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CHAPTER I 

INTRODUCTION 

1.1 Introduction 

In the cutting age of technology the tremendous growth of information in the world has 

become one of the major concerns for those companies and institutions experiencing a 

continually increasing amount of data. Representative examples of these are the currently 

available digital libraries, research repositories, financial transactions, and governmental 

database systems that store various types of digital data including text, audio and image. 

This critical concern of infornlation growth is not only an issue of data storage or 

management but also an issue of efficient utilization of stored data. One good example 

for this is the currently available web-search engines that return a list of infornlation 

sources upon request to search for a specific keyword or query phrase. This result is 

generated based on a word-hit basis and the user has to go through every link to refine 

and extract the most relevant infonnation that he or she is looking for. The obtained result 

is also highly dependent on prior knowledge about the subject matter and query phrase 

being used. But most of us might have wondered if there is really a means to 

automatically organize and classify those documents in an orderly manner so as to 

facilitate the searching process. Another good example is organization of a collection of 

journal articles according to their content, author, and the different collaboration groups 



within the collection so as to make their organization and presentation easy to understand 

and extract the most and hidden information out of them. 

1.2 Motivation and Problem Statement 

The motivation of this research stems from the idea of classifying a collection of journal 

documents without prior knowledge about their content and presenting them in a way that 

would reveal as much information as possible including the main research foci in the 

field of study, relationship between the documents, dominant authors, collaboration 

groups, and new emerging technologies. 

The classification technique that is presented in this work is intended to help overcome or 

at least alleviate the traditional laborious part of text document organization and 

classification that almost every research involves. The methodology proposed in this 

work could also be extended to work for other types and format of data such as web 

pages and newspaper articles so as to help in solving the difficult link discovery and trend 

analysis problems that are currently demanding much of today's human intervention and 

expert knowledge. 

1.3 Proposed Classification Architecture 

Figure 1.1 below describes the classification architecture proposed in this work. It takes 

structured collection of journal articles as an input. Structured collection refers to a well

2
 



organized text data from a database in which all the specific fields such as the title, 

authors, references, key words are stored separately in an appropriate manner. This data 

is used to construct different similarity matrices that measure and represent the similarity 

between the documents. Each similarity matrix emphasizes on or coveys a particular type 

of relationship regarding the collection. For example, a similarity measure constructed 

from citation information leads to a good understanding on the trend ofhow people made 

use of previous knowledge. In a similar way, similarity information constructed from 

author data helps understand the different author collaboration grou.ps within the research 

community. 

In this work these different similarity measures are fused together using a set of fusion 

parameters to come up with a generalized similarity matrix that contains complement 

information extracted from different selected features. This matrix is later used to classifY 

the documents in a more accurate way so as to extract the most hidden information out of 

the collection. 

Opliou7.lLion, 
ViJUlliDtlon

Preproc..,lllg 
-Parsmg 

- f!llaing Uld 
lcI4..,ntaic.l 

Cla,cifie:ulon P,dormonce 

Evaluallon feedback 

Figure 1.1 Text classification architecture used 
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The generalized similarity matrix is passed to an agglomerative hierarchical classification 

algorithm [1] in order to produce a user specified number of clusters. The performance of 

this classification is evaluated and fed back to the information fusion routine in order to 

search for the optimal set of the fusion parameters until a stopping condition is reached. 

When the stopping criterion is met, the best fusion parameters attained in the previous 

process are used to derive a generalized similarity matrix to cluster the data and the final 

clusters formed are visualized and interpreted using the two-dimensional time-line 

method presented in [2]. 

1.4 Methodology 

The methodology followed in this research is as follows. First a set of articles of interest 

was collected from the lSI Science Citation Index library and saved as a text file. Then 

preprocessing was done on the collection and it was transfonned into a Microsoft Access 

database using Visual Basic for Access routines. Information about each article was later 

extracted from this database to construct various types of simi.larity measures between the 

documents using a MATLAB program. A genetic algorithm was then employed to search 

for the best fusion parameters in order to combine these similarity matrices into a final 

generalized similarity matrix. This similarity matrix was used to perform hierarchical 

clustering. The result was visualized as a hierarchical time line that was optimized for 

visualization by using a simulated annealing based routine. The final result was used to 

explore and interpret the collection of the articles. 
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1.5 Thesis Outline 

The remainder of this thesis is organized as follows. In Chapter 2 the commonly used and 

dominant document classification and visualization methods will be discussed. Chapter 3 

will cover how the similarity between documents can be measured and the different 

sources of similarity as applied to journal articles. Chapter 4 presents the proposed 

technique of fusing different similarity matrices in order to use them to classify the 

documents and the supporting visualization and interpretation technique used in this 

research. Chapter 5 discusses a case study using the techniques developed in this 

research. Final conclusions and discussion on future work is given in Chapter 6. 

Description of the programs and user interfaces used in this research are given 111 

AppendixA. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Overview of Text Classification 

The interest towards automatic scientific literature classification has been growing ever 

since the advent of fast computers and the enormous amount of text data growth being 

experienced in the world. The latter one being the major concern, today different text 

classification and categorization methods and solutions are developed for specific 

purposes aiming at minimizing and to the extent of avoiding the human effort in 

cataloging and classifying different types of text documents including web pages in the 

Internet, scientific literatures and books in digital libraries, news feeds, financial and 

governmental record databases, and more. These solutions intend to facilitate navigation, 

exploration, organization and presentation [31 of the documents despite the continuously 

growing size of the document collection. 

One mainstream application area and that this research will also be devoted is the 

organization of text documents such as journal articles into groups on the basis of content 

similarity.. Another example is automatic indexing of web pages like the YAHOO 

collection avoiding or even minimizing the use of human labor in creating those groups. 

Along this comes also the issue of fast and efficient computational requirements that will 

be mandatory as the ~ize of the data grows. 
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So far different solutions across such types of problems involve utilization of similarity 

infonnation from different sources such as available common links, citations, and word 

frequency similarity and application of appropriate supervised or unsupervised 

classification to this data. 

2.2 Document Representation Models 

Different models have been developed so far to represent documents and fonnulate query 

so as to facilitate infonnation retrieval from a large document collection. These models 

help represent documents mathematically and can be used in infonnation retrieval 

systems to produce results for a query by producing a ranked list of matches. They could 

also be employed to produce a generalized summary of similarity measure between each 

entity, which is a document in this case. For the completeness of the presentation; some 

of the most dominant infonnation retrieval and document representation models are 

reviewed below. 

2.2.1 The Vector Space Model 

The vector space model [4] uses a selected feature, such as terms in documents, to 

represent documents. Docum.ents and queries are then modeled as vectors in a term 

vector space if terms are selected as a representing feature. The frequency of each term 

would thus be a measure for a particular dimension resulting in a multi-dimensional way 
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of representation of the documents. Figure 2.1 below illustrates this idea using a two-term 

space [4]. 

T~ 

D 

T1 

Figure 2.1 Document representation in a two-term space 

In a more general way, a collection of large number of documents can be represented in 

terms of a matrix as shown below. 

Ii T2 ~ 
D I all a l2 all 

M= 
D 2 an a22 a 21 (2.1 ) 

D n ani an2 ... ant 

Matrix M is an n x t matrix in which each row corresponds to a single document and 

each column to a particular term. M i ,} represents the frequency of term j in document 

i. In other words, a document d would be represented as a vector as: 

(2.2) 

where th represents the frequency of the t" selected term. This kind of representation 

normally uses a term weighing scheme, as each tenn used in representing a document 
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does not have equal significance. The most widely used weighing scheme in this kind of 

representation is what is known as inverse-document frequency (IDF) weighing scheme 

which gives more weight to those terms that have less frequency. This is mathematically 

represented as [3]: 

N N N 
dtf idj = Ct.iJ x log(-),tf2 x log(-),... ,tf,,, x log(-)). (2.3) 

- dft df2 dfm 

where dJ: is the number of documents that contain term i and N is the total number of 

documents. 

2.2.2 The Probabilistic Model 

The vector space model assumes that terms are completely independent. The probabilistic 

model takes the inter relationship between terms into account. It also involves the 

inclusion of document relevance probability, i.e. each document is treated with a 

decreasing probabilistic relevance. Several versions of the Probabilistic Model have been 

developed that attempt to facilitate querying and infonnation retrieval in large document 

collections [5]. Some of the variations among the different probabilistic models are 

displayed in the way terms and documents are treated. One variation of this model is 

displayed in the way the inter relationship between terms is considered. Some models 

consider only pair-wise dependency between terms while others extend this concept np to 

third or higher order of dependency [6]. Another variation is displayed in the way 

documents and queries are ranked by the model relevance measurement purposes [7]. 
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2.2.3 The Boolean Model 

This is the oldest and simplest model based on set theory that uses Boolean operators 

such as AND, OR, and NOT. It is most widely used in futernet search engines because of 

its fast computation. Query formulation plays an important role in this model since it 

retrieves exact match documents only. Several variations have been developed on this 

model to be able to rank documents. Among the major modifications are tcmi weighting, 

usage of fuzzy operators [8] rather than just Boolean operators, and weighted query 

expansion using thesaurus [9]. 

2.3 Latent Semantic Indexing 

Latent Semantic Indexing (LSI) is a technique introduced to improve the performance of 

information retrieval systems by overcoming the problem of synonymy and polysemy. 

Synonymy refers to different words having the same meaning and polysemy refers to 

same word having multiple meanings. In contrary to the assumption made in traditional 

information retrieval techniques that terms are independent, LSI models tenn-term inter 

relationship by mapping conceptually related terms closely in a semantic concept space 

[10]. This concept-space is a reduced version of the original term by document matrix and 

the dimensionality reduction is performed using the singular value decomposition (11]. 

LSI has also been applied to successfully retrieve information in a cross-lingual 

environment [12]. This is made possible by first training the LSI model with initial 

translated training documents in two languages and later adding in more documents in 
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either language. Eventually a query phrase would be able to retrieve relevant documents 

in both languages [10]. 

2.4 Similarity Measures 

The similarity information obtained from the above types of document representation 

models is a numeric representation of the measure of similarity between the entities. A 

similarity value of 1 would represent maximum or perfect similarity and a similarity 

value of 0 represents no similarity at all. From here onwards SCi,}) will be used to 

represent the similarity between document i and document } and matrix S will be an 

N x N symmetric similarity matrix whose diagonal elements are all ones and the rest 

between zero and one. 

The similarity between documents in such type of representation can be measured in two 

different ways [3]. One way is to consider each document as a unit vector and regard the 

cosine of the angle between the vectors as a similarity measure so that document vectors 

pointing in the same direction would have a similarity value of one and those orthogonal 

to each other would have a similarity value of zero. Mathematically, this can be 

represented as: 

(2.6) 

Another similarity measure is taking the inverse of the distance between the document 

vectors in such a way that documents close to each other would have less distance 

11
 



between them which would result in high similarity value and vise versa. Mathematically 

this can be represented as: 

(2.7) 

Among the different types of distance functions [13], the most widely used distance 

function in evaluating similarity between documents is the Euclidean distance defined 

as: 

(2.8) 

The above type of term-document representation of n documents nonnally results in a 

high-dimensional matrix of size n x m where In tends to be very big. This information 

matrix also displays the nature of a sparse matrix, which would require additional care in 

terms of efficient memory utilization. 

2.5 Dimensionality Reduction 

The high dimensionality nature of the above types of document representation models 

results in an increased computational requirement and memory usage. The usual solution 

across this type 'curse of dimensionality' problem is normally, dealt with by applying 

dimensionality reduction techniques such as feature selection, feature extraction and tenn 

or feature grouping [14]. 
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2.5.1 Feature Selection 

Feature selection reduces dimension by taking only the most discriminant features that 

would represent the dataset accurately to some extent with out major loss of information. 

For example, when representing documents in terms of the words that they contain, it is 

most of the time customary to have a list of stop words, such as is, are, and, etc., that do 

not actually have any particular meaning and also that are very frequent in almost aU 

documents. This would help reduce the number of dimensions used in the final 

representation and save computational power. It also helps concentrate only on the 

unique and important features ignoring the most cornmon ones that would further help 

identify each document uniquely from others. 

2.5.2 Feature Extraction 

Feature extraction uses different mapping teclmiques to represent the high dimensional 

data in terms of much lesser number of dimension vectors with out significant loss of 

information. Among the most common feature extraction techniques are principal 

component analysis (peA) and random projection [15]. These are widely used 

mathematical methods that can be employed to reduce number of dimensions of a high

dimensional data into a fewer one. 
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2.5.3 Term Grouping 

Term grouping is also another type of dimensionality reduction technique that helps 

reduce the number of features by combining the most similar features together. Each 

word in general has a particular root word that could give rise to many different ones. 

The tecImique of ternl grouping maps each word to its corresponding root word so as to 

reduce the total number of words used to represent a document. One way this could be 

achieved is by applying stemming to the prefix and suffix of words [16] and adding up 

their frequencies together. Another way of applying the concept of term grouping is 

through using a thesaurus in order to map terms that have similar meanings into one with 

out affecting the representation of the document. 
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CHAPTER III 

DOCUMENT CLASSIFICATION 

3.1 Document Similarity 

The measure of similarity between documents is the key for the classification techniques 

that will be discussed afterwards. In this chapter different types of measures of similarity 

between documents are exploited. As mentioned in the previous chapter, the similarity 

between documents is a numeric value that would represent the measure of their 

similarity based on a selected feature and can be represented as a matrix. Each similarity 

matrix obtained from a selected feature conveys some aspects of the ideal similarity 

matrix that we will be trying to approximate. This concept is discussed in more detail in 

the next chapter, especially how different similarity matrices can be synergistically 

integrated to give the best approximation of the ideal similarity matrix. 

In an n-dimensional feature space, say terms selected as a representing feature, the 

Euclidian distances between documents are inversely proportional to their corresponding 

similarity values. In other words, if documents are mapped to points in a high

dimensional feature space, those documents that appear close to each other would be 

more similar than those far from each other. Thus similarity is inversely proportional to 

distance, or distance can be considered as a measure of dissimilarity [17]. Transformation 
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between these two can be done using different methods. However the most commonly 

used ones are shown below: 

S(' ') 1 (3.1 ) l,J = D(i,}) , 

or 

Sri,}) = K - D(i,j) , (3.2) 

where S(i,j) and D(i,j) are the similarity and dissimilarity/distance between documents 

i and j respectively. K is a constant selected based on the particular type of 

application. 

When dealing with text documents the measure of similarity between documents largely 

depends on the type and format of the text data. For example, if the data is just a 

collection of plain text extracted from email messages, the only straightforward way of 

establishing similarity between the documents is using similarity information extracted 

from the terms in the documents. On the other hand if the collection of documents is a set 

of structured journal articles with all authors, institutions, citations, and keywords 

information avaiJable, then these features can give us different possibility of establishing 

similarity measure between the documents. This thesis will be concentrating only on 

journal articles in which all the above types of information are' available in a well-

structured manner. 

The main challenge when using multiple sources of similarity information is on how to 

use them together in the final classification technique so as to produce a more accurate 
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result. The method proposed to fuse these different similarity matrices and its results are 

discussed in detail in the next chapter. Below is given a detailed explanation on how to 

establish similarity between journal articles using different information sources that will 

be used later. 

3.1.1 Citation Analysis 

A well-documented citation data is a powerful source of information especially on tracing 

the trend of knowledge and information flow in a large collection of literature. Several 

works have been developed in utilizing citation information in areas of information 

retrieval and knowledge discovery, automatic library indexing [18], technology 

forecasting [19], and more. Citation information has proved to be helpful in different 

aspects of information retrieval and organization. A properly organized, citation-indexed 

system can provide useful information such as inter-document relationships, major 

improvements and criticisms of pervious work [18] and more. It can also provide useful 

information in identifying new emerging technologies that would be hard and time 

consuming to identify without such a system. 

One good example for this is the Database mformation and Visualization System 

(DIYA), a software tool developed in our research group, that was used to explore and 

visualize the US Patents database [19]. DIYA makes use of citation information of a 

selected set of key patents of user interest to build a larger collection of patents that are 

related to these key patents. A similarity matrix is then computed for this large collection 
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based on citation information obtained from the database, which later is used to explore 

the inter-relationship between patents, including identifying the major contributions and 

forecasting future areas of development. 

Citation information can be sub divided into four categories namely direct citation (de), 

co-citation (cc), longitudinal coupling (Ic), and bibliographic coupling (be) of which the 

last three are types of indirect citation [20]. These types of citation are shown 

diagrammatically in Figure 3.1 below. 

o 
be 

.Figure 3.1 Example of different types of citations 

Here the circles represent documents and the directed lines correspond to citation linkage. 

Documents A and B being the main focus of interest, the figure shows all the [ow' types 

of direct and indirect citations. Depending on the type of application and infonnation 

being provided, different types of combinational linkage could be formed by weighting 

and combining these different types of citation to represent the coupling or similarity 

between documents. However the method present~d in this paper will consider only 

direct citation information only. 
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3.1.2 Author Co-Citation Analysis 

Author's identity and affiliation conveys special infonnation that helps in understanding 

a collection of documents since most researchers work within particular area(s) of 

research and collaboration groups. Author co-citation analysis (ACA) [21] has been 

introduced and studied for the past 15 years [22]. In this work the interest in ACA lies to 

exploit more information out of the collection that would help to better classify and 

further understand a collection of journal articles. ACA helps understand the relationship 

between different authors [23] and identify the different research collaboration groups in 

which these authors are associated with. 

3.1.3 Word Frequency Analysis 

The other useful feature that could be incorporated and used to classify a collection of 

text documents is term frequency. Though this sounds a straightforward idea at start, term. 

frequency analysis demands a very thorough and detailed processing that most of the 

time requires extensive human interactions because the natural language is hard to 

automatically transform into perfect quantitative representation for a computer to process. 

Even so, several works have been carried out to categorize a collection of text documents 

into groups based on their word content analysis [14,24,25]. 
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3.2 Construction of Document Similarity Matrix 

Having discussed the above different sources of document similarity, this section will 

describe the mathematical details on how to construct similarity matrix out of such 

infonnation. The first and foremost step towards constructing a similarity matrix from the 

above types of information is to form an adjacency matrix. An adjacency matrix, A, is a 

matrix that signals the presence or absence of a particular feature, such as tenn, author, or 

citation, in a document. It results into an n x m matrix that summarizes the relationship 

between n documents and m set of selected features. AU, j) =b means feature j 

appears b times in document i. In the case of citations and authors, A is a pure binary 

matrix, because an author can appear only once in a paper and a reference could be cited 

only once. Normally A tends to be a sparse matrix in which m is much larger than n 

and the need for dimensionality reduction arises before proceeding in order to speedup 

further computation. 

After preprocessing is done on the original adjacency matrix the actual n x n similarity 

matrix that represents the inter document similarity can be computed using one of the 

following methods [4]. 
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3.2.1 Inner Product 

Representing documents and queries as vectors, an inner product between two vectors 

gives a value that represents how much the two vectors are similar to each other. In a 

two-dimensional vector space this can be illustrated as in Figure 3.2 below. 

Docnments with 
Dl :'>ome :'>lllularity. 

Totally dissimilar 
documents. DI 

Dl.D2= 0 

L..-L -.. D2 

Figure 3.2 Inner-product similarity measure 

From vector algebra, we know that the inner product of two vectors is zero if and only if 

they are orthogonal to each other. However this is less likely to happen in a large 

document space as documents usually share at least one conunon word. In the case of 

binary representation, this measures the number of co-occurring features in both 

documents. Mathematically the inner product between document vectors D1 and D2 is 

represented as: 

n 
Sim(Dl,D2) =Dl·D2 = l:Dl i ·D2i (3.3) 

i=1 

where n is the number of features to represent the documents and D i correspond to the 

measure of the i lh feature. 
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Though this measure of similarity is easy in tenus of computation there lies the hidden 

assumption in it that the features selected to represent documents are perfectly orthogonal 

or independent. However, this is not the case in practical applications. For example, most 

words in nature are related to each other and fail to satisfy this assumption. 

3.2.2 Dice Coefficient 

This similarity measure results in a number that lies within the range of [0,1]. This is a 

desirable feature in document representation because similarity values are usually 

normalized and it is compliant with this respect. The mathematical calculation for the 

Dice coefficient similarity between documents D1 and D2 is calculated as: 

n 
2" Dl· ·D2.£.., I I 

Sim(Dl,D2) = _.:-I=-=--1 _ (3.4) 
±Dl~/, + ±D2~, 
1=1 1=1 

3.2.3 Cosine Coefficient 

The Cosine coefficient is another method of computing vector similarity that has gained 

popularity over the years. It also generates similarity values that are within the [0, I] 

range., For two document vectors D1 and D2 it can be computed as: 

/I 

'" Dl . . D2.£.., I / 

Sim(Dl,D2) =---.==£==1==== (3.5) 
1/ 2 n 2 
2:Dl1 + 2:D21 
1=1 1=1 

22 



3.3 Document Classification 

Classification is an act or process of systematic arrangement in groups or categories 

according to established criteria (Merriam-Webster Dictionary). Though it is recognized 

with diversified applications, the purpose of classification can be generalized as 

simplification and prediction in a large data collection [17]. In our particular case we are 

solely interested in applying the concepts of classification to automatically categorize a 

large collection of journal articles into a number of groups according to their content 

similarity. This is where the document similarity matrices discussed in the previous 

sections comes into the problem scenario. This act of classification that will be discussed 

in the next sections is intended to automatically provide information about the core 

research areas and innovations in the articles, the different dominant collaboration groups 

and the trend in which information is flowing in a particular field of interest. 

3.3.1 Hi.erarchical Clustering 

Hierarchical clustering is a type of clustering method that is popularly used in 

information retrieval systems. It produces a nested structure of partitions in a dataset 

based on a particular partitioning or merging criterion [26]. It includes two types of 

procedures namely divisive and agglomerative that process the clustering top-down and 

bottom-up respectively. An agglomerative hierarchical clustering starts by treating each 

data point as a separate cluster and merges the clusters that are the closest [13]. This 

process is repeated until a minimum number of clusters is achieved. Divisive hierarchical 
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clustering starts with one cluster containing all the data points and divides them into sub 

clusters based on a criterion. 

The distance between clusters rand s can be measured using different linkage methods 

[27]. 

Single linkage method: this method takes the minimal distance between any 
, 

two data points belonging to two different clusters as the distance measure 

between the clusters. Mathematically, 

d(r, s) =min(dist(xri , Xsj », i E (1,... , n r ), j E (1, ... ,ns ) . (3.6) 

Complete linkage method: this method uses the maximum distance as opposed 

to the previous method. Mathematically, 

d(r,s) =max(dist(xri,xsj)),i E (l, ...,nr),j E (l, ... ,ns )' (3.7) 

Average linkage method: this method takes the average distance of all 

possible combinations of pairs of elements in the two clusters of interest as 

follows: 

(3.8) 

Centroid linkage method: this method uses the distance between the centroids 

of the clusters. 

d(r,s) = d(xr,.xs ), (3.9) 
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where xr and xs are the centroids of the two clusters. 

Ward's linkage method: also known as minimum variance linkage, uses the 

total sum of square distance within groups represented as: 

(3.10) 

where d 2 is the centroid distance between clusters rand s.rs 

Lets consider the example ofa two-dimensional data set shown in Figure 3.3 below. 

......., .
 

G···.\ 
.........~... ~
 

..... 

Figure 3.3 Example showing a two-dimeosional data set 

Application of agglomerative hierarchical clustering to this data set using a single linkage 

method would result in the tree-like structure shown in Figure 3.4. It starts by treating 

each of the seven data points as independent clusters. It then merges clusters that are 

closest to each other which in this case are data points A and B. Next C and D are 

grouped together followed by merging fust group formed with this one. This process is 

repeated until a single cluster is fonned. Except for the Ward's linkage method, the 
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where xr and x.s are the centroids ofthe two clusters.
 

Ward's linkage method: also known as minimum variance linkage, uses the
 

total sum of square distance within groups represented as:
 

(3.10) 

where d?s is the centroid distance between clusters r and s . 

Lets consider the example ofa two-dimensional data set shown in Figure 3.3 below. 
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Figure 3.3 Example showing a two-dimensional data set 

Application of agglomerative hierarchical clustering to this data set using a single linkage 

method would result in the tree-like structure shown in Figure 3.4. It starts by treating 

each of the seven data points as independent clusters. It then merges clusters that are 

closest to each other which in this case are data points A and B. Next C and D are 

grouped together followed by merging first group formed with this one. This process is 

repeated until a single cluster is formed. Except for the Ward's linkage method, the 
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height of each branch in the tree representation shown in Figure 3.4 tells the distance 

between each of the different data points being connected. 

A Be D E F G 

Figure 3.4 Result of agglomerative hierarchical clustering on tbe dataset shown in Figure 3.2 

3.3.2 Fuzzy Based Clustering 

In contrast to hierarchical clustering methods, fuzzy clustering does not produce hard 

disjoint partitions. Instead it uses a membership function to assign each data set to 

different clusters [26]. This helps overcome the problem of over-simplification imposed 

by other clustering algorithms in cases where an item belonging to more than one cluster 

has to be classified [17]. Figure 3.5 below shows a comparison between fuzzy clustering 

and hard partition clustering. Among the different types of fuzzy clustering methods, 

fuzzy c-means (FCM) clustering is the most popular one. FCM starts by placing centers 

for clusters inaccurately. It then moves these centers to minimize an objective function 

and updates the membership value for each data item simultaneously. The final output of 

this is a set of fuzzy cluster centers and membership values for each data point [28]. 
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Figure 3.5 Example showing fuzzy and hard-partition clustering 

The elements enclosed in the rectangles HI = {A,B,C} and H2 = {D,E,F,G} are 

assigned to the groups with full confidence. But when it comes to the fuzzy clusters FI 

and F2 shown by the ellipses, another parameter, namely membership value, is 

introduced. Thus an. example membership description would be 

Fl= {(A,O.5),(B,O.8),(C:O.9),CD,0.2),(E,O.6)} and F2 = {CCOJ),(D;0.2),(E,O.7),(F,O.9),(G,O.6)} .. The pairs 

(m, v) in each cluster represent the members and corresponding membership values. 

Thresholding the membership values can be used to fonn. hard clustering result [26]. 

As mentioned above, fuzzy clustering gives a more practical result in cases where there 

are items that have both similarity and dissimilarity and need to be assigned to different 

clusters. This is widely used in areas of data analysis, patter recognition and image 

segmentation. 
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3.3.3 Neural Network Based Clustering 

Artificial neural networks (ANNs), motivated by biological counterparts, have received a 

wide variety of applications in areas of science, engineering, mathematics, medicine, 

business, finance, etc. [29]. They are also used in specific applications for pattern 

recognition and classification purposes in such a way that they can be emp~oyed to help 

construct decision boundaries that can classify data sets from simple one-dimensional 

line to high-dimensional boundaries that are hard to visualize. A typical neural network 

architecture that can be used for classification is shown in Figure 3.6 below. 

YI Y: YUI 

Figure 3.6 Example of classifier neural network 

Each circle in the figure represents a neuron that is connected to others. The lines 

represent connections, which are assigned numeric values called weights. This neural 

network has n-dimensional inputs and m-dimensional output. It can be trained using 

different training method so as to tune its weighting parameters to be able classify a 

particular data set. After training it can be used to classify an n-dimensional data into one 

among a set of m groups. 
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Among the most commonly used ANNs in pattern recognition and classification self-

organizing maps (SOM) [30] have attained a wide variety of applications for information 

retrieval and data mining applications especially in organizing [24] and visualizing [31] 

large and high-dimensional data collections [19}. It is constructed of a number of nodes 

arranged usually in a two-dimensional grid structure. These nodes later fonn groups upon 

training by moving around to preserve the topology of the input data structure [32]. After 

training the distance between data points directly represent their similarity, i.e. most 

similar ones appear close to each other while dissimilar ones are placed apart from each 

other. Figure 3.7 shows an example ofa two-dimensional SOM structure. 

,
Traillill.2> ,,

,I 
... -.. __ .. ~"."" 

Figure 3.7 Training example of a 3 x 380M structure resulting in two distinct groups 

As can be seen in the above figure, training of a 3 x 3 SOM produced two distinct groups 

with which incoming data will later be classified with based on how similar it is to either 

of the groups. The map could also convey graphical representation of a high-dimensional 

input data. 
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CHAPTER IV 

INFORMATION FUSION 

4.1 Overview of Information Fusion 

Information fusion is a technique of using different infonnation gathered from multiple 

sources such as databases, sensors, human collected data, etc. to get a better and more 

precise knowledge and understanding about a specific subject. Infonnation fusion has 

been applied in a variety of applications such as image recognition, signal processing, 

sensor fusion, information retrieval, etc. In this chapter the ,issue of fusing different types 

of similarity infonnation gathered from a: collection of journal articles will be examined. 

A discussion is also given on the method proposed to fuse the different types of similarity 

matrices developed in the previous chapter so as to generate a better classification of the 

articles that wiU help understand the underlying subject better and explore it at a more 

detailed level. 

The proposed method of information fusion is needed in order to be able to classify the 

collection of journal articles using the information gathered from the different similarity 

matrices. Each similarity matrix processes specific characteristic of information that it 

inherits. Similarity infolTIlation gathered from bibliographic citation information displays 

the flow of knowledge and infonnation within'the collection. This is because each 
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innovative research is built on a base knowledge from which it derives all of its 

assumptions and knowledge as a starting point. 

In addition to bibliographic citation information, this research proposes that other 

similarity information gathered from the authorship and word content analysis could also 

be used to enhance the overall knowledge about the collection, if used appropriately. 

Similarity information extracted from authors' identity provides special information that 

can help to identify the different research collaboration groups within the collection. This 

information can be used to strengthen the similarity analysis between the articles that 

belong to the same or related research area. In addition, this will maintain and give a 

better understanding of the different social network of authors within the community. 

In a similar way, word content analysis has also a special role that would contribute 

towards achieving a better classification. In this research a basic level word content 

analysis is carried out on the collection to extract as much useful infonnation as possible. 

Words, in the context of similarity information extraction, are generally 'noisy' as there 

are several problems associated with them. These problems are faced particularly when 

converting them into a quantitative representation. For example, there is the problem of 

polysemy and synonymy mentioned earlier. This problem of· a word having several 

meaning and many words having the same meaning is hard to quantify with out human 

intervention. There is also the problem of evolution of language, which is a major 

challenge when trying to bring documents on ~ wide range of time frame together 

because terms used in almost every language evolve through time. Even so when dealing 
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with research articles especially, most research-related terminologies convey particular 

and unambiguous information that can be used to classify the articles. The approach 

taken towards constructing the similarity information from word frequency analysis is 

described in detail in the following section. 

4.2 Similarity Information Gathering 

In this section the similarity information gathering process of the journal articles will be 

discussed in detail. The scope of this research is focused only on similarity information 

extracted from bibliographic citations, author information and word content analysis. 

4.2.1 Bibliographic Citation Similarity 

Given a collection of n documents and In references, an n x In paper-reference 

representation matrix PR can be fonned, where P stands for paper and R for references. 

Here usually m tends to be much larger than n because a paper commonly cites more 

than one reference and different papers have different reference lists. An element of the 

PR matrix, PR(i,j), is set to one if reference j is cited in p~per i. As a result, this 

matrix is normally a sparse matrix with most of its entities having value of zero. 

Having this PR matrix, the citation similarity information can be calculated using the 

dice coefficient discussed in the previous chapter as follows, 
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(4.1) 

where Sr (i, j) is the citation similarity between documents i and j, N r (i) is the 

number of total references in document i, and C is a reference co-occurrence matrix r 

which can be calculated as:
 

C r =PRxPR T
• (4.2)
 

The value of C (i, j) indicates the total number of common references between
r 

documents i and j . 

4.2.2 Author Similarity Information 

In a similar fashion, the author similarity matrix can be computed as follows, 

(4.3) 

where Sa(i,j) is the author similarity between documents i and j, N n(i) i.s the number 

of total authors in document i, and C is an author co-occurrence matrix which can be n 

calculated as: 

(4.4) 

where PA refers to the paper-author matrix defined in the same way as the PR matrix. 
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4.2.3 Term Similarity Information 

The other similarity matrix constructed for the collection of the articles is a term 

similarity matrix. The steps taken towards the construction of this matrix are as fonows. 

First each word in the abstract of every article was parsed and entered into a database 

excluding a list of user-specified stop-words that did not bear with any particular 

meaning. A basic word processing was also performed on the parsed words so as to a.void 

different versions of same word by removing common prefix and suffixes such as re, ing, 

ous. etc. After this, the top t most frequent terms were selected as representing features 

for the document collection. This value of the threshold was set depending on the total 

number of words extracted and size of document collection. Next an n x t paper-term 

information matrix PT that contained the frequency or number of occurrence of each 

teITIl in each document was constructed. PT(i,j) =b implies that paper i contains term 

j b number of times. 

Next the same approach as the previous ones was taken to calculate the tenn similarity 

matrix of the entire document collection as follows. 

(4.5) 

where 5t(i,j) is the term similarity between documents i and f, Nt (i) is the number of 

selected terms in document i, and Ct is a term co-occurrence matrix which can be 

calculated as: 

Ct =PTxPTT . (4.6) 
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4.3 Similarity Information Fusion 

After the above three types of similarity infonnation matrices were derived a weighted 

sum scheme was used to fuse them and fonn a single composite similarity matrix. The 

weighting was done as shown in Equation 4.7 below. 

(4.7) 

where Sf represents the final similarity matrix and wr ' wa and w, are weighting 

coefficients that satisfy the equation: 

(4.8) 

where W r , wa ' W, E [0,1].
 

These weighting coefficients should satisfy Equation 4.8 because the similarity values
 

calculated in the previous section are always between zero and one, where a zero value 

implies no similarity at all and a similarity value of one represents total similarity. Hence, 

the final similarity matrix Sf fonned using Equation 4.7 is also made to satisfy this 

condition. 

The optimal choice of these weighting coefficients is derived using an evolutionary 

genetic algorithm based search. The input space for these coefficients can be 

schematically shown as in Figure 4.1 and every point lying in the surface is a possible 

candidate for the best weighting coefficients. This presents an infinite number of 

candidates for the weighting coefficients. 
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W, =1 

Figure 4.1 Input space of the weighting; coefficients 

4.4 Genetic Algorithm Based Search 

4.4.1 Overview of Genetic Algorithms 

Genetic algorithms (GAs) are population based point-by-point search algorithms that can 

be used to solve different types of search and optimization problems [13]. In analogous 

way to natural genes, different characters of population members are encoded within 

binary bits of strings containing zeros and ones. Different genetic operations such as 

reproduction, crossover, and mutation are perfonned on these genes through time [33, 

34]. The survival of the fittest principle applies at every generation and only those 

population members that perform wen are most likely to survive and give offspring that 

share their qualities. GAs are different from traditional search algorithms in such a way 
, 

that they are not deterministic; rather they are stochastic in nature. They also perform 

search from a population rather than just a single possibility [33]. 
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Summary of the GA search algorithm is given in the table below. 

Table 4.1 Process of a typical Genetic Algorithm Process 

1. Set iteration index i to O. 
2. Generate P(i) number of populations at random. 
3. REPEAT 

a. Evaluate the fitness of each individual in P(i). 
b. Select parents fromP(i) based on a fitness criterion function. 
c. Produce next generation P(i+1) using genetic operations: 
d. Set i=i+1.
 

UNTIL the stopping criterion is met.
 

4.4.2 Why Genetic Algorithm for Weighting Coefficient Search? 

A GA based search was chosen to search for the optimal weighting coefficients for two 

reasons. One reason is that given an infinite number of possible solutions, GA can do a 

better job in finding the best candidate with a fairly less computational complexity. 

Another reason for choosing GA is to make the text classification architecture scalable to 

cases in which there are more than three similarity infonnation to be fused together. 

Imagine performing a direct point-by-point search on a high dimensional space, which is 

not practically a recommended idea. Instead, GA can be used to efficiently search for the 

best weighting coefficients even when the number of dimensions increases. 
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4.4.3 Genetic Coding and Search for the Weighting Coefficients 

GA encodes any candidate solution to a problem as a gene in tenns of bits of zeros and 

ones. A collection of this kind of genes makes up an entire population that will be used to 

search for the best solution. In this particular problem of search for the best three 

weighting coefficients, the problem can be scaled down to search for two weighting 

coefficients since the third one can be found by using Equation 4.8. This is shown in 

Figure 4.2 below. 

Citation Author Tenn 
Similarity Similarity Similarity 

•o • 
a 

•
b 

•
1 

Figure 4.2 Two dimensional version of the weighting coefficients' search problem 

Now the problem is only about getting the two parameters a and b and the coefficients 

can be calculated as: 

WI' =a, Wa =b - a , and w, =1- b . 

The table below gives some examples that describe the relationship between the values of 

a and b and the composition of the final similarity matrix. 

Table 4.2 Practical examples on the weighting coefficients 

a b Meaning - Final Similarity Matrix Composition 
0.0 0.0 100% Term Similarity 

0.0 1.0 100% Author Similarity 

1.0 l.0 100% Citation Similarity 

0.1 0.5 10% Citation, (05- O.l)x 100% = 40% Author, (1-O.5)xlOO% = 50% Term Similarity 
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With the above type of representation, the genetic coding for the parameters a and bean 

be done in the following way. Let each chromosome contain 21Z number of genes of 

which the first n genes represent a and the rest b. The actual value of a or b can be 

calculated as the binary equivalent of the genetic sequence divided by 2" which will 

result in a number between zero and one. The value of n is set to meet the desired level of 

resolution, i.e. level of increment between search parameters. This representation is 

exemplified. in Figure 4.3 shown below for 11 =5. 

l_O_l....-_~_O__ 0 ;r_o_-=-===::::-:~==~o=J1_.1..--_ 
--........,--- ---v

a=(01010hI25=0.3115 b=(0l1lOh/25=0.43· 

Figure 4.3 Genetic coding example of the weighting parameters 

With this representation, genetic operations including reproduction, mutation, and 

crossover can be performed on the two parts separately to produce offspring and undergo 

nonnal genetic processes. The fitness function for every member of the population is 

evaluated. after obtaining the clustering result for it and using the clustering performance 

evaluation function described in the next section. After a number of generations a 

stopping criterion, normally maximum number of generations or desired amount of 

fitness value whichever comes first, is reached and. the values of the chromosome with 

best fitness value are taken as the final similarity infomlation weighting coefficients. 

These coefficients are used to construct the final composite similarity matrix and an 

agglomerative hierarchical clustering is performed to obtain the final clusters using 

Ward's linkage method (1]. After this, timeline visualization [2] and interpretation of the 

d.ata proceeds. 
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4.5 Clustering Performance Evaluation 

As in any GA routine, a well-designed fitness evaluation function for each individual in 

the population is essential to search for the best weighting coefficient. In this research the 

following two possible methods were developed in order to evaluate clustering 

perfonnance for the journal article classification. 

4.5.1 Pareto Distribution Coefficient 

Scatter within each fmal cluster was modeled as a Discrete Pareto Distribution [35] and 

the model exponent (r ) was used as a measure of scatter. ill a Pareto Distribution, small 

occurrences are very common and large ones very rare. Figure 4.4 exemplifies this idea 

by plotting a log-log graph of frequency if) versus number of papers referenced/times. 
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Figure 4.4 Log-log plot showing the characters of a Pareto-Distributed citation frequency data 
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As can see in the figure, in the example collection of papers considered there are only 

few papers that were cited high number of times and many papers, plotted towards the 

tail of the graph, that were cited only few number of times. 

The Pareto Distribution coefficient (r) is the slope of the linear curve fit through the 

data. An increase in the value of this coefficient indicates the minimization of scatter in 

the collection. A large value of r would on the other hand indicate high degree of scatter 

and the goal here is to minimize the amount of scatter in each cluster. In other words, 

each cluster needs to be as specific to a particular research topic as possible. This would 

result in a smaller coefficient r. 

The following example explains this idea of measuring scatter within a collection in 

terms of r. Figure 4.5 shows the colIection of 833 documents clustered into 10 groups 

and plotted as dots with their publication dates as x axis and cluster membership as y axis. 

The dark dots are documents being selected for example purpose. 

First 30 documents were selected at random and r was computed for the key tenns in the 

documents and a value of "1= 2.75 was obtained. Next the same number of documents 

but now all belonging to the same cluster was selected. This time a lower value 'Y= 2.3 

was obtained. The document samples taken and their Pareto Distribution curve are shown 

in Figures 4.5 and 4.6. 
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Figure 4.5 Documents belonging to different cluster chosen at random selected (left) and the 
Pareto distribution of their key terms (right) 
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Figure 4.6 Documents belonging to the same cluster selected (left) and the Pareto distribution of 

their key terms (right) 

This experiment was repeated at number of times and aU results showed that random 

selection had a greater value of r than selection of documents belonging to a particular 

group.. This criterion was use as a means of evaluating the similarity infonnation fusion 

technique used. 
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4.5.2 Linkage Between and Within Clusters 

Another classification performance evaluation that was considered was minimization of 

citation linkage between clusters and maximization of linkage within clusters. A high 

number of average linkages within each individual clusters has the direct implication that 

the final clusters formed have provided strong connections within themselves, which is a 

direct indication that all the articles that are closely related have been categorized 

accordingly. Minimization of average number of citation linkages across clusters also 

indicates that we have managed to form a clear-cut grouping by making the classification 

as definite as possible. This idea is illustrated in Figures 4.7 and 4.8 below. 

In this example, seven documents, represented by circles with a number on them and 

lines as a citation link, are being clustered Onto two groups. The clustering result in Figure 

4.7 shows several links that cross over from one cluster to another. However, a closer 

observation would reveal that if document 6 moves to group 1 and document 1 to group 

2, much of the cross over links would be removed. In Figure 4.8 the same documents are 

being re-c1ustered to produce a better cluster that presents the minimal number of links 

across the two groups. 
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Group 1 

Group :2 

Figure 4.7 Example of poor clustering 

Group 1 

Group 2 

Figure 4.8 ClusCering with a better performance, 

4.6 Experimental Results on Information Fusion 

The clustering performance evaluation techniques proposed above were used to evaluate 

the idea of similarity information fusion on different types and proportion of similarity 

matrix composition. The tests simulations performed showed that similarity infonnation 

fusion helps the clustering routine do a better job. The simulation results for these tests 

are discussed below. 

The first test perfonned was citation and author similarity fusion to evaluate the 

clustering performa,nce with respect to the average Pareto Distribution coefficient (r ) of 
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the key (index) terms within the journals in every cluster fonned. The fusion in this test 

was done according to Equation 4.9. 

(4.9) 

where w is a weighting coefficient that was varied from zero to one to test for different 

compositions. The result of this test is shown in Figure 4.9 below. 

2.3 f-------, 

2.15 

2.1 0 0.1 
0% Refl1r1u,ees 
100% Keywtlldl Similillity M,Hnx C-ompoliHon 

Figure 4.9 Plot showing the reduction of the average Pareto Distribution coefficient for key terms by 
fusing small amount of author information 

This plot shows the average value of r for all the clusters formed at every value of w 

and from the result we can see that minimal values of r are achieved for w =0.75, 

w =0.85 and w =0.95 for this particular experiment. Minimization of r with respect to 

index terms indicates that the final clusters formed based on the fused similarity matrix 

had many of those articles with similar index terms clustered together which would 

reduce the slope of the linear-curve-fit shown in Figure 4.4 by including more high 

frequency terms towards the tail ofthe plot. 
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Similar experiment was also perfonned to show the reduction ofr for cited references. 

This time r was calculated for the references of the articles within each cluster. The table 

below shows an example ofcited-reference frequency extract ofone cluster. 

Table 4.3 Example showing cited reference frequency count 

I Citation Frequency 

LEPPLA SR, 1982, P NATL ACAD SCI USA, V79, P3 162 9 

pUE_SBERY NS, 1998, SCIENCE, V280, P734 9 

INGLESBY TV, 1999, JAMA-J AM M_ED ASSOC, V281, P 1735 8 

Y.!.TALE G,J998, BlOC!lEM~IOPHRES CO, V248, P706 7 

PE!..OSA ~LI~7, NATlJRE, V385, ~833 6 

KLIMPEL KR, 1994, MOL MICROBIOL, V 13, PI 093 6 

MILNE JC,j993, MOL ~CROBIOL,YlO, P647 4 

FRANZ DR, 1997, lAMA-J A~ MED ASSOC, V278, P399 4 

FRrEDLANDER AM, 1986, J mOL CHftM, V261, P7123 4 

1\t!1LN~ JC,!294, J BIOLCHE!v1, V269,. P20607 4 

tv!.ESELSON~, 1994, SCIENC~, V26§, I:1202 _ 4 

LEPPLA SH, 1988, METHOD ENZY1'1.0L,Y1~5,PI03 3 

HENDERSON DA, I~99, SqgNCEL V283, P 1279 3 

MIL~E IC, 199";>, MOL MI.9ROBIOL, VIS, P661 3 

Table 4.3 shows frequency of the top cited references within a single cluster. 

Minimization of r in this case would imply that the similarity matrix composition was 

able to bring together the key references into single clusters. This would help understand 

the final clusters better, as it would collect the references serving as a knowledge base 

together. Same technique as the previous one was performed to explore the perfomlance 

of the clustering by fusing citation and author infomlation and the simulation result for 

this test is shown in Figure 4.10. 
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Figure 4.10 Plot showing reduction of the average Pareto Distribution coefficient for cited references 
by fusing smaU amount of author information 

4.7 The Final Picture 

4.7.1 Algorithm Summary 

In this section all the ideas that have been discussed so far are put together into one 

complete algorithm proposed to transfonn a collection of journal articles into a more 

meaningful presentation of infonnation that is expected to provide answer for the 

following questions and more. 

What are the main research topics within the collection?
 

Who are the experts in these areas?
 

What collaboration groups are there?
 

When and what are the major discoveries in the past?
 

Where is the technology going?
 

Etc.
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Table 4.4 Outline of the text classification algorithm 

TEXT CLASSIFICAnON ALGORITHM 

1.	 Collect data. 

2.	 Pre process the data. 

•	 Includes parsing, removing redundancies, extracting terms from titles and 

abstracts. 

3.	 Extract different similarity information. 

•	 Construct similarity matrices based on all available sources induding term 

analysis, citation analysis, author analysis, etc. 

4.	 Perfonn a Genetic Algorithm based search for the best similarity matrix weighting 

coefficients and fuse the similarity matrix using the best coefficients. 

•	 Determine the genetic encoding, genetic operations, population size and 

stopping criterion. 

•	 Defme the fitness function to be used depending on the type of the collection 

and desired characteristics of the classification result. 

5.	 Perform classification of the collection based on the final similarity matrix fonned. 

•	 Use the type of linkage function (single, centroid, Ward, etc.) and 

classification (agglomerative, di.visive, or other) that best suits the 

application. 

6.	 Visualize and interpret the result. 

•	 If temporal information is available show the results as time lines and do 

further exploration on the final result. 

4.7.2 Visualization and Interpretation 

After classification is perfonned based on the fused similarity matrix, the next step is to 

visualize the result and interpret it. The method of visualization that is used in this 

research is a time line visualization technique [2] discussed below. The DIYA software 

tool [19] was also used to explore the result. The Figure 4.11 below shows a case study 
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done on a collection of patents on the topic of petroleum oil well foam cements extracted 

from the US Patents Database. The study consists of 333 US patents. 

f'Je ~ ~... lflsert lools yt;ldow ~
 

.----+7 --------- --------- ------ ---- ----- ------ ---- -----<>-o~o ---- ---

'--+3 ---.-00----0 ----------0 -------0 ---------------------. 

.----+5 -----------------------------O-@-----------------------

6 I *_-- -- -- --- --------

4 -- -- ---------cr- -- --0- ----0 - -- ----- -- ---<>85----of]--B-~ . 

.g ---o-L)@---<b-----OO---OO-----g-~-<o-----<OCb-------

--coo---o---.e:tD-CQ-~------------o-. 

I 
1 ;----- -- ------- ----- ------- -- --- ---- --- --------- -- - -----------~-

i 

8 ----- -- -- ---- --- --- -- -- -- --- - --- --- ---- - -,- - -- -- -- _.-- - ---~-- - ---

1980 1!BJ 1995 

Figure 4.11Time line visualization of a £ase study on. foam cements 

This graph conveys the following information. The tree structure on the left side of the 

figure shows the structure ofthe hierarchical classification. The dots on the map represent 

documents (patents in this case) and their x-axis corresponds to their date of publication 

and y-axis corresponds to the cluster to which they belong. The size of the documents can 

be made to vary according to the number oftimes tb,ey were cited by checking the box on 

the bottom left of the window. Thus the documents with higher number of citation hits 

appear as large dots and can be further swdies in a more detail. The area on the left side 
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of the figure is left for labeling, which is done manually by studying and exploring every 

cluster. This can be done by selecting documents and exploring the content of their word 

frequency as shown next. 

7 - .•••• - .•••••.•. -•.••• -- •• ------ ••• -.- ••••.••... - •• AO"~0-----·-·· 

3 - 00-.-.0 -.-..0 .. ---..0 

tw:oa:ce ~l a.g 32:.15 
b.l e.o:t tw:D.c.ce· 30 J 6 
cIOlJ.tnq fluid 31 J6 
c:a.e:nt1:eiou:l alw::rr 14 1.1 
~16Q ve.tel: 
ce:aent sllU.ry 

6 
6 

6 
6 .•.• g 

add1t1ana..l blGDt. 5 5 
filurcue 1 S 
c1I::i1~1ng ceaenunq 4 4 
coapt:1..I!l1:nq blut. 5 4 

1'7 1...._ iJ 

Figure 4.12 Exploration process of tbe result 

Selecting the show words option on the right bottom and dragging a rectangle on 

documents of interest will popup the word frequency window shown on top of the time 

line result and the user can judge what the cluster or group is about by studying the 

frequency of the words within the selection. The Jines on the graph represent citation 

links t.o and from t.he selected documents, which appear as dark dots. The final labeled 

map is shown in the next figure. 
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Figure 4.13 Final Labeled map 

This map shows aU the cluster titles that are the result of the exploration. The arrows are 

also drawn to show the trend of citation through time across the different groups that help 

to give an idea on the direction in which information is flowing. The dusters with large 

number of documents can also be further classified by clicking on the cross sign at the 

legs of the tree structure. 
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4.7.3 Simulated Annealing for Optimized Visualization 

The proposed method uses a modified version of the time visualization in order to avoid 

misconceptions about the final clusters. The original time line visuatlzation technique 

presents the results in the order they were generated by the hierarchical clustering routine. 

However, clusters plotted close to each other are not necessarily similar. The method of 

optimization introduced in this research uses simulated annealing [36] based flipping of 

branches of the tree structure to come up with an ordering in which the most similar 

dusters appear close to each other without altering the tree's structural information. A 

diagrammatical example for this is given in Figure 4.14. 

ODtimization 

Figure 4.14 A simulated annealing based optimization for the time line display 

In this example, the node marked with an "X" mark is flipped without changing the tree 

structure. However this change has made the most similar clusters; 1 and 3, that have 

high number of connections to appear dose to each other. This method help to better 

understand and interpret the final result. An example on the improvement of visualization 

using this method is given in the next chapter. 
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CHAPTER V 

CASE STUDY ON ANTHRAX 

5.1 Information Collection and Preprocessing 

In this chapter a case study conducted on the subject of anthrax using the technique 

developed in this thesis is presented. The study was perfonned based on a collection of 

articles obtained from the lSI Science Citation Index library using the query phrase 

"anthrax anthracis". This query returned articles published early from 1945 to the 

beginning of 2003. The summary of the documents obtained is given in Table 5.] below. 

These articles were obtained in the fonn of a set of tagged text documents and were later 

parsed and stored into a Microsoft Access database. The procedures discussed earlier 

were then applied to classify the articles and develop a time line presentation of the 

collection. A starting population of 50, each with total number of bits equal to 15 was 

used in the genetic search algorithm. The fusion parameters obtained for this particular 

example dataset W r , w and w t were 0.78, 0.15, and 0.07 respectively. a 

Table 5.1 Summary of documents collected 

Total number of Count 

Papers 2,472 

References 25,007 

Authors 4,493 
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Out of the 2,472 articles returned,. only those articles that had 5 or more citation links to 

others were considered for further analysis. As a result, the number of articles under the 

study was reduced to 987. This helped exclude documents that were not of much 

relevance. 

5.2 :Presentation of the Results 

After classification was performed on the collection of the articles based on similarity 

information extracted from the citation, author and terms, the result was plotted as a time 

line that was optimized. for visualization using the simulated annealing routine introduced 

earlier in Chapter 4. The improvement of this routine on the display is shown in Figure 

5.1 below. The green lines show similarity connection between the documents that was 

greater than a threshold value of 0.2. As can be seen in this figure, the simulated 

annealing routine changed the order in which the hierarchical the tree structure is 

organized which has resulted in a reduced number of crossover linkages between clusters. 

This optimization help·s achieve better visualization while exploring the collection. 

10 · .. ·····,····· .. · ..r'······ ..,····..····•····· "-"'1
i

...-.._~......·-r·...... r·_· ..·j i 
~ r..··....· ······1 

,..-----+'14 ·· .. ··.. ·1·· ..·····'[.. ·· .. ··'1·· · 

:r- i 

i 
......! 

! 

i 
......; 

~~l 

1961J 1900 '970 'lID 19QJ lim :xJIO HII) 1£MJ1 2IJl] ~10 

Figure 5. t Improvement of visualization before (left) and after using simulated annealing.(right) 
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The optimized time line result is shown with out any connections in Figure 5.2 below. 
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Figure 5.2 A first look at tbe classification 

The time line shows the 987 documents plotted according to their publication date versus 

cluster membership corresponding to a particular research area. The relative size of each 

dot represents the number of times it was cited within the collection. This helps identify 

those documents that have been heavily cited. by others graphically.· The tree structure on 

the left side of the plot provides information about the structure ofthe clusters formed. 
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Figure 53 below shows a labeled version of the previous time Hne. The labels were made 

by taking a close note at the word frequency content of the articles' titles and abstracts 

within each duster. The heavily cited articles ace also marked with their topics and 

number of total articles citing them. 
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Figu.re 5.3 Labeled map of tbe result 

This way of presentation can. he used as a starting point for the analysis of the collection 

and study of the anthrax topic. This map reveals the different research areas related to 

anthrax research, experts and their main expertise, major fmdings in the field, time line 

information about the collection, and knowledge about the flow of information among the 
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different research areas. This map can also lead to discoveries on emerging research areas 

and potential developments. 

Clusters 7, 6, and 12 as shown in Figure 53 contain articles on «preliminary research" in 

anthrax mostly published between the 1950s and 1970s. As can be seen from the labels, 

these researches dealt with anthrax immunology and vaccines. These documents were 

later used by other documents for the new emerging researches as shown in Figure 5.4 

below. The dark forward arrow in this figure shows the flow of infonnation within the 

different research areas through time. The green lines show the strong connection 

between documents that have a similarity value greater than a threshold value of0.). . 

. __ . __•...•..__ .... _.•...•.... __ .. . __ .. ._.••__ ..._.. __ .. __ ..•_. .__._..•• '?..~..."'._- ='-::.:=;:iI~;=-gn.imt 

..............-.. --.- .. --.---.-.------ .. ---... --- ..-.. ·····-·-··-··-·-·-···-··----·"JIILlII.-..~ 
AnI"'" tolin pm1edn emegin, 

a"-"11I\I, fUrnDt (mamaltanlhWllan) ,malme", 

----lmmLJf)Ololbenl. chromllography • 
•• _ geflt clDning. molecular NqUlfncmg: 

··-AnthralC 1(...11'1 pnrtec:t.r'tO amlilginl 
___ channtf1orm;tlion - Colti0f,Jrha!J 33publJ 

Aothf•• 1011" r....rch· haw it KlU., 
•• - macroph'O" in .nthrlil 

aacllu••n1hraelllclCln comp~ ... 
••- gone loqu.ncing, S.layer, Mock M- 39put 

Bacirul ~nlhf.cfg . uncap,ullltlon, 
.• ~ .dr..or gen. 8tIrA, CO2 '.UU1.tio" 

-- .. - ------ -..~~lV'#"7""'~~ 

<tn.... 

'-------tl3 -- .- . 

L----~·6 .- - -. . 

...............- - 9 _~tt;:.~::;;:::_1 ba'.i.�__ .._.-0 

L----+l2 ··.·.·-o.6-~~-._·;;;··"'··;,;,:··~·----·,-·- _ _ _:=~ ~~i~1n;::1c9Y in anthru 

1945 1950 1955 1900 19G5 1970 1975 19£1l 1965 1990 1995 :llIXl 2XI6 

Figure 5.4 Figure sbowing tbe flow of information witbin tbe coUection 
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From Figure 5.4 we see that the "preliminary research" articles served as base document 

for the emerging researches in gene cloning, molecular sequencing, anthrax toxin, and 

immunology. Base documents are defined as documents serving as a starting point for 

new emerging research topics. They are characterized by being heavily cited. 

It is also worth noting that the cluster on bioterrorism, cluster 15, had its base documents 

from cluster 2, which contains articles reporting the different outbreaks around the world 

and biological threats of anthrax. Cluster 15 contains articles that were related to the US 

postal attacks, reports on inhalational and intestinal anthrax, and risks and prevention 

methods. Cluster 4, marked as "external", contains documents that did not have strong 

relation to any of the researches in collection. 

The influence of the documents that had greater number of citations was also studied 

closely to identify the flow of information. As an example, the citation structure of the 

seminal article by Leppla in 1982 on edema factor, one part of the anthrax toxin that kills, 

was examined. This article has 188 citations and Figure 5.5 shows these citation links. 

This document is shown as a red dot in cluster 3. The red lines show papers cited by this 

article and the blue lines show the citations made to the article. As can be seen in this 

figure, the finding of Leppla presented in this article was used intensively on researches 

performed afterwards and we can conclude that it had a major contribution. We can also 

note that the finding in Leppla's article based on early anthrax research shown in clusters 

6 and 7. These procedures can be fonowed to study on the different major contributions 

in the field. 
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Figure 5.5 Ci1a1ion structure of Leppla's article 

The following example shows a summary of the collaborators of Leppla, who has 74 

publications in this collection. Table 5.2 below gives a list of those people with whom 

Leppla published at least seven times. 

Table 5.2 Major coUabora1ors of Leppla 

Author Count 
KLIMPEL,KR 16 

ISlNGH,Y 12 
ARORA,N 9 
UU,SH 8 
LITTLE, SF 8 
FRIEDLANDER, AM 7 



GORDON, VM 7 
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The selected documents shown in red in Figure 5.6 below show the articles that Leppla 

published. From this map we can see that most of Leppla's publications were in the area 

ofanthrax toxin and immunization. 
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Figure 5.6 Artides published by Leppla 

5.3 Summary 

The study presented above identified the different research areas, major experts and their 

center of excellence, time infonnation on the beginning and end of a particular research 

topic. This study can be done at different levels depending on the type and depth of 

infonnation required from the article collection. From the results presented in the 

previous section, we can conclude that the method used to study the articles was able to 

identify the different research areas and classify the articles accordingly. The time line 

visualization technique was also a helpful tool in presenting and further exploring the 

result. 
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CHAPTER VI 

CONCLUSION AND FUTURE WORK 

6.1 Research Conclusions 

This research involved automatic classification and categorization of collection scientific 

literatures into their corresponding research topics by using multiple similarity 

information extracted from their citation, author, and word content analysis. Each 

similarity matrix extracted from the collection emphasizes and contains information on 

different aspects of the coUection. Classification based on similarity information 

extracted from citation information helps identifY and trace the .t1ow of information 

within the collection. This also helps to forecast emerging research topics in the area of 

the study. Classification based on similarity information extracted from author 

information leads to identification of the different author collaboration groups within the 

collection. This is because researchers usually collaborate with others within similar area 

of expertise. In a similar manner, classification based on similarity information obtained 

from word content analysis can be used to classifY articles according to their content 

similarity.. However, this needs extra human effort and expert knowledge to resolve 

ambiguities introduced by the high diversity and noise within the natural language. 
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This research proposes a new method of classification of scientific literatures using a 

fused similarity matrix obtained from multiple sources of similarity matrices discussed 

above. A genetic algorithm based search method was used to search for the similarity 

information fusion parameters. Genetic algorithm was chosen as a search method in order 

to make the proposed method scalable to cases in which there are many similarity 

information sources with minimal computational complexity. Minimization of the 

coefficient of the Pareto Distribution for index tenns within the final clusters fOImed was 

used as a fitness function for the genetic search. The final parameters returned by the 

genetic search algorithm were later used to fuse similarity matrices obtained from 

citation, author, and word content analysis. This fused matrix was passed to an 

agglomerative hierarchical clustering routine and a hierarchical time line visualization 

method was used to show the results. A simulated annealing based optimization is 

performed on the hierarchical time line visualization for a berter understanding of the 

result. The results obtained using this method show that incorporation of similarity 

information from multiple sources helps to achieve a better classification that can be used 

to understand and further explore a collection ofscientific literatures in an effective way. 
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6.2 Suggested Future Work 

Some of the recommendations for future work on this research include the following 

ideas. One major advance in this research involves applying tbe proposed method of 

utilizing multiple similarity information based classification to a collection of free text 

documents including sources from newspaper articles, web pages, arid financial 

transactions. This is mainly dependent on the accuracy of the similarity information 

matrix computation. This would enable one to derive a complete view and understanding 

of a subject matter of interest based on knowledge extracted from all available sources. 

For example, in the case study presented earlier in Chapter 5, the knowledge acquired on 

the subject of "anthrax anthracis" was limited only to the content of the articles that we 

obtained from the lSI Science Citation Index library. However, if other sources, such as 

news releases and non-scientific peoples' opinion and experience, were added to the 

collection, the result might be able to give the research.er a more sophisti,cated, real-life 

understanding of the subject under study. This can also make the system to be used in 

intelligence applications where information from different sources is, required in an 

organized manner to facilitate link discovery. Another future area of development is 

automatic generation of cluster labels, which is currently done manually. This needs 

taking careful consideration and sound judgment on the content of titles, abstracts, word 

frequency analysis and citation patterns. 
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APPENDIX A 

A.I Microsoft Access Database Application 

This research involved storing of text data into a database. A Microsoft Access database 

application was developed for this purpose. The application was used to parse and input 

tagged text source data into its tables.. It also had the functionality ofgenerating one, two 

and three word frequency summary results excluding a user specified list of stop words 

for documents of interest specified by the user. Several SQL queries were also included 

in this application to assist in data retrieval and presentation in the MATLAB program. 

The main user interface ofthis database application is shown in Figure A. 1. 
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A.2 User Interface of MATLAB Program 

The MATLAB program that served as a main tool for trus research is called DNA, 

Database Infonnation Visualization and Analysis software. It is equipped with several 

functionalities that would allow users to access data through an Open Database 

COIUlectivity (ODBC) in order to analyze and visualize it. The main user interface of 

DIYA is shown in Figure A.2 below. 

Figure A.2 The DIYA user interface 

This user interface allows saving, retrieving and managing of files generated by DIYA. 

The map section lists stored two-dimensional maps in the current project that can be 

displayed at any time. The connection section lists different types of stored connection 

similarity matrices that can be used to classify and visualize the data. The clusters section 
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can be used to store groups ofinterest into variables for later use. The time section is used 

to perform analysis based on temporal information. A typical map example of DIVA 

output is shown in Figure A.3 below. 

Figure A.3 Two-dimensional map display of DIYA output 

Each dot on the map corresponds to a particular document and the dots highlighted in red 

indicate documents being selected. Lines represent similarity, if shown in green, or 

citation link, shown in red for backward citation and blue for forward citation. Right 

clicking on the map lists some available functions. The option "vary size by citation" on 

the left bottom comer allows the user to vary the size of the dots based on number of 

citations. The option, "show words" on the right bottom comer allows the user to display 

the most frequent words within documents upon selection by drawing a rectangle around 

them Clicking the '+' sign at the end of the each legs of the hierarchical tree structure 

performs further classification on the contents of the· corresponding clusters and plots a 

new zoomed-in version ofthe map_ For more details on DIYA, please refer to [19]. 
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