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NOMENCLATURE 

Q- Speed of Sound 

ARMA ~ AutoRegressive Moving Average 

CAE ~ Computational AeroElasticity 

CASE ~ Computational AeroServoElasticity 

fa(k) ~ generalized aerodynamic force at time k 

M ~ Mach number 

N ~ Total number points needed for a training set 

Np ~ Number of points in a single mode's training set 

na ~ number of past outputs required in ARMA model structure 

nb ~ number of past inputs required in ARMA model structure 

nr ~ number of eigenvectors used in the modal structural model 

q ~ dynamic pressurc 

STARS ~ STructural Analysis RoutineS 

SVD ~ Singular Valuc Decomposi I ion 

x(k) ~ general izcd modal displacement at time k 

T/TolaJ ~ total benchmark cycles per second of a cluster 

T/Sinj(h' ~ total benchmark cycles per second of a cluster node 

p ~ density 
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CHAPTER 1
 

INTRODUCTION
 

1.1	 Background 

Aeroelastic phenomena result from the combination of aerodynamic, inertial and 

elastic forces. The coupling of these forces can lead to destructive motions in aircraft, 

such as wing flutter. The identification of the points of static and dynamic divergence in 

an aeroelastic system has become a driving research goal in modern aircraft design. 

Digital computing has aUowed the modeling of complex aerodynamic and 

structural systems. The combination of these two systems leads to a simulation of the 

aeroelastic response of a flexible structure under aerodynamic loading. The acrodynamics 

model predicts force loading due to the shape and rate of motion of the structure. Thc 

structural model predicts the shape and ratc of motion duc to thc aerodynamic forces 

applied. The results of one system are feed into thc other as new inputs. The resulting 

aeroelastic simulation aUows the complete modeling of an aircraft's aeroelastic 

characteristics. Figure 1.1 Shows a diagram of a computational aeroelastic simulation. 



Unsteady... Aerodynamic ...
Fluid ... 

ForcesSolver 
Initial Output

~ r--.Conditions Values 

StructuralDisplacement
~ .... Dynamics I+­

and Velocity 
Solver 

Figure 1.1 Diagram of a Computational Aeroelastic Simulation 

The advancement of computation speed has allowed the use of CFD algorithms to 

simulate the aerodynamics forces. A Navier-Stokes or Euler flow solver coupled with a 

FEM or modal structural solver can produce highly accurate predictions of aeroelastic 

responses. Due to the computationally intense natural of CFD, the prediction of the 

aeroelastic behavior normally requires a time span on the order of days. Further 

worsening the problem is that a single simulation is not sufficient for a prediction. 

Several respons'es must be analyzed to bracket and estimate the instability. In essence, a 

sensitivity study is run to determine the effect of changes in dynamic pressure on the 

stability of the aeroclastic system. This process of running InU Itirle simulations is both 

computationally and time intensive. Furthermore, the solution estimate must be refined to 

a certain resolution. The need for resolution requires search techniques that use the results 

of previous simulations in determining candidates 1'01' better resolution. This further slows 

down the dynamic pressure sweeps. This process can take weeks to months to finish; a 

time frame that is unacceptable for flight-testing purposes. 

One method of accelerating the identification of divergence points is system 

identification of the aerodynamic forcing. This method aLLows the substitution of a linear 
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model for the finite element CFD algorithm. This moves the time required for predictions 

from a matter of days to seconds. However, the new state-space model must be trained 

using results from the CFD solver. The generation of the training data for complex 

structural systems can require the same, or more, time as bracketing the instability with 

full simulations. This difficulty has lead to research into accelerating the processing for 

training data generation. 

1.2	 Motivation for the Study 

As mentioned before the time required to find a flutter boundary is only practical 

for research purposes or when a design is finalized well before testing. There are a 

number of obstacles to accelerating the flutter prediction process, such as difficulty in 

numerical grid creation, structural eigenvector identification, and correctly transferring 

data from structural analysis to fluid flow solver. None of those problems can be 

corrected by speeding up the computations of either the structural model or the 

aerodynamics. In addition, all the tasks listed are completed quickly, compared the time 

of the flow solver. The primary area open to improvement is the speed at wbich 

aerodynamic flow soluti~ns are generated. 

As an example., one such test case that has time requirement that are prohibitive to 

the practical use of CFD based fluttcr prediction is thc Aerostructures Test Wing, ATW. 

The ATW was a prototype wing flown on Dryden Flight Research Center's F-15B 

Research Testbed aircraft. The wing was flown until failure due to aeroelastic instability. 

The ATW rcquir s less than three seconds to analyze the FEM structural model 

and derivc thc modeshapes and natural frequencies from it. The interpolation of the 
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modeshapes on the CFD FEM grid takes a second longer. Tbe generation of the CFD grid 

is nonnally left for overnight generation, no more than twelve hours. The grid has 

973,024 tetrahedral elements, as seen in Figure 1.2. The steady state solution of the flow 

field requires 8.43 CPU hOUTS. The generation of the training data for system 

identification of the aerodynamic forces requires 66.22 CPU hours to identify the three 

structural modes of the ATW. That does not include any free response studies to cheek 

that the system identification is valid. The ATW would require a full workweek for an 

aeroelastic analyst to report back the flutter prediction findings, assuming everything 

worked on the first attempt. 

Figure 1.2 Aerostructures Test Wing CFD Grid 

The large lime requirement for the ATW is due in part to the fme grid mesh used 

to capture the motion of shock waves at the leading edge of the wing tip pod. If the ATW 
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had more than just 3 modes, such as IS modes like many full aircraft simulations, then 

the training data would require 1557 CPU bours, two months of continuous computation, 

to complete. A dynamic pressure sweep would require only 662 CPU hours; assuming 

that only four dynamic pressures with 4000 time steps each were needed to estimate the 

pressure. 

The STARS group at NASA Dryden has recently started to analyze test cases 

with over 2.5 million tetrahedral elements and up to 19 modes. The time to complete one 

time step is dependent on the complexity of the geometry. However, the more elements 

used in a simulation the more iterations must be used to resolve the time step. The 

simulation of large test cases can easily approach half a year. 

Advances in computing speed help reduce the time, but the time is halved only 

every 18 months according to one interpretation of Moore's Law; which relates the 

number of transistors per square inch on a CPU chip and overall speed, to time. This 

advance rate does not significantly contribute the reduction of speed for recent test cases. 

Using the example of the ATW with 15 modeshapes, it will require 5 years before a 

processor will be able to finish the training data in one week, 9 years to until a processor 

can finish in one day. This relationship is shown in Figure 1.3. A new method of 

accelerating CFD based acroelastic prediction the needs to be found. 
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Figure 1.3 Proj,ccted Future Processor Performance 

1.3 Problem Statement 

Current techniques of free stream dynamic pressure sweeps to determine a flutter 

boundary take too much time for practical use in flight testing. Current technique for 

system identification of a flow solution most often take less time, but still more than 

flight-test groups are willing to accept. New methods for reducing the time of flutter 

point identification need to be developed. 

The solution to this problem must also meet one other requirement. It must be 

compatible with the STARS computer program suite developed at NASA Dryden Flight 

Research Center. In shalt, either a modi fied version ofthe STARS CFD flow solver or an 

additional integrated program must be produced that offers a method to accelerate both 

•
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the generation of training data for system identification techniques and dynamic pressure 

studies. 

1.4	 Literature Review 

This section covers the literature surveys and initial studies that lead from the 

problem statement above to the research objective in the following section. This covers 

the primary sources for this study. 

1.4.1	 Numerical Flow Solutions 

One method for accelerating the speed of computational flow solvers is to change 

flow solvers. By there nature most flow models are only valid when certain assumptions 

hold. Four common flow models are discussed here. Euler solutions are analyzed in more 

detail in the next section. 

One common fluid model is potential flow. This method uses the assumptions of 

incompressible and inviscid flow to detennine the characteristics of the air around a 

defined shape. Potential flow solvers have relatively few computations, with a 

corresponding high speed. There exist several model alterations that account for the 

effects of compressibility, such as the Prandtl-Glaucrt rule [Katz, 200 I]. This makes 

potential methods excellent for low speed fluttcr phenomenon, though this has limited 

applicability. However, the potential model cannot simulate supersonic or transonic flow, 

as it cannot model a shock of any type. It does introduce the concept of transpiration 

[Fisher, 1996], which removes the need for redefining the geometry of an aeroelastic 
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system after structural motion. The inability to accurately predict aerodynamics in the 

transonic range makes these solvers useless as a general-purpose model. 

The piston method is a previous attempt to accelerate simulation speeds [Hunter, 

1997]. In this method, the unsteady wave equation is the basis for all simulations of 

perturbations about a steady state solution, usually detennined by steady state Euler 

solvers. Although it has limits on accuracy, it provides reliable results for supersonic and 

hypersonic flows. The method does not model the motion of shock waves, such as those 

found in the transonic range. The solver fails to satisfactorily handle all flow speed 

regimes. However, a significant number of aeroelastic models operate in the supersonic 

range where the model is applicable. It does not meet the requirements of this study as it 

can be applied to all flow regimes. 

The third type of solution is the Navier-Stokes numerical flow solver. This is 

considered the complete solution for an aerodynamic flow. Since it is based on the 

Navier-Stokes equation, the numerical model can. simulate viscous effects. Howev r, 

Navier-Stokes models require significantly addition time to complete an unsteady time 

step, as the viscous modeling needs computing. Experience has shown that in general 

viscous model.s are not necessary to model the aerodynamic forces 011 aircraft sized 

bodies. Furthermore, by attempting to model the viscosity of the fluid a new source of 

simulation error has been introduced. Neglecting viscosity can accelerate Navier-Stokes 

flow solvers. 

The Navier-Stokes equation with the effect of viscosity neglected is the Euler 

equation. This model. offers several advantages The model holds at all speeds of interest 

for aeroelastic analysis. It accurately predicts the formation of shock waves and their 
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motion in time, which is necessary for modeling the transonic flight regime were many 

aeroelastic phenomenon occur. It does have limitations. Since the Euler equation does not 

model the boundary layer of fluid flow around an object it does not handle the separation 

of the boundary layer: This is in general not a problem for aeroelastic stability 

determination. It can be efficiently discretized into finite difference or fi.nite element 

solutions. 

1.4.1.1 Euler3d Flow Solver 

In 2003, Cowan [2003] showed that a noninertial reference frame could be used 

with FEM models based on the Euler Equation. The new program that study produced 

was Euler3d. This new flow solver was shown to out perform the STARS Euler solvers. 

It was user friendly, easily understood and more coherent in design philosophy that 

previous STARS flow solvers. The solver retained many useful features, such as the use 

of transpiration to model structural motion. It also contains an optional piston 

perturbation solver, whieh can be applied to models in the supersonic range. 

1.4.2	 System Identification 

As defmed, system identification is a process for obtaining a mathematical model 

of a dynamic system based on set of measured responses from that system [Ljung, 1987]. 

The time history of a dynamic systems response to a known input is used to fit a model 

with the least error to the response. For example consider the second order system of 

Equation 1. I . 
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X\ (t) =a . XI (t) + b . Xl (t) ( 1.1 ) 
Xl (t) =C· XI (t) + d . X 2 (t) 

In this system a, b, c, and d are the unknown parameters. Using a set of responses 

from known inputs the unknown parameters can be detennined [KaJaba and Spingam, 

1982]. The same technique can be applied to a discrete time dynamic system. The 

discrete version is shown in Equation 1.2, where aj. bj . c) and 0 are the unknown 

parameters. The accuracy of identification model is dependent on the type of solution 

assumed and the method used to find the model parameters. Fortunately, the work of 

Cowan [1998] answers what approach to take, 

X 1•k+1 = ~aJ . XI.) + ~bJ . xl,J 
J:I j:l 

( 1.2 ) 
J:k J:k 

X l •k+1 = LeJ . XI.) + LdJ . xl,J 
j:1 j:1 

In 2003, Guezaine used an Eigensystem Realization Algorithm, (ERA) to identify 

the eigenvalue of entire aeroelastic system of an F-16 simulation. This method predicts 

the frequency and damping coefficient of the lowest torsional mode of the model. This 

approach is excellent for predicting the aeroelastic response at a single flight condition. 

However, it does not isolate the system response as a function of the dynamic pressure. In 

this regard it offers not advantage offer density sweeps in terms of accelerating 

predictions. 

1.4.2.1 Autoregressive Moving Average Model 

In 1998, Cowan applied an autoregressive moving average model to the 

identification of the aerodynal11 ics or an aeroelastic system. This modeling technique 
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assumes a statically nonlinear system with dynamically linear perturbations. Using a 

system model that predicts current forces based on past displacements and precious 

forces. This relatioDshipis expressed numerically in Equation 1.3. 

na nb 

f(t) = La" .j(t-n)+ Lbm 'x(t-m) ( 1.3 ) 
,,=1 ",=0 

This equation IS actually a discrete version of Equation 1.4, which relates the 

motion of the structure to the unsteady aerodynamic forces. 

( 1.4 ) 

Using Equation 1.3, the parameters for system identification are the ak and bj 

values. Finding a set of values that closely model the training data produced by the CFD 

solver is goal of the system identification. The Cowan's ARMA model used Singular 

Value Decomposition, SVD. This method analyz·es the data and determines the set of 

parameters that produces the least squared error with training data predictions. However, 

no automatic method exists to determine the value of na and nb, the number of previous 

forces and displacements. In order to determine the best value for each of these, a 

sensitivity study is run using a range of values for both. 

It should be noted that this method only modcl.s the aerodynamics of the coupled 

aeroelastic system. This allows the same aerodynamic model to be used on multiple 

structural models. Also the system model is multistate. The motion of all modes is 

assumed to effect the forcing on all other modes. However, forces applied to one mode 

are not assumed to directly effect any other mode. In this way, a discrete time model is 

developed as in Equation 1.5. The matrix A" is diagonal with zero in the off-diagonal 
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terms. The B m term handles the relationship from force to the motion of all the modes. 

The model also uses the current position from the structural model predictions. 

nil nb 
( 1.5 ) fJt) = :L[A,JfJt-n)+ :L[BJ·x(t-m) 

n=1 m=O 

It is important to note that the model assumes linear relationships between all 

mode displacements and forces. If this is not true, the system determined from the 

training data will poorly reflect the system. Also a sufficient number of data points must 

be contained within the training set to determine the system. The success or failure of 

system identification depends on the training data used. 

1.4.2.2 Training Data Generation 

In order to accurately model a system response, a system model must be trained 

with data points in the region of interest. When the system identification technique was 

developed by Cowan [1998] for application to the STARS unsteady flow solver, a multi­

step on velocity was used. This method allowed the system model to relate velocity and 

displacement effects to force changes. However, the method made prediction of 

acceleration effects difficult as the training signal has either infinite acceleration or none. 

The multi-step training signal is shown in Figure 1.4. It is important to realize that this 

input signal is bypassing the structural dynamics entirely. The intention is gather data 

about the aerodynamic force response to displacement and motion. This training data is 

used to develop a model of the aerodynamic response. This new faster system model can 

then be coupled with the structural dynamics solver to model the linearly dynamic 

perturbations. 
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. 3211 Multistep Input Signal 
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Figure 1.4 32 I I Multistep Training Signal 

In 2003, O'Neill developed an improved training signal. This new input signal 

was based on the chitp function in common use in system training data generation. The 

improved input signal allows more direct control of frequency range and magnitude. Ir 

addition, the new function allows the determination of effects related to the second am 

all higher derivatives, which the multistep input lacks. The new input signal can be seer 

in Figure 1.5. The signal has difficultly resolving low frequencies, as there is little powei 

in them. The SVD algorithm also has problems determining the cause of forces, as baH 

the velocity and displacement are symmetric about zero. 
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Modified Chirp Input Signal 
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Figure 1.5 Modified Chirp Input Signal 

To correct the problems with the Modified Chirp input signal an offset was added, 

The new signal the Offset Modified Chirp corrects the low frequency errors. It also helps 

the SVD algorithm define which terms are most important for system modeling. The 

Offset Modified Chirp Input Signal is shown in Figure 1.6, 
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Offset Modified Chirp Input Signal 
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Figure 1.6 Offset Modified Chirp Input Signal 

1.4.3 Parallel and Distributed Processing 

By definition, parallel processing uses several independent Central Processing 

Units (CPU) to soLve a single problem. In common usage this nonnally refers to the use 

of several processors to solve a single mathematicaL operation, such as matrix inversion. 

However, there are other methods that take advantage of the parallel proce sing concept. 

One such method works by instigating multiple copies of a single simulation, 

each with a set of different initial conditions, often called distributed batch processing 

[Baker and Smith, 1996]. By distributing the simulations to severa] independent 

processors, the time to complete the task is reduced. This method has the advantage of no 

communication after the initial setup of the simulations. Since the simulations are not 

commutating, there 1S no need to handle time step matching, differences in speed of 
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computation or bandwidth minimization. Generally, this method can be implemented 

quickly and with few or no changes to the algorithm of solution. 

Another method for parallel processing Domain decomposition as described in 

general by Gropp, [1999] and for CAE by Liu [2001], divides a physical problem into 

several physically smaner parts. This allows each processor to work on a portion of a 

much larger problem. However, domain decomposition does require time step matching 

and communication between the subdomains, often called zones. This stipulation requires 

that communication bandwidth not retard the speed of the independent computers. 

Domain decomposition also only works wen on problem where each subdomain has an 

equal workload. If the probLem does not have a unifonn distribution of computation for 

each subdomain, many processors will set idle while waiting of others with a 

corresponding drop in efficiency. This method can usually be added into an existing 

solving routine, but only with detailed planning and will be solution specific. For 

unstructured CFD meshes, such as the type used by STARS, a sophisticated algorithm 

that divides the regions into equal computational zones, not equal physical size, must 

handle the decomposition. 

Implicit distributed batch processing and domain decomposition are the primary 

methods for distributed processing of any large simulations, [Gropp, 1999]. Many other 

parallel and distributed models exist for data processing, but have only limited 

application to the simulation of complex systems. 

One important side note is the definition of efficiency used in this work. Equation 

1.6 states the relationship for efficiency. Baker [1996] has an interesting discussion about 

the methods for measuring performance of a parallel program. It this work, the time to 
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complete a set of simulations is the bases of all efficiency calculations. The average time 

for a serial processor to finish one of the simulations in the set is used as a standard of 

comparison to the time for an entire set to finish in parallel. Also efficiency is Dot defined 

unless the number of simulations is equal to the number ofprocessors used. 

Time AverageSerlal 
7] =----=---	 ( 1.6 ) 

Time Parallel 

1.4.4	 Parallel and Distributed Processing in Aeroelasticity 

It is interesting to note that no papers were found that explicitly study the effect of 

distributed batch processing of aeroelastic analysis. This many be a result of researchers 

not reporting the use of multiple machines. It many also be an artifact of the development 

of CFD based CAE. In the previous studies, researchers invested in a single high-speed 

computer to handle simulations. This type of equipment acquisition scheme does not lend 

itself to the development of distributed computing, as only one computer of significant 

speed is available. Several efforts have been made with success into tbe use of parallel 

processors on a single machine, such as the SGI Origin 3200 and IBM SP2 [Goodwin 

1999]. Although these computers are efficient and scalable, they are expensive and 

require extensive training for operation. No reports of the use of workstation clusters 

were found. 

As a side note, alI the studies surveyed that use some implementation of parallel 

processing employed the Message Passing Interface, MPI. One reported a usc of MPI and 

Parallel Virtual Machine, PVM, and compared to results for each [Goodwin, 1999]. It is 

hoped that since MPI is highly portable studies comparing the use of modem inexpensive 
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personal computer clusters and standard parallel supercomputers will soon be available in 

the literature. 

In 1998, Byun and Guruswamy reported successful results for a multizone 

aeroservoelastic solver.' Their solution used Navier-Stokes finite difference numerical 

methods. The multizone aspect they refer to is the domain decomposition of the flow 

volume into 8 zones, each simulated on a different processor within an ffiM SP2 parallel 

supercomputer. The article was concerned with the simulation of response to control 

inputs, not flutter prediction. However it did introduces interesting methods. The parallel 

solver resolves the aerodynamics and structural response on different sets of parallel 

processors. The two simulations were matched at discrete time steps, but were otherwise 

independent. The ENSAERO codes used structured grids. This allows tbe operater to 

divide the flow volume into separate zones by simple inspection of the nearly rectangular 

grid. The ENSAERO code also used a moving mesh to simulate the effects of elastic 

deformations, a process that requires the regrinding of at least a small part of the 

computational mesh at every time step. Most importantly for use in this study, Byun and 

Guruswamy report that the parallel version of the ENSAERO code has near efficiency up 

to 16 processors. This last fact indicates that parallel processing will accelerate the 

prediction of flutter, even ifonly by decomposing the flow domain. 

In 2003, Geuzaine developed enhancements to three-field methodology to model 

aeroelasticity. The three fields are aerodynamics, structure and mesh movement. The 

AERO-F, AERO-S, and MATCHER codes described the modeling of FEM based 

Navier-Stokes and structural analysis. The results of a free response simulation are 

examined using an Eigensystem Realization Algorithm, ERA. This method, as applied, 
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will report the frequency and damping coefficient of the lowest torsional mode. This 

allows comparison to flight test data. However, this method is does not derive the 

Eigensystem as a function of flight conditions, such as density or Mach number, but 

reports the Eigensystem at the flight conditions input to the model. In order to locate a 

flutter boundary, multiple flight conditions must be simulated and analyzed. Like Byun 

and Guraswamy, Geuzaine used separate sets of processors to solve the fluid and 

structures response. 

Neither Byun nor Geuzaine developed methods to accelerate control law 

development. Both have features that allow a control scheme to be tested in full flight 

simulation, but no method that allows for a quick systemic search of the several 

candidates to select the best option. In addition, all the parallel schemes surveyed, 

including Goodwin [1999] and Liu [2001], are full simulations that were only tested on 

shared memory parallel machines. 

One problem with the literature on parallel processing based aeroelasticity is that 

very little of the literature is interested in locating flutter boundaries. Mo t are interested 

in replicating experimental results or responses at a set flight condition. Many, like 

Goodwin [1999], even use experimental results as the bases for determining what initial 

conditions to use. Few papers are interested in searching for unfavorable flight conditions 

for aeroelastic properties from scratch. One of the goals of this study was accelerating the 

flutter prediction of a test case where the user is unaware of experimental results, the 

same conditions that would be present in the design of new aircraft. 
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1. 5 Feasibility 

In order to test if the general technique of training a test case on multiple 

machines and then combining the resultant training data would work in practice, the 

AGARD 445.6 test case was used in an initial test. 

The AGARD445.6 is a standard test case for aeroelasticity. The wing is slightly 

cambered with 45° backward sweep, the AGARD445.5 can. be seen in Figure 3.1. For 

this study, the AGARD445.6 has two modes, frrst bending and first torsion. The serial 

training data is shown in Figure 1.7. The data took 30250 seconds or 8.40 hours. 

Serial AGARD Training 
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Figure 1.7 The AGARD445.6 training data generated in serial 

This data was used to find a system model that would predict the flutter point of 

the combined aeroelastic system. The sensitivity study found that ana, nb of 4, 7 worked 
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to predict the divergence of mode 1 at a pressure of 0.399 psi. The flutter point was 

detennined by finding the first dynamic pressure that produced a system eigenvalue 

outside the unit circle for the complex plane. Since this is a discrete time system, any 

complex eigenvalue with an absolute value greater than one represents an unstable 

system. This can be seen in Figure 1.8. The graph is of the complex, or z, plane where the 

vertical axis is the imagery numbers and the horizontal is the real value. The unit circle is 

the boundary of stability. An eigenvalue the lays directly on the circle represents a 

dynamics system with no damping, a sine wave. Both modes I and 2 start very close to 

the unit circle, as neither have any structural damping and the low dynamic pressure has 

little effect on the structural response. This was used in comparison to tbe parallel 

training data. 
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Figure 1.8 AGARD eigenvalues for q of 0.01 to 1.00 psi, (serial training) 

The parallel data was run on two different computers, each at different speeds. 

The runs required 15480 and 38700 seconds. Although this took ranger that the serial run, 
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it was done on two computers, one significantly slower than the other. The computer that 

perfonned the serial run completed its required load in just over half the time the serial 

run used, 51.2%. This indicts that if two identical computers were used then the time 

reduction would be 48.8%. The parallel generated training data is shown in Figure 1.9. 

Parallel AGARD Training 
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Figure 1.9 The AGARD445.6 training data generated in parallel 

For the parallel data, the two time histories were simply pasted together one after 

the other. The same model order was used, 4-7. The system model predicted that the 

flutter point, with mode 1 divergence, was at 0.402 psi. This is a 0.75% difference from 

the serial training set, which is well within acceptable limits for aeroelastic instability 

predictions. This difference is most likely caused by the use of two different CPUs with 

slightly different floating accuracies. The graph of dynamic pressures is seen in Figure 

22
 



1.10. This figure includes only the close up view of the flutter point cross over. It should 

be noted that the two modes have not only the same flutter point, but follow the same 

trend. Both have mode I moving close to neutral stability boundary then crossing over. 

Mode 2 starts near the unit circle and becomes more damped. 

Mode 2 

Mode I 

LFlutter Point 

~
 

Figure 1.10 AGARD eigenvalues for q of 0.01 to 1.00 psi, (parallel training) 

From this initial, test, the parallel training of a test case can produce reliable 

results. Furthermore, the parallel data can predict the true experimental response of 0.425 

psi, [Yates, 1987]. It also agrees with predicted values from Cowan [1998] and Gupta 

[1996]. 
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1.6	 Research Objective 

This research fo'Cuses on the use of distributed batch processing to accelerate 

computational aeroelastic analysis. The first goal of the project was the modification of 

the Euler3d software package to automate the initiation and simulation of multiple free 

responses to varied initial conditions. This goal allows for the systemic sweep of dynamic 

pressure at a constant Mach number. The second goal was the addition of a new feature 

that allows the simultaneous training of multiple modes. The parallel training and 

response simulation will significantly reduce the time required to complete a flutter 

prediction. 
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CHAPTER 2
 

METHODOLOGY
 

2.1 Applications of Distributed Processing to Computational Aeroelasticity 

Aeroelastic analysis is well suited to parallel processing. The large volume of data 

that must be generated for an instability prediction does not require sequential 

calculation, for either the dynamic pressure sweep or system identification approach. This 

allows an intelligent aeroelastic analyst to utilize aU processors available to him. The two 

types of distributed parallel processing that concern this work are batch processing of 

multiple free responses at different initial conditions and training data generation. 

2.1.1	 Density Studies at Constant Mach Number 

For dynamic acroelastic systems the flutter prediction must be confmned with full 

couple CFD structural dynamics system responses. Even with a system identification 

model predicting flutter it is best to confinn the prediction with a free response. Running 

responses to initial conditions both above and below the flutter boundary does this. These 

can be run in parallel, as the results of one have no influence on the others. 

Dynamic pressure causes flutter. However, from Equation 2.1, the dynamic 

pressure is a function of Mach number, speed of sound and the air density. Since Mach 

and sonic velocity are held constant in a simulation, the change in dynamic pressure is 

directly related to change in density. This type of study will be referred as either a 
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pressure or density sweep, usually density as this is the parameter that will be changed 

directly in the sweep. 

( 2.1 ) 

A density sweep is best described as a sensitivity study on density. The free 

response input conditions are set, such as the true sonic velocity, the Mach number, the 

global time step, the number of time steps, the iterations to be made on the solution 

between each global time step, and a few others. The method for initiating the vibration 

must also be chosen. The steady state solution and structural dynamics both remain 

constant for each free response in the study. The only thing that is changed in density 

sweep is the density, and through it the dynamic pressure. 

For the new distributed Euler3d the density sweep will be automated. The control 

file will contain the same information as before, with the addition of a new parameter 

delrho. This value controls the increment of density for each processor in the distributed 

architecture. The equation relating the density, rho, on any processor np to the base 

density from the control parameter rhoinf is stated in Equation 2.2. 

rho(np) = rhoinf + np . delrho ( 2.2) 

The density on any node is simply the base density plus the processor number 

multiplied by the increment delrho, noting that the first processor has an index, np, of 

zero. 

An initial obstacle with a density approach is the starting point. Often an 

aeroelastician is given the information about structure, geometry and speed of interest, 

but little else. Since the system is unknown and possibly nonlinear, it is best to divide the 

flight envelope into equal increments. The sweep of density will reveal either that the 

26
 



structure does not flutter or determine a narrower range of density to investigate. This can 

be repeated until the required resolution is reached. With this system, the number of 

computers used determines the time until convergence on the proper resolution. It should 

be noted that a course density sweep could miss a flutter point entirely, as an 

aerostructure can move in and out of instability. 

Once a free response has run out long enough for multiple cycles to be present, it 

can be analyzed. There are several approaches to this analysis. 

The first method, and most obvious, is for the analyst to graph the time history of 

each structural mode's motion and look for instabilities. This has some drawbacks, as the 

free response may need to be run out to several cycles to show a clear damped or instable 

response. Although if a user is not able to clearly see a damping trend, most other 

methods wiD produce unreliable results. 

A second method involves the use of data points to fit a free vibration model to 

the data. The curve is checked for either decay or divergence. Aeroelastic free responses, 

particularly those with several mode shapes, are prone to transitory motions as the mode 

shift to either a new static offset or to the frequency of motion with least energy for the 

flight conditions modeled. This motion may require that the free response be allowed to 

run out until clearly decoupled dynamic motion is visible. Equation 2.3 states the 

mathematical relationship for this approach, [Moretti, 2000]. The five last distinct peaks, 

or valleys, are excellent candidates for this approach to find the damping. If the rate is 

positive, the mode is divergent. Figure 2.1 Shows an example of four time histories at 

four different densities. The four histories have the densities of 1,2,3 and 4. 

( 2.3 ) 
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In actual practice, the points used are taken from the last few complete cycles of 

the time history. Tbjs helps avoid inaccurate estimates due the strong transients in the 

modes in the initial cycles of the time history. Also the full vibration description is not 

used. The last few peaks are identified and those are used to fit the relationship of 

Equation 2.2. Using the four data points, one for each time history, a cubic curve can be 

fit to estimate the neutral point, or critical damping, with respect to the density. Figure 

2.2 shows the' graph of the four damping values and the trend curve. Note that the true 

damping, from the equations used to generate the time histories, is plotted as well. Table 

2.1 shows all four densities and the density that the curve estimates as the flutter, or 

neutral, point. 

(2.2 ) 

One problem with the use of Equation 2.2 is that it assumes the static offset about 

which the dynamic oscillation move is a constant zero. This is true in this example but 

not in general for aeroelastic test cases. This method is also very suspect wben the 

frequency of motion has not stabilized; COn is changing. This problem is of particular 

concern as the only to combat it is the use of long term histories; whieh require large 

computational times. One advantage of the system identification technique is that is has 

less susceptibility to uncertainty. 
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Density, fJ Damping,; 
1 0.042 
2 0.018 

2.73 (Estimate) 0.000 
3 -0.006 
4 -0.031 

Table 2.1 DensIty Sweep Dampmg Estimates 

2.1.2 Training Data Generation for System Identification 

For linearly dynamic systems, it is possible to develop the training data for each 

mode in isolation from the other modes. This allows for the each mode to be trained at 

the same time on separate processors. This is the primary purpose of the new software 

package. The software will allow the selection of individual nodes and the choice of 

which input signal (Multistep, Modified Chirp, or Offset Modified Chirp) for the modes. 
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2.1.2.1 Time Savings Determination 

From Cowan, 1998, the number of data points necessary to determine an ARMA 

model of the flow solver is N(na.nb,nr). This shown in Equation 2.3, where nr is the 

number of modeshapes, na is the number of previous aerodynamic force values, and nb is 

the number of previous body displacements. This is the total number of data points that 

the training set must contain to explicitly solve for each parameter within the system 

modeL 

N(na,nh,nr) =nr2 -nb+nr'na (2.3 ) 

The number of time steps is directly related to the time required to generate the 

data on one computer. The number of data points from Equation 2.3 is multiplied by the 

time to calculate a single time step, dt. Therefore the time to complete the training data is 

N(na, nb, nr)· dt. Since batch processing allows that each modeshape be trained 

separately and in parallel, the number of model time steps needed to complete the 

training of one mode is Equation 2.4. This will contain the data for all the previous 

aerodynamic and displacement states for the single modeshape. 

nr 2. nb + nr . na 
N p (na,nb,nr ) = = nr· nb + na (2.4 ) 

nr 

The time required to finish a parallel simulation with computers of heterogeneous 

speed is the maximum value of the number of data points assigned to a processor 

multiplied by the time needed to calculate a single time step. Equation 2.5 states this 

relationship, where i is the index of the processor. 

Time FINlSH = max{N; . N p - dt;) (2.5 ) 
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For example, assume that 3 computer are available for parallel use and that the 

test case of interest has 10 modeshapes. The na is 3 and the nb is 8. The numbers of 

modes, total number of data points per computer, and time to complete a single model 

time step are listed in Table 2.2. 

Computer Number of Total Data Seconds per Time 
Index, i modes,N; Points time step, dt; (Seconds) 

I 4 332 0.50 166.00 
2 3 249 0.75 186.75 
3 3 249 1.00 249.00 

Table 2.2 Heterogeneous Network Time Example 

The time to complete the training set is 249 seconds. Computer 1, which has .the 

most to calculate, fmishes first since it takes less time to resolve a single time step. 

Computer 3 is actually the weakest perfonner. It would be faster to assign 5 modes to 

computer 1, taking 207.5 seconds to finish, and 2 modes to computer 3, requiring 166 

seconds to finish. In that case the time to fmish would be 207.5 seconds. 

Now assume that the cluster of computers is homogenous. Thc variation in dr, 

disappears. The new TimeFINlsH is Equation 2.6, where M is the next integer ~ nr , and 
np 

np is the number of processors. 

Time FINISH =(M.Np .dt)=max(N, 'N 
p 

·dt) (2.6 ) 

Using the previous example, but setting the time required to complete a model 

time step to 0.50 seconds for all three computers, the TimeFfNlSH is 166.00 seconds, the 

time computer I needs to finish 4 modes. Computers 2 and 3 finish 3 modes in 124.5 

seconds each as shown in Table 2.3. 
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Computer Number of Total Data Seconds per Time 
Index, i modes,N; Points time step, dt; (Seconds) 

1 4 332 0.50 166.00 
2 ·3 249 0.50 124.50 
3 3 249 0.50 124.50 

Table 2.3 Homogeneous Network TIme Example 

The easiest time estimate is the case of nr homogenous computers. The TimeFlN1SH 

becomes Equation 2.7. 

Time FINISH =N p . dt =(na + nb . n1')' dt (2.7 ) 

Since Np is N , the speed of training data generation is increased by a factor of nr 
n1' 

over the serial generation. It is important to realize that artificially increasing the number 

of modes to finish the training data generation more quickly does not work. The total 

time to complete a training set is now a linear function of the number of modes, not a 

quadric as before. Since an aeroelastic system can only flutter if two or more modes are 

present, the distributed training set generation always reduces the time by at least one half 

as seen in the feasibility Section 1.5. 

2.2 Software Development 

This section details the software objectives, design and support programs. 

2.2.1 Software Functionality 

As possible methods of applying distributed processing to nonlinear aeroelastic 

analysis were developed, a list of objectives for the software was set. These included the 
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primary functionality of the EUler3d_dpp software. This list was the starting point for 

creating the algorithm of the Euler3d_dpp. The objectives are listed here. 

1.	 Maintain current interface and operation of Euler3d. The transition from 

the single process to the distributed ve.rsion should be seamless. The input 

files for distributed Euler3d_dpp should work for single process Euler3d. 

2.	 Automated sweep of densities within a flight envelope. This is one of 

distributed Euler3d's primary purposes. This option speeds up .the 

completion of nonlinear flutter boundary searches. It also reduces the 

bookkeeping aspect of a search. 

3.	 Generation of training data in parallel. This is objective is the key goal of 

the project. The generation of sufficient training data to determine a 

system model within a time frame acceptable for flight-testing drove this 

much of this research. 

2.2.2	 Algorithm Description 

Developing an algorithm can be a daunting task. Especially when it concerns a 

complex topic like parallel processing. In the case of Euler3d_dpp, the task has been 

simplified. The large amount of data can be divided into separate clearly defined and 

independent tasks that can then be sent to individual processors. In this program those 

simple tasks happen to be aeroelastic simulations. The trick will be to specifying what 

each node should simulate. 
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None of the algorithm objectives required any changes to the flow solver of 

Euler3d. This allowed algorithm design to focus on parallel software architecture. Si~ce 

the slave nodes never communicate with each other, the simplest po ible parallel layout 

was selected. Only the master, or central, node initiates communication with any other 

node. The slave, or computational, nodes only pass messages back to the master. This 

software architecture is shown in Figure 2.3. 

Slave Slave
 
Node Node
 

Slave Slave
 
Node Node
 

Figure 2.3 Parallel Software Architecture of the Euler3d_dpp Program 

The distributed verSIon of Euler3d needed a method for the master node, the 

central node, to contact the computing nodes, or slave nodes, and initiate processe on 

those nodes. This required that a networking interface be added into the original Euler3d 

source code. After survey of currently available message passing, the Me sage Passing 

Interface, MPI, was selected. The was chosen based on its reputation in the parallel 

processing community, availability of references, free software packages available on 

multiple internet servers, and its interface with Fortran, in which Euler3d is compiled. 

MPI also offers both a Microsoft Windows and Linux version. All parallel aeroelastic 

soLvers in the literature used MPI. This decision also set how the program would operate. 
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Before the master node reads in any data, it contacts each slave node and checks 

that it ready for a processing request. The master node then reads in the control file 

case.con, which contains the initial conditions (Mach, density, sonic speed, model time 

step, how to solve the problem and how long to run) and passes it to each slave node 

unaltered. The slave nodes then check that the initial conditions are correct for its 

assigned processor index, np. If a sweep of density is being done, then the slave node 

computes the correct density for its index. This is found from Equation 2.8, (Jp is 'the 

increment of density for each index. 

Pnp = Phose + op' np (2.8 ) 

Once the density calculation is finished the master nodes reads in and sends the 

test case geometry, boundary conditions and the steady state values of the flow field to 

each slave node. The slave nodes accept these without change. The master node reads the 

modal deformations, and generalized mass, damping, and stiffness matrices. Each slave 

node receives the matrices and deformations. The slave node then checks if ystem 

identification training data is to be generated. If so the slave node determines the mode it 

has been selected to training by holding all modes constant with the np+ J mode receiving 

a training input. The master node continues to read input files, such as the dynamic 

motion file for non-inertial reference frames and the forcing function file if required. A 

flow chart for the program is shown in Figure 2.4. 
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Figure 2.4 Euler3d_dpp Flow Chart 

2.2.3 PostProcessing Programs 

The Euler3d_dpp program only generates the training data for the system 

modeling. It does not create the system models. Cfdmdl3dsplice is used to generate the 
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system models. This program is an improvement of the original cjdmdl, which was used 

by Cowan [1998] to make system models from serially produced training sets. The 

program handles ordering the data set so that force and displacement hi torie are 

correctly listed. It perfonns singular value decomposition of the resulting data set. It 

assemblies the final parameters into formatted output files. Using this program is the 

second step in a system model flutter prediction. 

The cjdmd/3dsplice program reads in the multiple xn.dat# files. It then reorders 

the data based on na and nb selected by the user. The data is ordered is as follows. 

Output Input 

~(k) ~ (k -1), .. ',J; (k - na),x. (k),.. ·,x. (k - nb),.· ·,x (k),.· ',x (k - nb)nr nr 

1. (k -1) ... .t: (k-na) x (k)· .. x (k-nb)· .. x (k) ... x ·(k-nb)nr ,) nr 'I" 1 "nr" nr 

This sets up nr functions for the SVD algorithm to resolve, one for each mode's 

forcing. Before the SVD algorithm is applied the static nonlinear values, or off: ets, are 

removed from the forcing data. This removes a nonlinearity that the algorithm could not 

correctly identify. Those functions coefficients from SVD are recorded as a set of 

parameters in an output file. The program has an option to create more that one system 

model. For this a range of na and nb values are given and the program creates a model for 

each set. 

In order to combine the training data from up to nr data files, the xnmeld program 

was developed. The aerodynamic forces are assumed to follow the principle of linear 

superposition. The nonlinear static offset is removed from each training file. The force 

values for each time step are summed. Th.e static offset is added to the result. The output 
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is the combined response of the CFD flow solver to an input on all modes. This data can 

then be used to assess the error in the system identification model. 

When cfdmd13dsplice is complete, it still has not made any predictions about the 

flutter. Using the formatted output of cfdmd13dsplice, asemd13d can search for dynamic 

instabilities in the combined structural and aerodynamic system models. This program 

can analyze the eigenvalues of the coupled system, determine error with a known system 

output, and run free responses of the system model. This program generates the 

predictions of instability and measures the error of the system model. 

2.3	 Cluster Design 

With a complete and operating Euler3d_dpp, the requirements of a personal 

computer cluster to run the simulations became evident. The program only requires high 

bandwidth in the initial phase, where the master node distributes the input files to each 

slave node. Thereafter the MPI protocols only send small amounts of data back to the 

master node about the progress of each slave node. The network mu t also handle the 

steady stream of updates to the output files, such as xn.dat#. The initial communication, 

even on a low bandwidth networking medium should be an insignificant time loss 

compared to the time required to complete an simulation. This allowed the use of low 

cost off the shelf networking equipment. 

The requirements other than those of the current distributed Euler3d Were 

considered as welL In the future, it is expected that other groups investigating aeroelastic 

analysis will attempt to set up similar computer clusters. In an attempt to reduce as much 

confusion as possible, the cluster was designed with the idea of repeated replication. This 

39
 



design goal and the requirements of Euler3d_dpp lead to the current design and 

configuration of the cluster. 

With the design goals decided, price to perfonnance optimization was done on 

several configurations of cluster nodes. Early in the design, single processor machines 

proved to have lower price per benchmark ratings compared to dual, or multi, processor 

machines. The CASE lab has extensive data on the performance of the single processor 

Euler3d program. Since the communication medium does not affect the speed of the 

distributed Euler3d, the benchmarks still hold. A listing of the benchmarks available at 

the time of design is shown in Figure 2.5. The data from the Intel processors lies on a 

nearly linear trend line of CPU clock frequency versus the benchmark rating. The 

relationship is shown in Figure 2.6. 

40
 



Alpha 21264 - Unix 5------ 0.46 
RS/6000 595 - AIX 0.13 
RS/6000 3BT - AIX ... 0.08 

Calaron 466 _ 0.09 
Caleron 600 l-- 0.14 

PII333 ~0.11 
P1I450S0.16 
PIli 450 0.17 
Pili SOD 0.18 
PIli 550 0.15 
Pili 600 0.19 
PIli 700 0.20 

PIli 733 (Dual) 0.24 
Pili 1000 0.27 

Pili 1000 (Dual) 0.27 
Athlon 800 0.23 

Athlon 1000 - Linux 0.24 
Athlon 1000 (98) 0.26 

Athlon 1000 0.28 
Athlon 1200 0.28 

Athlon 1.4 DDR 0.38 
Athlon 1.4 DDR 0.46 
Athlon XP 1700 0.53 
Athlon XP 1800 0.53 
Athlon XP 1900 0.54 
Athlon XP 2000 0.54 
Athlon XP 2200 0.57 
Athlon XP 2600 0.60 

Pentium4 1.5 0.41 
Pentium41.7 0:48 
Pentium4 1.8 0.48 
pentium41.91
Pentium4 2.4 

0.51 
0.66 

Pentium4 2.53 0.70 
Pentium4 2.53 , 0.68 
Pentium4 2.53 Or 76 

o 0.2 0.4 0.6 0.8 

cycles I second Faster---" 

Figure 2.5 Benchmark Data for the Euler3d Program, Windows Operating System 
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Figure 2.6 Benchmark Rating verses CPU Frequency 

Using the trend line relationship, the benchmark values for the Intel Pentium 4 

2.26, 2.4, 2.53, 2.66,and 2.8 GHz processors were found. They are listed in Table 2.4. 

The total processing power of a cluster of computers is expressed in Equation 2.9, where 

1JTotal is the total cycles per second for the cluster, N is the number of cluster node , and 

1JSingle is the cycles per second of a single processor. The total cost of the cluster is found 

Equation 2.10. The cost of the system components was estimated by averaging posted 

prices on Internet retailer WebPages. A search was performed to find the highest 7}Total 

with a cost below the budget. Interestingly, the processor found to be optimal wa the 

mid-range Pentium 4 2.53 GHz. This indicates that using the latest CPU will not 

necessarily produce the fastest cluster. By purchasing more mid range processors, by 

price and speed, more total calculations per second can be reached for the same cost. This 

is why many supercomputing clusters use mid range processors. 
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( 2.9)17To/al =17Single • N 

CastTo/al = N· (COSlcpu +COS/SYSTEM) (2.10 ) 

From those benchmarks and optimization analysis the best processor found was 

an Intel Pentium 4 2.53 GHz processor. In order to handle the large amount of data that 

many test cases use, one gigabyte of DDR333 RAM was specified for each computing 

node with the Intel 845ge chipset on the motherboard. This requirement set the value of 

COS/SYSTEM, the cost of an assembled computer minus the processor. A complete 

description of the slave nodes is in Table B. 2. 

Processor, Intel Single Processor Number of Cluster Benchmark 
Ralin)! Benchmark ComTJuters Estimate 

2.26 0.61 10 6.10 
2.40 0.65 9 5.85 
2.53 0.76 9 6.84 
2.66 0.80 8 6.40 
2.80 0.84 7 5.85 

Table 2.4 Table of CPU Companson for Cluster Performance 

For the communication medium between the master and slave nodes, Fast 

Ethernet was selected. Ethernet has been established as the standard computer networking 

protocol and was available as an option on the motherboards considered optimal. The 

switch was selected was the Hewlett Packard Procurve 2124 fast Ethernet switch. This 

switch has 24 ports and can handle full duplex communication on all of them. This switch 

was selected for price, In addition to the inexpensive Ethernet, a KVM 

(Keyboard/Video/Mouse) switch was used to control all computers with only one 

monitor, mouse and keyboard, the layout for the KVM switch is in Figure 2.8. To 

simplify the network administration a commercial router and firewall were purchased. 

This allowed the entire cluster to be control and operated with only the requirement of the 
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user copying the input files to the master node and initiating a distributed Euler3d_dpp 

simulation. 

Internet 

Master Node/File Server Slave Node 

Slave Node Slave Node 

Slave Node Slave Node 

Slave Node Slave Node 

Figure 2.7 Diagram of CASE Cluster's Networking Hardware 

The cluster was named CASE cluster, after the lab where it was designed and 

assembled. The assembled cluster is shown in Figure 2.9. The numerous cables and 

power cords are hidden behind the cluster. The control terminal for the KVM i shown in 

Figure 2.10. A more complete d.escription of the cluster assembly is in Appendix B. 
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Figure 2.8 Diagram of CASE cluster's KVM Hardware and Connections 
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Figure 2.10 Control Terminal of CASE Cluster 
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CHAPTER 3 

RESULTS 

Using the methodology and program developed 10 chapter 2, the aeroelastic 

characteristics of several three dimensional test cases were investigated. The intent is to 

validate the distributed processing procedure for the STARS program suite and 

demonstrate how to implement the procedure on real test cases. All the examples shown 

here are commonplace with the aeroelastic literature and have already been analyzed by 

the STARS codes. 

The distributed processing will be shown to save significant time in all three test 

cases over the serial training signal and manually initiated density sweeps. All 

computational work was perfonned on CASE cluster. 

3.1	 AGARD 445.6 

The AGARD 445.6 wing configuration is a standard aeroelastic test case. It was 

investigated experimentally at NASA's Langley Research Center [Yates, 1987]. A view 

of the mesh is shown in Figure 3.1. The grid has 69,630 nodes and, 373,798 tetrahedral 

elements. 
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Tip 

Root 
Figure 3.1 Planfonn View of the AGARD 445.6 Test Case 

For this analysis only two mode shapes were used, the fIrst two eigenvectors of 

the natural vibration analysis of the structure. Since the flutter boundary of this case is 

known, the first two modes will sufficiently model the instability. These two modes 

represent first wing bending and first wing torsion, and are shown in Figure 3.2 and 

Figure 3.3. The wing bending of Figure 3.2 includes the original undefonned mesh for 

reference. The natural frequencies of the two modes are 9.6 and 38.2 Hz respectively. 

The simulation will be run at Mach 0.96 with standard air and a time step of 2.5E-4 

seconds. Since the model is in the transonic range, the Euler FEM model must be used to 

solve for the aerodynamics forces. 
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Figure 3.2 Mode 1, First Bending, ofthe AGARD445.6 Test Case at 9.6 Hz 

Figure 3.3 Mode 2, First Torsion, of the AGARD445.6 Test Case at 38.2 Hz 

3.1. 1 System Identification 

From Appendix A, the values of ratio and omega were set to 512.9 and 1.0l5E-4 

for this test case. 

3.1.1.1 Training Data Generated in Serial 

The serial training was run for 370 time steps. The training data from the serial 

generation is shown in Figure 3.4 and Figure 3.5. These two graphs show the input signal 

of in the general displacement of the mode and the forces results from those 
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displacements. The two figures should be view together as force changes on mode I due 

to mode 2 motions are depicted on the graph of mode I. The training required 8.4 hours 

on one node of CASE cluster. 

Serial Training Data (Mode 1) 
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Figure 3.4 Training Data for Mode I, First Bending, from Serial Generation 
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Serial Training Data (Mode 2) 
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Figure 3.5 Training Data for Mode 2, First Torsion, from Serial Generation 

The training data was used to generate a range of model with varying na and nb 

values. Using the training data as a standard the error was found for each model. The 

model with na of4 and nb of7 was selected for its low error of 0.000952 and 0.00174 for 

mode one and two respectively. This RMS error is found by using the displacement and 

force data from the training set as input to the forcing model. The output of the model is 

compared to the actual value from the training set. The error is found by summing the 

square of all errors then dividing by the number of data points in the training set. The 

square root of the average squared error is normalized with respect to the largest force on 

the mode. The error is expressed in Equation 3.1, whereIT is the force value from training 

data,IM is the force estimate of the model, fMAx is the largest force value for the mode of 

interest from the training set, and n is the number of data points in the training set. The 

error measurement is effectively a statement of the average error at each point nonnalized 
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by the largest force in the training set. So for mode 1 the average error is one thousandth, 

0.000952, of the largest single force value on mode 1. 

n 

Error = -=-- n _ (3".1)
fMAX 

The model predicted instability at 0.398 psi, with mode 1 diverging dynamically. 

This instability boundary is found by combining the aerodynamic forcing model. with the 

structural dynamics in a state space fonnulation. This readily allows eigenanalysis of the 

total system. Sequentially larger densities are used to scale the forcing function until one 

value causes an unstable eigensystem. This prediction agrees with experimental and 

computational values from the literature. 

3.1.1.2 Training Data Generated with Parallel Distribution 

For the parallel training two nodes of CASE cluster were used. Simulations were 

run for 200 time steps each. The training data from the parallel generation are should in 

Figure 3.6 and Figure 3.7. The two CASE nodes required 4.3 bours each to complete the 

job. 
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Parallel Training Mode 1 
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Figure 3.6 Training Data for Mode I of the Parallel Training Set 

Parallel Training Mode 2 
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Figure 3.7 Training Data for Mode 2 of the Parallel Training Set 
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Again the training was used to determine a variety of system models. The error 

was found for each mode compared to the combined training set. The model with the 

lowest error was the model with na of 4 and nb of 8. The error for 4-7 model the same 

model parameters used in the serial set, was slightly higher. In order to maintain 

consistency between the models, a 4-7 was used for the parallel training as well. The 

errors for that model were 0.000892 and 0.00241, with mode 1 dynamically diverging. 

The predicted flutter pressure is 0.402 psi. Which again agrees with the literature results. 

The comparison of time from serial and parallel is shown in Fi.gure 3.8. 
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~ 
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.c: 
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0. 2 
U 
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Serial' Distributed 

Figure 3.8 CPU Time to Generate Training Data for the AGARD445.6 

Since the parallel and serial training data agree on flutter prediction, the instability 

can be confirmed with a density study around the prediction. 

3.1.2 Density Sweep 

To confinn the predictions from section 3.1.1, a density sweep from below the 

flutter prediction to above it was run. The prediction of 0.4 psi yields a density of 
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0.55E-I0 s/~n~h . The values for the simulations around the flutter boundary are found in 
Tn 

Table 3.1. The free responses were run to 2000 time steps. 

Dynamic Pressure,
Test Condition Formula Density, P

Q
 

Below Model
 
0.80 x Prediction 0.440E-I0 sl~n~h 0.32 psi 

Flutter Prediction Tn
 

Below Model
 0.495E-I0 sl~n~h0.90 x Prediction 0.36 psi 
Flutter Prediction Tn
 

Model Flutter
 0.550E-I0 slinch1.00 x Prediction 0.40 psi 
Prediction in l
 

Above Model
 
1.10 x Prediction 0.605E-I0 sl~n~h 0.44 psi 

Flutter Prediction Tn
 

Above Model
 0.660E-I0 slinch1.20 x Prediction 0.48 psi 
Flutter Prediction in 3 

..
Table 3.1 The Initial Condittons for DenSIty Sweep of AGARD445.6 

All the free responses were started with the same initial condition, a small 

velocity on mode 1. Five nodes of CASE cluster were used to simulate the five free 

responses. The results of the five responses are listed in Table 3.2. Three simulations are 

compared in Figure 3.10 to Figure 3.12. 

Dynamic Pressure, q CPU (hours) Dampin2 on Mode 1. C 
0.32 psi 22.6 0.01276 
0.36 psi 22.4 0.01077 
0.40 psi 22.5 0.0025 I 
0.44 psi 22.6 -0.00141 
0.48 psi 23.1 -0.01274 

Table 3.2 DynamIC Pressures and the Dampmg for the AGARD445.6 

Using the data compiled from Table 3.2, the damping trend was derived. It is 

shown in Figure 3.9. Normally only fOUI points are used in the trend estimate; however, 

the five used here work well in a 4
th 

order relationship. Notice that the curve fit for the 

damping trend is not valid outside the range of data points used to generate it. 
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Damping Trend for AGARD445.6 
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Figure 3.9 Damping Trend for the AGARD445.6 

The damping trend predicts a flutter boundary at 0.422 psi. This matches very 

well with the values reported in [Yates, 1987]. It is a 5.5% difference from the system 

identification estimate.. This is with the uncertainty of the model. Reducing the time of 

the model may reduce the difference between the system identification and the density 

sweep estimates. 
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Motion on Mode 1 at 0.32 psi 
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Figure 3.10 Free Response on Mode 2 a.t 0.32 psi for the AGARD445.6 
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Figure 3.11 Free Response on Mode 2 at 0040 psi for the AGARD445.6 
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Motion on Mode 1 at 0.48 psi 
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Figure 3.12 Free Response on Mode 2 at 0.48 psi for the AGARD445.6 

3.1.3 Comparison of CPU time 

The time required for each response is listed in Table 3.2. A sequential run of all 

five would require 113.2 CPU hours. The use of five nodes of CASE cluster reduced the 

time be 79.6 percent. That translates into a speedup of 4.9 in the density sweep. The 

graph in Figure 3.13 shows how the computation was accelerated. 
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Time required to finish AGARD445.6 response simulation 
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Figure 3.13 Time Required to Finish AGARD445.6 Response Simulation 

The complete time required for both a system model prediction and confinning 

density sweep is shown in Figure 3.14. The difference between the serial method and the 

distributed parallel is 94.2 CPU hours. The parallel method is a 77% reduction 10 

computing time. By using Euler3d_dpp, four days of computation were saved. 
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Figure 3.14 Combined Prediction Time for AGARD445.5 
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3.2 2xl Plate 

In this test case, a three dimensional plate is used with the piston perturbation 

method to identify a flutter point and confirm it with free responses. The aluminum plate 

in this model is one tenth of an inch thick, with the standard properties of aluminum. The 

CFD grid is shown in Figure 3.15.The structural FEM analysis found six modesbapes of 

interest. They are shown in Figure 3.16. Tbe frequencies range from 589 to 1702 hertz. 

The fluid is standard air at Mach 2 with a time step of 4.565E-6 seconds. 

Since the distributed methodology should work with any valid CFD solver, the 

full Euler FEM solver was replaced with the piston perturbation model. The airflow over 

the elastic plate is at Mach 2; which Hunter [1997] found was within the valid range Jor 

the piston perturbation method. 

Figure 3.15 CFD Grid for the Aluminum Elastic Plate (top view) 
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Mode 1: 589 Hz Mode 2: 762 Hz 

Mode 3: 1071 Hz Mode 4: 1516 Hz 

Mode 5: 1533 Hz 

Figure 3.16 Modeshape and Natural Frequencies of the Elastic Plate 

3.2.1 System Identification 

Training data was generated using both parallel and serial techniques. For this test 

case the modified chirp was used. In order to sweep the correct frequency range with the 

necessary number of data points for an overdetermined system model, the ratio and 

omega values of the modified chirp were set to 4.75 and 8.535, respectively. The training 

input signals were run for a 1700 timesteps per mode. 
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3.2.1.1 Training Data in Serial 

Using cjdmd/3dsplice, a system model was generated using na of 0 and nb of 11. 

Since the piston theory does not use the previous force values in its calculations, the zero 

value of na is expected. The serial training data predicted dynamic instability at 39180.3 

psf The dynamic divergence of mode 3 is shown in Figure 3.17. The training data 

required 45.91 seconds to complete on one node of the CASE cluster described in section 

2.3. 
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Figure 3.17 System Identification Model Estimate of Flutter Point for Elastic Plate 

Using asemd/3d, the error was determined for mode. The error for the serial 

training was 0.0015366, 0.00077565, 0.000774, 0.000777, 0.000775, and 0.000775, for 

modes 1 to 6 respectively. So the mode with the greatest error in the serially trained 

model is 0.1 % on mode 1. The training data and model prediction are compared in Figure 

3.] 8. This graph only covers the effect of the input sif:,'Ilal on mode 1 to the forces on 

mode 1. This is the mode with the most error. Notice that the error is not readily apparent. 
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Comparsion of Training Data and Model Prediction, Serial� 
Training Data� 
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Figure 3.18 Comparison of Training Data and Model Prediction 

3.2.1.2 Training Data in Parallel Distribution 

The parallel training data was generated on six nodes of CASE cluster. The nodes 

required 8.06, 8.12, 8.19, 8.06, 8.08, and 8.17 seconds to finish. This is 17.8% of the time 

required for the serial simulation. The same model order from serial training was used to 

create a system model from the parallel trained data. This model predicted flutter at 

39179.9 psf as well. Using xnmeld the parallel training data was combined into a single 

time history for error calculations. The errors of the parallel based model were 0.000775, 

0.000775, 0.000775, 0.000775, 0.000775, and 0.000775. Interestingly, the error is that 

same on all six modes; however the prediction agrees with the serial training derived 

model. In the next section, it will be shown to agree with the density sweep results as 

well. 
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The training data developed in serial and parallel both predicted the same flutter 

point. This flutter point will be used to determine the initial densities of the density 

sweep. 

3.2.2 ConfIrming Density Sweep 

The flutter prediction of 39179.9 psf at Mach 2 yields an air density of 0.0162 

slugs per cubic foot, or 6.8 times the density of air at sea level. In order to confirm the 

instability of mode 3 at that pressure, a series of free responses was simulaterl. Seven 

responses were used in a range from seventy percent of the system model predicted 

flutter boundary to thirty percent above the boundary. The seven densities and associated 

pressures are listed in Table 3.3. The seven responses were run on seven nodes of CASE 

cluster. 

Dynamic Pressure,
Test Condition Formula Density, p 

Q 

Below Flutter 
Prediction 

0.70 x Prediction 0.01133 slug 
ft3 

, 

27425 psf 

Below Flutter 
Prediction 

0.80 x Prediction 0.01295 slug 
.ft

3 31343 psf 

Below Flutter 
Prediction 

0.90 x Prediction 0.01457 slug 
ft3 35261 psf 

Flutter Prediction 1.00 x Prediction 0.01620 slug 
ft3 39179psf 

Above Flutter 
Prediction 

1.10 x Prediction 0.01780 slug 
ft3 43097 psf 

Above Flutter 
Prediction 

1.20 x Prediction 0.01942 slug 
ft3 47015 psf 

Above Flutter 
Prediction 

1.30 x Prediction 0.02104 slug 
ft3 50933 psf 

. . ..
Table 3.3 The Imtial Conditions for DenSIty Sweep of the Elastic Plate 
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Using seven nodes of CASE cluster the free response of the seven densities was 

studied. The results are shown in Table 3.4. The damping of mod 3 is used, as it is the 

mode that the system model predicts will diverge. Analysis of the other modes showed 

that only mode I would decay above the flutter boundary, so any mode's damping trend 

should find the same instability point. 

Dynamic Pressure, q CPU seconds DamDin2 on Mode 3, e 
27425 psf 31.11 0.04514 
31343 psf 30.94 

, 
, 0.05463 

35261 psf 31.16 0.02596 
39179 psf 30.78 0.00271 
43097 psf 30.55 -0.00728 
47015 psf 30.78 -0.00567 
50933 psf 30.86 -0.00222 

Table 3.4 DynamIC Pressures and Damping for the Elastic Plate 

The data from Table 3.4 can be used to find a damping trend. The four points 

closest to the cross over point were used to fit a cubic function to the data. The results are 

shown in Figure 3.19. This trend line predicted a flutter boundary at 39879 psf. Thi trend 

is interesting in that it seems to indicate that the plate may return to a dynamically stable 

condition at higher pressures. This phenomenon is known to occur in aeroelasticity; 

however, this is most likely a result of projecting a curve fit outside its range of validity. 

The density sweep estimate is 2% off of the system identification predictions. This is 

within the uncertainty of a damping estimate. 
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Damping Trend of Free Responses for Elastic Plate 
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Figure 3.19 Damping Trend for the Elastic Plate 

3.2.3 Time Comparisons 

The elastic plate has six modes. From the time savings estimate in section 2.1.2.1; 

the parallel training should take 16.6% percent of the time a serial training set does. The 

serial training set required 45.19 seconds to finish. The parallel training took 8. I9 

seconds for the slowest processor. The parallel processing took 18.1 % of the time the 

serial did, a speedup of 5.5 over the serial method. This is shown in Figure 3.20. 
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Figure 3.20 Comparison ofParallel and Serial Training Generation Times 

This was an efficiency of only 92 percent for training signal generation. Density 

sweep results show a much better performance. The sweep required 31.16 seconds to 

finish. Using the fastest processor, 30.58 seconds, as the base line for the speed up, the 

speedup is 6.86. This is a 98% efficiency for the density sweep. This is shown in Figure 

3.21. 
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Figure 3.21 Parallel and Serial Free Response Set Simulation Times 

For the combined system identification and free response, the serial required 

259.76 seconds, while the parallel only needed 39.35 seconds. This is an 85 percent 

reduction of the time required to complete the analysis. 

3.3� Generic Hypersonic Vehicle 

The Generic Hypersonic Vehicle CGHV) consists of a typical hypersonic vehicle 

aerodynamic configuration with complicated structural modes. A long oblate fuselage 

with rear fins dominates the GHV. The fuselage base is blunt. Figure 3.22 shows the 

GHV geometry. The grid has 58,511 nodes and 321,755 tetrahedral clements. 
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Figure 3.22 GHV Geometry 

Nine structural modes were retained from the free vibration analysis with 

frequencies ranging up to 9.4 Hz. The simulation was run at Mach 2.2 using standard air 

and a time step of 5.3E-3 seconds in the Euler equation solver. 

3.3.1� Density Sweep 

The GHV posed an interesting possibility. This is the most structurally complex 

case tested in this work. Its nine modeshapes will need a large training set. It is possible 

that a straight density sweep could find the flutter boundary faster than a system 

identification model would. To test this, the density sweep was run before the system 

identification study. 

The starting pressure was set at 103.2 psi. This is 90 percent of the value reported 

by Cowan [1998] from a system identification study. The pressure increment was 
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arbitrarily set at 12.9 psi. Each time history was run to 320 time steps; this was enough 

for six cycles on the lowest frequency mode. The nine modes of the GHV result in nine 

damping values. To save confusion, and space, only the values for the second mode 'are 

listed in Table 3.5. In general, the mode of divergence is easily identified from visual 

inspection of the plotted time history. 

Dynamic Pressure, q CPU (hours) Dampin2 on Mode 2" e 
103.2 psi 2.26 0.03392 
116.1 psi 2.24 0.03746 
129.0 psi 2.30 0.03696 
141.9 psi 2.26 0.05131 
154.8 psi 2.31 -0.6 I 77E-04 
167.7 psi 2.22 -0.04274 
180.6 psi 2.28 -0.05290 
193.5 psi 2.27 -0.07259 

Table 3.5 DynamIc Pressures and the Dampmg of Theu Response for the GHV 

Looking at the damping trend, it appears that the dynamic pressure of 154.8 psi is 

the flutter point as its damping is near zero. To check that the damping values 'are 

reasonable the time history of the suspected flutter boundary and the pressure directly 

above and below are plotted in Figure 3.23, Figure 3.24, and Figure 3.25. 
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Motion on Mode 2 at 141.9 psi 
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Figure 3.23 Response of Mode 2 at 141.9 psi for the GHV 
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Figure 3.24 Response of Mode 2 at 154.8 psi for the GHV 
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Motion on Mode 2 at 167.7 psi 
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Figure 3.25 Response of Mode 2 at 167.7 psi for the GHV 

11 would appear .that the 154.8 psi response is neutrally damped. In aeroelastic 

prediction this should be an acceptable value. For the purpose of this study, assume that 

the 141.9 to 167.7 psi range must be investigated for more resolution. Since the cluster 

finished this sweep in about 2.3 CPU hours, an aeroelastic analyst might decide to spend 

that second half of the day refining the prediction. A second sweep, dividing the pressure 

range into 8 new pressures was set up. The results of that pres ure sweep are in Table 3.6. 

Dynamic Pressure, q CPU (hours) Dampine on Mode 2, , 
141.9 psi 2.26 0.05131 
144.8 psi 2.24 0.04624 
147.7 psi 2.23 0.05485 
150.6 psi 2.29 0.06916 
153.5 psi 2.25 0.001982 
154.8 psi 2.31 -0.6 177E-04 
156.3 psi 2.29 0.00090 
159.2 psi 2.23 -0.01632 
162.1 psi 2.26 -0.03071 
165.0 psi 2.28 -0.02903 
167.7 psi 2.22 -0.04274 

Table 3.6 Refined Pressures and the Dampmg of Thelf Response fOf the GHV 
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From this refined study, the flutter point clearly lays between 153.5 and 159.2 psi. 

The flutter prediction can be set at 153.5 psi with a high degree of confidence. The time 

histories for the four pressures in the range are shown in the following figures. 

Motion on Mode 2 at 153.5 psi 

0.5 ­

c -Q) 

E 
Q) 
U 
III -1is. 
ell 

C 
~ 
Q) 

.t:! -2� 
iG� 
~ 
Q) 
c 
Q) 

C> 

-3.5 ­

Generalized Time 

Figure 3.26 Response of Mode 2 at 153.5 psi for the GHV 
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Figure 3.27 Response of Mode 2 at 154.8 psi for the GHV 
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Motion on Mode 2 at 156.4 psi 
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Figure 3.28 Response of Mode 2 at 156.4 psi for the GHV 
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Figure 3.29 Response of Mode 2 at 159.2 psi for the GHV 

The first sweep of pressures required 2.31 CPU hours to complete, the longest 

time of any node to finish. The second required 2.29 CPU hours. If all the response had 

been run in serial the total time would be 36.21 CPU hours, 18.] 4 in the first sweep and 
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18.07 in the second sweep. This is best represented in the bar graph of Figure 3.30. The 

distributed parallel processing completed the task in 12.7 percent of the time a s rial job 

would require. Finding the speed, the inversion of time, that is a speedup of 7.87 over a 

single processor. The parallel processing with 8 processors achieved 98.4 % efficiency 

with respect to the average speed of the processors in the cluster. This imperfect 

efficiency is due to the parallel sweep waiting on the slowest processor to fmish. 

Figure 3.30 Time Required to Find a Prediction Using a Density Sweep 

The density sweep required 2.31 CPU hours to find the flutter point. Since the 

GHV has nine modes it is a likely candidate for the possibility that the density sweep 

requires less time than the system identification technique. 

3.3.2 System Identification 

Using the same time step and flow conditions as the density sweep, the system 

identification training data was generated in parallel for the GHV. The ratio was set at 
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64413.191, the omega at 7.894E-8 and the displ at 0.10. The GHV was set to run on .the 

eight cluster nodes. For this test a ninth identical computer was added to the cluster. The 

nodes required 3.24, 3.25, 3.30, 3.20, 3.33, 3.27, 3.22, 3.23, and 3.28 CPU hours to 

simulate the response to the input signals. The average was 3.26 hours. Even without 

accounting that the duster should only have eight nodes, the system identification 

required more time than the initial density sweep. If the two shortest times for system 

identification are added to simulate the effect of trying to run nine simulations on a 

cluster with eight processors, then the time to complete the training data is 6.42 CPU 

hours. This is longer than the time needed to find the refined density sweep prediction. 

Figure 3.31 shows the relationship between the number of modes of a test case the time 

to develop the system identification training data. The time for the refined density sweep 

is marked as a comparison. This figure assumes that as many processors as needed are 

available. 

Comparison of Time for Density Sweep 
and System Identification 
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Figure 3.31 Time Comparison of Density Sweep and System Identification, GHV 
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Even though the system identification should take longer than the density sweep, 

it may be of interest for studying changes in the internal structure or of control scheme 

development. The asemd13d module found that a model of 2-] 5 fit the data best. This 

model had a scaled RMS error of 0.242E-04, 0.202E-05, O.974E-05, 0.571E-05, 0.53 IE­

04, O.394E-04, 0.579E-04, O.397E-05, and 0.250E-05 on the respective mode. Since the 

density sweep indicted a flutter boundary around 150 psi the stability of the combined 

system identification model and structural dynamics solver was checked from 0 psi to 

200 psi. The sweep of densities is shown in Figure 3.32. 
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-"Figure 3.32 System Identification Model Estimate of Flutter Point 

Since the GHV structural mode has no damping, the modes all start on the unit 

circle at zero dynamic pressure. Although it is difficult to see the second and third modes 

cross within the unit circ.le and proceed out to unstable eigenvalues. Just as in the density 

sweep, mode two diverges first. However the mode diverges at 133 psi in this model. 

This is a difference of 14 percent from the density sweep value. It is still below the flutter 
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boundary and is a safe estimate. The difference is most likely related to the relatively 

course time step used for the GHY. It has been found that the more refined a time tep 

used the closer a system model response is to the actual physical characteristics. 
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CHAPTER 4� 

CONCLUSIONS AND RECOMMENDATIONS� 

4.1 Conclusions 

The distributed processing technique presented here has been shown to be an 

efficient method to accelerate the prediction of flutter boundaries with either system 

identification or dynamic pressure sweeps. Both transonic and supersonic test case were 

used and shown to agre.e with experimental and previous computational results. It was 

also shown that the principle of distributed processing holds regardless of CFD solver 

used. 

Distributed parallel processing was chosen as the best method for this study for 

several reasons. First, it can be implemented without any changes to the flow olver. 

Secondly, it does not depend on which flow solver is used for improvement in turnaround 

time for flutter prediction. So, it can be applied to any flow regime Of structural model. 

Finally, the only requirement for effective use of the distributed batch proce sing is 

multiple computers of comparable speeds. 

The assembly of a computer cluster to help complete training data generation and 

free response simulation more quickly has a second advantage of allowing work to 

progress on more than one test case at the same time. In past studies, progress on 

secondary projects was limited to the use of legacy hardware deemed unsuitable for the 

primary task at hand. With properly configured computer clusters, any nodes not required 
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for the priority job can be assigned to other tasks. This increases the "bandwidth" of an 

aeroelastic analysis group by allowing significant progress on multiple t st cases. 

Finally, the efficiencies reported here compare favorably to results listed in the 

literature to full parallel domain decomposition techniques. Geuzaine [2003] reported an 

efficiency of 91 % for a Navier-Stokes code using 6 nodes to resolve the solution for one 

flight condition. The GHV test cases had 98.4% efficiency for the overall prediction of 

the flutter boundary. 

4.2� Recommendations 

Based on the results presented, several areas are recommended for further 

investigation. First, a more methodical approach to density sweep should be developed. 

At current, most literature uses known experimental values to determine starting values 

for density sweeps. This is not a practical approach to real world problems, as aeroelastic 

analysis has little value if the solution is already known. Some techniques for tbi could 

be a modified bisection search, or searches based on exponentially increasing den ities. 

One area of obvious interest is the division of the training input signal on a single 

mode into multiple parts. This would carry batch processing further by allowing every 

available computer to be used with no nr maximum. This is most obvious on test cases 

like the AGARD445.6. The test case has only two modes. CASE cluster has eight nodes 

for use. If the training input signal could be divided into four parts the training data could 

be finished in a fourth of the time of the current implementation. 

Dynamic pressure is a function of both density and fluid velocity. Due to the 

relationship of density to pressure the density can be easily removed from the non­
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dimensional flutter predictions. The speed, or Mach number. cannot be isolated so easily. 

System identification of the aerodynamic forces due to Mach number is not as 

straightforward as relating force to density. Distributed batch processing offers a method 

to perform a study on the effect of Mach number with a reasonable time frame. Using the 

same method as the density sweep multiple Mach numbers can be studied. This would 

require software to automate the solution of steady state values for each Mach number 

and then apply initial conditions to generate the free response. 

Finally, distributed processing offers the option of generating the training data for 

nonlinear system models with an acceptable time frame. With multiple simulations, the 

system model does not need to assume linear superposition of the mode shapes. Each 

node can run a different combination of modal motions to cbaractedze the system. 
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APPENDIX A� 

SOFTWARE OPERATIO� 

A.I Overview of Euler3d 

Until recently, the STARS suite of programs lacked a flow solver capable of flow 

solutions in non-inertial frames of reference. In 2001, Cowan developed a l1ew 

computational Euler based flow solver capable of handling dynamic rotations. In addition 

the addition of the non-inertial frame, the algorithm was improved and the input file 

fonnats simplify from previous STARS flow solvers. This appendix has a brief overview 

of the operation of Euler3d. This overview is intended to explain the difference between 

Euler3d and Euler3d_dpp. 

A.I.I Input Files 

The new Euler3d_dpp was designed to work with existing Euler3d standard 

fonnats. As such the fonnat of the input files bas remained the same. The only changes 

have been to the control file, case. con. The new flags are listed here with there effects. 

The following three values control the generation of training data for system 

identification. The method for determining the correct values for the three parameters is 

covered in A.2. 

• omega - This value determines the rate of frequency (00) sweep. 

• displ - This value determines the magnitude of displacement. 
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• ratio - This value determines the length of the training signal. 

There is only one parameter to adjust when running a sweep of several densities to 

confmn a system identi.fication prediction. 

•� delrho - This is the increment of density. The value of the density on any 

given node ais delrho x a+ rhoinf. 

The following two parameters are logical, true or false, controls. 

•� iwrite Detennines the recording of full solution files from nodes other 

than O. 

•� irsds This option is disabled III Euler3d_dpp. It controls the residual 

study command. If an unexplained error occurs during the first step of 

euler3d_dpp, this value may be set to true. If so change to false and this should 

correct the error. NOTE: It is possible to perform a residual study in Euler3d_dpp, 

but use one and only one node. 

A more detailed discussion of how to find the value for parallel parameters is 

given in section A.2. In addition to these new flags, new options have been added for 

I BXN in the vector file, case. vee. In particletre, the values 6 and 7 which induce a 

modified and offset modified chirp signal. 

A.2 System Identification Parameters 

This section was copied from a MathCAD worksheet, which IS used to find 

omega and ratio for the chirp-training signal. 
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Begin by selecting the largest ARMA model to investigate and set number of modes. 

na = number of aerodynamic terms 

nb = number of body displacement terms 

nr = number of elastic modes for the model 

overdetermined% ( E) = the percentage of data points to use to over 

determine the system, i.e. 400 percent is 4 data points for every parameter. Then 

find the number of data points needed by using Equation A.I. 

datapts = (nr 2 
. nb + nr· no). ~ 

100 

Example: 

na := (: 

nb := 3C 

nr:= 2 

overdetermined% := 100f� 

2 ) overdetennined%� 
NumPtsNeeded:= (nr ·nb + na·nr .-----­

100 

NumPtsNeeded = 1320 

Next, input the highest structural frequency and minimum number of points per cycle. 

Using these values, find the non-dimensional time step for the ARMA model. 

fmax = highest natural frequency of structural mode ( in Hertz) 

minpts = number of points per cycle of the fmax mode 

M = Mach number 
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ainf = Speed of sound (in inches per second) 

refdim = reference dimension (usually set to 1 inch) 

Using Equation A.2, find the time step. 

1t=----­d (M. a inf J 
f MAX . mnpts refdim 

Continued Example: 

minpts := 10( 

M:=O.~ 

ainf:= 129l< 

refdim:= 1 

dt :=---­
real f .minpts

max 

. -4 in secondsdtreal = 4 x 10 

M·ainf� 
dtstar := dtrear--.­�

refdlm 

dt = 2.4 dt of the case. con file; dt can be smaller, but not 

larger 

The number of points in a training signal can be determined by dividing the Dumber of 

points needed for an overdetermined model by the number of mode shapes. 

. NumPtsNeeded
MmPtslnChirp := ~----­


nr� 

MinPtsInChirp = 660 
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Now, ratio can be found by multiplying the number of data points in a training signal 

by the time step. 

ratio := MinPtslnChirp·dt 

ratio = 1584 

This is ratio for the case.con file. 

Find omega, the rate of frequency sweep, by setting the multihigb as a faction of the 

minpts per highest cycle, this prevents the chirp going beyond the Nyquist frequency. 

. ' minpts
mult~igh :=-­

10 

mult~igh = 10 

Find the Nyquist frequency angular value: 

1 21t 
(J) '= -.­

nq' 2 dt 

(J}nq = 1.309 

This formula finds the rate of the frequency so tbat the frequency sweep ends a 

frequency equal to the Nyquist divided by the value of multihigh. In this case it is a 

tenth of the Nyquist.· 

1 
(J):= CJ.) .-.-­

nq multiL· h 2 ratio . mg 

-5 
(J) = 4.132x 10 

This is omega for the case.con file. 

The number of time steps to run the training signals for both serial and parallel 

generation. 

Total points of the training signal: 
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2Q.M + (or + O.I)·ratio
TotalPoints := 

dt 

TotalPoints = 1406 

For a standard chirp without parallel processing this is nstp. 

2Q.dt + (l.05)·ratio
TotalPoints Parallel:= .=...:...-=-------'--.:.--­

- dt 

TotalPoints_Paral1el = 713 

For a Parallel processed chirp, this is nstp. 

Notc: Both omega and ratio should be entered into the control file as double 

precision values. 

Example: 

omega = O.1203E-6, 

ratio = 2107.0dO, 

A copy of this document In both MathCAD and Abode Acrobat formats IS 

available at www.caseLab.okstate.edu. 

A.3 Using Euler3de-dpp 

This section handles the detai Ls of starting EuLer3d_dpp. This section assumes that 

the steady state solution, grid file and mode shape displacements are already available 

and correct. It also assumes that NT-MPICH has been installed on all computers with in 

the cluster and is working properly. See section B.2 for instructions on setting up the NT­

MPICH services on a Windows machine. 

Rexecshell . exe - This is the graphical interface to the MPI software. 

1. Start the Rexecshell . exe program. 
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2. If the dialog pops up a box asking to use machines. txt, answer it. This 

usually means that the computers, or machines, you will be using have been 

listed in a convenient file. If you don't use this file, the program will 

automatically search the connected networks for machines that support the MPI 

protocol. If the machine is connected to a large network, like those found at most 

universities, it will take some time to finish. 

3.� Open the configure dialog box from File --+ Configure... 

4.� Select the machines you wish to use form the list under Available hosts. A 

computer can be selected multiple times. Try to find a balance so that all the 

machines will finish at about the same time. 

5.� Underthe Basic tab, select ch_wsock from the drop down menu for Active plug-

in. On the same tab, type in the path to the euler3d_dpp. exe program in the 

program field. In the working directory field type the path to the directory with 

the test case. Alternatively, these can be selected from the drop down menus. 
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6. On the account tab, type in the usemame, password and domain for the user 

account that will be used to run the distributed test case. The domain is most offer 

local. 

7.� Select OK in the dialog box. Then click the start button. 

~ Rexec Shell 
START 

'1------ CLOSE ALL 

File� Window Help 

1lJ nI~ ~gj
 
I KILL�Hosts 

8.� In the window for node number 0, the master node, the node will be waiting for 

the name of the test case. Select the window and type in the name. Press <Enter>. 

All the nodes should run without need for user input from this point. 

9.� When all nodes report that the simulations are complete, press the kill button to 

release the nodes. The shell can be used to initiate a new set of simulations. 
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A.4 EUler3d_dpp Output Files 

This section covers the output files from Euler3d_dpp. There are three sets offiIes 

that can be generated with distributed Euler. Note that the case#.lds and case#.un## files 

are only generated if iwrite is set to true. 

xn.dat# These files contain the displacement, velocity and accelerations on 

each mode shape from each node used by the cluster software. The 

# indicates which node generated the file. 

case#.lds These files contain the aerodynamic loads on the solid walls on the 

test case. The # indicates which node generated the file. 

case#.un## These files contain the nodal values for the primitive flow 

variables for each node in the computational grid. The # indicates 

which node generated the file. The ## indicates the sequence of the 

solution files. 

A.S� Euler3d_dpp PostPrecessors 

The operation of glplot3d. exe is the same was with regular Euler3d. 

However, in order to view the solutions the input files case.con, case. vee and case. un##­

must be rename to case#.con, case#. vee, and case#.un##. This allows glplot3d to know 

from which node it should get the solution. 

The following section was originally written as instructions on determining the 

best ARMA model for a training set. 
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I. Copy each xn.dat# to train.dat#. Note that the file xn.datO should be renumbered to nn, 

where nn is the number of nodes used in for Euler3d_dpp. Don't rename the files; copy 

them to the new file name. They will be used again later. 

2. Run cfdmd13dsplice. exe 

a.) Select option 4 = Generate MULTIPLE spliced aerodynamics 

models 

b.) Input the range of na and nb that was used to determine the chirp signal 

length 

c.) When finished note the number of models produced. This is listed at the very 

end of the run 

3. Run xnmeld. exe. Input the number of xn.dat# files and nr as prompted. This will 

produce an new file called xn.dat. 

4. Run asemd13d. exe 

a.) Select option 5 = RMS Error Study of Force Response 

b.) Input the number of models from 2c 

5. Using EXCEL, open the RMS.dat file. The last two columns of thi.s data are both 

measures of how well a model matches the training signal. Find the model that has the 

lowest value for each measure. It is possible that the same model is the lowest in both, 

but not necessarily true. The models are mostly likely similar. (NOTE: the quickest way 

to sort the data file is use the "Sort Ascending" command in EXCEL. This is usually on 

the toolbar as a down arrow next to an A above Z.) 

6. Run cfdmd13dsplice. exe 

a.) Select option 1 = Generate Single aerodynamics models 
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b.) Input the na and nb of one of the models found in step 5 

7. Run as emd13 d . exe, to find the flutter boundary of this model 

a.) Select option 1 = Compute eigenvalues of coupled system 

b.) Input a dynamic pressure well below the flutter boundary (usually 0 IS 

selected) 

c.) Input a course resolution for the dynamic pressure increment 

d.) Input a number of increments that will test a dynamic pressure well above 

where the fluttery boundary is believed to be 

e.) The program will output the first dynamic pressure that results in an unstable 

system 

f.) If the program did not fmd an unstable system, mcrease the number of 

increments until one is found 

g.) Rerun asemd13 d . exe with better resolution between the unstable pressure 

and the next lowest pressure in the increment set 

h.) Repeat part g until the fluttery boundary is detcnnined to the required 

resolution 

8. Confinn that the structural mode shapes cause the flutter boundary, not instability in 

the aerodynamic or body motion models. This is best done by running asemd13d. exe, 

option 1 for the selected model from a dynamic pressure of zero to beyond the flutter 

boundary. Using gleigplot. exe, look at the eigenvalues (case.eig). The structural 

modes should move from close to the unit circle (right on it if the structure has no 

damping) to outside of the circle (not necessarily by a straight line, they may move in 

then out). If any other type of eigenvalue is the cause of the instability, then this is not a 
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valid model of the coupled aerodynamic/structural system. Try another model that 

matched the forced response well. 

9. Run asemd13d. exe 

a.) Select option 3 = Model sensitivity study 

b.) Input a range of dynamic pressure with the required resolution around the 

flutter point that was found in 6 

c.) Input the number of models from 2c 

d.) The program tests every model with dynamic pressures in the specified range 

to find the fluttery boundary, so it may require a several minutes to a few 

hours 

10. Open sensitivity.dat. The file contains the results from 7. Using the data from 

RMS.dat, the models with low error should all have nearly identical flutter boundaries, 

within -25 percent. This group of valid models should be readily apparent 

11. Confirm the flutter boundary with free response in Euler3d_dpp. exe. Run a case 

of free response above the flutter boundary and one below to confirm that the flutter 

prediction is valid. These cases should be within the acceptable range of error for the 

flutter boundary. 
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APPENDIXB� 

CLUSTER DESIGN AND ASSEMBLY� 

The impetus to design and build a cluster of inexpensive personal computers to 

solve large-scale nonlinear aeroelastic problems cam.e from discussion about maximizing 

computational perfonnance within a set monetary budget. That discussion lead to the 

development of a mathematical model that found the best computer configuration for the 

most processing within the set budget. This appendix details how the computers were 

selected and how the computers were assembled into a cluster. 

B.l Component Selection 

The original purpose of the software was to reduce the time required to generate 

training data for complex structural models. Knowing how the software wou Id operate, 

the speed of the cluster could be evaluated using existing Euler3d benchmarking 

software. Using the benchmark predictions, the current cost of a machine, and estimate 

for the cost of cluster networking and the known budget, a systematic search was done to 

find the best cluster design. Table B.l contains the results of the search for five di fferent 

Intel Pentium 4 processors. The benchmark results are in time steps per second, the 

higher the better. The computers column represents the number of computers that be 

purchased within the budget. 
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Processor Number ofComputers Benchmark Estimate 

2.26 10 6.10 

2.40 9 5.85 

2.53 9 6.84 

2.66 8 6.40 

2.80 7 5.85 

Table B. 1 

The search identified the Intel Pentium 4 2.53 GHz processor as the best option 

for creating a cluster of personal computers. The motherboard, memory, hard disk and 

chassis/power supply selections were made to reduce the cost further. It is important to 

note that the selection of motherboard and memory was made to remain in budget and to 

get the best possible memory assess speed. Table B.2 lists the components selected. The 

motherboard should also include video and fast Ethernet ports. 

Processor Intel Pentium 4 2.53 GHz 

Memory 2 x DDR333 512MB 

Motherboard Asus P4GE-V/L 

Hard Disk Maxtor 30.0 GB 7200RPM ATA133 

Computer Case Avance Corp's BL6004 

Table B. 2 

Node selection is a straightforward attempt to optimize benchmark versus price of 

the cluster. The other major component in a cluster is the networking medium. In general 

for parallel batch processing, like Euler3d_dpp, the speed ofthe medium has only a small 
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effect on the performance of the cluster. So the least expensive form of networking 

several computers together should be selected. However it is important to consider that 

batch processing is usually a first step toward paral1el processing of a single simUlation. 

For paral1el schemes where several processors are working on the same simulation, 

communication speed is important. The network switch should be able to handle high 

volume traffic quickly, and allow expansion of the cluster. For the cluster, the HP 

procurve 2124 fast Ethernet switch was selected. The cluster will start with only 8 nodes, 

but the switch has 24 ports al10wing expansion in the future and temporary addition of 

extra machines. 

In order to speed up assembly and reduce administration of the cluster, a 

commercial DHCP server and firewall was purchased, the Netgear FRl14P. A KVM, 

keyboard/Video/Mouse, switch was used to allow users to control each node individually. 

This effectively completed the components of the cluster. However, Unintenuptible 

Power Supplies, UPSs, were used to handle power spikes and power loss. 

B.2 Cluster Assembly 

Once the components for the nodes arrived, assembly preceded one machine at a 

time. Each part was visually inspected. Then the pieces were assembled. Each 

motherboard was removed from its protective packaging. A CPU was opened and 

mounted on the motherboard. Two sticks of memory were installed. The motherboard 

was attached the computer chassis and screwed down. 

With two people working assembly only required four hours. As each computer 

was fmished, it was powered up and allowed to run it's self-test. For this cluster, CD­
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ROM drives were used to install Microsoft Windows 2000 Professional on each machine. 

However, Windows 2000 Server has an optional service that allows the installation of 

operating systems over a local area network. It is recommendation that this service be 

used if possible. As the operating system is install, make sure that a user account is 

created that will allow the master node to start programs on all slave nodes. 

Once Windows was installed all cluster nodes, NT-MPICH was installed on each 

node. The software package was unzipped on a network drive. The service was installed 

on each node individually by running rcluma-install. bat from the network drive. 

The dynamic link libraries from the lib directory of the unzipped NT-MPICH were 

copied on to each computer. Alternatively, the PATH system variable could be changed to 

include the network drive containing them. The cluster was ready to process MPI based 

programs. 
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