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CHAPTER 1 

GENERAL INTRODUCTION 

Photosynthesis is responsible for the conversion of the energy In sunlight into 

usable fonns of energy, therefore making it arguably the most important biological 

process on earth. Photosynthesis converts carbon dioxide from the air into sugars, 

starches and other rugh-energy carbohydrates while also releasing oxygen . 

Photosynthesis directly or indirectly, fulfills all of our food requirements and many of our 

needs for fiber and building materials . tn addition, the energy stored in petrolewn, 

natural gas and coal all corne from the sun via photosynthesis, a.s does the energy in 

firewood, which is major source of fuel in many parts of the world. Hence, this 

phenomenal process of liberating oxygen and fixing carbon dioxide has transformed the 

world into the hospitable environment we live in today (Gust, 1996). 

One of the reaction centers of oxygenic photosynthesis is photosystem II (PSlI), 

where light energy is used to split water into oxygen, protons and electrons. This process 

can be studied in model organisms such as the cyanobacterium Synechocystis sp. 

PCC6803 (Synechocy~· t is 6803). One evolutionarily conserved protein of Synechocystis 

psrr with an unknown function is cytochrome c550. This unique protein is a mono-heme 

CytOchrome with bis-histidine coordination and an unusually low redox midpoinL 

potentia] of -2SOmV. Therefore, it is important to study c550's structure to see how it 

applies to this very negative redox potential. and to answer questions regarding the 



unknown functional role of cyt. c550 in PSII, and additionally achieve a better 

understanding of other redox proteins. 

2 
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CHAPTER 2 

LITERATURE REVIEW 

Photosynthesis 

Photosynthesis is responsible for the conversion of the energy in sunlight 

into usable forms of energy, therefore making it arguably the most important biological 

process on earth. Photosynthesis converts carbon dioxide from the air into sugars, 

starches and other high-energy carbohydrates while also releasing oxygen. 

Photosynthesis directly or indirectly, fulfLlls all of our food requirements and many of our 

needs for fiber and building materials. In addition, the energy stored in petroleum, 

natural gas and coal all come from the sun via photosynthesis, as does the energy in 

firewood, which is major source of fuel in many parts of the world. Hence, this 

phenomenal process of I iberating oxygen and fixing carbon dioxide has transformed the 

world into the hospitable environment we live in today (Gust, 1996). 

Oxygenic photosynthesis is the principal energy converter on earth, and in 

plants. a 19ae and c yanohacteria, it is driven b y two reaction center containing integral 

membrane pl"Otein complexes, photosystem I (PSn and photosystem I J (PS II). These 

two large protein-cofactor complexes located in the thylakoid membrane are involved in 

the initial steps of the conversion of solar energy into usable chemical energy that is 

released. into the biosphere (Zouni ec 01 .• 2000) . It is therefore important to study 

photosynthesis in simpler forms to find out more about the origin., evolution, and 

influence of life on this planet. Fossil records show filamentous cyanobacteria of 



4 

3.4 x t09 years 0 fa gc while t he earth's age is 4.4-4.8 x 109
. Cyanobacteria and early 

eukaryotic algae produced oxygen and OVer several billion years, brought the atmosphere 

to i 1$ present condition in which life predominates. T he c ytochromes t hat function in 

photosynthesis in cyanobacteria, algae and plants have, like other photosythentic catalysts, 

been largely conserved in their structure and function during evolution (Rutherford & 

Faller, 2001). By studying such intricacies of photosynthesis we can lcam how to 

enhance this process and harness it for the betterment 0 f mankind. 

Photosystem II (PSll) 

One key reaction center of photosynthesis is PSll, which is the site of 

photosynthetic water oxidation that accounts for nearly all oxygen in the atmosphere and 

indirectly nearly all the biomass on the earth (Debus, 2000). PSI! is variously referred to 

as the oxygen-evolving complex, water-oxidizing complex or the water-plastoquinone 

photo-oxidoreductase. PSII water oxidation, which takes place near the luminal surface 

of the thylakoid meD1.branes in plants, algae, and cyanobacteria, is catalyzed by the 

oxygen evolving complex (OEC) (Mectam et aI., 1999). Oxygenic photosynthesis 

depends upon the ability of the PSII complex to utilize water as a source of electrons to 

be used for reductive metabolism. Electrons are generated when water is cleaved and 

molecular oxygen is produced in the water-splitting complex of PSII (Katoh el al., 2001). 

The PSIl complex is an integral membrane protein that utilizes solar energy to 

reduce plastoquinone to extract electrons and protons from water (Debus, 2000) with the 

simultaneous evolution of molecular oxygen. Therefore the oxygen evolution of PS II, in 

order to evolve One molecule of oxygen, and two molecules of water, CO2 must be 
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decomposed with the concomitant extraction of four electrons and four protons (Shen et 

af., \998). During each catalytic cycle, two plastoquinone molecules are reduced and 

protonated, four P Totons are removed from I he Slroma, and four protons are deposited 

into the lumen. These protons contribute to the tTansmembrane proton gradient that is 

utilized for ATP formation. PSIl therefore provides the reducing equivalents and much of 

the electrochemical potenli al that is required for the synthesis of organic compounds from 

carbon dioxide (Debus, 2000). T he conversion of light to chemical energy in P Sll is 

associated with this charge separation across the thylakoid membrane (Zouni, el at., 

2000). 

psn is a large complex with many subunits, most of which are integral membrane 

proteins and others which are peripherally located (Fig. I) (Seidler, J 996). In vivo, the 

PSli complex contains neaTly 30 different polypeptides, including those involved in light 

harvesting. Of these polypeptides, about 25 are considered the psrr core proteins and are 

encoded by the psb genes, most of which are located on the chloroplast genome (Debus, 

2000). Although the minimum number of protein subunits required for water oxidation is 

not currently confirmed, there are varying opinions regarding the maUer. Both the PSIr 

complexes from cyanobacteria and higher plants consist of the DJ and D2 Teaction center 

proteins, the 47 and 43 kDa CP proteins that serve as prox i mal antennae, the 33 kDa 

extrinsic protein that stabilizes the Mn cluster, the alpha and beta subunits of cyt. b559 

and several other low molecular weight polypeptides whose functions arc not well 

established (Shen & lnoue, 1993). The extrinsic 33kDa protein is refened to as the 

manganese-stabi lizing protein (MSP) and is encoded for by the psbO gene. In addition to 

membrane spanning polypeptides, it is believed that at least 3 extrinsic proteins including 
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the aforementioned MSP, are required for optimum activity of the water oxidation 

complex (Franzao et aI., 2001). in higher plants and green algae the other two extrinsic 

proteins are the 24 and 18 kDa proteins encoded by the psbP and psbQ genes respectively. 

In cyanobacteria and non-green algae, the extrinsic proteins associated with the wa1er 

oxidation reaction are MSP, cytochrome e5S0 and an 8-12kDa protein. Cyt. c5S0 and the 

8-12 kDa protein are endoded by the psb V and psbU genes, respectively. 

Photosynthetic oxygen evolution in cyanobacteria, algae and plants is catalyzed 

by the tetranuclear Mn cluster iigated to several polypeptides of the PSJ( complex 

(Franzao et al., 200 t). The Mn cluster accumulates oxidizing equivalents in response to 

photochemical events within psn, then catalyzes the oxidation of 2 molecules of water, 

releasing one molecule of oxygen as a byproduct (Debus, 2000). There are three 

inorganic ions, manganese, calcium and chloride serve as the cofactors of the OEC 

(Meetam et al., 1999). 
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Figure 1: PSII complex. The psn complex is composed of the Dl and DIT reaction 
center proteins, the CP43 and CP47 antennae proteins, the 33kDA manganese-stabilizi.ng 
protein (MSP), the 12kDa psbU protein, and cytochrome eSSO. 

Synechocystis .~p. PCC6803 

Since PSlJ is functionally and structuraJly similar in the chloroplasts of 

higher plants and in cyanobacteria (pakrasi et aI., 1985), organisms such as Synechoc,yslis 

6803 can be used as easily engineered model systems to study this process. No such 

methodology exists for molecular analysis ofPSn in higher plants. Synechocyslis 6803 is 

a halotolerant cyanobacterium that is mesophilic. It serves as an excellent model to study 

photosysthesis because it has a naturally occurring genetic transformation system and it 

possesses the ability to grow photoheterotrophically on glucose (Williams, 1988). So far, 

four specific c-type cytochromes have been isolated from Synechocyslis 6803; cyt. f, cyt. 

c6, cyt. eSSO and cyt. Cm of which has an unknown function. The particular cytochrome 
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of interest to my project is the low-potential cyt. c550. By using site-directed 

mutagenesis, genes in cyt c550 can be deleted and replaced with modified copies to study 

the molecular processes of photosynthesis in a cyanobacterium. 

Cytochrome c550 (cyt. c550) 

Cytochromes are hemoproteins, the activity of which depends on an 

association between the cofactor and the polypeptide chain. C-type cyts. can be defined 

as having one or several hemes bound to the protein moiety by one, or more thioether 

bonds involving sulfhydryl groups of cysteine residues and the propionate groups of the 

heme moiety (Dolla et aI., 1994). Based on this characterization, four classes of c-type 

cyts. have been identified. Class I includes classical soluble cyt. c of mitochondria and 

bacteria, with the heme binding site towards the N- terminus and the sixth axial ligand 

provided by a methionine residues (Dolla et at., 1994). Class II includes cyts. having their 

heme binding site close to the C-terminal part, and are typically found as the high spin 

state of the heme iron. Class III are distinguished by their multi-heme nature and very 

low redox potentials, while class IV involves complex proteins having distinct prosthetic 

groups in the same molecule. C-cytochromes are one ofthe most thoroughly documented 

oxidoreductase proteins (Dolla et at., 1994). One unique c-type cytochrome is c550 

which is essential to the structure of PSII (Shen & Inoue, 1993) and has been found in 

cyanobacteria and algae but not in higher plants. Cytochrome c550 is one of the major c­

type cytochromes found in cyanobacterial cells when whole cell extracts are 

electrophoretically separated and viewed by heme staining (Shen et al., 1995). Cyt. c550 

has been found in Synechococcus vulcanus (Shen et al., 1992) the red algae Cyanidium 

caldarium (Enami et al., 1995) and in our model organism, Synechocystis 6803 (Shen et 
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al" 1995). C550 functions in PSII and is encoded for by the psb V gene which has been 

sequenced by Shen et al. From the most probable start codon, gene psbV codes for 160 

amino acid residues which includes a cleavable N-terminal leader sequence of 25 

residues. The leader sequence has an Arg-Asn-Arg sequence immediately before the 

cleavage site that is characteristic of transit peptides in prokaryotes (Shen et al., 1995). 

This transit sequence is responsible for directing the newly synthesized cyt. into the 

thylakoid lumen. 

Some uniq ue features of the water soluble c550 as seen in (Fig. 2), are its 

single heme with low-spin bis-histidine coordination at the fifth and sixth axial ligands, 

(Diner & Babcock, 1996) and a very low reduction potential of -25OmV, therefore 

classi fying it as a low-potential c-cytochrome (Shen et al., 1995). Thus far, c550 has the 

lowest redox potential of any monoheme cytochrome (Sawaya et al., 2001). Cyt. e5S0 

shows a maximum absorption between 548 and 550nm in it's reduced form 

corresponding to the alpha band (Frazao el al., 2001) and has an acid isoelectric point of 

3.9 (Navarro et aZ., 1995). Cyt. c550 is an extrinsic protein associated with PSII in 

cyanobacteria and lower eukaryotic algae a nd has been proposed to playa n important 

role in the water splitting reaction (Kerfc1d and Krogman, 1998, Shen el ai, 1992). 

However, the physiological function and physical localization of c550 inside the cells are 

still controversial (Navarro et al., 1995). 
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Figure 2: Heme environment of cytochrome c550. Shown above are two different views 
of the heme environment ofcyt. c550. 2A: Labeled are the heme with iron, the bis­
histidine (His41 & His92) axial ligation, the heme consensus binding sequence (CXXCH), 
and the heme propionates. The dotted lines labeled by letters A and B represent the thio­
ether bonds from the two cysteines (Cys38 & Cys40) to the heme, that were not drawn in 
on the original (PDB 1 E29) obtained from the entry by Sawaya et al. 28: A different 
view of the heme environment that also shows the heme with iron, the bis-histidine 
coordination of the heme, and the heme propionates. Once again the dotted lines labeled 
by letters A and B represent the thio-ether bonds from Cys37 and Cys 40 of the 
consensus binding sequence to the heme. 

A number of roles have been proposed for c550: as an electron carrier in 

cyclic photophosphorylation (Kienzl et aI., ] 983), sulfide oxidation (Ho et aJ., 1979), and 

nitrate reduction (Alam et aI., 1984) and as enzyme with peroxidase activity (Kang et aI., 

1994). Krogman et aI., and Kang et al., have proposed a role for c550 in unicellular 

cyanobacteria as an electron carrier between reduced ferredoxin or tlavodoxin and 

hydrogenase during the fermentative process that occurs under prolonged periods of dark 

and anaerobiosis. It has additionally been proposed that the membrane bound cyt. c550 is 

involved in regulation of S-state transitions in the water-splitting reaction of PSII 

(Navarro et aI., 1995). Cyt. c550 has been shown to accept electrons from ferredoxin 11 

in cell extracts in the presence of dithionite in vitro. Therefore, c550 could function in 

removing excess electrons generated in cells grown under anaerobic conditions by 

reducing ferredoxin (Shen & Inoue, ] 993). 
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Since many questions exist in the research community regarding cyt. c550, 

a number of experiments have been completed to provide further insight into its structure 

and function. Furthermore, its unique low redox potential raises fundamental questions 

on the factors governing redox potential in heme proteins. The crystal structure of cyt. 

c550 has been solved by Frazao et at., at 1.21 A resolution confmning that c550 is the 

first structural cyt. of a momodomain, monoheme soluble c cyt. with bis-histidine axial 

coordination .. The resolved structure shows c550 with 1104 N or 0 atoms plus 1 Fe and 

2S atoms. The Fe atom is coordinated by a heme porphyrin which, in turn, is covalently 

attached to the characteristic Cys-Gly-Gly-Cys-His sequence motif via two thoether 

linkages with the cysteines. The model contained 227 solvent molecules initially 

assigned as waters where three near the protein surface at t he first solvent layer were 

assigned as calciums. A hairpin motif, an anti-parallel ~-sheet connected by a ~-hairpin is 

found near the N -terminus. Since mono-heme c-cyts. are almost exclusively a-helical 

structures, this seems to be an unusual feature (Frazao et at., 2001). 

Amino acids that are highly conserved in the primary structures of c550 

cluster into three different regions of the protein. Most of these are found in the interior 

of the protein near the N-terminus, where many of these residues may be involved in 

stabilizing interhelical interactions (Sawaya et at., 2001). The structure of c550 shows 

the typical hydrophobic inner core of monoheme c cyts. with three helices forming a nest 

for the prosthetic heme group (Frazao et at., 2001). Cyt. c550 heme nestles in an 

essentially conserved hydrophobic pocket but exposes one of its edges to the solvent, for 

9.7% (Sawaya et at., 2001) of heme surface exposure. As mentioned above, the c550 

heme is covalently bound to the polypeptide chain through cysteines (Cys37 & Cys40) 
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which are localized within the conserved C-X-X-C-H binding motif, while the heme iron 

coordintes to His41 and His92. The only other known structure of a monoheme cyt. with 

bis-histidine coordination is eyt. cdl. which is found in the nitrite reductase complex: of 

Thioshpaera panthotropha. The stereochemistry of the im idazole planes of His41 and 

His92 are maintained by h-bonds between ND 1 of their imidazole rings 10 carbony]s 0 f 

Lys45 or Pro93 respecti vely. A large number of bls-histidine c-cyts . have been 

characterized, but are not related to eSSO as they harbor several heme groups and show 

different folding features, while one property in c~)Jnmon is a very low redox potential 

(Frazao et ai, 2001). 

Experimental Backgroulld 

A number of studies have been completed which have unveiled some 

interesting experimental results regarding the function of pbotosyn thetic cyt . e550. Shen.. 

Inoue, and their colleagues have isolated a PSII core complex from Synechococcus 

vulcan;s. while retaining the psn extrinsic proteins using gentle detergents (Shen et aI., 

1993). After a wash with high salt concentration, three extrinsic proteins were released 

from the particles. The released proteins include a 33kDa protein found in higher plants 

and two other unique proteins of 17 and 12kDa. The 33kDa protei.n is the manganese 

stahilizing protein while the 17kDa protein is representati ve of cyt. e5S0. It is likely that 

these two proteins replace the 23 and 17kDa proteins found in higher plants since features 

of hindi ng of the 17 and l2kDa protein to cyanobacterial PSII resemble those of the 

extrinsic 23 and 17kDa proteins to higher plant PSII (Flnazzi el al., 1997). There are 

some functional similarities between the two cyanobacterial proteins and the two higher 
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plant proteins. Both of them play SOme regulatory roles in oxygen evolution, while the 

underlying nature of their function Varies, and e550 and the12kDa protein may be 

functional equivalents in cyanobacteria to the 17 and 23k.Da proteins in higher plants 

(Shen & moue, 1993). However, there is no sequence similarity between the two small 

extrinsic proteins of cyanobacteria with those from higher plants (Kerfeld & Krogman 

1998). 

In rebinding studies, e550 has been found to bind appreciably to the PSII 

core in the absence of the 33 and 12kDa proteins, but their presence facilitates [u11 

rebinding (Shen & moue, 1993). Cyt. eSSO can rebind to PSIl in spite of the absence of 

the L2 or 33kDa proteins, whereas rebinding of the 12kDa protein requires co-rebinding 

of the 33kDa and 17kDa (cS50) proteins. These results are fully consistent with the PSli 

crystal structure which shows that the 12kDa protein binds into a crevice formed by the 

33kDa and c550 proteins. Cyt c550 is unable to restore oxygen evolving activity (OEA) 

alone, however, if the 33kDa protein is present, partial restoration occurs and when the 

33kDa and 12kDa proteins were both present, maximum restoration of OEA close to the 

original level is obtained (Shen & Inoue, 1993). Based on its close interaction with the 

33 and 12kDa proteins in rebinding to the PSU core complex, c550 is likely associated 

with PSIl at the luminal surface of the thylakoid membrane (Sheo & Inoue, 1993). 

Therefore~ c550' s transport into the lumen likely contributes to tbe optimal functional 

stability of PSIl in cyanobacteria (Shen el aI., 1995). In addition, single-particle image 

analysis 0 f PSII has shown c550 at the lum i.na] side and in cJose contact with the core and 

the 12 and 33kDa proteins (Kuhl el aI., 1999). The finding of c550 as an extrinsic protein 

functioning at the donor side of PSII may suggest a possible evolutionary link at the 
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donor side of reaction centers between photosynthetic purple bacteria and cyanobacteria. 

In purp Ie bacteria it is known that cyt. C2 functions at the donor side of the reaction 

center (Shen el al., 1995). 

[n cross-Linking studies by Han et al .• c550 has been found to cross link to 

both the 12 and 33kDa proteins and to both the 12kOa and the 02 proteins that holds 

elements of the reaction center. Cyt. eS50 is I ikety very close to the electron transfer 

catalysts in PSII, but no evidence exists thus far indicating that it undergoes any 

reduction or oxidation in this location (Kerfeld & Krogman, 1998). That is why eSSO's 

electron transfer activity, which involves an association between the heme group and the 

polypeptide chain, therefore corresponding to the redox potential of the heme group. is an 

important feature to experimentally investigate. 

Mutant strains with either insertion or deletion of eSSO (psbV) seem to be 

capable of photo autotrophic growth but at a reduced rate, while they contain only half the 

amount ofPSll found in the wild type. On a chlorophyll basis, oxygen evolving activity 

of the mutant was found to be around 42% of the wi Id type (Seidler. 1996). This major 

reduction of OEA is due to decreased stability of the PSll reaction center, and the activity 

per reaction center is not, or only slightly diminished (Shen et at., 1995). Therefore. 

rather than c5S0 being directly involved in enzyme activity itsel f, it seems to be 

necessary for the confonnational integrity and stability ofPSIl. Additionally, the c550 

deletion mutant was unable to grow in the absence of Ca2~ and cr in gTOwth medium and 

showed a rapid deactivation ofOEA in the dark that could be photoactivated upon light 

illumination with a very high efficiency (Shen et (1l., 1998). In algal psn, c550 has becn 

shown to maintain optimal concentrations ofCa2
+ and cr ions near the Mn cluster and 
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protect the Mn cluster from endogenous reductants to stabilize and optimize its catalytic 

activity (Debus, 2000). A similar role for c550 could be hypothesized. 

The results of double deletion studies of both psbV (c550) and psbO 

(33kDa) results suggest a role for c550 in cyanobacterial PSII to support oxygen 

evolution and photoautotrophic growth that can bind and function independently. The 

double deletion mutants show almost no OEA and are unable to grow photoautotropically. 

With one or the other protein present, oxygen evolution still exists, but both are required 

for a normal, maximal rate of OEA in cyanobacterial PSII. It was also found that the 

destabihzing effect caused by the loss of c550 is more pronounced in the absence of the 

33kDa protein (Shen et at., 1995). These results do indicate that c550 has a functional 

role in OEA, although its direct function in the electron transfer reaction mechanism of 

water-oxidation seems unlikely. 

In Synechococcus vulcan us, c550 has been detected only in the thylakoid 

membrane fraction being tightly bound to thylakoids, where removal has required 

sonication in the presence of 1 M CaCh. Upon further fractionation of the thylakoids into 

PSI and psrr, c550 is exclusively concentrated in the crude PSII fraction together with 

cyt. f, with no significant amount being detected in PSI. Therefore, c550 binds 

stoichiometrically to the cyanobacterial PSII core complex and enhances oxygen 

evolution. This finding is significant in that it has confirmed the idea that there is only 

one species of c550 in cyanobacterial cells and c550 is exclusively associated with PSII 

as a functional component for OEA (Shen & Inoue, 1993). 

Although many significant studies have been completed, it is still not clear 

if and how the low potential heme of cyt. c550 functions in PSII. Cyt. e5S0 could have 
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protective electron transfer function in addition to its structural role in the PSU reaction 

center. It can be noted that this hemo-protein would unlikely be evolutionarily conserved 

for such a long time if it was providing no advantage to the cell through a redox function 

(Kerfeld & Krogman, 1998). Therefore, further investigation into the structure and 

function of low-potential c550 is i mperati ve. 

Redox Properties of Cytochromes 

Fennentation, respiration and photosynthesis are the three maIO 

bioenergetic mechanisms whereby cells obtain the energy necessary for their metabolic 

processes. In both of the latter mechanisms, synthesis of A TP is coupled to the electron 

transfer processes in which oxidoreduction proteins are involved (Dolla, e/ al., 1994). 

The wide range of redox potentials found in c-type cytochromes extends from -400mV to 

+400mV and can be functionally correlated with the involvement of these proteins in 

various metabolic processes that yield products having a di fferent oxidoreduction powers. 

The most well characterized class of electron transfer proteins thus far are cytochromes. 

They are widespread molecules which exist not only in aerobic mitochondrial and 

bacterial respiratory chains, but also in prokaryotic electron transfer systems including 

those involved in anaerobic respiration and photosynthesis (Dolla el al., 1994). A 

cytochrome's electron transfer activity, which involves an association between the heme 

group and the polypeptide chain, is correlated. with the redox potential value of the heme 

group. One of the main roles of the polypeptide moiety consists of modulating the redox 

potential of the heme group (Dol1a et al., 1994). The polypeptide moiety ofc-type cyts. 

contains the consensus heme binding sequence, C-X-X-C-H, where C represents cysteine, 
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H represents histidine, and X represents any residue (Fig. 2). Only a few deviations from 

this consensus sequence have been found (Jungst et al., 1991). Depending on the nature 

of the sixth axial ligand residue of the heme iron atom, several subclasses of c-type cyts. 

can be defined. Either a nitrogen atom of a histidine residue or a sulfer atom of a 

methionine residue can serve to fill the sixth position of the heme iron atom. The 

differences in the electron donor-acceptor power (ie. the electronegativity) between the 

ligands in the axial positions will influence the redox potential value (Dolla et al., 1994). 

The term redox couple refers to a specific donor-acceptor pair and each 

couple has a characteristic redox potential difference that depends upon the electron 

affinities of each member of the couple. The term redox potential refers to the tenancy of 

a redox group to donate or accept electrons. This value reflects the relative stability of 

the reduced and oxidized states of a protein. Therefore, any factors which tend to 

stabilize the oxidized form make the couple a better electron donator and give rise to a 

more negative redox potential and vice-versa (Moore et al., 1990). Hence, maintaining 

the redox potential of a cytochrome is one of the main functional roles of the polypeptidic 

moiety of the molecule. This in tum is imperative for the regulation of the electron flow 

thrOl!gh the redox partners of the cytochrome (Doll a et al., 1994). In general, it is 

assumed that midpoint potential is established by several factors; polarity of heme 

environment (Kassner, 1973), accessibility of heme to solvent (Stellwagen, 1978), 

strength of axial ligand field (Moore & Williams, 1977), and electrostatic interactions of 

the heme and its propionates (Moore, 1983). Therefore, it is important to further 

investigate how each of these factors contributes to the wide range of redox values 

observed in cytochromes. 
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Comparison of c-type Cytochromes 

When comparing the sequence of cyt. c550 to other eSSO eytochomes and 

cyt. c6, many sequence similarities and conserved residues can be found. As seen in (Fig 

3), all of the organisms share the same consensus heme binding sequence (CXXCH) and 

the His4}' axial ligand. Also conserved among all but one of the cytochomes (Anabaena 

c6) is the proline residue at position 93. One notable difference between the cytochomes 

is the sixth axial ligand at position 92. Although all of the represented c550's have a 

histidine residue at position 92, the cyt. c6 representatives have a methionie residue at 

this position, therefore leading to histidine-methionine (His-Met) axial ligation of the 

heme iron instead of histidine-histidine (bis-histidine). 

Two cyts. that can be studied comparatively to learn more about the 

factors controlling midpoint potential, are cyt. c550 and cyt. c6 of Arlnrospira maxima. 

These two cyts. have been found to share much sequence similarity. Although cyt. c6 

and cyt. cSSO are not found in higher plants, they are both found in cyanobacteria and 

algae where they appear to support multiple functions. Cyt c6 functions in PSI 10 transfer 

electrons from the membrane bound cyt. b6f complex to PS1. while cyt. c550 is involved 

in PSII oxygen evolution by functioning as one of the exstrinsic subunits, 

I Nu mbering system IS based upon the mature SYllecllOcyslI:t 6803 cyt. c5S0 sequence. 
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Figure 3: Sequence alignment of cyt. c550 and cyt. c6. Alignment of Odonlel/a c550, 
Cryptomonas e5S0, Porphyra c550, C.paradoxa c550, Cyanidium c550. Anabaena e5S0, 
NOSfOC puncllfo. c550, Synechocystis eSSO, A.maxima e5S0. Thermosynechococc/ls e550, 
Thermosynechococcus c6, A. maxima c6, SYllec},ocystis c6 and Anabaena c6. Labeled, is 
the characteristic c-type cyt. CXXCH (C= cysteine, H=histidine, X= any residue) 
consensus binding sequence that binds the fifth axial histidine ligand to the heme iron, 
Additionally, at position 92 is the s.ixth axial ligand of various cytochromes, some 
consisting of a histidine residue at tllis position, while others have a methionine residue. 
Also shown is the evolufionarily conserved Pro93 as well as the other targets for site­
directed mutagenesis (T48, N49. and L91). 

Both are monohome cytochromes, and while cyt. c6 is composed of 89 amino 

acid residues, cyt, c55'O is larger with L30 amino acid residues . Two regions of sequence 

similarity between the primary structures of cyt. cSSO and cyt. c6 have led to the 

suggestion that the two could have descended recently from the same ancestral gene, but 

diverged to carry out different functions. The most notable di fference between the two is 
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the near 600rnV difference in their respective midpoint potentials. Cyt. e550 seems to be 

extremely more negative with a midpoint potential of -260m V compared to the positive 

cyt. c6 with a midpoint potential of+314mV. 

A prominent difference between the two is the nature of the sixth axial ligand 

which is His92 in cyt. e550 and Met6l in cyt. c6 (Figs. 3 & 4). However both cyts., e5S0 

and c6, do have the C-X-X-C-H (C- cysteine, H=histidine, X=any residue) heme 

consensus binding sequence (Figure 3). Both cyts. also have the evolutionari Iy 

conserved proline residue at position 93. In addition to having a different sixth axial 

ligand, cyt. e550 has an additional N-terminal 22 residues as compared to cyt. c6. Also, 

there is an insert in the primary structure of cyt. eSSO that is not found in cyt. c6 between 

residues 89 and 103. 

In addition to sharing sequence similarity. eSSO also shares some structural 

similarity with cyt. c6. The crystal structures of cyt. c6 and cyt. c5S0 have been 

determined from the cyanobacterium Arthrospira maxima and have been found to be 

remarkably similar (Figure 4 & 5). Comparison of the two 3-D structures suggests that 

the di fferenee in midpoint might be attributed to any or all of the following factors: 

sol vent exposure of the heme, electrostatic environment of the heme propionates, andlor 

heme-iron ligation (Sawaya et al., 2001). 

Comparisons of the heme environment of cyt. c550 and cyt. c6 offers several 

structural clues as to the control of midpoint potential (Fig. 4). Cytochromes with His­

Met axial coordination have redox values ranging [rom +400-0mV while bis-histidine 
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coordinated cyts. typically have potentials ranging from 0 to -400Mv (DoUa el al., 1994). 

Figure 4. Structural alignment of cyt. eSSO of Synechocystis sp. PCC6803 and cyt. c6 of 
Arthrosp;ro marima. eyt. eSso (blue) (PDB IE29) and Cyt. c6 (red) (pDS IFIF). The 
heme iron (orange sphere) coordinated from the lower axial position by histidine 92 
(Hjs92, cyt. eS50) or methionine 41 (cyt. 00) colored green and yellow, respectively. 
Therefore it can be noted that e5S0 has a his-histidine axial ligation of the heme iron, 
while c6 has a met-his axial ligation of the heme iron. 

Typically, his-histidine (Fig. 4) coordination correlates with a more negative 

midpoint potential like that of eSSO. Experimentally it has been found that when Met is 

substituted for His at the sixth axial position in cyt. c3. there is an increase of lSOmV in 

mid'point potential. This increase is hardly enough to account for the entire 600mV 

difference between cyt. cSSO and cyt. c6 so obviously other factors contribute to midpoint 

potential (Sawaya et 0'-. 2001)' Additionally, the protein backbone conformation in the 

region adjacent to the sixth axial ligand (His92 in eS50 & Met61 in 00) in the two 

structilles are quite dissimilar (Sawaya el aI., 2001). It is not clear if the differences are 

due to insertion or deletion . 
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StfUCtl,l.:raUy. C}i. c-6 is c()lnpQ$cd of four Cl-hehce.s whioh enclose aJl but 6% of the 

surface of the heme prosthetic group. The fOUT q.·heHcal oore structW'(;S of A. maxima cyL 

c550 a.nd cyt. c6 are very similar. The longest helical $egm.entg of1he core of C}'l. c5S0 

clQseiy superimpose on the four helices of cyt. c6 (Figs. 4 & 5). Addition.ally, th¢ fold in 

the vicinity of the first axialliga.nd (His41 in c550 & His18 in c6) are strikingly sLmiJar. 

When comparing the. primary sr[uctures of cyt. c.5S0 and cyt. c6, there is a 32% identity 

be-lween the (WO while they superimpose (over 263 backbone atoms) with an nnsd of 

3.4A (Figure 4 & 5). \\Then compared with other CJass J cytochromes, cyt. c550 

superimposes on yeasl cyt. c with an rmsd of 4.2A (over 281 backbone atoms). 

Rhodopseudomonas viridis cyt. c2 with an rmsd of3 .sA (over 28J backbone atOlns), and 

PseUdOm01u.lS cyt. c551 with an rrosd of 3.sA (over 273 backbone atoms). Therefore jt 

would seem that cyts. with very di fferent midpoint potentials are actually close strllctural 

relatives (Sawaya et al .• 2001). 

Besides the nature of the axial ligands, another contributing factor controlling 

midpojnt potential is the polarity of the side chains around the heme. In this respect, the 

structures of eye c6 and cyt. c550 are very similar. There are several hydrophobic amino 

acids that are conserved structurally in the two proteins: Leu54, Leu59 and Vall 14 of 

c550 superimpose on Leu31, Leu36, Val55 and Val77 of cyt. c6 (Sawaya el aI., 200 I). 
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Figure 5. Structural alignment of cyt. c550 of SynechocysLis sp. PCC6803 and cyt. c6 of 
Arthrosptra maxima with spacefill. Cyt. c6 is composed of 89 amino acid residues and 
cyt c550 is larger with 130 amino acid residues. There is a 32% identity between the two 
cytochromes, while they superimpose (over 263 backbone atoms) with an rmsd of3.4A. 
The heme is colored white. The hatched red molecular surface of cytochrome c6 
occludes the berne edge to a greater extent, where the surface exposure of the heme 
prosthetic group is 6.6% for cyt. c6, and 9.i'G/o for the more surface exposed cyt. c550. 
Mutations in threonine 48 (T48) and leucine 91(L91) colored light blue. were originally 
produced to alter heme exposure, but recent modeling and redox: data suggests that these 
changes do not accomplish this. Proline 93 of cytochrome c550 (P93. pink below heme) 
hydrogen bonds to the imidazole nitrogen of axial ligand H92. Asparagine 49 (N49, pink 
above heme) forms hydrogen bonds via its side chain amide nitrogen to heme propionate 
D oxygen, 

Hydrogen bonding to axial ligands is also a likely contributor to midpoint 

potential, more specifically the hydrogen bond to the No atom of the fifth axial ligand. In 

cyt. c6, the atom forms a hydrogen bond to the carbonyl oxygen atom of Arg22, whereas 

in cyt. c550, the hydrogen bonds to the same backbone atom ofVal45. The electrostatic 

effects from the side chains of these two residues may contribute to the greater stability 

ofcyt .. c6 in it's reduced state. The analogous hydrogen bond to the histidine No atom in 

cyt. c2 and mitochondrial cyt. c is formed with the carbonyl oxygen atom of a conserved 

proline residue. It is unclear why this amino acid side chain in this pOsition is conserved 
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in these species. It should be noted that in cyt. eSSO, the carbonyl oxygen atom of 

conserved fr093 fonns a hydrogen bond with the No atom of His92 (Sawaya ef al., 2001). 

Different solvent exposure of the propionate D oxygen atoms might also 

differentiate midpoint potentials between various cyts. (Sawaya et al .• 2001). The 

propionate 0 oxygen environment differs between the (wo cyts., while in cyt . eSSO one of 

the propionate D oxygen atoms is solvent exposed, in cyt. c6, both propionate D oxygen 

atoms are surface exposed. This increased exposure of the propionate oxygen atoms may 

lead to an increase of midpoint potenti al. However this seems to be opposi te of the ideas 

proposed by and increased heme exposure leading to a reduce midpoint potential. 

Solvent accessibility of the heme prosthetic group is known to playa role in different 

midpoint potentials. The surface exposure of the heme prosthetic group of cyt. c6 is 

6.6% as compared to the more surface exposed c5S0 of9.7%. Typically, increased 

surface exposure correlates with reduced midpoint potential which is in fact seen in the 

-260m V value of cyt . c550 as compared to the more positive +34OmV of cyt. c6 (Sawaya 

et aI., 2001). 

Last, it is proposed that the hydrogen bonding to the propionate 0 oxygen 

atoms might also affect midpoint potential. In cyt. c6, the propionate oxygen atoms are 

hydrogen bonded to the positively charged Lys29 and Lys59. This positive charge may 

help to stabilize the electron gained by reduction of the heme and thus lead to the higher 

midpoint potential of c6 as compared to c550. In cyt. c550, the propionate D oxygen 

atoms are hydrogen bonded to the amide backbone ofTyr82 and water which results in 

no electrostatic balance for the reduced heme. Mutagenesis studies which alter the 

electron-withdrawing character of a side chain, hydrogen bonded to a propionate group, 



have been shown to change the midpoint potential in mitochrondrial cyt. c by nearly 

sOmv (Cutler el al., 1989) . 

Selection of Mutation Target Sites 
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A number 0 f target amino acids in cyt. c550 were selected for site-directed 

mutagenesis based on the factors discussed above (Fig. 5). These targeted mutagenesis 

sites can also be seen in the sequence alignment in (Fig. 3). Threonine 48 as well as 

Asn49 are involved in shielding the pyrrole A, D, and C rings of the heme and would he 

surface exposed in a cyt . c550 monomer. Leu91 is considered a highly conserved residue 

and it has a side chain exposed to solvent and is also involved in hydrogen bonding. TIle 

interface in the crystal structure of cyt . cSSO is predominantly hydrophobic, except for a 

hydrogen bond network formed between Thr48, Asn49, a propionate D oxygen atom, and 

Glu90. Thr48 and Leu91 were chosen as mutation target sites to try to reduce heme 

solvent exposure and because of their involvement in the hydrogen honding network (Fig. 

5) . Thr48 and Leu91 were both mutated to an isoleucine since it has a non-polar, longer 

side chain. Asn49 was selected as a target site due to its hydrogen bonding via its side 

chain amide to the heme propionate D oxygen a10m (Fig. 6) (Sawaya et ai., 2001). The 0 

propionate forms hydrogen bonds with the solvent-accessible amide of the Asn49 side­

chain and three water molecule (Frazao et 0/ .. 200 1). His92 is the slxth axial ligand 

contributing to the his-histidine coordination of the heme prosthetic group, so it was 

mutated to a methionine which is a common sixth axial ligand in other c-type 

cytochromes (Fig. 7). Pro93 is conserved in cyt. e5S0 and was selected as a target site 

since it fonns a hydrogen bond with the (imidazole) No atom ofHis92 (Fig. 8) (Sawaya 



el aI., 2001). His92 is actually hydrogen bonded hetween NDI of its imidazole ring to 

carbonyls ofPro93 and Lys45 (Frazao e/ al., 2001). 
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Figure 6. Cytochrome c550 asparagine 49 mutant. 6A: Cyt. c550 with the axial ligands 
(His 41 & His92) and the Asparagine (Asn 49) site labeled. The dotted lines represent 
the hydrogen bond formed between Asn 49's side chain amide to the heme propionate D 
oxygen atom. 6B: Is a replication of the picture in 4A, only with an aspartic acid residue 
substituted for the asparagine at residue 49. This causes a loss of the hydrogen bond with 
the heme propionate D oxygen atom. 6C: Is also a replication of the picture in 4A, onJy 
with a leucine residue substituted for the asparagine at residue 49. This also causes a loss 
of the hydrogen bond with the heme propionate D oxygen atom. (*Mutated amino acids 
have been substituted into the crystal structure of cyt. c550 (Sawaya et aI.,) and no 
molecular simulations of the mutations using energy minimizations have been performed). 
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Figure 7. Cytochrome c550 with bis-histidine axial ligation and his-met (H92M) axial 
ligation. 7 A: Cyt. c5S0 showing the substitution of a histidine for a methionine at residue 
92 (H92M) therefore resulting in a His-Met axial ligation of the heme iron. 18: Cyt. 
c550 showing the wild-type his-histidine (His41 & His92) axial ligation of the heme iron. 

Figure S. Cytochrome cSSO proline 93 mutant. SA: Cyt. c550 with the axial ligands 
(His41 & His92) as well as the wild-type proline (pro93) site. Pro93 forms a hydrogen 
bond with the (imidazole) No atom ofHis92 that is shown by the dotted line. SD: Cyt. 
c550 with the proline residue substituted for an alanine at residue 93. Even with the 
substitution, the hydrogen bond represented by the dotted line is still formed. 



CHAPTER 3 

OBJECTfVE 

The overall objective of my project was to investigate the factors that 

contribute to the unusually low redox potential of cyt .c550. For this work, 

five amino acid targets were mutageoized including the sixth axial histidine 

ligand. Using a binary plasmid system in Eschericia coli, these mutations 

were expressed under varying protocols to find optimal expression and then 

purified by column chromatography. Using spectroeiectrochemistry, each 

of the cytochromes was analyzed for changes in their redox potential, which 

may unveil infonnation contributing to an understanding of the functional 

role of cyt. c550 and basic infonnation regarding redox proteins. 

28 
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CHAPTER 4 

MATERIALS AND METHODS 

Construction ofpETC550 plasmid vector 

The gene encoding cyt. e5S0, psb V, was ligated into the pET-22b(+) vector to 

give the plasmid pETC550 (Table 1 & Fig. 10). The expressjon plasmid pET22bC550 

was constructed as shown in (Fig. 9) (From Dr. Li, Stillwater, OK). The encoding 

sequence of mature Cyt. eS50 from Synechocyslis sp. PCC6803 was amplified by PCR 

using Turbo P..fu polymerase (Stratagene, La Jo lla., C A). T he forward primer 5' GCT 

CCC ATC GTG GAG TTA ACC GAA AGC 3' which introduced a Nco I site (in bold) 

and the reverse primer 5' GCG CGG ATC CCT AGA AGT AGA TGG TGC C 3' which 

introduced a BamH I site (in bold) were used to amplify the encoding sequence of mature 

Cyt.c550. The peR products were inserted into the Nco I and BamH I sites of the pET-

22b (+) vector (Novagen, Madison, WI) to create expression plasmid pET22bC550 

(pETC5S0). The fusion product of the psbV gene and the pelB signal sequence allows 

heterologous expression in E.coli under the control of T7 promoter and fast purification 

by, affmity chromatography. 



T7 prOO'tl1eif ~ I Noo! brt41 
I I lac~atof ! 

pelBIeader . -

\:/~"~+I 
Nco I -- ~7 
BaTH I psbV 

1 1 
T7 pcmotefl ~ I Nco! Bartl/ 

Lx~ --_,pelS leader psbV 

Figure 9. pET22 withpsbV insert. The ligation ofpsbVinto the pET22b(+) plasmid 
vector to create the plasmid pETC550. The psbV gene was ligated into pET22b(+) 
plasmid vector between the Ncol and BamHI restriction enzyme sites behind the peLB 
leader and downstream of the T7 promotorllac operator. 

K1ndll 

r""Rt 

a ...... I 

P." 
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Figure 10. pETCS50 plasmid map. Plasmid map ofpsbVligated into the pET22b(+) 
plasmid Vector to create the plasmid pETC550 which is -S.9kB. As labeled on the map, 
there is an ampicillin resistance cassette, a T7 promotor, a lac operator, a pelB leader 
sequence, the mature psb V, an origin of replication, and a lac! sire. Also labeled on the 
map are SOtne various restriction enzyme cut sites. 



Plasm ids 

pET-22b(+) 

pETC550 

pEC 86 

Description 

ArnpR, N-terminal pelB 
signal sequence 

AmpR,psbV gene 

ccmABCDEFGH cloned 
into PACYC184, CmR 

Reference 

Novagen (Madison, Wf) 

Burnap Lab, (Li et al .• in 
prep.) (Stillwater, OK) 

Thony-Meyer~ L. (Zurich, 
Switzerland), (Arslan et al .. 
1998) 

Table 1. Plasmids. The table shows the plasmids used for the mutagenesis and 
expression of cyt. c550. 

-=~~B~a~c~te~r=i~al~S=I~r=ai=n=s~ __ ~~~~D~~==c=r=ip~ti='~O~D ____________ =R=e=u~r=e~n~c~e~~~ 
BL21(DE3) E.coli Host for heterologous Stratagene (La Jolla, CA) 

gene expression 

Epicurian Coli XL-l Blue Supercompetent cells Stratagene (La Jolla, CA) 
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Table 2. Bacterial strains. The table shows the bacterial strains used for the mutagenesis 
and expression of cyt. c550. 

Mutage"ic Primer Design. 

The mutagenic primers were designed following the Stratagene Quikchange 

Site-Directed Mutagenisis protocol (La Jolla, CAl. Each primer was between 30-45 

bases in length with a GC content of at least 40%. Each primer contained at least 10-15 

bases of correct sequence on both sides ofthe engineered mutation and terminated in one 

or more G or C bases. A silent mutation was also introduced into each of the primers to 

add an additional restriction enzyme cut site for verification of the mutation after 

transformation. The DNA oligonucleotide primers were synthesized in approximately 

l OOnmoJe batches obLained from Integrated DNA Technologies, Inc . (Coralville, Iowa), 
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Each primer was 5' phosphorylated and was purified by the manufacturer by 

polyacrylamide gel electrophoresis (pAGE). Tbe primer designs can be seen in (Table 3). 

Mutation primer Pairs (l'orward and Revers!!!) Restri ction 
Bnzyme 

T48I F_GCACCCAATGTCACCTGCAGGOTAAAACCAAAATTAATAATAACG PsCI 
R_CGTGGGTTACAGTGGACGTCCCATTTTGGTTTTAATTATTATTGC 
TQCHLQGKTKINNN 

t.9~1 F_CTATTCGGAAATACATCCCAATATTTCTAGACCCGACATCTAC XbaT 
R-GATAAGCCTTTATGTAGGGTTATAAAGATCTGGGCTGTAGATG 
YSBIHPNISRPDIY 

P93A P-GACTATTCGGAGCTCCATGCCAATATTTCC SacI 
R-CTGATAAGCCTCGAGGTACOGTTATAAAGG 
DYSELHANTS 

N49L F-CCAATGTCACCTGCAGGGTAAAACCAAAACTCTTAATAACGTTAG PacI 
R-GGTTACAGTGGACGTCCCATTTTGGTTTTGAGAATTATTGCAATC 
QCHLQKTKTLNNVSL 

N49D F-CCAATGTCACCTGCAGGGTAAAACCAAAACTGATAATAACGTTAG PatI 
R-GGTTACAGTGGACGTCCCATTTTGGTTTTGACTATTATTGCAATC 
QCHLQKTKTDNNVSL 

892M P-GACTATTCGGAGCTCATGGCCAATATTTCC SacI 
R~CTGATAAGCCTCGAGTACCGGTTATAAAGG 

DYSELMPNIS 

Table 3. Mutagenic primer design. Sequences of primers and restriction enzyme cut sites 
used to amplify amino acid mutations inpsbVof Synechocystis sp. pee 6803. Boldface 
denotes nucleotides that were mutated while underlines denote restriction enzyme cut 
sites created by introduction of silent mutations. The intended amino acid sequence after 
mutagenesis is below each primer set in italics. 

Site-Directed Mu.tagenesis using Polymerase Chain Readum (PCR) 

Directed mutations were introduced into plasmid vector pETC550 using the 

polymerase chain reaction in conjunction with the mutagenic primers show in Table 3. 

An outline of this procedure is shown in detail in (Fig. 11). Reactions of 50J,.Ll were set 

up separately for the forward and reverse primers of each mutant, and then peR was run 

in a two step formal. The extension reaction was run for 30s at 95°C, l' at 55 DC. 18' at 

i 

i 
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68a C. and repe~ted three times. At the conclusion of the extension reactioo, the forwa.·rd 

and reverse primers were combined. peR was continued for the hybridization reaction. 

that was 30s at 95°C. l' at 55°C. 18' at 68°C, and was repeated 30 times. PCR products 

were then analyzed on a 1 % agarose gel. After confirmation of the correctly sized 

fragment, peR products were digested for four hours at 37°C with I ~1 Dpnl. which was 

added to digest the methylated, nonmutated parental DNA. After digestion, peR 

products were ethanol precipitated in two volumes of ethanol, and then fe-suspended in 

an appropriate amount ofTE buffer pH 8.0. 



LEG END: 
Step 1: Plasmid Prepgra1!on 

P\:lNM'\toI DNA pIoarnld 

MJtogenIC p!lmer 

~ DNA pIolrTlld 

psbV gene In pET-22b vector with 

target site CD for mutal10n 

Step 2: Temperature Cycling (PCRl 

Denature plasmid and anneal oIlgonuc:leol1de 
primers with desired mutation using PCR 
(30s @ 95C: 30s @ 95C: l' @ 55C: 18; @ 68C: 
3x) 

Mutagenic \.J / Pr1rnars 

Step 3: pigesl10n 

Nonstrand-dlsplacing action of PfuTurbo DNA 
polymerase extends and Incorporates mutagenic 
prlmers resulting In nicked circular strands 
(305 @ 95C: l' @ 55C: 18' @ 68C: 3Ox) 

@ 
Methylated, nonmutated parental DNA template o is digested with Dpn I at 37C 

Mu1a1ed plasmid wlltl 
nicked circular strands 

Step 4: Transformation Circular, nicked dsDNA Is transformed into 
Xll -Blue supercompetent cells 

After transformation, the Xll -Blue 
supercompetent cells repair the nicks In the 
mutated plasmid 
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Figure I I. Site-directed mutagenesis flow-chart. The following chart outlines the steps 
taken in the mutagenesis an~ PCR, for creating mutations in pETC550 vector. Diagram 
adapted from Stratagene Quick-Change Site-Directed Mutagenesis Kit. 



lhms/ormailon o/mutant peR prodUl!IS into Epicuri411 Coil XL-1 Blue 
SupercClmpdelit Ce11$ 

To transfonn tbe PCR product.<; into EpicuriLiil Coli XL-1 Blue Supert:omp#enf 

cells (Table 2) (Stnllagene. La Jolla, CA), 1 J.1L of Dpnl created peR product and 1 J.d of 

control pETC550 plasmid were aliquoted to 50).l.1 of supercompeteot XL-l Blue Cells. 

The mixture was gently swirled to mix and then incubated on ice for 30 minutes. The 

transfonnation mixture was then heat pulsed at 42°C for 45 seconds and then placed on 

ice fOT two minutes. Next, 0.5 ml ofNZv+ broth at 42°C was added and the 

transformation reactions were allowed to incubate at 37°C for one hour wiLh shaking at 

225-250g. The transfonnation reactions were then plated on Luria Broth (LB) plates 

containing (1 OOJ.1g/ml) Amp. The entire contents of the sample reaction were plated, 

while lOfiL of the pETC550 control reaction were plated. Plates were allowed to 

incubate at 37°C over night. After incubation, successful transfonnants were counted, 

35 

and individual colonies were plated on a fresh LBAmp plates in quadrants and allowed to 

incubate over night. 

Mini- Plasmid Preparations 

Plasmid DNA was purified using a commercial variant of the alkaline mini-

preparation procedure of Sarobrook et al. Mini-plasmid preparations were perfonned by' 

inoculating 10 falcon tubes each containing 2ml of LB and 4).l.1 (100 j.1g!rnl) Amp with 

one colony from separate quadrants of the LB plates described above. The mixture was 

then incubated at 37°C while shaking at 250g overnight. The following day, 1.SmL of 

overnight culture was transferred to a microcentrifuge tube and centrifuged at 12,OOOg fer 

30 seconds at 4°C to pellet. After removing the supernatant fluid, the pellet was 
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resuspended in 1 OO~l of ice-cold Qiagen solution I by vigorous vortexing. Then 200fJ.I of 

Qiagen solution II was added and mixed by inverting the tube rapidly 5 times. 150fJ.1 of 

ice-cold Qiagen solution III was added and mixed by inverting for 10 seconds and then 

stored on ice for 3-5 minutes. The mixture was then cennifuged at 12,000g for 5 minutes 

at 4°C and the supernant fluid was transferred to a fresh tube. The DNA was then 

precipitated by the addition of two volwnes of ethanol at room temperature followed by 

vortex mixing. After the mixture stood at room temperature for two minutes, it was 

centrifuged at 12,000g for five minutes at 4°C, followed by removing the supernatant 

fluid and allowing the pellet to dry. The pellet was rinsed with 1m1 0[70% ethanol and 

centrifuged again. After the pellet was allowed to re-dry, it was resuspended in 50~1 of 

TE (PH 8.0) and the plasmid preparations were then analyzed by restriction enzyme 

cutting and agarose gel electrophoresis. 

Restriction EntJ'me Digests 

To perform restriction enzyme analysis on the plasmid preparations, a master 

enzyme mix was made containing 24~1 enzyme, 12~1 buffer, and 6OJ.l.l ddH20 (enough 

for ten reactions, a control and one extra reaction). After 2J.1.1 of each plasmid was added 

to ten tubes, 8).11 of the master mix was added. A control ofpETC550 was also made in 

the same fashion to give a total of 11 tubes. Each of the tubes were vortexed, spun down 

and then allowed to incubate at 37°C for 4 hOUfS. The digests were then confinned on a 

1 % agarose geL Restriction digests revealing the expected pattern due to the introduction 

of new cut sites during mutagenesis, were sent to the Oklahoma State University core 



facility for DNA sequencing. Preparations that returned £Tom sequencing with the 

confirmed sequence were stored in 20% frozen glycerol at .20°C. 

Trans/ormalion into BL-21(DE3) E.coU cOlltaining pEC86 
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Mutants confirmed by DNA sequencing were transfonned into the BL·21 (DE3) 

£ .cob vector containing plasmid pEC86 (Tables 1 & 2). Competent cells were prepared 

using a 0.1 M CaCI 2 wash and were resuspended in 0 .1 M CaCh120% glycerol solution. 

1 J..I.I of mutant plasmid and I j.11 of control pETC550 plasmid were aliquoted to 50j.1i of 

BL-21(DE3)/pEC86. The mixture was gently swirled to mix and then incubated on ice 

for 30 minutes. The transfonnation mixture was then heat pulsed at 42°C for 45 seconds 

and then placed on ice for two minutes . Next, 0.5 mL ofNZY+ broth at 42°C was added 

and the transfonnation reactions were allowed to incubate at 37°C for one hour with 

shaking at 225-250g. The transformation reactions were then plated on LB plates 

containing (l OOmglml) Amp. The entire contents of the sample reaction were plated, 

while 1OJ..I.1 of the pETC550 control react ion were plated. Plates were allowed to incubate 

at 37°C overnight. 

The over-expressiotl. o/pETC550 in BI-21(DE3) E.coli with pEC86. 

A unique binary plasmid system was used to over-express cyt. c550 that is 

responsible for the covalent attachment of the heme to make the mature c5 50. This 

plasm id system is discussed in detail in the results section. A lOOml ovcmi ght Terri fic 

Broth (TB) culture was i nnocu I ted wi th cells, (30mg/m I) chloramphenico I. (I OOmglm I) 

ampicillin, and depending on the particular mutant. glucose or sucrose. The culture was 
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incubated overnight while shaking at 250g at the appropriate temperature (37°C or 28°C). 

The following morning 5ml were transferred to (20) 250ml flasks or (2) 1 liter flasks with 

I OOml ofTB and the appropriate antibiotics and glucose or sucrose. The cultures were 

then once again incubated with shaking all day. If IPTG was added, it was added when 

lhe OD(,oo "70.8-1.0 and the induction was allowed to proceed in the shaker for 

l:lflproximately three-foul' hours . All cell cultures were combined at the end of the day 

and placed at 4°C overnight. 

Periplasmic /ra clio II preparation. 

During production of mature cyt. e550, the PelB leader sequence directs c5S0 

from the cytoplasm into the periplasm (discussed in detail in Chapter 3). Therefore, to 

obtain the peripJasm containing cyt. c550, cells undeTVIent osmotic shock. Cell cultures 

that were refrigerated at 4°C overnight.. where harvested by centri fugation a14°C, 6000g 

for ten minutes the following day. Bacterial pellets were incubated in 1 ml osmotic buffer 

(SOmM TrisIHCI, pH 8.0, 20% sucrose, ImMEDTA) per looml o(cell culture and left on 

ice for 15 minutes. Nanopure water was then added at the same volume of osmotic 

buffer and the cell suspension remained on ice for another 15 minutes. The culture was 

then ccntri fuged at 4°C and I I,OOOg for 15 minutes and the supernatent flu id 

(periplasmic fraction) was collected . The concentration o[recombinant cyt . in the 

periplasmic fraction was then detennincd by visible spcctroscopy. Quantitatlon relied on 

the absorbance changes that occur upon reduction of the cyt., when sodium dithionite 

crystals, which act as a reducing agent, were added to the fraction and the protein was 

observed for absorbance at 407 nm and 550nm. 



Using the spectral data at 550nm, the concentration of protein in the fraction 

could be estimated by using the following fonnula: A= Ebc. This fonnula couid be 

rearranged to calculate for the concentration: 0-- (pilution factor) (AW / (E)(b) 

A= absorbance 
b= path length in em 
c- -concentration in mM 
E= extinction coefficient of cyt. c550 (25xlOJ mole/em) 

The protein was then stored at -20°C until further use. 

Crude extract protein preparaLion 

A crude extract of protein was prepared strictly for redox titrations using the 

following methodology. After the peripiasmic fraction was prepared, 10mM, pH 7.0 

streptomycin sulfate was added and then the solution was allowed to stir for 1 hour at 
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4°C. After stirring, the solution was put on ice for 1 hour and then spun down at 11 ,Ooog 

for ten minutes at 4°C. After centrifugation, 75% ammonium sulfate was added and the 

solution was stirred for 1 hour at 4°C and then spun down once again as above. The 

resulting pellet was dissolved in O.lmM sodium phosphate buffer pH 7.0 and 

concentrated to 2-3ml. 

Column chromatography protein purification 

Purification of cyt. c550 was completed using a three column chromatography 

system. First, the protein was dialyzed against 20mM TrislHCI buffer pH 8.0 and then 

applied to the DEAE cellulose column (XK 26120) and Cyt. c550 then was eluted with 0-

500mM NaCI gradient in TrislHCI pH 8.0. The fractions containing cyt. c550 were then 

collected and concentrated by ultrafiltration (Amicon model 8200 with YMl 0 membrane) 

to lOml. The protein was once again dialyzed against 20mM TrislHCI pH 8.0 and loaded 
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into the DEAE sephaeel colunm (XK 16/20). Cyt. c5S0 was eluted with ISO-SOOruM 

NaCl gradient in TrislHCI pH 8.0. The fractions containing cyt. cSSO were then collected 

and concentrated by ultrafiltration (Amicon model 8200 with YMIO membrane) to 2-3ml. 

Last, the Superdex 0-75 gel permeation column was loaded and cyt. cSSO was eluted 

with 50ruM TrislHCl buffer pH 8.0. The fractions containing cyt. c5S0 were then 

collected and concentrated by ultrafiltration (Amicon model 8200 with YMIO membrane) 

to 2-3ml. Then cyt. e550 was exchanged into O.lmM sodium phosphate buffer pH 7.0 

and stored at -80a C until further use. 

SDS-PA GE gel analysis 

After cyt. c550 was purified through the three column chromatography system, it 

was analyzed on a 12% acrylamide gel containing 6M urea. A 20m! TrvrnZ gel soak 

solution was made by dissolving 26mg of 3',3',5' ,5' tetramethylbenzidine in O.Sml 

DMSO. Then, 4.0mJ of95% ethanol, 100% gJacial acetic acid, and 5.5ml of water were 

added to the TMBZlDMSO soak solution. The SDS-PAGE gel was then soaked in the 

TMBZ solution for one hour at room temperature with gentle agitation. The staining 

reaction is then initiated by adding H202 to 1 % v/v. The reaction was then monitored for 

the visible blue bands. Once the blue bands were detected, the SDS-P AGE could be 

viewed for the respective single band representing each purified cytochrome. 

Spectroelectrochem istry 

Redox titrations for cyt. c550 were completed using a custom-made cell (SEC 

cell) with a quartz cuvette (1.0 em path-length) fused to a custom made set of ports 

through a gradient coupling. (OSU Glass Shop. Stillwater, OK). The cell was comprised 



41 

of a platinum working electrode, an Ag! AgC] reference electrode and a magnetic stirrer. 

A Rotaflow stopcock attached to a Schlenk line served as an inlet for argon to keep the 

inside of the cell oxygen free. The small port in the front of the cell was for the addition 

of mediators and protein and was filled with a rubber septum prior to the onset oftlle 

titrations. The cell was placed in a cuvette holder (OSU Physics and Chemistry 

Instrument Shop, Stillwater, OK) with internal channels designed to accept a constant 

temperature shource of 24°C with the aid of a refrigerating ciculator. The cuvette holder 

was on top of a stir plate so constant stirring could be maintained throughout the 

experiment. Sodium phosphate buffer was added to the cell in addition to the redox 

mediators added at 20).!M (Table 4), glucose oxidase and catalase. This solution was 

bubbled with argon for 45 minutes and then lO).!M of protein was added to the cell with a 

Hamilton gas tight syringe and the cell was sealed with a septum. After the cell was 

pumped and purged with argon three-four times to remove any residual oxygen, 2M 

glucose was added. to ensure the environment is anaerobic. The titrations were then 

, carried out by adding the appropriate amount of a 1 mM solution of sodium dithionite by 

syringe, while simultaneously monitoring the UVNIS spectrum of the protein for shifts 

at 550nm and taking the respective potential with the voltmeter. 



Mediators 
Compound 

1,2-Napthoquinone-
Toluylene Blue* 
Duroquinone'" 
Pentaaminechlororuthenium 
(111) di-chloride* 
2,5-dihydroxy-p-benzoquinone 
2-hydroxy-I,4-napthoquinone 
Anthraquinone-2.6-disulfonic 
acid 
Alllhraquinone-2-sulfonic acid 
Methyl vio logen 
Lumi flavine 

Redox Poten tial 
(vs. NHE) 

0.157 
0.115 
-0.005 
-0.040 

-0.060 
-0.130 
-0.180 

-0.250 
-0.440 

00 
AglAgCl 

-0.04 
-0.082 
-0.192 
-0.237 

-0.257 
-0.334 
-0.381 

-0.449 
-0.646 
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Table 4. Redox mediators used for spectroelectrochemistry. The following are the redox 
mediators that were added to the cell for the sodium dithionile titrations . -Denotes more 
positive mediators used only for the titration of Cyt . c550-H92M . 



CHAPTERS 

EXPRESSION AND PURIFICATION OF CYTOCHROME e5S0 

1. I nlroduction 

The goal of my overall project was to create mutations in cyt. c550 from 

Synechocystis. 6803 which would then be characterized to test the hypothesis: How 

do these specific mutations effect redox potential? In this chapter~ I wilt describe and 

discuss the results of all ofthe steps taken to express cyl c550 in E.coli: mutagenesis, 

expression and optimization, and purification. I have exhibited how the pET system 

can be used along with BL21(DE3) E.coli housing the pEC86 plasmid, to over­

express heme containing protein in E. coli. The T7 polymerase-based pET system is 

one oJ the most powerfuJ and widely used expression systems available for 

prokaryotes. This expression system is now widely used because of its ability to 

mass-produce proteins, the specificity involved in the T7 promoter which only binds 

T7 RNA polymerase, and also the design of the system which allows for the easy 

manipulation of how much of the desired protein is expressed and when that 

expression occurs. (Unger, 1997; Novagen, 2002-2003). Once pETC550 is 

transformed into the BL21(DE3) E.coli harboring the pEC86 plasmid, the binary 

plasmid system leads to a covalently attached heme and therefore a mature cyt .. eSSO. 

This process will be discussed in detail in the following section. 

Additionally addressed in this chapter will be a number of different strategies 

that were used to optimize expression conditions for cyt. e5S0. Since expression 

levels were not the same for eaeh of the mutagenized cyts ' j specific expression 
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protocols had to be re-designed so we could obtain significant yields of each of the 

proteins for further experimentation. Last, will be the discussion of the purification 

of cyt. eSSO using a three column chromatograpby purification technique, ag well as a 

cmde extract preparation, which proved sufficient for the redox titTations. 

II. Remlts and Disctlss;tm 

A. MIdtlgenesis 

I have used a PCR-based site-directed mutagenesis pTocedure to introduce amino 

acid substitutions into the cyt. eS50 protein. The PCR procedure is based upon the 

Stratagene Quick-change site-directed mutagenesis kit and is outlined in (Fig. 3) of 

materials and methods. A detailed description of this procedure can also be found in the 

materials and methods. The PCR resulted in the successful mutagenesis of five of the 

eight amino acid targets in the pETC550 vector (Table 5). Confinnation was done by 1 % 

agarose gel analysis. After plasmid preparation, approximately 0.10-0.90 )lg/1l1 of DNA 

was isolated. 

Mutant ~rimer Successful Amount of 
Mutants- DNA 

00 isolated 
(1!21 

Cyt. e550-T48J X 67.5 
l-

X 45.0 Cyt. c550-L911 
Cyt. c550-P93A X 52.5 
Cyt. c55()"P93G 
Cyt. c550-N49L X 72.3 
Cyt. c550-N49D X 75.1 
CY!. c550~H92M 

Table 5. Successfully mutagenized cytochromes. All mutation target sites attempted and 
those that were successfuJ after con.firmation of two~step PCR by 1 % agarose gel analysis. 
Also shown is the amount of total DNA (~g) isolated after plasmid preparation. 
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peR was used. for the mutagenic primers to ensure proper elongation and 

hybridization (Fig. I I ). First, peR was used to denature the pETC550 plasmid and anneal 

the oligonucleotide primers that contained the desired mutation. At the conclusion of this~ 

the oligonucleotide primers had been annealed separately to the fOlWard and reverse 

primers, and then were combined. peR was then used aga~ and the nonstraod­

displacing action ofPfuTurbo DNA Polymerase (Stratagene) extended and incorporated 

the mutagenic primers. The successfully incorporated mutants were continned on a 1 % 

agarose gel with pETC550 serving as a control. 

Since the peR regenerates the original plasmid, albeit with a mutatioo, it is then 

poss.ible to replicate the products by transfonnation into E.coli. After transformation of 

the PCR products into. competent XL-l Blue E.co/i cells (XLI Superoompetent, 

Stratagene), individual colonies were grown in culture overnight and were then used for a 

smal1 plasmid preparation the folIowing morning. After the content of the plasmid 

preparation was confirmed on a 1 % agarose gel, the plasmid samples were digested with 

the appropriate restriction endonucleases for identification of plasmids containing the 

mutated sequence. Since a silent mutation was introduced into all ofllie mutagenic 

primers, successful transfonnants showed. an additional restriction enzyme cut site when 

compared to that of the pETC550 control plasmid (Fig. 12). This served as a very 

efficient marker for successful mutagenesis so we did not proceed with experiments if the 

mutation was not indeed present. 
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Figure 12. Restriction enzyme digest of cyt. c550-N49D with PsIl A: A. HindIIf DNA 
Ladder, B: pETC550 control, C-J: Cyt. c550-N49D. Lanes C,E,F,B,I, and J al1 show 
successful mutants that demonstrate the additional cut site introduced with the silent 
mutation in the Dlutalion target sequence. Therefore there are two fragments of -) .7kB 
and 4.2kB (lanes C,E,F,H,I and J) as compared to the one cut site shown in lanes 
D,D,and G. 

If a particular plasmid did not show an additional cut site, it was evident that the 

mutated primer sequence had not been incorporated into the parent plasmid and therefore 

no further analysis was done. Transforrnants yielding plasmids with the expected new 

restriction site were sent to the OSU core faciWy for DNA sequencing, and results were 

then compared to the nucleotide sequence ofpETC550 for confmnation. It should be 

noted that aLthough peR can be erroneous, all sequences were confirmed for the entire 

psbV gene, and therefore the absence of unintended mutations was ensured. 

For the initially Wlsuccessful mutagenesis reactions, some changes to protocol 

were made in an attempt to optimize peR conditions. Different volumes of template 

DNA (0.5111, 1 ~l and 2111) were used in addition to an increased second round annealing 

temperature of 57°C instead of 55°C without success for the cyt. c550-MetD mutant. For 

Cyt. c550-P93G and cyt. c550~H92M, the experiment was done in quadruplicate to 

ensure a higher yield of amplified DNA, and then the entirety of the products were used 



47 

to transform into competent XL-l Blue E.coli cells (XLI Supercompetent.. Stratagene). 

With more DNA present, it was hoped that the competent cells would be more likely to 

pick it up and incorporate it. However, this did not prove to be any more successful in 

attaining transform ants than doing the procedure following the 1 x standard protocol. 

After trans form ants were obtained for cyt. c550-P93G and cyt. c550-H92M, restriction 

analysis indicated that only a few plasmids were positive for carrying the mutated 

sequence. After the plasmids were sent to sequencing, the confirmed nucleotide 

sequence indicated that the mutated sequences were actually not present for either Cyt. 

c550-P93G or cyt. c550-H92M. Since restriction analysis suggested otherwise, we 

suspected that the problem could be coming for the plasmid preparation. Therefore, the 

plasmids of cyt. c550-P93G and cyt. c550-H92M were re-prepared using a large scale 

plasmid preparation protocol (Qiagen, Valencia, CA) which used a column for 

puriilcation, and then were resent to sequencing. Although the overall DNA nucleotide 

sequence was more accurate, the mutated sequences were still not present. For the cyt. 

c550-P93A mutant, the DNA nucleotide sequencing after the small plasmid preparation 

showed some missing bases throughout the sequence like that ofcyt. c550-P93G and cyt. 

c550-H92M. However, a large plasmid preparation utilizing the column was performed, 

and then the sequence was accurate when compared to that of the control plasmid 

pETC550, and additionally contained the mutated sequence. The large plasmid 

preparation obviously led to a cleaner preparation since it makes use of a filtration 

column, and therefore a higher yield ofpurified DNA. After many trials with cyl. c550-

MetD, cyt. c550-P93G and cyt. c550-H92M without any success, we continued with the 

other primers to attain mutants. Many speculations can be made in regards to why only 
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three 0 f the primers were not ampli tied usi ng this technique. One possi hi lity ex ists that 

these primers did not recognize the annealing site, so therefore they were not 

incorporated. This could be due to the substitution of some bases, which causes the 

polymerase to have trouble recognizing the annealing site. The plasmids with a 

con finned DNA nucleotide sequence were transformed into the binary expression 

plasmid BL2I (DE3)/pEC 86. The cyt. cSSO-H92M mutant was obtained from Dr. Li 

(Burnap Lab, OSU). 

B. Overexpression of cyt. c550 using a bilIary plasmid system in E.coli 

For overexpressing cyt. c550, a binary plasmid system in E.coli BL21 (DEJ), 

consisting of the pEC86 plasmid and the pETC550 plasmid was used. Although a 

variety of plasmid vectors exist for the overexpression of c-type cytochromes in E. coli 

(Price ef a!., 2000, Sanders & Lill, 2000), for overexpressing cyt. c550 we used the 

binary plasmid system consisting of the pEC86 and pETC550 plasmids. The pEC86 

plasmid (Fig. \3) is harbored by .he E.coli BL21 (DE3) host strain and was ontained from 

Dr. Linda Thony-Meyer (Mikrobiologisches InstituI, Zurich, Switzerland). Once the 

mutagenized plasrnids were confirmed by sequencing, they could be transfonned into the 

E.coli BL21(DE3) strain where they would be housed with the pEC86 plasmid. This 

system is considered to be binary since both pJasmids playa role in producing the 

covalently attached holo-cyt. c550. The pETC550 plasmid is responsible for the 

production of apo-cyt. c550 with a cleavable pelB leader sequence that directs the 

cytochrome across the cytoplasmic membrane and into the periplasm. The pEC86 

plasmid contains the genes ccmABCD EFGH cloned in pACY C 184 in the direction of the 

tet promoter. It allows for a high copy number expression oflhe cern genes which are 
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required for formation of c-type cytochromes. Cytochrome c maturation is actually 

thought to be catalyzed by the ccrn membrane complex consisting of these eight proteins. 

CcmD is responsible for the delivery of heme to CcmE where heme binds transiently in 

the periplasm. CcmE then functions as a heme chaperone by facilitating the transfer and 

preventing aggregation or non-specific interactions of the heme. Once the apo-cyt. c5S0 

has been directed into the periplasm, the heme will become colvalently attached to the 

apo-cyt. eSSO via two thioether bonds at the conserved CXXCH binding motif, therefore 

resulting in holo-cyt. cSSO (Arslan et 01., 1998). 

cemA Be D E F G H 

pEC86 

Figure 13. The pEC86 plasmid used to overexpress cyt. c550 in E.coli. The genes 
ccmABCDEFGH are cloned in pACYC184 in the direction of the tet promoter (Thony­
Meyer et 01., 1994 & Fee et al., 2000) .. This allows constitutive high copy Dumber 
expression of the cern genes, which are required for fonnation of c-type cytochromes. 

C. Optimization of expression 

An important goal of the project was to maximize the expression conditions of cyt. 

eSSO in E.coli since oruy variable success has been achieved in the overexpression of c-

type cytochromes in E. coli thus far (ThoDy-Meyer, et al., 1994). The combjned 

periplasmic fraction preparations yielded a sufficient amount of recombinant cyt. c550 

for protein purification using column chromatography. As discussed below, it was fOW1d 
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that crude protein extracts could also be used for redox potential detenninations. The 

amounts of cyt. in the extracts were detennined using the published extinction co-

efficient for the heme of cyt. c550 (Table 6). Also included in Table 6 are the culturing 

conditions for cyt. c550 and the cyt . e550 mutants. 

Cytochrome Volume eoncen tration With Without With and 
c5S0 (m1) illMl IPTG, IPTG, without 

Suc[ose l & Sucrose! & IPTGJ 

Betaine Betaine Sucrose 
and 

Betaine 
pETC550 420 27 X 
~. c550-T481 500 26 X 
Cyt. c550-L91I 200 20 X 
Cyt. c550-P93A 445 22 X 
Cyt. c550-N49D 200 21 X 
Cyt. c550-N49L 240 29 X 
Cyt. c550-H92M ... '" X 

Table 6. Expression conditions of eyt. eSSO. Cyt . e550 and mutants with overall final 
volume and concentrations obtained from periplasmie fraction preparations. Also 
included are the expression conditions of the each cyt. "'Denotes preparation by Dr. Z.L. 
Li.,OSU). 

To culture cyt. c550 in E.coli, we used a standard protocol ofTB broth with the 

respective antibiotics and 2M glucose for pETC550, eyt.. c550-T481 and cyt. c550-L91I. 

After being cultured all day, samples were taken out of the shaker and put at 4°C over-

n..ight. This seemed to gjve us a higher yield of covalently attached hemo-protein as 

compared to cultures that were prepared that evening. It's possible that the longer time is 

helpful for apo-cyt. c550 export into periplasm and/or heme attachment. After the 

periplasmic fraction was prepared, we developed a quick test to estimate the amount of 

recombinant protein present based on the spectroscopic properties of the heme. By 

adding a small amount of dithionite and then using spectroscopy to scan fTom 400-700nm 



we could use the spectral value at 550nm (a-band) (Fig. 14) and an equation including 

the extinction coefficient for cyt. c550 to calculate the protein concentration. The 

dithionite served as a reductant by donating an electron to the heme iro~ producing an 

increase in light absorbance at 550mn. When the population of cyt. molecules in the 

cuvette are all oxidized, the OD550 is minimal, whereas when it is fully reduced, the 

absorbance is maximized. Because the extinction coefficient for c550 is known. it is 

possible to quantitate the amount of c550 by the absorbance change, following the 

addition of excess dithionite. 
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Figure 1 4. Characteristic difference spectrum 0 f p eriplasmic fraction p reparation a fier 
the addition of dithionite. The fraction was scanned from 400 to 700nm so that all three 
regions of the spectra, A: a.-band at 55Onrn, B: ~-band at 522nm, and C: soret band at 
417nm could be viewed. Both the sample and reference cuvettes contained the 
periplasmic extract. Spectrum was recorede following the addition of sodium dithionite 
to the sample cuvette. 

Although the standard protocol involving the TB, antibiotics and 2M glucose 

worked for the expression of several of our mutant cyts., some mutant proteins proved 

more difficult to express in sufficient quantities. Therefore, expression conditions had to 
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be revisited. A variety of conditions exist for optimizing the expression of covalently 

attached hemo-proteins. Based on the expression protocol used in our collaborators lab, 

Dr. Mario Rivera (OSU Chemistry Department), for the expression of cyt. b5, we 

attempted to induce the growth of cyt. eSSO with the addition of 1M IPTG, (lOOmglml) 

FeS04, and (17mglml) ALA at O.D.600 =1, but saw no difference in growth as compared 

to the standard procedure already being employed in our lab. Additionally, we tried to 

supplement our growth protocol with the addition ofFeS04 and ALA alone and together, 

without any IPTG. We found that this actually lowered our yield of protein as co~pared 

to the yield of our control preparation with none of the above supplements added. The 

theory behind the addition of IPTG is that it will induce the T7 RNA polymerase from 

E.coli BL21(DE3) to induce production of the cyt. The pET vector contai.ns a lac I gene 

which codes for the lac repressor, a T7 promotor which is specific to only T7 RNA 

polymerase (not bacterial RNA polymerase) and a lac operator (Blaber, 1998). When the 

T7 RNA polymerase is present and the lac operator is not repressed, transcription 

proceeds very rapidly as long as the T7 RNA polymerase is present (Campbell, 20003). 

IPTG is also responsible for displacing the lac repressor and initiating the lac genes since 

it is an analogue of lactose (Blaber, 1998). Since there are lac operators on both the gene 

encoding T7 polymerase andpsbV, IPTG activates both genes (Campbell, 2003). 

Therefore, when IPTG is added to the cell, the T7 polymerase is expressed, and quickly 

begins to transcribe psb V which is then translated. The FeS04 is added as an additional 

source or iron since heme requires iron in its structure. Last, ALA was added because it 

serves as a precursor for heme biosynthesis. Without heme biosynthesis, there will be no 

heme produced, and hence, no holo-cyt. e550. 
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Since we were having extremely low yields for the expression of cyt. 

c550-P93A, we then tried to supplement our procedure by inducing growth with only 

IPTG when O.D 600 = 1, after approximately three-four hours of growth. By varying 

concentrations ofIPTG (0.5mM, 2.5mM, 5mM, and 10mM) we found that 0.5ruM IPTG 

helped to increase the expression of this cyt. e5S0 three-fold as compared to the control 

with no IPTG (Fig. 15). 
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Figure 15. Absorbance of cyt. c550-P93A under varying IPTG conditions as a 
percentage of the control. When 0.5mM IPTG was added to the culture at an OD600=l 
after three-four hours of growth, a three fold increase was obsetved in the expression of 
cyt. e5S0 at 37°C, as compared to the control with 0mM IPTG. 

It was obvious that the JPTG was indeed i.nducing the T7 RNA 

polymerase present in E. coli BL21 (DE3) therefore leading to the production of more cyt. 
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cSSO. Additionally, when we varied the cultivating temperature from 37°C to 28°C with 

O.SmM lPTG we saw a three-fold increase in the expression of cyt. e5S0 (Figs. 16 & 17). 
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Figure 16. The induction by IPTG given at varying concentration on the expression of 
cyt. c550-P93A in E. coli at 37°C. (.) Control, 0 IPTG, (.) O.5mM IPTG, (.) 2.5mM 
IPTG, (£) SmM IPTG, ~) lOmM IPTG. Induction ofO.SmM IPTG (.) at 37°C showed 
the best yield . Difference spectra were recorded as in Figure 14. 
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Figure 17. The induction by IPTG given at varying concentrations on the expression of 
cyt. c550-P93A in E. coli at 28°C. (.) Control, 0 lPTG, (_) O.5rnM rPTG, (4) 2.SmM 
IPTG. (4) 5mM IPTG. ~) lOrnM IPTG. Induction ofO.5mM IPTG at 28°C showed the 
best yield for cyt cS50-P93A giving a near three-fold increase over cyt. c550-P93A 
grown with O.5rnM IPTG at 37°C. Difference spectra were recorded as in Figure 14. 

It was evident that the cyt. c550 mutants had some sensitivity to temperature and 

preferred to be cultured at 28°C. This was evident as seen in (Fig. 8) when cyt. c550-

P93A under induction by O.5mM IPTG grown at 28°C, as opposed to 37°C, showed a 

near three-fold increase in expression. Additionally, in the past it had been virtually 

impossible to express the cyt. c550-H92M mutant since it is so unstable . Once the sixth 

axial ligand is mutated from a histidine to a methionine. the protein becomes unstable 

because the covalent attachment of the heme is more difficult to achieve (see below). 

However, when we supplemented the media with O.5M IPTG at 28°C we found a four-

fold increase in the expression of cyt . c550-H92M as compared to cyt. c550-H92M 

grown with only O.SmM lPTG at 37°C (Figs. 18 & 19). 
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Figure 18. The induction by IPTG on the expression of cyt. c550-H92M in E. coli at 
37°C. (.) Control. 0 IPTG, (_) O.5mM IPTG, (+) 2.SrnM IPTG, (.a) 5mM lPTG. There 
are no peaks observed in the S50nm region at any of the varying concentrations ofIPTG. 
Difference spectra were recorded as in Figure 14. 
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Figure 19. The induction by IPTG on the expression ofcyt. c550-H92M in E. coli at 
28°C. (_) Control, 0 IPTG, (Q) O.lmM IPTG (.) O.5mM lPTG, (.) 2.5rnM IPTG, 
(.) 5mM JPTG. At 28°C, there is a four-fold increase in the expression of cyt. e550-

H92M when the media is supplemented with O.5mM IPTG (.). Difference spectra were 
recorded as in Figure 14. 
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Although adding O.5mM IPTG did increase our expression for cyt. c550-

P93A and cyt. c550-H92M, we were stili interested in optimizing the conditions fwther 

to achieve yields similar to that ofpETC550 and the two other mutants cyt. c550-T481 

and cyt. c550-L91 1. Based on work done by Bourot, et 01., and Sosa-Peinado, et al., we 

additionally supplemented our expression medium with 2.5mM betaine and 300mM 

sucrose. With the addition of these two osmolytes and O.5mM IPTG at 28°C, we saw a 

four-fold increase in the expression cyt. c550-H92M as compared to the control with only 

0.5mM IPTG and no betaine or sucrose, (Fig. 20). 
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Figure 20. The effects ofO.5mM IPTG, 2.5mM betaine and 300mM sucrose on the 
expression of cyt. c550-H92M in E.coli at 28°C. (_) O.SmM IPTG, (a) O.5mM IPTG, 
2.5mM betaine, (A) O.5mM IPTG, 300mM sucrose, (0) O.5mM IPTG, 2.5mM betaine, 
300mM sucrose. With the addition of the two osrnolytes, betaine and sucrose, and 
O.5mM IPTG (0), a four-fold increase was seen in the expression of cyt. c550-H92M as 
comparoo to a control (.) with no addition of osomolytes. Difference spectra were 
recorded as in Figure 14. 
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We were also able to see similar results for cyt. e550, cyt. c550-P93A, cyt. cS50-

N49D and cyt. c5S0-N49L. It is likely that these two growth additives aid cyt. e5S0 in 

protein folding which could in tum result in more protein stability and a stable heme 

environment and attachment in the holo-cyt. e5S0. It should be noted that an increase in 

protein expression was also seen for pETC550 under these same conditions. 

Additionally, we found that flask sizes had an influence on the amount of 

protein expression. All of the mutants seemed to grow better in large 21 flask, with an 

exception ofH92M which grew much better in 20 (100 rol) flask. This likely related to 

the oxygen requirements of cells expressing each of the different cyt. mutants. 

D. PurifICation 

Two purification techniques were utilized to purify the cyt. cSSO in Ecoli, 

and each yielded a significant amount of protein to perform the redox titrations. The first 

method purified cyt. c550 by using a three column chromatography system. With this 

method, the periplasmic fractions could be directly added to the first column, the DEAE 

cellulose, which is an anion exchange column. Since cyt. eS50 is an anion, it bound to 

the positively charged column matrix, and when rinsed with 500mM NaCl, the cr anions 

released the protein by competing for the positive charge. After fractions were collected 

and concentrated, they were added to the second colunm, the DEAE sephacel, which 

once again allwed cyt. c550 to be purified based on charge differences. The fractions 

were collected and concentrated from the DEAE sephacel and added lastly to the third 

column, the G-75 Superdex, which is a gel penneation colwnn. The gel beads in the 
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colunm trapped cyt. c550 while allowing larger substances to pass on through. The 

smaller cyt. c550 was then washed out of the beads and collected as purified protein. 

The three column chromatography protein purification was carried out and 

rendered sufficient yields of cyt. c550 for the redox titrations (Table 7). Characteristic 

spectras of our collected fractions from each of the three colwnns can be viewed in the 

(Figs. 21-23). Each of the collected fractions were scanned at 280nm and 407nm to 

detect the protein present in the fraction (28Onm) and to detect the soret band (407nm) of 

cyt.. c550. By utilizing this spectral data shown in these figures, we could detennine in 

exactly what part of the fraction our cyt. was, so that we could collect it for concentration. 

Cytochrome C550 Protein concentration Volume Molar concentration 
(mg/ml) (mI) (lJM) 

Wild Type 1.87 1.95 118 

T48! 1.88 2.75 118 

L9lJ 1.87 1.85 118 
I 

Table 7: Concentrations 8nd yields oftbe three column cbromatography 
purification. Shown above are the respective protein concentration, volwne, molar 
concentration and yield for cyt. e5S0, cyt. c550-T481 and cyt. c550-L91I. Yields for the 
proteins were sufficient to perfonn re-dox measurements. Other.proteins were purified 
using the crude extract protein purification procedure for redox titrations. 

Yield 
{JlgIl) 

.-
140 

215 

247 

.. --
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Figure 21. Ion exchange profile with 500mM NaCl salt gradient for cyt. e550 after 
purification through the DEAE cellulose column. The collected. fractions were scanned. 
at 280nm (-) and 407nrn (- - -). The diagonal line (,/) demonstrates the elution of cyt. 
e5S0 from 0-500mM NaCl. Fractions were collected where the peaks at 280run and 
407nm coincide (Peak 2 of 28Onrn). 
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Figure 22. Ion exchange profile for cyt. eSSO after purification through the DEAE 
sephaee1 column. The collected fractions were scanned at 280nm (-) and 407nm·(---}. 
Fractions were collected where the peaks at 280nm and 407nm coincide (peak 2 of 
280run). 
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Figure 23. Elution profile of eyt. e550 after purification through the gel penneation 
column (G-75 Superdex). The collected fractions were scanned at 2800m (-) and 
407nm f---) . Cyt. cSSO was eluted where the peaks at 280nm and 407nrn coincide (Peak 
20f28Onm). 

The cyts . purified by column chromatography were analyzed on a SDS-

polyacrylamide gel with TMBZ and Coomassie Blue staining to confirm the one 

homologous band representative of purified cyt. cSSO (Fig. 24). The first gel (A) is 

stajned only with the Coomassie, while the second gel (B) has been stained additionally 

by TMBZ. The Comassie slain is responsible for staining all of the proteins present, 

while the TMBZ stain is selective for heme-containing proteins. The one homologous 

band viewed in each of the gels in lanes labeled (E) is representative of the purified Cyt. 

eS50. Since there is only one band present in these lanes, no other berne-containing 

proteins are likely present, therefore ensuring that our cyts. were purified. 
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Figure 24. SDS-PAGE: FPLC purification oicyt.C550 on Ni-NTA Superflow. SDS­
PAGE was performed at 12% acrylamide including 6M urea. A: Coomassie-stained SDS 
gel; B: the same gel with TMBZ staining. M: prestained SDS-PAGE standards (Bio­
Rad); P: periplasmic fraction; F: flow through; W: wash; E: elutes (purified cyt. eS50). 

In addition to the three column chromatography purification teclmique. a 

purification protocol was designed using the crude extracts of the proteins to save time 

and expense, which yielded a comparable value to that achieved by the columns. It 

should be noted that the crude extract of protein was prepared strictly for redox titrations 

and was not used for other procedures. Additionally, the titrations using the erude extract 

of protein gave us the same results when compared to titrations using the column purified 

protein. To accomplish this simple purification technique, the periplasmic fraction was 

prepared, and then streptomycin sulfate was added to precipitate nucleic acids. This was 

followed by a simple protein purification step involving the same concentration of 

anunoniwn sulfate used for our column purified proteins. The procedure is discussed in 

detail in the materials and methods. Although trus procedures was likely not as pure as 

the protein purified through the three columns, it is unlikely that there were any other 
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interfering redox proteins present since the entire titration spectra looked identical for the 

column purified protein and the crude extract purified protein. The concentration of 

protein obtained from the crude purification can be seen in (Table 8). 

Cvtocbrome c550 Volume (00) Con cen tration( 11M) 

pET e550 2.85 88 
pET HeS50 4 93.6 
pETc550H 3.8 118.8 

- . .. .. 
cyt. c550- P93A 4.8 106 
cyt. c550- N49D 3.4 101 -.. 
cyt. c550-N49L 4.3 112.5 
cyt. c550- H92M 3.5 96 

Table 8. Concentration of proteins after crude extract purification. Shown are the overall 
volumes and concentrations that were obtained after the crude purification of the 
periplasmic fraction preparation. Crude purified protein was used only for 
electrochemistry. 
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CHAPTER 6 

REDUCTION-OXIDATION (Redox) PROPERTIES OF CYTOCHROME cS50 
AND cSSO MUTANTS 

Introduction 

Redox titrations can be carried out to determine the concentration and 

midpoint potentia1(s) of one or more species in a solution. A titration is done to obtain 

quantitative information about the sample, by adding a certain volume of reactant whose 

concentration is known. By adding a known concentration of reactant, at consistent 

intervals, data can be collected to make a titration curve. To detennine the formal 

reduction potential of cyt. c550, we used the reactant sodium dithionite. Sodium 

dithionite serves as a reductant by adding electrons to the electrochemical cell, which are 

then picked up by the redox mediators in the cell that in turn, transfer the electrons to the 

heme iron of cyt. c550. During this process, the redox potential in the titration cell 

becomes progressively more negative which is measured with a AgJ AgCl electrode. This 

is a stepwise process, which allows for a gradual reduction of cyt. c550 with each 

addition of sodium dithionite, so sufficient data can be collected at each pr'ogressively 

more negative potential. As the cyt. becomes reduced it undergoes absorbance changes 

which allow us to determine the fraction of the cyt. population in the solution that has 

become reduced. It was very important for us to have the correct balance of mediators 

for each of the different proteins, so they could provide a buffering capacity around the 

actual redox value of the respective protei~ and electrons could be slowly delivered to 

the heme iron of the cyt. 
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As sodium dithionite was added to each titration, the concentration of the reduced 

and oxidized states of the redox protein in the cell, are detennined from the optical 

absorption spectrum of the solution in the cell. Each new spectrum following each 

addition of sodium dithionite to the cell Was saved, and the absorbance value at 550nm 

was documented. As more sodium dithionite was graduaJly added to the cell, the peak at 

550run went from completely oxidized (flat) to partially oxidized (semi-curved), to 

completely reduced (curved) as can be seen in (Fig. 25). 
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Figo.re 25. Redox titration spectrum at 550nm. Shown in this figure is the absorbance at 
550nrn for A: the fully oxidized protein, B: the partially oxidized protein, and C: the 
completely reduced protein. 

The spectral information from each addition of dithionite is then correlated with 

the simultaneously determined reduction potential of the cell, as measured by the 

electrode, in wruch the values were recorded from the potentiostat. Therefore, each data 

point on the titration curve represents the absorption spectrum of the titration solution at 
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550nm and the respective redox potential at that absorption. Once it was ensured that the 

solution in the cell was completely reduced, these two pieces of information were 

interpreted through the Nemst equation (Eq. 1) to find the fonnal redox potential (E) by 

detennining the ratio of[ox]/[red] at the electrode surface. 

Equation 1. E(mV)= EO+59Iog[ox]/[red] 

In calculating the formal reduction potential, we had to convert our potential 

values obtained from our Agj AgCl reference electrode to the standard NHE reference 

value, since this value is usually used in the literature and since o·ur Agj AgCI electrode 

was giving us a midpoint potential in regards to the affinity for electrons to Ag/AgCl., 

whereas the NHE value indicates the affinity for protons and electrons to make hydrogen. 

The following formula describes the relationship between the Ag/ AgCI value and the 

NHE value: 

Equation 2. (NHE) fonnal redox potential = (AglAgCl) redox potential ~ 197mV 

Results and Discussion of Redox Tiratwns 

The reduction potential of cyt. eS50 and eight mutants have been 

measured using an anaerobic spectroelectrochemieal cell, by adding the reductant sodium 

dithionite. Before beginning experiments for cyt. eS50 and mutants, cyt. b5 from Dr. 

Mario Rivera's lab was measured. Since potentiometric titrations had been performed on 

cyt. b5 before, and their vaJue published, this served as a control for our experiments. 

After the publisbed redox value for cyt. b5 of -lOOmV was obtained using the 

potentiometric procedure, the titratiODS for eyt. c550 were begun. After a struggle with a 

number of different redox mectiators and keeping the environment in the electrochemical 
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cell completely anaerobic, we detennined that the potentiometric titration (i.e. using a 

working electrode to supply electrons instead of ditbionite) would Dot work for cyt. c550. 

This could be due to a number of reasons, but because of cyt. e550's extremely negative 

potential, it was always very difficult and time consuming to get cyt. c550 to it's 

completely reduced state. If a completely reduced state was achieved, the protein would 

gradually re-oxidize Spontaneously leading us to conclude that there was also some 

interference with oxygen, despite repeated efforts to improve the sealing of the system. 

Therefore, I decided to use a different, but still reliable method employed by other groups 

(Navarro et al., 1995), to do the titrations, by scrupulously adding smaJl amounts of a 

stock solution of ImM sodium dithionite to the cell and not applying any potential 

(voltage). This seemed to work much more efficiently in achieving the desired titration 

results, and we were able to get cyt. e550 fuUy reduced much more rapidly and reliably, 

than with the potentiometric titrations. The overall results of the spectroelectrochemical 

titrations using sodium dithionite proved to be very interesting and can be seen in (Table 

9). The results and cliscussion for each specific cyt. that was measured wiIl follow. 



68 

Cytochrome C550 Hru L911 HeSSO C550H 

Trial 1 -250.00 -253 -253 -243 -245 

Trial 2 -253.00 -253 -251 -240 -253 

Trial 3 -253.00 -253 -253 -241 -253 

Average Potential -252.00 -253.00 -252.33 -241.33 -250.33 

Standard Deviation 2 .12 0 .00 1.41 2 .12 5.66 

Difference from wild type 0.00 1.00 0.33 -10.67 -1.67 

Cytochrome P93A N49D N49L H92M 

Trial 1 -238 -242 -239 -178 

Trial 2 -233 -241 -234 -176 

Trial 3 -238 -246 -233 -178 

Trial 4 -243 -175 

Avegage Potential -236.33 -243.00 -235.33 -177.33 
Standard Deviation 3.54 0.71 3.54 1 .41 

Difference from wild type -15.67 -9.00 -16.67 -74.67 

Table 9. The results of the sodium dithionite titrations of cyt. e5S0 and mutants . 
Included for each cyt. are the average potentiaJ, standard deviation and difference in 
redox potential from the wild type redox potential. All titrations were carried out with 
-10mM protein in 200rnM sodium phosphate buffer pH 8.0, 24Co. The titrations were 
monitored by following the intensity of the absorbance of the oxidized Q,- band (550run) 
of the cyt. being measured and the equilibrium potential resulting from each addition of 
I roM sodium dithionite (measured by the potentiostat). 

Cytochrome c550 

The average midpoint potential determined for cyt. c550 was -252±2.12m V vs. 

NHE. I was very pleased to get this value because it agrees with previously published 

redox values for cyt. eSSO by Roneel et al., and Navarro et al. This therefore proves that 

cyt. e550 can be expressed in E.coli and the product produced is consistent with native 

cyt. purified from native sources, as indicated in the literature (Navarro et a.1., 1995, 
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Roncel el al., 2003). Additionally, this replicated redox value indicated that I had been 

able to achieve the same thioether linkage to the heme by expression in E.coli. This 

result is also supported by SDS-page of the protein purified from E.coli that resembles 

the wild-type and shows no unbound heme (Fig. 24). Last. the redox value indicates that 

the same hydrogen bonding interactions are intact in the E.coli expressed protein, as are 

present in the native expressed protein (Sawaya et al., 2001). 

A characteristic sigmoidal titration curve can be seen for cyt. e550 in (Fig. 26A). 

The sigmoidal curve for cyt. eSSO and each of the other cyts. was fitted (as indicated in 

each figure) using the Nemst equation so that the slope of the curve was a consistent 

value of 59m V for each Cyt. (Eq. 1). The sigmoidal curve is significant because it relates 

the fraction of the oxidized mediators to the reduction cell, controlled at the indicated 

potentials. The fonnal redox potential can be obtained from the titration curve by going 

about half-way up the (y-axis) fraction oxidized (-0.5), and then straight over on the (x~ 

axis) titration curve to read the potential value. 

The entire spectra of the sodium ditlllonite titration of cyt. e550. can also be seen 

in (Fig. 26B). There are two regions in the spectrum that can be focused on to monitor 

the reduction of the protein. The first region of the spectrum indicating the reduction of 

cyt., is a shift in the soret band from 407nm to 417nm. The shift in this region is shown 

in figure 12, where the fully oxidized protein has a peak at 407 nm, while the fully 

reduced protein has a peak 417 nm. The second region that can be observed in the 

spectrum is that oftbe a-band at 55Onrn. This was the region of focus for cyt. c550 

because the absorbance values at 550 nm were recorded in conjunction with the 

respective potential. In (Fig. 26B). the big peak is representative of the fuJly reduced 
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protein and the fully oxidized protein is the flat curve at the bottom. The inset of (Fig. 

26B) is a logarithmic Nemst plot for cyt. c550 where the potential vs. the log[ox]/[red] 

has been plotted. By plotting this information, a straight line is obtained with a slope 

equal to 59mV (Eq. 1) and the y-intercept, at zero, equal to the formal midpoint potential 

of the redox couple in solution. 
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Figure 26. Graphs of spectroelectrochemical titration of cyt. e550 using sodiwn 
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A. Titration curve of cyt. eSSO. The fraction of oxidized cyt. e550 is plotted against the 
corresponding potential at that time during the titration (.). The Nemst equation was 
used to fit the titration cUIVe with a consistent slope of 59m V (0). After three trials, the 
redox potential of eyt. eS50 was determined to be -252 +/- 2.12 mV vs. NHE. 
B. Complete spectrum showing the completely oxidized fonn of cyt. c550 (-) with !lO 

peak at 550run, and the completely reduced form of cyt. e5S0 (-) with a large peak at 
550nm. The inset of the figure is a logarithmic Nemst plot derived from the cbange in 
absorbance at 550nm which also indicates a redox potential of -252 mV vs. NHE. 
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Figure 26. Graphs of spectroelectrochemical titration of cyt. c550 using sodium 
dithioni teo ('" 1 O~M protein in 200mM sodiwn phosphate buffer pH 8.0, 240 C). 
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A. Titration curve of cyt. e550. The fraction of oxidized cyt. c550 is plotted against the 
corresponding potential at that time during the titration (.). The Nernst equation was 
used to fit the titration curve with a consistent slope of 59mV (0). After three trials, the 
redox potential of cyt. c550 was determined to be -252 +/- 2.12 mV vS. NHE. 
B. Complete spectrum showing the completely oxidized form of cyt. c550 (-) with no 
peak at 550nm, and the completely reduced form of cyt. c550 (-) with a large peak at 
55Onm. The inset of the figure is a logarithmic Nemst plot derived from the change in 
absorbance at 550nm which also indicates a redox potential of -252 mV vs. NHE. 
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Cytochrome c550-T481 

The average midpoint potential for cyt. c550-T48I was 253±OmV vs. NHE, 

which was very consistent with the eyt. c550 value of -252±2.12mV vs. NHE. Although 

heme solvent exposure has long been recognized as a major contributing factor to 

midpoint potential (MP), Mao et al., indicate that it is probably multiple fact.ors that lead 

to a change in MP where solvent exposure is concerned. They also note that typically the 

addition of surface groups covering the heme wi \I raise the MP, because the heme will 

now be buried and the MP will increase irregardless of solvent. However, the T481 

target, which was selected primarily to aid in covering the solvent exposed heme, (Fig. 

27), did not allow for significant enough coverage to result in a change in midpoint 

potential upon the substitution of threonine for isoleucine. Additionally, Mao el al. 

indicate that mutations of charged surface groups usually yield changes in MP of only 

-15m V, if at all, since solvent screening makes their electrostatic potential negligible at 

he heme. The surface charges are instead needed for binding the correct reaction partners 

(Tiede et al., 1993). 
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Figure 27. Graphs of spectroelectrochemical titration of cyt. c550-T481 using sodium 
dithionite. (-IOJ.LM protein in 200mM sodium phosphate buffer pH 8.0, 24" C). 
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A. Titration curve of cyt. c550-T481. The fraction of oxidized cyt. c550-T481 is plotted 
against the corresponding potential at that time during the titration (.). The Nernst 
equation was used to fit the titration curve with a consistent slope of 59mV (0). After 
three trials, the redox potential ofcyt. c550-T481 was detennined to be -253 +/- 0 mV vs. 
NHE. B . Complete spectrum showing the completely oxidiz.ed form of cyt. c550-T481 
(-) with no peak at 55Onm, and the completely reduced fonn of cyt. c550-T48I (_) with 
a large peak at 55Onm. The inset of the figure is a logarithmic Nernst plot derived from 
the change in absorbance at 550nm which also indicates a redox potential of -253 mV vs. 
NHE. 
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Cytochrome c550-L911 

Cyt. c550-L911 which had a midpoint potential of -2S2.33±1.4ImV vs. 

NBE, was once again nearly the same as cyt. c550. The L911 site was also selected to try 

to cover the heme from solvent exposure (Fig. 28), but obviously the susbstitution of 

luecine for isoleucine did not help in the coverage significantly enough to render a 

change in redox value for the same reasons at the c550-T481 mutant. 
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Figure 28. Graphs of spectroeieclrochemical ti tration of cyt. c5S0- L91 I using sodium 
dithionite. (-lOJ.1M protein in 200mM sodium phosphate buffer pH 8.0,24° C). 
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A. Titration curve of cyt. c550-L91 I. The fraction of oxidized cyt. c550-L911 is ploiteu 
against the corresponding potential at that time during the titration (.). The Nemst 
equation was used to fit the titration curve with a consistent slope of 59mV (0). After 
three trials, the redox potential of cyt. c550-L91 I was determined to be -252.33 .1 1- 1.41 
mV vs. NHE. B. Complete spectrum showing the completely oxidized form of cyt. 
c550-L91I (-) with no peak at S5Onm, and the completely reduced form of cyt. cS50-
L91 I (-) with a large peak al 550nm. The inset of the figure is a logarithmic Nernst plol 
derived from the change in absorbance al 550nm which also indicates a redox potential of 
-252 mV vs. NHE. 
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Cytochrome c550H 

Out of curiosity, we tested cyt. c550H (from Dr. Li), which was His-tagged at the 

C-lerminus. Cyt. c550H, was also much like eyt. cSSO, as it resulted in a midpoint 

potential of -250.33±5.66mv vs. NHE as seen in (Fig. 29). This was anticipated since it 

would not be likely that a His-tag would change the redox potential of a protein. 

Additionally, the SDS-page of the cyt. c550H protein showed a band that was identical to 

the wild-type eyt. eSSO (Fig. 30). However, I did not see the same results when I tested 

the N-terminal His-tagged eSSO. 
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Figure 29. Graphs of spectroeleclrochemical titration of cyt. c550H using sodium 
dithionite. (-I0I-lM protein in 200mM sodium phosphate buffer pH 8.0, 240 C). 
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A. Titration curve of cyt. c550H. The fraction of oxidized cyt. c550H is plotted against 
the corresponding potential at that time during the titration (e). The Nemst equation was 
used to fit the titration curve with a consistent slope of 59m V (0). After three trials, the 
redox potential ofcyt. c550H was determined to be -250.33 +/- 5.66 mV vs. NHE. 
B. Complete spectrum showing the completely oxidized fonn of cyt. c550H (-) with no 
peak at 550nm, and the completely reduced fonn of cyt. c550H <_) with a large peak. at 
550nm. The inset of the figure is a logarithmic Nemst plot derived from the change in 
absorbance at 550nm which also indicates a redox potential of -250 mV vs. NHE. 
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Cytochrome Be5S0 

A somewhat unexpected result was found for cyt. HeSSO which yielded a 

midpoint potential of -241.33±2.12mV vs. NHE, a near -10.67 vs. NHE difference from 

the midpoint potential of wild-type cyt. c550 (Fig. 31). Obviously in this situatjon, the 

His-tag was responsible for this small, but significant shift in midpoint. We speculate that 

the His-tag destabilizes the three-dimensional structure such that hydrogen bonding to the 

heme is altered. Data supporting this conjecture was seen on the SDS-page (Fig . 30B), 

where there was a shift in [he mobility of the N-tenninus His-tagged protein as compared 

to the band of wild-type eyt.. cSSO and the C-terminus His-tagged eS50. Additionally 

seen in (Fig. 30A), is the 2 conformations ofcyt. c5S0H, the reduced and oxidized fonn, 

upon the addition of dithiothreitol. 

29600 B 

20300 

Figure 30. Effects of dithiothreitol concentration and the position of his-tag on the 
electrophoretic behavior of cyt. eSSO. SDS-PAGE was performed at 12% acryJamide 
including 6M urea, the gel was stained by Coomassie Brilliant Blue R-2S0. A: profile of 
cyt.c550H in the presence of 40 mM DTT, Red., reduced cyt.c550H, Ox., oxidized 
cyt,c550H~ B: profile of native arid His-tagged eyt.c550 protein in the presence of 150 
mM DTT. Cyt.c550: cytochrome eSSO: cyt,cS50H: His-tag located at C-terminus of 
cytochrome eSSO: cyt.HcS50: His-tag located at N-terminus of cytochrome eSSO. 
Prestained SDS-PAGE standards (Bio-Rad) was used as molecular weight marker and 1 
J.1g protein was loaded (Dr. Li, OSU). 
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Figure 31. Graphs of spectroetectrochemical titration of cyt. He550 using sodium 
dithionite. (-lOIlM protein in 200mM sodium phosphate buffer pH 8.0, 24° C). 
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A. Titration curve of cyt. HcS50. The fraction of oxidized cyt. Hc550 is ptotled against 
the corresponding potential at that time during the tilralion (.). The Nemst equation was 
used to fit the titration curve with a consistent slope of 59mV (a). After three trials. the 
redox potential of cyt. cS50H was determined to be -241.33 +/- 2 .12 mV \IS. NHE. 
B. Complete spectrum showing the completely oxidized fonn of cyt. HeS50 (-) with no 
peak at SSOnrn, and the completely reduced form ofeyt. Hc5S0 (-) with a large peak at 
55Onm. The inset of the figure is a logarithmic Nemst plot derived from the change in 
absorbance at 550nrn which also indicates a redox potential of -241 mV vs . NHE. 
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Based on this infonnation, we can conclude that He550 may have two 

discrete mobility fonns that possibly correspond to two confonnations of the protein, 

which could additionally attribute to the difference seen in redox potential. Consequently, 

there is no difference in mass when compared to cyt. c550H as detennined by MALDI­

TOF (Dr. Li) (Fig. 32). So although tbe two His-tagged proteins have the same 

molecular mass, placement oftbe His-tag at the alternative ends of the polypeptide likely 

results in differences in the secondary or tertiary structure of the two proteins. This 

evidence is supported by Mao et al., who report how cytochromes with different folds 

control heme redox potentials. based on differences in stabilization of the buried, calionic, 

oxidized heme by proteins in different motif: .. (Churg el al., 1983). 
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l1':igllre 36. MALDI-TOF Mass Spectra of cyt.cS50 with a C-terminal His-tag and a N­
terminal His-tag from Synechocyslis sp. PCC6803. Matrix-Assisted Laser 
Desorption/Ionization Time-of-Flight (MALDI-TOF) mass spectrometric analyses were 
~arried out with a Applied Biosystems Voyager DE-PRO mass spectrometer (PerSeptive 
~iosystem, Framingham, USA) using a 25kV accelerating voltage. The samples were 
t-un in the linear mode. The protein solutions (50 mM MES. pH6.5) were diluted 1: 1 (v/v) 
~ith the matrix solution of sinapinic acid at 10 mglml in 50% acetonitrile containing 
a.l % TFA, 1 ).11 of the mixture was deposited on the sample target and then allowed (0 

~ir-dry. Bovine serum albumin (664299 Da) was used for external calibration. The 
~pectrum was acquired in the linear mode. Predicted molecular mass for both HiS-lag 
f'onns is 16688.5 daltons (Dr. Li. OSU). 
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Cytochromes c550-P93A & c550-P93G 

Cyt. c550-P93A yielded a midpoint potential of -236.33±3.54mV vs. NHE as 

shown in (Fig. 33). This value was different from the wild-type cyt. c550 by -15.67mV 

vs. NHE. Although this particular mutation Was initially selected for it's involvement in 

hydrogen bonding (Fig. 8A), since proline forms a hydrogen bond to the No atom of 

His92. upon the substitution ofproline93 for an alanine (Fig. 8B), this hydrogen bond is 

not lost since the peptide backbone carbonyl is involved and not the side-chain. The 

alanine substitution for proline does not remove the hydrogen bond, however it may 

change the geometry of the hydrogen bonding, which may force a carbonyl oxygen 

location that is undersirable, therefore accounting for the -15.67mV vs. NHE shift in 

redox potential. As evidenced by Mao et ai., cyts. with different folds and protein 

confonnations can lead to changes in MP for a number of reasons. They report that 

nonpolar residues change MP indirectly by helping define the protein conformation, 

limiting the position of polar residues, and keeping water out of the protein core. 

However, they go on to state that changes in the backbone geometry, site ionization, or 

burial of polar or charged groups can lead to unpredictable effects where hydrophobic 

residues are changed. Since proline is hydrophobic, as is alanjne, the change in MP is 

1 ikely not due to the positioning of the residues, but the new backbone geometry that the 

cytochrome assumes upon the mutation. Since the internal hydrogen bonds of a protein 

prov ide a structural basis for its native folding pattern, if a protein folds ina way that 

prevents some of its internal h-bonds from forming. their free energy would be lost and 

such conformations would be less stable. 
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Although I was unable to get the cyt. c550-P93G mutant, it likely would have had 

less effect on the redox potential because glycine has a hydrogen sid~haln as opposed to 

the methyl side-chain of alanine. A hydrogen side-chain would have likely allowed 

backbone rearrangements more easily than the methyl group of alanine. 
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A. Titration curve of cyt. c550-P93A. The fraction of oxidized cyt. c550-P93A is plotted 
against the corresponding potential at that time during the titration (.). The Nemst 
equation was used to fit the titration curve with a consistent slope of 59mV (c). After 
three triaJs, the redox potential ofcyt. c550-P93A was determined to be -236.33 ..l../_ 3.54 
mV vs. NHE. B. Complete spectrum showing the completely oxidized form of cyt. 
c550-P93A (-) with no peak at 550nm. and the completely reduced form of cyt. c550-
P93A (-) with a large peak at 550nm. The inset of the figure is a logarithmic Nemst plOl 
derived from the change in absorbance at 550nm which also indicates a redox potential of 
~236 mV vs. NHE. 
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Cytochromes c550-N49L &: c550-Ntl9D 

In addition to the shift in midpoint potential seen in the cyt. c550-P93A mutant., 

the cyt c550- N49L and cyt. c5SQ-N49D mutants also resulted in a shift in midpoint. The 

cyt. c550-N49L mutant yielded a midpoint potential of -235.33±3.54mV VS. NHE which 

was a difference from the wild-type cyt. eS50 of -16.67rnV vs. NHE as shown in (Fig. 

34). This is in accordance to claims that changes in the propionate ionization are the 

most important response to oxidation in many cytochromes (Rogers el ai., 1995). This 

was a significant difference that could be attributed to Asn49's involvement in the 

hydrogen bonding network that shields the pyrrole A, 0, and C rings of the heme (Fig. 

6A). Additionally Asn49 is solvent exposed and involved in the hydrogen bonding 

network to a propionate D oxygen atom. Asn49's amide side-chain is hydrogen bonded 

to the D propionate. Therefore upon the mutation of asparagine (Asn) to leucine (Leu) 

(Fig. 6C), the polar amide side-chain of Asn is lost and now the nonpolar ethyl side-chain 

of Leu is left to hydrogen bond to the propionate D oxygen atom instead. Since 

propionates are always close to the heme (-8 A 0), and partially buried in the protein, they 

usually do modify MP based on differences in their ionization states and sovent exposure 

(Mao el al., 2003). Since leucine is nonpolar, it might actually assume a position closer 

to the core of the protein., which could aid in solvent exposure of the heme. 

A change in midpoint potential was also observed for the cyt. c550-N49D mutant, 

which yielded a midpoint potential of -243±0.71 mV vs. NHE which was -9mV different 

from the midpoint potential of wi Id-type cyt. c5 50 (Fig. 35). The di fference in midpoint 

potential seen from the substitution of Asn to aspartate (Asp) (Fig. 6B) is a little less than 

the value seen upon the substitution for Asn to Leu, but once again, Asp has a charged 
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polar ester side-chain, which would be capable of hydrogen bond formation in contrast to 

the Leu's nonpolar ethyl side-chain. However, since Asp is polar, it might not be buried 

as well as the nonpolar leucine. 
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plotted against the corresponding potential at that time during the titration (.). The 
Nems1 equation was used to fit the titration curve with a consistent slope of 59m V (0). 
After three trials, the redox potential of cyt. c550-N49L was determined to be -235.33 +1-
3.54 mV vs. NHE. B. Complete spectrum showing the completely oxidized form of cyt. 
c550-N49L (-) with no peak at 55Onrn, and the completely reduced fonn of cy1. e550· 
N49L (-) with a large peak at 550nm. The inset of the figure is a logarithmic Nemst plot 
derived from the change in absorbance at 550nm which also indicates a redox potential of 
-235 mV vs. NHE. 
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A. Titration curve of cyt. c550-N49D. The fraction of oxidized cyt. c550-N49D is 
plotted against the corresponding potential at that time during the titration (.). The 
Nemst equation was used to fit the titration curve with a consistent slope of 59rnV (0). 
After three trials, the redox potential of cyt. c550-N49D was determined to be -243 +/-
0.71 mV vs. NHE. B. Complete spectrum showing the completely oxidized form of cyt. 
c550-N49D (-) with no peak at 550nm, and the completely reduced form ofcyt. c550-
N49D (_) with a large peak at 550nm. TIle inset of the figure is a logarilhmic Nemst 
plot derived from the change in absorbance at 550nm which also indicates a redox 
potential of -243 mV vs. NHE. 
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Cytochrome c550-H92M 

Lastly, and most significantly, was the change in midpoint potential observed in 

the Cyt. c550-H92M mutant. The H92M substitution (Fig. 7B) resulted in a midpoint 

potential of -177.33±1.41mV vs. NHE (Fig. 36) which was -74.67 vs. NHE different 

from the v.rild-type cyt. eS50 value (Fig. 7 A). Obviously this value can be attributed 

somewhat to the fact the His92 is the sixth axial ligand, and as reponed in literature 

(DoHa el al., 1994), substitution of Met for His at the sixth ax ial position usually results 

in a positive shift in midpoint potential. Axial ligands are assumed to influence heme MP 

primarily through bonding, not electrostatic interactions. The heme-ligand complex is 

treated as a single unit to be modified as a whole by the protein (Mao et al., 2003). His­

ligands in proteins are found to lie in a narrow range of orientations, which maximizes 

the hydrogen bonding at the distal positions (Zanc et ai., 2001). It appears that Met is 

electron withdrawing, which increases MP, while His is electron donating. This is 

justified since Met has a higher affinity for Fe (II) than Fe (liD, while His has the 

opposite preference (Nesset el al., 1996), therefore accounting for the positive shin in MP 

upon substitution of His for Met. It was expected to see a shift of close to -150m V as 

reported by Dolla et aI., in Cyt c3, but the shift that I got was about halfofthat. There 

may have been less ofa positive shift in midpoint as a result of much ofcyt. c550's heme 

still being exposed to solvent, versus the heme of Cyt. c3 (Dolla et al., 1994). It is also 

possible that the new conformation of the protein assumed upon the change in axial 

ligation (from bis~histidine to His-Met), or the new orientation of the heme, did not allow 

for thaI large of an increase in MP. 
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Figure 36. Graphs of spectroeicctrochemical litration of cyt. cS50·H92M using sod ium 
dithionite. (- IOpM protein in 200mM sodium phosphate buffer pH 8.0, 240 C). 
A. Titration curve of c)'t. c550-H92M. The fraction of olCidized cyt. c550-N490 is 

plotted against the corresponding potential at that time during the titration (.) . The 
Nemst equation was used to fit the litration curve with a consistent slope of59mV (0) . 
After three trials, the redolC potential of cyt. c550-H92M was detennined to be -177.33+/­
L41 mV YS. NHE. B. Complete spectrum showing the completely ox idized form of cyt. 
c5S0· H92M (-) with no peak at SSOnm, and the completely reduced form of cyt. c5S0-
H92M (_) with a large peak at 550nm. The inset of the figure is a logari thmic Nernst 
plot denved from the ch ange in absorbance at SSOnm which also indicates a redox. 
potential of - 177mV vs. NHE. 



91 

CHAPTER 7 

SUMMARY 

The most well-characterized class of electron transfer proteins thus far are 

cytochromes. They are widespread molecules which exist not only in aerobic 

mitochondrial and bacterial respiratory chains, but also in prokaryotic electron transfer 

systems including those involved in anaerobic respiration and photosynthesis (DoUa et al., 

1994). Cytochrome c550 of Synechocystis 6803 functions in PSll of photosynthesis and 

is encoded for by the psbV gene. Cyt. c550 is a very unique cytochrome because it has a 

singe heme with bis-histidine axial ligation, and an unusually negative redox potential of 

-250mV. 

Since c550's unique low redox potential raises fundamental questions on 

the factors governing redox potential in heme proteins. we have successfully mutagenized 

several amino acid target sites to further investigate the factors controJling redox potential. 

A number offactoTS such as axial ligation, hydrogen bonding, heme solvent exposure and 

heme propionates are all known to contribute to redox potentiaL Therefore amino acid 

sites were selected to target each of these governing factors. The cyt. c550- T481 and cyt 

c550-L911 mutants were selected to help cover the heme and shield it from solvent 

exposure, while cyt. c550-P93A was selected because of its hydrogen bond to the sixth 

axial his ligand. The cyt. c550-N490 and eyt. c550-N49L mutants were selected because 

of their hydrogen bonding to the heme propionate D oxygen atom. Additionally, we 

tested cyl. c-550 with a His-tag on the C-terminus and c-550 with a His-tag on the N-
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tenninus, simply out of curiosity of the effects of His-tags on proteins. PCR was used to 

successfully amplify each of these mutations in the plasmid vector pETC550. 

Following the successful amplification of each mutant, we were able to demonst:rate how 

a c-type cytochrome can be over-expressed using a binary plasmid system in E.coli. 

While over-expressing the various cyt. c5S0 mutants in E.coli, we were 

forced to optimize some of our expression conditions so we would get significant yields 

of each protein . We found that by supplementing our growth medium with O.5mM IPTG 

for three-four hours until OD6OO=1, adding 2.5mM bettaine, and 300mM sucrose that our 

expression levels were increased nearly four-fold. We also found that after the culturing 

process was complete, instead of immediately preparing the periplasmic fraction, leaving 

it al 4°C over-night increased ex.pression levels. It is likely that allowing the culture to sit 

in the cold over-night fac i litales the covalent attachment of tbe heme, therefore leading to 

a more stable protein. To purify the protein. column cruomatographys was used as well 

as a crude extract prolein purification technique using only ammonjum sulfate. Since the 

column chromatography was so time-consuming, and significant amounts of protein were 

needed for the spectroelectrochemistry, we used a crude ex.tract purification technique to 

obtain protein strictly for redox titration experiments. The crude-purified protein showed 

the same redox values as protein purified by the columns, and therefore provided us a 

reliable altemati ve. 

The spectroelectrochemical titrations using sodium dithionite yielded 

some very interesting results. We were able to obtain a redox potential vaJue for cyt. 

c550 of -252mV VS. NHE which was in agreement with the value in the literature (Roncel 

el al., & Navarro el aI). The cyt. c550-T48I and cyt. c550-L911 mutants that were 
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selected to shield the heme from solvent exposure seemed to have no effect redox 

potential, as both of them yielded values nearly identical to wild-type c550. It was 

interesting to find that the N-tenninal His-tagged protein showed a redox value nearly the 

same as the wild-type, while the C-tenninal His-tagged protein showed a redox potential 

nearly IImV more positive. This is likely attributed to differences in the secondary or 

teniary structures of the two proteins. The cyt. c550-P93A mutant gave a redox value of 

-236.66mV vs. NHE which was nearly 16mV more positive than the wild-type. 

Althought this site was selected because of the hydrogen bond to the sixth axial ligand, 

His 92, the alanine substitution for proline doesn't remove the hydrogen bond. However, 

it may change the geometry of the hydrogen bonding. which may force a carbonyl 

oxygen location that is undersirable, therefore accounting for the change in redox. Cyt. 

c550-N490 gave a redox value of 

-242 mV vs. NHE while cyt. c550-N49L gave a value of -235.33mV vs. NHE. We were 

expecting to see a change in redox at this location because of the relationship of the N49 

site with the propionate 0 oxygen atom of the heme. Last. and most significant.. was the 

change in redox that occurred upon the substitution of (he sixth axial ligand from 

histidine to methionine. The cyt. c550-H92M mutant gave a redox value of -177.33 mV 

vs. NHE which was 75mV more positive than the wild-type. Although we were 

expecting to see more of a positive shift upon this mutation, it is possible that the new 

conformation of the pTOtein assumed upon the change in axiaJ ligation (fTom bis-histidine 

10 His-Met), or the new orientation of the heme, did not allow for thaI large of an increase 

in MP. 
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Overall this research is significant for a number of reasons; first., site­

directed mutatagenis can be used to create mutations, by peR amplification, i.n 

cytochrome c550, second, cyt. c550 can be over-expressed in a binary-plasmid vector, 

responsible for the synthesis of apo-cytochrome and the covalent attachment of the heme, 

harbored in E.coli BL-21 (DE3). third, protein expression conditions can be enhanced 

with the addition ofIPTG, bettaine and sucrose, and after protein purificat.ion. 

spectroelectrochemical redox titrations, using the reductant sodium dithionite, can be 

done to acquire data to make a redox titration curve and therefore determine the redox 

potential. 

The selection of the mutation target sites in cytocrhome c550 did allow the 

verification of a number of factors controlling redox potential: hydrogen bonding to 

propionate oxygen atoms, hydrogen bonding to axial ligands, and the nature of the axial 

ligation itself (bis-histidine or histidine-methionine). This is significant because it 

contributes 10 previous findings thallhese factors are important in redox potential. 

Addtionally, future research may allow for different amino acids to be substituted into the 

mutation target sites in cyt. c550, or other cytochromes could be mutagcnized, to find out 

if these same factors govern redox potential in other cytochromcs. as they do in c-type 

cytochromes. 

However, the function of eyt. c550 still remains enigmatic as the findings of this 

study alone do not unveil enough infonnation to make a conclusion. The redox findings, 

albeit significant to this study, can not verify that c550 plays a role in electTOn transport. 

Other studies in our lab by Dr. Li have shown that cyt. c550 effects the calcium 

requirement of the water oxidation reaction. It is possible that cyt. c550 binds something 
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toxic, like superoxidc. which would be facilitated if one of the histidine ligands would 

leave the heme iron and allow the toxicant to bind. To test this hypothesis, the cyt. c550 

spectrum was monitOred at differenct pH 's (3.5-9.0) (Appendix), but there was no change 

observed at any of these values. (f one of the histidine ligands would have become 

protonated at a Jow pH, a changed in the spectrum would have been evident. However. 

we did not see anything to indicate that either histidine ligand got protonatod in the 

spectrum. so without furthere analysis. we cannot conclude that cyt. c550 functions to 

bind tox icants. Insight could possib ly be gained as to a functional role of c)"t . c550 if the 

mutants created in this study were actually put back into the wild-type cyt. <:550. 

Hopefull y with future experiments such as thi s, more light will be shed on the actual 

funct ion of this very unique and evolutionari ly conserved protein . 
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APPENDIX 

pH experiment 

A general experiment was performed to see if alterations in pH had any 

effect on the spectrum of cyt . e550. To perform the experiment, 20J.1L of cyt . c550 was 

added to 580llL of each buffer and scanned from 260-700nm. None of the different pH 

values had an effect on the spectrum of cyt. e550 as compared to the control at pH 7.0, 

which preliminarily indicates that there are no ionizable groups that change the 

coordination of the heme. The following table shows the pH buffers used to test cyt. e550 

absorbance. 

~H value Buffer Effect on S I!ectru m 
ofCvt. c550 

3.5 Citrate and Sodium Citrate None 

- " 
4.5 Citrate and Sodium Citrate None 

5.5 Citrate and Sodium Citrate None 

6.5 Phosphate None 

7.0 Phosphate None 

8.0 Phosphate None 

9.0 I TAPSIKOH None 

Table 1. Effect of different pH's on the absorbance of cyt. e550 from 260-700nm. 
From the pH values of 3.5-9.0, there was no effect on the speclrum of cyt. e550 as 
compared to the control at pH 7.0 
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