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Chapter 1

Introduction

Simulation is the modeling of processes and operations of real-world systems
over time. Simulation generates artificial data to predict the system’s behavior without
actually working with the real-world system. The system can be studied and analyzed
using the data generated by simulation. “Simulation is the promotion of idea that process
whose complete models are unknown can still be used as basis for computation,”
(Hocaoglu, 2003).

Simulation models are a representation of the actual system. These models require
information about the parameters or variables of the system that are used to model the
actual system. Traditional discrete-event simulation often uses probability distributions to
describe these parameters. The probability distributions are based on certain assumptions
by the modeler. Exact information about model parameters, such as the type of statistical
distribution, is often not available. Although it is standard practice to make assumptions
for these inputs in traditional discrete-event simulation, qualitative discrete-event
simulation has created the constructs to define model parameters qualitatively. For
example, if a customer arrives at a teller between 10:00 AM and 10:15 AM, then
traditional discrete-event simulation cannot be used for modeling without making certain
assumptions about the arrival time distribution for the customer. Traditional discrete-
event simulation might assume that the value of time when the customer arrives at the

teller is a random output from a uniform distribution with parameters of 10:00 AM and



10:15 AM. It is clear that the uniform distribution for arriva] time is an assumption. The
output obtained may not represent the true behavior of the system if the uniform
distribution assumption does not hold. This might lead to faulty analysis of the system.
Qualitative Discrete-Event Simulation (QDES) can be used to create models with fewer
modeling assumptions.

Simulation models are largely classified into two types depending on how time is
incremented. The two types are discrete-event simulation (DES) and continuous
simulation (CS). Discrete-event simulation is defined as one in which the state variables
change when an event occurs. In continuous simulation, the state variables change at
defined time intervals. Continuous simulation models are described by using a set of
differential or difference equations.

Qualitative Continuous Simulation (QCS) was first developed by Kuipers (1986).
Kuipers described QCS models based on qualitative differential equations (QDE).
According to Kuipers (1986), “Qualitative simulation systems produce the set of possible
behaviors by generating and filtering the set of possible transitions from one qualitative
state description to its successors. QCS is based on qualitative differential equation model
in which variables are continuously differentiable functions. The range of each variable is
defined qualitatively and it is a finite set of values on the real number line.” QCS models
start with initial values for the parameters. Successive states are derived continuously
until the simulation terminates or all the possible behavior of the models are generated.

Qualitative Simulation Graph Models (QSGM) were developed by Ingalls (1999).
QSGM is an alternative approach to the problem of Qualitative Discrete-Event

Simulation (QDES). By combining discrete-event simulation with qualitative simulation,



QDES is able to model discrete event systems where exact information is not available or
cannot be adequately quantified.

A QDES model uses imprecise specification of parameters such as the event
occurrence time and the state variables. The event occurrence time is represented using
an interval on the real-number line. When time is defined in real-valued intervals, it is
normal for the order of events that are scheduled to be executed to be uncertain. For
example, if the event occurrence time for one event is [3,5] and the event occurrence time
for a second event is [4,6], the order of execution for these two events is uncertain. When
this uncertainty exists, then the QDES creates a “branch™ or a “thread” for each
possibility. In the first thread, it is assumed that the event whose event occurrence time is
[3,5] is executed first. In the second thread, it is assumed that the event whose event
occurrence time is [4,6] is executed first. An individual thread is terminated when a
specified condition is met or when no additional events are scheduled to occur. The
simulation stops when all threads terminate.

The thread generation process generates a tree-like structure whose nodes are
represented by events. An algorithm that uses depth-first traversal to generate all possible
threads of the model has been developed by Ingalls (1999). The objective of this thesis is
to develop a breadth-first traversal of the threads so that all active threads can be
evaluated simultaneously.

In depth-first algorithms, the root node is determined first, then the child node of
the root is determined, then the grandchild is determined, and so on. The generation of
children continues on a single thread until the thread reaches the stopping condition.

During the process, sibling nodes are placed in a stack to be executed later. In breadth-



first traversal, all of the sibling nodes are determined and placed in a queue. Then each
sibling is taken out of the queue and executed. When a sibling node is executed, its
children are placed in the queue. Roughly speaking, the execution goes from one level of
the tree to another. This thesis proposes a breadth-first algorithm whose execution queue
is managed in such a way that the simulation clock time is nearly equal for all of the
nodes in the queue.

This thesis is organized into 6 chapters. Chapter 2 gives an overview of literature
in the field of qualitative simulation. Chapter 2 also introduces to the concept of
qualitative discrete-event simulation that was developed by Ingalls (1999). Chapter 2
concludes by defining the objective, purpose and scope of the thesis.

Chapter 3 describes the hypothesis and different phases of the thesis. Chapter 4
discusses the depth-first methodology developed by Ingalls (1999) and the breadth-first
methodology that is proposed. Chapter 5 demonstrates the breadth-first algorithm
implementation and provides an in depth explanation of the newly developed algorithm
with the validation of the output. Chapter 6 summarizes the thesis and provides an insight

into future research that could be done in the field of QSGM.



Chapter 2

Literature Review

Most real-world systems that change with time are so complex that they cannot be
modeled mathematically. However, most of these systems can be modeled using
simulation. According to Banks (1998), simulation is used to describe and analyze the
behavior of a system. Simulations models help analyze the design of real-world
operations and processes without building actual systems. This allows an analyst to
answer what-if questions about the real system. Simulation models also help determine
constraints and problems that could be faced by real-world systems before the actual
system is in place, thereby saving a considerable amount of time and money. Efforts can
be directed to solve the problems and to overcome the constraint during the system
design phase. Simulation studies or models can be built for both existing and non-existing
systems. Simulation models are widely used in manufacturing systems, queuing system,
scheduling, material handling systems, capital investments decision making, cash flow
analysis and supply chain modeling. Numerous applications of simulation in different

fields make it a powerful modeling tool.

2.1. Classification of Simulation Models

Cellier (1991) have defined three types of mathematical models, which are:
* Continuous-time models
* Discrete-time models

¢ Discrete-event models



In continuous-time models, the state variables change their values continuously
with time. Continuous-time models are represented using a set of differential equations
for the variables that are differentiable with time. Conceptually, time is an analog
variable and the simulation clock is advanced in sufficiently small steps in such a way
that continuous time is approximated.

Discrete-time models are represented through a set of difference equations. In
discrete-time simulation, the time is divided into discrete time steps and simulation clock
is advanced by a fixed clock increment that is sufficiently large to make it noteworthy.

Discrete-event models change the state variables values only when something
significant has occurred. As in continuous-time models, time is a continuous variable.
What differentiates discrete-event models from continuous time models is the assumption
that nothing significant occurs between two events.

Similarly, simulation can also be classified in two broad categories based on
above distinction of mathematical models, which are:

1. Continuous-time simulation.

2. Discrete-event simulation.

2.1.1. Continuous-Time Simulation

In continuous-time models, the state of the simulation model is defined by dependent
variables that change their values continuously over time. In Banks (1998), the state
variables of continuous-time simulation models are represented in one of the following
three ways:

* Functional form, in which the state variable is represented as a function of

time and other system variable. For example, x=f(y, ¢).



e Difference equations in which the state variable is represented as a difference
in values from one time unit, 7 to next time unit, /+1. For example, x;+;/=a x, +
b y,.

¢ Differential equations.For example, dx/dt = f{y, t).

The state variables in a continuous-time simulation model are dependent on the
time. In continuous-time models, time is typically considered as an independent variable,
which is represented as ¢ in above examples. Neelamkavil (1987) states that the
simulation of a continuous system generates one or more numerical solutions which
satisfy the differential equations defining the model for given initial condition using
standard numerical method. These solutions satisfy the differential equations that define
the model.. The initial values of the state variables are initialized at the starting point in
time. These values are used as inputs to the differential equations which determine a new
set of values when the simulation progresses to next point in time, that satisfy the set of
equations, using numerical analysis procedure. Banks (1998) attributes the complexity in
continuous time simulation models to following reasons:

¢ Randomness involved in the variables used to define the equations.

e Changes occurring in the equations used to define the models due to the

continuous change of the equations coefficients.

2.1.2. Discrete-Event Simulation

In discrete-event simulation, variables change their values only when an event occurs.
Discrete-event simulation models are both stochastic and dynamic in nature. Discrete-
event simulation captures dynamic system behavior by evaluating how the entities and

the activities in the simulation interact with each other. For example, in a single-server



system where a server s€rves a customer, the entity is the customer and one of the
activities is the customer being served by the server. Events occur at the beginning and
completion of each activity. In our example, an event occurs when the customer starts the
service that is performed by the server. The next event occurs when the customer leaves
the system when the service is complete. The state of the customer remains unchanged
between start and end of the customer service by the server. The simulation clock
advances at each event. When service begins, the simulation time is set to the time when
the service is scheduled to begin. When the service ends, the simulation time is advanced
to the time when the service is scheduled to end.

In cases where good quantitative information exists, quantitative analysis methods
are most appropriate and efficient to study and analyze the models. However, if good
quantitative information is not available or information is incomplete, then qualitative
simulation may be a better methodology for modeling and analyzing the systems under

study.

2.2. Qualitative Simulation (QS)

“Simulation solves problems executing their model on computers using numeric
information, but QS uses simulation’s model execution approach for reasoning task”,
(Hocaoglu, 2003). QS is a reasoning technique which solves problems by deriving useful
inferences from models having considerably less information than is usually required to
analytically solve the problem.

Hamscher et al. (1995) uses “boiling of water on stove” as an example to explain
the QS technique. To write a program that could predict the behavior of the “boiling

water” system, one would write a computer program to solve a set of differential



equations that would explain the relationship between the temperature of water, volume
of water, specific heat of water, bumer temperature, heat transfer coefficient, temperature
of the air, height of pot above sea level, and other parameters. Traditional continuous
simulation could have been used to analyze this model if the modeler could specify the
exact form of functions explaining the relationship between the model parameters, the
precise value of the parameters in those functions and the initial values of the variables.
Traditional simulation would result in a solution that would explain the behavior of the
system. However, there are times when the modeler does not know about the precise
nature of the equations. Also, there is a question of which parameters need to be included
and which parameters can be excluded from the model. For example, the modeler may
not want to include the altitude of the pot. Also, the exact values of the initial conditions
such as the temperature of the air and the temperature of water may not be known.
However, qualitative information about the parameters may be available. An example of
qualitative information for the boiling water example is given below:

1. The burner temperature is greater than boiling point of water.

2. The initial temperature of water is between 0°C and 100°C and the

temperature of water is increasing.

QS can be used to predict the behavior of such systems. The three different
behaviors of this system would be water is heated to boiling point from time 0 to some
time ¢, water is boiling from time ¢, to time ¢, and finally there is no water from time ¢ to
infinity. The example does suggest some important properties of QS. First, it can work
with less precise information. Second, it does not assume precise values of the variables

to solve the model as compared to traditional simulation models.



One of the early pioneers of QS is Kuipers (1986). Most of his work is based on
the qualitative differential equation model (QDE). “QDE is an abstraction of an ordinary
differential equation, consisting of a set of real-valued variables and functional, algebraic
and differential constraints among them. QDE model is qualitative because the values of
variables are described in terms of their ordinal relations with a finite set of symbolic
landmark values, rather than in terms real numbers and functional relations are described
as increasing or decreasing over particular ranges, rather than specifying it in functional
form.” (Kuipers, 2001). The QS technique described by Kuipers (1986) is used to solve
continuous time models and it is referred to as Qualitative Continuous Simulation (QCS)
in this thesis.

QCS generates all the possible behaviors of the system. This gives the decision
maker the ability to choose from multiple options available to him for decision making.
QCS described by Kuipers (2001) starts with a qualitative model and a qualitative
description of the initial state. QCS uses an interval in the set of real numbers to define
qualitative state variables. Kuipers (1986) describes the following inputs to the QCS
algorithm using the “boiling water example”:

* A set of functions in the system. For example, a function describing

relationship between temperature of the water and the burner.

* A set of constraints applied to the function variables. For example, “change in

water temperature” is a derivative of “change in bumer temperature” over

time.
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e An ordered set of symbols representing landmark values associated with each
function. For example, temperature of water varies in the range of 0° C to
infinite.

e The initial conditions at time 7, for all functions and variables. For example,
initial temperature of water is intialized between 0° C and boiling point of
water. The temperature of the water is also increasing.

With these input values, the possible direct successors of the current state
descriptions can be predicted using the qualitative description of the current state. The
process is repeated to produce a graph that describes all of the qualitative states of the
system. The result of the QCS is one or more qualitative behaviors for the functions and
symbols. The qualitative behavior of the boiling water model consists of the following:

e Sequences of distinguished time points of the systems behavior. For example,

the temperature of water is increasing at £y = 0, water starts boiling at time ¢,,
and water evaporates completely at some time 7.

e Qualitative state description of the system between adjacent time points for
each function and variables. For example, between time ¢, and 7, the
temperature of water is increasing and is between boiling point of water and
infinity.

The QSIM software is developed by Kuipers (1986) for executing QCS models
represented using differential equations. Farquhar et al. (1994) has prepared the manual
for the QSIM tool. The QSIM software for solving qualitative continuous time models
uses all of the traits of the QCS algorithm developed by Kuipers (1986). The software

also compares alternative approaches that are produced. The algorithm starts with a set of



constraints abstracted from a set of differential equations. Kuipers (1986) proved that the
QSIM algorithm produces a qualitative behavior corresponding to any solution that
would have been produced by the original set of differential equations. He also
demonstrated that the qualitative simulation algorithm might produce spurious qualitative
behaviors which do not correspond to any feasible output of the original set of differential
equations.

QSIM executes the QCS model by deriving descendants of each qualitative state.
The process of deriving descendants is repeated until all of the possible qualitative states
are predicted. Kuipers (2001) suggested that the algorithm must ensure that all possible
qualitative value transitions and their combinations are predicted. Also, combinations of
qualitative values are deleted when they are inconsistent with the feasible output of the
original set of differential equations.

Qualitative continuous simulation using qualitative differential equations for
modeling physical systems has been developed and is practically applied to modeling
physical systems. Wyatt et al. (1995) compared qualitative and quantitative simulation
using a case study model of the interactive markets for housing and mortgages. They
showed that the data or information required for qualitative simulation is considerably
less in comparison to the data required for the quantitative simulation. Also, they claimed
that quantitative simulation tends to hide some of the true behavior of the system by
making invalid and impractical assumptions. One such assumption is about the interest
rate. The interest rate for the mortgages is kept constant in the quantitative simulation
model to keep model simple. This assumption in model will certainly affect the realism

as the interest rate keeps on changing thereby hiding the true behavior of the system.



A combination of qualitative and quantitative simulation using numeric intervals
to represent incomplete quantitative information is suggested by Berelant et al. (1997).
They demonstrated that the combination would overcome the shortcomings of qualitative
simulation by using the strengths of both techniques. All these studies focused on

continuous models and did not consider discrete-event models.

2.3. Qualitative Discrete-Event Simulation (QDES)

To solve and analyze discrete-event simulation models with qualitative
parameters, another approach to QS was developed by Ingalls (1999) that combines QS
with discrete-event simulation. Ingalls defines the Qualitative Simulation Graph Model
(QSGM), which is implemented with Qualitative Event Graphs (QEGs). QSGM is an
alternative approach to the problem of Qualitative Discrete-Event Simulation (QDES).
Bulitko et al. (2003) presented an alternative methodology to support a qualitative
simulation of temporal concurrent processes using Time Interval Petri Nets. The
methodology is similar to one defined by Ingalls (1999). It uses time intervals to
represent uncertainty in inputs and outputs, similar to temporal intervals defined by
Ingalls (1999). The next section briefly describes QDES methodology.

Ingalls (1999) extends the application of DES to systems for which accurate
quantitative information is missing by introducing the qualitative description of time,
delays, and state variables. Event execution time is defined using intervals in set of real

numbers called temporal intervals. Two types of temporal interval defined by Ingalls

(1999) are:
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e Constant Intervals: “A constant interval is an interval whose value must be the
same throughout the entire thread of the simulation, i.e. it is assumed that the
actual values of the variable is a constant that lies somewhere in an interval.”

e Uncertain Intervals: “An uncertain interval is an interval whose value could be
different every time that the interval is evaluated.”

For example, in a “single server system,” the arrival time and service time are
described as any value in the range of some time ¢; and f,. These temporal intervals are
modeled as uncertain intervals and their representation is [¢,, £;]. During the execution of
a traditional DES, a random sample would be taken that would be in this interval. The
type of distribution defined for representing the arrival time is based on the assumptions
made by the modeler, which may include fitting a distribution to past data. The
assumption of the statistical distribution on the interval is not necessary with QDES,
which allows the modeler to model and analyze systems with fewer modeling
assumptions.

QDES approach differs from the QS models defined by Kuipers (1986) in
following ways:

* Definition of the model — QDES is implemented using the qualitative
simulation graph methodology (QSGM) while QCS uses qualitative
differential equations.

* QDES is targeted to solve models that come under the umbrella of discrete-

event models while QCS are used to solve physical models based on

continuous-time models.
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The execution approach followed by both QDES and QCS models are similar as
both methodologies proceed by predicting possible direct successors of the current state.
The process is repeated to produce a graph that describes all qualitative states of the
system. Each path starting from the root gives all possible qualitative behaviors of the
system.

QSGM generates threads, which are also called envisionments that characterize
all possible behaviors. “Coverage is an important advantage of the QDES approach
because it does not miss outcomes that a sampling based approach like traditional DES
might with a finite sample size.” (Ingalls, 1999) The generation of threads increases
exponentially with the complexity of the model being executed. This exponential
explosion of threads creates a run-time issue with the algorithm on large models. This
1ssue 1s considered a key research topic by Ingalls.

Ingalls (1999) implements thread generation using a depth-first algorithm that
completely finishes one thread while putting additional threads on a stack to be executed
at a later time. This approach is very efficient in the case where all threads need to be
executed. However, Ingalls envisions situations where criteria could be included in a
model that would differentiate threads by some objective. The depth-first generation of
threads is not efficient in the case of an objective that requires a comparison of all active
threads. In order to accomplish this goal, a breadth-first algorithm for thread generation
and simulation execution would need to be developed.

The breadth-first algorithm described in this thesis provides an opportunity to
evaluate the threads simultaneously and eliminate “unimportant” threads. Eliminating

some threads may reduce the run time and thereby allow modelers to solve more complex
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models. The breadth-first algorithm will enable researchers to solve more realistic and

complex models and help to further develop QDES methodology.

2.3.1. Qualitative Discrete-Event Simulation Framework

Modeling methodology based on combination of Event Graphs and qualitative
Simulation, called the Qualitative Simulation Graph Methodology (QSGM), is used to
implement qualitative discrete-event simulation. QSGM uses the event graph construct to
define QDES models. Figure 2.1 shows event graphs construct with a scheduling edge

and an edge execution condition.

» ¢ —
k

Figure 2.1: Event Graph with a scheduling edge and an execution edge condition,
(Ingalls, 1999).

Events A and B are represented as nodes and edge connecting nodes indicates the
relationship between the two events. The event graph framework shown in Figure 2.1
illustrates that if event 4 occurs and scheduling condition (i) is true at that instant, then
event B will be scheduled to occur ¢ time units later. If edge execution condition (j) is true
! time units later then event B will be exccuted with the state variable array n set equal to
values in array k (Ingalls, 1999).

As an example of a QSGM, consider the example of a single machine queuing
system. In this example, when the job arrives at the machine, if the machine is idle then
the machine starts processing the job immediately. Otherwise, the job joins the queue and
waits for the machine to become available. When the machine becomes available, the job

1s delayed for the machining time. Upon completion of the job, the machine is made

16



available for another job. In this example, the buffer capacity is assumed to be infinite.

The event graph for single machine example is shown in Figure 2.2.

[3.81 Q>0
S>0
= =Q+1 —O- S=1
S:]D e =Q E=E+1

E=0
Figure 2.2: Event Graph for single machine example, Ingalls (1999).

The nodes RUN, ENTER, START and LEAVE are events which represent the
following:

RUN - the starting event that starts the simulation.

ENTER - the arrival of the job in single machine queue system.

START - the job starts its processing at the machine.

LEAVE — the job completes its processing and exits.
The state variables are defined as:

Q — the number of jobs in the queue waiting for processing at the machine,

§ — the number of machines available for serving customers. For a single machine

system S can be equal to either 0, when the machine is busy, or 1, when machine

is idle,

£ — the number of jobs that have been processed and left the system.

For this example, all of the edge execution conditions are TRUE. The scheduling
conditions are represented on the edge connecting two nodes. In Figure 2.2, the

scheduling conditions are § > 0 and Q > 0. When the ENTER event occurs, then it will

17



schedule the START event without any delay if the scheduling condition § > 0 is true.
The condition S > @ is true if at least one server is available. Similarly, the scheduling
condition Q > 0 represents that the START event will be scheduled without any delay
only if Q > 0 when LEAVE event occurs. The condition Q > 0 is true if there are jobs in
queue waiting for machine to become available.

Temporal intervals are used for the edge delay times. The interval [3,8] on the
ENTER-ENTER edge represents the inter-arrival time between jobs. In this case, the
inter-arrival time between two jobs can be anywhere between 3 and 8. Similarly, the
interval [4,6] on the START-LEAVE edge indicates that the job completes its processing
on the machine after a delay of at least 4 and no more than 6.

Below each node is a set of equations that are used to evaluate the state change
variables. When the RUN event occurs, then the state variables are initialized to Q=0,
S=1I, and E=0. When an ENTER event occurs, then the number of jobs in the queue
increases by 1 (Q=Q+/). Similarly, when a new job starts its processing at the machine,
then the Q value is reduced by 1 (Q=Q-/) and the state of the machine is changed from
idle (§=1) to busy (S=0). When the job leaves the system after being processed then the
machine state is changed from busy to idle and the number of units that have exited the
system is increased by 1 (E=E+1).

The QSGM framework helps define the real-world system using the above set of
notations and modeling approach. The next section will discuss the execution of the

QSGM model using the framework defined above.
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2.3.2. Qualitative Discrete-Event Simulation Parameter Definitions

Banks (1998) explains that a discrete system model consists of some or all of the

following:
1.

2,

Model — Representing a real-world system.

Event — Occurrence of an event that changes the state of the system.

System State Variables — A collection of variables that represent or are used to
define what is happening in the system.

Entities — Entities represent objects that move through the system.

Attributes — Entities may have some values associated with them called
attributes.

Resources — Entities are served by the resources.

Current Event Calendar — A list that represents events that are scheduled to
occur at the current time of the simulation.

Future Event Calendar — A list that represents the events that are scheduled to
occur at some time in future.

Simulation Clock — Represents the current time of the simulation. The clock
time is advanced to the future time when an event is scheduled and the state

change of the system occurs.

Since QSGM is a derivation of the Simulation Graph Methodology (SGM)

introduced by Yiicesen and Schruben (1992), then QSGM does not have all of the

constructs defined by Banks. In particular, QSGM does not have entities and resources.

Also, attributes are defined as a list of values passed from one event to another.

Similar to traditional DES, the simulation clock time represents the current clock

time of the simulation and is a real-valued variable. The future events calendar forms a

19



sorted list of time-delayed events. The time-delayed events will not become active until
some future simulated time is reached. The first event on the future events list is event
that will occur next.

In QSGM, the simulation clock time is not represented as a real-valued variable,
but as a temporal interval. The future events calendar used in QSGM is a single list that
stores event notices. An event notice stores relevant information about the event that is to
be executed. The event notices are sorted by a mechanism that assures that the first event
notice on the calendar can possibly be the first event to be executed on the current thread.
(Ingalls, 1999) Each event notice has following set of values:

1. The time when event is to be executed.

2. The execution priority for event. (The priority of an event notice helps in

breaking a tie when two event notices have equal execution time.)

3. The node (event) to be executed.

4. The edge that scheduled the event notice.

5. The values of the edge attributes.

An example of an event notice is (/0,0], 1, START, ENTER-START, TRUE). It
states that START event is scheduled to occur at time /0,0 and was scheduled by the
ENTER-START edge. The edge execution condition for the event notice is TRUE. The
START event is executed when this event notice is removed from the future events
calendar.

As in DES, the QSGM future event calendar or list is also sorted in order of event
occurrence time, but the rules used to sort the list are based on interval math (Appendix

A). In QSGM, if the time for event notices 1 and 2 are defined as [t/ ¢,"] and [, 2],
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then the following conditions are evaluated in order to determine if 7; precedes 7, in the

future events calendar:

+

1. t; <tz

2. /<t

3. t7=tyand t;7 < t3'

In traditional discrete-event simulation, if there is more than one event on the
current events calendar, then the order of execution is determined arbitrarily based on the
type of algorithm used. In the QSGM, if two or more event notices could possibly
executed next, then QSGM generates a set of threads for all possible combinations of
event sequences. For example, if the two events 4 and B, with equal priority, are to occur
at time [¢,, t,'] and [, ¢, ], and it is not possible to determine if event A occurs first or
event B occurs first, then QDES will generate two threads. One will execute event A first
and the other will execute event B first. Ingalls (1999) defined the situation where the
execution order of multiple events is uncertain as a non-deterministically ordered set
(NOS). The members of the NOS are called non-deterministically ordered events
(INOEs). Each NOE becomes the next event to be executed a new thread. These threads,
which comprise all possible event orderings, allow QSGM to characterize all possible
behaviors of the system, which is the essence of QS.

QSGM execution is similar to traditional DES. A QSGM model is executed over
time by the mechanism that moves the simulated time forward. Since a temporal interval
is used to define time in a QDES model, interval math (Appendix A) is used to calculate

event times for the event notices in the future events calendar.
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Ingalls (1999) has also included the qualitative specification of state variables
such as the number of servers available. For example, if number of servers available in
the system at any given time is between 2 and 5 then it is stated as 2, 5]. The qualitative

specification of the state variables will not be considered in this thesis for simplicity.



Chapter 3

Research Methodology

3.1. Objective of Thesis

The objective of this thesis is to make a contribution to the field of qualitative
discrete-event simulation by developing a breadth-first algorithm for the Qualitative
Simulation Graph Methodology. An algorithm for solving qualitative discrete-event
models using breadth-first traversal methodology is implemented using the object-
oriented programming language, C++. Different models are executed using the algorithm
to check its validity and the output is verified with output generated by depth-first
algorithm presented by Ingalls (1999) in his dissertation.

With QSGM, Ingalls (1999) developed a simulation tool for solving discrete-
event models for which precise information is not available. However, the algorithm
developed by Ingalls (1999) uses depth-first traversal for solving QSGM models. This
thesis assumes that the model could also be solved using breadth-first traversal and
utilizes the advantages of breadth-first traversal algorithms. The depth-first algorithm
does not allow the modeler to analyze all the threads simultaneously as each thread is
executed until it reaches the stopping condition criteria. At any time during simulation
run, the depth-first algorithm can only depict the partial behavior of the system. This is so
because only certain threads are completely executed while other threads are waiting on

the stack or may not even have been determined. The breadth-first algorithm provides a

solution to the above problem.
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3.2. Scope and Limitations

The breadth-first algorithm developed will only considers uncertain intervals for
describing time delays in the system. Even though state variables can be defined
qualitatively, this thesis does not consider the qualitative definition of state variables. The

conceptual use of the breadth-first algorithm is discussed using hypothetical examples

only.

3.3. Hypothesis

As mentioned earlier, Ingalls (1999) developed the Qualitative Simulation Graph
Methodology (QSGM), as modeling framework for QDES. Ingalls (1999) developed a
depth-first algorithm for QDES execution that first executes the root node, then the
children of the root node, followed by the grandchildren of the root node, and so on until
the thread is complete. After the thread is executed, sibling nodes are executed until the
thread that they created is complete. Since the depth-first traversal of the nodes is
possible, the hypothesis is to show that breadth-first traversal of the nodes is also
possible.

Since QSGM is still in its very early stages, a set of algorithms and analysis
techniques that would make QSGM a useable tool for modelers is still being developed.
A breadth-first algorithm enhances QSGM so that it is more practical for modelers,
especially in the area of strategic decision-making.

The algorithm would allow modelers to inspect all threads that are active at a
particular time in the simulation and depending on their states. It would be possible to
terminate the simulation of threads that are less meaningful to the decision maker. By

removing less meaningful threads, the run-time of the algorithm can be reduced.
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Developing the breadth-first algorithm will require a data structure to store sibling
nodes, which will be created dynamically. These dynamically created sibling nodes will
represent all the possible nodes that can be executed. Each node corresponds to one
thread that is active in the simulation. Each node will be stored 1in this data structure and
be sorted with respect to the event execution time. The sorting of this data structure will
ensure that all of the threads in the data structure have their execution time very close to
each other.

The purpose of the newly developed breadth-first algorithm will be demonstrated
using a hypothetical example. Arbitrary criteria will be used to eliminate threads using
the breadth-first algorithm and the run time will be compared with the run time for depth-

first algorithm.

3.4. Thesis Phases

The thesis is carried out in discrete phases with each phase making progress
toward achieving the objective of the thesis.
Phase I: To Study Qualitative Discrete-Event Simulation

First phase of the thesis concentrates on understanding the concepts of QDES
approach that was developed by Ingalls (1999). The study of QDES methodology focuses
on understanding the Qualitative Simulation Graph Methodology modeling approach that
is used to describe models for QDES. The depth-first algorithm is used for solving or
executing the simulation.

Phase II: To Code the Depth-First Algorithm For QSGM

The depth-first algorithm developed by Ingalls (1999) is coded in Smalltalk. To

make this thesis possible, the QSGM algorithm has to be re-coded in C++. This phase 1s

)
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necessary as it will help to compare the output obtained from using the depth-first
algorithm developed by Ingalls (1999) and proposed breadth-first algorithm.
Phase I11: To Develop the Breadth-First Algorithm
Third phase focuses on developing the proposed breadth-first algorithm for
solving or executing QDES models. The algorithm is coded in C++ using Visual Studio
6.0 environment. The developed code is tested with examples described by Ingalls
(1999).
Phase IV: To Validate the Breadth-First Algorithm
The output of the proposed algorithm is validated by comparing the output from
depth-first algorithm since the output from both the algorithms must yield the same
results.
Phase V: To Show the Purpose Of The Breadth-First Algorithm Using An Example
A hypothetical example is used to show the purpose of developing the breadth-
first algorithm. The example will limit the number of active threads in the breadth-first

algorithm to a smaller number and reduce the run time for the algorithm.
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Chapter 4

Depth-First Algorithm Review

The framework discussed in the Chapter 2 is based on the Qualitative Simulation
Graph Methodology. With the framework and parameter definition, the depth-first
approach for the QDES developed by Ingalls (1999) will be discussed using the “single

machine system’ example.

4.1. Depth-First Methodology
The execution of QSGM resembles traditional DES to some extent. Ingalls (1999)
developed the depth-first algorithm to execute QSGM models. The following definitions
of parameters are necessary to understand steps in the depth-first algorithm.
L — the future events calendar, which is an ordered set of event notices.
8§ — the set of state variables. In the single machine system example the state
variables are S (the number of available servers), O (the number of jobs waiting in
the queue), and E (the number of jobs that have exited the system).
H — the set of saved states. A saved state consists of the global event calendar L
and the state variable array §. This set is used to recurse through all possible states
in the simulation. H is also known as the stactk.
Ny — the non-deterministically ordered set (NOS). This set contains the event
notices that can possibly be executed.

h — the number of saved sets in H.

n;, —the variable to iterate through the N, set.
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With the previously defined parameters, the steps in depth-first algorithm developed by

Ingalls (1999) are as follows:

1.

2.

10.

11.

Initialize the saved state set and counter, H =& and & = 1.

Initialize the global simulation clock to time # = [0,0].

Insert one or more event notices into the event calendar, L, that could be
executed at time [0,0].

Determine the NOS N, the set of all event notices that could be executed
next.

If the number of events that can be executed next equals to 1 (|Vy] = 1) then go
to step 9 else go to step 6.

Initialize the variable to loop through Ny, = 1.

Save the state of the simulation by saving the state variable information, S,
and the future events calendar information, L, in the save-state stack,
H,={S,L} and increase the save-state counter, i = h + 1.

SetI=(N,_ ),  and remove event notice / from the global event calendar L.
L=L\{l|1= (N, ), }- Gotostep 10.

Remove the first event notice / from the global event calendar L. Since the
global events calendar is sorted according to the event execution time, the first
event notice on the calendar is one that would be executed next.

If the execution edge condition evaluates to FALSE then go to step 16, else go
tostep 11.

Determine the possible new simulation clock time. The new simulation time is

calculated as follows. Suppose current simulation time is represented by [f.,
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12.

13.

14.

15.

16.

17.

18.

t.] and event time by {z.’, #."] than new simulation clock time ¢* would be

[max(Z., &), min(r,” V1 eL)].

Update the simulation clock time #=t .

Assign attributes to appropriate state variables.

Evaluate the state change.

Schedule further events. Schedule all events that are connected to edges with

the current event if the scheduling edge condition is TRUE. The scheduled

events are the events that will occur afler delay times that are represented by

temporal intervals on top of respective edges. Assign all attribute values to the

new event notice for the scheduled event with the event time calculated by

adding delay time to the current simulation clock time using interval math

(Appendix A).

Stop simulation of the thread if any of the following condition is true:

e Simulation clock time exceeded simulation stop time defined by the
modeler, or

® The simulation stopping condition defined by the modeler is evaluated as
TRUE, or

® The global event calendar L is empty.

If the saved state stack is empty, which is shown by h = ], then terminate the

simulation.

Increment ny.;= np.r+ 1. If nyy <|Nj| then go to step 8.

Restore the last saved system state values that have been stored in step 7. h =

h—1,L=(L|Linset Hy),S=(S|S inset H,). Go to step 8.

29



The algorithm developed by Ingalls (1999) is discussed with the help of the single
machine system example. The stopping condition defined for terminating the simulation
is when number of jobs that have left the system equals 5. Simulation stop time is set to

infinity, since we do not want to stop the simulation until the number of exits equals 5.

4.2. Output of Depth-First

The partial output for the single machine system is presented in a graphical tree
form in Figure 4.1. Complete output is shown from Ingalls (1999).

The oval shapes in Figure 4.1 represent the nodes. First line of each node
indicates the event executed and current simulation clock time. The lines following the
first line inside the node show event notices in global events calendar. The event notices
in Figure 4.1 represent the time when the event executes, its priority, the node that will be
executed next, and value of state variables S, O, and E. The edges that schedule the nodes
are not shown in the output. The nodes are numbered arbitrarily and do not necessarily

represent the sequence in which the nodes will be reached or executed.

4.3. Depth-First Methodology Explained With Example

The depth-first approach for the QSGM starts by initializing the model parameters

or variables to initial values. Initially the saved state stack H is empty and the variable h
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is set equal to 1. In step 2, the simulation clock time is set to [0,0]. The first event
scheduled to occur at time [0,0] is a RUN event, which is inserted in the global events
calendar L. In step 4, the NOS N, will have only the RUN event notice as it is the only
event that can be executed next. In step 5, since [Vx| = 1 the execution moves to step 9. In
step 9, the RUN event notice is removed from L. RUN event does not have any edge
execution condition and is always evaluated as 7RUE. The simulation clock time is
determined as [0,0] in step 10 and updated. The RUN event updates the list of state
variables to values, S = I, Q = 0, and E = 0. The RUN event schedules an ENTER event
because the edge scheduling condition is TRUE on the edge RUN-ENTER. Since the
edge RUN-ENTER does not have any delay, the event execution time for ENTER is [0,0]
and the variables are given the values § = /, Q = 0, and £ = 0. The event notice inserted
in the calendar is (/0,0], 9, ENTER, RUN-ENTER, TRUE). In step 16, simulation
stopping condition evaluates to FALSE, since simulation clock time is less than stopping
time, £ # 5, and events calendar is not empty. Hence the stopping condition for this
thread is false and simulation goes to step 4.

Since the ENTER event is the only event contained in the global event calendar,
L, it forms the NOS and is the only event that can be executed next. The ENTER event
notice is removed and the execution condition is evaluated as TRUE. The simulation
clock time is updated to [0,0]. The state change is evaluated using the equation Q = Q +
I and state variables are updated to § = 1, Q = /, and E = 0. Two edges emanate from

ENTER node and therefore two events are scheduled on the events calendar as follows:
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e The START event, which is scheduled without any delay since the scheduling
edge condition (5 > 0) evaluates TRUE because § = /. The event notice inserted
in the calendar is (/0,0/, I, START, ENTER-START, TRUE).

e The ENTER event (the edge ENTER-ENTER does not have any scheduling
condition), is scheduled after a delay of [3,8]. The event time is calculated using
interval math, which adds the delay time of [3,8] to current simulation clock time
of [0,0] resulting in an event time of [3,8]. The event notice inserted in the event
calendar is (/3,8/, 9, ENTER, ENTER-ENTER, TRUE).

In step 16, the stopping condition evaluates false and the execution moves back to step 4.

Next, the event START is executed, the simulation clock time # is updated to [0,0]
and the state change is evaluated using equation Q = O - 1 and § = 0. This changes state
variablesto S = 0, Q = 0 and E = 0. The START event schedules a LEAVE event after a
delay of [4,6]. The LEAVE event is scheduled to occur at time [4,6] and now the events
calendar has two notices on it:

e (/3,8], 9, ENTER, ENTER-ENTER, TRUE)

e ([4,6], 9, LEAVE, START-LEAVE, TRUE)

Step 16 evaluates stop condition to be false and a simulation execution goes to step 4.

At this point in step 4, it is impossible to determine the order of the events on the
calendar because the execution times of the two event notices intersect with each other
and the priorities of the two event notices are equal. The algorithm will create a thread for
each event by executing each event first. Both events are in the set N, and |V4| = 2. Since

Vil is not equal to 1, the variable ny is set to 1 and the execution goes to step 7.
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Simulation state is saved in the saved-state stack, H; = {§,L} and the counter / is
incremented to 2.

First, event notice ENTER is removed from the global events calendar L. The
edge execution condition is TRUE and the new simulation time is calculated in step 11.
Since the current simulation time is [0,0] and the execution time of the events are [3,8]
and [4,6], the simulation clock time set to [max(3,0), min(8,6)] = [3,6]. Since the ENTER
event occurs before the LEAVE event in this particular thread, it is necessary that the
ENTER event occurs in time [3,6] since it cannot occur after the LEAVE event. State
changes are evaluated and state variables are updated to S = 0, Q = /1, and E = 0. The
ENTER event is scheduled to occur after a delay of [3,8]. The START event cannot be
scheduled because the scheduling edge condition § > 0 is FALSE. The process continues
until the stopping condition of £ = 5 is TRUE for this thread. As the thread executes, the
saved state stack is adding events that will be taken off of the stack and executed as new
threads at a later time. Following the steps in the algorithm, the execution will reach the
node labeled E7 in Figure 4.1. The node labeled £/ indicates end of thread 1. At the end
of thread 1, the values of the state variablesare S = /, Q = 2 and £ = 5.

As thread 1 progresses, there are several more events placed on the stack, H, and
h is incremented accordingly. At some time in the future, these events will be taken off
of the stack and A will be decremented until it is again set to 2. At that time, the LEAVE
event that was placed on the stack is ready to be taken off.

At that time, Step 17 increments n,.; by 1 and the value of n,_; = 2 is equal to |Ny|.
Since the saved state stack is not empty at this point, the simulation state is restored in

step 18. Now, the current simulation time is be [0,0], the state variables are S = 0, 0=0
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and E = 0. The global events calendar L will have the following event notices with the
LEAVE event to be executed first (since ENTER event has already executed first in the
previous thread):

e (/3.8], 9. ENTER, ENTER-ENTER, TRUE)

o (/4,6], 9, LEAVE, START-LEAVE, TRUE)

Simulation moves to step 8 where the LEAVE event is removed from the events
calendar and execution continues until the terminating condition in step 16 is satisfied. At
the end of the simulation all leaf nodes of the tree will have £ = 5 and the saved state
stack H will be empty.

This algorithm executes one thread until its stopping condition is reached and then
the next thread i1s executed. The process goes on until all possible threads of the system

are generated. Hence this algorithm is termed the “depth-first” traversal methodology.

35



Chapter 5
Breadth-First Algorithm Design And Implementation

5.1. Breadth-First Approach

The QSGM algorithm can also be implemented using a breadth-first traversal of
the simulation nodes. A breadth-first traversal examines all firsts of the sibling trees
before it examines any child tree (Weiss, 2000). Breadth-first traversal will cover all of
the same threads that the depth-first traversal covered. The problem with the breadth-first
traversal is that it cannot be defined recursively. The recursive nature of the depth-first
algorithm gives it a speed advantage over breadth-first if all threads are generated. The
breadth-first algorithm carries the overhead to continuously manage swapping in and out
of nodes for all the active threads.

The depth-first algorithm is executed recursively until all of the threads are
executed and the stopping condition is reached. In order to follow the breadth-first
traversal, all the sibling nodes will be executed before traversing through the child nodes.
This could help modelers to keep track of the each possible state and each possible option
that is available. For example, in the single machine problem, the modeler may be
interested in knowing the completion time of the first job under every possible thread or
condition. In breadth-first algorithm, it will be possible to know the state of the
simulation at each important landmark in all possible threads. This cannot be easily

determined in the depth-first traversal. In the depth-first algorithm, the state of all of the



threads at certain point in simulation can only be determined only after the simulation has

completed.

5.1.1. Implementation Approach

As with all recursive algorithms, the depth-first algorithm goes through two
distinct phases. The first phase is building up the stack. A stack is built in the memory
when the function calls itself. All variables are stored in a stack. The second phase is
unwinding the stack. The stored functions on the stack are removed last-in first-out and
the stack eventually becomes empty.

In the breadth-first algorithm, we propose to use a queue structure that will
contain the nodes (representing the threads of the simulation) that are to be executed. The
first node on the queue will be removed and executed. The execution of the node will
schedule new nodes. The newly created nodes will be inserted in the queue and sorted
according to the event execution time. The execution will be stopped when the queue is
empty.

The breadth-first algorithm will only consider uncertain intervals and not constant
intervals. “A constant interval is an interval whose value must be the same throughout the
entire thread of the simulation, i.e. it is assumed that the actual value of the variable is a
constant that lies somewhere in an interval,” (Ingalls, 1999). Ingalls defined an uncertain
interval as an interval whose value could be different every time that interval is
evaluated. In order to keep the algorithm simple, constant intervals and qualitative

definitions for state variables will not be considered.
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5.1.2. Designing Steps for Breadth-First Algorithm Approach

The depth-first approach algorithm serves as a guideline for developing the logic
for the breadth-first algorithm. Two more variables are defined for the breadth-first
algorithm. These two variables are:

BreadthFirstNode — A set that consists of the event notice to be executed next,
the state variable array, and the global events calendar to be used when the
event notice is executed.

BreadthFirstNodeQueue — The queue used to store BreadthFirstNodes.

Also, two variables changed their definition for the breadth-first algorithm. The
change is needed because the H set is no longer needed in the breadth-first algorithm.
Those two variables are:

N — the non-deterministically ordered set (NOS). This set contains the event
notices that can possibly be executed. Since H is no longer needed, there are
not multiple instances of this set.

n — the variable to iterate through the N set.

The steps based of the breadth-first algorithm are as follows:

1. Initialize the simulation clock to time #=[0,0]. Initialize the state variables to

their initial values in the state variable array §. Initialize the global events

calendar L to be empty.

2. Create an empty queue to store the BreadthFirstNodes, call it the

BreadthFirstNodeQueue.

Insert one or more event notices into the global events calendar, L, that could

be executed at time [0,0].
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4.

10.

11.

Create a BreadthFirstNode whose members are first event notice on the global
events calendar L, the current simulation time ¢, the set of state variables § and
the global events calendar L. Put it in the BreadthFirstNodeQueue.
Assign the current simulation clock time, ¢, to the simulation time stored in the
first BreadthFirstNode, the state variables, S, to the values of the state
variables stored in the first BreadthFirstNode, and the global events calendar,
L, the global events calendar stored in the first BreadthFirstNode. Remove the
first BreadthFirstNode from the BreadthFirstNodeQueue
Note: This step is equivalent to the step 18 of the depth-first algorithm
where the state of the simulation is restored. In the breadth-first algorithm,
the state of the simulation is restored every time a new node is removed
from the BreadthFirstNodeQueue.
If the execution edge condition evaluates to FALSE then go to step 15, else go
to step 7.
Determine the new simulation clock time f. The new simulation time is
calculated as follows: if current simulation time is represented by [¢t., ¢.'] and
event time by [z, t;] then the new simulation clock time ¢t = [max(¢., £.),
min(z." VI e L)].
Update the simulation clock time with the time calculated in step 7. =1 .
Assign attributes to the parameters of the vertex.
Evaluate the state change.
Schedule further events. Schedule all events that are connected with edges to

the current event if the scheduling condition is TRUE. Assign any necessary
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attribute values to the new event notice. Assign the event execution time by
adding the delay time to the current simulation clock time, f, using interval
math. (Appendix A)
12. Determine the NOS A, the set of all event notices that can be executed next
from the global events calendar. Set n= 1.
13. If n < |N] is TRUE then
for the event notice N,, evaluate the simulation time ¢’ when the event will
scheduled to occur. Suppose the current simulation time is represented by
[z, t.'] and the event notice N, event execution time by [#,, #,'], then the
time which &V, is scheduled to occur is #’ = [max(t,, t.), min(z, VI €L)].
else
go to step 15.
14. If any of the following conditions are true:
e The time which event N, is schedule to occur, t’, has exceeded the
simulation stopping time defined by modeler, or
e The simulation stopping condition defined by the modeler is evaluated
as TRUE, or
e The global event calendar L is empty.
then go to step 15,
Else
Copy the global events calendar, L, to a temporary calendar, C. Remove
event notice N, from C. Create a BreadthFirstNode with reference to

event notice N, whose members are N, the time at which event N, is
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Run
Initializes model structure, calendar and
random number generator. Sets
stopping condition and defines first
node or nodes to be executed.

StartTime_StopTime
Sets start time for simulation and insert
first node or nodes in the calendar.

A 4

BreadthFirstExecution
Executes the model using breadth-first
approach.

Figure 5.1: Procedures for Execution of QSGM Model

Before executing the algorithm, the user has to define the structure and the
functions of the model. The structure consists of defining nodes and edges of the QSGM
model and also the functions that are used when the events occur. The functions are
responsible for updating state variables. The following variables have to be defined in
order to describe the breadth-first algorithm.

globalCalendar — set of events that are scheduled to occur at some time in future.

The globalCalendar is set to be the calendar for the thread that is being executed.

event — the event notice being executed. Each event notice is a set whose elements

are the time at which the event will occur, the priority of the event, the event that

scheduled this event, the edge execution condition and the attributes that are

passed to the event being executed. The variables used to define the set are:
event.time — temporal interval indicating time when the event is scheduled to

be executed.

event.toMethod — event scheduled at event.time.
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event.priority — priority of the event.

event.executionCondition — a conditional statement that evaluates either TRUE
or FALSE. If it is TRUE, then event is executed.

event.attributes — attributes of the event.

globalC alendar.time — denotes current simulation time [t'f] for the current

thread.

stateVariableArray — array of all variables that represents state of the simulation.

In the single machine system example, the state variables are value of the server

(S), the queue (Q) and the exits (E).

startTimeValue — time interval representing start time of the simulation.

stopTimeValue — time interval representing the stop time of the simulation. The

simulation cannot go beyond stopTimeValue.

The time interval structure has variables szart and stop representing the beginning
and ending of the time interval respectively. For example, startTimeValue.start is the
beginning of the startTimeValue interval.

The QSGM algorithm starts with the user initiating the execution of the model by
calling the Run procedure. The Run procedure initializes model parameters and calls the
StartTime_StopTime procedure that starts the execution of the simulation by inserting

the first event or events into the calendar.

Procedure Run

Initialize the random number generator if required
Initialize the globalCalendar

Set the stopping conditions
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Define the first node or nodes to be executed (can be overridden in model
initialization)
Call StartTime_StopTime()

End Procedure Run

The Run procedure initializes the state variables of the model and defines the
structure of the simulation model for execution. Also, the general structure that is
required for any qualitative discrete-event model, like the random number generator (only
if required) for the model and the global events calendar, is initialized. It also defines and
stores the first event or events that are to be executed at the start of simulation. A call is

made to procedure StartTime_StopTime that executes the QSGM algorithm.

Procedure StartTime_StopTime(startTimeValue, stopTimeValue)
Set globalCalendar.time = startTimeValue
Insert first node or nodes to be executed into the globalCalendar
Call BreadthFirstExecution (first event on the calendar to be executed,
startTimeValue)

End Procedure StartTime_StopTime

The procedure StartTime StopTime sets the globalCalendar.time to
startTimeValue. The events that will be executed at the start of the simulation are inserted
into the globalCalendar.

In the depth-first algorithm developed by Ingalls (1999), the saved state stack is
used to store the simulation state as new threads are created. The state stack stores current
values of state variables array and the global events calendar. In the breadth-first

algorithm, threads are swapped in and out of execution so that the simulation clock time
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of all of the threads is nearly equal. In order the manage the swapping of threads into and
out of execution, a structure that holds certain information about each active thread is
required. The structure is called the BreadthFirstNode structure and for each thread, it
stores the global events calendar and the state variable array. BreadthFirstNodes are
stored in the BreadthFirstNodeQueue. The elements of the BreadthFirstNode structure
are:
The variables that are initialized to trace threads and events generated during the
execution of models are as follows:
eventNumber — represents the number of events that have occurred.
spawningEvent — denotes the number of the event that spawned or created this
thread.
modelThread — number of the model thread. Each thread has a using unique
number. The maximum value of modelThread represents the total number of
threads in the model.
model ThreadEvents — denotes the number of events within a model thread.
The variables for storing the information required to execute the simulation of the
thread are:
eventToBeExecuted — represents the event in the calendar that is scheduled to
be executed when this thread is executed next. If the NOS that generated this
BreadthFirstNode has more than one event, then there will be different
BreadthFirstNodes that represent the alternative sequences of execution.

calendarAssociated WithNode - represents the calendar that is associated with

this thread.
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stateVariableArray — stores the values of the state variables of the thread.

After initialization iIs complete, the procedure BreadthFirstExecution that
executes the QSGM model using breadth-first traversal is called using two parameters,
first event on the calendar and startTimeValue. The following variables are used in the
breadth-first algorithm.

BreadthFirstNodeQueue — queue for storing nodes of type BreadthFirstNode.

possibleEvents — array of events that form non deterministically ordered set

(NOS) of events that can be possibly executed next.

nextTime — the time of the simulation if a given event is executed.

Following functions are also used:

event.node(event.attributes) — executes the function associated with particular

event with parameter event.attributes if execution condition for the event is true.

The function schedules events and updates state variables.

executeEvent — boolean variable defined to store the result after evaluating the

execution condition of the edge.

tempCalendar — copy of globalCalendar.

index — temporary variable to keep count of the elements in possibleEvents array.

firstNode — variable of type BreadthFirstNode for storing the first node on the

BreadthFirstQueue queue.

IsSubsetOf(), min() and max() — interval math function defined in Appendix A.

The procedure Breadth FirstExecution is described using the flowchart shown in Figure

5.2.
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Start Procedure BreadthFirstExecutioD

v

( Set event=first event on globalCalendar q

Remove event from alobalCalendar

Create firstNode of type BreadthFirstNode W
Set firstNode.eventNumber=1
Set firstNode.spawningEvent=0
Set firstNode.modelThread= 1
Set firstNode.modelThreadEvent=1
Set firstNode.eventToBeExecuted = event
Set firstNode. calendarAssociatedWithNode = globalCalendar

—

Set firstNode.stateVariableArray = stateVariableArray
N _/
Set BreadthFirstNodeQueue = empty queue ‘
Add firstNode into BreadthFirstNodeQueue

Is BreadthFirstNodeQueue
empty?

Set firstNode=first member of the BreadthFirstQueue
Remove firstNode from the BreadihFirsiNodeQueue
globalCalendar=firstNode.calendarAssociatedWithNode
event=firstNode.eventToBeExecuted
stateVariableArray=firstNode.stateVariableArray

[ Set executeEvent=event.executionCondition J

Is executeEvent=TRUE?

| Call event. node(event.attributes) which schedules new events in qlobalcalendarJ

¥

Initialize possibleEvents=empty array of events
Set possibleEvents=set of events in globalClendar that could be executed next

Figure 5.2: Flow chart for Breadth-First Algorithm
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If size of possibleEvents = 1?

Yes

Set nextTime.start= max(possibleEvents[ 1].time.start, globalCalendar.time.start)
Set nextTime.stop=possibleEvents.time.stap

Y
[ event = possibleEvents[1] J

Remove event fram alobalCalendar

No If (event.time<stopTime .And.

Stopping Condition = False)?

r Set globalCalendar.time = nextTime ﬁ

Create tempNode of type BreadthFirstiNode

Set tempNode.eventNumber=firstNode.eventNumber + 1

Set tempNode.spawningEvent=firstNode.spawningEvent
Set tempNode.modelThread= firstNode. modeiThread

Set termpNode.modelThreadEvent=firstNode.modelThreadEvent+1
Set tempNode.eventToBeExecuted=possibleEvents[1]
Set tempNode. calendarAssociatedWithNode = globalCalendar
Set tempNode.stateVariabieArray = stateVariableArray
Add tempNode to BreadthFirstNodeQueue sorted in ascending order of

\ eventToBeExecuted. time J

> B

r Set index =1 ]

Figure 5.2: Flow chart for Breadth-First Algorithm (conti@ued)

48



No If index<=size of nossibleFvents?

Yes

A
r Set tempCalendar=globalCalendar 1

v

Set nextTime.start=max(possibleEvents[index].time.start,
globalCalendar.time.start)
set nextTime.stop=min(all possibleEvents.time.stop in the array of possibleEvents)

v

event = possibleEvents(index]
Remove event from tempCalendar
Set tempCalendar.time=nextTime

If event.time<stopTime .And.
Stopping Condition = False?

Create tempNode of type BreadthFirstNode
Set tempNode.eventNumber=firstNode.eventNumber+index

No

If index=1?

I Set tempNode.spawningEvent=firstNode.spawningEvent
Set tempNode.modelThread= firstNode.modelThread

L Set tempNode.spawningEvent=firstNode.eventNumber ]

Set temoNode.modelThread= firstNode.modelThread+index-1
v

Set tempNode.modelThreadEvent=firstNode.modelThreadEvent + 1
Set tempNode.eventToBeExecuted=possibleEventsfindex]
Set tempNode. CalendarAssociatedWithNode = tempCalendar
Set tempNode.stateVariableArray = stateVariableArray
Add tempNode to BreadthFirstNodeQueue, sorted in ascending order of
eventTonBeFxectited.time
= A
L index=index+1 }
[

Figure 5.2: Flow chart for Breadth-First Algorithm (contifnuied)
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The the procedure BreadthFirstExecution algorithm is called after initialization.

Two parameters are passed to this procedure and the pseudo code for the procedure are

discussed below.

Procedure Breadth FirstExecution (first event on globalCalendar, startTimeValue)
Start

Set event = first event on globalCalendar

Remove event from globalCalendar

// Create firstNode using parameters eventNumber, spawningEvent, modelThread,
modelThreadEvent, eventToBeExecuted, globalCalendar, stateVariableArray

Create firstNode of type BreadthFirstNode

Set firstNode.eventNumber = 1

Set firstNode.spawningEvent =0

Set firstNode.modelThread = 1

Set firstNode.modelThreadEvent =1

Set firstNode.eventToBeExecuted = event

Set firstNode.calendarAssociatedWithNode = globalCalendar
Set firstNode.stateVariableArray = stateVariableArray

//Add created node into the queue

Set BreadthFirstNodeQueue = empty queue for storing set of BreadthFirstNode
sorted in ascending order of eventToBeExecuted.time

Add firstNode into BreadthFirstNodeQueue sorted in ascending order of
eventToBeExecuted.time

While BreadthFirstNodeQueue is not empty
Remove firstNode from the BreadthFirstNodeQueue
Point globalCalendar to firstNode.calendarAssociated WithNode
Point event to firstNode.eventToBeExecuted
Set stateVariableArray = firstNode.stateVariableArray

//'Comment: Up to this point, the algorithm has removed the node from the
BreadthFirstNodeQueue to be executed and all of the values are assigned to the
global variables. This will execute the event using methods that are accessible by
global variables only. The purpose of copying node values to global values is that
multiple copies of the calendar have to be made while inserting new nodes into
the BreadthrF irstNodeQueue. Also the old node is to be deleted from the
BreadthF irstNodeQueue.

Set executeEvent — event.executionCondition
If executeEvent = TRUE Then
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/) Comment: If the event can be executed, then it will call the procedure that
would contain the logic to evaluate the state change i.e. changing the state of
the variable and/or scheduling further events that could occur after this event.
Events that are scheduled are placed in the globalCalendar.

Call event.node(event.attributes)

Else
Break out from While loop and check if there are nodes in queue.
// (i.e. go back to start of “While” loop.)

End If

// Comment: New nodes have to be added into the BreadthFirstNodeQueue based
on events that could be executed next using this calendar. For each possible event
that could be executed next a separate node has to be created and inserted in the
queue. The first thing after this is to determine events that are possible and could
be executed next after this event.

Initialize possibleEvents = empty array of events
Set possibleEvents = set of events in globalCalendar that could be executed next

// Comment: The next step is to determine the next time when the event could
occur.

If (size of possibleEvents = 1) Then
Set nextTime.start = max(possibleEvents[1].time.start,
globalCalendar.time.start)
Set nextTime.stop = possibleEvents.time.stop

// Comment: If this new event occurs and the stopping condition evaluates to
false then add the node into the queue with this event as a value to the variable
eventToBeFExecuted.

event = possibleEvents[1]
Remove event from globalCalendar
If (event.time < stopTime .AND. Stopping Condition = FALSE) Then
Set globalCalendar.time = nextTime
Create tempNode of type BreadthFirstNode
Set tempNode.eventNumber = firstNode.eventNumber + 1
Set tempNode.spawningEvent = firstNode.spawningEvent
Set tempNode.model Thread = firstNode.modelThread
Set tempNode.model ThreadEvent = firstNode.modelThreadEvent + 1
Set tempNode.event ToBeExecuted = possibleEvents[1]
Set tempNode.calendarAssociatedWithNode = tempCalendar
Set tempNode.stateVariableArray = state VariableArray
Add tempNode to BreadthFirstNodeQueue sorted in ascending order of
tempNode.eventToBeExecuted.time
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End If
Else

// Comment: Insert one node each for each event that could be possible to be
executed next.

For (index =1 to size of possibleEvents)
Set tempCalendar = globalCalendar
Set nextTime.start = max(possibleEvents[index] .time.start,
globalCalendar.time.start)
Set nextTime.stop = min(all possibleEvents.time.stop in the array of
possibleEvents)
event = possibleEvents[index]
Remove event from tempCalendar
Set tempCalendar.time = nextTime
If (tempCalendar.time < stopTime .AND. Stopping Condition = FALSE)
Then
Create tempNode of type BreadthFirstNode
Set tempNode.eventNumber = firstNode.eventNumber + index
If (index =1) Then
Set tempNode.spawningEvent = firstNode.spawning Event
Set tempNode.modelThread = firstNode.modelThread
Else
Set tempNode.spawningEvent = firstNode.eventNumber
Set tempNode.modelThread = firstNode.model Thread+index-1
End If
Set tempNode.modelThreadEvent = firstNode.modelThreadEvent + 1
Set tempNode.eventToBeExecuted = possibleEvents|[index]
Set tempNode.calendarAssociatedWithNode = tempCalendar
Set tempNode.stateVariableArray = stateVariableArray
Add tempNode to BreadthFirstNodeQueue, sorted in ascending order
of tempNode.eventToBeExecuted.time
End If
End For
End If
End While Loop

End Procedure Breadth FirstExecution

5.4. Explanation Of The Breadth-First Algorithm With An Example

Consider the single machine example in Chapter 2. The algorithm starts its
execution by calling the Run procedure. The globalCalendar is initialized with no event

on this calendar. The globalCalendar.time is set to the time [0,0]. The stopping condition
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is set to £ = 5. The event graph for this example is shown in Figure 2.2 shows that the
first event executed is the “Run” event. This node is stored in a variable that is used to
store the first event to be scheduled on the calendar. Then the execution passes to the
procedure StartTime_Stop Time.

The parameter, startTimeValue is equal to [0,0] and it indicates start time for the
simulation, and stopTimeValue is assigned a sufficiently large value nearly equal to
infinity and it indicates stop time for the simulation. These parameters are passed to the
StartTime_StopTime procedure. The globalCalendar.time is set equal to startTimeValue
= [0,0]. The RUN event is inserted in the global events calendar and the procedure
BreadthFirstExecution is called with two parameters, a pointer to the RUN event on the
globalCalendar and the starting time of the simulation, startTimeValue

Procedure BreadthFirstExecution controls the creation and execution of threads.
The first event is removed from the calendar and the variable event is assigned the value
of the first event. The next step is to create the first BreadthFirstNode, which is inserted
in the BreadthFirstNodeQueue. The BreadthFirstNode elements will be initialized to the
following values:

eventNumber = 1, spawningEvent = 0, modelThread = 1, modelThreadEvent = 1,

eventToBeExecuted = event, calendarAssociated WithNode = globalCalendar, and

stateVariableArray = stateVariableArray. The globalCalendar is now because its
only entry, the RUN event, has been removed and is stored in the variable
eventToBeExecuted. The stateVariableArray is assigned values of state variables

Q, Sand E. At the start of the simulation these values are Q=0 S=1and E =0.
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The newly created node is inserted into the BreadthFirstNodeQueue. Now, the
BreadihFirstNodeQueue queue has one member, the node representing the RUN event in
the first thread. Next, firstNode is assigned to the first member of the
BreadthFirstNodeQueue. firstNode is the removed from the BreadthFirstNodeQueue and
the globalCalendar 18 assigned to the firstNode’s calendar
(firstNode.calendarAssociatedWithNode). At this time, globalCalendar is empty because
the RUN event has already been removed from the calendar. The first event notice, stored
in the variable eventToBeExecuted, is assigned to the global variable event. The state
variables are Q, S and E, and their values 0, 1 and 0, respectively are copied from
firstNode.stateVariableArray. After all of the elements of firstNode are copied to local
variables, the event is executed if the edge execution condition evaluates to TRUE by
calling the edge execution function that is associated with the node. There is no
scheduling edge condition on the edge between the RUN node and the ENTER node
shown in Figure 2.2, so the edge execution condition is always TRUE. The RUN event is
executed by calling the function which handles scheduling of new events and updating
the state variables array. Execution of RUN event schedules an ENTER event at time
[0,0] and is represented as the root node of the execution tree in Figure 4.1. The event
notice (/0,0], 9, ENTER, RUN-ENTER, TRUE) is inserted in the globalCalendar. A
BreadthFirstNode node is created with the ENTER event as the event to be executed. The
node is inserted in the BreadthFirstNodeQueue.

The process continues and executes the ENTER event and START event (nodes 2
and 3 in Figure 4.1) with the same process as the RUN event. After the START event

(node 3) is executed, there are two possible events that could be executed next, an
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ENTER event and a LEAVE event. The order of the execution of these two events in
uncertain because the event occurrence time of these nodes overlap and they have the
same priority. The ENTER event is scheduled for time [3,8] and the LEAVE event
scheduled for time [4,6]. Because of this overlap, the algorithm creates two
BreadthFirstNodes. The first node has ENTER event as the eventToBeExecuted and the
second node has the LEAVE event as the eventToBeExecuted. Both nodes are inserted in
the BreadthFirstNodeQueue. These two nodes are represented as nodes 4 and 10,
respectively, in Figure 4.1.

When both BreadthFirstNodes are in the BreadthFirstNodeQueue, the first node
removed from the BreadthFirstNodeQueue has the ENTER event as the
eventToBeExecuted. When this event is executed, a node with the LEAVE event (node 5
in Figure 4.1) and a node with the ENTER event (node 9 in Figure 4.1) will be added to
the BreadthFirstNodeQueue. At this point, a total of 3 nodes are in the
BreadthFirstNodeQueue, nodes 5, 9 and 10.

The next BreadFirstNode to be executed will be node 10 because it has the
earliest possible execution time and was in the BreadthFirstNodeQueue before node 5.
Therefore, the execution follows the path 1, 2, 3, 4, 10, 5, 9, 11, 6, and so on. A partial
execution sequence of this model is given in Table 5.2. The sequence occurs because the
BreadthFirstNodeQueue is ordered by the execution time of the nodes.

The BreadthFirstNodeQueue queue is always sorted in ascending order of the
event execution time. This is done to keep the simulation clock time of each thread
approximately the same. The simulation clock time and state variables in each of the

thread at some point of time in simulation is shown in Table 5.1.
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In Table 5.1, the BreadthFirstNodesQueue was examined at a point in time in the
simulation run. It shows that the BreadthFirstNodeQueue has 49 threads and that the
execution times of those threads intersect with each other. Although a counter example
can be shown to prove that this intersection does not always occur, it is expected that the
intersection of execution times will occur often.

Table 5.1: Simulation clock time and state variables at some point in simulation.

Model Model

Thread Time S| Q E Thread Time S| Q E
1 16  24] |0]1]3 26 [16 18] |0[2]|2
2 [16 26] |[0[1]3 27 [15 18] |0[2]2
3 [14 18] |0]2]2 28 [15 18] [0[2|2
4 [14 28] |0[/0[3 29 15 18] |0]|2|2
5 [14 26] |0[0[3 30 [16 30] [0[0|3
6 14 18] [0[1[2 31 [16 28] (0/0[3
- 7 15 24] [0/1]3 32 [16 26] {0]|0]3
8 [14 20] |0[2]|2 33 [16 28] [0]0|3
9 15 30) (0[/0|3 34 [16 24] [0/0|3
10 [15 28] |0[0|3 35 [16  26] |0/0]|3
11 [15 26] |0[0]3 36 [16 28] |0/ 0[3
12 [15 28] |0/0|3 37 M6 26] [0[0]|3
13 15 18] |0|2]|2 38 [15 24] |0|1]|3
14 [15 18] [0[2]|2 39 16 24] |0|1]3
15 [15 24] [0(1]3 40 [16 20] |0|2|2
16 [17 24] [0[1]3 41 [16 18] |0]|2|2
17 [M6 20] [0[2]|2 42 (16 20] |0[2]2
18 [16 26] [0]1]3 43 [16 26] [0|1]|3
19 [17 20] [(0[/0|3 44 17 20] |0[/0]|3
20 14 18] [0[2]|2 45 [16 24] |0][1]3
21 14 20] |0]|1]2 46 17 20] |0]2]2
22 [14 18] |0|1]|2 47 17 26] [0]1]3
23 [14 22] [0]1]2 48 [17 24] |0|1]3
24 [14 20] [0]1]2 49 18 20] |0]|0|3

25 [16 18] |0[2[2
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Table 5.2: Partial output for single machine example using breadth-first algorithm

[ - Model Thread [ — Event Number [II - Spawning Event
IV- Model Thread Events V — Time VI - to Method
S - Server Q - Queue E - Value of Exits

X - Calendar

1 | o [m v | v vi[s|olE X
Start Time: 07/24/2003 04:14:09
1 1 0 1 _{[.00000, .00000] begin| 1 0 0 |[.000,.000],enter,nil,999.,].
| [.000,.000],start,nil,1.
1 2 0 2 |[.00000, .00000]|enter| 1 1 0 |[3.0000,8.00],enter,nil,999.
[3.00,8.00],enter,nil,999.
1 3 0 3 |[.00000, .00000]| start| O 0 0 |[4.0000,6.00],leave:,-1,999.
‘ [4.00,6.00],leave:,-1,999.

3.0000, 6.0000] |enter| O 1 0 |[6.0000,14.0],enter,nil,999.
2 5 3 4 |[4.0000, 6.0000] |leave:| 1 0 1 |[3.00,8.00],enter,nil,999.
[4.00,6.00],start,nil 1.
1 6 0 5 |[4.0000, 6.0000] [leave:| 1 1 1 |[6.0000,14.0],enter,nil,999.

| [4.00,6.00],leave:,-1,999.
3 7 4 5 |[6.0000, 6.0000]|enter| O 2 0 |[9.0000,14.0],enter,nil,999.
[7.00,16.0],enter,nil,999.
2 8 3 5 |[4.0000, 8.0000] | enter| 1 1 1 |[4.0000,8.00],start,nil,1.
‘ [6.00,14.0],enter,nil,999.
1 9 0 6 |[4.0000, 6.0000]|start| O | O 1 |[8.0000,12.0],leave:,-1,998.
[6.00,6.00],start,nil,1.
3 10 | 4 6 |[6.0000, 6.0000] |leave:| 1 2 1 |[9.0000,14.0},enter,nil,999.
[7.00,16.0],enter,nil,999.
2 11 3 6 [[4.0000, 8.0000]| start | O 0 1 |[8.0000,14.0],leave:,-1,999.
[8.00,12.0],leave:,-1,999.
1 121 0 7 |[6.0000, 12.000] |enter| O 1 1 _|[9.0000,20.0],enter,nil,999. |
4 13| 9 7 |[8.0000, 12.000] [leave:| 1 0 2 |[6.00,14.0],enter,nil,999.
[9.00,14.0],enter,nil,999.
3 14 | 4 7 |[[6.0000, 6.0000] [ start | O 1 1 |[10.000,12.0],leave:,-1,999.

=0
i
o
N

[19.0,38.0].enter,nil, 999.
1 [561] 0 | 17 |[20.000, 30.000] lleave:| 1 | 1 | 5 |[20.000,30.0]start,nil,1.

[36.0,36.0],start,nil, 1.
893 |2328|2174| 23 |[36.000, 36.000] |leave:| 1 7 5 |[[39.000,44.0],enter,nil,999.
| [36.0,36.0],start,nil, 1.
894 |12329(2176| 23 [[36.000, 36.000] [leave:| 1 7 5 |[39.000,44.0],enter,nil,998.
[36.0,36.0],start,nil, 1.
895 [2330(2178| 23 [[36.000, 36.000] [leave:| 1 7 5 |[39.000,44.0],enter,nil,999.
[36.0,36.0],start,nil, 1.
| 896 (2331|2179 23 [36.000, 36.000] |leave:| 1 7 5 [[39.000,44.0],enter,nil,999.
[37.0,38.0],start,nil, 1.
897 |2332|2182| 23 [37.000, 38.000] |leave:| 1 7 5 [[40.000,46.0],enter,nil,999.
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5.5. Validating The Output

Using the information in Figure 4.1 and Table 5.2, it is shown that the breadth-
first algorithm works as expected. The output of the breadth-first algorithm should also
match the output of the depth-first algorithm. The output was obtained for the single
machine system example shown in Figure 2.2 for both algorithms. Both algorithms
generated 897 threads for this example, and that matched the number of threads obtained
from a similar example used by Ingalls (1999). Also, the output from the breadth-first
algorithm was compared event-by-event to the output of the depth-first algorithm, and all

of the events were included in both outputs.

5.6. Run-Time Comparison

Literature exists that claims that depth-first traversal algorithms are faster than
breadth-first traversal algorithms. In the breadth-first algorithm, since all the nodes are
stored in the memory at the same time, there are large memory requirements. (Weiss,
2000) The models that were run where the same exact output is given for both the depth-
first and breadth-first algorithms showed that the depth-first algorithm is always faster. In
particular, for the single machine example discussed previously, the execution times on
an Intel Pentium 4, 1.6 GHz for the depth-first and the breadth-first algorithms are 6
seconds and 13 seconds, respectively.

However, since the breadth-first algorithm traverses across the tree, the simulation
model is able to track all active threads at any given point in time. Because of the
availability of all active threads, the modeler could decide that some threads are “less

valuable” than other threads. In that case, the breadth-first algorithm has the ability to
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terminate these “less valuable” threads without running them to completion. The decision
to terminate a thread early is based on using decision criteria defined by the modeler.

Additional ~coding is needed to eliminate threads from the
BreadthFirstNodeQueue. The elimination step is added after a node is added to the
queue. If the number of nodes on the queue exceeds the desired number, then the nodes
on the queue are compared using the decision criteria and the node performs the worst
against the decision criteria is removed from the queue. This step ensures that the number
of nodes on a queue does not exceed the desired number, thereby limiting the number of
active threads at any point in the simulation.

To show the speed advantage of being able to eliminate unwanted threads, the
single machine server example is run with a change in the stopping condition for the
simulation. In particular, the stopping condition is changed from £ = 5 to £ = 8, which
means that an individual thread will be complete when the number of jobs processed is
equal to 8. This experiment will be run for the depth-first simulation to completion. This
experiment will also be run for the breadth-first simulation where the number of active
threads is arbitrarily limited to 50, 100, 200, 400, and 1000. The experiment will show
that, if the modeler is able to design a decision criteria that will eliminate threads, there
are speed benefits to the breadth-first algorithm. Also, the output will be focused more
on the areas in which the modeler is interested.

In the Table 5.3, the output from the experiment shows tremendous time savings.
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Table 5.3: Run Time (Seconds) for Single Machine Example (E = 8)

Depth-First Breadth- Breadth- Breadth- Breadth- | Breadth-
First First First First First
99383 50 Active 100 Active 200 Active | 400 Active 1000
Threads Threads Threads Threads Threads Active
Max Max Max Max Threads
Max
716 4 7 13 31 116

Run Time Function for Breadth-First Aigorithm for Number of Active Threads
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Figure 5.3: Run Time Function for Breadth-First Algorithm

Table 5.3 also shows a trend of the increase in runtime as the number of active
threads increases. A chart of this run-time increase is shown in Figure 5.3. This chart also
shows that a second-order polynomial perfectly fits the data in Table 5.3. With this
polynomial (0.00007x2+ 0.0457x+1.5218), we can estimate the number of active

threads that would have the same run-time as the depth-first algorithm that generates all
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of the threads. Based on the fit, the breadth-first run-time with 2,885 active threads

would be approximately the same as the depth-first run-time.

5.7. Additional Advantages Of The Breadth-First Algorithm

One of the issues with the depth-first algorithm is that model size is restricted due
to the amount of memory needed to manage the stack. For single machine model, the
depth-first algorithm with £ = /0 as the stopping condition generated more than
1,000,000 threads which causes the recursion stack to overflow and stops the execution
after nearly 3 hours. However, by using the breadth-first algorithm and restricting the
number of nodes in the BreadthFirstNodeQueue to some number that would reduce the
memory requirements of the model, the model could run and produce some results. The
loss of information due to eliminated threads could be minimized by developing effective
decision or thread elimination criteria.

Developing decision rules would be a challenge for a modeler. But it would be
worth the effort because the information obtained using QS models is much more
valuable when compared to traditional simulation models. This value would come from
collecting information that is relevant, instead of random threads generated by the
traditional simulation models. Also, eliminating unimportant threads would reduce the
complexity in output analysis by allowing the modeler to concentrate on small number of
important threads.

Ingalls (1999) has described the thread scoring technique for assigning scores to
threads. He used thread scores to rank threads based on relative likelihood of their event
execution sequence. He suggested using the thread scoring technique to eliminate threads

that are less likely to occur thereby reducing the number of threads from the output of
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QDES models. He also suggested that the thread explosion problem makes it difficult to
get meaningful information from the output and makes output analysis difficult. The
depth-first algorithm can be used for making a comparison of thread scores only after the
simulation has terminated, while the breadth-first algorithm provides an opportunity to
compare and eliminate low-scoring threads thereby reducing the run time of the
algorithm. This thesis provides a mechanism for eliminating threads using decision

criteria and thus reduces the run time for the algorithm.
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Chapter 6

Summary and Future Research

6.1. Research Summary

The objective of the thesis is to develop the breadth-first algorithm for solving
Qualitative Simulation Graph Models (QSGM) models. The algorithm traverses the
nodes across the tree before the nodes below the tree. The algorithm enhances the depth-
first algorithm developed by Ingalls (1999), by traversing the child nodes of the tree
before the sibling nodes. The breadth-first algorithm developed is presented and
explained in Chapter 5 using the pseudo code algorithm. QSGM, developed by Ingalls
(1999), is used as modeling framework used for describing the models. The algorithm is
coded in C++ using Visual C++ 6.0. The output obtained using the breadth-first
algorithm is tested and compared with the output from the depth-first algorithm. The
comparison of the output obtained validates the breadth-first algorithm. The parameters
defined to trace the events and threads in the output shows that the breadth-first algorithm
traverses nodes across the tree before going in to the depth of the solution tree. An
additional model is built to test the validity of the algorithm and the output obtained from
both the algorithms is compared. The output obtained from both the algorithm is exactly
same (Appendix B).

The breadth-first algorithm uses a queue structure to store the sibling nodes. Each
and every thread in the simulation is executed in such a way that each thread’s simulation

clock time is nearly equal. The reason for this is that the queue is sorted in ascending



order of simulation clock time. This may be important to the modeler in making decisions
during simulation. Also, the active threads can be evaluated and compared to other
threads in the simulation at any point in time, which is not possible with the depth-first
algorithm. The comparison of the threads based on a certain set of decision rules at
certain point in the simulation may help to eliminate threads that are unlikely to give any
valuable information. One such example that uses arbitrary decision criteria for
comparing and eliminating the threads is explained in Chapter 5. The example shows the
importance of developing the breadth-first algorithm because it helps to improve the
performance by reducing the run time using the thread elimination criteria. Also, the
breadth-first algorithm reduces the complexity of the output by reducing the number of
threads and allowing the modeler to concentrate threads that provide meaningful
information.

The thesis accomplishes its objective by developing the breadth-first algorithm for
solving qualitative simulation graph models. The algorithm provides the capability to
compare all the active threads at some point in the simulation and eliminate the *“less
valuable” threads using decision criteria. An example is used to show that elimination of

the “less valuable” threads resulted in reduction of the run time of the algorithm.

6.2. Future Research

This thesis only considered the uncertain intervals for defining qualitative time in
the simulation. It did not consider constant intervals whose value must be the same
throughout an entire thread in the simulation. The breadth-first algorithm can be further

developed to include the logic for handling constant intervals.
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This thesis does not define the state variables qualitatively. The algorithm can be
developed to allow definition of the state variables qualitatively. This may increase the
number of threads and the run time of the algorithm, but it would provide flexibility in
defining of the modeling parameters.

One of the major concerns of the qualitative simulation algorithms is execution
time. Threads can explode exponentially and the execution time for the qualitative
simulation can be very long. It is clear that one of the benefits of breadth-first simulation
is the use of decision criteria to eliminate active threads. In future research, effective
decision criteria can be designed which can be used to compare and evaluate the threads
in qualitative simulation. With effective decision criteria, unimportant threads can be
terminated thereby reducing the run time for the algorithm. Thread scoring techniques,
such as those suggested by Ingalls (1999), can also be developed to eliminate the
unimportant threads. The breadth-first algorithm provides the groundwork for such type
of future research by providing a tool to solve QDES models. Algorithms that use parallel
processors and multithreading can be developed to execute QSGM models to reduce the
run time of the models.

The QSGM methodology developed has not received much attention in practical
applications. This thesis attempts to provide an alternative tool for solving QSGM models

which might allow QSGM to be developed for practical applications.
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Appendix A. Interval Math

Consider two interval a=[a',a+] and b=[b",b"].

Function Result of the function
b Assign (a=b") and (a’=b")

[atb Evaluates to [a+b7, a’+b]
a-b Evaluates to [a™-b, a'-b ']
a*b Evaluatesto[a * b,a *b']
a IsSubsetOfb | True if ((a>b") and (a'<b")) else False
max(a,b) Evaluates to [max(a’,b’),max(a’,b")]
min(a,b) Evaluates to [min(a’,b’),min(a’,b")]
a<b True if (a'<b’) else False
aequaltob True if (a=b") and (a'= b")) else False
Midpoint(a) Equals to ((a+a"')/2)

Source: Ingalls (1999) Page 25.
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Appendix B. PERT Network Example

The breadth-first algorithm is also validated using the PERT (Program Evaluation
and Review Technique) network problem in addition to the single machine server
example discussed in the thesis. The PERT example discussed here is a simple network
with 7 nodes. The event graph representation of the PERT network is shown in Figure

B.1.

H,=0 Hi=H,+1
Hy=0
Hy=0
H=0
H.=0
Hs=0

Hy=Hs+1

Figure B.1. PERT Network Event Graph
The nodes are labeled from O to 7 and the scheduling edge conditions are
represented on the edges. The state variables are defined as H;, fori =1 to 6.
Hj; - the number of times node i has been hit. For example, when the edge between
nodes 1 and 2 is scheduled, the number of hits on node 2 will be equal to 1.

The partial output obtained using the depth-first algorithm is shown in table B.1.
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Table B.1: The Depth-First Algorithm Partial Output for PERT Network Example

[ - Model Thread

I

V- Model Thread Events V

Event Number

Time

V1 - Head Event

VII - Tail Event VI - Calendar
plom | m v v vi | v Vil
+| 1| 0 1 ][000,.000] | 0| 1 |[2.0000,6.0000],n0de:(1 2 )3,nil.
[8.0000,20.000],node:.( 2 3 ).3.nil.
1| 2| o] 2 |[200600]| 1| 2|[6.000016.000]node- (2 4 )3.nil.
[5.0000.15.000].node-.( 2 5 ),3.nil.
[6.0000,16.000],node:.( 2 4 ).3.nil.
[5.0000,15.000].node-.( 2 5 ),3.nil.
T 3 0} 3 [BO0ISOTI 21 3 15'0000,15.000] node- (3 4 ).2.nil,
[10.000.27.000]. node- ( 3 5 ).3.nil.
[6.0000,16.000],node-.( 2 4 ),3.nil.
1| 4| o| 4 |[800150]| 3| 4 |[5000015000]node (25 )3ni
[10.000,27.000],node:,( 3 5 ),3,nil.
[5.0000,15.000],n0de-.( 2 5 ).3.nil.
1/ 5| ol 5 |[8001501| 2| 4 |[10.000.27.000]node-(3 5 )3ni.
[11.000.24.000].node-.( 4 6 ).3.nil.
[10.000,27.000],node:.( 3 5 ),3.nil.
] 6] 0| 6 B00IS0I 21 51 114'000.24.000] node-( 4 6 ) 3.nil.
[11.000,24.000],n0de-.( 4 6 ).3.nil.
7] 9] 7 10024011 31 5146 00036.000] node-( 5 6 ).3.nil
1] 8| o 8 [[11.0240]| 4| 6| [16.000,36.000]n0de:(5 6 ).3.nil.
1| 9| ol 9 |[16.036.0]| 5| 6 |[22.00043.000]n0de: (67 )3.nil.
1| 10| o] 10| [220430)| 6| 7
39| 173|169 | 8 |[16.0,20.0]| 5| 6 |[11.000,29.000]node:,( 4 6 ),3,nil
39 (174 | 169 | 9 |[16.0,20.0]| 4| 6 |[22.000,36.000],node:,(6 7 )3,nil
39 [ 175 | 169 | 10 | [22.036.0]| 6| 7
40 (176 | 168 | 7 |[11.029.0]| 4| 6 |[10.000,32.000]node:.(3 5 ),3,nil.
40 (177 | 168 | 8 |[11.0320]| 3| 5 |{17.000,44.000],n0de:(5 6 ),3,nil.
40 | 178 | 168 | 9 |[17.044.0]| 5| 6 |[23.000,51.000]node:(6 7 ),3,nil.
40 | 179 | 168 | 10 | [23.051.0]| 6| 7
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The output shows threads 1, 39 and 40 only. The total number of threads for the
PERT example represented by event graph in Figure B.1 produces 40 threads. The above
model is also executed using the breadth-first algorithm and the output is shown in Table
B.2. It should be noted that the events in Table B.2 are not in the order that they were
executed. The order of execution is shown with the Event Number column.

Table B.2: The Breadth-First Algorithm Partial Output for PERT Network

Example

| — Model Thread IT — Event Number [1I - Spawning Event
V- Model Thread Events V — Time VI — Head Event
VII — Tail Event VIII - Calendar

[ I 1} v Vv Vi | VI Vil

1 1 0 1 | [.000,.000] | O 1 [2.0000,6.0000],nede:,( 1 2 ),3,nil

[8.0000,20.000],node:,( 2 3 ),3,nil.
1 2 o 2 | [2.00,6.00] | 1 2 [6.0000,16.000],node:,( 2 4 ),3,nil.

_ [5.0000,15.000],node:,( 2 5 ),3,nil.
[6.0000,16.000],node:,( 2 4 ),3,nil.
[5.0000,15.000],node:,( 2 5 ),3,nil.
[8.0000,15.000],node:,( 3 4 ),2,nil.
[10.000,27.000],node:,( 3 5 ),3,nil.
[6.0000,16.000],node:,( 2 4 ),3nil.

1 6 0 4 |[8.00,15.0]1 | 3 4 [5.0000,15.000],node:,{ 2 5 ),3,nil.

[10.000,27.000],node:,( 3 5 ),3.nil.

[5.0000,15.000],node:,( 2 5 ),3,nil.

1 11 0 5 | [8.00,15.0] | 2 4 [10.000,27.000],node:,( 3 5 ),3,nil.

 [11.000,24.000],node:,{ 4 6 ),3,nil.
[10.000,27.000],node:,( 3 5 ),3,nil.
[11.000,24.000],node:,{ 4 6 ),3,nil.
[11.000,24.000],node:,( 4 6 ),3,nil.

1 3 0 3 |[8.00,15.0] | 2 3

1 18 0 6 |[8.00,15.0]| 2 5

1132 | 07 /[100240]| 3 | 5 [16.000,36.000] node:.( 5 6 ).3.nil.
160 0 | 8 |[(11.0240]| 4 | & [16.000,36.000],node:,( 5 6 ),3,nil.
1 1100| o | 9 |[16036.0]| 5 | 6 [22.000,43.000],node:,( 6 7 ),3,nil.
1 140 | 0 |10 |[220430]| 6 | 7

25|53 | 28 | 7 |[11.0290]| 4 | 6 [10.000,32.000},node:,( 3 5 ),3,nil.
25 | 90 | 28 | 8 |[11.03201| 3 | 5 [17.000,44.000),node:,( 5 6 ),3.nil.
25 1130 | 28 | 9 |[17.0440]| 5 | ® [23.000,51.000],node:,( 6 7 ),3.nil.

25 | 170 | 28 | 10 | [23.0,51.0] | 6 7
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40 | 98 | 58 8 [[16.0,29.0] | 5 6 [11.000,29.000],node:,( 4 6 ),3,nil.

40 | 138 | 58 9 |[16.0,29.0] | 4 6 [22.000,36.000],node:,( 6 7 ),3,nil.

40 | 178 | 58 | 10 | [22.0,36.0] | 6 7

Both the algorithms produce similar output which can be seen from Table B.1 and Table
B.2. Threads 1, 39 and 40 of the depth-first algorithm are exactly same as threads 1, 40
and 35 of the breadth-first algorithm. This further validates the accuracy of the breadth-

first algorithm.
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