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Preface 

New techniques have been developed for exp rimentaJ optimization of batch recipes in 

real-time. The novelty of the approach is to obser the batch progres online to u e in

situ spectroscopic measurements to adjust values of model coefficients of the reaction 

system on-line, and to use the up-dated model to detennjne an optimum recip for the 

remainder of the batch process. The methodology is illustrated using e perirnental and 

simulated serrll-batcb reactor data. 
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OMENCLATURE 

AA: Acetic Anhydride 

SA: Salicylic Acid 

ASA: Acetylsalicylic Acid 

HA: Acetic Acid 

W: Water 

Cy : Molar concentration of species Y 

eyo: Initial concentration of specie Y in the reactor 

Ny: Moles of species Y 

Nyo: Initial moles of specie Y in the reactor 

C: Matrix containing concentration profiles 

V 

A..

A: Matrix containing spectra 

l : Estimated spectra matrix 

kx: Kinetic constant for reaction X, [L/(mol *min)] 

rx: Rate of reaction X, [mol/(L *min)] 

ATR: Attenuated total reflectance 

UV: Ultra Violet 

HPLC: High Perfonnance Liquid Chromatography 

rcq : Volume required to reach endpoint, [roL] 

UV-VIS: Ultraviolet Visual 
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1. Introduction 

In spite of their low volume batch and semi-batch modes of proce sing are of great 

importance to the chemical industry due to their high value and high quality product 

such as pharmaceuti.cals, specialty polym IS co metics, specialty chemicals, bio

materials and pesticides. Batch processes are typically u ed when the production 

volumes are low, when isolation is required for reason of sterility or safety, wben the 

materials involved are difficult to handle (Srinivasan et al. 2002), and when regulations 

(su.ch as those of the FDA) specify that commercial production methods must match 

development methods. Batch processes are characterized mainly by finite duration, non

steady-state behavior and high conversion. 

The traditional way of operating a reactor in a batch or semi batch mode is to foHow a 

predefined recipe and to control manipulated variable such as t mperatur • pr ssure, and 

or pH along predetermined ideal traject.orie . and only at the end of the batch it is 

determined if the product has the required qualities. Often disturbances or natural 

variations in loading conditions (such as impurities in the reactants) or the change in 

operating conditions or calibrations can go undetected and cause the variables to deviate 

from their optimal trajectories, which may adversely affect product quality. Chemical 

composition of the product is the most sought after quality. However, accurate chemical 

information is mostly obtained by off-line analyses, and in many cases tbe time for 

analysis exceeds the batch time. Therefore, chemical analysis can only be used after the 



batch is compl te, which i too late for any correcti e action to be taken on prevIOus 

batch and only the subsequent batches can ben fit from the information (if subs quent 

batches sustain the same n w b ha ior . 

Therefore, a batch monitoring and optimization sy tern that can acqu'ire composition 

information in real-time and track the evolution of a batch, detect variations and revise 

the optimal recipe on-line, is needed to allow corrective measure to be taken early in the 

batch and to ensure safe operation, required product quality, and minimal in-batch time. 

The use of in-situ spectroscopic measurement as a non-mva IV on-line method for 

extracting chemical information has received significant attention in the past fi w years. 

The classical curve resolution (CCR) algorithm is one such method which uses 

spectrometric data along with a chemical model to obtain the chemical composition 

profile (Bijlsma, et aI., 2000). 

To the best of the author's knowledge, thi method ha not yet b en u d for the 

characterization of a batch titration system in which the i,nitial concentrations of the batch 

charges are not known. This type of scenario often occur in the chemical wa t 

treatment industry; often some (or all) speci s in a waste stream may need to be 

neutralized before disposal but their exact composition i not known. This type of 

scenario can also occur when the batch is fed by an up-stream process or from natural 

materials and the feed concentration is variable from batch to batch. 

The main idea of this thesis is to show that the volume of reagent needed to reach a batch 

endpoint (reaction completion, when initial reactant has been completely consumed) can 

be predicted on-line in and real time. By monitoring the reactor's time-dependent 



spectroscopic re pon e after a few mall additions of one of the reacting reagents the 

kinetic model will be adjusted online. The adju ted model will b then used to d termine 

the stoichiometric quantity of reagent exactly needed to complete the reaction. Large 

reagent additions of the right amount can then be confidently/safely made to reach the 

endpoint rapidly thereby shortening the batch time without wasting reagent, thereby 

improving yields reducing separation cost and reducing impurities in fini bed. batches. 

The author of this thesis has developed a software code bas d on the R method 

mentioned previously, that receives spectroscopic data from a batch reactor and uses that 

to parameterize the kinetic model. Once a viable chemical model is identified, it is used 

to predict the amount ofreagent required to reach the end-point of the batch. All of this is 

done without requiring any knowledge of the initial concentration of the reactants; in fact 

it does not require knowledge of the actual concentration time profiles of either the 

reactants or the products. The applicability of this software as an online tool for 

predicting volume nece sary to reach endpoint is shown by u ing simulation exp flm nts 

as well as lab-scale batch reaction experim nts. 
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2. Background 

Optimization of batch processes has been the focus of many tudies (Lov , 1988 Bonvin, 

1998). Due to the non steady-state nature of batch processes ther is no setpoint around 

which the key variables can be regulated. Proce variables need. to be adjusted with time. 

The main goal in batch operation is not to keep proce s variables at some optimal 

constant setpoints, but rather to optimize the recipe (addition times adittion amounts 

temperature and pressure schedule, agitation events etc) to maximize performance. 

Though potential gains of optimization could be significant, there have been only a few 

attempts to optimize operations through mathematical modeling and optimization 

techniques. Instead, the recipe developed in the laboratory ar impJem nt d 

conservatively in production, and the operators use h uristic gained from exp ri nce to 

adjust the process periodically, which may lead to a slight improv m nt from batch to 

batch (Wiederkehr, 1998). 

Off-line Optimization 

Techniques for batch-Io-batch recipe optimization a type of off-line method of batch 

optimization, have been shown to work in maintaining product quality (Dong, et al.. 

1996). In this type of optimization knowledge obtained from previous batches is used to 

update the recipe. However, since all deviations that might occur cannot be predicted 

before the beginning of a batch, corrective action cannot be taken while the batch 
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progresses thus thi technique cannot be used to improve the current batch. Thi is the 

main disadvantage of all off-line ptimization t chniques. (Zafirio and Zhu, 1990 

On-line Optimization 

With contemporary computer processing power on-lin batch optimization based on on

line roeasmements has interested a lot of researchers .in the last decade Eaton and 

Rawling, 1990; Soroush and Kravaris, 1992~ Choi et ai. 1997; Ruppen et ai., 1998; 

Ohir, el al.. 2000). 

Model Based Optimization 

There are two main types of models, namely empirical and fust-principles that are used 

in the industry for control and optimization of batch processes. Further subdivision in 

these two types also exist but is not described here, for further details on these 

subdivisions refer to (Bonvin 1998). Future evolution of the batch cannot be predicted 

without a model that accurately represents the process und r consideration. Many 

optimization studies on batch processes, especially fermentation and polymerization are 

based on the use of process models (John on 1998). 

Empiriclli Models 

Types of models are purely data driven, and abnormal variations are identified in term of 

maximum variance in the data. Because of their simplicity and ease of automation, these 

methods are widely used in the process industry. Automation of process plants has 

increased the potential of these types of data driven approaches. Most industries maintain 

a fully automated historical database of process conditions and measurements such as 

temperature, pressure, flow rate, and product quality etc., which provides enormous 
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amount of information regarding the proces. Historical data is used to find general 

trends of the process conditions which has been proven to bave produced good results 

such as on specification product quality and afe operation, is known and i us d to 

develop the relationship between process variable and product quality. 

This database of information is the backbone of empirical models; therefore these 

models are only as good as the data available to them, and cannot be applied to new 

process without requiring time consuming data acquisition and extensiv training. Also, 

they cannot be used to understand the underlying physicochemical cause of variation in 

the conditions of a process, thus limiting the further under tanding of the proc ss. Due to 

their data driven structure they show poor extrapolation propertie. Empirical models 

thus can only be used, quite successfully, for control purposes but not for further 

optimization of the process. 

Multivariate statistical procedures for monitoring the beha ior of batch processes are an 

example of use of empirical models. Boque, et al. (1999) u e multiway covariates 

regression on historical data to find relation hip betw en proce variable and quality 

variables of the final product. On-line prediction of the final quality variables are 

monitored to assure the on-spec product. This typ of method requires historical data 

from successful batches and extensive training. 

First-Principle.s· Models 

First-principles models are based on scientific knowledge such as mass and energy 

balances, reaction kinetics, stoichiometry, transport phenomena, etc. AJthough a first

principles approach has a very ambitious goal to model real systems using few 

approximations (or none at all), they can be very reliable. A cause of deviation in the 
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process condition can be a ily pinpoi.nted u ing such mod Is, and extrapolation can also 

be done accurately. The complexity of tbe proce bein T mod I d i the main deterrent in 

the use of this type of models. The need for finding the parameters to make the model 

accurately represent the proce s is another somewhat difficult requir m nt. For examples 

of first principles models being u ed for optimization refer to Agarwal 1997) and Abel, 

et af. (2000). 

Models (i.e. empirical and first-principles models) described above could be of two types, 

they could either be fixed or adaptive. Fixed models used fixed parameters found in the 

developmental stage, they need to be fairly accurate thus can only be used with very well 

understood systems. Adaptive models are mostly used when a detailed model is not 

available, real.-time re-parameterization of the partial model may be u ed to accurately 

define a process within a short interval of time (if not for the whole time range). In one 

experimental optimization of a batch process, the parameters of a simple unstructured, 

un-segregated first principles model were dynamically adju ted to maintain an accurate 

representation of the process (lyer, et af. 1999). Once the mod I parameters wer 

adjusted, the batch was re-optimized, whereby inaccuracies in the model were taken car 

of by on-line data reconcil.iation and model parameter adjustment. Ithough that work 

focused on a fed-batch fermenter, the approach is perfectly general and is easily 

applicable to any batch process that can be modeled. Refer to Srinivasan. et af. (2003), 

Bonvin (1998), Bonvin (2003), and Le Lann (1998) for more information on model based 

optimization techniques. 
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Model Free Optimization 

The main idea is to use measurement directly without any help of a process model. 

Since the technique being discus ed in this thesis is a model based approach model free 

optimization will not be discus ed any further (for more detail on thi method, refer to 

Srinjvasan, et al. (2003), Bonvin (1998) and Bonvin (2003) and fm e amples on the use 

of this method refer to Terwiesch and Agarwal (1994) Van Impe and Bastin (1995) and 

Soroush and Karavaris (1992) 

Chemical Analysis Tools 

Accurate chemical composition information is obtained mostly by off-line analyses, and 

in many cases the time for analysis exceeds the batch time. In most cases off-line 

analyses do not accurately reflect the composition of the batch mixture at the time of 

sampling, for example reference data obtained by HPLC analysis requires the quenching 

of the reaction mixture which usually de tr ys reactiv int rm diate. Th r fore 

chemical analysis can only be u ed after the batch is complete which is too late for any 

corrective action to be taken on previous batch and only the sub equent batche can 

benefit from the information. Since the technique being discussed in this thesis uses an 

on-line analysis tool (real time spectroscopy) no further discussion on different types of 

off-line analysis tools is provided here. 
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Spectroscopy 

The use of in-situ spectroscopic measurements as a non-m aSlve on-line method for 

extracting chemical information has received significant attention in th past few years 

(Gernperline, et ai., 1999 Quinn et aI., 1999 Bijlsma ef at. 2000 Bez mer, et aI., 

2001). Near infrared spectroscopy, short-wavelength near-infrared spectroscopy and 

ultraviolet visible spectroscopy are commonly used for monitoring chemical reactions 

(Burns ef al. 1992, and Workman 1996). All these methods use some sort of curve 

resoluti.on algorithm to find composition profiles. 

Curve resolution techniques to find kinetic constants have been in use since the early 70's 

and have become very popular. If spectra have been obtained during a batch, and the 

kinetic equations are available then curve resolution methods can be used to estimate 

reaction rate constants as shown by Lawton (1971) and by Sylvestre, et al. (1974). 

Basically, there are two main types of curve resolution techniques: iterative and non

iterative. Iterative techniques are slightly lower but more accurate than non-iterative 

techniques, non-iterative methods produce biased estimate when only moderate ignal to 

noise ratio is present in spectroscopic data. 

Bijlsma, et al. (1998) describe two different curve resolution techniques that us SW-NlR 

(short wave near infrared) measurements to predict reaction rate constant. One of these 

techniques is non-iterative. Although fast, it only gives rough estimates of the reaction 

rate constants. It is based on the generalized rank annihilation method and i sensitive to 

noise. The second technique is an iterative algorithm, based on Levenberg-Marquardt 

algorithm and alternating least squares optimization. It gives more accurate results than 

does the first technique, but requires the results of the first technique as injtial guesses. 
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Classical curve resolution R) algorithm which u es spectrometric data along with a 

chemical model to obtain the chemical composition profile ha been shown to work 

successfully (Bijlsma, ef al., 2000 . In thi study isible spectroscopy has been used 

to monitor a biochemical reaction. This technique does not require pure species spectra. 

Minimization is done by Levenberg- arquardt algorithm. 

End-Point Determination: 

To the best of the author's knowledge no one ha worked on identifying the material 

required, stoicbiometricaly, to completely react all the batch material (referred to as the 

end-point) online, specifically fed batch reactors. A lot of research has been done on 

finding end-point of titration experiments, but they do not predict the end-point they 

merely identify it after it has occurred. 

10
 



3. Experimentation 

This section has been adapted from Shane S. Moore's thesis. The project under 

consideration is a collaborative venture between the School of Chemical Engineering at 

Oklahoma State University (OSU) Stillwater, Oklahoma and the Department of 

Chemistry at Eastern Carolina University (ECU) Greenville, orth Carolina. Shane 

Moore; an MS student at ECU, is the person who conducted the e periments under the 

guidance of Dr. Paul J. Gemperline. 

Introduction 

In order to make an accurate prediction u ing updated param ter and maintain control of 

the batch reactor system a simple reaction was used. The reaction follows an A + B ~ 

+D mechanism, with one of the reactants and one of th prod.ucts having unique 

UV/Visible absorbances. Each batch titration is a parate process implemented through 

an experimental design with slightly different condition to give robust re ults. 

The batch reClpe being taken under con ideration here is the production of aspirin 

(acetylsalicylic acid, ASA). The process being model.ed in this project is shown in Figure 

3.1. The reactor system consist of a 50 ml reactor vessel that fits in a glass jacket. The 

cooling jacket and the heating coil are used to maintain isothermal conditions and the 

stirrer for uniform mixing. Batch monitoring is done by the use of fiber optic UV/visible 

attenuated total reflectance (ATR) probe. 

11 



tirrer 

Injector / 
ATRprobe 

Cooling� 

jacket� 

Figure 3.1: Schematic ofa single reactor 

The reaction used is the esterification of salicylic acid (SA) to form acetylsalicylic acid 

(ASA). This reaction system was cho en as it is well known and i wid ly u ed in the 

industry. 

12� 



~OH + 

spi . ~ 

Figure 3.2: Drawing (If the main reaction� 

Source: Itttp:llcourses.chem.psu.edu/c/rem 14/FormsF03/a pin"lab2 02.pl/f(10/15/03)� 

SA+AA ~ ASA+HA (Rl) 

(R2) 

In Reaction RI, shown in Figure 3.2 SA reacts with AA to give ASA and acetic acid 

(HA). Reaction R2 is an undesired si,de reaction. which occurs between the contaminant 

water CW), present in the reaction mixture introduced to the system by absorption from 

the atmosphere and or as residual from the apparatus cleaning procedur and th 

being added and gives HA. 

After the Reactor is filled with acetonitrile (solvent of choice), a measured amount of 

powdered salicylic acid (SA) is added and allowed to time to mix, a small quantity of 

acetic anhydride (AA) is injected. One of the reactants, SA, and one of the products, 

ASA, are the only reagents in this system that show unique UV/Visible absorbance. 
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Reaction Mechanism 

Solid sali ylic acid di olved in a solvent reacts with liquid aceti anhydride to form the 

acetylation product ac tylsalicylic acid aspirin or A A) and ac tk acid. catalyst is 

added to speed up the reaction. Figure 3.3 illustrates the rnechani m Walter 1996) of the 

acetylation of salicylic acid. There are three steps involved to g t to th product. 

The fIrst step is the formation of a tetrahedral carbon I addition intermediat with the 

electron pair from the O-H group attacking the -0 group. Th next tep i a proton 

transfer from the O-H group to regenerate the C-O group. The last step involves the 

formation of the ASA product and acetic acid by breaking of the -0 bond. 
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Figure 3.3: The Mecha"ism for the acetylation ofsalicylic acid 
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Data Acquisition and Control 

A schematic of the real-rime automated laboratory reactor et-up i shown in Figure 3.2. 

Fiber-optic TR probes 

Four station real-time 
f=====?1 

auto-MATE 

fiber optic 

Figure 3.4: IllustratilJ/1s ofthe automated laboratory reactilm setup 

IntelliFORM®, developed by H&A Scientific, Inc., controls the spectrograph and gives 

spectroscopic analysi s of batch runs while WinlSO® develop d by H. E.L. Ltd, control 

the automated reactor and calorimeter. InteUiFORM® (Intelligent Fiber Optic Reaction 

Monitoring, H&A Scientific, Inc., Greenv1l1 , NC i a Micro oft Windows® application 

software package that can analyze batch reactions to determine component concentration, 

formation of products, and reaction rate. IntelliFORM® has four channels capable of 

collecting spectra depending upon how many reactors aTe being used. 
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Figure 3.5: Inte/liform softwarefor spectrograph aqu;stion and control 

IntelliFORM® when coupled with fiber optics a UV/Vi ible sp ctrograph, and a r al-

time automated laboratory reactor forms a complete reaction station capable of 

characterizing batch reactions. Intel1iFORM® can charact rize batch reaction without 

taking reference measurements and give valuable information on reaction rat and 

progress in real time. 
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Instrumentation 

Calorimeter System 

An auto-MATE 4-vessel miniature automated reaction calorirnet r system was used for 

all reactions (Hazard Evaluation Laboratory Limited. Hertfordshir , England and H& 

Scientific, Inc., Greenville, C). The auto-MATE reactor system i computer controlled 

for optimization of batch reactions. Jt has features of industrial sea) reactors and robotic 

systems. Experiments can be peLformed under realistic conditions fully automated and 

controlled. Each of the four reactors runs independently under control from a ingle 

computer. The reaction conditions are monitored simultaneously with control of all 

parameters (i.e. jacket temperature, internal reactor temperature, stir rate reagent flow 

rate reagent feed time:.). With the use of Chemometric methods, this automated 

laboratory reactor system can be used to integrate differing types of measurement such 

as spectroscopy, temperature, and calorimetry into one mathematical calibration and 

process model. 

Each reactor has a 50 mL glass reactor vessel that fits in a gla jacket fill d with oil from 

a heater/chiller circulator. The reactor is separated from the reactor head which contain 

six ports into the reactor: (I). Overhead stirrer, (2). Thermocouple, (3). Coiled reactor 

heater, (4). UV/Vis ATR probe, (5). olid addition port, (6). Liquid addition port. The 

top and reactor vessel are clamped together to form a gas tight eal. The heater/chiller i 

a Julabo F25 oil circulator connected by rubber hoses to the gla jacket in series. he 

reagent delivery pumps are Harvard Apparatus mechanical pumps supplied by H.E.L. 

Ltd. Glass syringes sit on top of the pumps, which push the syringe to dose the correct 

amount based on the diameter of the pump. The WinISO® software is the control 
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platfonn for the reactor stern. It i a Windows ba d program de ign d to ontrol 

hardware and acquire data from th reaction calorim t r (H.E.L. Ltd. Th program 

collects data in real-time in the form of graphs and store the data in a pr ad he t form. 

The u er interfac i illustrated below. 

r 

Figure 3.6: WinISO@ software/or controlling calorimeter reactor 

It shows the reactor controls, real-time data acqui ition, the current conditions, and the 

reaction plan detail. The reaction plan consists of a series of precisely timed steps. The 

software controls the beginning and ending time of each step. 
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Reaction were run in airtight conditions, to eliminat sour es of error from heat lost 

through the heat of e aporatioD. Prior to a reaction the r actor i pres urized to about 5 

psi with dry ni.trogen to insure that it has a gas tight seal. Once tbe reactor i et up and 

charged with the initial reagent a plan is created in the WinISO® software. Thi project 

used nine steps in the reaction plan. Before the reagent are added the stirrer heat rand 

oil bath were turned on and allowed to reach steady state conditions. After the nine step 

are completed the experiment terminates and the all of the data i aved in a 

predetermined file on the computer. Details about the plan used in this project are given 

in section 3.5. 

UVNis Fiber-optic CCO spectrometer 

A multichannel fiber optic CCD UV/Visible spectroscopy system (Equitech International 

Corp., Aiken, S.c.) used for making all in-situ spectroscopic measurements. The system 

consists of a Millenium 3 (M3) UV/Visible pectropbotorn t T, a Xe fla h lamp a th 

light source internal optical fibers and power supplies all contain d within a rack-mount 

box. The spectrophotometer is designed for the simultaneou imaging of 400-micron 

core input fibers onto the detector array. It has a wave] ngth range of L90-790 nm with a 

dynamic range greater than 50 000 and SIN of 20 000: 1. The probe used were 

attenuated total reflectance (ATR) probes, capable of operating over a wide range of 

temperatures, from -500 C to 3000 C and at pressures up to 1200 psi. The probes are 

encased in a stainless steel shaft (1/4" x 4"), which protects the fibers from the reaction 

environment. 

At the end of the probe is a three-bounce sapphire crystal. The light enters through the 

input fiber and bounces on the crystal and back into the output fiber traveling to the 
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detector and CCO array. Ho ever the electromagnetic energy from th light penetrat s 

slightly beyond the crystal surface producing the o-called evane cent field. This field 

extends about 1.5 microns be ond the cr stal surface. bsorption by the sample occurs 

in this evanescent field near the crystal surface. The probe only need to be submerged 

enough to cover the crystal in the solution. The light not ab orb d is eot back to the 

detector through the output fiber. The less light recei ed is measured and recorded on the 

spectrometer. Sapphire allows response down to 220 nm in samples with an index of 

refraction up to 1.5, as well as offering excellent resi tance to chemical attack. 

The fibers are composed of two 400-micron core fused silica fibers spaced oppo ite each 

other in a semicircle around the circumference of the ATR hemisphere cry tal. There is 

an input fiber and an output fiber positioned 1800 from each other. The probe is 

constructed so that it requires no internal optical element other than the ATR crystal. 

The probe is simple to manufacture and is more rugged than possible with a complex 

optical design. 

Spectra were collected in the process every six conds. lX cond was cho n becau 

a fast collection time was needed to get the most accurate picture of the sy tern over the 

reaction process. The computer needed time to proce the data collection and di play 

the spectra on the screen. Collection of spectra faster than 6 seconds was found to be 

more than the computer could handle. Before a reaction was started, the intensity of light 

reaching the CCO detectors was evaluated. A good CCO image from the probe gave an 

intensity of about 50,000 counts. IntelliFORM® allows the u er to adjust the CCD 

integration time, the flash lamp duration, and number of pulses, so the intensity of the 

light reaching the detector matches the fiber-optic probes light throughput characteristics. 
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The intensity wa adjusted b fore ach batch to let th maximum light amount in (50.000 

counts while not 0 erloading th detector. The control of th int gration tim is called 

the instrument trigger. The num.ber of expo ures and the tri er period er adju ted to 

improve instrument perfonnance. ft r the intensity etting as optimized a blank 

spectrum of the reactor compon nts was taken 0 data acquisition could begin. 

The collection of spectra is set up in two steps. The first step is a loS-hour wait time for 

the drift to disappear in the spectra while the SA is dissolving. During this time th probe 

is placed inside the reactor in contact with the initial solution of SA and acetonitrile at 

thermal equilibrium. During this time the spectra are being collected at an interval of two 

minutes. Fast collection times are not needed durin this wait time because no reaction is 

taking place. The second step was to collect spectra e ery si seconds during the 

reaction. This project requires analyzing the spectra during a run. IntelliFORM® has the 

capability to save the collected spectra during any point in the reaction in a temporary 

file. This file can be transferred to another comput r ov r a network and p n d with 

IntelliFORM® to analyze specific time range. All of thi happ ns without pausing or 

stopping the data acquisition. 
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--------

Spectra Processing 

An example of the whole sp ctra a re ei d via th UV/Visibl TR probe placed 

inside the reaction mixture r corded during an experiment is shown in Fi ·ure 3.7. 

Analyzing the full range of \l avelength 200 11m to 00 run) i not neces ary only 

information inside the dotted rectangle in Figuf -,.7 of U e. Out ide the 260 nm to 350 

nm wavelength range either none of the pecies absorb, or th change in ab orbance 

caused by the change in concentration is very sroall causing a high nois to signal ratio. 
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Figure 3. 7: graphical representation ofraw spectra� 

Figure 3.8 shows the zoomed in view of this region (260 nm to 350 nm. The arrows� 

indicated the direction of change in absorbance with time. Since one of the reactant and� 



one of the products shows unique V absorbance one peak can seen dropping and one 

peak rising with time during an exp riment. Only information from this range i used by 

the algorithm. 
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Figure 3.8: Zoomett ilf view ofthe Figure 3.7 dottet[ rectangle� 

Figure 3.9 shows the same information but with time a one of the axes. Each line� 

represents a different wavelength. It can easily be seen that absorbance at some� 

wavelengths is rising and dropping at some representing the depletion of the absorbing� 

reactant and production of the absorbing product. The CCR algorithm require that the� 

spectra be fed in the form of absorbance as a function of time which shown in Figure 3.9� 
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Figure 3.9: Plot ofabsorbance as a function tiftime 

Reaction Conditions 

The reaction was reduced from an industri.al scale to a laboratory scale. The reactor i a 

50 mL glass reactor. The solvent used for the reaction is acetonitrile and the catalyst 

used was sulfuric acid. It was suspected that sulfonated compounds were formed by 

interaction with the products. Later investigations by electrospray L -M proved thi 

hypothesis false. 25 mL of acetonitrile was used a the solvent with 0.2 rnL of 

concentrated sulfuric acid (Fisher Scientific, NY) a catalyst for each batch. This was the 

initial reactor charge in the real-time auto-MATE reactor vessel (Hazard Evaluation 

Laboratory Limited (H.E.L. Ltd.), Hertford, England). 
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In this project each batch reaction had nine st ps under software control. The first step 

was an equilibration step. t this point the plan was start d and the initial charge heated 

to 60° C. This initial equilibration step was neces ary to achieve constant reactor and 

circulator temperature prior to the addjtion of reagents. Tm step la ted for 20 minute. 

Near the end of this step hen the initial charge was maintained at 60° a blank was 

taken with the UV/Visible spectrograph. This blank was u ed as a reference spectrum for 

all remaining spectroscopic measurements. Once started the spectrograph was set up to 

collect spectra at the same rate as the WinISO software. 

A precisely measured amount of salicylic acid (Fisher Scientific, NY) of 2 to 4 grams 

was added to the reactor vessel in powder form a.tter the blank was taken. This was the 

second step of the plan and lasted for two minutes. The third step was an equilibration 

step for the SA to dissolve and for the system to corne back to steady state conditions. It 

is hypothesized that the SA when in solution weakly adsorbs to the surface of the ATR 

crystal, causing the spectra to drift with increa ing absorbance. furth r r earch i needed 

to validate this hypothesis. The SA over tim reaches a saturation point after about one 

hour and no longer causes drift. The equilibration tep wa programmed to last for about 

one and a half hours to gi ve the probe time to eq uilibrate and for the drift in the pectra to 

disappear. 

After the salicylic acid was completely dissolved at a constant 60° C temperature, the 

titration with acetic anhydride (Fisher Scientific, NY) was started. This was the fourth 

step in the plan with a wait period of about 20 minutes after each addition as the fifth 

step. The auto-MATE reactor syringe pumps carried out the additions. The fourth and 

fifth steps were repeated to give as many AA additions as required. The metered doses of 
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AA weT used in the reaction. The doses were added drop i e through a tube directly 

into the reactor at a sp cified rat ontrolled by the Winl 0 oftwar . Th flo rate was 

slow (0.50 mL/min in order to make th additions m r accurate. The slower th rate 

the less the pumps will oversh ot the needed amount. WinlSO recorded the actuaL 

amount of acetic anhydride deli er d. There wa a wait time b tw en th addition in 

order for the system to come back to equiLibrium and to make sure that ther wa 

adequate information in the spectra to use in th kinetic models for the prediction of the 

endpoint. 
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4. The Algorithm 

This is an iterative curve resolution method combined with non-linear fitting. 

Algorithm Basis 

According to the Beer-Lambert law there is a linear relation hip betwe n the 

concentration of a species and their molar absorbtivity which can be described by 

(4.1) 

In summation form this can be written a 

n 

oJ.. =2:cj ep.. (4.2) 
j 

If concentration changes in time, then aA. will b dep ndent on the tU1 sampling and the et 

of equation (4.2)s can be written in matrix notation as 

A(txm) = C(txn)· E(nxm) (4.3) 

\\'here aj.. == overall absorbance at wavelength A 
A == matrix of absorbtion as a == concentration of specie jcj 

function of reaction time n:::: total number of absorbing species
C == matrix of concentration m == total # of wavelenghts 

as a function of reaction time 
I :::: total # of equidistant time points

E ==matrix of absorbtion as a 
i :::: total # of absorbing species

function of reacti on ti me 
ep,.. ::::molar absorbtivity of specie jfor pure species spectra 

at wavelength AA== wavelength 
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Algorithm 

The relationship between the data r cei. ed from the probe matrix A and the time 

dependant concentration profile i' giv n by Eqllatiol1 3.3. If E, th pure species sp ctra 

matrix, is known then C, the concentration profil matrix can be easily calculated. But, 

to find E, the probe needs to be calibrated with standard olutions such that their 

concentrations match tbe initial concentration of the absorbing reactant and th final 

concentration of the absorbing products of every batch experiment to be performed. 

which is impractical. Without E, C cannot be directly found. 

The CCR method suggest a way around having to find E. According to the CCR method 

model parameters (e.g. initial concentrations and kinetic constants) can be assumed and 

the concentration profiles (C
rnod

) can be generated by using a kinetic model representing 

the reaction system under consideration given below. 

Kinetic Model 

Model equations were developed ba ed on traditional mas balance assuming an 

isothennal batch. The ex.periment is conducted n arly i oth rrnally, as shown in Figure 

4.3. The first peak labeled as" lilt Addition" in Figure 4.3 i caused by the addition of the 

first al iquot of AA, and since SA and AA and Wand AA react exothermally (Wand AA 

more so than SA and AA) rise in temperature can be seen, but thi exotherm last for a 

very short tilDe as compared to the reaction time due to the rapid heat loss to the cooling 

jacket. and also the magnitude is very small only a change of about 0.4 "C. The 2
Dd 

addition shows an initial drop in temperature, this is because there is lesser amount of SA 

and W left to react after the first addition therefore less heat is produced, and because 
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aliquot added is at r om temperature about 25 C). The rise is caus d by the heater 

being turned on by the controller. 11 other additions show a similar b havior. Although 

there are some variations in the temperature the chang in temperatur and the duration of 

the change were very small; therefore the temp rature dep ndence of reaction rates is not 

modeled. Detail on the temperature dependence of reaction rate constant can be found in 

Appendix B. 

60.5 ;-------,---------,-------r---------r-----, 

1st Addition 

/ 
2nd Addition 

,....., 1/U 
10-.1 

\ 

59.51.-------L---------.l.----....l-----L-----J 
500 1000 1500 2000 

Time Steps ( 1Time Step =6 Sec) 

Figure 4.1: Plot oftemperatllre ofthe reactor as aftmcti0l1 oftime steps 
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The kinetic model is ba ed on the most dominant reactions occurring in the ystem 

SA+AA ~ A 'A+HA (Rl 

W+AA~ 2HA (R2) 

This reaction system is a well known system with known reaction rat law. 

(4...) 

(4.4) 

where 

k# == kinetic constant for reac60n R# 

r# == rate for reaction R# 

Cy ==concentration of species Y 

The general mass balance equation is 

Rate in - Rate out + Rate of generation = Rate of accumulation 

According to this the model, equations of the transient of all the p Cl pr ent in th 

system are as follows 

(4.5) 

(4.6) 

d C CHAF' 2 (4.7)dl HA =-----v- AA + r1+ r2 

d C
-CC'A =---FA4 -r,1 (4.8)
dt V·....·UI1 

(49) 
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d-V=F (4.10
dl 

whel'e 

V == 1 olume of the reactor 
F IA == flowrate of AA 

Detailed derivation of the model equation can be found in ppendix A. 

Using the C
mod 

and A (from the probe) E can be estimated according to the quations 

given below 

As� 

A=C-E (4.11 )� 

=> E=C-1 • A (4.12) 

But since C is not a square matrix it can not be inverted therefore the least-square 

solution to this would be 

where 

C+ == pseudo inverse of C = C T -IC T • C J-1 

Eest == estimate of E 

From this the mixture spectra can be estimated by 

(4.14)A est =C • Eesl� 

Graphically this procedure can be hown as follows.� 
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Figure 4.2: Graphical representation ofthe least-square method 

If C contains the true concentrati.on profiles A would be equal to Asp' but it i not soI 

because the true concentration profiles are not known. So, the idea is to keep on 

regenerating C by changing the model parameters and revaluating A until A matchesmod� ell OOI 

A""p, when this is attained, the corresponding C'nod would contain the true concentration 

profile, this shows that E is not required to find the concentration profiles. Now to check 

if A.., matches Aoxp, the sum of the squared difference between corresponding elements of 

A
OS' 

and A is used and can be calculated by Equation 4.15. 
est 
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(4.15)� 

For Aes, and A 
es

\ to match perfectly J should b equal to zero but due to signal noise a 

perfect match can never be attained. ignal Doi e is cau ed by un-measurable 

disturbances and cannot. be accounted for in the kinetic model used. to generate C
mod 

which 

is used to generate A..t Therefore, the lowest possible value of J is used as an indication • 

of a good match. To find the lowest value of J possible a minimization routine is 

required. Since there is a non-linear relationship between J and model parameters a non

linear fitting routine was required. Once the best model coefficient have been found. the 

estimated reference spectra is calculated by Equation 4.13. 

In this case 'fminsearch" a built-in MATLAB function, which is a NeIder-Mead type 

simplex search method (Lagarias, et at.. 1998), was used. "fminsearch" requires that the 

function to be minimized to accept single or multi variable input and. returns a scalar 

output (further detail on "fminsearch" can be found in App ndix D). "fminsearch was 

chosen because of its robustness compared to the other built-in minimization techniques 

available in MATLAB. 

A function called "OF_model" was created, (code is written in MATLAB script, shown 

in Appendix C), that takes model parameters as input, numelically solves model 

equations to generate concentration profiles, generates A..., access A , (stored on the hard 

drive), computes J, and returns the value of J as the output. "fminsearch" itself requires 

initial guesses of the parameters being optimized as input which it passe to the function 

being minimized. 
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After the paramet r values ar found th kinetic model is u d to g n rate concentration 

profiles. Then with a fe imple algebrai equations 3.18 and 3.23), the reactant volum 

(V
req

) and time (t~) required to reach end-point can be obtain d. 

N
V. AA"q (4.9)req - C 

AAm 

where 
(4.10)=N 4 +Nrr -NAA . 

NAA req 0 0 added 

(4.11) 

Similarly time required to complete the batch can be calculated as follows 

After the final addition is made 

(4.12) 

Then equation (3.18) becomes 

d 
- SA =-'1 (4.13)
dt 

when solved for time it gives 

1 101_ SA. 

treq =k f ------'~--..",.... (4.14) 
1 CS:4 

\.vhere� 

tol _ C:)'4 == lowest tolerance of z 0� 

C; == concentration of SA at time of evaluation� 
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Figure 4.3: Commandjlow diagram 
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The command flow diagram that graphically show the t chnique described in this 

section as an on-line implementation tool can b seen in Figure 4.2. Which can be further 

explained as follow 

Step 1: initiate experiment 

Step 2: make first few additions 

Step 3: collect spectral data and amount delivered 

Step 4: use initial guesses to generate concentration profiles using the kinetic model 

Step5: generate A I 

Step 6: compare with A""p 

Step 7: if Au, matches A, goto Step 8, else goto Step 4 

Step 8: uses kinetic model with optimized parameter to obtain V,oq and make one final 

addition to the reactor. 

Steps 4 through Step 7 are performed by "fminsearch". 

37� 



5. Simulations 

Process Simulator 

For the process simulator the reactor was modeled a a p rfectly mixed, stirred tank 

reactor containing only liquid phase, and aU th reactions were assumed to be 

homogenous. The aliquot injection flowrate was as umed to be a step function, with 

quantity delivered to be exact. Instantaneous mixing of tbe aliquot was assumed, since in 

actual experiments amount added was small (about I rnL per addition) and the rate of 

addition was slow (about I rnL/min). r othermal conditions are a sumed as described 

earlier. 

The simulations developed are ba d on th exp rim ntal sy tern described above. Model 

equations are solved numerically to generate composition profiles and from them 

absorbance spectra is generated using Equation 3.4. wh re E used was obtained 

experimentally. Model parameters cho en to generat composition profile were such that 

the spectra obtained would be similar to experimental spectra. And as the exact 

parameters are known, the algorithm under consideration may be tested. 
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To show versatility of the al rithm the rat la\l equation, the Reaction R I was changed 

to 

(5.1) 

where 

klf == kinetic constant for forward Rxn 1 

~. == kinetic constant for reverse Rxn 1 

a., rJ, 'Y, 11 == order governing coefficients 

This adds more dimensions to the problem, and shows th wide applicability of the 

algorithm as a generic tool for different chemical systems. 
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6. Result and Discussion 

Experimental Results 

Two 1 ml additions of AA (Acetic Anhydride) separated by about thirty minutes were 

made at a flow rate of about 0.5 ml per minute to the reaction mixture. Four parameters 

kIf' Is, Cwo (initial water concentration) and C were used in the minimization routine 0' 

with spectra shown in Figure 6.2(a) required by the ATR probe placed inside the reactor, 

as the input to the algorithm. 

Figure 6.1 shows the model generated concentration profiles, of all reacting species in the 

system, which was developed by using the model parameter found by the algorithm. 

small amount of water is shown to be present in the beginning, but oon disapp ars as 

AA is added. 
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Figure 6.1: Plot ofCtmcentrat;oll Profiles a~j a/unction oftime step." 

Figure 6.1 shows, (a) absorbance vs. ti me of spectra generated by the Algorithm, (b) 

absorbance vs. time of spectra obtained experimentally, (c) error of all ab orbance at 

each point in time. between the corre ponding value of A""p and A..t , which r veals that 

the model generated spectra closely, resembles the experimentally obtai.ned spectra 

As can be seen in Figure 6.2 (c) error has the much higher value during the advent of 

every addition compared to when AA is not being added this behavior was seen with all 

experimental and simulation results. This may be because of the least squares type of 

minimization. As evident by the initial under shoot and then an over shoot and then a 

gradual decrease to almost zero of the error. Further research is needed to improve on the 
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minimization technique to ensur a better fit between Am and A""p during the interval of 

the addition. 
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Figure 6.2: Plot.ft' ()/Spectrajor Exp. 5_01_03 

Although, there are region of mismatch between Aexp and A
OII 

, V
req 

came out to be 0.8 L63 

ml which is 0.1776 ml more than prescribed by stoichiometry (0.6387 ml). The reason 

for this mismatch although very small. is that the stoichiometric calculations were based 
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only on the I: I mo.le ratio of S to AA and did not and could not account for the 

presence of water in the system. Th amount of water cannot b det rmjn d by any non

invasive method available at the time of experiment. E idence of th pre ence of water 

in the system is discussed later. 

Experiment 3 

This experiment consisted of four separate batch experiments which were setup 

identically, each experiment was named for the date it was performed on only differenc 

being was that two batches (Experiments 9_3_02 and 9_6_02) had small amounts of 

water added to them and not to the other two (Experiments 9_13_02 and 9_27_02). In 

this experiment, four parameters, k 
l 
~ kJr (kinetic constant for the reverse of Reaction RI), 

Is, and Cwo (initial water concentration), were adjusted in the minimization routine, and 

the rest were set constant at the known values. Although it is known that SA and AA 

react irreversibly at the temperature the experiments were being conducted kif was used 

during minimization to see if the Algorithm would be able to det rmin thi fact. Thi 

experiment was designed to test the accuracy of the Algorithm' in predicting the amount 

of water present in the system, that is the reason for the not using initial concentration of 

SA as one of the parameters being adjusted in the minimization step. 

Table 6.9 shows the values of the kinetic constant determined by the Algorithm and it 

shows that for all four experiment kif had values very close to being zero. Values of kif 

determined by the Algorithm were all numerically similar to each other averaging at 

0.4375 with a standard deviation of 0.11 07. The similarities in the values of kinetic 
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constant determined by the Ig rithm for different xperiments sug est high r bustnes 

of this 19orithm. 

Table 6.1: Experimental re lilt , kinetic COI,stallts 

Experiment 
k1 f 

[LI(mol";mi n)l 
k1 r 

fU(mormin)] 
k2 

fU(mol*min)] 
9 3 02 0.3828 0.0000 91.2563 
9 6 02 0.4041 0.0001 41.0756 
9 1.3 02 0.3617 0.0000 0.2220 
9 27 02 0.6015 0.0000 0.0000 
Averaae 0.4375 0.0000 33.1385 
Std. Dev. 0.1107 0.0001 43.2910 

Values for 1s for experiments with no water added came out similar to each other but not 

for the experiment in which there wa water added. The reason for this mismatch may be 

because of experimental error specifically the amount of ater added in Experiment 

9_6_02 since there is difference between theoretical initial concentration of water and 

the initial concentration d termin d by the algorithm (Tabl 6.2). and b twe n the 

theoretical V req and Algorithm determined Vreq Table 6.3). 
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Table 6.2: Experimelltal results, initial Con£'. of Water 

Experiment CWo[M] CWo theo. [M] % diff 

9 3 02 0.3062 0.3104 1.3623 
9 6 02 0.4950 0.3104 45.8406 
9 13 02 0.0001 0.0000 200.0000 
9 27 02 0.0000 0.0000 #DIV/O! 

Table 6.3: Experimental results, V
"f 

Experiment V req . theo. [mL] Vreq [mL] %diff 

9 3 02 0.9547 0.9493 0.5672 
9 6 02 0.9747 1.2857 27.5173 
9 13 02 0.3813 0.3814 0.0184 
9 27 02 0.0193 0.0194 0.5168 

Experiment 4 

In this experiment different pos ible side reactions, suggested by Dr. Gemperline, wer 

included in the kinetic model used by the Algorithm, and are given below. 

ASA+AA k,) ASSA+HA (R3) 

k 
(R4)ASSA+AA ( k:: )4HC+HA 

kSA +HA _L-5-4) ASA +W (RS) 

where 
ASSA =Acetylsalicylic Salicylic Acid 
H =Hydroxy Coumarin 
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The Algorithm v as used on pre iou I coLlected sp ctra, ith kinetic parameters for 

these reactions included as parameters for minimization. The Igorithm determined 

values for the kinetic parameters for the abo e given reactions ere alwa s er c10s to 

zero suggesting the non occurrence ofR.eaction R3 R4, and R5. 

Constant Ratio 

The initial concentration of neither of the two reactants is required to find the correct Vroo. 

value. Either one of the parameters ( o or C .) can be arbitrarily et to a constant 

value and the other could be searched for by the minimizatiori routine. But thi m thod 

only yields the correct V,.q value. not necessarily the correct values of the other 

parameters as they are related to the initial concentration of the reactants. 

Table 6.4: Constant Ratio Results 

CSAo CAAin Cwo
RUN# Vreq [mL]

[M] [M] [M] 
1 1.0000 7.7498 0.0267 0.8163 
2 0.8830 6.8523 0.0237 0.8163 
3 1.3652 10.5800 0.0365 0.8163 

Bold represent fix.ed values 

It can be seen in the fourth column of able 6.4 that th ratio SAo / CAAIn and Vreq comes 

out same for different constant va]ues of s or AAu," Same b havior is observed while 

using spectra from other sets of experiments and also from using imulated pectra. 

In order to further explain this find, a surface map of the objective function value (1) was 

plotted as a function of k and C as shown in Figure 6.3, different layer of urfaces
I . on 

represent different values of CA. Although there are more than three parameters that are 
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unknown during actual experim nt ,onl the thr kl' ~ and \Ill w re ho en a 

changes in the value of the e pararn ter ar the most dominatin cau of change in th 

objecti e function alue. And a1 0 becau e it i difficult t graphical! r pre ent y t m 

with more than three ariables. 
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Figure 6.3: Surface Plot I oftlte Objective Function Value (J) 

47� 

1 



2 :' ••••••••••: •••••••••• ':" I ••••••• .......... , .. . ,. ": , .�~,., 

: : :. . . - . .......... , . •• "" I ••• !' •.•• , •.•• ,:' ••••••••..�1.8 

............... ,.... . , ( ", , .�1.6 

multiple local 

Q) 
::J ro 
> 
0 

1.4 

1.2 

1 • ,\,. • •••••••• , 

'

.......... , . 
mInimUm 

•• , •••••• i ••• · •••..•• j •••••••••• · .· .· .· .· .· .· .· ..................................· .· .· .· .· .· .. ... . . . .. 
, •• ,. I " , ,.,' •••• t .. , ••••••• , , •••• , •• 

::::: .. .. . . .. .. .. .. . .,.. . .. .. . .. .. . .. .. 
c 
::J 0.8 u.. 
"E 
0 0.6 

0.4 

0.2 

18 16 14 12 10 8 6 4 2 o 
CAAin (M) 

Figure 6.4: Surface Plot 2 ofthe Objec,tive Function Value (J) 

Figure 6.4 shows the same thing as shown in Figure 6. , only th viewing angle is 

different, for ease of explanation. Figures 6.3 and 6.4 show that in every layer of the 

surface map there are shallow valleys with closely located minimums, which indicates 

that the objective function value came be same for many different values of the 

parameters. 
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Presence of Water 

Figure 6.5 shows that there is a 15.6 % greater change in the ib orbance caused by the 

second addition of AA compared to the first addition. 

0.45r-------r-----,----,-------,,..-----,.-----, 

dAbs. = 0.160 a.u. 

dAbs. = 0.173 a.u. 

0.1~__~ 
0.05~ 

o� 100 200 300 400 500 600 
Time Steps (1 time step =6 sec) 

Figure 6.5: Zoomed in view ofFigure 6.2 (a), Exp. 5_01_03 

Since, SA is the only absorbing species that is also being consumed and the amount of 

AA added in the first addition is the same as the amount added in the second addition, a 

drop in absorbance in the first step being less then the drop in the second step indicates 

that some of the AA added in the first addition reacted with some species other than SA. 
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Although, this pecies could be an thin tbat r act with . und r these conditions the 

most likely candidate is water. This deduction is ba ed on th fact that powdered A as 

well as the solvent acetonitrile can both ab orb water from the atmo phere and the 

humidity level are usually high in the place wher the experiments being r ported here 

took place. Another source of the presence of water is the apparatus cleaning procedure. 

Although great care was taken to reduce the chances of water being present its does not 

guarantee complete absence of water in the sy tern. 

0.180:-. 

dAbs. = 0.081 a.u. 

.1Abs. = 0.0 9 a.u. 

20 40 60 80 100 120 140 160 
Time Steps (1 time step = 6 sec) 

Figure 6.6: Plot ofAbsorbance V.5. Time Steps for Exp. 9_27_02 

Figure 6.6 also indicates towards the same deduction only in this case there i a 40% 

greater change in the absorbance caused by the second addition of AA compared to the 
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first addition indication a larger amount of \ ater pr sent compared to that pre ent in the 
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Figure 6.7: Plot ofAbsorbance vs. Time Stepsfor Exp. 9_6_02 

Figure 6.7 shows the spectra of an experiment in which three addition of AA were made. 

In this experiment a small amount (10% mole ratio of AA) of was added. It can be seen 

that the change in absorbance in the first step is much smaller (214% smaller) than the 

change in the second step as was expected because the presence on larger amount of 

water compared to the previous two experiment. The change in absorbance in the second 

step match the change in the third step (only a difference of 3%), indicating that the 

contaminant (Water) was almost all consumed by AA in the first addition. All these 
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results validate the hypothe is of the pre nee of ater In the system a reacting 

contaminant. The results shown in thi section are al 0 the r ason for u ing spectra 

obtained after two or more additions were made to the batch inc there is information 

about two species in the system. Using information aft r two addition seemed to in ure 

that enough information is acquired to accurately characterize a batch. Only one addjtion 

would have provided enough if all the sp cie in the system ab orbed uniqu Iy in the 

UV/Vis wavelength range. Further research is needed to develop a technique whicb 

would determine when enough spectral data has been collected to guarantee the complete 

characterization of the batch. 

Experimental Difficulties 

The main difficulty faced was in identifying the exact cause of absorbance drift. To rule 

out reaction as the cause of the absorbance drift an experiment was designed (Exp. 

1_10_03), in which a reaction did not take place. The reactor was charged with only 

acetonitrile (ACN, solvent of choice for all batche ), and then tw additions of S In 

dissolved in the ACN and two additions of only A wer made th r st of the 

procedure for startup was the same as that of other previous reactionary experiments. 

The s'econd pair of additions was made to rule out the non instantaneou mixing 

hypothesis. 

Figure 6.8 shows the absorbance vs. time step plot of spectra obtained during this 

experiment. As expected, since SA is an UV/Vis absorbing species a two step rise in 

absorbance is observed caused by the two additions of SA. Then a two step drop is 

observed which is caused by the dilution of the solution due to the two additions of the 

acetonitrile. The initial instantaneous rise in absorbance due to the two SA additi.ons and 
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initial instantaneous drop in ab orbance due to the two addition also validate the 

instantaneous mixing as umption, made during th de elopment of the model. One 

point to be noted here is the absence of drift befor any addition were mad meaning 

that the cause of drift is in hidden the pre ence of S in the system supporting the 

hypothesis made earlier that drift i caused by the ad orbance of A to the surface of the 

UV/Vis ATR probe crystal. 
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solvent addition st psSA addition steps 
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Figure 6.8: Plot ofAbsorbance v . Time Steps/or Exp. 1_10_03 

Figure 6.9 shows a zoomed in view of the spectra caused by the two SA additions. The 

black lines drawn over the first two steps of spectra have the same slope, which matches 

the rate of increase of absorbance, indicating the drift in the fITst two steps follow the 

same mechanism. 
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Figure 6.9: Plot ofAbsorbal1ce vs. Time Step for Exp. 1_10_o3 

Figure 6.10 show a zoomed in view of the spectra cau ed by th two A N addition. 

The grey lines drawn over the second two steps of the plot of sp ctra do not hav exactly 

the same slope the slope of the line over th last step is very slightly smaller than the 

slope of the previous step. Indjcating the drift in the econd two tep may not follow the 

same mechanism. The two red lines also do not have the same slope a that of the slope 

of the b'lack line. showing that the rate of change in absorbance although similar are not 

the same for the first two steps and that of the econd two step. 

54� 



! 
.. .. ., n......... . :.. 0 ••• 'P�0 . 

-

240 260 280 300 320 340 
Time Steps ( 1 time step = 10 sec) 

Figure 6.10: Plot ofAbsorbance 11S. Time Stepsfor Exp.l_10_03 

This indicates that the mechanism of drift caused by the addition of SA i not the am as 

that caused by ACN addition. It can be seen that the absorbance wa still changing when 

the ACN additions was made indicating that the drift seen in the last two steps may b 

due to continuing effect of SA adsorbing to the crystal. Since the bulk concentration ha 

dropped due to the addition of the solvent, the rate of change has decrea ed from that in 

the first two steps. Another experiment was conducted in which only one addition of SA 

was made to the solvent and the spectra was observed for a substantial amount of time 

(about three hours) to examine if the rate on change in absorbance ever diminishes. It 

took a little more than 2 hours for the drift to disappear, indicating that drift follows a 

very slow mechanism. Further research is required to determine the exact cause of drift 

55� 



and to find ways of removing it or modeling it. and also to observe sensitivity of the 

AJgoritblll in predicting the correct amount of volume required to complete the batch, to 

the presence of drift in spectra. 

The other difficulty faced was that no experimental method was available to validate the 

findings of the Algorithm. A non invasive method for making concentration 

measurements is required, which does not require taking samples from the batch because 

since it is very difficult guarantee that the reaction can be quenched without 100 ing any 

information about the concentration of all the species in the system. 

Simulation Results 

For simulation experiments, spectra (A) was generated by using Equation 4.3 with true 

species spectra (E) represented by that obtained experimentally and concentration profile 

(C) generated by the kinetic model with known parameter values. OnJy A was u ed as 

the input to the algorithm described above. E or C, which were used to create A, wer 

treated as unknowns since they are not known in actual experiments. 

Simulation 1 

This simulation experiment was designed to show that the techni.que described in this 

thesis can be used to determine the volume of the reactant and the time required to reach 

the end-point while the reaction rate law, reaction rate constants, reaction order and initial 

concentration of the reactants are not known. 

56� 



Seven out of the ten possible kin tic mod I parameters ere chosen for minimization the 

rest were set constant at the known alue. The chosen param ter weT k1l' k1r, o 

(initial SA concentration), a ~,y, and 11. 

As shown in Table 6.5, all parameter vaJues, except values for y and 11 exactly match th 

known values. y and 11 values do not match exactly because they represente cess degree 

of freedom. Although they do not match the known values; Vreq is alway (considering 

similar simulation results) correct. 

Table 6.5: Parameter vaIlles for Simulation J 

Known Algorithm
Parameter 

Value Determined 

k1f [L I (mol· min)] 0.1 0.1000 

k 1r [L I (mol * min») 0.001 0.0010 

k 2 [L I (mol • min)] 0 Set Canst. 

Cwo [M) 0 Set Canst. 

CAAin [M) 10 Set Canst. 

CSAo [M] 2 2.0000 

<x, [unit less] 1 1.0000 
I r3 [unit less] 1 1,0000 
Iy [unit less] 1 1.0326 
11 [unit less] 1 0.9674 

[mL] 2.9967 2.9967V req 

t req [min] unknown 39.9622 

Noise was generated by using a built in function inMATLAB called "rand(m n)". whic'h 

can be used to generate an m-by-n matrix of random numbers with uniform djstribution 

of 0.01 centered at O. This matrix containing random numbers is simply added to the 

spectra matrix obtained in Simulation 1 to represent experimentally obtajned spectra. 

The same experiment as described above was repeated to see the sensitivity of the 

Algorithm to noise. Only an error of + 1.1 % between V,O<l known and Vreq determjned by 
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the Algorithm was seen. Thi show applicability of the 19orithm a a tool to 

determine volume required to reach end-point in actual experiments. 

To further evaluate the sensitivity of the Algorithm to nois imilar exp rim nts w re 

performed, with different sets of simulated pectra which indicated th magnitude of 

percent error, between Vr known and Vreq determined by the Algorithm was depended 

on the level of noise, the higher the noise level the higher wa th error. nd the error 

at some instances came out negative and at some came out positive, which was an 

expected outcome since when the sample size is not infinite signal noise is naturally 

biased and if averaged over a tillite sample size does not yield exactly zero. 

Simulation 2 

fn the second simulation, four parameters, kif' Is, Cwo (injtial water concentration) and 

CSAO' were adjusted in the minimization routine. The rest were set constant at the known 

values. This simulation was main y designed to show that the technique can b used. to 

determine the volume of the reactant and the time required. to reach the endpoint whil a 

side reaction is occurring that con urnes one of the reactant. Also. rate con tant and 

initial concentration of one of the reactants and th initial concentration of the impurity 

are unknown. 
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Table 6.6: Parameter values/or Simulation 2 

' Known Algorithm
Parameter 

Value Determined 

k1f [L I (mol" min)] 0.1 0.1000 

k 1r [L I (mol" min)] 0 Set Const. 

k2 [L I (mol" min») 1 1.0000 

c..w [M] 0.25 0.2500 

CAAin [M] 10 Set Const. 

CSAo (M] 2 2.0000 

a. [unit less) 1 Set Const. 
13 [unit less] 1 Set Const. 

I'Y [unit less] 1 Set Const. 
TJ [unit less} 1 Set Const. 

V req [mL] 3.5 3.5000 

t req [min] unknown 37.4208 

In this simulation water was present as an impurity that reacts with AA at a rate that is ten 

times faster than the rate of reaction between AA and SA. As can be seen in Table 2 

below all parameter values found by the minimization routine exactly match th known 

values as well as Vreq' 

Simu'lation 3 

This simulation was designed to show the appl.icability of the Algorithm in the presence 

of model mismatch. Spectra was generated by using the concentration profiles that were 

generated by the kinetic model in which kinetic constant value for RI varied with change 

in volume. The following equation represents kinetic constant value. 
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k k ~l1itial
Lf = If/llifial V (6.1 

where 

k L[il/ifial = initial value of kIf 

Vil/ifilli = initial volume 

According to Equation 6.1 that the kinetic constant value decreases as the volume 

increases, this may be caused by the density decrease of the reaction mixture. Although 

the main reason behind the choice of this mechanism was its simplicity and ease of 

implementation to simulate variations in reaction rate constants, which in actual 

experiments may be caused due to slight variations in operating condition such as 

variation in temperature, pressure and etc. This variation in the kinetic constant was not 

accounted for the in the model equations used by the Algorithm to create model 

mismatch. 

Four parameters, kit, Is, Cwo (initial water concentration) and C
SAO 

were adjusted in the 

minimization routine. There was also a difference in recipe management. Aft r first 

simulated addition the spectra generated wa fed to the Algorithm and Vroq wa obtained 

and then 50% of the V req was simulated as the second addition to the reactor and spectra 

only from the second addition was fed to the Algorithm, for subsequent additions, instead 

of simulating adding 50% of the Vreq' 75% and 90% of Vreq were added, since it was 

assumed (shown later to be true) that the accuracy in the detennination of Vreq after every 

addition improve would due to the fact that V req became smaller after every addition 

made. According to the above made assumption, the determination of Vreq after the fust 

addition would be the least accurate therefore to reduce the possibility of adding excess 
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amount of AA only 50% percent of the V,eq prescribed by the Algorithm was added, and 

as the accuracy increases the confidence level increases and larger percentage of V,eq are 

added in the later steps. Although, Algorithm determined param ter valu s oth r than of 

Vroq' do not accurately match the known values as shown in Table 6.4-6.7, Vreq valu s do 

match more accurately as shown in Table 6.3. Determining the correct Vr q value is of 

more importance in this project than to determine other parameter values. Furthermore 

Table 6.3 shows that the percent error in Vreq reduced with every addition since k,r was 

determined individually after every addition and since the volume added became smaller. 

This indicates that even with a model mismatch, such as variation in the kinetic constant 

which may be caused by indeterminable reasons, this Algorithm with model re

parameterization after every addition can be confidently used to determine V,eq' In the 

case of this simulation it was known that the variation in the kinetic constant occurs in 

every addition therefore re-parameterization was done after every addition. for actual 

experiments in which the variation may be undet ctable r -paramet rization can be done 

at short intervals of time to maintain a good match between th model and the proce. 
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Table 6.7: Vreq vallie for Simulation 3 

15t addition 
2nd addition 
3rd addition 
4th addition 

V req, Algo. del. 

[mL] 

3.5881 
2.2582 
0.6672 
0.0170 

V req , actual 

[mL] 

3.5000 
2.4000 
0.6942 
0.0174 

% error, 

2.52 
-5.91 
-3.89 
-2.30 

% error 

71'.87 
-22.00 
51.24 
49.40 

% error 

-7.49 
3.19 
3.33 
5.74 

Table 6.8: k values for Simulation 3 

15t addition 
2nd addition 
3rd addition 
4th addition 

2 

k2 • Algo. del. 
[L/(mol ·min)] 

1.7187 
0.7800 
1.5124 
1.4940 

k2 , actual 
[L/(mol ·min)) 

1.0000 
1.0000 
1.0000 
1.0000 

Table 6.9: kJf values for Simulation 3 

15t addition 
2nd addition 
3rd addition 
4th addition 

k1f, Algo. del. 

[L/(mol ·min)] 

0.1048 
0.0922 
0.0879 
0.0698 

k1f' actuall 
[L/(mol ·min)] 

0.0975 
0.0952 
0.0909 
0.0741 
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Table 6.10: Cwo values for Simulation 3 

Cwo, Algo. det. Cwo, actual 
% error

[M] [M] 
1st addition 0.1007 0.2500 -59.72 
2nd addition 0.1515 0.0309 390.29 
3rd addition 0.0000 0.0000 #DIV/O! 
4th addition 0.0000 0.0000 #DIV/O! 

Table 6.11: CSAo values for Simulation 3 

CSAo, Algo. det. CSAo, actual 
% error.[M] [M] 

1st addition 1.7277 2.0000 -13.62 
2nd addition 1.7776 1.5090 17.80 
3rd addition 1.1867 0.9400 26.24 
4th addition 0.3488 0.2572 35.61 

All the numerical experiments done with simulated spectra were repeated with llsing only 

absorbance as function of time data at only two wavelengths, one from the range that SA 

absorbs and one from the range that ASA absorbs. The two wavelengths chosen bad the 

maximum change in the magnitude of absorbance at each addi,tion, to ensure high signal 

to noise ratio. The results obtained by using only two wavelength data as the input to the 

Algorithm were the same as those obtained previously, but the Algorithm convergence 

time was much faster (] 0 times faster). 
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7. Future Di rections 

This technique can be used as an off-normal operation i.dentifier by u ing batch-to-batch 

data and plotting and comparing parameter values with the value obtained from previous 

batches. If the parameter values determined by the Algorithm vary by a great margin 

from the general trend found in the previous batches parameter values then off-normal 

behavior can be suspected. 

Versatility of this technique can be increased by, adding code that would automatically 

generate kinetic model based on the kinetic information provided by the user, by 

including energy balance in the model so that thermal data could be matched in addition 

to spectra, which would provide further assurance in the solution found by the Algorithm, 

and by adding steady state identifier type algorithm to identify when enough information 

has been collected to give a reasonable solution. 
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8. Conclusions and Recommendations 

By monitoring the reactor's time-dependent spectroscopic respons after a few small 

additions of one of the reacting reagents, the kinetic model can be adjusted online. The 

adjusted model can be then used to find the stoichiometric amount needed to complete 

the batch. Large reagent additions can then be confidently made to reach the endpoint 

rapidly, thereby shortening the batch time minimizing reagent consumption improving 

yield, and reducing impurities in finished batches. 

There are a few issues of concern and limitations to this technique. 

•� Needed two additions to produce correct results. 

•� Results were highly dependent on the amount of noi e in the pectral data. 

•� Results were highly dependent on the initial f,'1les es used for the input to the 

Algorithm. 

The use of the technique described in this thesis has not been experimentally, definitely, 

shown to be an online tool since we cannot independently confirm the presence of water 

and we do not yet have a technique to test for excess AA after the final addition bas bee 

made. However simulation experiments strongly support the concept and the Algorithm, 

and experiments provide no contradiction. 
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There appears to be several IS ues that need to be solved prior to on-line industrial 

application of this technique. 

•� Drift in sensor. 

•� Computational speed of the Algorithm. 

•� Identifying when sufficient data lS captured to generate confidence In model 

parameters. 

•� A universal strategy for tempering additions as the most recent data improves the 

model. 

•� Time coordination of spectra and flow data. 

•� Algorithm development should include a thennal model. 

•� Sensitivity of the probe to temperatur fluctuations. 

•� A method is needed to make independent concentration measurement to validat 

Algorithm findings. 

•� Development of a problem specific minimization technique. 

•� Using information from wavelength range other than UV/Vis should also be 

analyzed, this may give information about the species that do not absorb in the 

UV/Vis range. 
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Appendices 

Appendix A: Derivation of Model Equations 

For a semi-batch reactor mass balance can be mathematically written as 

(AI) 

Where 
N} = moles 0.[ specie .f 

As 

(A2) 

dN} dCC} V) cJ,} , dV 
=>--= =v--+c -- (A3)

dt dt dt } dt 

Assuming no spatial variations in the rate of reaction gives 

I 

Jr-dV=r.V (A.4)J J 

Assuming that the only cause of volume change is the volume of reactant inj cted give 

(AS) 

This implies that 

dV 
-= FA 1 (A.6)dt _....

Since nothing exits the reactor 

•
N·Jour -0 (A.?)-

Substituting (1.4), (1.5), and (1.6) in (1.1) gives 
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• d ' 
Nj +r·V=V--J +F'A (AS)

In J dl J.'Vi 

Therefore the differential equation for change of concentration with respect to time for all 

the species in the system can be given by 

•
c)""T. N,. CF
__J = ---l!..!!....+ r. - J <'t (A9)cit V J V 

Acetic Anhydride Mass Balflnce 

AA is being consumed by both reactions Rxn1 and Rxn2 therefore 

(AID) 

And is the only reactant being added to the reactor therefore 

• 
(All)NAA =F.4AC~n 

Substituting (1.11) and (1.12) into (3.13) gives the model equation for AA 

(AI2) 

Acetyl Salicylic Acitl Mass Balance 

ASA is only being produced by reaction R 1 therefore 

(A. B) 

And is not being added to the reactor therefore 

• 
NASA =0 (A. 14) 

Substituting (1.13) and (1.14) in (3.13) gives the model equation for ASA 

d CASA-CASA =---F,'A +Y-1 (A.I5)
dt· V·"VI 
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Acetic Acid Mass Balance 

HA is being produced by both reactions Rxn 1 and Rxn2 th refore 

rHA ='i +21'2 (A.16 

And is not being added to the reactor therefore 

• 
NHA=O (A. 17) 

Substituting (1.13) and (1.14) in (3.13) gi es the model equation for HA 

(A.24) 

(A. 18) 

Salicylic Acid Mas,'i Balance 

SA is being consumed only by reaction R1 therefore 

(A 19) 

And is not being added to the reactor therefore 

• 
N :A =0 (A. 20) 

Substituting (L19) and (1.20) in (3.13) gives the model equation for SA 

(A.2I) 

Water Mass Balance 

W is being consumed by reaction R2 only therefore 

(A.22) 

And is not being added to the reactor therefore 

• 
Nw=O (A.23) 
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Substituting (1.22) and (1.22) in (3.13) gives the model equation for 

d C 
- H F'" .24)dl 1r --V· -'2 

73� 



Appendix B: Temperature Dependence of The Kinetic Constants 

According to the Arrhenius equation the rate constants at different temperatures can b 

given by 

k} == A e-Ea I R1; 

k == Ae-EaIRT2 
2 

if ~ T is small 

(_1 1_) will be very sm all 
T 1 T2 

E 1 J
--"(---) 

=> e R Tj T"2 will be close too 1 

Where 

A. == frequency factor 

B. a == activation energy 

~ - gas constant 

l' == temperature 
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Appendix C: MATLAB Code 

This function "ObjectiveFunction" acc pts a vector and names it par which is used to 

assign values to the parameters (kl, k2 k3 k4 SAO in and etc), and returns a 

value for the objective function "obLfunc". To run this function fil containing flow 

profile and spectra must be in the same directory as the "OF_model". 

To optimize ObjectiveFunction, type [opar,obj]=:fminsearch('ObjectiveFunction' par) in 

the command line, this will return "opar" which will contain tbe optimized parameter 

values and "obj" which will contain the minimized objective functi.on value and "par" is 

the vector that contains the initial guesses should be in the workspace to assign what 

parameters are to be optimized go to the "Optimization Parameters" section below set the 

parameters to be optimized equal to "par(some #)" "some #" needs to be in ascending 

order staring at "1 " (ONE) and never repeated. 

ObjectiveFunction uses initial gue ses for the model paramet r and generates a 

concentration profile matrix by solving the model equations u ing Euler s method. The 

by using the CCR method it generates a spectra matrix and then det rmine the sum of 

squared difference between the experimental pectra and model generated spectra. "%" 

indicates comments. 
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1. function obLfunc_valu = ObjectiveFunction(par) 

2. %------------------------------------ on- egati ity -----------------------------------% 

3. N = size(par)" 

4. %--- N will contain the number of parameters in the par vector-----% 

5. for i = l:(N(2»; 

6. if (par(i) < 0)' 

7. obj_func_value = nan; 

8. return 

9. end 

10.i=i+l; 

11. end 

12. %-------------------------------------------------------------------------------------------% 

. . . P 0/13. %----------------------------------Optlrnlzatlon arameter --------------------------- /0 

14. kJ f = pare 1); 

15. %-----klfis the forward rate constant for Reaction Rl-------% 

J6. klr = par(2); 

17. %-----klr i.s the reverse rate constant for Reaction RI-------% 
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]8. k2 = par 3); 

19. %-----k2 is the rate constant for Reaction R2-------% 

20. CWO = pare4); 

21. %---- CWO is the initial concentration of Water in the Batch-----% 

22. CAAin = par(5); 

23. %---- CAAin is the concentration of AA being injected----% 

24. CSAO = par(6); 

25. %---- CSAO is the initial concentration of SA----% 

26. %--------------------------------lnitialization-------------------------------------------% 

27. CAAO = 0; 

28. %--- CAAO is the initial concentration of AA in the batch-----% 

29. CHAO =0; 

30. %---- CHAO is the initial concentration ofHA in the batch-----% 

31. CASAO = 0; 

32. %---- CAAAO is the initial concentration of ASA in the batch-----% 

33. CSAinitial = CSAO; 

34. %---- CSAinitial is the initial concentration of SA in the batch-----% 
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35. CWinitial = CWO; 

36. %---- Winitial is the initial concentration of W in the batch-----% 

37. CF_flowrate = 1; 

38. %---- CF_f]owrate is the floWTate of the injection----% 

39. VO= 0.020; 

40. %---- VO is the initial volume of the batch ---% 

4 L Vinitial = YO; 

42. %---- YO is the initial volume of the batch ----% 

43. to = 0; 

44. %---- to is used as a counter ----% 

45. counter = 1; 

46. %---- counter a variable used to count the total number of main loop xecuti.ons ----% 

47.h=0.1; 

48. %---- h is the step size used by the Euler's method ----% 

49. CASAO = 0; 

50. %---- CASAO is the initial concentration of ASA ----% 

51. StopTime = 300; 

78 



52. %---- StopTime is for using spectra only till thi value ----% 

53. %--------------------------------- Loading FlJ s ---------------------------------------% 

54. loadCflowrate_c.mat','-mat')" 

55. %---- The variable in this file should be named "FLOWRATE" ----% 

56. %---- "FLOWRATE" should be a vector containing ones and zeros one representing 

57. %---- pump running and zero representing pump not running ----% 

58. 10adCAmodeLlcL.mat','-mat'); 

59. %---- the variable in this file should be named "Arnodel" ---% 

60. % "Amodel" should be the spectra matrix (intensity vs. time(count» 

61. %-------------------------------.---------------------------------------------.---------------0/0 

62. %------------Main Loop-------------% 

63. %-----------Generates Concentrati.on Profi) e Matrix--------------% 

64. while to <= StopTime 

65. %---- Storing concentration values in to matrices ----% 

66. FAA = «(FLOWRATE(counter)/lOOO)*CF_tlowrate; 

67. AA_flowrate(counter) = FAA; 

68. SA_conc(counter) = CSAO; 
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69.AA_conc(counter) = AAO; 

70. W_conc(counter) = CWO' 

71. HA_conc(counter) = CHAO' 

72. ASA_conc(counter) = CASAO; 

73. VOLUME(counter) = VO; 

74. TlME(counter) = to; 

75. %---- End storing ----% 

76. %-----------Euler's Method Loop------------% 

77. for iter2 = 0: 9; 

78. r1 = kIf * CSAO * CAAO - kIT * CASAO * CHAO; 

79. VO = VO + h * FAA; 

80. CSA = CSAO + h * ( -rl - (CSAO / VO) * FAA) ; 

81. CAA = CAAO + h * ( -rl - k2 * CWO * CAAO + « CAAin - CAAO) / VO)* FAA); 

82. CW = CWO + h * ( -k2 * CWO * CAAO - ( CWO / VO ) * FAA ). 

83. CHA = CHAO + h * (r1 + 2 * k2 * CWO * CAAO - (CHAO / VO) * FAA); 

84. CASA = CASAO + h * ( r 1 - ( CASAO / VO ) * FAA ); 
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85. %---- Updati.ng values ----% 

86. to = to + h; 

87. CSAO = CSA; 

88. CAAO = CAA; 

89. CWO=CW; 

90. CHAO = CHA' 

91. CASAO = CASA; 

92. %---- Updating values ends----% 

93. if to> StopTime; 

94. break 

95. end 

96. iter2 = iter2 + 1; 

97. end 

98. %----------------Euler's Method Loop Ends-----------------% 

99. counter = counter + 1: 

100. if counter> StopTime 

101. break 

81 



102. end 

103. %------------------Main Loop Ends---------------------% 

104. end 

105. %---- Storing the concentration oftbe species that ab orb UVNi ----% 

106. conc_IDodel(:,I)=SA_conc(:); 

107. conc_model(:,2)=ASA30nc(:); 

108. %---- End storing ----% 

109. A = (sp( I:StopTime :»); 

110. C = conc_rnodel(I:StopTime,: ; 

1 I, 1. %---- The CCR method ----% 

112. e=A-C*(C\A); 

113. ee=e.*e; 

114. %-------------dyadic multiplication---------------% 

115. E=C\A; 

116. Anew = C*E; 

11 7. %---- CCR method ends ----% 

118. obLfunc_value = sum(sum(ee)) 
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119. %---- Calculating volume and time required to reach endpoint ---% 

120. VOLUME = VOLUME * 1000' 

121. Vinitial = Vlnitial * lOOO; 

122. Vadded = (VOLUME(end) - Vinitial)' 

123. AA_molesreq = CSAinitial * Vinitial + CWinitial * Vinitial- Vadded * AAin; 

124. Vreq = AA_molesreq/CAAin 

]25. CAAstar = AA_molesreq / (VOLUME(end) + Vreq); 

126. CSAstar = SA_conc(end) / (VOLUME(end) + Vreq); 

127. a = CAAstar - CSAstar; 

128. SAtol = 0.00] . 

129. trxn = (quad(@intgfun,SAtol,CSA tar,[],[],a»lk1f 

130. %---- Calculating time required to reach endpoint ----% 

131. tdel = Vreq / (CF_flowrate*10); 

132. treq = tdel + trxn 

1.33. function F = intgfun(x,a) 

134. %---- Function used to find time required to reach endpoint ---% 

135. F = 1.I«x/'2 + a.*x»; 
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J36. return 

137. %----------End ofProgram---------% 
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Appendix D: Using "fminsearch" 

This section has been adapted from MATLAB (version 6.5.0.1809I3a Release 13 help 

documentation. 

Minimizes a function of several variables 

Syntax 

x = fminsearch(fun,xO) 

x = fminsearch(fun,xO,options) 

x = fminsearch(fun,xO,options,Pl.P2, ... ) 

[x,fvaJ] = fminsearch( ... ) 

[x,fval,exitflag] = fminsearch( ...) 

[x,fval,exitflag,output] = fminsearch( ...) 

Description 

fminsearch finds the minimum of a scalar function of several variables, starting at an� 

initial estimate. This is generally referred to as unconstrained nonlinear optimization.� 

x = fminsearch(fun,x.O) starts at the point xO and find a local minimum x of the function� 

described in fun. xO can be a scalar, vector, or matrix.� 

x = fminsearch(fun,xO,options) minimizes with the optimization parameters specified in� 

the structure options. You can define these parameters using the optimset function.� 

fminsearch uses these options structure fields:� 

Display Level of display. 'off displays no output; 'iter' displays output at each� 

iteration~ 'final' displays just the final output; 'notify' (default) dislays output only if the� 

function does not converge.� 
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MaxFunEvals Maximum number of function evaluations allowed� 

Maxlter Maximum number of iterations allowed.� 

TolX Termination tolerance on x.� 

TolFun Termination tolerance on the function value.� 

x = fminsearcb(fun xO,options,PJ,P2 ...) passes the problem-dependent parameter PI,� 

P2, etc., directly to the function fun. Use options = [] as a placeholder if no options are� 

set.� 

[x,fval] = fminsearch( ...) returns in fval the alue of the objective function fun at the� 

solution x.� 

[x,[val,exitflagJ = fminsearch( ...) return a value exittlag that describes the exit condition� 

of fminsearch:� 

>0 Indicates that the function converged to a solution x.� 

o Indicates that the maximum number of function evaluations was exceeded. 

<0 Indicates that the function did not converge to a solution. 

[x,fval,exitflag,output] = fminsearch( ...) returns a tructure output that contains 

information about the optimization: 

output.algorithrn The algorithm usedoutput.funcCountThe number of function 

evaluations 

output.iterations The number of iterations taken 

Arguments 

fun is the function to be minimized. It accepts an input x and returns a scalar f, the� 

objective function evaluated at x. The function fun can be specified as a function handle.� 

x = fminsearch(@myfun,xO,A,b)� 

where myfun is a MATLAB function such as function f= myfun(x)� 
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f = ... % Compute function value at' x 

fun can also be an inline object.� 

x = fminsearch(inline('sin(x*x)') xO A b);� 

Other arguments are described in the syntax descriptions above.� 

Examples 

A classic test example for rnuJtidimensional minimization is the Rosenbrock banana 

function 

f(x)=100(x2-x\)2 +(1-x1)2 

The minimum is at (1, I) and has the value O. The traditional starting point is (-1.2 1). The 

M-file banana.m defines the function. function f= banana(x) 

f = I00*(x(2)-x( 1),,2)A2+(l-x(1 »)"2; 

The statement 

[x,fval] = fminsearch(@banana,[-1.2, I]) 

produces 

x= 

1.0000 1.0000 

fval = 

8. I777e-0 I0 

This indicates that the minimizer was found to at least four decimal places with a value 

near zero. Move the location of the minimum to the point [a,aA 2] by adding a second 

parameter to banana.m. 

function f = banana(x,a) 

if nargin < 2, a = 1; end 

f = I00*(x(2)-x( I )"2y2+(a-x( 1)Y2; 
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Then the statement 

[x,fval) = fminsearch( banana, [-1.2 I] optimset('ToIX' .ie-8) sqrt 2)); 

sets the new parameter to sqrt(2) and seeks the minimum to an accuracy higher than the 

defau1t on x. 

Algorithm 

fminsearch uses the simplex search method of Lagarias, et a1. 1998. This is a direct 

search method that does not use numerical or analytic gradients. If n is the length of x a 

simplex in n-dimensional space is characterized by the n+ I distinct vectors that are it 

vertices. In two-space, a simplex, is a triangle; in three-space, it is a pyramid. At each step 

of the search, a new point in or near the current simplex is generated. The function value 

at the new point is compared with the function's values at the vertices of the simplex and, 

usually, one of the vertices is replaced by the new point, giving a new simplex. This step 

is repeated until the diameter of the simplex is less than the specified tolerance. 
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Limitation 

fminsearch can often handle discontinuity, particularly if it do not occur near the 

solution. fminsearch may only give local solutions. fminsearch only minimize over the 

real numbers, that is, x must only consist of real number and fi x must onl return real 

numbers. When x bas complex variables they must b split into real and imaginary part . 

89� 



VITA� 

Syed Samir Alam� 

Candidate for the Degree of� 

Master of Science� 

Thesis: Monitoring and Characterization ofa Batch Reaction - for on-line recipe 
adjustment 

Major Field: Chemical Engineering 

Biographical: 

Personal Data: Born in Hail, Saudi Arabia, April 19, 1978.� 

Education:� 
Received Bachelor of Science in Chemical Engineering from Oklahoma State� 
University, Stillwater, OK, in May 2001. Completed the requirement for Master� 
of Science degree in Chemical Engineering from Oklahoma tate Univer tty in� 
December 2003.� 

Professional Experience:� 
Graduate Assistant, Oklahoma State University, Stillwater, OK (2001-2003);� 


