
ACCELARATING COMPUTATIONAL FLUID DYNAMICS BASED

AEROELASTIC ANALYSIS USING DISTRIBUTED

PROCESSING

By

ANTHONY ANDREW BOECKMAN

Bachelor of Science

Oklahoma State University

Stillwater, Oklahoma

200J

Submitted to the Faculty

of the Graduate College of

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of

MASTER OF SCIENCE

May, 2003

ACCELARATING COMPUTATIONAL FLUID DYNAMICS BASED

AEROELASTIC ANALYSIS USING DISTRIBUTED

PROCESSING

_~A.~

~th{t"Graduate College

11

ACKNOWLEDGEMENTS

I would like to express my deep gratitude to Dr. Andrew Arena. Without his

guidance and assistance, I could not have completed this work. I want to thank the other

members of my thesis committee, two excellent instructors, Dr. P. M. Moretti and Dr. R.

D. Delahoussaye.

I wish to thank the department of Mechanical and Aerospace Engineering, whose

grant of assistantships helped support me during my graduate education. The support of

the National Ajr and Space Administration's Space Grant program was invaluable as

well. Special thanks goes to NASA's Dryden Flight Research Center for their support of

this work.

I want to thank my parents, Tony and Jean, for their support., encouragement and

teaching me to accept challenges. Finally to my sisler, L. C, who never fails to amaze

me.

iii

TABLE OF CONTENTS

SECTION PAGE

1 INTRODUCTION 1

1. 1 Background : .. 1

1.2 Motivation for the Study 3

1.3 Problem Statement 6

1.4 Literature Review 7

1.4.1 Numerical Flow Solutions 7

1.4.2 System Identification 9

1.4.3 Parallel and Distributed Processing 15

1.4.4 Parallel and Distributed Processing in Aeroelasticity 17

1.5 Feasibility 20

1.6 Research Objective __ .24

2 METHODOLOGY __ 25

2.1 Applications of Distributed Processing to Computational Ael'oelasticity .25

2.1.1 Density Studies at Constant Mach Number 25

2.1.2 Training Data Generation for System Identification 30

2.2 Software Dcvelopment. 33

2.2.1 Software Functionality 33

2.2.2 Algorithm Description 34

2.2.3 PostProcessing Programs 37

IV

2.3 Cluster Design 39·

3 RESULTS 48

3.1 AGARD 445.6 48

3.1.1 System Identification 50

3.1.2 Density Sweep 55

3.1.3 Comparison of CPU time 59

3.2 2x1 Plate 61

3.2.1 System Identification 62

3.2.2 Confirming Density Sweep 65

3.2.3 Time Comparisons 67

3.3 Generic Hypersonic Vehicle 69

3.3.1 Density Sweep 70

3.3.2 System Identification 76

4 CONCLUSIONS AND RECOMMENDATJONS 80

4.1 Conclusions 80

4.2 Recommendations 81

BIBLIOGRAPHy - 83

APPENDIX A SOFTWARE OPERATION 86

APPENDIX B CLUSTER DESIGN AND ASSEMBLY 98

v

..

LIST OF TABLES

Table 2.1 Density Sweep Damping Estimates 30

Table 2.2 Heterogeneous Network Time Example 32

Table 2.3 Homogeneous Network Time Example 33

Table 2.4 Table of CPU Comparison for Cluster Performance 43

Table 3.1 The Initial Conditions for Density Sweep of AGARD445.6 56

Table 3.2 Dynamic Pressures and the Damping for the AGARD445.6 56

Table 3.3 The Initial Conditions for Density Sweep of the Elastic Plate 65

Table 3.4 Dynamic Pressures and Damping for the Elastic Plate 66

Table 3.5 Dynamic Pressures and the Damping of Their Response for the GHV 71

Table 3.6 Refmed Pressures and the Damping of Their Response for the GHV 73

Vi

LIST OF FIGURES

Figure 1.1 Diagram of a Computational Aeroelastic Simulation 2

Figure 1.2 Aerostructures Test Wing CFD Grid ·.·· ·.· .. · 4

Figure 1.3 Projected Future processor Performance 6

Figure 1.4 3211 Multistep Training Signal.. 13

Figure 1.5 Modified Chirp Input Signal 14

Figure 1.6 Offset Modified Chirp Input Signal 15

Figure 1.7 The AGARD445.6 training data generated in serial 20

Figure 1.8 AGARD eigenvalues for q of0.01 to 1.00 psi, (serial training) 21

Figure 1.9 The AGARD445.6 training data generated in parallel 22

Figure 1.10 AGARD eigenvalues for q of 0.01 to 1.00 psi, (parallel training) 23

Figure 2.1 Time History Example 28

Figure 2.2 Graph of Damping versus Density 30

Figure 2.3 Parallel Software Architecture oflhe Euler3d_dpp Program 35

Figure 2.4 Euler3d_dpp Flow Chart 37

Figure 2.5 Benchmark Data for the Eulcr3d Program, Windows Operating System 4]

Figure 2.6 Benchmark Rating verses CPU Frequency 42

Figure 2.7 Diagram of CASE Cluster's Networking Hardware 44

Figure 2.8 Diagram of CASE cluster's KVM Hardware and Connections 45

Figure 2.9 Assembled CASE Cluster. · 46

Figure 2.10 Control Terminal of CASE Cluster 47

VIl

Figure 3.1 Planform View of the AGARD 445.6 Test Case
 49

Figure 3.2 Mode 1, First Bending, of the AGARD445.6 Test Case at 9.6 Hz
 50

Figure 3.3 Mode 2, First Torsion, of the AGARD445.6 Test Case at 38.2 Hz
 50

Figure 3.4 Training Data for Mode 1, First Bending, from Serial Generation
 51

Figure 3.5 Training Data: for Mode 2, First Torsion, from Serial Generation 52

Figure 3.6 Training Data for Mode 1 of the Parallel Training Set 54

Figure 3.7 Training Data for Mode 2 of the Parallel Training Set 54

Figure 3.8 CPU Time to Generate Training Data for the AGARD445.6 55

Figure 3.9 Damping Trend for the AGARD445.6 57

Figure 3.10 Free Response on Mode 2 at 0.32 psi for the AGARD445.6 58

Figure 3.11 Free Response on Mode 2 at 0.40 psi for the AGARD445.6 58

Figure 3.12 Free Response on Mode 2 at 0.48 psi for the AGARD445.6 59

Figure 3.13 Time Required to Finish AGARD445.6 Response Simulation 60

Figure 3.14 Combined Prediction Time for AGARD445.5 60

Figure 3.15 CFD Grid for the Aluminum Elastic Plate (top view) 61

Figure 3.16 Modeshape and Natural Frequencies of the Elastic Plate 62

Figure 3.17 System Identification Model Estimate of Flutter Point for Elastic Plate 63

Figure 3.18 Comparison of Training Data and M ode] Prediction 64

Figure 3.19 Damping Trend for the Elastic Platc 67

Figure 3.20 Comparison of Parallcl and Serial Training Generation Times 68

Figure 3.21 Parallel and Serial Free Response Set Simulation Times
 69

Figure 3.22 GHV Geometry
 70

Figure 3.23 Response of Mode 2 at 141.9 psi for the GHV
 72

VIII

-

Figure 3.24 Response of Mode 2 at 154.8 psi for the GHV 72

Figure 3.25 Response of Mode 2 at 167.7 psi for the GHV 73

Figure 3.26 Response of Mode 2 at 153.5 psi for the GHV 74

Figure 3.27 Response of Mode 2 at 154.8 psi for the GHV 74

Figure 3.28 Response of Mode 2 at 156.4 psi for the GHV 75

Figure 3.29 Response of Mode 2 at 159.2 psi for the GHV 75

Figure 3.30 Time Required to Find a Prediction Using a Density Sweep 76

Figure 3.31 Time Comparison of Density Sweep and System Identification, GHV 77

Figure 3.32 System Identification Model Estimate of Flutter Point.. 78

IX

-

NOMENCLATURE

Q- Speed of Sound

ARMA ~ AutoRegressive Moving Average

CAE ~ Computational AeroElasticity

CASE ~ Computational AeroServoElasticity

fa(k) ~ generalized aerodynamic force at time k

M ~ Mach number

N ~ Total number points needed for a training set

Np ~ Number of points in a single mode's training set

na ~ number of past outputs required in ARMA model structure

nb ~ number of past inputs required in ARMA model structure

nr ~ number of eigenvectors used in the modal structural model

q ~ dynamic pressurc

STARS ~ STructural Analysis RoutineS

SVD ~ Singular Valuc Decomposi I ion

x(k) ~ general izcd modal displacement at time k

T/TolaJ ~ total benchmark cycles per second of a cluster

T/Sinj(h' ~ total benchmark cycles per second of a cluster node

p ~ density

x

CHAPTER 1

INTRODUCTION

1.1	 Background

Aeroelastic phenomena result from the combination of aerodynamic, inertial and

elastic forces. The coupling of these forces can lead to destructive motions in aircraft,

such as wing flutter. The identification of the points of static and dynamic divergence in

an aeroelastic system has become a driving research goal in modern aircraft design.

Digital computing has aUowed the modeling of complex aerodynamic and

structural systems. The combination of these two systems leads to a simulation of the

aeroelastic response of a flexible structure under aerodynamic loading. The acrodynamics

model predicts force loading due to the shape and rate of motion of the structure. Thc

structural model predicts the shape and ratc of motion duc to thc aerodynamic forces

applied. The results of one system are feed into thc other as new inputs. The resulting

aeroelastic simulation aUows the complete modeling of an aircraft's aeroelastic

characteristics. Figure 1.1 Shows a diagram of a computational aeroelastic simulation.

Unsteady... Aerodynamic ...
Fluid ...

ForcesSolver
Initial Output

~ r--.Conditions Values

StructuralDisplacement
~ Dynamics I+­

and Velocity
Solver

Figure 1.1 Diagram of a Computational Aeroelastic Simulation

The advancement of computation speed has allowed the use of CFD algorithms to

simulate the aerodynamics forces. A Navier-Stokes or Euler flow solver coupled with a

FEM or modal structural solver can produce highly accurate predictions of aeroelastic

responses. Due to the computationally intense natural of CFD, the prediction of the

aeroelastic behavior normally requires a time span on the order of days. Further

worsening the problem is that a single simulation is not sufficient for a prediction.

Several respons'es must be analyzed to bracket and estimate the instability. In essence, a

sensitivity study is run to determine the effect of changes in dynamic pressure on the

stability of the aeroclastic system. This process of running InU Itirle simulations is both

computationally and time intensive. Furthermore, the solution estimate must be refined to

a certain resolution. The need for resolution requires search techniques that use the results

of previous simulations in determining candidates 1'01' better resolution. This further slows

down the dynamic pressure sweeps. This process can take weeks to months to finish; a

time frame that is unacceptable for flight-testing purposes.

One method of accelerating the identification of divergence points is system

identification of the aerodynamic forcing. This method aLLows the substitution of a linear

2

model for the finite element CFD algorithm. This moves the time required for predictions

from a matter of days to seconds. However, the new state-space model must be trained

using results from the CFD solver. The generation of the training data for complex

structural systems can require the same, or more, time as bracketing the instability with

full simulations. This difficulty has lead to research into accelerating the processing for

training data generation.

1.2	 Motivation for the Study

As mentioned before the time required to find a flutter boundary is only practical

for research purposes or when a design is finalized well before testing. There are a

number of obstacles to accelerating the flutter prediction process, such as difficulty in

numerical grid creation, structural eigenvector identification, and correctly transferring

data from structural analysis to fluid flow solver. None of those problems can be

corrected by speeding up the computations of either the structural model or the

aerodynamics. In addition, all the tasks listed are completed quickly, compared the time

of the flow solver. The primary area open to improvement is the speed at wbich

aerodynamic flow soluti~ns are generated.

As an example., one such test case that has time requirement that are prohibitive to

the practical use of CFD based fluttcr prediction is thc Aerostructures Test Wing, ATW.

The ATW was a prototype wing flown on Dryden Flight Research Center's F-15B

Research Testbed aircraft. The wing was flown until failure due to aeroelastic instability.

The ATW rcquir s less than three seconds to analyze the FEM structural model

and derivc thc modeshapes and natural frequencies from it. The interpolation of the

3

modeshapes on the CFD FEM grid takes a second longer. Tbe generation of the CFD grid

is nonnally left for overnight generation, no more than twelve hours. The grid has

973,024 tetrahedral elements, as seen in Figure 1.2. The steady state solution of the flow

field requires 8.43 CPU hOUTS. The generation of the training data for system

identification of the aerodynamic forces requires 66.22 CPU hours to identify the three

structural modes of the ATW. That does not include any free response studies to cheek

that the system identification is valid. The ATW would require a full workweek for an

aeroelastic analyst to report back the flutter prediction findings, assuming everything

worked on the first attempt.

Figure 1.2 Aerostructures Test Wing CFD Grid

The large lime requirement for the ATW is due in part to the fme grid mesh used

to capture the motion of shock waves at the leading edge of the wing tip pod. If the ATW

4

I

had more than just 3 modes, such as IS modes like many full aircraft simulations, then

the training data would require 1557 CPU bours, two months of continuous computation,

to complete. A dynamic pressure sweep would require only 662 CPU hours; assuming

that only four dynamic pressures with 4000 time steps each were needed to estimate the

pressure.

The STARS group at NASA Dryden has recently started to analyze test cases

with over 2.5 million tetrahedral elements and up to 19 modes. The time to complete one

time step is dependent on the complexity of the geometry. However, the more elements

used in a simulation the more iterations must be used to resolve the time step. The

simulation of large test cases can easily approach half a year.

Advances in computing speed help reduce the time, but the time is halved only

every 18 months according to one interpretation of Moore's Law; which relates the

number of transistors per square inch on a CPU chip and overall speed, to time. This

advance rate does not significantly contribute the reduction of speed for recent test cases.

Using the example of the ATW with 15 modeshapes, it will require 5 years before a

processor will be able to finish the training data in one week, 9 years to until a processor

can finish in one day. This relationship is shown in Figure 1.3. A new method of

accelerating CFD based acroelastic prediction the needs to be found.

5

I

100......------------------------,

0.1 +--------r----r------..,.---~-___,_--r_-....--....J

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Year

Figure 1.3 Proj,ccted Future Processor Performance

1.3 Problem Statement

Current techniques of free stream dynamic pressure sweeps to determine a flutter

boundary take too much time for practical use in flight testing. Current technique for

system identification of a flow solution most often take less time, but still more than

flight-test groups are willing to accept. New methods for reducing the time of flutter

point identification need to be developed.

The solution to this problem must also meet one other requirement. It must be

compatible with the STARS computer program suite developed at NASA Dryden Flight

Research Center. In shalt, either a modi fied version ofthe STARS CFD flow solver or an

additional integrated program must be produced that offers a method to accelerate both

•

6

the generation of training data for system identification techniques and dynamic pressure

studies.

1.4	 Literature Review

This section covers the literature surveys and initial studies that lead from the

problem statement above to the research objective in the following section. This covers

the primary sources for this study.

1.4.1	 Numerical Flow Solutions

One method for accelerating the speed of computational flow solvers is to change

flow solvers. By there nature most flow models are only valid when certain assumptions

hold. Four common flow models are discussed here. Euler solutions are analyzed in more

detail in the next section.

One common fluid model is potential flow. This method uses the assumptions of

incompressible and inviscid flow to detennine the characteristics of the air around a

defined shape. Potential flow solvers have relatively few computations, with a

corresponding high speed. There exist several model alterations that account for the

effects of compressibility, such as the Prandtl-Glaucrt rule [Katz, 200 I]. This makes

potential methods excellent for low speed fluttcr phenomenon, though this has limited

applicability. However, the potential model cannot simulate supersonic or transonic flow,

as it cannot model a shock of any type. It does introduce the concept of transpiration

[Fisher, 1996], which removes the need for redefining the geometry of an aeroelastic

7

III

system after structural motion. The inability to accurately predict aerodynamics in the

transonic range makes these solvers useless as a general-purpose model.

The piston method is a previous attempt to accelerate simulation speeds [Hunter,

1997]. In this method, the unsteady wave equation is the basis for all simulations of

perturbations about a steady state solution, usually detennined by steady state Euler

solvers. Although it has limits on accuracy, it provides reliable results for supersonic and

hypersonic flows. The method does not model the motion of shock waves, such as those

found in the transonic range. The solver fails to satisfactorily handle all flow speed

regimes. However, a significant number of aeroelastic models operate in the supersonic

range where the model is applicable. It does not meet the requirements of this study as it

can be applied to all flow regimes.

The third type of solution is the Navier-Stokes numerical flow solver. This is

considered the complete solution for an aerodynamic flow. Since it is based on the

Navier-Stokes equation, the numerical model can. simulate viscous effects. Howev r,

Navier-Stokes models require significantly addition time to complete an unsteady time

step, as the viscous modeling needs computing. Experience has shown that in general

viscous model.s are not necessary to model the aerodynamic forces 011 aircraft sized

bodies. Furthermore, by attempting to model the viscosity of the fluid a new source of

simulation error has been introduced. Neglecting viscosity can accelerate Navier-Stokes

flow solvers.

The Navier-Stokes equation with the effect of viscosity neglected is the Euler

equation. This model. offers several advantages The model holds at all speeds of interest

for aeroelastic analysis. It accurately predicts the formation of shock waves and their

8

motion in time, which is necessary for modeling the transonic flight regime were many

aeroelastic phenomenon occur. It does have limitations. Since the Euler equation does not

model the boundary layer of fluid flow around an object it does not handle the separation

of the boundary layer: This is in general not a problem for aeroelastic stability

determination. It can be efficiently discretized into finite difference or fi.nite element

solutions.

1.4.1.1 Euler3d Flow Solver

In 2003, Cowan [2003] showed that a noninertial reference frame could be used

with FEM models based on the Euler Equation. The new program that study produced

was Euler3d. This new flow solver was shown to out perform the STARS Euler solvers.

It was user friendly, easily understood and more coherent in design philosophy that

previous STARS flow solvers. The solver retained many useful features, such as the use

of transpiration to model structural motion. It also contains an optional piston

perturbation solver, whieh can be applied to models in the supersonic range.

1.4.2	 System Identification

As defmed, system identification is a process for obtaining a mathematical model

of a dynamic system based on set of measured responses from that system [Ljung, 1987].

The time history of a dynamic systems response to a known input is used to fit a model

with the least error to the response. For example consider the second order system of

Equation 1. I .

9

X\ (t) =a . XI (t) + b . Xl (t) (1.1)
Xl (t) =C· XI (t) + d . X 2 (t)

In this system a, b, c, and d are the unknown parameters. Using a set of responses

from known inputs the unknown parameters can be detennined [KaJaba and Spingam,

1982]. The same technique can be applied to a discrete time dynamic system. The

discrete version is shown in Equation 1.2, where aj. bj . c) and 0 are the unknown

parameters. The accuracy of identification model is dependent on the type of solution

assumed and the method used to find the model parameters. Fortunately, the work of

Cowan [1998] answers what approach to take,

X 1•k+1 = ~aJ . XI.) + ~bJ . xl,J
J:I j:l

(1.2)
J:k J:k

X l •k+1 = LeJ . XI.) + LdJ . xl,J
j:1 j:1

In 2003, Guezaine used an Eigensystem Realization Algorithm, (ERA) to identify

the eigenvalue of entire aeroelastic system of an F-16 simulation. This method predicts

the frequency and damping coefficient of the lowest torsional mode of the model. This

approach is excellent for predicting the aeroelastic response at a single flight condition.

However, it does not isolate the system response as a function of the dynamic pressure. In

this regard it offers not advantage offer density sweeps in terms of accelerating

predictions.

1.4.2.1 Autoregressive Moving Average Model

In 1998, Cowan applied an autoregressive moving average model to the

identification of the aerodynal11 ics or an aeroelastic system. This modeling technique

10

assumes a statically nonlinear system with dynamically linear perturbations. Using a

system model that predicts current forces based on past displacements and precious

forces. This relatioDshipis expressed numerically in Equation 1.3.

na nb

f(t) = La" .j(t-n)+ Lbm 'x(t-m) (1.3)
,,=1 ",=0

This equation IS actually a discrete version of Equation 1.4, which relates the

motion of the structure to the unsteady aerodynamic forces.

(1.4)

Using Equation 1.3, the parameters for system identification are the ak and bj

values. Finding a set of values that closely model the training data produced by the CFD

solver is goal of the system identification. The Cowan's ARMA model used Singular

Value Decomposition, SVD. This method analyz·es the data and determines the set of

parameters that produces the least squared error with training data predictions. However,

no automatic method exists to determine the value of na and nb, the number of previous

forces and displacements. In order to determine the best value for each of these, a

sensitivity study is run using a range of values for both.

It should be noted that this method only modcl.s the aerodynamics of the coupled

aeroelastic system. This allows the same aerodynamic model to be used on multiple

structural models. Also the system model is multistate. The motion of all modes is

assumed to effect the forcing on all other modes. However, forces applied to one mode

are not assumed to directly effect any other mode. In this way, a discrete time model is

developed as in Equation 1.5. The matrix A" is diagonal with zero in the off-diagonal

11

terms. The B m term handles the relationship from force to the motion of all the modes.

The model also uses the current position from the structural model predictions.

nil nb
(1.5) fJt) = :L[A,JfJt-n)+ :L[BJ·x(t-m)

n=1 m=O

It is important to note that the model assumes linear relationships between all

mode displacements and forces. If this is not true, the system determined from the

training data will poorly reflect the system. Also a sufficient number of data points must

be contained within the training set to determine the system. The success or failure of

system identification depends on the training data used.

1.4.2.2 Training Data Generation

In order to accurately model a system response, a system model must be trained

with data points in the region of interest. When the system identification technique was

developed by Cowan [1998] for application to the STARS unsteady flow solver, a multi­

step on velocity was used. This method allowed the system model to relate velocity and

displacement effects to force changes. However, the method made prediction of

acceleration effects difficult as the training signal has either infinite acceleration or none.

The multi-step training signal is shown in Figure 1.4. It is important to realize that this

input signal is bypassing the structural dynamics entirely. The intention is gather data

about the aerodynamic force response to displacement and motion. This training data is

used to develop a model of the aerodynamic response. This new faster system model can

then be coupled with the structural dynamics solver to model the linearly dynamic

perturbations.

12

. 3211 Multistep Input Signal

" .., .. ­
, .. , .. ,, .. , , ..

, , 3 .. 1 .. . - . -- .
, , -

­,

2 1
-

--Velocity

-- - Displacement
 -

time

Figure 1.4 32 I I Multistep Training Signal

In 2003, O'Neill developed an improved training signal. This new input signal

was based on the chitp function in common use in system training data generation. The

improved input signal allows more direct control of frequency range and magnitude. Ir

addition, the new function allows the determination of effects related to the second am

all higher derivatives, which the multistep input lacks. The new input signal can be seer

in Figure 1.5. The signal has difficultly resolving low frequencies, as there is little powei

in them. The SVD algorithm also has problems determining the cause of forces, as baH

the velocity and displacement are symmetric about zero.

13

Modified Chirp Input Signal

,4 ,." :, 'I

~ 01 '. ..': ., ,.: ""

~

" ::"" '•.
, ~ : ~: I , ,.r , .,"

: 1 , " r
j,• ,

: , , :• , , I , " I " , :
, , : ,

I

" I :
:, ,

, :
: : I , :

," , : , , : , , I " , ':• • ,
I

"
", I .. "'.':

'~ : :' ,j
"~ I,

"

.: "
0, :1"

" ~ ,:
~ " •': :' :'- Displacement I ~ \' ~

....... Velocity

time

Figure 1.5 Modified Chirp Input Signal

To correct the problems with the Modified Chirp input signal an offset was added,

The new signal the Offset Modified Chirp corrects the low frequency errors. It also helps

the SVD algorithm define which terms are most important for system modeling. The

Offset Modified Chirp Input Signal is shown in Figure 1.6,

14

Offset Modified Chirp Input Signal

V
,

I
, I I
, ' , I I I : ;, , , I ,.. I I

I : : , ,I. , I ,., : I , I ' ,V " "

-
V "":; "

"
"
I.

"':.,,
"
"

.,.'f' :'
':- Displacement ", -,.. '.I, •. "r , ~

•.. - - .Velocity

time

Figure 1.6 Offset Modified Chirp Input Signal

1.4.3 Parallel and Distributed Processing

By definition, parallel processing uses several independent Central Processing

Units (CPU) to soLve a single problem. In common usage this nonnally refers to the use

of several processors to solve a single mathematicaL operation, such as matrix inversion.

However, there are other methods that take advantage of the parallel proce sing concept.

One such method works by instigating multiple copies of a single simulation,

each with a set of different initial conditions, often called distributed batch processing

[Baker and Smith, 1996]. By distributing the simulations to severa] independent

processors, the time to complete the task is reduced. This method has the advantage of no

communication after the initial setup of the simulations. Since the simulations are not

commutating, there 1S no need to handle time step matching, differences in speed of

15

computation or bandwidth minimization. Generally, this method can be implemented

quickly and with few or no changes to the algorithm of solution.

Another method for parallel processing Domain decomposition as described in

general by Gropp, [1999] and for CAE by Liu [2001], divides a physical problem into

several physically smaner parts. This allows each processor to work on a portion of a

much larger problem. However, domain decomposition does require time step matching

and communication between the subdomains, often called zones. This stipulation requires

that communication bandwidth not retard the speed of the independent computers.

Domain decomposition also only works wen on problem where each subdomain has an

equal workload. If the probLem does not have a unifonn distribution of computation for

each subdomain, many processors will set idle while waiting of others with a

corresponding drop in efficiency. This method can usually be added into an existing

solving routine, but only with detailed planning and will be solution specific. For

unstructured CFD meshes, such as the type used by STARS, a sophisticated algorithm

that divides the regions into equal computational zones, not equal physical size, must

handle the decomposition.

Implicit distributed batch processing and domain decomposition are the primary

methods for distributed processing of any large simulations, [Gropp, 1999]. Many other

parallel and distributed models exist for data processing, but have only limited

application to the simulation of complex systems.

One important side note is the definition of efficiency used in this work. Equation

1.6 states the relationship for efficiency. Baker [1996] has an interesting discussion about

the methods for measuring performance of a parallel program. It this work, the time to

J6

complete a set of simulations is the bases of all efficiency calculations. The average time

for a serial processor to finish one of the simulations in the set is used as a standard of

comparison to the time for an entire set to finish in parallel. Also efficiency is Dot defined

unless the number of simulations is equal to the number ofprocessors used.

Time AverageSerlal
7] =----=---	 (1.6)

Time Parallel

1.4.4	 Parallel and Distributed Processing in Aeroelasticity

It is interesting to note that no papers were found that explicitly study the effect of

distributed batch processing of aeroelastic analysis. This many be a result of researchers

not reporting the use of multiple machines. It many also be an artifact of the development

of CFD based CAE. In the previous studies, researchers invested in a single high-speed

computer to handle simulations. This type of equipment acquisition scheme does not lend

itself to the development of distributed computing, as only one computer of significant

speed is available. Several efforts have been made with success into tbe use of parallel

processors on a single machine, such as the SGI Origin 3200 and IBM SP2 [Goodwin

1999]. Although these computers are efficient and scalable, they are expensive and

require extensive training for operation. No reports of the use of workstation clusters

were found.

As a side note, alI the studies surveyed that use some implementation of parallel

processing employed the Message Passing Interface, MPI. One reported a usc of MPI and

Parallel Virtual Machine, PVM, and compared to results for each [Goodwin, 1999]. It is

hoped that since MPI is highly portable studies comparing the use of modem inexpensive

17

personal computer clusters and standard parallel supercomputers will soon be available in

the literature.

In 1998, Byun and Guruswamy reported successful results for a multizone

aeroservoelastic solver.' Their solution used Navier-Stokes finite difference numerical

methods. The multizone aspect they refer to is the domain decomposition of the flow

volume into 8 zones, each simulated on a different processor within an ffiM SP2 parallel

supercomputer. The article was concerned with the simulation of response to control

inputs, not flutter prediction. However it did introduces interesting methods. The parallel

solver resolves the aerodynamics and structural response on different sets of parallel

processors. The two simulations were matched at discrete time steps, but were otherwise

independent. The ENSAERO codes used structured grids. This allows tbe operater to

divide the flow volume into separate zones by simple inspection of the nearly rectangular

grid. The ENSAERO code also used a moving mesh to simulate the effects of elastic

deformations, a process that requires the regrinding of at least a small part of the

computational mesh at every time step. Most importantly for use in this study, Byun and

Guruswamy report that the parallel version of the ENSAERO code has near efficiency up

to 16 processors. This last fact indicates that parallel processing will accelerate the

prediction of flutter, even ifonly by decomposing the flow domain.

In 2003, Geuzaine developed enhancements to three-field methodology to model

aeroelasticity. The three fields are aerodynamics, structure and mesh movement. The

AERO-F, AERO-S, and MATCHER codes described the modeling of FEM based

Navier-Stokes and structural analysis. The results of a free response simulation are

examined using an Eigensystem Realization Algorithm, ERA. This method, as applied,

18

will report the frequency and damping coefficient of the lowest torsional mode. This

allows comparison to flight test data. However, this method is does not derive the

Eigensystem as a function of flight conditions, such as density or Mach number, but

reports the Eigensystem at the flight conditions input to the model. In order to locate a

flutter boundary, multiple flight conditions must be simulated and analyzed. Like Byun

and Guraswamy, Geuzaine used separate sets of processors to solve the fluid and

structures response.

Neither Byun nor Geuzaine developed methods to accelerate control law

development. Both have features that allow a control scheme to be tested in full flight

simulation, but no method that allows for a quick systemic search of the several

candidates to select the best option. In addition, all the parallel schemes surveyed,

including Goodwin [1999] and Liu [2001], are full simulations that were only tested on

shared memory parallel machines.

One problem with the literature on parallel processing based aeroelasticity is that

very little of the literature is interested in locating flutter boundaries. Mo t are interested

in replicating experimental results or responses at a set flight condition. Many, like

Goodwin [1999], even use experimental results as the bases for determining what initial

conditions to use. Few papers are interested in searching for unfavorable flight conditions

for aeroelastic properties from scratch. One of the goals of this study was accelerating the

flutter prediction of a test case where the user is unaware of experimental results, the

same conditions that would be present in the design of new aircraft.

19

1. 5 Feasibility

In order to test if the general technique of training a test case on multiple

machines and then combining the resultant training data would work in practice, the

AGARD 445.6 test case was used in an initial test.

The AGARD445.6 is a standard test case for aeroelasticity. The wing is slightly

cambered with 45° backward sweep, the AGARD445.5 can. be seen in Figure 3.1. For

this study, the AGARD445.6 has two modes, frrst bending and first torsion. The serial

training data is shown in Figure 1.7. The data took 30250 seconds or 8.40 hours.

Serial AGARD Training

1.5 . 30

~ - 1 ·20
c
Q>

E
Q>
u 0.5 10

Q>
u...

cu 0
Q.
II>

C
"D
G> .~

0

1
0

0

u.
"D
G>
.~
iV...
G>

iV... -0.5 -10
c
G>

G>
C

C)

G>
C)

-1 - - -20

-1.5 -30

Time Step

--Displacement 1 Displacement 2 x Force 1 + Force 2

Figure 1.7 The AGARD445.6 training data generated in serial

This data was used to find a system model that would predict the flutter point of

the combined aeroelastic system. The sensitivity study found that ana, nb of 4, 7 worked

20

to predict the divergence of mode 1 at a pressure of 0.399 psi. The flutter point was

detennined by finding the first dynamic pressure that produced a system eigenvalue

outside the unit circle for the complex plane. Since this is a discrete time system, any

complex eigenvalue with an absolute value greater than one represents an unstable

system. This can be seen in Figure 1.8. The graph is of the complex, or z, plane where the

vertical axis is the imagery numbers and the horizontal is the real value. The unit circle is

the boundary of stability. An eigenvalue the lays directly on the circle represents a

dynamics system with no damping, a sine wave. Both modes I and 2 start very close to

the unit circle, as neither have any structural damping and the low dynamic pressure has

little effect on the structural response. This was used in comparison to tbe parallel

training data.

......,....."..~

./ .
..........

...............

~.... /-.....Mode 2 .~
Unit Circle

...........

.........

......

.......

. .
...... / Mode I

.......
. .

)If
Flutter

.
.

Points .
.....

Figure 1.8 AGARD eigenvalues for q of 0.01 to 1.00 psi, (serial training)

The parallel data was run on two different computers, each at different speeds.

The runs required 15480 and 38700 seconds. Although this took ranger that the serial run,

21

it was done on two computers, one significantly slower than the other. The computer that

perfonned the serial run completed its required load in just over half the time the serial

run used, 51.2%. This indicts that if two identical computers were used then the time

reduction would be 48.8%. The parallel generated training data is shown in Figure 1.9.

Parallel AGARD Training

1.5 30

-
Computer 1 Cptr.2 ft+

+.
20

t::
G)

E CD
G)
to)
C'O
Q.
(/)

0.5 10 to)...
0
U.
'l:'

C 0 0 CD
.~

"'C
G) 0 iU... .~
(ij...
G)

-0.5 -10
CD
t::.
G)

C)
t::
G)

C) -1 -20

-1.5 . -30

Time Steps

1--Displacement 1 .•....Displacement 2 + Force 1)(Force 21

Figure 1.9 The AGARD445.6 training data generated in parallel

For the parallel data, the two time histories were simply pasted together one after

the other. The same model order was used, 4-7. The system model predicted that the

flutter point, with mode 1 divergence, was at 0.402 psi. This is a 0.75% difference from

the serial training set, which is well within acceptable limits for aeroelastic instability

predictions. This difference is most likely caused by the use of two different CPUs with

slightly different floating accuracies. The graph of dynamic pressures is seen in Figure

22

1.10. This figure includes only the close up view of the flutter point cross over. It should

be noted that the two modes have not only the same flutter point, but follow the same

trend. Both have mode I moving close to neutral stability boundary then crossing over.

Mode 2 starts near the unit circle and becomes more damped.

Mode 2

Mode I

LFlutter Point

~

Figure 1.10 AGARD eigenvalues for q of 0.01 to 1.00 psi, (parallel training)

From this initial, test, the parallel training of a test case can produce reliable

results. Furthermore, the parallel data can predict the true experimental response of 0.425

psi, [Yates, 1987]. It also agrees with predicted values from Cowan [1998] and Gupta

[1996].

23

1.6	 Research Objective

This research fo'Cuses on the use of distributed batch processing to accelerate

computational aeroelastic analysis. The first goal of the project was the modification of

the Euler3d software package to automate the initiation and simulation of multiple free

responses to varied initial conditions. This goal allows for the systemic sweep of dynamic

pressure at a constant Mach number. The second goal was the addition of a new feature

that allows the simultaneous training of multiple modes. The parallel training and

response simulation will significantly reduce the time required to complete a flutter

prediction.

24

CHAPTER 2

METHODOLOGY

2.1 Applications of Distributed Processing to Computational Aeroelasticity

Aeroelastic analysis is well suited to parallel processing. The large volume of data

that must be generated for an instability prediction does not require sequential

calculation, for either the dynamic pressure sweep or system identification approach. This

allows an intelligent aeroelastic analyst to utilize aU processors available to him. The two

types of distributed parallel processing that concern this work are batch processing of

multiple free responses at different initial conditions and training data generation.

2.1.1	 Density Studies at Constant Mach Number

For dynamic acroelastic systems the flutter prediction must be confmned with full

couple CFD structural dynamics system responses. Even with a system identification

model predicting flutter it is best to confinn the prediction with a free response. Running

responses to initial conditions both above and below the flutter boundary does this. These

can be run in parallel, as the results of one have no influence on the others.

Dynamic pressure causes flutter. However, from Equation 2.1, the dynamic

pressure is a function of Mach number, speed of sound and the air density. Since Mach

and sonic velocity are held constant in a simulation, the change in dynamic pressure is

directly related to change in density. This type of study will be referred as either a

25

pressure or density sweep, usually density as this is the parameter that will be changed

directly in the sweep.

(2.1)

A density sweep is best described as a sensitivity study on density. The free

response input conditions are set, such as the true sonic velocity, the Mach number, the

global time step, the number of time steps, the iterations to be made on the solution

between each global time step, and a few others. The method for initiating the vibration

must also be chosen. The steady state solution and structural dynamics both remain

constant for each free response in the study. The only thing that is changed in density

sweep is the density, and through it the dynamic pressure.

For the new distributed Euler3d the density sweep will be automated. The control

file will contain the same information as before, with the addition of a new parameter

delrho. This value controls the increment of density for each processor in the distributed

architecture. The equation relating the density, rho, on any processor np to the base

density from the control parameter rhoinf is stated in Equation 2.2.

rho(np) = rhoinf + np . delrho (2.2)

The density on any node is simply the base density plus the processor number

multiplied by the increment delrho, noting that the first processor has an index, np, of

zero.

An initial obstacle with a density approach is the starting point. Often an

aeroelastician is given the information about structure, geometry and speed of interest,

but little else. Since the system is unknown and possibly nonlinear, it is best to divide the

flight envelope into equal increments. The sweep of density will reveal either that the

26

structure does not flutter or determine a narrower range of density to investigate. This can

be repeated until the required resolution is reached. With this system, the number of

computers used determines the time until convergence on the proper resolution. It should

be noted that a course density sweep could miss a flutter point entirely, as an

aerostructure can move in and out of instability.

Once a free response has run out long enough for multiple cycles to be present, it

can be analyzed. There are several approaches to this analysis.

The first method, and most obvious, is for the analyst to graph the time history of

each structural mode's motion and look for instabilities. This has some drawbacks, as the

free response may need to be run out to several cycles to show a clear damped or instable

response. Although if a user is not able to clearly see a damping trend, most other

methods wiD produce unreliable results.

A second method involves the use of data points to fit a free vibration model to

the data. The curve is checked for either decay or divergence. Aeroelastic free responses,

particularly those with several mode shapes, are prone to transitory motions as the mode

shift to either a new static offset or to the frequency of motion with least energy for the

flight conditions modeled. This motion may require that the free response be allowed to

run out until clearly decoupled dynamic motion is visible. Equation 2.3 states the

mathematical relationship for this approach, [Moretti, 2000]. The five last distinct peaks,

or valleys, are excellent candidates for this approach to find the damping. If the rate is

positive, the mode is divergent. Figure 2.1 Shows an example of four time histories at

four different densities. The four histories have the densities of 1,2,3 and 4.

(2.3)

27

__ _

History, Density = 1

_ 0.1 r=----------------------------------,
CE 0.05 ~t-!1--fJ___rr_____::;__-------------------------1

g 0 ~-\--I--\.--J--\-+-\-...f---\-...-/--\--I-~~~:::::;5.,e.~~""'6o;>'.-=-~""7---8----:9---1
Q. +r---\-.,f--4-J'-~L----=:=--------------------------__IIII ~.05

is ~.1 L-=- ---'

Time

History, Density =2

_ 0.1 ,...,....----------------------------------,

C
E 0.05 ·IH--H,--/·

~ 0 ·1-1-l--·\r--I--\--J-,--\--I--\-"""'-+-I--+-I--\--I---\---f-\:-j~\J/.,--Jhf-JM~
IQ1 ~.05 .1--\....j'_-\--JL-+,f--\,I--\I---..J.L~.t-.----..::::.__.:....- _t
is ~.1 L~ J

Time

History, Density = 3

_ 0.2 y----------------------------------:-----,
cE 0.' +-...,----ro,r---t'_--I'\---JO'----.A
CII
U 0
IQ

Q.III ..(1.1 -I-~'----\.I'-_\I---\.J---lV--hI

is ~.2 l..- ~

Time

History, Density =4

­ ~ 21-------------------------------__...._1
E 1 I----------------------:,------;;;r---,~_A.
~ 0 r--...-=.....................,.,.....;""""--"~~=-..=/- ~-/-"'--/-
IQ
Q. ·1 ?----'-------.:i.~--.L.-----i---:'--IL=--~~~.J __.JV_-----!I._I_...B-_/

.!!! ·2 t-------------------------------~-_VI
C .J '---------------------------- ---1

Time

Figure 2.1 Time History Example

28

In actual practice, the points used are taken from the last few complete cycles of

the time history. Tbjs helps avoid inaccurate estimates due the strong transients in the

modes in the initial cycles of the time history. Also the full vibration description is not

used. The last few peaks are identified and those are used to fit the relationship of

Equation 2.2. Using the four data points, one for each time history, a cubic curve can be

fit to estimate the neutral point, or critical damping, with respect to the density. Figure

2.2 shows the' graph of the four damping values and the trend curve. Note that the true

damping, from the equations used to generate the time histories, is plotted as well. Table

2.1 shows all four densities and the density that the curve estimates as the flutter, or

neutral, point.

(2.2)

One problem with the use of Equation 2.2 is that it assumes the static offset about

which the dynamic oscillation move is a constant zero. This is true in this example but

not in general for aeroelastic test cases. This method is also very suspect wben the

frequency of motion has not stabilized; COn is changing. This problem is of particular

concern as the only to combat it is the use of long term histories; whieh require large

computational times. One advantage of the system identification technique is that is has

less susceptibility to uncertainty.

29

0.05
~ 0.04 .. ~

0.03
~ 0.02 ~

g' 0.01
....~ 'Q. 0

E
 ,.... ~

OS 1 1-5 ? ?"- ~"- A .Ii 58 -0.01 ~
-0.02 -~
-0.03 V'..
-0.04

-0.05

Density

e Measured Damping Estimate - •• True Damping I
Figure 2.2 Graph of Damping versus Density

Density, fJ Damping,;
1 0.042
2 0.018

2.73 (Estimate) 0.000
3 -0.006
4 -0.031

Table 2.1 DensIty Sweep Dampmg Estimates

2.1.2 Training Data Generation for System Identification

For linearly dynamic systems, it is possible to develop the training data for each

mode in isolation from the other modes. This allows for the each mode to be trained at

the same time on separate processors. This is the primary purpose of the new software

package. The software will allow the selection of individual nodes and the choice of

which input signal (Multistep, Modified Chirp, or Offset Modified Chirp) for the modes.

30

2.1.2.1 Time Savings Determination

From Cowan, 1998, the number of data points necessary to determine an ARMA

model of the flow solver is N(na.nb,nr). This shown in Equation 2.3, where nr is the

number of modeshapes, na is the number of previous aerodynamic force values, and nb is

the number of previous body displacements. This is the total number of data points that

the training set must contain to explicitly solve for each parameter within the system

modeL

N(na,nh,nr) =nr2 -nb+nr'na (2.3)

The number of time steps is directly related to the time required to generate the

data on one computer. The number of data points from Equation 2.3 is multiplied by the

time to calculate a single time step, dt. Therefore the time to complete the training data is

N(na, nb, nr)· dt. Since batch processing allows that each modeshape be trained

separately and in parallel, the number of model time steps needed to complete the

training of one mode is Equation 2.4. This will contain the data for all the previous

aerodynamic and displacement states for the single modeshape.

nr 2. nb + nr . na
N p (na,nb,nr) = = nr· nb + na (2.4)

nr

The time required to finish a parallel simulation with computers of heterogeneous

speed is the maximum value of the number of data points assigned to a processor

multiplied by the time needed to calculate a single time step. Equation 2.5 states this

relationship, where i is the index of the processor.

Time FINlSH = max{N; . N p - dt;) (2.5)

31

For example, assume that 3 computer are available for parallel use and that the

test case of interest has 10 modeshapes. The na is 3 and the nb is 8. The numbers of

modes, total number of data points per computer, and time to complete a single model

time step are listed in Table 2.2.

Computer Number of Total Data Seconds per Time
Index, i modes,N; Points time step, dt; (Seconds)

I 4 332 0.50 166.00
2 3 249 0.75 186.75
3 3 249 1.00 249.00

Table 2.2 Heterogeneous Network Time Example

The time to complete the training set is 249 seconds. Computer 1, which has .the

most to calculate, fmishes first since it takes less time to resolve a single time step.

Computer 3 is actually the weakest perfonner. It would be faster to assign 5 modes to

computer 1, taking 207.5 seconds to finish, and 2 modes to computer 3, requiring 166

seconds to finish. In that case the time to fmish would be 207.5 seconds.

Now assume that the cluster of computers is homogenous. Thc variation in dr,

disappears. The new TimeFINlsH is Equation 2.6, where M is the next integer ~ nr , and
np

np is the number of processors.

Time FINISH =(M.Np .dt)=max(N, 'N
p

·dt) (2.6)

Using the previous example, but setting the time required to complete a model

time step to 0.50 seconds for all three computers, the TimeFfNlSH is 166.00 seconds, the

time computer I needs to finish 4 modes. Computers 2 and 3 finish 3 modes in 124.5

seconds each as shown in Table 2.3.

32

Computer Number of Total Data Seconds per Time
Index, i modes,N; Points time step, dt; (Seconds)

1 4 332 0.50 166.00
2 ·3 249 0.50 124.50
3 3 249 0.50 124.50

Table 2.3 Homogeneous Network TIme Example

The easiest time estimate is the case of nr homogenous computers. The TimeFlN1SH

becomes Equation 2.7.

Time FINISH =N p . dt =(na + nb . n1')' dt (2.7)

Since Np is N , the speed of training data generation is increased by a factor of nr
n1'

over the serial generation. It is important to realize that artificially increasing the number

of modes to finish the training data generation more quickly does not work. The total

time to complete a training set is now a linear function of the number of modes, not a

quadric as before. Since an aeroelastic system can only flutter if two or more modes are

present, the distributed training set generation always reduces the time by at least one half

as seen in the feasibility Section 1.5.

2.2 Software Development

This section details the software objectives, design and support programs.

2.2.1 Software Functionality

As possible methods of applying distributed processing to nonlinear aeroelastic

analysis were developed, a list of objectives for the software was set. These included the

33

primary functionality of the EUler3d_dpp software. This list was the starting point for

creating the algorithm of the Euler3d_dpp. The objectives are listed here.

1.	 Maintain current interface and operation of Euler3d. The transition from

the single process to the distributed ve.rsion should be seamless. The input

files for distributed Euler3d_dpp should work for single process Euler3d.

2.	 Automated sweep of densities within a flight envelope. This is one of

distributed Euler3d's primary purposes. This option speeds up .the

completion of nonlinear flutter boundary searches. It also reduces the

bookkeeping aspect of a search.

3.	 Generation of training data in parallel. This is objective is the key goal of

the project. The generation of sufficient training data to determine a

system model within a time frame acceptable for flight-testing drove this

much of this research.

2.2.2	 Algorithm Description

Developing an algorithm can be a daunting task. Especially when it concerns a

complex topic like parallel processing. In the case of Euler3d_dpp, the task has been

simplified. The large amount of data can be divided into separate clearly defined and

independent tasks that can then be sent to individual processors. In this program those

simple tasks happen to be aeroelastic simulations. The trick will be to specifying what

each node should simulate.

34

None of the algorithm objectives required any changes to the flow solver of

Euler3d. This allowed algorithm design to focus on parallel software architecture. Si~ce

the slave nodes never communicate with each other, the simplest po ible parallel layout

was selected. Only the master, or central, node initiates communication with any other

node. The slave, or computational, nodes only pass messages back to the master. This

software architecture is shown in Figure 2.3.

Slave Slave

Node Node

Slave Slave

Node Node

Figure 2.3 Parallel Software Architecture of the Euler3d_dpp Program

The distributed verSIon of Euler3d needed a method for the master node, the

central node, to contact the computing nodes, or slave nodes, and initiate processe on

those nodes. This required that a networking interface be added into the original Euler3d

source code. After survey of currently available message passing, the Me sage Passing

Interface, MPI, was selected. The was chosen based on its reputation in the parallel

processing community, availability of references, free software packages available on

multiple internet servers, and its interface with Fortran, in which Euler3d is compiled.

MPI also offers both a Microsoft Windows and Linux version. All parallel aeroelastic

soLvers in the literature used MPI. This decision also set how the program would operate.

35

Before the master node reads in any data, it contacts each slave node and checks

that it ready for a processing request. The master node then reads in the control file

case.con, which contains the initial conditions (Mach, density, sonic speed, model time

step, how to solve the problem and how long to run) and passes it to each slave node

unaltered. The slave nodes then check that the initial conditions are correct for its

assigned processor index, np. If a sweep of density is being done, then the slave node

computes the correct density for its index. This is found from Equation 2.8, (Jp is 'the

increment of density for each index.

Pnp = Phose + op' np (2.8)

Once the density calculation is finished the master nodes reads in and sends the

test case geometry, boundary conditions and the steady state values of the flow field to

each slave node. The slave nodes accept these without change. The master node reads the

modal deformations, and generalized mass, damping, and stiffness matrices. Each slave

node receives the matrices and deformations. The slave node then checks if ystem

identification training data is to be generated. If so the slave node determines the mode it

has been selected to training by holding all modes constant with the np+ J mode receiving

a training input. The master node continues to read input files, such as the dynamic

motion file for non-inertial reference frames and the forcing function file if required. A

flow chart for the program is shown in Figure 2.4.

36

Master node reads input files .

•Master node transfers the grid and
control ftles to each slave node.

Network connections
to each slave node are

established.

II' II' ,~ Ir 'Irr
Each slave node recalculates the

free stream density based on a user
defined density increment.

... •
Each slave node checks whether the

simulation is for training data
generation and sets the correct mode

for the training input signal.

1 ~
Each slave node calls its flow solver
and generates a time history of the

aeroelastic system.

Network
conncclions

closcd.

CoHected output files.

Figure 2.4 Euler3d_dpp Flow Chart

2.2.3 PostProcessing Programs

The Euler3d_dpp program only generates the training data for the system

modeling. It does not create the system models. Cfdmdl3dsplice is used to generate the

37

system models. This program is an improvement of the original cjdmdl, which was used

by Cowan [1998] to make system models from serially produced training sets. The

program handles ordering the data set so that force and displacement hi torie are

correctly listed. It perfonns singular value decomposition of the resulting data set. It

assemblies the final parameters into formatted output files. Using this program is the

second step in a system model flutter prediction.

The cjdmd/3dsplice program reads in the multiple xn.dat# files. It then reorders

the data based on na and nb selected by the user. The data is ordered is as follows.

Output Input

~(k) ~ (k -1), .. ',J; (k - na),x. (k),.. ·,x. (k - nb),.· ·,x (k),.· ',x (k - nb)nr nr

1. (k -1)t: (k-na) x (k)· .. x (k-nb)· .. x (k) ... x ·(k-nb)nr ,) nr 'I" 1 "nr" nr

This sets up nr functions for the SVD algorithm to resolve, one for each mode's

forcing. Before the SVD algorithm is applied the static nonlinear values, or off: ets, are

removed from the forcing data. This removes a nonlinearity that the algorithm could not

correctly identify. Those functions coefficients from SVD are recorded as a set of

parameters in an output file. The program has an option to create more that one system

model. For this a range of na and nb values are given and the program creates a model for

each set.

In order to combine the training data from up to nr data files, the xnmeld program

was developed. The aerodynamic forces are assumed to follow the principle of linear

superposition. The nonlinear static offset is removed from each training file. The force

values for each time step are summed. Th.e static offset is added to the result. The output

38�

is the combined response of the CFD flow solver to an input on all modes. This data can

then be used to assess the error in the system identification model.

When cfdmd13dsplice is complete, it still has not made any predictions about the

flutter. Using the formatted output of cfdmd13dsplice, asemd13d can search for dynamic

instabilities in the combined structural and aerodynamic system models. This program

can analyze the eigenvalues of the coupled system, determine error with a known system

output, and run free responses of the system model. This program generates the

predictions of instability and measures the error of the system model.

2.3	 Cluster Design

With a complete and operating Euler3d_dpp, the requirements of a personal

computer cluster to run the simulations became evident. The program only requires high

bandwidth in the initial phase, where the master node distributes the input files to each

slave node. Thereafter the MPI protocols only send small amounts of data back to the

master node about the progress of each slave node. The network mu t also handle the

steady stream of updates to the output files, such as xn.dat#. The initial communication,

even on a low bandwidth networking medium should be an insignificant time loss

compared to the time required to complete an simulation. This allowed the use of low

cost off the shelf networking equipment.

The requirements other than those of the current distributed Euler3d Were

considered as welL In the future, it is expected that other groups investigating aeroelastic

analysis will attempt to set up similar computer clusters. In an attempt to reduce as much

confusion as possible, the cluster was designed with the idea of repeated replication. This

39

design goal and the requirements of Euler3d_dpp lead to the current design and

configuration of the cluster.

With the design goals decided, price to perfonnance optimization was done on

several configurations of cluster nodes. Early in the design, single processor machines

proved to have lower price per benchmark ratings compared to dual, or multi, processor

machines. The CASE lab has extensive data on the performance of the single processor

Euler3d program. Since the communication medium does not affect the speed of the

distributed Euler3d, the benchmarks still hold. A listing of the benchmarks available at

the time of design is shown in Figure 2.5. The data from the Intel processors lies on a

nearly linear trend line of CPU clock frequency versus the benchmark rating. The

relationship is shown in Figure 2.6.

40

Alpha 21264 - Unix 5------ 0.46
RS/6000 595 - AIX 0.13
RS/6000 3BT - AIX ... 0.08

Calaron 466 _ 0.09
Caleron 600 l-- 0.14

PII333 ~0.11
P1I450S0.16
PIli 450 0.17
Pili SOD 0.18
PIli 550 0.15
Pili 600 0.19
PIli 700 0.20

PIli 733 (Dual) 0.24
Pili 1000 0.27

Pili 1000 (Dual) 0.27
Athlon 800 0.23

Athlon 1000 - Linux 0.24
Athlon 1000 (98) 0.26

Athlon 1000 0.28
Athlon 1200 0.28

Athlon 1.4 DDR 0.38
Athlon 1.4 DDR 0.46
Athlon XP 1700 0.53
Athlon XP 1800 0.53
Athlon XP 1900 0.54
Athlon XP 2000 0.54
Athlon XP 2200 0.57
Athlon XP 2600 0.60

Pentium4 1.5 0.41
Pentium41.7 0:48
Pentium4 1.8 0.48
pentium41.91
Pentium4 2.4

0.51
0.66

Pentium4 2.53 0.70
Pentium4 2.53 , 0.68
Pentium4 2.53 Or 76

o 0.2 0.4 0.6 0.8

cycles I second Faster---"

Figure 2.5 Benchmark Data for the Euler3d Program, Windows Operating System

41

0.8

0.7

0.6

+
X

-

Intel
AMD
Linear (Intel)

a1..,-­..,
4>
U.... ...

0.5

0.4

0.3

0.2 y = O.0003x + 0.026

0.1

0

200 600 1000 1400 1800 2200 2600

CPU Frequency (MHz)

Figure 2.6 Benchmark Rating verses CPU Frequency

Using the trend line relationship, the benchmark values for the Intel Pentium 4

2.26, 2.4, 2.53, 2.66,and 2.8 GHz processors were found. They are listed in Table 2.4.

The total processing power of a cluster of computers is expressed in Equation 2.9, where

1JTotal is the total cycles per second for the cluster, N is the number of cluster node , and

1JSingle is the cycles per second of a single processor. The total cost of the cluster is found

Equation 2.10. The cost of the system components was estimated by averaging posted

prices on Internet retailer WebPages. A search was performed to find the highest 7}Total

with a cost below the budget. Interestingly, the processor found to be optimal wa the

mid-range Pentium 4 2.53 GHz. This indicates that using the latest CPU will not

necessarily produce the fastest cluster. By purchasing more mid range processors, by

price and speed, more total calculations per second can be reached for the same cost. This

is why many supercomputing clusters use mid range processors.

42

(2.9)17To/al =17Single • N

CastTo/al = N· (COSlcpu +COS/SYSTEM) (2.10)

From those benchmarks and optimization analysis the best processor found was

an Intel Pentium 4 2.53 GHz processor. In order to handle the large amount of data that

many test cases use, one gigabyte of DDR333 RAM was specified for each computing

node with the Intel 845ge chipset on the motherboard. This requirement set the value of

COS/SYSTEM, the cost of an assembled computer minus the processor. A complete

description of the slave nodes is in Table B. 2.

Processor, Intel Single Processor Number of Cluster Benchmark
Ralin)! Benchmark ComTJuters Estimate

2.26 0.61 10 6.10
2.40 0.65 9 5.85
2.53 0.76 9 6.84
2.66 0.80 8 6.40
2.80 0.84 7 5.85

Table 2.4 Table of CPU Companson for Cluster Performance

For the communication medium between the master and slave nodes, Fast

Ethernet was selected. Ethernet has been established as the standard computer networking

protocol and was available as an option on the motherboards considered optimal. The

switch was selected was the Hewlett Packard Procurve 2124 fast Ethernet switch. This

switch has 24 ports and can handle full duplex communication on all of them. This switch

was selected for price, In addition to the inexpensive Ethernet, a KVM

(Keyboard/Video/Mouse) switch was used to control all computers with only one

monitor, mouse and keyboard, the layout for the KVM switch is in Figure 2.8. To

simplify the network administration a commercial router and firewall were purchased.

This allowed the entire cluster to be control and operated with only the requirement of the

43

user copying the input files to the master node and initiating a distributed Euler3d_dpp

simulation.

Internet

Master Node/File Server Slave Node

Slave Node Slave Node

Slave Node Slave Node

Slave Node Slave Node

Figure 2.7 Diagram of CASE Cluster's Networking Hardware

The cluster was named CASE cluster, after the lab where it was designed and

assembled. The assembled cluster is shown in Figure 2.9. The numerous cables and

power cords are hidden behind the cluster. The control terminal for the KVM i shown in

Figure 2.10. A more complete d.escription of the cluster assembly is in Appendix B.

44

Monitor

Keyboard IMouse I
I I

I I I

KeyboardIVideolMouse
Switch

Master Node/File Server y Slave Node I ~ I

Slave Node Slave Node I ~ ~ 1

Slave Node Slave Nod.e I ~ I

Slave Node Slave Node I ~ 1

Figure 2.8 Diagram of CASE cluster's KVM Hardware and Connections

45

Network Switch j

46

Figure 2.10 Control Terminal of CASE Cluster

47

CHAPTER 3

RESULTS

Using the methodology and program developed 10 chapter 2, the aeroelastic

characteristics of several three dimensional test cases were investigated. The intent is to

validate the distributed processing procedure for the STARS program suite and

demonstrate how to implement the procedure on real test cases. All the examples shown

here are commonplace with the aeroelastic literature and have already been analyzed by

the STARS codes.

The distributed processing will be shown to save significant time in all three test

cases over the serial training signal and manually initiated density sweeps. All

computational work was perfonned on CASE cluster.

3.1	 AGARD 445.6

The AGARD 445.6 wing configuration is a standard aeroelastic test case. It was

investigated experimentally at NASA's Langley Research Center [Yates, 1987]. A view

of the mesh is shown in Figure 3.1. The grid has 69,630 nodes and, 373,798 tetrahedral

elements.

48

Tip

Root
Figure 3.1 Planfonn View of the AGARD 445.6 Test Case

For this analysis only two mode shapes were used, the fIrst two eigenvectors of

the natural vibration analysis of the structure. Since the flutter boundary of this case is

known, the first two modes will sufficiently model the instability. These two modes

represent first wing bending and first wing torsion, and are shown in Figure 3.2 and

Figure 3.3. The wing bending of Figure 3.2 includes the original undefonned mesh for

reference. The natural frequencies of the two modes are 9.6 and 38.2 Hz respectively.

The simulation will be run at Mach 0.96 with standard air and a time step of 2.5E-4

seconds. Since the model is in the transonic range, the Euler FEM model must be used to

solve for the aerodynamics forces.

49

Figure 3.2 Mode 1, First Bending, ofthe AGARD445.6 Test Case at 9.6 Hz

Figure 3.3 Mode 2, First Torsion, of the AGARD445.6 Test Case at 38.2 Hz

3.1. 1 System Identification

From Appendix A, the values of ratio and omega were set to 512.9 and 1.0l5E-4

for this test case.

3.1.1.1 Training Data Generated in Serial

The serial training was run for 370 time steps. The training data from the serial

generation is shown in Figure 3.4 and Figure 3.5. These two graphs show the input signal

of in the general displacement of the mode and the forces results from those

50

displacements. The two figures should be view together as force changes on mode I due

to mode 2 motions are depicted on the graph of mode I. The training required 8.4 hours

on one node of CASE cluster.

Serial Training Data (Mode 1)

1 -.-------,..,,--------------------,- 30

0.8 _ 20
0.6 -·I----lr--\---+-\---------.:t---+----.H-------I Ql

"C
Ql

~

~
;

t:
Ql

~

~
~

0.4 -- ­

0.2
0

-0.2 -

- 10

- 0

., -10

~
~

-g
.~
~

CJ i5 -0.4
-0.6
-0.8

- -20

-30

~
C)

-1 - -40

Time

1--Displacement + Force 1)(Force 2 I

Figure 3.4 Training Data for Mode I, First Bending, from Serial Generation

51

Serial Training Data (Mode 2)

1, 30
0.8 +--------------f--\~n__H_il'o_----__J

-- 20
0.6 +---------------I---I-+--t-+-: II)

u..."Oc O.4+------....~__iI~-----f-. 10 0
II) CII U­

0 "0
- II).!::! E 0.2 .. ""~'" CII
~ ~ 0 -J--~_.....- .!:!

-10 -.;5i ~ -0.2 -1--------"'~-----~~___;l'1-.....,Ih+'r ...
II)

-20 II)
C) C -0.4 . I--~rl_+_-----_;. t:

C)-0.6 -1-------------WHH·....-l+-----1
- -30-0.8 -1------------------1 .,--~------1

-1 - -40

Time

1--Displacement + Force 1 x Force 21

Figure 3.5 Training Data for Mode 2, First Torsion, from Serial Generation

The training data was used to generate a range of model with varying na and nb

values. Using the training data as a standard the error was found for each model. The

model with na of4 and nb of7 was selected for its low error of 0.000952 and 0.00174 for

mode one and two respectively. This RMS error is found by using the displacement and

force data from the training set as input to the forcing model. The output of the model is

compared to the actual value from the training set. The error is found by summing the

square of all errors then dividing by the number of data points in the training set. The

square root of the average squared error is normalized with respect to the largest force on

the mode. The error is expressed in Equation 3.1, whereIT is the force value from training

data,IM is the force estimate of the model, fMAx is the largest force value for the mode of

interest from the training set, and n is the number of data points in the training set. The

error measurement is effectively a statement of the average error at each point nonnalized

52

by the largest force in the training set. So for mode 1 the average error is one thousandth,

0.000952, of the largest single force value on mode 1.

n

Error = -=-- n _ (3".1)
fMAX

The model predicted instability at 0.398 psi, with mode 1 diverging dynamically.

This instability boundary is found by combining the aerodynamic forcing model. with the

structural dynamics in a state space fonnulation. This readily allows eigenanalysis of the

total system. Sequentially larger densities are used to scale the forcing function until one

value causes an unstable eigensystem. This prediction agrees with experimental and

computational values from the literature.

3.1.1.2 Training Data Generated with Parallel Distribution

For the parallel training two nodes of CASE cluster were used. Simulations were

run for 200 time steps each. The training data from the parallel generation are should in

Figure 3.6 and Figure 3.7. The two CASE nodes required 4.3 bours each to complete the

job.

53

Parallel Training Mode 1

1.5 .,.-------------------------,- 15

C 1 ·1-------"""7"...------:Y/l!'.~--__:;:_+"_--------_t 10
eu
E eu
:il 5 l:!eu 0.5 ~-----_,(---__\()--~-_f__=_I:__}(--_;:;;:;..--------,.. o
Q.. U.

eu0 _-.. "'~=------,-$~~~j'f-:~~;.>~~.--.
'tl

is 0 .!:!
~ 500 6 0 ~
.!::! eu

c:~ -0.5 - -5 eu
eu C)
c:
eu

C) -1 -l-----------.>..L.-<;~5t''------------I- -10

-1.5 J..- --'- -15

Time

1-.- Displacement 1 x Force 1 + Force 21
Figure 3.6 Training Data for Mode I of the Parallel Training Set

Parallel Training Mode 2

1.5 30

20
c: -
Cl)

E
Cl) 10 eu

LlU 0.5 - ...
l'O 0
Q.. U.
III 0 'tl
C a - eu

.!::!
~
Cl) 500 6 0-10 ~ .!::! eu
iii -0.5 eu.. c:
Cl) -20 C)c:
Cl)
C) -1

-30

-1.5 '. -40

Time

1--Displacement 2 x Force 1 + Force 2 I
Figure 3.7 Training Data for Mode 2 of the Parallel Training Set

54

Again the training was used to determine a variety of system models. The error

was found for each mode compared to the combined training set. The model with the

lowest error was the model with na of 4 and nb of 8. The error for 4-7 model the same

model parameters used in the serial set, was slightly higher. In order to maintain

consistency between the models, a 4-7 was used for the parallel training as well. The

errors for that model were 0.000892 and 0.00241, with mode 1 dynamically diverging.

The predicted flutter pressure is 0.402 psi. Which again agrees with the literature results.

The comparison of time from serial and parallel is shown in Fi.gure 3.8.

9

8

~7 8.4
~
o 6
.c:
';"5
E 4
i= 3 4.3
::J
0. 2
U

1

a
Serial' Distributed

Figure 3.8 CPU Time to Generate Training Data for the AGARD445.6

Since the parallel and serial training data agree on flutter prediction, the instability

can be confirmed with a density study around the prediction.

3.1.2 Density Sweep

To confinn the predictions from section 3.1.1, a density sweep from below the

flutter prediction to above it was run. The prediction of 0.4 psi yields a density of

55

0.55E-I0 s/~n~h . The values for the simulations around the flutter boundary are found in
Tn

Table 3.1. The free responses were run to 2000 time steps.

Dynamic Pressure,
Test Condition Formula Density, P

Q

Below Model

0.80 x Prediction 0.440E-I0 sl~n~h 0.32 psi

Flutter Prediction Tn

Below Model
 0.495E-I0 sl~n~h0.90 x Prediction 0.36 psi
Flutter Prediction Tn

Model Flutter
 0.550E-I0 slinch1.00 x Prediction 0.40 psi
Prediction in l

Above Model

1.10 x Prediction 0.605E-I0 sl~n~h 0.44 psi

Flutter Prediction Tn

Above Model
 0.660E-I0 slinch1.20 x Prediction 0.48 psi
Flutter Prediction in 3

..
Table 3.1 The Initial Condittons for DenSIty Sweep of AGARD445.6

All the free responses were started with the same initial condition, a small

velocity on mode 1. Five nodes of CASE cluster were used to simulate the five free

responses. The results of the five responses are listed in Table 3.2. Three simulations are

compared in Figure 3.10 to Figure 3.12.

Dynamic Pressure, q CPU (hours) Dampin2 on Mode 1. C
0.32 psi 22.6 0.01276
0.36 psi 22.4 0.01077
0.40 psi 22.5 0.0025 I
0.44 psi 22.6 -0.00141
0.48 psi 23.1 -0.01274

Table 3.2 DynamIC Pressures and the Dampmg for the AGARD445.6

Using the data compiled from Table 3.2, the damping trend was derived. It is

shown in Figure 3.9. Normally only fOUI points are used in the trend estimate; however,

the five used here work well in a 4
th

order relationship. Notice that the curve fit for the

damping trend is not valid outside the range of data points used to generate it.

56

Damping Trend for AGARD445.6

0.02

0.01 - ~ ~

a V ~
C)
c ~ .~ -0.01
I'll

c -0.02 " '\-0.03

-0.04

0.3 0.35 0.4 0.45 0.5

Dynamic Pressure, psi

Figure 3.9 Damping Trend for the AGARD445.6

The damping trend predicts a flutter boundary at 0.422 psi. This matches very

well with the values reported in [Yates, 1987]. It is a 5.5% difference from the system

identification estimate.. This is with the uncertainty of the model. Reducing the time of

the model may reduce the difference between the system identification and the density

sweep estimates.

57

Motion on Mode 1 at 0.32 psi

0.6··r-------------------_---,

c ­ Q)

E
Q)

~	 0.2 t-t--T~--_r__+--i_+_-__+-t__-_+_t---+-__-_I
Q.
en

C

Q) "	 6 0
.~
'iU	 -0.2
~

Q,l)
c
~	 -0.4 i--'l-:f------l;;f-----'--'----=---------------{

-0.6 -'------------------ ~__l

Nondimensional Time

Figure 3.10 Free Response on Mode 2 a.t 0.32 psi for the AGARD445.6

Motion on Mode 1 at DAD psi

-
0.6

c:

Q,l

E
Q)
CJ
ell
Q.
III

C 0
Q) o " .~

f	 -0.2
Q)
c:
Q)

<.:>

-0.6·L--------------------------J

Nondimensional Time

Figure 3.11 Free Response on Mode 2 at 0040 psi for the AGARD445.6

58

Motion on Mode 1 at 0.48 psi

0.8

C 0.6 t----------------------;;:----~
Q)

~ 0.4 tT---j~r_--f_-_-_++-__.I_\---I-\--_I_+_-_J._l
CJ
(\I
Q. 0.2 +-\,---f---\---J.
1/1

C
"C
Ql

.!::!
~
~ -0.4
Ql

(!)

-0.8..L...--------------------------l

Nondimensional Time

Figure 3.12 Free Response on Mode 2 at 0.48 psi for the AGARD445.6

3.1.3 Comparison of CPU time

The time required for each response is listed in Table 3.2. A sequential run of all

five would require 113.2 CPU hours. The use of five nodes of CASE cluster reduced the

time be 79.6 percent. That translates into a speedup of 4.9 in the density sweep. The

graph in Figure 3.13 shows how the computation was accelerated.

59

Time required to finish AGARD445.6 response simulation

120 -.-----------------------------,

113.2
100 -1--------------­

80 -1--------------­

60 -1---------------­

40 -1---------------­

20

o
Parallel Distribution Serial

Figure 3.13 Time Required to Finish AGARD445.6 Response Simulation

The complete time required for both a system model prediction and confinning

density sweep is shown in Figure 3.14. The difference between the serial method and the

distributed parallel is 94.2 CPU hours. The parallel method is a 77% reduction 10

computing time. By using Euler3d_dpp, four days of computation were saved.

140

lil
120

121.6
~. 100
o
::. 80
Q)

~ 60

ir 40
o. 20 I 27.4 I

o
Serial Parallel

Figure 3.14 Combined Prediction Time for AGARD445.5

60

3.2 2xl Plate

In this test case, a three dimensional plate is used with the piston perturbation

method to identify a flutter point and confirm it with free responses. The aluminum plate

in this model is one tenth of an inch thick, with the standard properties of aluminum. The

CFD grid is shown in Figure 3.15.The structural FEM analysis found six modesbapes of

interest. They are shown in Figure 3.16. Tbe frequencies range from 589 to 1702 hertz.

The fluid is standard air at Mach 2 with a time step of 4.565E-6 seconds.

Since the distributed methodology should work with any valid CFD solver, the

full Euler FEM solver was replaced with the piston perturbation model. The airflow over

the elastic plate is at Mach 2; which Hunter [1997] found was within the valid range Jor

the piston perturbation method.

Figure 3.15 CFD Grid for the Aluminum Elastic Plate (top view)

61

Mode 1: 589 Hz Mode 2: 762 Hz

Mode 3: 1071 Hz Mode 4: 1516 Hz

Mode 5: 1533 Hz

Figure 3.16 Modeshape and Natural Frequencies of the Elastic Plate

3.2.1 System Identification

Training data was generated using both parallel and serial techniques. For this test

case the modified chirp was used. In order to sweep the correct frequency range with the

necessary number of data points for an overdetermined system model, the ratio and

omega values of the modified chirp were set to 4.75 and 8.535, respectively. The training

input signals were run for a 1700 timesteps per mode.

62

3.2.1.1 Training Data in Serial

Using cjdmd/3dsplice, a system model was generated using na of 0 and nb of 11.

Since the piston theory does not use the previous force values in its calculations, the zero

value of na is expected. The serial training data predicted dynamic instability at 39180.3

psf The dynamic divergence of mode 3 is shown in Figure 3.17. The training data

required 45.91 seconds to complete on one node of the CASE cluster described in section

2.3.

~ .

.~ !~.
,

~
'--------B--Jl<--.

/\ ""
..•... ,�

................................�

....

-'"

Figure 3.17 System Identification Model Estimate of Flutter Point for Elastic Plate

Using asemd/3d, the error was determined for mode. The error for the serial

training was 0.0015366, 0.00077565, 0.000774, 0.000777, 0.000775, and 0.000775, for

modes 1 to 6 respectively. So the mode with the greatest error in the serially trained

model is 0.1 % on mode 1. The training data and model prediction are compared in Figure

3.] 8. This graph only covers the effect of the input sif:,'Ilal on mode 1 to the forces on

mode 1. This is the mode with the most error. Notice that the error is not readily apparent.

63�

Comparsion of Training Data and Model Prediction, Serial�
Training Data�

1.E-04 -1-----------------------..
B.E-OS ··r---------~h,..LI-.""lIi;_-----­

~ 6.E-OS t------=:--ir--t-~_=__T_--_=___1~~~h...._-----_l
~
o 4.E-OS t----:iii~__tt-~~rTir_--:~I..==-.::::l~_=_~-=-_:__---~----~

~ 2.E-QS r--I"-f~"~.-=-._:;;~~~____=_;;_...:..-.LJL-..:-~a.;.~.l=_--~
~.!::! O.E+OO i-...--5-~~~L4...=. __a1hr_=__'.._~L-~~ ..~-._;.__~IL":

~ -2.E-QS ~r--tf-~h~~7~=--.!~---a:::_~!!....-.;..__'~,;.~~t.:!::..:..--_1

~ -4.E-OS t---~ __~~77-....;,fi=........~.-__t_...-----!I!~L----__1

~

C) -6.E-OS --I--------.:~.---'...:;......., -;II~'-a;-~~___.._...__ c.:;...:~---

-B.E-OS i------------=----1-..~~- L.=....------­
-1.E-04 -'------ --1

Nondimensional Time

I 0 Model Prediction + Training Data

Figure 3.18 Comparison of Training Data and Model Prediction

3.2.1.2 Training Data in Parallel Distribution

The parallel training data was generated on six nodes of CASE cluster. The nodes

required 8.06, 8.12, 8.19, 8.06, 8.08, and 8.17 seconds to finish. This is 17.8% of the time

required for the serial simulation. The same model order from serial training was used to

create a system model from the parallel trained data. This model predicted flutter at

39179.9 psf as well. Using xnmeld the parallel training data was combined into a single

time history for error calculations. The errors of the parallel based model were 0.000775,

0.000775, 0.000775, 0.000775, 0.000775, and 0.000775. Interestingly, the error is that

same on all six modes; however the prediction agrees with the serial training derived

model. In the next section, it will be shown to agree with the density sweep results as

well.

64�

The training data developed in serial and parallel both predicted the same flutter

point. This flutter point will be used to determine the initial densities of the density

sweep.

3.2.2 ConfIrming Density Sweep

The flutter prediction of 39179.9 psf at Mach 2 yields an air density of 0.0162

slugs per cubic foot, or 6.8 times the density of air at sea level. In order to confirm the

instability of mode 3 at that pressure, a series of free responses was simulaterl. Seven

responses were used in a range from seventy percent of the system model predicted

flutter boundary to thirty percent above the boundary. The seven densities and associated

pressures are listed in Table 3.3. The seven responses were run on seven nodes of CASE

cluster.

Dynamic Pressure,
Test Condition Formula Density, p

Q

Below Flutter
Prediction

0.70 x Prediction 0.01133 slug
ft3

,

27425 psf

Below Flutter
Prediction

0.80 x Prediction 0.01295 slug
.ft

3 31343 psf

Below Flutter
Prediction

0.90 x Prediction 0.01457 slug
ft3 35261 psf

Flutter Prediction 1.00 x Prediction 0.01620 slug
ft3 39179psf

Above Flutter
Prediction

1.10 x Prediction 0.01780 slug
ft3 43097 psf

Above Flutter
Prediction

1.20 x Prediction 0.01942 slug
ft3 47015 psf

Above Flutter
Prediction

1.30 x Prediction 0.02104 slug
ft3 50933 psf

. . ..
Table 3.3 The Imtial Conditions for DenSIty Sweep of the Elastic Plate

65�

Using seven nodes of CASE cluster the free response of the seven densities was

studied. The results are shown in Table 3.4. The damping of mod 3 is used, as it is the

mode that the system model predicts will diverge. Analysis of the other modes showed

that only mode I would decay above the flutter boundary, so any mode's damping trend

should find the same instability point.

Dynamic Pressure, q CPU seconds DamDin2 on Mode 3, e
27425 psf 31.11 0.04514
31343 psf 30.94

,
, 0.05463

35261 psf 31.16 0.02596
39179 psf 30.78 0.00271
43097 psf 30.55 -0.00728
47015 psf 30.78 -0.00567
50933 psf 30.86 -0.00222

Table 3.4 DynamIC Pressures and Damping for the Elastic Plate

The data from Table 3.4 can be used to find a damping trend. The four points

closest to the cross over point were used to fit a cubic function to the data. The results are

shown in Figure 3.19. This trend line predicted a flutter boundary at 39879 psf. Thi trend

is interesting in that it seems to indicate that the plate may return to a dynamically stable

condition at higher pressures. This phenomenon is known to occur in aeroelasticity;

however, this is most likely a result of projecting a curve fit outside its range of validity.

The density sweep estimate is 2% off of the system identification predictions. This is

within the uncertainty of a damping estimate.

66�

Damping Trend of Free Responses for Elastic Plate

0.06 ~-------------------------,
<>

0.04 -.I---=-------~~-----------------__1

g' 0.02 .1---------~...---------------_7"'y
'Q.
E
~ 0

25 00
-0.02

30000 35000 55 00
,

-0.04 L.. ---'

Dynamic Pressure (pst)

I <> Damping Values -TrendLine I
Figure 3.19 Damping Trend for the Elastic Plate

3.2.3 Time Comparisons

The elastic plate has six modes. From the time savings estimate in section 2.1.2.1;

the parallel training should take 16.6% percent of the time a serial training set does. The

serial training set required 45.19 seconds to finish. The parallel training took 8. I9

seconds for the slowest processor. The parallel processing took 18.1 % of the time the

serial did, a speedup of 5.5 over the serial method. This is shown in Figure 3.20.

67�

50 45.91
45

- 40
II)

'C
c: 35�
0�
u
CI> 30 ­

II)

25 -CI>
E 20
i=
::;) 15
Q.

8.19U 10

5 I0
Serial Parallel

Figure 3.20 Comparison ofParallel and Serial Training Generation Times

This was an efficiency of only 92 percent for training signal generation. Density

sweep results show a much better performance. The sweep required 31.16 seconds to

finish. Using the fastest processor, 30.58 seconds, as the base line for the speed up, the

speedup is 6.86. This is a 98% efficiency for the density sweep. This is shown in Figure

3.21.

68�

250

213.85

-rn 200
'a
c
0
u
Q)
rn-

150

Q) I

E
i= 100

=>
Q.
0 50 31.16

0 I I
Serial Parallel

Figure 3.21 Parallel and Serial Free Response Set Simulation Times

For the combined system identification and free response, the serial required

259.76 seconds, while the parallel only needed 39.35 seconds. This is an 85 percent

reduction of the time required to complete the analysis.

3.3� Generic Hypersonic Vehicle

The Generic Hypersonic Vehicle CGHV) consists of a typical hypersonic vehicle

aerodynamic configuration with complicated structural modes. A long oblate fuselage

with rear fins dominates the GHV. The fuselage base is blunt. Figure 3.22 shows the

GHV geometry. The grid has 58,511 nodes and 321,755 tetrahedral clements.

69�

Figure 3.22 GHV Geometry

Nine structural modes were retained from the free vibration analysis with

frequencies ranging up to 9.4 Hz. The simulation was run at Mach 2.2 using standard air

and a time step of 5.3E-3 seconds in the Euler equation solver.

3.3.1� Density Sweep

The GHV posed an interesting possibility. This is the most structurally complex

case tested in this work. Its nine modeshapes will need a large training set. It is possible

that a straight density sweep could find the flutter boundary faster than a system

identification model would. To test this, the density sweep was run before the system

identification study.

The starting pressure was set at 103.2 psi. This is 90 percent of the value reported

by Cowan [1998] from a system identification study. The pressure increment was

70

arbitrarily set at 12.9 psi. Each time history was run to 320 time steps; this was enough

for six cycles on the lowest frequency mode. The nine modes of the GHV result in nine

damping values. To save confusion, and space, only the values for the second mode 'are

listed in Table 3.5. In general, the mode of divergence is easily identified from visual

inspection of the plotted time history.

Dynamic Pressure, q CPU (hours) Dampin2 on Mode 2" e
103.2 psi 2.26 0.03392
116.1 psi 2.24 0.03746
129.0 psi 2.30 0.03696
141.9 psi 2.26 0.05131
154.8 psi 2.31 -0.6 I 77E-04
167.7 psi 2.22 -0.04274
180.6 psi 2.28 -0.05290
193.5 psi 2.27 -0.07259

Table 3.5 DynamIc Pressures and the Dampmg of Theu Response for the GHV

Looking at the damping trend, it appears that the dynamic pressure of 154.8 psi is

the flutter point as its damping is near zero. To check that the damping values 'are

reasonable the time history of the suspected flutter boundary and the pressure directly

above and below are plotted in Figure 3.23, Figure 3.24, and Figure 3.25.

71�

Motion on Mode 2 at 141.9 psi

0.5

C a -k----I'\--,.-7\----.------.------------1
Gl

E 50 00
IB -0.5 ++---1--+---1--1

"' i -1 -1-\----,
o
~ -1.5 -1-'--1---1--'�

.!::!�
~ -2
Gl
c
~ -2.5 -1--\--/---+--1----\;1------''-----------------1.

_3·-L.-------------------­ --J

Generalized Time

Figure 3.23 Response of Mode 2 at 141.9 psi for the GHV

Motion on Mode 2 at 154.8 psi

0.5

c: a i\----/+--.,--t-'r---rr--.--rr---I'\..---f\---mr-------f ­
Gl

~ -0.5 f+----I-I---'---"'~:..._j_--I
(,)

Q."'
en
i5
"C
Q)

-2 -j---t--f.!::!
~
Gl -2.5
C�
Gl�
C) -3�

-3.5·'----------------- ---J

Generalized Time

Figure 3.24 Response of Mode 2 at 154.8 psi for the GHV

72�

Motion on Mode 2 at 167.7 psi

3...--------------------------,�
C 2 -1--------------------------\
CIlE� 1 -1-----------------.~--A-_j'-___1
CIl

~	 0
Q.
III -1 lp-_-I---l•...ll~.lL\r___J.____4JuU1I.4_-\--~cU\'JJ1L_I_+~fUU_'_'u.._j~.

C
"t:l -2 -1--'1--1-----1--1

CIl
.t:! -3� ·I-~:.---\-;/----\--j/----\-I'---\-I---\,-/
E
CIl� -4 _I- ~:.....___V_--_J--__-H
l:
CIl

Ct� -5 -1--------------------­
-6 l-. --'

Generalized Time

Figure 3.25 Response of Mode 2 at 167.7 psi for the GHV

11 would appear .that the 154.8 psi response is neutrally damped. In aeroelastic

prediction this should be an acceptable value. For the purpose of this study, assume that

the 141.9 to 167.7 psi range must be investigated for more resolution. Since the cluster

finished this sweep in about 2.3 CPU hours, an aeroelastic analyst might decide to spend

that second half of the day refining the prediction. A second sweep, dividing the pressure

range into 8 new pressures was set up. The results of that pres ure sweep are in Table 3.6.

Dynamic Pressure, q CPU (hours) Dampine on Mode 2, ,
141.9 psi 2.26 0.05131
144.8 psi 2.24 0.04624
147.7 psi 2.23 0.05485
150.6 psi 2.29 0.06916
153.5 psi 2.25 0.001982
154.8 psi 2.31 -0.6 177E-04
156.3 psi 2.29 0.00090
159.2 psi 2.23 -0.01632
162.1 psi 2.26 -0.03071
165.0 psi 2.28 -0.02903
167.7 psi 2.22 -0.04274

Table 3.6 Refined Pressures and the Dampmg of Thelf Response fOf the GHV

73

From this refined study, the flutter point clearly lays between 153.5 and 159.2 psi.

The flutter prediction can be set at 153.5 psi with a high degree of confidence. The time

histories for the four pressures in the range are shown in the following figures.

Motion on Mode 2 at 153.5 psi

0.5 ­

c -Q)

E
Q)
U
III -1is.
ell

C
~
Q)

.t:! -2�
iG�
~
Q)
c
Q)

C>

-3.5 ­

Generalized Time

Figure 3.26 Response of Mode 2 at 153.5 psi for the GHV

Motion on Mode 2 at 154.8 psi

0.5

c -
Q)

E
Q)
u�
.!!!� -1c­
eil

C -1.5
~
Q)

.!::!
iG...
Q) -2.5
c
Q)

C>

-3.5

Generalized Time

Figure 3.27 Response of Mode 2 at 154.8 psi for the GHV

74

Motion on Mode 2 at 156.4 psi

0.5�

.~. f\ ,. " ,.�
~ a -~ I \ 10mb \ I~o~oo 1\ I~DO/­1\'1-4-=jO~rL-/~~00~ -0.5 \ \
~ -1

I�
C -1.5 1--I'l-+-I--f--l:---I--t--r--t--,--I---J--I--t--I--1--+---1�·~
-g \ I \
.~ -2 ..I--\­\-I,_.\---+---\-\--l--I\--I--+\-I--.\-t-\-,\--1--1,--;­
~ -2.5 -1-IV...,'-t \.1 V V\;\) V V�

<!' -3 ..J------\\jl--~~-------=---....lL----"-------1

-3.5..L-------------------------'

Generalized Time

Figure 3.28 Response of Mode 2 at 156.4 psi for the GHV

Motion on Mode 2 at 159.2 psi

1

- 0.5�c:�
Il)�

E 0�
Il)
u
IV -0.5
a. en, -1
is
"'Cf -1.5
Il)

.!::! -2 ­"'iii
l­
ll)�
c: -2.5
Il)

C) -3

-3.5

Generalized Time

Figure 3.29 Response of Mode 2 at 159.2 psi for the GHV

The first sweep of pressures required 2.31 CPU hours to complete, the longest

time of any node to finish. The second required 2.29 CPU hours. If all the response had

been run in serial the total time would be 36.21 CPU hours, 18.] 4 in the first sweep and

75�

18.07 in the second sweep. This is best represented in the bar graph of Figure 3.30. The

distributed parallel processing completed the task in 12.7 percent of the time a s rial job

would require. Finding the speed, the inversion of time, that is a speedup of 7.87 over a

single processor. The parallel processing with 8 processors achieved 98.4 % efficiency

with respect to the average speed of the processors in the cluster. This imperfect

efficiency is due to the parallel sweep waiting on the slowest processor to fmish.

Figure 3.30 Time Required to Find a Prediction Using a Density Sweep

The density sweep required 2.31 CPU hours to find the flutter point. Since the

GHV has nine modes it is a likely candidate for the possibility that the density sweep

requires less time than the system identification technique.

3.3.2 System Identification

Using the same time step and flow conditions as the density sweep, the system

identification training data was generated in parallel for the GHV. The ratio was set at

76�

64413.191, the omega at 7.894E-8 and the displ at 0.10. The GHV was set to run on .the

eight cluster nodes. For this test a ninth identical computer was added to the cluster. The

nodes required 3.24, 3.25, 3.30, 3.20, 3.33, 3.27, 3.22, 3.23, and 3.28 CPU hours to

simulate the response to the input signals. The average was 3.26 hours. Even without

accounting that the duster should only have eight nodes, the system identification

required more time than the initial density sweep. If the two shortest times for system

identification are added to simulate the effect of trying to run nine simulations on a

cluster with eight processors, then the time to complete the training data is 6.42 CPU

hours. This is longer than the time needed to find the refined density sweep prediction.

Figure 3.31 shows the relationship between the number of modes of a test case the time

to develop the system identification training data. The time for the refined density sweep

is marked as a comparison. This figure assumes that as many processors as needed are

available.

Comparison of Time for Density Sweep
and System Identification

7�

6�
~

.!!! Ul 5c: ... - .'- - .- - -- .' •• - -- - -:.-.;.-:.-:-:.;-=------.••• - .- - .- - ­u: g 4 J
~;31
Ql c.. l,--~_..-:~
E02~ --------------------­
i=­

1

o +---.---r----r--.--,----,----.,------,-_-.-_,.-_-,--------,

5 6 7 B 9 10 11 12 13 14 15 16 17

Number of Modes (nr)

- System Identification - - Initial Density Sweep - - - Refined Density Sweep

Figure 3.31 Time Comparison of Density Sweep and System Identification, GHV

77

Even though the system identification should take longer than the density sweep,

it may be of interest for studying changes in the internal structure or of control scheme

development. The asemd13d module found that a model of 2-] 5 fit the data best. This

model had a scaled RMS error of 0.242E-04, 0.202E-05, O.974E-05, 0.571E-05, 0.53 IE­

04, O.394E-04, 0.579E-04, O.397E-05, and 0.250E-05 on the respective mode. Since the

density sweep indicted a flutter boundary around 150 psi the stability of the combined

system identification model and structural dynamics solver was checked from 0 psi to

200 psi. The sweep of densities is shown in Figure 3.32.

.I

./l

/
//

J ",; •••••

/l ,.,.'_ .,../
...�f- \

/

I(~.
.....

........�
~.

(
. ,

..•.............�

....
.......�

................�

-"Figure 3.32 System Identification Model Estimate of Flutter Point

Since the GHV structural mode has no damping, the modes all start on the unit

circle at zero dynamic pressure. Although it is difficult to see the second and third modes

cross within the unit circ.le and proceed out to unstable eigenvalues. Just as in the density

sweep, mode two diverges first. However the mode diverges at 133 psi in this model.

This is a difference of 14 percent from the density sweep value. It is still below the flutter

78�

boundary and is a safe estimate. The difference is most likely related to the relatively

course time step used for the GHY. It has been found that the more refined a time tep

used the closer a system model response is to the actual physical characteristics.

79�

CHAPTER 4�

CONCLUSIONS AND RECOMMENDATIONS�

4.1 Conclusions

The distributed processing technique presented here has been shown to be an

efficient method to accelerate the prediction of flutter boundaries with either system

identification or dynamic pressure sweeps. Both transonic and supersonic test case were

used and shown to agre.e with experimental and previous computational results. It was

also shown that the principle of distributed processing holds regardless of CFD solver

used.

Distributed parallel processing was chosen as the best method for this study for

several reasons. First, it can be implemented without any changes to the flow olver.

Secondly, it does not depend on which flow solver is used for improvement in turnaround

time for flutter prediction. So, it can be applied to any flow regime Of structural model.

Finally, the only requirement for effective use of the distributed batch proce sing is

multiple computers of comparable speeds.

The assembly of a computer cluster to help complete training data generation and

free response simulation more quickly has a second advantage of allowing work to

progress on more than one test case at the same time. In past studies, progress on

secondary projects was limited to the use of legacy hardware deemed unsuitable for the

primary task at hand. With properly configured computer clusters, any nodes not required

80�

for the priority job can be assigned to other tasks. This increases the "bandwidth" of an

aeroelastic analysis group by allowing significant progress on multiple t st cases.

Finally, the efficiencies reported here compare favorably to results listed in the

literature to full parallel domain decomposition techniques. Geuzaine [2003] reported an

efficiency of 91 % for a Navier-Stokes code using 6 nodes to resolve the solution for one

flight condition. The GHV test cases had 98.4% efficiency for the overall prediction of

the flutter boundary.

4.2� Recommendations

Based on the results presented, several areas are recommended for further

investigation. First, a more methodical approach to density sweep should be developed.

At current, most literature uses known experimental values to determine starting values

for density sweeps. This is not a practical approach to real world problems, as aeroelastic

analysis has little value if the solution is already known. Some techniques for tbi could

be a modified bisection search, or searches based on exponentially increasing den ities.

One area of obvious interest is the division of the training input signal on a single

mode into multiple parts. This would carry batch processing further by allowing every

available computer to be used with no nr maximum. This is most obvious on test cases

like the AGARD445.6. The test case has only two modes. CASE cluster has eight nodes

for use. If the training input signal could be divided into four parts the training data could

be finished in a fourth of the time of the current implementation.

Dynamic pressure is a function of both density and fluid velocity. Due to the

relationship of density to pressure the density can be easily removed from the non­

81

dimensional flutter predictions. The speed, or Mach number. cannot be isolated so easily.

System identification of the aerodynamic forces due to Mach number is not as

straightforward as relating force to density. Distributed batch processing offers a method

to perform a study on the effect of Mach number with a reasonable time frame. Using the

same method as the density sweep multiple Mach numbers can be studied. This would

require software to automate the solution of steady state values for each Mach number

and then apply initial conditions to generate the free response.

Finally, distributed processing offers the option of generating the training data for

nonlinear system models with an acceptable time frame. With multiple simulations, the

system model does not need to assume linear superposition of the mode shapes. Each

node can run a different combination of modal motions to cbaractedze the system.

82�

BIDLIOGRAPHY

Baker, L. and Smith, B.L., Parallel Programming, McGraw-Hill, New York, 1996

Bisplinghoff, R.L., Ashley H., and Halfman, R.L., Aeroelasticity, Dover Publications,
Inc., 1996

Byun,� C. and Guruswamy, G. P., "Aeroelast.ic Computations on Wing-Body-Control
Configurations on Parallel Computers," Journal of Aircraft, Vol. 35, No.2, Mar­
April 98, pp 288-294.

Cowan, TJ., "Efficient Aeroelastic CFD Predictions Using System Identification"
Masters Thesis, Oklahoma State University, Department of Mechanical &
Aerospace Engineering, Stillwater, OK, May 1998.

Cowan, TJ., "Finite Element CFD Analysis of Supermaneuvering and Spinning
Structures" Dissertation, Oklahoma State University, Department of Mechanical
& Aerospace Engineering, Stillwater, OK, July 2003.

Fisher, C.c. and Arena, A.S., "On The Transpiration Method For Efficient Aeroelastic
Analysis Using An Euler Solver" AIAA Paper 96-3436, AIAA Atmospheric
Flight Mechanics Conference San Diego, CA, July 29-31,1996

Geuzaine, P., et aI, "Aeroelastic Dynamic Analysis of a Full F-16 Configurtion for
Various Flight Conditions," AIAA Journal, Vol. 41, No.3, March 2003, pp 363­
371

Geist, A., et aI, PVM: Parallel Virtual Machine, A User's Guide and Tutorial for
Networked Parallel Computing, The MIT Press, Cambridge, MA, 1994

Goodwin, S.A., et aI., "Toward Cost-Effective Aeroelastic Analysis on Advanced Parallel
Computing Systems," Journal of Aircraft, Vol. 36. No.4, July-August 99, pp 7]0­
715

Gropp, W., Lusk, E., and SkjelIum, A., Using MPI, Portable Parallel Programming with
the Message-Passing Interface, 2nd edition, The MIT Press, Cambridge, MA,
1999

Gupta, K.K.,· "STARS - An Integrated General-Purpose Finite Element Structural,
Aeroelastic, and Aeroservoelastic Analysis Computer Program," NASA TM-4795.
1997

83

Hunter, J.P. and Arena, A.S., "An Efficient Method for Time-Marching Supersonic
Flutter Prediction Using CFD," AJAA-97-0733, AIAA 35th Aerospace Sciences
Meeting and Exhibit, January 6-10, 1997, Reno, NV

Kalaba, R., and Spingarn, K., Control, Identification and Input Optimization, Plenum
Press, New York, 1982

Katz, J. and Plotkin, A., Low-Speed Aerodynamics, 2nd Edition, Cambridge University
Press, 2001

Lee, M., "Development of a User-Friendly Molecular Dynamics (MD) Simulation
System for Nanometric Cutting and Tribology," Masters Thesis,. Oklahoma State
University, Stillwater, OK, 2002.

Liu, F., et aI., "Calculation of Wing Flutter by a Coupled Fluid-Structure Method,"
Journal of Aircraft, Vol. 38, No.2, Mar-April 2001, pp 710-715

Ljung, L., System Identification: Theory For The User, Prentice Hall, me., New Jersey,
1987

Moretti, P., Modern Vibration Primer, CRC Press, Boca Raton, 2000

O'Neill, C.R., "Improved System Identification for Aeroelastic Prediction," Masters
Thesis, Oklahoma State University, Department of Mechanical & Aerospace
Engineering Stillwater, OK, July 2003

Snir, M., et aI, Message Passing Interface - The Complete Rejerence, The MIT Pre s,
Cambridge, MA, 1998

Vmar, A., Distributed Computing: A Practical Synthesis, Prentice Hall, me., New Jersey,
1993

Worringen, J. and Scholtyssik, K., MP-MPICH: User Documentation and Technical
Notes, RWTH Scalable Computing, 2002

Yates, E.C., Jr., "AGARD Standard Aeroelastic Configurations for Dynamic Response.
Candidate Configuration I.-Wing 445.6," NASA TM-I00492, 1987

84�

APPENDICES�

85�

APPENDIX A�

SOFTWARE OPERATIO�

A.I Overview of Euler3d

Until recently, the STARS suite of programs lacked a flow solver capable of flow

solutions in non-inertial frames of reference. In 2001, Cowan developed a l1ew

computational Euler based flow solver capable of handling dynamic rotations. In addition

the addition of the non-inertial frame, the algorithm was improved and the input file

fonnats simplify from previous STARS flow solvers. This appendix has a brief overview

of the operation of Euler3d. This overview is intended to explain the difference between

Euler3d and Euler3d_dpp.

A.I.I Input Files

The new Euler3d_dpp was designed to work with existing Euler3d standard

fonnats. As such the fonnat of the input files bas remained the same. The only changes

have been to the control file, case. con. The new flags are listed here with there effects.

The following three values control the generation of training data for system

identification. The method for determining the correct values for the three parameters is

covered in A.2.

• omega - This value determines the rate of frequency (00) sweep.

• displ - This value determines the magnitude of displacement.

86�

• ratio - This value determines the length of the training signal.

There is only one parameter to adjust when running a sweep of several densities to

confmn a system identi.fication prediction.

•� delrho - This is the increment of density. The value of the density on any

given node ais delrho x a+ rhoinf.

The following two parameters are logical, true or false, controls.

•� iwrite Detennines the recording of full solution files from nodes other

than O.

•� irsds This option is disabled III Euler3d_dpp. It controls the residual

study command. If an unexplained error occurs during the first step of

euler3d_dpp, this value may be set to true. If so change to false and this should

correct the error. NOTE: It is possible to perform a residual study in Euler3d_dpp,

but use one and only one node.

A more detailed discussion of how to find the value for parallel parameters is

given in section A.2. In addition to these new flags, new options have been added for

I BXN in the vector file, case. vee. In particletre, the values 6 and 7 which induce a

modified and offset modified chirp signal.

A.2 System Identification Parameters

This section was copied from a MathCAD worksheet, which IS used to find

omega and ratio for the chirp-training signal.

87�

Begin by selecting the largest ARMA model to investigate and set number of modes.

na = number of aerodynamic terms

nb = number of body displacement terms

nr = number of elastic modes for the model

overdetermined% (E) = the percentage of data points to use to over

determine the system, i.e. 400 percent is 4 data points for every parameter. Then

find the number of data points needed by using Equation A.I.

datapts = (nr 2
. nb + nr· no). ~

100

Example:

na := (:

nb := 3C

nr:= 2

overdetermined% := 100f�

2) overdetennined%�
NumPtsNeeded:= (nr ·nb + na·nr .-----­

100

NumPtsNeeded = 1320

Next, input the highest structural frequency and minimum number of points per cycle.

Using these values, find the non-dimensional time step for the ARMA model.

fmax = highest natural frequency of structural mode (in Hertz)

minpts = number of points per cycle of the fmax mode

M = Mach number

88

ainf = Speed of sound (in inches per second)

refdim = reference dimension (usually set to 1 inch)

Using Equation A.2, find the time step.

1t=----­d (M. a inf J
f MAX . mnpts refdim

Continued Example:

minpts := 10(

M:=O.~

ainf:= 129l<

refdim:= 1

dt :=---­
real f .minpts

max

. -4 in secondsdtreal = 4 x 10

M·ainf�
dtstar := dtrear--.­�

refdlm

dt = 2.4 dt of the case. con file; dt can be smaller, but not

larger

The number of points in a training signal can be determined by dividing the Dumber of

points needed for an overdetermined model by the number of mode shapes.

. NumPtsNeeded
MmPtslnChirp := ~----­

nr�

MinPtsInChirp = 660

89

Now, ratio can be found by multiplying the number of data points in a training signal

by the time step.

ratio := MinPtslnChirp·dt

ratio = 1584

This is ratio for the case.con file.

Find omega, the rate of frequency sweep, by setting the multihigb as a faction of the

minpts per highest cycle, this prevents the chirp going beyond the Nyquist frequency.

. ' minpts
mult~igh :=-­

10

mult~igh = 10

Find the Nyquist frequency angular value:

1 21t
(J) '= -.­

nq' 2 dt

(J}nq = 1.309

This formula finds the rate of the frequency so tbat the frequency sweep ends a

frequency equal to the Nyquist divided by the value of multihigh. In this case it is a

tenth of the Nyquist.·

1
(J):= CJ.) .-.-­

nq multiL· h 2 ratio . mg

-5
(J) = 4.132x 10

This is omega for the case.con file.

The number of time steps to run the training signals for both serial and parallel

generation.

Total points of the training signal:

90

2Q.M + (or + O.I)·ratio
TotalPoints :=

dt

TotalPoints = 1406

For a standard chirp without parallel processing this is nstp.

2Q.dt + (l.05)·ratio
TotalPoints Parallel:= .=...:...-=-------'--.:.--­

- dt

TotalPoints_Paral1el = 713

For a Parallel processed chirp, this is nstp.

Notc: Both omega and ratio should be entered into the control file as double

precision values.

Example:

omega = O.1203E-6,

ratio = 2107.0dO,

A copy of this document In both MathCAD and Abode Acrobat formats IS

available at www.caseLab.okstate.edu.

A.3 Using Euler3de-dpp

This section handles the detai Ls of starting EuLer3d_dpp. This section assumes that

the steady state solution, grid file and mode shape displacements are already available

and correct. It also assumes that NT-MPICH has been installed on all computers with in

the cluster and is working properly. See section B.2 for instructions on setting up the NT­

MPICH services on a Windows machine.

Rexecshell . exe - This is the graphical interface to the MPI software.

1. Start the Rexecshell . exe program.

91

2. If the dialog pops up a box asking to use machines. txt, answer it. This

usually means that the computers, or machines, you will be using have been

listed in a convenient file. If you don't use this file, the program will

automatically search the connected networks for machines that support the MPI

protocol. If the machine is connected to a large network, like those found at most

universities, it will take some time to finish.

3.� Open the configure dialog box from File --+ Configure...

4.� Select the machines you wish to use form the list under Available hosts. A

computer can be selected multiple times. Try to find a balance so that all the

machines will finish at about the same time.

5.� Underthe Basic tab, select ch_wsock from the drop down menu for Active plug-

in. On the same tab, type in the path to the euler3d_dpp. exe program in the

program field. In the working directory field type the path to the directory with

the test case. Alternatively, these can be selected from the drop down menus.

92

6. On the account tab, type in the usemame, password and domain for the user

account that will be used to run the distributed test case. The domain is most offer

local.

7.� Select OK in the dialog box. Then click the start button.

~ Rexec Shell
START

'1------ CLOSE ALL

File� Window Help

1lJ nI~ ~gj

I KILL�Hosts

8.� In the window for node number 0, the master node, the node will be waiting for

the name of the test case. Select the window and type in the name. Press <Enter>.

All the nodes should run without need for user input from this point.

9.� When all nodes report that the simulations are complete, press the kill button to

release the nodes. The shell can be used to initiate a new set of simulations.

93�

A.4 EUler3d_dpp Output Files

This section covers the output files from Euler3d_dpp. There are three sets offiIes

that can be generated with distributed Euler. Note that the case#.lds and case#.un## files

are only generated if iwrite is set to true.

xn.dat# These files contain the displacement, velocity and accelerations on

each mode shape from each node used by the cluster software. The

indicates which node generated the file.

case#.lds These files contain the aerodynamic loads on the solid walls on the

test case. The # indicates which node generated the file.

case#.un## These files contain the nodal values for the primitive flow

variables for each node in the computational grid. The # indicates

which node generated the file. The ## indicates the sequence of the

solution files.

A.S� Euler3d_dpp PostPrecessors

The operation of glplot3d. exe is the same was with regular Euler3d.

However, in order to view the solutions the input files case.con, case. vee and case. un##­

must be rename to case#.con, case#. vee, and case#.un##. This allows glplot3d to know

from which node it should get the solution.

The following section was originally written as instructions on determining the

best ARMA model for a training set.

94�

I. Copy each xn.dat# to train.dat#. Note that the file xn.datO should be renumbered to nn,

where nn is the number of nodes used in for Euler3d_dpp. Don't rename the files; copy

them to the new file name. They will be used again later.

2. Run cfdmd13dsplice. exe

a.) Select option 4 = Generate MULTIPLE spliced aerodynamics

models

b.) Input the range of na and nb that was used to determine the chirp signal

length

c.) When finished note the number of models produced. This is listed at the very

end of the run

3. Run xnmeld. exe. Input the number of xn.dat# files and nr as prompted. This will

produce an new file called xn.dat.

4. Run asemd13d. exe

a.) Select option 5 = RMS Error Study of Force Response

b.) Input the number of models from 2c

5. Using EXCEL, open the RMS.dat file. The last two columns of thi.s data are both

measures of how well a model matches the training signal. Find the model that has the

lowest value for each measure. It is possible that the same model is the lowest in both,

but not necessarily true. The models are mostly likely similar. (NOTE: the quickest way

to sort the data file is use the "Sort Ascending" command in EXCEL. This is usually on

the toolbar as a down arrow next to an A above Z.)

6. Run cfdmd13dsplice. exe

a.) Select option 1 = Generate Single aerodynamics models

95

b.) Input the na and nb of one of the models found in step 5

7. Run as emd13 d . exe, to find the flutter boundary of this model

a.) Select option 1 = Compute eigenvalues of coupled system

b.) Input a dynamic pressure well below the flutter boundary (usually 0 IS

selected)

c.) Input a course resolution for the dynamic pressure increment

d.) Input a number of increments that will test a dynamic pressure well above

where the fluttery boundary is believed to be

e.) The program will output the first dynamic pressure that results in an unstable

system

f.) If the program did not fmd an unstable system, mcrease the number of

increments until one is found

g.) Rerun asemd13 d . exe with better resolution between the unstable pressure

and the next lowest pressure in the increment set

h.) Repeat part g until the fluttery boundary is detcnnined to the required

resolution

8. Confinn that the structural mode shapes cause the flutter boundary, not instability in

the aerodynamic or body motion models. This is best done by running asemd13d. exe,

option 1 for the selected model from a dynamic pressure of zero to beyond the flutter

boundary. Using gleigplot. exe, look at the eigenvalues (case.eig). The structural

modes should move from close to the unit circle (right on it if the structure has no

damping) to outside of the circle (not necessarily by a straight line, they may move in

then out). If any other type of eigenvalue is the cause of the instability, then this is not a

96�

valid model of the coupled aerodynamic/structural system. Try another model that

matched the forced response well.

9. Run asemd13d. exe

a.) Select option 3 = Model sensitivity study

b.) Input a range of dynamic pressure with the required resolution around the

flutter point that was found in 6

c.) Input the number of models from 2c

d.) The program tests every model with dynamic pressures in the specified range

to find the fluttery boundary, so it may require a several minutes to a few

hours

10. Open sensitivity.dat. The file contains the results from 7. Using the data from

RMS.dat, the models with low error should all have nearly identical flutter boundaries,

within -25 percent. This group of valid models should be readily apparent

11. Confirm the flutter boundary with free response in Euler3d_dpp. exe. Run a case

of free response above the flutter boundary and one below to confirm that the flutter

prediction is valid. These cases should be within the acceptable range of error for the

flutter boundary.

97�

APPENDIXB�

CLUSTER DESIGN AND ASSEMBLY�

The impetus to design and build a cluster of inexpensive personal computers to

solve large-scale nonlinear aeroelastic problems cam.e from discussion about maximizing

computational perfonnance within a set monetary budget. That discussion lead to the

development of a mathematical model that found the best computer configuration for the

most processing within the set budget. This appendix details how the computers were

selected and how the computers were assembled into a cluster.

B.l Component Selection

The original purpose of the software was to reduce the time required to generate

training data for complex structural models. Knowing how the software wou Id operate,

the speed of the cluster could be evaluated using existing Euler3d benchmarking

software. Using the benchmark predictions, the current cost of a machine, and estimate

for the cost of cluster networking and the known budget, a systematic search was done to

find the best cluster design. Table B.l contains the results of the search for five di fferent

Intel Pentium 4 processors. The benchmark results are in time steps per second, the

higher the better. The computers column represents the number of computers that be

purchased within the budget.

98

Processor Number ofComputers Benchmark Estimate

2.26 10 6.10

2.40 9 5.85

2.53 9 6.84

2.66 8 6.40

2.80 7 5.85

Table B. 1

The search identified the Intel Pentium 4 2.53 GHz processor as the best option

for creating a cluster of personal computers. The motherboard, memory, hard disk and

chassis/power supply selections were made to reduce the cost further. It is important to

note that the selection of motherboard and memory was made to remain in budget and to

get the best possible memory assess speed. Table B.2 lists the components selected. The

motherboard should also include video and fast Ethernet ports.

Processor Intel Pentium 4 2.53 GHz

Memory 2 x DDR333 512MB

Motherboard Asus P4GE-V/L

Hard Disk Maxtor 30.0 GB 7200RPM ATA133

Computer Case Avance Corp's BL6004

Table B. 2

Node selection is a straightforward attempt to optimize benchmark versus price of

the cluster. The other major component in a cluster is the networking medium. In general

for parallel batch processing, like Euler3d_dpp, the speed ofthe medium has only a small

99�

effect on the performance of the cluster. So the least expensive form of networking

several computers together should be selected. However it is important to consider that

batch processing is usually a first step toward paral1el processing of a single simUlation.

For paral1el schemes where several processors are working on the same simulation,

communication speed is important. The network switch should be able to handle high

volume traffic quickly, and allow expansion of the cluster. For the cluster, the HP

procurve 2124 fast Ethernet switch was selected. The cluster will start with only 8 nodes,

but the switch has 24 ports al10wing expansion in the future and temporary addition of

extra machines.

In order to speed up assembly and reduce administration of the cluster, a

commercial DHCP server and firewall was purchased, the Netgear FRl14P. A KVM,

keyboard/Video/Mouse, switch was used to allow users to control each node individually.

This effectively completed the components of the cluster. However, Unintenuptible

Power Supplies, UPSs, were used to handle power spikes and power loss.

B.2 Cluster Assembly

Once the components for the nodes arrived, assembly preceded one machine at a

time. Each part was visually inspected. Then the pieces were assembled. Each

motherboard was removed from its protective packaging. A CPU was opened and

mounted on the motherboard. Two sticks of memory were installed. The motherboard

was attached the computer chassis and screwed down.

With two people working assembly only required four hours. As each computer

was fmished, it was powered up and allowed to run it's self-test. For this cluster, CD­

100�

ROM drives were used to install Microsoft Windows 2000 Professional on each machine.

However, Windows 2000 Server has an optional service that allows the installation of

operating systems over a local area network. It is recommendation that this service be

used if possible. As the operating system is install, make sure that a user account is

created that will allow the master node to start programs on all slave nodes.

Once Windows was installed all cluster nodes, NT-MPICH was installed on each

node. The software package was unzipped on a network drive. The service was installed

on each node individually by running rcluma-install. bat from the network drive.

The dynamic link libraries from the lib directory of the unzipped NT-MPICH were

copied on to each computer. Alternatively, the PATH system variable could be changed to

include the network drive containing them. The cluster was ready to process MPI based

programs.

101�

VITA

Anthony Andrew Boeckman�

Candidate for the Degree of�

Master of Science�

Thesis:� ACCELARATING COMPUTATIONAL FLUID DYNAMICS BASED
AEROELASTIC ANALYSIS USING DISTRIBUTED PROCESSING

Major Field: Mechanical Engineering

Biographical:

Personal Data: Born in Tulsa, Oklahoma on September 22, 1978, the son of
Anthony P. and M .. Jean Boeckman.

Education: Graduated from the Oklahoma School and Science and
Mathematics in Oklahoma City, Oklahoma in June 1997; Received
Bachelor of Science in Aerospace Engineering with a minor in History
from Oklahoma State University, Stillwater, Oklahoma in May 200 I;
Completed requirements for Master of Science with major in Mechanical
Engineering at Oklahoma State University in May 2003.

Experience: Employed by Site Specific Technology Development Group as
a Computer Graphics Programmer from 2000 to 2001; employed by
Oklahoma State University as a graduate research and teaching assistant in
the Departm.ent of Mechanical and Aerospace Engineering from 2001 to
2003.

Professional Membership: American Institute of Aeronautics and Astronautics

