
eddy qH2,2LH j, kL dt2 +

1

12
eddy HdxH j + 1L - dxH jLL qH3,2LH j, kLdt2 +

1

48
eddy HdxH jL2 - dxH j + 1LdxH jL+ dxH j + 1L2L qH4,2LH j, kLdt2 +

1

2
eddy qH2,1LH j, kL dt +

1

6
eddy HdxH j + 1L- dxH jLLqH3,1LH j, kLdt +

1

24
eddy HdxH jL2 - dxH j + 1LdxH jL + dxH j + 1L2LqH4,1LH j, kL dt +

1

3
eddy HdxH j + 1L- dxH jLLqH3,0LH j, kL+

1

12
eddy HdxH jL2 - dxH j + 1LdxH jL + dxH j + 1L2L qH4,0LH j, kL

ε q
2∂( ) x

2∂( )⁄( )
213



Finite Amplitude Term - Part 1 - 

Finite Amplitude Term - Part 2 - 

From these truncation errors, we can prove that the GWC equation is first-order 

accurate in time if the advective terms are in non-conservative form, while it is second-

order accurate in time if the advective terms are in conservative form. In space, the GWC 

equation is first-order accurate for variable spacing; while, it is second-order accurate for 

constant spacing. For the NCM and CM equations, we found that they are first-order 

accurate in time and space if we use variable spacing, while it is second-order accurate in 

space if we use constant spacing. Also, both momentum equations become second-order 

accurate in time if the equations are linearized. 

-
1

4
ghH j, kL zH1,2LH j, kLdt2 +

1

8
g HdxH jL- dxH j +1LLhH1,0LH j, kL zH1,2LH j, kLdt2 -

1

16
g HdxH jL2 - dxH j + 1LdxH jL+dxH j + 1L2L zH1,2LH j, kLhH2,0LH j, kLdt2 +

1

8
g HdxH jL -dxH j +1LLhH j, kL zH2,2LH j, kLdt2 -

1

16
g HdxH jL2 - dxH j + 1LdxH jL+dxH j + 1L2LhH1,0LH j, kL zH2,2LH j, kLdt2 -

1

24
g HdxH jL2 - dxH j + 1LdxH jL+dxH j + 1L2LhH j, kL zH3,2LH j, kLdt2 -

1

2
ghH j, kL zH1,1LH j, kLdt +

1

4
g HdxH jL-dxH j +1LLhH1,0LH j, kL zH1,1LH j, kLdt -

1

8
g HdxH jL2 -dxH j +1LdxH jL +dxH j + 1L2L zH1,1LH j, kLhH2,0LH j, kLdt +

1

4
g HdxH jL-dxH j +1LLhH j, kL zH2,1LH j, kLdt -

1

8
g HdxH jL2 -dxH j +1LdxH jL+dxH j +1L2LhH1,0LH j, kL zH2,1LH j, kLdt -

1

12
g HdxH jL2 - dxH j + 1LdxH jL+dxH j + 1L2LhH j, kL zH3,1LH j, kLdt +

1

2
g HdxH jL- dxH j +1LLhH1,0LH j, kL zH1,0LH j, kL-

1

4
g HdxH jL2 -dxH j + 1LdxH jL+dxH j +1L2L zH1,0LH j, kLhH2,0LH j, kL+

1

2
g HdxH jL-dxH j + 1LLhH j, kL zH2,0LH j, kL-

1

4
g HdxH jL2 -dxH j + 1LdxH jL+dxH j +1L2LhH1,0LH j, kL zH2,0LH j, kL-

1

6
g HdxH jL2 -dxH j + 1LdxH jL+dxH j +1L2LhH j, kL zH3,0LH j, kL

gh ζ∂( ) x∂( )⁄( )

-
1

8
gzsqH1,2LHj, kLdt2 +

1

16
gHdxH jL-dxHj +1LLzsqH2,2LHj, kLdt2 -

1

48
gHdxHjL2 -dxHj +1LdxHjL+dxH j +1L2LzsqH3,2LHj, kLdt2 -

1

4
gzsqH1,1LHj, kLdt +

1

8
gHdxH jL-dxHj +1LLzsqH2,1LH j, kLdt -

1

24
gHdxHjL2 -dxHj +1LdxHjL+dxH j +1L2LzsqH3,1LHj, kLdt +

1

4
gHdxHjL-dxHj +1LLzsqH2,0LHj, kL-

1

12
gHdxHjL2 -dxHj +1LdxHjL+dxH j +1L2LzsqH3,0LHj, kL

g 2⁄( ) ζ2( )∂( ) x∂( )⁄( )
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 Appendix 4. Derivation of the Analytical Solution for the 
BPG Test Case

For the analytical solution to this simplified baroclinic problem, we followed the 

same procedures and assumptions as Luettich and Westerink did in their paper on baroclinic 

additions [63]. Briefly, the problem uses a idealized basin that is 48 km long with 51 

horizontal nodes ( ) and 21 vertical nodes ( ). A constant 

bathymetry of 10 m depth (“flat bottom”) is used throughout the domain. We utilize land 

boundary conditions on both ends of the idealized basin so there is a no normal flow. 

The first step is to find the horizontal velocity using the x-direction momentum 

equation. Note that there is no flow in the y-direction, so the y-direction momentum 

equation is omitted. Equation (2.8) from Chapter 2 is the starting point of the derivation.

(A4.1)

where we assume steady-state, linear, no Coriolis forcing and no lateral stress. Therefore, 

we obtain the following simplified momentum balance:

(A4.2)

where the  is determined from the following 

∆x 960 m= ∆σ 0.05=

u∂
t∂

----- u
u∂
x∂

----- v
u∂
y∂

----- w
u∂
z∂

----- fv–+ + + g–
ζ Ps gρ0( )⁄ αη–+[ ]∂

x∂
------------------------------------------------------

z∂
∂ τzx

ρ0
------ 
  bx mx+–+=

g–
ζ∂
x∂

-----
z∂

∂ τzx

ρ0
------ 
  bx–+ 0=

bx
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(A4.3)

Note that in Equation (A4.3), we assume  varies little from the datum so that the upper 

limit of integration is , not . In Equation (A4.3),  is constant and  is a function of 

x only for this problem so the equation becomes

(A4.4)

where . Now if we evaluate the integral we obtain:

(A4.5)

Substituting  into Equation (A4.2), we obtain

(A4.6)

Rearranging the equation, we find 

(A4.7)

Now substituting in  and assuming the vertical eddy viscosity parameter  

remains constant, Equation (A4.7) becomes

(A4.8)

bx g
x∂

∂ ρ' ρ0–

ρ0
---------------- 
  zd

z

0

∫ 
 
 

 
 
 

=

ζ

0 ζ ρ0 ρ'

bx g
ρ∂
x∂

------ zd
z

0

∫ 
 =

ρ ρ'
ρ0
-----=

bx g– z
ρ∂
x∂

------=

bx

g–
ζ∂
x∂

-----
z∂

∂ τzx

ρ0
------ 
  gz

ρ∂
x∂

------+ + 0=

z∂
∂ τzx

ρ0
------ 
  gz

ρ∂
x∂

------– g
ζ∂
x∂

-----+=

τzx

ρ0
------ Ez

u∂
z∂

-----= Ez

Ez
u

2∂
z

2∂
-------- gz

ρ∂
x∂

------– g
ζ∂
x∂

-----+=
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If we integrate both sides of Equation (A4.8) with respect to , we obtain:

(A4.9)

where  is the first constant of integration, which can be determined from the top 

boundary condition:  (no surface stress). 

(A4.10)

Evaluating the equation above we find the first constant of integration is

(A4.11)

Therefore, we obtain 

(A4.12)

Now integrating Equation (A4.12) gives us the following:

(A4.13)

where  is the second constant of integration, which can be determined from the bottom 

boundary condition: , i.e. linear slip at the bottom. Using Equations 

(A4.12) and (A4.13), we find

(A4.14)

z

Ez
u∂
z∂

----- g
ρ∂
x∂

------ z
2

2
---- 
 

 
 – g

ζ∂
x∂

-----z C1+ +=

C1

Ez
u∂
z∂

-----
z 0=

0=

Ez
u∂
z∂

-----
z 0=

g
ρ∂
x∂

------ 0( )2

2
---------- 
 

 
 – g

ζ∂
x∂

----- 0( ) C1+ +=

0 0 C1+= C1⇒ 0=

Ez
u∂
z∂

----- g
ρ∂
x∂

------ z
2

2
---- 
 

 
 – g

ζ∂
x∂

-----z+=

u z( ) g
Ez

----- ρ∂
x∂

------ z
3

6
---- 
 

 
 –

g
Ez

----- ζ∂
x∂

----- z
2

2
---- 
  C2+ +=

C2

Ez
u∂
z∂

-----
z h–=

ku h–( )=

Ez
u∂
z∂

-----
z h–=

g
ρ∂
x∂

------ h–( )2

2
------------- 
 

 
 – g

ζ∂
x∂

----- h–( )+=
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(A4.15)

Equating Equations (A4.14) and (A4.15), we get:

(A4.16)

Solving Equation (A4.16) for the second constant of integration gives

(A4.17)

Thus, substituting Equation (A4.17) into Equation (A4.13) for  we obtain 

(A4.18)

By rearranging Equation (A4.18), we find 

(A4.19)

For a closed basin at steady-state, the depth-averaged velocity ( ) is zero, thus we can 

integrate Equation (A4.19) from  to obtain an expression for . 

(A4.20)

k u× h–( ) g
Ez

----- ρ∂
x∂

------ h–( )3

6
------------- 
 

 
  k–

g
Ez

----- ζ∂
x∂

----- h–( )2

2
------------- 
  k kC2+ +=

g
ρ∂
x∂

------ h
2

2
----- 
 

 
 – g–

ζ∂
x∂

----- h( ) g
Ez

----- ρ∂
x∂

------ kh–
3

6
----------- 
 

 
  g

Ez

----- ζ∂
x∂

----- kh
2

2
-------- 
  kC2+ +=

C2 g
ρ∂
x∂

------ h
2

2k
------ 
 

 
 –= g–

ζ∂
x∂

----- h
k
--- 
  g

Ez

----- ρ∂
x∂

------ h–
3

6
-------- 
 

 
  g

Ez

----- ζ∂
x∂

----- h
2

2
----- 
 ––

C2

u z( ) g
Ez

----- ρ∂
x∂

------ z
3

6
---- 
 

 
 –

g
Ez

----- ζ∂
x∂

----- z
2

2
---- 
  g

ρ∂
x∂

------ h
2

2k
------ 
 

 
 – g–

ζ∂
x∂

----- h
k
--- 
  –+=

g
Ez

----- ρ∂
x∂

------ h–
3

6
-------- 
 

 
  g

Ez

----- ζ∂
x∂

----- h
2

2
----- 
 –

u z( ) g
6Ez

--------- ρ∂
x∂

------ z
3

h
3

+( ) 
 –

g
2Ez

--------- ζ∂
x∂

----- z
2

h
2

–( ) gh
k

------ ρ∂
x∂

------ h
2
--- 
 


– g–

ζ∂
x∂

-----
+=

U

0 to h–
ζ∂
x∂

-----

ζ∂
x∂

----- ρ∂
x∂

------–
3h
8

------ 
  4Ez kh+

3Ez kh+
--------------------- 
 =
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(A4.21)

(A4.22)

which the same as found in Luettich and Westerink’s baroclinic paper [63]. For constant 

parameters, depth and density gradient, this gives . The mass balance for 

the closed basin requires  so . Now to 

determine the final form for , we substitute in the results from Equation (A4.22) into 

Equation (A4.19).

(A4.23)

To verify this is indeed a solution, we need to ensure it satisfies the original 

differential equation and the top and bottom boundary conditions, along with the depth-

averaged results. 

First, we will look at the top boundary condition is . The top 

boundary condition from the  equation, given in Equation (A4.23), is obtained by 

taking a derivative of this equation and then rearranging it to get : 

(A4.24)

ζ∂
x∂

----- ρ∂
x∂
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h
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--- 
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(A4.25)

Now if we evaluate Equation (A4.25) at the top boundary conditions, we find

(A4.26)

therefore the top boundary condition is met. 

Next check the bottom boundary condition where . If we 

evaluate Equation (A4.25) and Equation (A4.23) at the bottom boundary then we obtain: 

(A4.27)

Evaluating and rearranging Equation (A4.27), we find

(A4.28)

(A4.29)

therefore the bottom boundary condition is met. 

Next, we need to verify that the depth-averaged velocity is zero, i.e.

(A4.30)
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Substituting in the  equation, given in Equation (A4.23), and evaluating the integral 

we obtain the following equations.

(A4.31)

(A4.32)

After evaluating the integral, we obtain the following 

(A4.33)

Rearranging Equation (A4.33), we find 

(A4.34)

Now, if we substitute in the value of , given in Equation (A4.20), we find that

(A4.35)

Simplifying Equation (A4.35) shows the following result
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(A4.36)

Now, if we find the common denominator for Equation (A4.36), we have the following

(A4.37)

(A4.38)

All terms cancel, i.e.,

(A4.39)

so  and therefore the depth-averaged condition is met. 

Lastly, we need to determine if , given in Equation (A4.23), satisfies the 

original equation.
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(A4.40)

Starting from Equation (A4.25), we find

(A4.41)

Rearranging Equation (A4.41), we obtain 

(A4.42)

where  and . If we substitute these expressions back in, we 

get the following equation, which is the same as the original equation (Equation (A4.2)).

(A4.43)

Thus , as expressed in Equation (A4.23), must be a solution.

If we do a similar check with the solution presented by Luettich and Westerink in 

their baroclinic paper (shown in Equation (A4.44)), we find that the solution obtains the 

(A4.44)

same value for  (shown in Equation (A4.20)). Now, we need to determine if it satisfies 

the top boundary condition of . 
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(A4.45)

(A4.46)

We also checked the bottom boundary condition of . Using 

Equation (A4.44) at the bottom boundary, we find:

(A4.47)

Evaluating and rearranging Equation (A4.47) gives

(A4.48)

(A4.49)

Substituting in the value of , given in Equation (A4.20), we find that 

(A4.50)
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(A4.51)

Now, if we find the common denominator for Equation (A4.51), we have the following

(A4.52)

(A4.53)

All terms cancel, i.e.,

(A4.54)

Thus the bottom boundary condition is met. 

Next, we need to verify that the depth-averaged velocity is zero, i.e.

Substituting in the  equation, given in Equation (A4.44), and evaluating the integral 

we obtain the following equation.
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(A4.55)

After evaluating the integral, we obtain the following 

(A4.56)

All terms cancel, so 

(A4.57)

therefore the depth-averaged condition is met. 

Lastly, we need to determine if  satisfies the original equation.

(A4.58)

Thus we take two derivatives of Equation (A4.58) with respect to 
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where  and . If we substitute these expressions back in 

Equation (A4.59), we get Equation (A4.43), which is the same as the original equation. 

Thus , as expressed in Equation (A4.44), must be a solution.

Therefore, both forms of  must be solutions (Equations (A4.23) and (A4.44)) 

to this problem and must be equal to one another. If we equate the two equations, we end 
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(A4.60)

Evaluating and rearranging Equation (A4.60), we obtain the following:

(A4.61)
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(A4.63)

Now substituting in the value of , given in Equation (A4.20), we find the following:

(A4.64)

(A4.65)

Now, if we find the common denominator for Equation (A4.65), we obtain the following
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(A4.66)

(A4.67)

All terms cancel, i.e.,

(A4.68)

Therefore both forms provide the same results.
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