
BREADTH-FIRST ALGORlTHM FOR

QUALITATIVE DISCRETE

EVE T SIMULATION

By

NITIN SATYANARAYAN AGRAWAL

Bachelor of Engineering

University of Mumbai

M umbai, India

July, 1998

Submitted to the Faculty of the

Graduate College of the

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of

MASTER OF SCIENCE

December, 2003

BREADTH-FIRST ALGORITHM FOR

QUALITATIVE DISCRETE

EVENT SIMULATION

Thesis Approved:

__M~~),<~
Dr. Manj~h Kamath - Committee Member

~~.

Dean of the Graduate Colleg

11

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my advisor Dr. Ricki G. Ingalls for

his intelligent supervision, guidance, inspiration and SUpp011. I am grateful to rum for all

the extra time and effort he invested so that I could complete my thesis on time. My

sincere thanks extend to my other committee members Dr. David B. Pratt and Dr.

Manjunath Kamath for their suggestions, assistance and support.

I would like to thank DLWilliam Kolarik and School of Industrial Engineering

and Management for providing with this research opportunity. I would also like to give

special thanks and love to my parents for their support and encouragement.

Finally, I would once again thank School of Industrial Engineering and

Management for supporting during these years of study.

111

TABLE OF CO TE TS

Chapter Page

1. Introduction 1

2. Literature Review 5

2.1. Classification of Simulation Models 5

2.1.1. Continuous-Time Simulation 6

2.1.2. Discrete-Event Simulation 7

2.2. Qualitative Simulation (QS) 8

2.3. Qualitative Discrete-Event Simulation (QDES) 13

2.3.1. Qualitative Discrete-Event Simulation Framework 16

2.3.2. Qualitative Discrete-Event Simulation Parameter Definitions 19

3. Research Methodology ' 23

3.1. Objective of Thesis 23

3.2. Scope and Limitations 24

3.3. Hypothesis " 24

3.4. Thesis Phases " 25

4. Depth-First Algorithm Review .. , 27

4.1. Depth-First Methodology 27

4.2. Output of Depth-First 30

4.3. Depth-First Methodology Explained With Example 30

5. Breadth-First Algorithm Design And Implementation 36

5.1. Breadth-First Approach , 36

5.1.1. Implementation Approach 37

5.1.2. Designing Steps for Breadth-First Algorithm Approach 38

5.2. Validating With An Existing Example 41

5.3. Breadth-First Algorithm Implementation 41

5.4. Explanation Of The Breadth-First Algorithm With An Example , 52

5.5. Validating The Output 58

IV

5.6. Run-Tilne onlparison 58

5.7. Additional dvantages Of Th Breadth-Fir t Igorithm 61

6. Summary and Future Re earch 63

6.1. Research Summary 63

6.2. Future Research 64

References 66

Appendix A. Interval Math 68

Appendix B. PERT Network Example 69

v

LIST OF FIGURES

Figure Page

Figure 2.1: Event Graph With a Scheduling Edge and an Execution Condition (Ingalls,
1999) 16

Figure 2.2: Event Graph for Single Machine Example (Ingalls, 1999) 17

Figure 4.1: Execution Tree 31

Figure 5.1: Proced ures for Execution of QSGM Model. " .42

Figure 5.2: Flow chart for Breadth-First Algorithm 47-49

Figure 5.3: Run Time Function for Breadth-First Algorithm 60

Figure 8.1. PERT Network Event Graph '" 69

LIST OF TABLES

Table Page

Table 5.1: Simulation clock time and state variables at some point in simulation 56

Table 5.2: Partial output for single machine example using breadth-first algorithm 57

Table 5.3: Run Time (Seconds) for Single Machine Example (E = 8) 60

Table 8.1: The Depth-First Algorithm Partial Output for PERT Network Example 70

Table B.2: The Breadth-First Algorithm Partial Output for PERT Network Example 71

VI

Chapter 1

Introduction

Simulation is the modeling of processes and operations of real-world systems

over time. Simulation generates artificial data to predict the system's behavior without

actually working with the real-world system. The system can be studied and analyzed

using the data generated by simulation. "Simulation is the promotion of idea that process

whose complete models are unknown can still be used as basis for computation,"

(Hocaoglu,2003).

Simulation models are a representation of the actual system. These models require

infonnation about the parameters or variables of the system that are used to model the

actual system. Traditional discrete-event simulation often uses probability distributions to

describe these parameters. The probability distributions are based on certain a umptions

by the modeler. Exact infonnation about model parameters, such as the type of tatistical

distribution, is often not available. Although it is standard practice to make assumptions

for these inputs in traditional discrete-event simulation, qualitative discrete-event

simulation has created the constructs to define model parameters qualitatively. For

example, if a customer arrives at a teller between 10:00 AM and 10:15 AM, then

traditional discrete-event simulation cannot be used for modeling without making certain

assumptions about the arrival time distribution for the customer. Traditional discrete

event simulation might assume that the value of time when the customer arrives at the

teller is a random output from a unifonn distribution with parameters of 10:00 AM and

10: 15 AM. It is cl ar that the unifOlm di tribution for arri al ti me is an assumption. Th

output obtained may not r present the tru bebavi.or of th y t m if the w1iform

distribution assumption do s not bold. This might lead to faulty analysis of the system.

Qualitative Discrete-Event Simulation (QDES) can be used to create models with fewer

modeling assumptions.

Simulation models are largely classified into two types depending on how time is

incremented. The two types are discrete-event simulation (DES) and continuous

simulation (CS). Discrete-event simulation is defmed as one in which the state variables

change when an event occurs. Tn continuous simulation; the state variables change at

defLOed time intervals. Continuous simulation models are described by using a set of

differentia] or difference equations.

Qualitative Continuous Simulation (QCS) was first developed by Kuipers (1986).

Kuipers described QCS models based on qualitative differential equations (QDE).

According to Kuipers (1986), "Qualitative simulation systems produce the set of possible

behaviors by generating and filtering the set of possible transitions from one qualitative

state description to its successors. QCS is based on qualitative differ ntial equation model

in which variables are continuously di fferentiable functions. The range of each variable is

defined qualitatively and it is a finite set of values on the real number line." QCS models

start with initial values for the parameters. Successive states are derived continuously

until the simulation tenninates or all the possible behavior of the models are generated.

Qualitative Simulation Graph Mode.ls (QSGM) were developed by Ingalls (1999).

QSGM is an alternative approach to the problem of Qualitative Discrete-Event

Simulation (QDES). By combining discrete-event simulation with qualitative simulation,

2

QDES is able to model discrete ent systems where act infonnation is not available or

cannot be adequately quantified.

A QDES model uses imprecise specification of paramet rs such as the event

occurrence time and the state variables. The event occurrence time is represented using

an interval on the real-number line. When time is defined in real-valued intervals, it is

normal for the order of events that are scheduled to be executed to be uncertain. For

example, if the event occurrence time for one event is [3,5] and the event occurrence time

for a second event is [4,6], the order of execution for these two events is uncertain. When

this uncertainty exists, then the QDES creates a ''branch'' or a "thread" for each

possibility. In the first thread, it is assumed that the event whose event occurrence time is

[3,5] is executed first. In the second thread, it is assumed that the event whose event

occurrence time is [4,6] is executed first. An individual thread is terminated when a

specified condition is met or when no additional events are scheduled to occur. The

simulation stops when all threads terminate.

The thread generation process generates a tree-like structure whose nodes are

represented by events. An algorithm that uses depth-first traversal to generate all possible

threads of the model has been developed by lngalJs (1999). The objective ofthis thesis is

to develop a breadth-first traversal of the threads so that an active threads can be

evaluated simultaneously.

in depth-first algorithms, the root node is determined first, then the child node of

the root is determined, then the grandchild is determined, and so on. The generation of

children continues on a single thread until the thread reaches the stopping condition.

During the process, sibling nodes are placed in a stack to be executed later. In breadth

3

fIrst traversal, all of the sibling nodes ar d tennined and plac d in a queue. Then each

sibling is taken out of the queue and executed. When a sibling node is executed its

children are placed in the queue. Roughly speaking the ex cution goes from one level of

the tree to another. This thesis proposes a breadth-first algorithm whose execution queue

is managed in such a way that the simulation clock time is nearly equal for all of the

nodes in the queue.

This thesis is organized into 6 chapters. Chapter 2 gives an overview of literature

ltl the field of qualitative simulation. Chapter 2 also introduces to the concept of

qualitative discrete-event simulation that was developed' by Ingalls (1999). Chapter 2

concludes by defining the objective, purpose and scope of the thesis.

Chapter 3 describes the hypothesis and different phases of the thesis. Chapter 4

discusses the depth-first methodology developed by Ingalls (1999) and the breadth-first

methodology that is proposed. Chapter 5 demonstrates the breadth-ftrst algorithm

implementation and provides an in depth explanation of the newly developed algorithm

with the validation of the output. Chapter 6 summarizes the thesis and provides an insight

into future research that could be done in the field ofQSGM.

4

Chapter 2

Literature Review

Most real-world systems that change with time are so complex that they cannot be

modeled mathematically. However most of these systems can be modeled using

simulation. According to Banks (1998), simulation is used to describe and analyze the

behavior of a system. Simulations models help analyze the design of reaL-world

operations and processes without building actual systems. This allows an analyst to

answer what-if questions about the real system. Simulation models also help determine

constraints and problems that couLd be faced by real-world systems before the actual

system is in place, thereby saving a considerable amount of time and money. Efforts can

be directed to solve the problems and to overcome the constraint during the system

design phase. Simulation studies or models can be built for both existing and non-existing

systems. Simulation models are widely used in manufacturing systems, queuing ystem,

scheduling, material handling systems, capital investments decision making, cash flow

analysis and supply chain modeling. Numerous applications of simulation in different

fields make it a powerful modeling tool.

2.1. Classification of Simulation Models

Cellier (1991) have defined three types of mathematical models, which are:

• Continuous-time models

• Discrete-time models

• Di screte-event models

5

In continuous-time models, the state variabl s change their . alu s continuously

with time. Continuous-time models ar represent d lIsing a set of di fferential equations

for the variables that are differentiable with time. oncepmally time is an analog

variable and the simulation clock is advanced in sufficiently small st ps in such a way

that continuous time is approximated.

Discrete-time models are represented through a set of difference equations. In

discrete-time simulation, the time is divided into discrete time steps and simulation clock

is advanced by a fixed clock increment that is sufficiently large to make it noteworthy.

Discrete-event models change the state variables values only when something

significant has occurred. As in continuous-time models, time is a continuous variable.

What differentiates discrete-event models from continuous time models is the assumption

that nothing significant occurs between two events.

Similarly, simulation can also be classified In two broad categories based on

above distinction of mathematical models, which are:

1.	 Continuous-time simulation.

2.	 Discrete-event simulation.

2.1.1. Continuous-Time Simulation

In continuous-time models, the state of the simulation model is defined by dependent

variables that change their values continuously over time. In Banks (1998), the state

variables of continuous-time simulation models are represented in one of the following

three ways:

•	 Functional form, in which the state variable is represented as a function of

time and other system variable. For example, x=f(y, t).

6

• Difference equations in which the state variable is represented as a difference

in values from one time unit, t to next time unit t+ 1. For example x,+/=a x, +

by,.

•	 Differential equations.For example, dx/dt = fry, t).

The state variables in a continuous-time simulation model are dependent on the

time. In continuous-time models, time is typicaUy considered as an independent variable,

which is represented as t in above examples. Neelamkavil (1987) states that the

simulation of a continuous system generates one or more numerical solutions which

satisfy the differential equations defining the model for given initial condition using

standard numerical method. These solutions satisfy the differential equations that defme

the model.. The initial values of the state variables are initialized at the starting point in

time. These values are used as inputs to the differential equations which determine a new

set of values when the simulation progresses to next point in time, that satisfy the set of

equations, using numerical analysis procedure. Banks (1998) attributes the complexity in

continuous time simulation models to following reasons:

•	 Randomness involved in the variables used to define the equations.

•	 Changes occurring in the equations used to define the models due to the

continuous change ofthe equations coefficients.

2.1.2. Discrete-Event Simulation

In discrete-event simulation, variables change their values only when an event occurs.

Discrete-event simulation models are both stochastic and dynamic in nature. Discrete

event simulation captures dynamic system behavior by evaluating how the entities and

the activities in the simulation interact with each other. For example, in a single-server

7

system where a ser er 5 rv a custom r th entity is th custom r and one of the

activities is the custom r bing served by th server. E ents occur at th beginning and

completion of each activity. In our exampl an event occurs when the customer starts the

service that is performed by the server. The next e ent occurs when the customer leaves

the system when the service is compi teo The state of the customer remains unchanged

between start and end of the customer service by the s rver. The simulation clock

advances at each event. When service begins, the simulation time is set to the time when

the service is scheduled to begin. When the service ends, the simulation time is advanced

to the time when the service is scheduled to end.

In cases where good quantitative infotmation exists, quantitative analysis methods

are most appropriate and efficient to study and analyze the models. However, if good

quantitative information is not available or information is incomplete, then qualitative

simulation may be a better methodology for modeling and analyzing the systems under

study.

2.2. Qualitative Simulation (QS)

"Simulation solves problems executing their model on computers using numeric

information, but QS uses simulation's model execution approach for rea oning task",

(Hocaoglu, 2003). QS is a reasoning technique which solves problems by deriving useful

inferences from models having considerably less information than is usually required to

analytically solve the problem.

Hamscher et a!. (1995) uses "boiling of water on stove" as an example to explain

the QS technique. To write a program that could predict the behavior of the "boiling

water" system, one would write a computer program to solve a set of differential

8

equations that would explain the relationship beh een the temperature of water, volume

of water, specific heat of water, bU111er temperatuT heat trans fer coefficient, temperature

of the air, height of pot above sea level, and other parameters. Traditional continuous

simulation could have been used to analyze this model if the modeler could specify the

exact form of functions explaining the relationship between the model parameters, the

precise value of the parameters in those functions and the initial values of the variables.

Traditional simulation would result in a solution that would explain the behavior of the

system. However, there are times when the modeler does not know about the precise

nature of the equations. Also, there is a question of which parameters need to be included

and which parameters can be excluded from the model. For example, the modeler may

not want to include the altitude of the pot. Also, the exact values of the initial conditions

such as the temperature of the air and the temperature of water may not be known.

However, qualitative information about the parameters may be available. An example of

qualitative information for the boiling water example is given below:

1.	 The burner temperature is greater than boiling point of water.

2.	 The initial temperature of water is between ooe and lOOoe and the

temperature of water is increasing.

QS can be used to predict the behavior of such systems. The three different

behaviors of this system would be water is heated to boiling point from time 0 to some

time tl, water is boiling from time tl to time t2 and finally there is no water from time t] to

infinity. The example does suggest some important properties of QS. First, it can work

with less precise information. Second, it does not assume precise values of the variables

to solve the model as compared to traditional simulation models.

9

One of the early pioneers of QS is Kuip r (1986). Most of his work is based on

the qualitative differential equation model (QD). "QDE is an abstraction of an ordinary

differential equation, consisting of a set of real- alued variables and flUlctional, algebraic

and differential constraints among them. QDE model is qualitative because the values of

variables are described in tenns of their ordinal relations with a fmite set of symbolic

landmark values, rather than in terms real numbers and functional relations are described

as increasing or decreasing over particular ranges, rather than specifying it in functional

form." (Kuipers, 2001). The QS technique described by Kuipers (1986) is used to solve

continuous time models and it is referred to as Qualitative Continuous Simulation (QCS)

in this thesis.

QCS generates aU the possible behaviors of the system. This gives the decision

maker the ability to choose from multiple options available to him for decision making.

QCS described by Kuipers (2001) starts with a qualitative model and a qualitative

description of the initial state. QCS uses an interval in the set of real numbers to defme

qualitative state variables. Kuipers (1986) describes the following inputs to the QCS

algorithm using the "boiling water example":

•	 A set of functions in the system. For example, a function describing

relationship between temperature of the water and the burner.

•	 A set of constraints applied to the function variables. For example, "change in

water temperature" is a derivative of "change in burner temperature" over

time.

10

•	 An ordered set of symbols representing landmark values associated with each

function. For example, temperature of water varies in the range of 0° C to

infinite.

•	 The initial conditions at time to for all functions and variables. For example

initial temperature of water is intialized between 0° C and boil.ing point of

water. The temperature of the water is also increasing.

With these input values, the possible direct successors of the current state

descriptions can be predicted using the quaUtative description of the current state. The

process is repeated to produce a graph that describes all of the qualitative states of the

system. The result of the QCS is one or more qualitative behaviors for the functions and

symbols. The qualitative behavior of the boiling water model consists of the following:

•	 Sequences of distinguished time points of the systems behavior. For example,

the temperature of water is increasing at to = 0, water starts boiling at time [1,

and water evaporates completely at some time (2.

•	 Qualitative state description of the system between adjacent time points for

each function and variables. For example, between time t1 and £2, the

temperature of water is increasing and is between boiling point of water and

infinity.

The QSIM software is developed by Kuipers (1986) for executing QCS models

represented using differential equations. Farquhar et al. (1994) has prepared the manual

for the QSIM tool. The QSIM software for solving qualitative continuous time models

uses all of the traits of the QCS algorithm developed by Kuipers (1986). The software

also compares alternative approaches that are produced. The algorithm starts with a set of

1I

constraints abstracted from a t of diffi rential quations. Kuiper 19 6 prov d that the

QSIM algorithm produces a qualitati e behavior corresponding to any solution that

would have been produced by the original set of differential equations. He also

demonstrated that the qualitative simulaHon algorithm might produce spurious qualitative

behaviors which do not correspond to any feasible output of the original set of differential

equations.

QSIM executes the QCS model by deriving d scendants of each qualitative state.

The process of deriving descendants is repeated until all of the possible qualitative states

are predicted. Kuipers (2001) suggested that the algorithm must ensure that all possible

qualitative value transitions and their combinations are predicted. Also, combinations of

qualitative values are deleted when they are inconsistent with the feasible output of the

original set of differential equations.

Qualitative continuous simulation usmg qualitative differential equations for

modeling physical systems has been dev loped and is practically appli d to modeling

physical systems. Wyatt et a1. (1995) compared qualitative and quantitativ simulation

using a case study model of the interactive markets for housing and mortgages. They

showed that the data or information required for qualitative simulation is considerably

less in comparison to the data required for the quantitativ simulation. Also, they claimed

that quantitative simulation tends to hide some of the true behavior of the system by

making invalid and impractical assumptions. One such assumption is about the interest

rate. The interest rate for the mortgages is kept constant in the quantitative simulation

model to keep model simple. This assumption in model will certainly affect the realism

as the interest rate keeps on changing thereby hiding the true behavior of the system.

12

A combination of qualitati and quantitati simulation using numeric intervals

to represent incompLete quantitati e infoffilation i suggest d by Berelant et at. (1997).

They demonstrated that the combination would overcome the shortcomings of qualitative

simulation by using the strengths of both techniques. All these studies focused on

continuous models and did not consider discrete-ev nt models.

2.3. Qualitative Discrete-Event Simulation (QDES)

To solve and analyze discrete-event simulation models with qualitative

parameters, another approach to QS was developed by Ingalls (1999) that combines QS

with discrete-event simulation. Ingalls defines the Qualitative Simulation Graph Model

(QSGM), which is implemented with Qualitative Event Graphs (QEGs). QSGM is an

alternative approach to the problem of Qualitative Discrete-Event Simulation (QDES).

Bulitko et al. (2003) presented an alternative methodology to support a qualitative

simulation of temporal concurrent processes using Time Interval Petri ets. The

methodology is similar to one defined by Ingalls (1999). It uses tim int rvals to

represent uncertainty in inputs and outputs, simi lar to temporal intervals defined by

Ingalls (1999). The next section briefly describes QD. S methodology.

Ingalls (1999) extends the application of DES to systems for which accurate

quantitative information is missing by introducing the qualitative description of time,

delays, and state variables. Event execution time is defined using intervals in set of real

numbers called temporal intervals. Two types of temporal interval defined by Ingalls

(1999) are:

13

Constant Intervals: "A constant interval is an interval whos valu must be the •

same throughout the entire thread of the simulation i.e. it is asswlled that the

actual values of the variable is a constant that lies somewhere in an intervaL.

Uncertain Intervals: "An uncertain interval is an interval whose value could be •

different every time that the interval is evaluated."

For example, in a "single server system," the arrival time and service time are

described as any value in the range of some time tl and [2. These temporal intervals are

modeled as uncertain intervals and their representation is [tl, t2]. During the execution of

a traditional DES, a random sample would be taken that would be in this intervaL. The

type of distribution defmed for representing the arrival time is based on the assumptions

made by the modeler, which may include fitting a distribution to past data. The

assumption of the statistical distribution on the interval is not necessary with QDES,

which allows the modeler to model and analyze systems with fewer modeling

assumptions.

QDES approach differs from the QS models defined by Kuipers (1986) U1

following ways:

•	 Defmition of the model - QDES is implemented usmg the qualitative

simulation graph methodology (QSGM) while QCS uses qualitative

differential equations.

•	 QDES is targeted to solve models that come under the umbrella of discrete

event models while QCS are used to solve physical models based on

continuous-time models.

14

The execution approach followed by both QDE and Q models are similar as

both methodologies proceed by predicting possible direct successors of the current state.

The process is repeated to produce a graph that describes all qualitative states of the

system. Each path starting from the root gives all possible qualitative behaviors of the

system.

QSGM generates threads, which are also called envisionments that characterize

all possible behaviors. "Coverage is an important advantage of the QDES approach

because it does not miss outcomes that a sampling based approach like traditional DES

might with a finite sample size." (Ingalls, 1999) The generation of threads increases

exponentially with the complexity of the model being executed. This exponential

explosion of threads creates a run-time issue with the algorithm on large models. This

issue is considered a key research topic by Ingalls.

Ingalls (1999) implements thread generation using a depth-first algorithm that

completely finishes one thread while putting additional threads on a stack to be executed

at a later time. This approach is very efficient in the case where all threads need to be

executed. However, Ingalls envisions situations where criteri.a could be included in a

model that would differentiate threads by some objective. The depth-first generation of

threads is not efficient in the case of an objective that requires a comparison of all active

tbreads. In order to accomplish this goal, a breadth-first algorithm for thread generation

and simulation execution would need to be developed.

The breadth-first algorithm described in this thesis provides an opportunity to

evaluate the threads simultaneously and eliminate "unimportant" threads. Eliminating

some threads may reduce the run time and thereby allow modelers to solve more complex

15

models. The breadth-first algorithm will enable res archers to sol e more r alistic and

complex models and help to furtb r develop QDES methodology.

2.3.1. Qualitative Discrete-Event Simulation Framework

Modeling methodology based on combinati.on of Event Graphs and qualitative

Simulation, caned the Qualitative Simulati.on Graph Methodology (QSGM), is used to

implement qualitative discrete-event simulation. QSGM uses the event graph construct to

define QDES models. Figure 2.1 shows event graphs construct with a scheduling edge

and an edge execution condition.

Figure 2.1: Event Graph with a scheduling edge and an execution edge condition,

(Ingalls, 1999).

Events A and B are represented as nodes and edge connecting nodes indicates the

relationship between the two events. The event graph framework shown in Figure 2.1

illustrates that if event A occurs and scheduling condition (i) is true at that instant, then

event B will be scheduled to occur t time units later. If edge ex cution condition 0) is true

t time units later then event B will be executed with the state variable array ;; set equal to

values in array k (Ingalls, 1999).

As an example of a QSGM, consider the example of a single machine queuing

system. In this example, when the job arrives at the machine, if the machine is idle then

the machine starts processing the job immediately. Otherwise, the job joins the queue and

waits for the machine to become available. When the machine becomes available, tbe job

is delayed for the machining time. Upon completion of the job, the machine is made

16

available for another job. [n this xample th buffi r capacity i assumed to be infinite.

The event graph for single machine exampl is shown in Figur 2.2.

13,81

Q=O Q=Q+1 Q=Q-1 =1
E=E+15=1

E=O

Figure 2.2: Event Graph for single machine example, Ingalls (1999).

The nodes RUN, ENTER, START and LEAVE are events which represent the

following:

RUN - the starting event that starts the simulation.

ENTER - the arrival of the job in single machine queue system.

START - the job starts its processing at the machine.

LEAVE - the job completes its processing and exits.

The state variables are defined as:

Q - the number ofjobs in the queue waiting for processing at the machin,

S - the number of machines available for serving customers. For a single machine

system S can be equal to either 0, when the machine is busy, or I, when machine

is idle,

E - the number ofjobs that have been processed and left the system.

For this example, all of the edge execution conditions are TRUE. The scheduling

conditions are represented on the edge connecting two nodes. In Figure 2.2, the

scheduling conditions are S > 0 and Q > O. When the ENTER event occurs, then it wi 1

17

schedule the START event without any delay if the scheduling condition > 0 is true.

The condition 5 > 0 is true if at least one server is available. Similarly, the scheduling

condition Q > 0 represents that the START event will be scheduled without any delay

only if Q > 0 when LEAVE event occurs. The condition Q> 0 is tme if there are jobs in

queue waiting for machine to become available.

Temporal intervals are used for the edge delay times. The interval [3 8] on the

ENTER-ENTER edge represents the inter-arrival time between jobs. to this case, the

inter-arrival time between two jobs can be anywhere between 3 and 8. Similarly, the

interval [4,6] on the START-LEAVE edge indicates that thejob completes its processing

on the machine after a delay of at least 4 and no more than 6.

Below each node is a set of equations that are used to evaluate the state change

variables. When the RUN event occurs, then the state variables are initialized to Q=O,

5=1, and E=O. When an ENTER event occurs, then the number of jobs in the queue

increases by 1 (Q=Q+ I). Similarly, when a new job starts its proce sing at the machin

then the Q value is reduced by 1 (Q=Q-l) and the state of the machine is changed from

idle (5= 1) to busy (S=O). When the job leaves the system after being processed then the

machine state is changed from busy to idle and the number of units that have exited the

system is increased by 1 (E=E+ 1).

The QSGM framework helps define the real-world system using the above set of

notations and modeling approach. The next section will discuss the execution of the

QSGM model using the framework defined above.

18

2.3.2. Qualitative Discrete-Event Simulation Parameter Definitions

Banks (1998) explains that a discrete system mod I consist of orne or all of the

following:

1.	 Model - Representing a real-world system.

2.	 Event - Occurrence of an event that changes the state of the system.

3.	 System State Variables - A collection of variables that r present or are used to

define what is happening in the system.

4.	 Entities - Entities represent objects that move through the system.

5.	 Attributes - Entities may have some values associated with them called

attributes.

6.	 Resources - Entities are served by the resources.

7.	 Current Event Calendar - A list that represents events that are scheduled to

occur at the current time of the simulation.

8.	 Future Event Calendar - A list that represents the events that are scheduled to

occur at some time in future.

9.	 Simulation Clock - Represents the current time of the simulation. The clock

time is advanced to the future time when an event is scheduled and the state

change of the system occurs.

Since QSGM is a derivation of the Simulation Graph Methodology (SGM)

introduced by Yi.icesen and Schruben (1992), then QSGM does not have all of the

constructs defined by Banks. In particular, QSGM does not have entities and resources.

Also, attributes are defined as a list of values passed from one event to another.

Similar to traditional DES, the simulation clock time represents the current clock

time of the simulation and is a real-valued variable. The future events calendar forms a

19

sorted list of tim -delay d events. The tim -d lay dents ill not become acti ltntil

some future simulated time is reached. The fIrst e ot on th future e nts Ii t is event

that will occur next.

In QSGM, the simulation clock time is not repre ented as a real- alued variable,

but as a temporal interval. The future events calendar us d in QSGM is a single list that

stores event notices. An event notice stores relevant information about the event that is to

be executed. The event notices are sorted by a mechanism that assures that the first event

notice on the calendar can possibly be the first event to be executed on the current thread.

(Ingalls, 1999) Each event notice has following set of values:

1.	 The time when event is to be executed.

2.	 The execution priority for event. (The priority of an event notice helps in

breaking a tie when two event notices have equal execution time.)

3.	 The node (event) to be executed.

4.	 The edge that scheduled the event notice.

5.	 The values of the edge attributes.

An example of an event notice is ({O,O]. 1, START. ENTER-START, TRUE). It

states that START event is scheduled to occur at time [0, OJ and was scheduled by the

ENTER-START edge. The edge execution condition for the event notic is TRUE. The

START event is executed when this event notice is removed from the future events

calendar.

As in DES, the QSGM future event calendar or list is also sorted in order of event

occurrence time, but the rules used to sort the list are based on interval math (Appendix

A). In QSGM, if the time for event notices I and 2 are defined as (t/-, t/] and [t2-, t/],

20

then the following conditions are evaluated in order to detennine if £, prced s ,_ in the

future events calendar:

+ 1. tJ < tl

2. t,-< t2

In traditional discrete-event simulation, if there is more than one event on the

current events calendar, then the order of execution is detennined arbitrarily based on the

type of algorithm used. In the QSGM, if two or more event notices could possibly

executed next, then QSGM generates a set of threads for all possible combinations of

event sequences. For example, if the two events A and B, with equal priority, are to occur

at time [ta-, t/] and [tb-, lbJ, and it is not possible to detennine if event A occurs first or

event B occurs first then QDES will generate two threads. One will execute event A first

and the other will execute event B first. Ingalls (1999) defined the situation where the

execution order of multiple events is uncertain as a non-detenninistically ordered set

(NOS). The members of the NOS are called non-deterministically ordered events

(NOEs). Each NOE becomes the next event to be executed a new thread. These threads,

which comprise all possible event orderings, allow QSGM to characterize all possible

behaviors of the system, which is the essence ofQS.

QSGM execution is similar to traditional DES. A QSGM model is executed over

time by the mechanism that moves the simulated time forward. Since a temporal interval

is used to define time in a QDES model, interval math (Appendix A) is used to calculate

event times for the event notices in the future events calendar.

21

Ingalls (1999) has also included the qualitati e sp ci fication 0 f state variables

such as the number of servers a ailable. For example if number of ervers a ailable in

the system at any given time is between 2 and 5 then it is stat d as [2 5]. The qualitative

specification of the state variables will not be considered in thi thesis for simplicity.

22

Chapter 3

Research Methodology

3.1. Objective of Thesis

The objective of this thesis is to make a contribution to the field of qualitative

discrete-event simulation by developing a breadth-first algorithm for the Qualitative

Simulation Graph Methodology. An algorithm for solving qualitative discrete-event

models using breadth-first traversal methodology is implemented using the object

oriented programming language, C++. Different models are executed using the algorithm

to check its validity and the output is verified with output generated by depth-flrst

algorithm presented by Ingalls (1999) in his dissertation.

With QSGM, Ingalls (1999) developed a simulation tool for solving discrete

event models for which precise infonnation is not available. Howev r, the algorithm

developed by Ingalls (1999) uses depth-flrst traversal for solving QSGM model. This

thesis assumes that the model could also be solved using breadth-first traversal and

utilizes the advantages of breadth-first traversal algorithms. The depth-first algorithm

does not allow the modeler to analyze all the threads simultaneously as each thread is

executed until it reaches the stopping condition criteria. At any time during simulation

run, the depth-first algorithm can only depict the partial behavior of the system. This is so

because only certain threads are completely executed while other threads are waiting on

the stack or may \;tot even have been determined. The breadth-flrst algorithm provides a

solution to the above problem.

23

3.2. Scope and Limitations

The breadth-fLrst algorithm developed will only consid rs uncertain int rvals for

describing time delays in tbe system. Even though state variables can be defin d

qualitatively, this thesis does not consider the qualitative definition of state variables. The

conceptual use of the breadth-first algorithm is discussed using hypothetical examples

only.

3.3. Hypothesis

As mentioned earlier, Ingalls (1999) developed the Qualitative Simulation Graph

Methodology (QSGM), as modeling framework for QDES. Ingalls (1999) developed a

depth-first algorithm for QDES execution that first executes the root node, then the

children of the root node, followed by the grandchildren of the root node, and so on until

the thread is complete. After the thread is executed, sibling nodes are executed until the

thread that they created IS complete. Since the depth-first traversal of the nodes is

possible, the hypothesis IS to show that breadth-first traversal of the node is also

possible.

Since QSGM is still in its very early stages, a set of algorithms and analysis

techniques that would make QSGM a useable tool for modelers is still being developed.

A breadth-first algorithm enhances QSGM so that it is more practical for modelers,

especially in the area of strategic decision-making.

The algorithm would allow modelers to inspect all threads that are active at a

particular time in the simulation and depending on their states. It would be possible to

terminate the simulation of threads that are less meaningful to the decision maker. By

removing less meaningful threads, the run-time of the algorithm can be reduced.

24

F

Developing the breadth-flr t algorithm will r quir a data lmcture to tore sibling

nodes which will be created dynamically. Thes dynamically created ibling nodes will

represent all the possible nodes that can be ex cuted. Each node corresponds to one

thread that is active in the simulation. Each node will be stored in this data structur and

be sorted with respect to the event execution time. The sorting of this data structure will

ensure that all of the threads in the data structure have their execution time very clos to

each other.

The purpose of the newly developed breadth-first algorithm will be demonstrated

using a hypothetical example. Arbitrary criteria will be used to eliminate threads using

the breadth-first algorithm and the run time will be compared with the nm time for depth

first algorithm.

3.4. ThesisPbases

The thesis is carried out in discrete phases with each phase making progress

toward achieving the objective of the thesis.

Phase I: To Study Qualitative Discrete-Event Simulation

First phase of the thesis concentrates on understanding the concepts of QDE

approach that was developed by Ingalls (1999). The study ofQDES methodology focuses

on understanding the Qualitative Simulation Graph Methodology modeling approach that

is used to describe models for QDES. The depth-first algorithm is used for solving or

executing the simulation.

Phase n: To Code the Depth-First Algorithm For QSGM

The depth-first algorithm developed by Ingalls (1999) is coded in Smalltalk. To

make this thesis possible, the QSGM algorithm has to be fe-coded in C++. This phase is

25

necessary as it will help to compar the output obtained from lIsinl:) the depth-first

algorithm developed by Ingalls (1999) and proposed breadth-first algorithm.

Phase III: To Develop the Breadth-First Algorithm

Third phase focuses on developing the proposed breadth-first algorithm for

solving or executing QDES models. The algorithm is coded in C++ using Visual Studio

6.0 environment. The developed code is tested with examples describ d by Ingalls

(1999).

Phase IV: To Validate the Breadth-First Algorithm

The output of the proposed algorithm is validated by comparing the output from

depth-fust algorithm since the output from both the algorithms must yield the same

results.

Phase V: To Show the Purpose OfTbe Breadth-First Algorithm Using An Example

A hypothetical example is used to show the purpose of developing the breadth

first algorithm. The example will limit the number of active threads in the breadth-fir t

algorithm to a smaller number and reduce the run time for the algorithm.

26

Chapter 4

Depth-First Algorithm Review

The framework discussed in the Chapter 2 is based on the Qualitative Simulation

Graph Methodology. With the framework and parameter definition, the depth-first

approach for the QDES developed by Ingalls (1999) will be discussed using the "single

machine system" example.

4.1. Depth-First Methodology

The execution of QSGM resembles traditional DES to some extent. lngalls (1999)

developed the depth-first algorithm to execute QSGM models. The following defmitions

of parameters are necessary to understand steps i.n the depth-first algorithm.

L - the future events calendar, which is an ordered set of event notices.

S - the set of state variables. In the single machine system example th state

variables are S (the number of available servers), Q (the number ofjobs waiting in

the queue), and E (the number ofjobs that have exited the system).

H - the set of saved states. A saved state consists of the global event calendar L

and the state variable array S. This set is used to recurse through all possible states

in the simulation. H is also known as the stack.

N h - the non-deterministically ordered set (NOS). This set contains the event

notices that can possibly be executed.

h - the number of saved sets in H.

ni, - the variable to iterate through the N" set.

27

With the previously defined parameters the steps in depth-first algorithm develop d by

Ingalls (1999) are as follows:

1.	 Initialize the saved state set aod counter H = 0 and It = 1.

2.	 Initialize the global simulation clock to time t = [00].

3.	 Insert one or more event notices ioto the event calendar, L, that could be

executed at time [0,0].

4.	 Detennine the NOS N", the set of all event notices that could be executed

next.

5.	 lEthe number of events that can be executed next equals to 1 (IN"I= 1) then go

to step 9 else go to step 6.

6.	 Initialize the variable to loop through N , It" = I.
"

7.	 Save the state of the simulation by saving the state variable infonnation S,

and the future events calendar information, L, in the save-state stack,

H ,,= {S,L} and increase the sav -state counter, I. = It + 1.

8.	 Set I = (N/I_ 1)n._, and remove event notice I from the global event calendar L.

L=L\{III= (Nh_,)n }.Goto step 10.
• -1

9.	 Remove the first event notice I from the global event calendar L. Since the

global events calendar is sorted according to tbe event execution time, the first

event notice on the calendar is one that would be executed next.

10. If the execution edge condition evaluates to FALSE then go to step 16, else go

to step 11.

11. Determine the possible new simulation clock time. The new simulation time is

calculated as follows. Suppose current simulation time is represented by [t ',e

28

tc and ent time by [te', t/] than ne, imulation dock tim t> \vould be

[max(te- te') min(l/ 'if I EL)].

12. Update the simulation clock bme t=t'.

13. Assign attributes to appropriate tate ariables.

14. Evaluate the state change.

15. Schedule further events. Schedule all events that are connected to edges with

the current event if the scheduling edge condition is TRUE. The scheduled

events are the events that will occur after delay times that are represented by

temporal intervals on top of respective edges. Assign all attribut values to the

new event notice for the scheduled e ent with the event time calculated by

adding delay time to the current simulation clock time using interval math

(Appendix A).

16. Stop simulation of the thread if any of the following condition is true:

•	 Simulation clock time exceeded simulation stop time defmed by the

modeler, or

•	 The simulation stopping condition defmed by the modeler is evaluated as

TRUE, or

• The global event calendar L is empty.

If the saved state stack is empty, which is shown by II = J, then tenninate the

simulation.

17. Increment nh-l= n".l + 1. If nh-l :=;;INh-11 then go to step 8.

18. Restore the last saved system state values that have been stored in step 7. h =

h - 1, L = (L IL in set H,,), 5 = (5 I5 in set H,,). Go to step 8.

29

The algorithm developed by Ingalls (1999) is discllssed \I ith the help of the single

machine system example. The stopping condition defined for tenninating the simulation

is when number of jobs that have left the system equals 5. Simulation stop time is set to

infinity, since we do not want to stop the simulation un61 the number of ex.its equals 5.

4.2. Output of Depth-First

The partial output for the single machine system is presented in a graphical tree

fonn in Figure 4.1. Complete output is shown from Ingalls (1999).

The oval shapes in Figure 4.1 represent the nodes. First Line of each node

indicates the event executed and current simulation clock time. The lines following the

first line inside the node show event notices in global events calendar. The event notices

in Figure 4.1 represent the time when the event executes, its priority, the node that will be

executed next, and value of state variables S, Q, and E. The edges that schedule the nodes

are not shown in the output. The nodes are numbered arbitrarily and do not necessarily

represent the sequence in which the nod s wi II be reached or executed.

4.3. Depth-First Methodology Explained With Example

The depth-first approach for the QSGM starts by initializing the model parameters

or variables to initial values. Initially the saved state stack H is empty and the variable II

30

••

--

•
t

Figure 4.1: Execution Tree

31

is set equal to 1. In step 2, the simulation. clock time is set to [0 0]. The tirst event

scheduled to occur at time [0,0] is aRe ent which is inserted in th global events

calendar L. In step 4, the OS Nil w.ill have only the R event notice as it is the only

event that can be executed next. In step 5, since IN"I = 1 the execution mov s to st P 9. In

step 9, the RUN event notice is removed from L. RUN event does not have any edge

execution condition and is always evaluated as TRUE. The simulation clock time is

detennined as [0,0] in step 10 and updated. The RUN event updates the list of state

variables to values, S = 1, Q = 0, and E = o. The RUN event schedules an ENTER event

because the edge scheduling condition is TRUE on the edge RUN-ENTER. Since the

edge RUN-ENTER does not have any delay, the event execution time for ENTER is [0,0]

and the variables are given the values S = 1. Q = 0, and E = o. The event notice inserted

in the calendar is ([O,O], 9, ENTER, RUN-ENTER, TRUE). In step 16, simulation

stopping condition evaluates to FALSE, since simulation clock time is less than stopping

time, E "#. 5, and events calendar is not empty. Hence the stopping condition for this

thread is false and simulation goes to step 4.

Since the ENTER event is the only event contained in the global event calendar,

L, it forms the NOS and is the only event that can be executed next. The ENTER event

notice is removed and the execution condition is evaluated as TR UE. The simulation

clock time is updated to [0,0]. The state change is evaluated using the equation Q = Q +

1 and state variables are updated to S = 1, Q = 1, and E = o. Two edges emanate from

ENTER node and therefore two events are scheduled on the events calendar as ronows:

32

• The TART event, which is scheduled v ithout any delay since tll scheduling

edge condition (S > 0) evaluates TR UE because S = 1. The event notice inserted

in the calendar is ([0 OJ, 1, START, ENTER-START, TRUE).

•	 The ENTER event (the edge ENTER-E TER does not have any scheduling

condition), is scheduled after a delay of [3,8]. The event time is calculated using

interval math, which adds the delay time of [3,8] to current simulation clock time

of [0,0] resulting in an event time of [3,8]. The event notice inserted in the event

calendar is ([3,8], 9, ENTER. ENTER-ENTER, TRUE).

In step 16, the stopping condition evaluates false and the execution moves back to step 4.

Next, the event START is executed, the simulation clock time t is updated to [00]

and the state change is evaluated using equation Q = Q - 1 and S = O. This changes state

variables to S = 0, Q = 0 and E = O. The START event schedules a LEAVE event after a

delay of [4,6]. The LEAVB event is scheduled to occur at time [4,6] and now the events

calendar has two notices on it:

•	 ([3,8], 9, ENTER, ENTER-ENTER, TRUE)

• ([4,6], 9, LEAVE, START-LEAVE, TRUE)

Step 16 evaluates stop condition to be false and a simulation execution goes to step 4.

At this point in step 4, it is impossible to determine the order of the events on the

calendar because the execution times of the two event notices intersect with each other

and the priorities of the two event notices are equal. The algorithm will create a thread for

each event by executing each event first. Both events are in the set N" and IN"I= 2. Since

IN"I is not equal to 1, the variable nit is set to 1 and the execution goes to step 7.

33

Simulation state IS saved In the sa ed-state stack HI = {S,L} and the count r " IS

incremented to 2.

First, event notice E TER is removed from the global events calendar L. The

edge execution condition is TRUE and the new simulation time is calculated in step 11.

Since the current simulation time is [0,0] and the execution time of the events are [3,8]

and [4,6], the simulation clock time set to [max(3,0), mjn(8 6)] = [3,6]. Since the ENTER

event occurs before the LEAVE event in trus particular thread, it is necessary that the

ENTER event occurs in time [3,6] since it cannot occur after the LEAVE event. State

changes are evaluated and state variables are updated to S = o. Q = I, and E = O. The

ENTER event is scheduled to occur after a delay of [3 8]. The START event cannot be

scheduled because the scheduling edge condition S > 0 is FALSE. The process continues

until the stopping condition of E = 5 is TRUE for trus thread. As the thread executes, the

saved state stack is adding events that will be taken off of the stack and executed as new

threads at a later time. Following the steps in the algorithm, the execution will reach the

node labeled £1 in Figure 4.1. The node labeled Elindicates end of thread). At the end

of thread 1, the values of the state variables are S = 1, Q = 2 and E = 5.

As thread 1 progresses, there are several more events placed on the stack, H, and

h is incremented accordingly. At some time in the future, these events will be taken off

of the stack and h will be decremented until it is again set to 2. At that time, the LEAVE

event that was placed on the stack is ready to be taken off.

At that time, Step 17 increments ""-I by 1 and the value of "h-I = 2 is equal to INhl.

Since the saved state stack is not empty at this point, the simulation state is restored in

step 18. Now, the current simulation time is be [0,0], the state variables are S = 0, Q = 0

34

and E = O. The global events calendar L will hav the following e nt notices with the

LEAVE event to be executed first (since E TER event has alr ady executed fir t in the

previous thread):

• ([3,8), 9, ENTER, ENTER-ENTER, TRUE)

• ([4,6], 9, LEAVE, START-LEAVE, TRUE)

Simulation moves to step 8 where the LEAVE event is removed from the events

calendar and execution continues until the tenninating condition in step 16 is satisfied. At

the end of the simulation an leaf nodes of the tree will have E = 5 and the saved state

stack H will be empty.

This algorithm executes one thread until its stopping condition is reached and then

the next thread is executed. The process goes on unt; I all possible threads of the system

are generated. Hence this algorithm is termed the "depth-first" traversal methodology.

35

Chapter 5

Breadth-First Algorithm Design And Implementation

5.1. Breadth-First Approach

The QSGM algorithm can also be implemented using a breadth-first traversal of

the simulation nodes. A breadth-first traversal examines all firsts of the sibling. trees

before it examines any child tree (Weiss, 2000). Breadth-first traversal will cover aU of

the same threads that the depth-first traversal covered. The problem with the breadth-first

traversal is that it cannot be defined recursively. The recursive nature of the depth.-first:

algorithm gives it a speed advantage over breadth-first if an threads are generated.:he

breadth-first algorithm carries the overhead to continuously manage swapping in and out

of nodes for all the active threads.

The depth-first algorithm is executed recursively until all of the thr ads are

executed and the stopping condition is reached. In order to follow the breadth-first

traversal, all the sibling nodes will be executed before traversing through the child nodes.

This could help modelers to keep track of the each possible state and each possible option

that is available. For example, in the single machine problem, the modeler may be

interested in knowing the completion time of the first job under every possible thread or

condition. In breadth-first algorithm, it will be possible to know the state of the

simulation at each important landmark in all possible threads. This cannot be easily

detennined in the depth-first traversal. In the depth-first algorithm, the state of all of the

36

threads at ceJ1ain point in simulation can only b det n11jn d only aft r the simulation has

completed.

S.l.I.lmplementation Approach

As with all recursive algorithms, the depth-first algorithm goes through two

distinct phases. The rust phase is building up the stack. A stack is built in the memory

when the function calls itself. All variables are stored in a stack. The second phase is

unwinding the stack. The stored functions on the stack are removed last-in first-out and

the stack eventually becomes empty.

In the breadth-first algorithm, we propose to use a queue structure that will

contain the nodes (representing the threads of the simulation) that are to be executed. The

first node on the queue will be removed and executed. The execution of the node will

schedule new nodes. The newly created nodes will be inserted in the queue and sorted

according to the event execution time. The execution will be stopped when the queue is

empty.

The breadth-first algorithm will only consider uncertain intervals and not constant

intervals. "A constant interval is an interval whose value must be the same throughout the

entire thread of the simulation, i.e. it is assumed that the actual value of the variable is a

constant that lies somewhere in an interval," (Lngalls, 1999). Ingalls defined an uncertain

interval as an interval whose value could be different every time that interval is

evaluated. In order to keep the algorithm simple, constant intervals and qualitative

definitions for state variables will not be considered.

37

5.1.2. Designing Steps for Breadth-First Algorithm pproach

The depth-first approach algorithm s rves as a guideline for developing the logic

for the breadth-first algorithm. Two more variabl s are d fin d for the breadth-frrst

algorithm. These two variables are:

BreadthFirstNode - A set that consists of the vent notice to be executed next,

the state variable array, and the global events calendar to be used when the

event notice is executed.

BreadthFirstNodeQueue - The queue used to store BreadthFirstNodes.

Also, two variables changed their definition for the breadth-first algorithm. The

change is needed because the H set is no longer needed in the breadth-first algorithm.

Those two variables are:

N - the non-detemlinistically ordered set (NOS). This set contains the event

notices that can possibly be executed. Since H is no longer needed, there are

not multiple instances ofthis set.

n - the variable to iterate through the N set.

The steps based of the breadth-first algorithm are as follows:

1.	 Initialize the simulation clock to time t=[0,0]. Initialize the state variables to

their initial values in the state variable array S. Initialize the global events

calendar L to be empty.

2.	 Create an empty queue to store the BreadthFirstNodes; call it the

BreadthFirstNodeQueue.

3.	 Insert one or more event notices into the global events calendar,. L, that could

be executed at time [0,0].

38

J

4. Create a BreadthFir tNode whos m mb r ar first vent notic on the global

events calendar L, the current simulation time t, the set of state variables Sand

the global events calendar L. Put it in tb BreadthFir tNodeQueue.

5, Assign the current simulation clock time t, to the simulation time stored in the

first BreadthFirstNode, the state variables, S to the values of the state

variables stored in the first BreadthFirstNode, and the global events calendar,

L, the global events calendar stored in the first BreadthFir. tNode. Remove the

first BreadthFirstNode from the BreadthFirstNodeQueue

Note: This step is equivalent to the step 18 of·the depth-first algorithm

where the state of the simulation is restored. In the breadth-first algorithm,

the state of the simulation is restored every time a new node is removed

from the BreadthFirstNodeQueue.

6.	 lfthe execution edge condition evaluates to FALSE then go to step 15, else go

to step 7.

,
7.	 Determine the new simulation dock time t. The n w simulation time is

calculated as follows: if current simulation time is represented by [tc", 1/] and

event time by [te', t/] then the new simulation clock time t' = [max(te'., tc") ,

8.	 Update the simulation clock time with the time calculated in step 7. 1= t'.

9.	 Assign attributes to the parameters of the vertex.

10. Evaluate the state change.

11. Schedule further events. Schedule all events that are connected with edges to

the Current event if the scheduling condition is TRUE. Assign any necessary

39

attribute values to the new ev nt Dotic . Assign th e ent execution time by

adding the delay time to the Clm" nt simulation clock time t, using interval

math. (Appendix A)

12. Detennine the NOS N, the set of all ev nt notices that can be executed next

from the global events calendar. Set 11 = 1.

13. If It ~ IN1 is TRUE then

for the event notice N n , evaluate the simulation time t' when tl1e event wi II

scheduled to occur. Suppose the current simulation time is represented by

[tc", t/] and the event notice Nn event execution time by [tIl"' t"J, then the

time which Nn is scheduled to occur is t' = [max(t,,", tc"), min(t/V I EL)J.

else�

go to step 15.�

14. If any of the following conditions are true:

•� The time which event N" is schedul to occur, t', has xceeded the

simulation stopping time defined by modeler, or

•� The simulation stopping condition defined by the modeler is evaluated

as TRUE, or

• The global event calendar L is empty.�

then go to step 15,�

Else

Copy the global events calendar, L, to a temporary calendar, C. Remove

event notice N n from C. Create a BreadthFirstNode with reference to

event notice Nn whose members are N,,, the time at which event Nil is

40�

Run
fnitializ s model stmcture calendar and

random number generator. el'

stopping condition and define fir t

node or node to be e ecuted.

~
StartTime_StopTime

Sets tart time for simulation and iJl ert
flTst node or nodes in the calendar.

~
BreadthFirstExecution

Executes the model using breadth-flfst
aooroach.

Figure 5.1: Procedures for Execution of QSGM Model

Before executing the algorithm, the user has to defme the structure and the

functions of the model. The structure consists of defining nodes and edges of the QSGM

model and also the functions that are used when the events occur. The functions are

responsible for updating state variables. The following variables have to be defined in

order to describe the breadth-first algorithm.

globalCalendar - set of events that are scheduled to occur at some time in future.

The globalCalendar is set to be the calendar for the thread that is being executed.

event - the event notice being executed. Each event notice i.s a set whose elements

are the time at which the event will occur, the priority of the event, the event that

scheduled this event, the edge execution condition and the attributes that are

passed to the event being executed. The variables used to define the set are:

event. time - temporal interval indicating time when the event i.s scheduled to

be executed.

event.toMethod - event scheduled at event. time.

42

eventpriority - priority of the e nt.

event.executionCondition - a conditional stat m nt that e aluat s either TRUE

or FALSE. If it is TR UE, then event is execut d.

event. attributes - attributes of the event.

globalCalendar.time - denotes current simulation time [f,t] for the current

thread.

state VariableArray - array of all variables that represents state of the simulation.

In the single machine system example, the state variables are value of the server

(S), the queue (Q) and the exits (E).

startTimeValue - time interval representing start time of the simulation.

stop Time Value - time interval representing the stop time of the simulation. The

simulation cannot go beyond stopTime Value.

The time interval structure has variables start and stop representing the beginning

and ending of the time interval respectively. For exampl , startTim Value.start is the

beginning of the startTimeValue interval.

The QSGM algorithm starts with the user initiating the execution of the model by

calling the Run procedure. The Run procedure initializes model parameters and calls the

StartTime_StopTime procedure that starts the execution of the simulation by inserting

the first event or events into the calendar.

Procedure Run

Initialize the random number generator if required

Initialize the globalCalendar

Set the stopping conditions

41

Define the fi rst node or nodes to be cut d (can be ov rridden In model

initialization)

Call StartTim e_StopTimeO

End Procedure RUff

The Run procedure initializes the state variables of the model and defmes the

structure of the simulation model for execution. Also, th g neral structure that is

required for any qualitative discrete-event model, like the random number generator (only

if required) for the model and the global events calendar, is initialized. It also defines and

stores the first event or events that are to be executed at the start. of simulation. A call is

made to procedure StartTime_StopTime that executes the QSGM algorithm.

Procedure StartTime_StopTime(startTimeValue, stopTime Value)

Set globalCalendar.time = startTimeValue

Insert first node or nodes to be executed into the globalCalendar

Call BreadthFirstExecution (first event on the calendar to be execut d,

startTime Value)

End Procedure StartTime_StopTime

The procedure StartTime_StopTime sets the globalCalendar.time to

startTimeValue. The events that will be executed at the start of the simulation are inserted

into the globalCalendar.

In the depth-first algorithm developed by Ingalls (1999), the saved state stack. is

used to store the simulation state as new threads are created. The state stack stores current

values of state variables array and the global events caLendar. In the breadth-first

algorithm, threads are swapped in and out of execution so that the simulation clock time

44

of all of the threads is nearly equal. In order the manage the swapping of threads into and

out of execution a structure that holds certain infomlation about acb active thread is

required. The structure is called t1,e BreadthFirstNode structUf and for each thread it

stores the global events calendar and the state variable array. BreadthFirstNodes are

stored in the BreadthFirstNodeQueue. The elements of the BreadthFirstNode structure

are:

The variables that are initialized to trace threads and events generated during the

execution of models are as follows:

eventNumber - represents the number of events that have occurred.

spawningEvent - denotes the number of the event that spawned or created this

thread.

modelThread - number of the model thread. Each thread has a using unique

number. The maximum value of mode/Thread represents the total number of

threads in the model.

modelThreadEvents - denotes the number of events within a model thread.

The variables for storing the information required to execute the simulation of the

thread are:

eventToBeExecuted - represents the event in the calendar that is scheduled to

be executed when this thread is executed next. If the NOS that generated this

BreadthFirstNode has more than one event, then there will be different

BreadthFirstNodes that represent the alternative sequences of execution.

calendarAssociatedWithNode - represents the calendar that is associated with

this thread.

45

state VariableArra - stores the values ofth tat ariable oftbe tllfead.

After initialization is complete, the proc dur BreadthFirstExecutioll that

executes the QSGM model using breadth-first trav rsali called using two parameters

first event on the calendar and startTimeValue. The following ariables are used in the

breadth-first algorithm.

BreadthFirstNodeQueue - queue for storing nodes of type BreadthFirstNode.

possibleEvents - array of events that fOrnJ non deterministically ordered set

(NOS) of events that can be possibly executed next.

nextTime - the time of the simulation if a given event is executed.

Following functions are also used:

event.node(event.attributes) - executes the function associated with particular

event with parameter event.attributes if execution condition for the event is true.

The function schedules events and updates state variables.

executeEvent - boolean variable defined to store the result after valuating the

execution condition of the edge.

tempCalendar - copy of globalCalendar.

index - temporary variable to keep count of the elements in possibleEvents array.

firstNode - variable of type BreadthFirstNode for storing the first node on the

BreadthFirstQueue queue.

!sSubsetO/O, minO and maxO - interval math function defined in Appendix A.

The procedure BreadthFirstExeclltion is described using the flowchart shown in Figure

5.2.

46

Start Procedure BreadthFirstExecution

Set event=first event on g/obalCalendar

Remove event from a/aba/Calendar

Create firstNode of type BreadthFirstNode
Set firstNode.eventNumber= 1

Set firstNode.spawningEvent=O
Set firstNade.modeIThread= 1

Set firstNode.mode/ThreadEvent= 1
Set firstNode.eventToBeExecuted = event

Set firstNode. ca/endarAssociatedWithNode = globa/Calendar
Set firstNode.stateVariableArrav = stateVariableArrav

Set BreadthFirstNodeQueue = empty Queue

Add firstNode into BreadthFirstNodeOueue

No

Set firstNode=first member of the BreadthFirstQueue
Remove firstNode from the BreadthFirstNodeQlIeue

globaICa/endar=firstNode.calendarAssociatedWithNode
event=firstNode. eventToBeExecuted

stateVariab/eArray=firstNode.stateVariableArray

Set executeEvent=event. executlonCondition

No

Yes

Call event.node(event.attributes) which schedules new events in qloba/ca/endar

Initialize possibleEvents=empty array of events
Set passibleEvents=set of events in globa/Clendar that could be executed next

Figure 5.2: Flow chart for Breadth-First Algorithm

47

9

No

If size of DossibleEvents = 1?

Yes

Set nextTime.start=max(possibleEvents{1]. time. start, globalCalendar. time. start)
Set nextTime. stop=possibleEvents. time. stop

event = possibleEvents{l)

Remove event from alobalCalendar

No

Yes

Set globa/Calendar. time = nextTime

Create tempNode of type BreadthFirstNode

Set tempNode.eventNumber=firstNode.eventNumber + 1

Set tempNode.spawningEvent=firstNode.spawningEvent

Set tempNode.modeIThread= firstNode.modelThread

Set tempNode.modeIThreadEvent=firstNode.mode/ThreadEvent+1

Set tempNode.eventToBeExecuted=possibleEvents(l)

Set tempNode. calendarAssociatedWithNode = globa/Calendar

Set tempNode.stateVariab/eArray = stateVariableArray

Add tempNode to BreadthFirstNodeQueue sorted in ascending order of

eventToBeExecuted. time

Set index =1

c

Figure 5.2: Flow chart for Breadtb-First Algorithm (conti 8 ued)

4S

No

Set tempCalendar=globalCalendar

Set nextTime. start= ma x(possibleEvents[index]. time. start,

globalCalendar. time. start)

Set nextTime.stop= min(all possibleEvents. time.stop in the array of possibleEvents)

event =possibleEvents[index]
Remove event from tempCalendar
Set tempCalendar. time = nextTime

Yes

Create tempNode of type BreadthFirstNode

Set temoNode.eventNumber=firstNode.eventNumber+index

No

Yes

Set tempNode .spawningEvent= firstNode. spawningEvent
Set temDNode.modeIThread= firstNode.modeIThr; ad

Set tempNode.spawningEvent=firstNode.eventNumber
Set temoNode. modelThread= firstNode.modeIThread+/ndex- t

Set tempNode.modeIThreadEvent=firstNode.modeIThreadEvent + 1

Set tempNode.eventToBeExecuted=posslbleEvents[lndex]

Set tempNode. CalendarAssociatedWithNode = tempCalendar

Set tempNode.stateVariableArray = stateVariableArray

Add tempNode to BreadthFirstNodeQueue, sorted In ascending order of

pVAntTnRpF)(p.rI Itprl. timp.

index=index+ 1

Figure 5.2: Flow chart for Breadth-First Algorithm (conti ed)

49

The the proc dure Br adthFir lEx CUIion algorithm is called aft r initialization.

Two parameters are passed to this proc dur and th p udo cod for th procedure are

discussed below.

Procedure BreadtlzFirstExecutioll (first event on global al ndar startTimeValue)
Start

Set event = first event on globalCalendar
Remove event from globalCalendar

II Create firstNode using parameters eventNumber spawningEvent, modelThread,
modelThreadEvent, eventToBeExecuted, globalCalendar stateVariableArray

Create firstNode 0 f type BreadthFirstNode

SetfirstNode.eventNumber = 1

Set firstNode.spawningEvent =0

SetfirstNode.l1wdelThread = I

SetfirstNode.modelThreadEvellt =1

SetfirstNode.eventToBeExecuted = event

SetfirstNocle.calendarAssociatedWithNode = globalCalendar

Set firstNocle.state VariableArray = stateVariableArray

IIAdd created node into the queue
Set BreadthFirstNodeQueue = empty queue for storing set of BreadthFirstNode
sorted in ascending order of eventToBeExecutecl.lime
Add firstNode into BreadthFirstNodeQueue sorted in asc nding order of
eventToBeExecuted.time

While BreadthFirstNodeQueue is not empty

Remove firstNode from the BreadthFirslNocleQueue

Point globalCalendar to firstNocle. calenclarAssociatedWithNode

Point event to firstNode.eventToBeExecutecl

Set stateVariableArray = firstNocle.stateVariableArray

I I Comment: Up to this point, the algorithm has removed the node from the
BreadthFirstNodeQueue to be executed and all of the values are assigned to the
global variables. This will execute the event using methods that are accessible by
global variables only. The purpose of copying node values to global values is that
multiple copies of the calendar have to be made while inserting new nodes into
the BreadthFirstNodeQueue. Also the old node is to be deleted from the
BreadthFirstNodeQueue.

Set executeEvent = event.executionCondilion

If executeEvent = TRUE Then

50

II omment: If th e ent can be cut d, then it ill all the proc dur that
would contain the logic to a]uate the state change i.. changino til stat of
the variable and/or sch dUling fUI1h r v nt that could OCCUI after thi ev ot.
Events that are sch dul dar placed in the global alendar.

Call event.node(evenLattributes)

Else
Break out from While loop and check if there are nodes in queue.
II (i.e. go back to start of "Wbile" loop.)

End If

II Comment: New nodes have to be added into the BreadthFirstNodeQueue bas d
on events that could be executed next using this calendar. For each possible vent
that could be executed next a separate node has to be created and inserted in the
queue. The first thing after this is to detennine events that are possible and could
be executed next after this event.

Initialize possibleEvents = empty array ofevents
Set possibleEvents = set of events in globalCalendar that could be executed next

II Comment: The next step is to determine the next time when the event could
occur.

If (size ofpossibleEvents = 1) Then
Set nextTime.start = max(possibleEvents[IJ.time.start,

globalCalendar. time.start)
Set nextTime.stop = possibleEvents.time. top

II Comment: If this new event occurs and the stopping condition valuates to
false then add the node into the queue with this event as a value to the variable
eventToBeExecuted.

event = possibleEvents[l]

Remove event from globalCalendar

If (event. time < stopTime .AND. Stopping Condition = FAL E) Then

Set globalCalendar.time = nextTime
Create tempNode of type BreadthFirstNode
Set tempNode.eventNumber = flrstNode.eventNumber + 1
Set tempNode.spawningEvent = firstNode.spawningEvent
Set tempNode.modelThread = flrstNode.modelThread
Set tempNode.modelThreadEvent = firstNode.modelThreadEvent + I
Set tempNode.eventToBeExecuted = possibleEvents[IJ
Set tempNode.calendarAssociatedWithNode = tempCalendar
Set tempNode.stateVariableArray = stateVariableArray
Add tempNode to BreadthFirstNodeQueue sorted in ascending order of
tempNode.eventToBeExecuted.time

51

End If

Else

II Comment: Insert one node each for each e ent that could be possible to be
executed next.

For (index =1 to size ofpossibleEvents)
Set tempCalendar = globalCalendar
Set nextTime.start = max(possibleEvents[index].time. tart,

globalCalendar. time.start)
Set nextTime.stop = rnin(all possibleEvents.time.stop in the array of

possibleEvents)
event = possibleEvents[index]
Remove event from tempCalendar
Set tempCalendar.time = nextTime
If (tempCalendar.time < stopTime .AND. Stopping Condition = FALSE)
Then

Create tempNode of type BreadthFirstNode
Set tempNode.eventNumber = firstNode.eventNumber + index
If (index =1) Then

Set tempNode.spawningEvent = firstNode. spawningEvent
Set tempNode.modelThread =firstNode.modelThread

Else
Set tempNode.spawningEvent = firstNode.eventNumber
Set tempNode.modelThread = firstNode.modeIThread+index-l

End If
Set tempNode.modelThreadEvent = firstNode.modelThreadEvent + 1
Set tempNode.eventToBeExecuted = possibleEvents[index]
Set tempNode.calendarAssociatedWithNode = temp alendar
Set tempNode.state VariableArray = state VariableArray
Add tempNode to BreadthFirstNodeQueue. sorted in ascending order
of tempNode.eventToBeExecuted.time

End If

End For

End If

End While Loop

End Procedure BreadthFirstExecutioll

5.4. Explanation Of The Breadth-First Algorithm With An Example

Consider the single machine example in Chapter 2. The algorithm starts its

execution by calling the RUII procedure. The globalCalendar is initialized with no event

on this calendar. The globalCalendar.time is set to the time [0,0]. The stopping condition

52

is set to E = 5. The e ent graph for this xampl is shown in Figur 2.2 ho s that the

first event execut d is the "Run e· ent. This node is tor d in a variable that is used to

store the first event to be scheduled on the calendar. Then the e cution pas es to the

procedure StartTime_StopTime.

The parameter, startTimeValue is equal to [00] and it indicates start time for the

simulation, and stopTimeValue is assigned a sufficiently large value nearly equal to

infinity and it indicates stop time for the simulation. These parameters are pass d to the

StartTillle_StopTime procedure. The globalCalendar.time is set equal to startTimeValue

= [0,0]. The RUN event is inserted in the global events calendar and the procedure

BreadtltFirstExecution is called with two parameters a pointer to the RUN vent on the

globalCalendar and the starting time of the simulation, startTimeValue

Procedure BreadthFirstExecutioll controls the creation and execution of threads.

The first event is removed from the calendar and the variable event is assigned the value

of the first event. The next step is to create the first BreadthFirstNod which i inserted

in the BreadthFirstNodeQueue. The BreadthFirstNode lements will be initializ d to the

following values:

eventNumber = 1, spawningEvent = 0, modelThread = 1, moclelThreadEvent = 1

eventToBeExecutecl = event, calendarAssociatedWithNode = globalCalendar, and

stateVariableArray = stateVariableArray. The globalCalendar is now because its

only entry, the RUN event, has been removed and is stored in the variable

eventToBeExecuted. The stateVariableArray is assigned values of state variables

Q, Sand E. At the start of the simulation these values are Q = O. S = J and E = O.

53

The newly created node is insert d into th BreadfhFirst ode II U. ow the

BreadthFirstNodeQueue queue has one member the node r pr senting th R e ent in

the first thread. ext, firstNode i assigned to the first m mb r of th

BreadthFirstNodeQueue. firstNode is the removed from the BreadthFir tNod Queue and

the globalCalendar IS assigned to the firstNode's calendar

(jirstNode.calendarAssociatedWithNode). At this time, global alendar is empty b cause

the RUN event has already been removed from the calendar. The fir t event notice, stored

in the variable eventToBeExecuted, is assigned to the global variable event. The state

variables are Q, S and E, and their values 0, 1 and 0, respectively are copied from

firstNode.state Varia bleArray. After all of the elements of fir tNode are copied to local

variables, the event is executed if the edge execution condition evaluates to TR UE by

calling the edge execution function that is associated with the node. There is no

scheduling edge condition on the edge between the RUN node and the ENTER node

shown in Figure 2.2, so the edge execution condition is always TRUE. The RUN event is

executed by calling the function which handles scheduling of new events and updating

the state variables array. Execution of RUN event schedules an ENTER event at time

[0,0] and is represented as the root node of the execution tree in Figure 4.1. The event

notice ([0, OJ, 9, ENTER, RUN-ENTER, TRUE) is inserted in the globalCalendar. A

BreadthFirstNode node is created with the ENTER event as the event to be executed. The

node is inserted in the BreadthFirstNodeQueue.

The process continues and executes the ENTER event and START event (nodes 2

and 3 in Figure 4.1) with the same process as the RUN event. After the START event

(node 3) is executed, there are two possible events that could be executed next, an

54

E TER event and a LEAVB nt. The ord r of the e cution of th e tw ents in

uncertain because the event OCCUIT nce tim of tb s nod s 0 erlap and they ha e the

same priority. The E TER event is scheduled for time [3 8] and tb LE E event

scheduled for time [4,6]. Because of this overlap, the algorithm creates two

BreadthFirstNodes. The first node has E TER event as the eventToBeExecuted and the

second node has the LEAVB event as the eventToBeExecuted. Both nod sarin erted in

the BreadthFirstNodeQueue. These two nodes are represented as nodes 4 and 10,

respectively, in Figure 4.1.

When both BreadthFirstNodes are in the BreadthFirstNodeQu.eue, the first node

removed from the BreadthFirstNodeQueue bas the ENTER event as the

eventToBeExecuted. When this event is executed, a node with the LEAVE event (node 5

in Figure 4.1) and a node with the E TER event (node 9 in Figure 4.1) will be added to

the BreadthFirstNodeQueue. At this point, a total of 3 nodes are in the

BreadthFirstNodeQueue, nodes 5, 9 and 10.

The next BreadFirstNode to be executed will be node lOb cause it has the

earliest possible execution time and was in the BreadthFirstNodeQueue b for node 5.

Therefore, the execution follows the path 1, 2, 3, 4, 10, 5, 9. 11, 6 and so on. A partial

execution sequence of this model is given in Table 5.2. The sequence occurs because the

BreadthFirstNodeQueue is ordered by the execution time ofthe nodes.

The BreadthFirstNodeQueue queue is always sorted in ascending order of the

event execution time. This is done to keep the simulation clock time of each thread

approximately the same. The simulation clock time and state variables in each of the

thread at some point of time in simulation is shown in Table 5.1.

55

In Table 5.1, the BreadthFir lode Qu ue was xamjn d at a point in time in the

simulation run. It shows that the BreadlhFirsl oel Queu has 49 thr ads and that th

execution times of those threads intersect with each other. lthough a counter example

can be shown to prove that this inters ction does not always occur, it is expected that the

intersection of execution times will occur often.

Table 5.1: Simulation clock time and state variables at some point in simulation.

Model Model
Thread Time S Q E Thread Time S Q E

1 [16 24] 0 1 3 26 [16 18] 0 2 2
2 [16 26] 0 1 3 27 [15 181 0 2 2
3 [14 18] 0 2 2 28 [15 18] 0 2 2
4 [14 28] 0 0 3 29 [15 181 0 2 2
5 [14 26] 0 0 3 30 [16 30] 0 0 3
6 [14 18] 0 1 2 31 [16 281 0 0 3
7 [15 241 0 1 3 32 [16 26] 0 0 3
8 [14 201 0 2 2 33 [16 28] 0 0 3
9 [15 30] 0 0 3 34 {16 24] 0 0 3
10 [15 281 0 0 3 35 [16 261 0 0 3
11 [15 26] 0 0 3 36 [16 28] 0 0 3
12 [15 281 0 0 3 37 [16 261 0 0 3
13 [15 18] 0 2 2 38 [15 24] 0 1 3
14 [15 18] 0 2 2 39 [16 241 0 1 3
15 [15 241 0 1 3 40 [16 20] 0 2 2
16 [17 24] 0 1 3 41 [16 181 0 2 2
17 [16 201 0 2 2 42 [16 20] 0 2 2
18 [16 26] 0 1 3 43 f16 261 0 1 3
19 [17 201 0 0 3 44 [17 20] 0 o 3
20 [14 18] 0 2 2 45 [16 241 0 1 3
21 [14 20] 0 1 2 46 [17 20] 0 2 2
22 [14 181 0 1 2 47 [17 261 0 1 3
23 [14 22] 0 1 2 48 [17 24] 0 1 3
24 [1,4 201 0 1 2 49 [18 201 0 o 3
25 [16 18] 0 2 2

56

Table 5.2: Partial output for single machine example using breadth-first algorithm

1- M d 1Thr ad 1I - Event umb r III - pav ning E ent

T - Model Thread ents -Time 1- t cthod

- erver Q - Queue E - Value or xits

x - alendar

I II III IV V VI S 0 E X
Start Time: 07/24/200304:14:09

1 1 0 1 1[.00000, .000001 beqin 1 0 0 Ir.000,.000I,enter,nil,999.,l.
[.000,.000),start,nil,1.

1 2 a 2 1[.00000, .000001 enter 1 1 0 3.0000,8.001,enter,nil,999.
[3.00,8.00),enter,nil,999.

1 3 0 3 I LOOOOO, .000001 start 0 0 0 4.0000,6.001,leave:,-1,999.
[4.00,6.00),leave:,-1.,999.

1 4 0 4 1[3.0000, 6.00001 enter 0 1 0 6.0000,14.0),enter,nil,999.
2 5 3 4 [4.0000, 6.00001 leave: 1 0 1 3.00,8'.00].enter,nil,999.

[4.00,6.00),start,nil,1.
1 6 0 5 [4.0000, 6.00001 leave: 1 1 1 6.0000,14.01,enter,nil,999.

[4.00,6.00],leave:,-1,999.
3 7 4 5 [6.0000, 6.00001 enter 0 2 0 9.0000,14.0J,enter,nil,999.

[7.00,16.0],enter,nil,999.
2 8 3 5 [4.0000, 8.00001 enter 1 1 1 4.0000,8.00l,start,nil,1.

[6.00,14.0],enter,nil,999.
1 9 0 6 [4.0000, 6.00001 start 0 0 1 8.0000,12.01,leave:,-1,999.

[6.00,6.00],start,nil,1.
3 10 4 6 [6.0000, 6.00001 leave: 1 2 1 9.0000,14.0I.enter,nil,999.

[7.00,16.0),enter,nil,999.
2 11 3 6 1[4.0000, 8.00001 start 0 0 1 8.0000,14.01,leave:,-1,999.

[8.00,12.0],leave:,-1,999.
1 12 0 7 1[6.0000, 12.0001 enter 0 1 1 u9.0000,20.0J,enter,nil,999.
4 13 9 7 1[8.0000, 12.0001 leave: 1 0 2 Ir6.00,14.0J,enter,nil,999.

[9.00,14.0],enter,nil,999.
3 14 4 7 [6.0000, 6.00001 start 0 1 1 10.000,12.0J,leave:,-1,999.

.
[19.0,38.0].enter,nil,999.

1 561 0 17 [20.000, 30.0001 leave: 1 1 5 20.000,30.01,start,nil,1.

(36.0,36.0],start,nil,1.
893 2328 2174 23 1[36.000, 36.0001 leave: 1 7 5 39.000,44.01,enter,nil,999.

[36.0,36.0),start,nil,1.
894 2329 2176 23 1[36.000, 36.0001 reave: 1 7 5 39.000,44.01,enter,nil,999.

[36.0,36.0],start,nil,1.
895 2330 2178 23 1[36.000, 36.0001 leave: 1 7 5 39.000,44.0J,enter,nil,999.

[36.0,36.0J,start,nil,1.
896 2331 2179 23 Ir36.000, 36.0001 leave: 1 7 5 39.000,44.0J,enter,nil,999.

[37.0,38.0J,start,nil,1.
897 2332 2182 23 1[37.000, 38.0001 leave: 1 7 5 40.000,46.01,enter,nil,999.

57

5.5. Validating The Output

Using the infonnation in Figure 4.1 and Table 5.2, it is shown that the br adth

first algorithm works as expected. The output of the breadth-first algorithm should also

match the output of the depth-first algorithm. The output was obtained for the singl

machine system example shown in Figure 2.2 for both algorithms. Both algorithms

generated 897 threads for this example, and that matched the number of threads obtained

from a similar example used by Ingalls (1999). Also, the output from the breadth-first

algorithm was compared event-by-event to the output of the depth-fLrst algorithm, and all

of the events were included in both outputs.

5.6. Run-Time Comparison

Literature exists that claims that depth-first traversal algorithms are faster than

breadth-first traversal algorithms. In the breadth-first algorithm, since all the nodes are

stored in the memory at the same time, there are large memory requirements. (Weiss,

2000) The models that were run where U,e same exact output is given for both the d pth

first and breadth-first algorithms showed that th depth-first algorithm is always faster. ill

particular, for the single machine example discussed previously, the execution times on

an Intel Pentium 4, 1.6 GHz for the depth-flrst and the breadth-first algorithms are 6

seconds and 13 seconds, respectively.

However, since the breadth-first algorithm traverses across the tree, the simulation

model is able to track all active threads at any given point in time. Because of the

availability of all active threads, the modeler could decide that some threads are "less

valuable" than other threads. In that case, the breadth-first algorithm has the ability to

58

terminate these "less aluable" thr ads ithout running them to compl tion. The d cision

to terminate a thread early is based on using d cision criteria defmed by the modeler.

Additional coding IS needed to eliminate threads from the

BreadthFirstNodeQueue. The elimination step is added after a node is added to the

queue. If the number of nodes on the queue exceeds the desired number then the nodes

on the queue are compared using the decision criteria and the node performs the worst

against the decision criteria is removed from the queue. This step ensures that the number

of nodes on a queue does not exceed the desired number, thereby limiting the number of

active threads at any point in the simulation.

To show the speed advantage of being able to eliminate unwanted threads, the

single machine server example is run with a change in the stopping condition for the

simulation. In particular, the stopping condition is changed from E = 5 to E = 8, which

means that an individual thread will be complete when the number of jobs processed is

equal to 8. This experiment will be run for the depth-first simulation to completion. This

experiment will also be run for the breadth-first simulation wh re the number of active

threads is arbitrarily limited to 50, 100, 200, 400, and 1000. The experiment will show

that, if the modeler is able to design a decision criteria that will eliminate threads, there

are speed benefits to the breadth-first algorithm. Also., the output will be focused more

on the areas in which the modeler is interested.

In the Table 5.3, the output from the experiment shows tremendous time savings.

59

Table 5.3: Run Time (Seconds) for Single Machine Example (E = 8)

Depth-First Breadth- Breadth- Breadth- Breadth- Breadth-
First First First First First

99383 50 Active 100 Active 200 Active 400 Active LOOO
Threads Threads Threads Threads Threads Active

Max Max Max Max. Threads
Max

716 4 7 13 31 116

Run Time Function for Breadth-First Algorithm for Number of Active Threads

140 .---=-="""--~~--'.....,......~--~---~---.

~=1
100 -I- ~L----_1

80 +-------------~~------1
• Breadth-First Run Times

- 2nd Order Polynomial Fit
60 +--------.,;-----~--------_l

40 +--------~::.-----------_1

20 -I-----.,;...:.-----::"e.--------------~

O~:.--.....,;---..__--.....,..--~~--...,...--....."

o 200 400 600 800 1000 1200

Number of Active Threads

Figure 5.3: Run Time Function for Breadth-First Algorithm

Table 5.3 also shows a trend of the increase in runtime as the number of active

threads increases. A chart of this run-time increase is shown in Figure 5.3. This chart also

shows that a second-order polynomial perfectly fits the data in Table 5.3. With this

polynomial (O.00007x 2 +0.0457x+1.5218), we can estimate the number of active

threads that would have the same run-time as the depth-fLrst algorithm that generates all

60

of the threads. Based on the fit, the breadth-first run-tim \ ith 2 885 acti e thr ads

would be appro imately the same as th depth-first run-tim .

5.7. Additional Advantages Of The Breadth-First Igorithm

One of the issues with the depth-first algorithm is that model size is restricted due

to the amount of memory needed to manage the stack. For single machine model, the

depth-first algorithm with E = 10 as the stopping condition generated more than

1,000,000 threads which causes the recursion stack to overflow and stops the execution

after nearly 3 hours. However, by using the breadth-first algorithm and restricting the

number of nodes in the BreadthFirstNodeQueue to some number that would reduce the

memory requirements of the model, the model could run and produce some results. The

loss of information due to eliminated threads could be minimized by developing effective

decision or thread elimination criteria.

Developing decision rules would be a challenge for a modeler. But it would be

worth the effort because the information obtained using Q models is much more

valuable when compared to traditional simulation models. This value would come from

collecting information that is relevant, instead of random threads generated by the

traditional simulation models. Also, eliminating unimportant threads would reduce the

complexity in output analysis by allowing the modeler to concentrate on small number of

important threads.

Ingalls (1999) has described the thread scoring technique for assigning scores to

threads. He used thread scores to rank threads based on relative likelihood of their event

execution sequence. He suggested using the thread scoring technique to eliminate threads

that are less likely to occur thereby reducing the number of threads from the output of

61

QDES models. H also suggested that th tIlr ad plosion prabl m mak s it difficult to

get meaningful information from th output and mak s output analy is difficult. The

depth-first algorithm can be used for making a comparison of thread scor s only after th

simulation has tenninated, while the br adth-first algorithm provide an opportunity to

compare and eliminate low-scoring threads thereby reducing the nm time of the

algorithm. This thesis provides a mechanism for eliminating threads using decision

criteria and thus reduces the run time for the algorithm.

62

Chapter 6

Summary and Future Research

6.1. Research Summary

The objective of the thesis is to develop the breadth-first algoritlun for solving

Qualitative Simulation Graph Models (QSGM) models. The algorithm traverses the

nodes across tbe tree before the nodes below the tree. The algorithm enhances the depth

first algorithm developed by Ingalls (1999), by traversing the child nodes of the tree

before the sibling nodes. The breadth-first algorithm developed is presented and

explained in Chapter 5 using the pseudo code algorithm. QSGM, developed by Ingalls

(1999), is used as modeling framework used for describing the models. The algorithm is

coded in C++ using Visual C++ 6.0. The output obtained using the breadth-first

algorithm is tested and compared with the output from the d pth-first algorithm. The

comparison of the output obtained validates the breadth-first algorithm. The parameters

defined to trace the events and threads in the output shows that the breadth-first algorithm

traverses nodes across the tree before going in to the depth of the solution tree. An

additional model is built to test the validity of the algorithm and the output obtained from

both the algorithms is compared. The output obtained from both the algorithm is exactly

same (Appendix B).

The breadth-first algorithm uses a queue structure to store the sibling nodes. Each

and every thread in the simulation is executed in such a way that each thread's simulation

clock time is nearly equal. The reason for this is that the queue is sorted in ascending

63

order of simulation clock time. This may be important to the mod I r in making d ClSlons

during simulation. Also, the active th.reads can b aluated and compared to other

threads in the simulation at any point in time, which is not possible with the depth-first

algorithm. The comparison of the threads based on a certain set of decision rules at

certain point in the simulation may help to eliminate threads that are unlikely to give any

valuable information. One such example that uses arbitrary decision criteria for

comparing and eliminating the threads is explained in Chapter 5. The example shows the

importance of developing the breadth-first algorithm because it helps to improve the

performance by reducing the run time using the thread elimination criteria. Also, the

breadth-first algorithm reduces the complexity of the output by reducing the number of

threads and allowing the modeler to concentrate threads that provide meaningful

infomlation.

The thesis accomplishes its objective by developing the breadth-first algorithm for

solving qualitative simulation graph mod Is. The algorithm provid s the capability to

compare all the active threads at some point in th simulation and eliminat the "less

valuable" threads using decision criteria. An example is used to show that elimination of

the "less valuable" threads resulted in reduction of the run time of the algorithm.

6.2. Future Research

This thesis only considered the uncertain intervals for defining qualitative time in

the simulation. It did not consider constant intervals whose value must be the same

throughout an entire thread in the simulation. The breadth-first algorithm can be further

developed to include the logic for handling constant intervals.

64

Thjs th sis do s not define th state ariabl qualitati Iy. Th algorithm can b

developed to allow definition of th stat ariabl s qualitati Iy. Trus may incr a e th

number of threads and the run time of the algorithm, but it would provide flexibility in

defining of the modeling parameters.

One of the major concerns of the qualitative simulation algorithms is execution

time. Threads can explode exponentially and the execution time for the qualitative

simulation can be very long. It is clear that one of the benefits of breadth-first simulation

is the use of decision criteria to eliminate active threads. In future research, effective

decision criteria can be designed which can be used to compare and evaluate the threads

in qualitative simulation. With effective decision criteria, unimportant threads can be

terminated thereby reducing the run time for the algorithm. Thread scoring techniques,

such as those suggested by Ingalls (1999), can also be developed to elimjnate the

unimportant threads. The breadth-first algoritJun provides the groundwork for such type

of future research by providing a tool to solve QDE models. Algorithms that use parallel

processors and multithreading can be developed to execute Q GM mod Is to reduce the

run time of the models.

The QSGM methodology developed has not received much attention in practical

applications. This thesis attempts to provide an alternative tool for solving QSGM models

which might allow QSGM to be developed for practical applications.

65

References

Banks, J, 1998. Handbook ofSimulation, Engineering and Management Press.

Berleant, D., and Kuipers, B. J., 1997. Qualitative and Quantitative Simulation: Bridging
The Gap, Artificial Intelligence, 95:215-255.

Bulitko, Y., and Wilkins, D. C., 2003. Qualitative Simulation of Temporal Concurrent
Processes using Time Interval Petri Nets, Artificial Intelligence, 144:95-124.

Cellier, F. E., 1991. Qualitative Modeling And Simulation: Promise Or Il1usion,
Proceedings ofthe 1991 Winter Simulation Conference, eds. Barry L. Nelson, W.
David Kelton, and Gordon M. Clark, pp. 1086-1090.

Clancy, D. J., Brajnik, G., and Kay, H., 1997. Model Revision: Techniques and Tools For
Analyzing Simulation Results and Revising Qualitative Models, 11th
International Workshop on Qualitative Reasoning, Cortona, Siena Italy, June
1997.

Damerdji, H. And Nakayama, M. K., 1999. Two-Stage Multiple-Comparison Procedures
For Steady-State Simulations, ACM Transactions on Modeling and Computer
Simulation, 9(1):1-30.

Farquhar, A., Kuipers, B., Rickel, J., Throop, D. and The Qualitative Reasoning Group,
1994. QSIM: The Program and its Use, Department of Computer Science,
University ofTexas at Austin, Austin, Texas, October 18, 1994. [Retriev don
July 29, 2003] URL: htt ://www.s.utexas.cdu/uscrs/r/R-sortwar.html- sim.

Goldsman, D., Marshall, W. S., Seong-Hee Kim, and Nelson, B. L., 2000. "Ranking And
Selection For Steady-State Simulation", Proceedings ofthe 2000 Winter
Simulation Conference, eds. J. A. Joines, R. R. Barton, K. Kang, and P. A.
Fishwick, pp. 544-553.

Hamscher, W., Kiyang, M. Y. and Lang, R., 1995. Qualitative Reasoning in Business,
Finance, and Economics: Introduction, Decision Support Systems, 15(2):99-103.

Hao, W., Fujimoto, R. M. and Riley, G., 2001. Experiences Parallelizing A Commercial
Network Simulator, Proceedings ofthe 2001 Winter Simulation Conference, eds.
B.A. Peters, l.S. Smith, DJ. Mederios, and M.W. Rohrer, pp. 1353-1360.

Hocaoglu, M.F., 2003. A Comparison between Qualitative Simulation and Traditional
Simulation: Bridging the Conceptual Gap, Applied Modeling and Simulation
Joint Research Group (AMSJRG), Infonnation Technologies Research Institute
Tubitak-Marrnara Research Center, Turkey. Working Paper. [Retrieved on July
29,2003] URL: http://www.btae.mam.gov.tr/-hocaoglu/qscomparison.pdf.

66

'-.....~--------------I!!!!!!!!'-'---------

Ingalls, R. G., 1999. Qualitative Simulation Graph Melhodoio and /mpl In nta/ion
The niversity of Texas at Austin.

Kuipers, B., 1986. Qualitative Simulation, Artijiciallntelligenc 29:28 -238.

Kuipers, B., 2001. Qualitative Simulation, 2001. [Retrieved on July 22 2003] URL:
http://,ww.cs.utexas.edu/users/gr/paprs/·ui!rs-epst-01.html.

McConnack, W. M., and Sargent, R. G., 1981. Analysis of future Event Set Algorithms
for Discrete-event Simulation, Communications a/the A 'M 24(12):801-812.

Neelamkavi1, F., 1987. Computer Simulation and Modelling, John Wiley & Sons Ltd.

Preiss, B. R., 1999. Data Structures and Algorithms with Object-Oriented Design
Patterns in C++, John Wiley & Sons, Inc. New York.

Schruben, L. W., 1983. Simulation Modeling with Event Graphs, Communications o/the
ACM,26(11):957-963. .

Weiss, M. A., 2000. Data Structures And Problem Solving Using C++, Addison-Wesley.
Reading, Massachusetts.

Wyatt, G. J.,. Leitch, R. R. and Steele, A.D., 1995. Qualitative and Quantitative
Simulation of Interacting Markets, Decision Support Systems, 15(2):105-113.

Yticesan E. and L. W. Schruben. 1992. Structural and Behavioral Equivalence of
Simulation Models. ACM Transactions on Modeling and Computer Simulation,
2(1): 82-103.

67

""-~-------------- --------------

Appendix A. Interval Math

Function

a=b

a+b

a-b

a*b

a IsSubsetOfb

max(a,b)

min(a,b)

a<b

a equal to b

Midpoint(a)

Result of the function

Assign (a-= b-) and (a+= b+)

Evaluates to [a-+b-, a++b+]

Evaluates to [a--bO, a+-b+]

Evaluates to [a- * b-, a+ * bJ

True if «a">b-) and (a+<bj) else False

Evaluates to [max(a-,bO),max(a+,b+)]

Evaluates to [min(a-,b-),min(a+,bYl

True if (a+<b-) else False

True if «a-= b-) and (a+= by) else False

Equals to «a-+a+)/2)

Source: Ingalls (1999) Page 25.

""-~-----------------------

Appendix B. PERT Network Example

The breadth-fLrst algorithm is also validated using the PERT (program E aluation

and Review Technique) network problem in addition to the singl machin s rver

example discussed in the thesis. The PERT example discussed here is a simple network

with 7 nodes. The event graph representation of the PERT network is shown in Figure

B.1.

1"17 [6.7) ~r-::\

~
H,
H

H,-o

H,-o
H,-o
110-0

Figure B.l. PERT Network Event Graph

The nodes are labeled from 0 to 7 and the scheduling edge conditions are

represented on the edges. The state variables are defined as Hi , for i = I to 6.

Hi - the number of times node i has been hit. For example, when the edge between

nodes I and 2 is scheduled, the number ofhits on node 2 will be equal to I.

The partial output obtained using the depth-first algorithm is shown in table RI.

69

Table B.1: The Depth-First Algorithm Partial Output for PERT etwork E ample

1- Model Thr ad II - E nl umb r 111 - pa ning vent

T - od] Thread E

j[- Tail Ev nt

ents - Time

In alendar

1 H ad vent

I II III IV V VI VII VIII

1 1 0 1 [.000,.000] 0 1 [2.0000,6.0000],node:,(1 2),3,nil.

1

1

1

1

1

1

2

3

4

5

6

7

a

0

a

0

0

0

2

3

4

5

6

7

[2.00,6.00]

[8.00,15.0]

[8.00,15.0]

[8.00,15.0]

[8.00,15.0]

[10.0,24.0]

1

2

3

2

2

3

2

3

4

4

5

5

[8.0000,20.000],node:,(2 3),3,nil.
[6.0000,16.000],node:,(2 4),3.nil.
f5.0000, 15.000J,node:,(2 5),3,nil.
[6.0000,16.000],node:,(2 4),3,nil.
[5.0000,15.000],node:,(2 5),3,nil.
[8.0000,15.000),node:,(3 4),2,nil.
f10.000,27.000],node:,(3 5),3,nil.
[6.0000, 16.000],node:,(2 4),3,nil.
[5.0000, 15.000],node:,(2 5),3,nil.
[1 0.000,27.0001.node:,(3 5),3,nil.
[5.0000, 15.000],node:,(2 5),3,nil.
[10.000,27.000],node:,(3 5),3,nil.
f11.000,24.0001,node:,(4 6),3,nil.
[10.000,27.000],node:,(3 5),3,nil.
f11.000,24.0001,node:,(4 6 },3,nil.
[11.000,24.000],node:,(4 6),3,nil.
[16.000,36.0001,node:,(5 6),3,nil.

1 8 0 8 [11.0,24.0] 4 6 [16.000.36.000],node:,(5 6),3,nil.

1 9 0 9 [16.0,36.0] 5 6 [22.000,43.000],node:,(6 7),3,nil.

1 10 0 10 [22.0,43.0] 6 7

39 173 169 8 [16.0,29.0] 5 6 [11.000,29.000],node:,(4 6),3,nil.

39 174 169 9 [16.0,29.0] 4 6 [22.000.36.000],node:,(6 7),3,nil.

39 175 169 10 [22.0,36.0) 6 7

40 176 168 7 [11.0,29.0] 4 6 [10.000,32.000],node:,(3 5),3,nil.

40

40

177

178

168

168

8

9

[11.0,32.0]

[17.0,44.0]

3

5

5

6

[17.000,44.000],node:,(5 6),3,nil.

[23.000,51 ..o00],node:,(6 7).3,nil.
I

40 179 168 10 [23.0,51.0] 6 7

70

,

The output shows threads 1, 39 and 40 only. The total numb r of threads for the

PERT example represented by e ent graph in Figure B.l produc s 40 threads. The above

model is also executed using the breadth-first algorithm and the output is shown in Table

B.2. It should be noted that the events in Table B.2 are not in the order that they were

executed. The order of execution is shown with the Event Number column.

Table B.2: The Breadth-First Algorithm Partial Output for PERT Network
Example

I - Model bread lJ - Ev nt limb r III - pawning ~vent

IV-Model Thread Events V -Time VI - Head nt

vn - Tail Event vnr - alendar

I II III IV V VI VII VIII

1 1 0 1 [.000,.000] 0 1 [2.0000,6.0000],node:,(1 2),3,nil

[8.0000,20.000],node:,(2 3),3,nil.
1 2 0 2 [2.00,6.00] 1 2 [6.0000,16.000],node:,(2 4),3,nil.

[5.0000,15.000l,node:.(2 5),3,nll.
[6.0000,16.000],node:,(2 4),3,nil.

1 3 0 3 [8.00,15.0] 2 3
[5.0000,15.000].node:,(2 5),3,nil.
[8.0000,15.000],node:.(3 4),2,nil.
[10.000,27.000].node:,(3 5),3,nil.
[6.0000, 16.000],node: ,(2 4),3nll.

1 6 0 4 [8.00,15.0] 3 4 [5.0000, 15.000].node:,(2 5),3,nil.
[10.000,27 .0001.node:,(3 5),3.nil.
[5.0000,15.000].node:,.(2 5),3,nil.

1 11 0 5 [8.00,15.0] 2 4 [10,000,27.000].node:,(3 5),3,nil.
[11.000,24.0001.node:.(4 6),3,nll.

1 18 0 6 [8.00,15.0] 2 5
[1 O.OOO,27.000],node:,(3 5),3,nil.
[11.000,24.0001.node:.(4 6),3,nil.

1 32 0 7 [10.0,24.0] 3 5
[11.000,24.000],node:,(4 6),3,nil.
[16.000,36.0001,node:,(5 6),3,nil.

1 60 0 8 [11.0,24.0] 4 6 [16.000,36.000],node:,(5 6),3,nil.

1 100 0 9 [16.0,36.0] 5 6 [22.000,43.000],node:,(6 7),3,nil.

1 140 0 10 [22.0,43.0] 6 7

25 53 28 7 [11.0,29.0] 4 6
I

(1 0.OOO,32.000j,node:,(3 5),3,nil.

25 90 28 8 [11.0,32.0] 3 5 [17.000,44.000},node:,(56),3,nil.

25 130 28 9 [17.0,44.0] 5 6 [23.000,51.000],node:,.(6 7),3,nil.

25 170 28 10 [23.0,51.0] 6 7

71

-~

'------------~------

40 98 58 8 [16.0,29.0] 5 6 [11.000,29.000],node:,(4 6),3,nil.

40 138 58 9 [16.0,29.0] 4 6 [22.000,36.000],node:,(6 7),3,nil.

40 178 58 10 [22.0,36.0] 6 7

Both the algorithms produce similar output which can be seen from Table B.1 and Tabl

B.2. Threads l, 39 and 40 of the depth-first algorithm are exactly same as threads 1 40

and 35 of the breadth-first algorithm. This further validates the accuracy of the breadth

first algorithm.

72

VITA ®
Nitin Agrawal

Candidate for the Degree of

Master of Science

Thesis: BREADTH-FIRST ALGORITHM FOR QUALITATIVE DISCRETE-EVENT
SIMULATION.

Major Field: Industrial Engineering and Management.

Biographical:

Personal Data: Born in Amravati, Maharashtra, India on April 8, 1977, son of
Satyanarayan Agrawal and Usha Agrawal.

Education: Graduated from Brijlala Biyani Science College, Amravati,
Maharashtra, India in May 1994; received Bachelor of Engineering
degree in Production from V. J. T. 1., University of Mumbai, Mumbai
in June 1998. Completed the requirements for the Master of Science
degree with a major in Industrial Engineering and Management at
Oklahoma State University in December 2003.

Experience: Employed as a graduate Teaching Assistant, School of Industrial
Engineering and Management, Oklahoma State University, August
2003 to December 2003. Employed as a graduate Research Assistant,
Oklahoma State Unjversity, School of Industrial Engineering and
Management, January 2002 to May 2003. Employed as an Assistant
Manager, Engine Assembly 3-Wheeler Division, Bajaj Auto Ltd.,
India, July 1998 to July 2001.

Professional Membership: Alpha Pi Mu and Kappa Phi Kappa.

~-----------......-----

