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Abstract 

Ensemble data assimilation at convective-scales will need to solve a number of 

scientific and technical issues prior to being usable for operational numerical weather 

prediction.  This research contributes to this goal by first comparing the Local Ensemble 

Transform Kalman Filter (LETKF) to the Ensemble Square Root Filter (EnSRF) to 

examine whether either method consistently produces more accurate analyses and 

forecasts.  Second, multi-scale data assimilation strategies are explored to improve the 

analysis of complex environmental conditions and subsequent convective forecasts.   

While theoretically the LETKF and EnSRF filters should behave the same for 

ideal systems, a comparison between the serial and simultaneous filters has not 

previously been explored at the convective-scale where significant non-linear effects are 

present.  Observing System Simulation Experiments (OSSEs) are first used to compare 

the assimilation systems for the analysis and forecast of a supercell thunderstorm.  Both 

the EnSRF and LETKF produce reasonable analyses from the Doppler velocity and 

reflectivity observations of the true supercell.  Small improvements in analysis errors 

and system noise from the LETKF simultaneous update do not significantly impact the 

subsequent forecasts.  This result is consistent across a range of localization length 

scales and is independent of the manner in which localization is applied.  Tests 

comparing the EnSRF and LETKF for a real-data case also have small differences.  The 

magnitudes of these differences are similar to those that arise from the sampling 

variability associated with a finite ensemble.  Overall, the results suggest the EnSRF 

and LETKF approaches are equally capable methods for radar data assimilation at 

convective-scales. 



xxx 

A multi-scale data assimilation framework is developed for an ensemble 

assimilation and prediction system using the Weather Research and Forecasting (WRF) 

model and the Data Assimilation Research Testbed (DART).  A CONUS mesoscale 

model domain, with 15 km horizontal grid spacing, provides the boundary conditions 

for a nested convective-allowing model grid (3 km horizontal grid spacing).  The WRF 

grids and the DART data assimilation toolkit are used to create analyses and forecasts 

of the convective environment and a tornadic storm on 13 June 2010.  This case was 

chosen because it represents a complex mesoscale environment and storm evolution that 

was not captured well with conventional observations or WSR-88D radars. Thus, this 

case presents a challenging event to analyze and predict, and demonstrates the benefits 

of multi-scale data assimilation for generating initial conditions for convective-scale 

ensemble forecasts.  Several aspects of multi-scale DA cycling are investigated through 

comparisons of ensemble forecast performance relative to a control 6-hourly cycled 

analysis system.  Results indicate that increased cycling frequency improves forecasts 

of the mesoscale storm environment and convection.  The addition of radar observations 

in hourly DA cycling leads to further improvement in forecast skill, which is tied to 

better forecasts of the outflow boundary from overnight convection and subsequent 

convective evolution.  Lastly, the initial conditions for the multi-scale data assimilation 

cycling system are found to have an impact on the characteristics of the near-storm 

environment.   
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Chapter 1: Introduction 

 

 

1.1 Motivation 

Accurate and reliable forecasts of convection remain an elusive challenge.  There is 

an obvious societal need for convective forecasts, particularly for severe convection that 

has the potential to cause damage.  The National Oceanic and Atmospheric 

Administration (NOAA) is currently researching the operational potential of 

convective-scale numerical weather prediction via the assimilation of Doppler radar and 

other fine-scale observations into high-resolution models.  This program, called Warn-

on-Forecast, focuses on explicit prediction of convective storms to extend severe 

weather warning lead times using analyses and forecasts from convection-allowing 

ensemble modeling systems (Stensrud et al. 2009, 2013).  

In the past decade, advances in data assimilation for convection have 

substantially improved the initial conditions and subsequent forecasts (e.g., Snyder and 

Zhang 2003; Aksoy et al. 2009).  However, a number of challenges limit the success of 

data assimilation on convective-scales and progress toward overcoming them is 

required for the Warn-on-Forecast mission to be successful (as discussed in Stensrud et 

al. 2013).  The focus of this dissertation is on two data assimilation challenges: 

determining the data assimilation method that produces the best analyses; and 

improving the analysis of the environmental conditions to include the accurate 

representation of mesoscale features.   



2 

Since Doppler radar data assimilation is a relatively new research area (Snyder 

and Zhang 2003), the methods used to assimilate observations are still being developed, 

and the efficiency and accuracy of different data assimilation techniques on the 

convective-scale need to be investigated.  The Ensemble Kalman filter (EnKF; Evensen 

1994) methods are obvious candidates because of their demonstrated ability to 

assimilate radar and other observations of convection.  For example, EnKF assimilation 

of synthetic Doppler radar observations has been successful in retrieving unobserved 

variables (e.g., Snyder and Zhang 2003; Zhang et al. 2004; Tong and Xue 2005; Potvin 

and Wicker 2013).  The EnKF has also been successfully used to assimilate real 

Doppler velocity and radar reflectivity factor (referred to hereafter as reflectivity) 

observations (e.g., Dowell et al. 2004; Aksoy et al. 2009; Dawson et al. 2012; Potvin et 

al. 2013).  Major advantages of EnKF methods include the production of initial 

conditions for ensemble forecasts, and ease of implementation relative to four-

dimensional variational techniques (Caya et al. 2005; Wang et al. 2008a; Wang 2011).  

Both data assimilation studies in this dissertation employ EnKF methods. 

The essence of the EnKF data assimilation method is the use of an ensemble to 

provide flow-dependent estimates of the background error covariances.  There are 

several different approaches to implementing an EnKF algorithm.  EnKF approaches 

(that do not perturb observations) are equivalent when the ensemble priors and 

observations have Gaussian errors and no localization is applied.  In real applications, 

however, these conditions are not met (due, e.g., to model error and non-linear 

observation operators) and the specific implementation of the EnKF can impact the 

analysis.  The choice of “assimilation pattern”, meaning the choice of whether to 
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assimilate all observations simultaneously (Evensen 1994) or sequentially (Houtekamer 

and Mitchell 1998) is an important part of the EnKF algorithm.  The sequential and 

simultaneous assimilation patterns are not equivalent when covariance localization is 

applied (Ehrendorfer 2007) and/or when the observation operators are nonlinear.  The 

method used to apply covariance localization is also an important consideration.  The 

two most common approaches are “B-localization” or “covariance localization”, 

applying a localization function to the background error (Houtekamer and Mitchell 

2001), and “R-localization” or “observation localization”, applying an inverse 

localization function to the observation error covariance (Hunt et al. 2007).  Several 

previous studies have compared the effects of the assimilation pattern and/or the method 

of localization (see Section 3.1).  Previous studies indicate that complications in real-

world applications such as observation type and number, characteristic ratio between 

background and observation errors, ensemble size, and application of a digital filter 

might lead to different EnKF performance for specific applications (Miyoshi and 

Yamane 2007; Nerger et al. 2012; Holland and Wang 2013, hereafter HW2013).  This 

consideration motivates the continued exploration of the relative strengths and 

weaknesses of different assimilation patterns and localization methods in the present 

study, including for the real-world application of EnKF radar data assimilation at 

convective-scales.   

The first focus of this dissertation is on the comparison of two EnKF variants: 

the Ensemble Square Root Filter (EnSRF; Whitaker and Hamill 2002; Section 2.2.4) 

and the Local Ensemble Transform Kalman Filter (LETKF; Hunt et al. 2007; Section 

2.2.6).  The EnSRF is the variation that has been most often used in Doppler radar 
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assimilation studies (e.g., Zhang et al. 2004; Dowell et al. 2004; Tong and Xue 2005; 

Caya et al. 2005; Aksoy et al. 2009; Dawson et al. 2012; Potvin and Wicker 2013).  The 

EnSRF assimilates observations sequentially and typically uses B-localization.  The 

LETKF, on the other hand, assimilates observations simultaneously and uses R-

localization.  Unlike the EnSRF, the LETKF has not been thoroughly tested using 

Doppler radar data assimilation at convective-scales.  This study applies the LETKF to 

convective-scale radar data assimilation to examine if (1) it performs with similar 

accuracy as the EnSRF, and (2) to identify any impacts of the simultaneous update 

relative to the sequential update used in the EnSRF.  If the LETKF compares favorably 

to the EnSRF when applied to convective scales, then other considerations such as 

parallelization, algorithmic flexibility, etc., can be considered by the user when 

choosing a particular method.    

To gain understanding of these issues, the EnSRF and LETKF are applied to 

both an observing system simulation experiment (OSSE) and a real-data experiment.  

The experiments assimilate Doppler radar data into a three-dimensional cloud model at 

convective allowing resolution.  The OSSE allows the LETKF and EnSRF 

analyses/forecasts of kinematic and thermodynamic storm structure to be compared 

quantitatively through the difference total energy and hydrometer difference total 

energy and qualitatively through two-dimensional reflectivity and vertical motion plots.  

The analyses/forecasts of storm structure using the LETKF and EnSRF are also 

compared qualitatively for the real-data assimilation case (8 May 2003 Moore 

Oklahoma supercell; Burgess 2004; Hu and Xue 2007; Romine et al. 2008; Dowell and 

Wicker 2009; Dowell et al. 2011; Yussouf et al. 2013).  In addition, low-level vorticity 
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forecasts are used as proxy for tornadic circulation and compared to the observed 

tornado track.  These results will be presented in Chapter 3.   

The second focus of this dissertation is on the challenge of including 

environmental conditions in convective forecasts.  Since the mid 20th century, severe 

weather forecasters have linked environmental conditions to the risk of storms 

developing and the nature of the storms that develop (see Section 2.1.1).  Many 

modeling and severe storm environment studies have shown that the development and 

evolution of severe convection is sensitive to the environment (e.g., Weisman and 

Klemp 1982; Thompson et al. 2003; Ziegler et al. 2010).  Thus, environmental 

conditions, its variability and its uncertainty need to be incorporated into convective 

forecasts.  However, previous ensemble radar data assimilation studies have primarily 

focused on isolated convective events within small domains (~100 squared km) by 

initializing the data assimilation system with horizontally homogeneous environments 

(e.g. Dowell and Wicker 2009; Dawson et al. 2012).  The success of a convective 

forecast depends on the identifiable and more predictable environmental forcing 

features (Weisman et al. 2008) and the use of an inhomogeneous environment can lead 

to improved ensemble forecasts (Stensrud and Gao 2010).  Thus, future ensemble 

forecasts for convection (including those being developed for the Warn-on-Forecast 

mission) must include cross-scale interactions that simulate the environmental 

conditions.   

A framework for multi-scale data assimilation that includes analyses and 

forecasts of the mesoscale environment and the convection is developed.  The term 

multi-scale is used to indicate that multiple spatial and temporal scales are included in 
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the forecasts, analyses, and observations.  For example, both the synoptic-scale flow 

pattern and the convective-scale flow pattern are of interest.  Thus, multiple model grids 

and observations of both radiosondes and radars are included.  Herein, multi-scale data 

assimilation is defined as the combination of radar data assimilation with simultaneous 

assimilation of conventional observations to analyze/forecast the primary synoptic and 

mesoscale convective forcing features and the convection itself.  There are many open 

questions regarding multi-scale data assimilation and the following overarching 

questions will guide the experiments in this study:  (1) Can multi-scale data assimilation 

improve convective forecasts compared to mesoscale or storm-scale data assimilation 

alone?  (2) What type of observations and data assimilation cycling is needed to analyze 

and forecast the storm environment?  (3) How important is an accurate storm 

environment for obtaining accurate convective forecasts?   

This study is among the first attempts to analyze and predict the mesoscale 

environment and the convection within the same analysis and forecast system.  The 

multi-scale data assimilation techniques will be applied to the 13 June 2010 tornadic 

supercell environment.  On 13 June 2010 a cold pool from overnight convection in 

southern Kansas created an east-west oriented outflow boundary that was located near 

the Oklahoma-Texas border in the afternoon.  New convection developed in the 

afternoon along a southwest to northeast oriented cold front located in the Oklahoma 

and Texas Panhandles.  The sub-severe convection slowly moved to the northeast and a 

cell moved over the intersection of the two boundaries around 2000 UTC.  This storm 

intensified, gained supercell characteristics, and became tornadic.  This case represents 

a complex mesoscale environment and storm evolution that was not captured well with 
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conventional observations or operational radars.  Thus, it presents a challenging event to 

analyze and predict and will demonstrate the benefit of multi-scale data assimilation in 

generating initial conditions for ensemble forecasts.  The impact of radar data 

assimilation, cycling frequency, and background ensemble initialization on the 

mesoscale environment and convective forecasts on 13 June will be investigated.  The 

surface temperature, dew point, and winds are used to determine if the surface 

boundaries are analyzed/forecasted.  The reflectivity and updraft helicity 

analyses/forecasts are used to evaluate the storms location, intensity, and evolution.  

These results will be discussed in Chapter 4.   

 

 

1.2 Statement of hypotheses 

This dissertation has two hypotheses.  First, I hypothesize that the simultaneous 

update in the LETKF could slightly improve the dynamic balance in analyses of deep 

convection (as measured by the surface pressure tendency) compared to a sequential 

filter such as the EnSRF, because the state is updated simultaneously in the LETKF.  

Although the expectation is that the differences between the LETKF and the EnSRF are 

small, any differences that do exist could potentially lead to superior forecast 

performance.  The goal of this research is to demonstrate that the LETKF can be applied 

to radar data assimilation on the convective-scale and to document any differences in 

filter performance compared to EnSRF.  

Second, I hypothesize that for a complex storm environment with surface 

boundaries playing a significant role, multi-scale data assimilation is required to analyze 
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the boundaries.  Further, without an accurate storm environment that contains the 

boundaries, the convection and the tornadic potential of the convection in this 

environment cannot be accurately forecasted.  The goal of this research is to apply a 

multi-scale data assimilation approach to 13 June 2010 and investigate the impact of 

this approach on the storm environment and convective forecasts.  In particular, the 

focus will be on how the design choices of a multi-scale data assimilation system 

change the storm environment.   

 

 

1.3 Overview of dissertation 

This dissertation is organized as follows.  In Chapter 2, introductory material 

and a review of the literature regarding numerical weather prediction and ensemble data 

assimilation is presented.  Chapter 3 discusses the implementation of LETKF for storm-

scale radar data assimilation.  The OSSE and real-data comparisons of LETKF and 

EnSRF are also presented in Chapter 3.  In Chapter 4, the investigation of multi-scale 

data assimilation is discussed.  A meteorological and VORTEX2 operations overview 

on 13 June 2010 are also included in Chapter 4.  Further, Chapter 4 contains the 

examination of the impact of radar data assimilation, cycling frequency and background 

ensemble initialization on the mesoscale environment and convective forecasts.  

Principal conclusions are reiterated and future work is outlined in Chapter 5.   
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Chapter 2: Background 

 

 

The material in this chapter reviews the definitions, explanations, and previous 

work related to the experiments performed in the following chapters.  A brief review of 

the history of Numerical Weather Prediction (NWP) for convection, predictability, and 

ensemble forecasting is presented in Section 2.1.  Data assimilation techniques 

including the algorithms used in this study and Doppler radar data assimilation for 

convection are discussed in detail in Section 2.2.  Section 2.3 briefly summarizes the 

chapter. 

 

2.1 Numerical Weather Prediction (NWP) for convection 

2.1.1 Historical perspective 

The concept of numerical weather prediction was shaped by a handful of 

dedicated meteorologists in the early 20th century.  In 1901, Cleveland Abbe called for 

meteorologists to move beyond empirical rules and use mathematical, graphical and 

numerical structure to follow the general, and possibly detailed phenomena of the 

atmosphere (Abbe 1901).  Abbe was the first head of the U.S. Weather Bureau, which 

became the modern day National Weather Service.  Vilhelm Bjerknes shared Abbe’s 

desire to make meteorology an exact science.  He defined a two-step plan for weather 

forecasting.  First, the “diagnostic” step is the process of determining a sufficiently 

accurate state of the atmosphere at the initial time.  Second, the “prognostic” step uses 

sufficiently accurate laws to describe how one state of the atmosphere develops from 
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the other (Bjerknes 1904, translated by Mintz 1954).  Bjerknes developed a qualitative, 

graphical method to solve for seven basic variables: pressure, temperature, density, 

humidity, and three components of velocity.  The method used seven independent 

equations: the three hydrodynamic equations of motion, the continuity equation, the 

equation of state and the first and second laws of thermodynamics (in fact, he should 

have specified a continuity equation for water rather than the second law of 

thermodynamics; Lynch 2008).  Although Bjerknes approach was the first attempt to 

mathematically predict weather patterns, he was not able to put his ideas to practical 

use.  Influenced by Bjerknes ideas, Lewis Fry Richardson attempted the direct solution 

of the equations of motion using a finite differencing method.  His first forecast resulted 

in a totally unrealistic surface pressure change of 145 hPa in 6 hours (Richardson 1922; 

Lynch 2008).  Richardson speculated that the glaring error resulted from an unnatural 

initial distribution, which was later shown to be true (Lynch 2006).  Implementing 

Richardson’s method during the 1910’s was impractical due to the lack of observations, 

lack of physical understanding of the dynamics, and it preceding the age of digital 

computers.  However, his finite difference method became the foundation for modern 

numerical forecasting.   

Building upon the ideas of Abbe, Bjerknes, and Richardson, Numerical weather 

prediction (NWP) on digital computers began in 1950 (i.e. “ENIAC Computations of 

1950 - Gateway to Numerical Weather Prediction”, Platzman 1979).  Early NWP 

focused on forecasting the large-scale weather pattern.  At the time NWP was 

beginning, the conceptual building blocks of a unified theory of large-scale motion were 

already in place (Brooks et al. 1992).  Thus, the advances in the large-scale NWP 
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capabilities paralleled the rapid advancement in computing capabilities.  However, 

convective forecasts have not progressed as quickly because a comprehensive theory of 

motion on the mesoscale or cloud-scale does not exist (Brooks et al. 1992).   

Mesoscale NWP began in the 1970’s (see Dudhia 2014 for a thorough review).  

Mesoscale models have grid sizes in the tens of kilometers, and include several physical 

parameterizations for cloud/microphysics, convective/cumulus physics, surface physics, 

mixing/planetary boundary layer physics, and radiative physics.  The physical 

parameterizations are the largest source of uncertainty in mesoscale models (Dudhia 

2014) and limit their ability to forecast convection.  To study convection, idealized 

cloud models were developed in the 1970’s (e.g. Miller and Pearce 1974; Cotton and 

Tripoli 1978; Klemp and Wilhelmson 1978).  Cloud models have limited physical 

processes and are run for short time scales over small areas (covering a single 

convective system).  Thus, cloud models are useful research tools but cannot provide 

operational forecast guidance.  Without numerical guidance on the convective-scales, 

forecasters relied on empirical rules.  For example, on March 25, 1948, Air Force 

Captain Robert C. Miller and Major Ernest J. Fawbush correctly identified that the 

environment was similar to previous environments in which tornadoes occurred.  This 

lead to the first ever tornado warning being issued for Tinker Air Force Base, Oklahoma 

(Maddox and Crisp 1999).   

The concept of numerically predicting thunderstorms was proposed by Lilly 

(1990) 25 years ago.  The prospect of developing a numerical prediction system at 

convective-scale resolution was made possible by the development of the national 

network of Weather Surveillance Radars, 1988-Doppler (WSR-88D; Crum and Albert 
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1993) in the U.S., advances in the techniques for retrieving unobserved quantities from 

single-Doppler data, and the advent of increasingly powerful parallel-processing 

supercomputers (Xue et al. 2000).  In the 1990’s, the Center for Analysis and Prediction 

of Storms (CAPS) at the University of Oklahoma was established for the mission of 

demonstrating “the practicability of storm-scale numerical weather prediction and to 

develop, test, and validate a regional forecast system appropriate for operational, 

commercial, and research applications” (e.g. Droegemeier et al. 1996a,b; Xue et al. 

1996).  CAPS performed the first real-time explicit convective-allowing forecasts with 

radar data assimilation in the Spring of 1996 (Droegemeier et al. 1996b; Xue et al. 

1996).  The development of numerical forecasts of convective storms embedded within 

the evolving larger-scale environment has been ongoing since this time.   

 

 

2.1.2 Predictability 

Predictability is a roadblock to accurate NWP.  Two types of predictability exist.  

Intrinsic predictability is defined as “the extent to which prediction is possible if an 

optimum procedure is used in the presence of infinitesimal initial errors” (Lorenz 1969; 

Zhang et al. 2006).  Practical predictability is defined as “the ability to predict based on 

the procedures currently available” (Zhang et al. 2006; Melhauser and Zhang 2012).  

An understanding of predictability limits is essential to manage expectations of the 

potential gains that can be achieved through improvements in data assimilation and 

forecast systems. 
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Intrinsic predictability limits are unavoidable.  Using a low-order model of 

convection, Lorenz (1963) found that slightly differing initial states could lead to 

considerably different future states.  From these results, Lorenz inferred that “prediction 

of the sufficiently distant future is impossible by any method, unless the present 

conditions are known exactly.” (Lorenz 1963).  Eliminating errors in the initial 

conditions is impossible, even with a fine observing network.  Thus, errors due to 

intrinsic predictability will always be present in numerical forecasts.   

In addition to the intrinsic predictability limit, practical predictability limits the 

skill of NWP forecasts.  Errors in the NWP model, observations, and methods used to 

create initial conditions, contribute to the practical predictability limit of NWP 

forecasts.  Improving the estimate of the initial atmospheric state can extend the lead-

time of a skillful forecast by mitigating practical predictability limits, which is the focus 

of this dissertation.  Obtaining an accurate three-dimensional estimate of the initial 

atmospheric state is the principal goal of data assimilation.  Advances in data 

assimilation methods can help extend the practical predictability limits.   

The forecast sensitivity to initial condition errors can be flow dependent.  

Forecast errors will grow more rapidly as successively smaller scales are resolved 

(Lorenz 1969).  Previous studies have confirmed that the rapid upscale cascade of 

small-scale initial error imposes limits on predictability (Lorenz 1969; Leith 1971; Leith 

and Kraichnan 1972).  Lorenz (1969) compared an experiment with initial errors at 

small wavelengths to an experiment with initial errors at the longest retained 

wavelength, and found that the predictability was lost rapidly in both experiments.  

Thus, there is no guarantee that the large-scales can be specified with sufficiently small 
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errors to ensure the correct mesoscale response (Durran and Gingrich 2014).  Further, 

Durran and Gingrich (2014) showed that initial small-scale errors do not matter when 

relatively minor errors are present in the largest scales.  They explain that downscale 

error propagation is much more rapid than upscale propagation (for turbulent flows 

whose kinetic energy spectrum is proportional to the -5/3 power of the horizontal 

wavenumber).  Thus, convective-scale NWP forecasts are sensitive to errors in the 

initial conditions of the mesoscale storm environment.   

Zhang et al. (2002; 2003) investigated the predictability limits for a real-data 

case, the “surprise” snowstorm in 2000.  The snowstorm on 24-25 January 2000, along 

the east coast of the U.S. (between North Carolina and Washington, D.C.) is referred to 

as a surprise because it was not predicted by the operational numerical models.  The 

operational Eta Model, which had 32 km horizontal grid spacing, missed most of the 

observed precipitation.  However, the research, nonhydrostatic Mesoscale Model 

(MM5; Dudhia 1993), with nested 10 and 3.3 km horizontal grid resolution produced a 

precipitation forecast that closely fit the observations.  Studying the MM5 model, Zhang 

et al. (2002) found that the forecast error growth was much smaller when the effects of 

latent heat release was turned off, implicating that convective processes contribute to 

rapid error growth in forecasts.  In addition, Zhang et al. (2003) found that error growth 

at scales of 100-200 km over the first 6-hour forecast spreads to larger scales in the 

subsequent 12-hour forecasts.  This places severe constraints on the accuracy of 

mesoscale forecasts, particularly when convection is ongoing.  Further, Zhang et al 

(2006) investigated an extreme precipitation event and found that realistic initial 

condition uncertainty can result in large forecast errors for a heavy rain event.  When 
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initial condition and model errors are large, forecast errors arising from small-scale, 

small-amplitude random noise are of secondary importance (though not negligible) 

(Zhang et al. 2006).  Thus, higher forecast accuracy can potentially be obtained through 

improving the initial analysis with better data assimilation methods or enhanced 

observations.   

The current practical predictability limits can be extended via improvements to 

the initial analysis from better data assimilation techniques.  Practical atmospheric 

predictability can also be extended through the use of ensemble forecasts, which will be 

discussed in the following section.   

 

 

2.1.2 Ensemble forecasting 

An ensemble of concurrently valid forecasts can be created from different initial 

conditions, different models, through the use of different physical parameterizations, 

and/or the same model initiated at different times.  Ensemble forecasts created from 

slightly perturbed initial conditions that represent the uncertainty in the analysis, can be 

averaged to filter out some of the unpredictable components of the forecast (Leith 

1974).  An ensemble mean can be used to represent the best estimate of the true state in 

a least square error sense (Toth and Kalnay 1993; Stensrud et al 2000; Wang and 

Bishop 2003).  The ensemble spread (standard deviation about the mean) can provide 

information on the uncertainty of the forecasts (Leith 1974; Toth and Kalnay 1993; 

Stensrud et al 2000; Wang and Bishop 2003).  Ensemble forecasts can also be used to 

generate probabilistic forecasts (i.e. ensemble frequencies) of future weather events.  
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The additional products that ensemble forecasts provide (mean, spread, probabilities) 

extend the practical predictability of a skillful numerical forecast compared to a single 

deterministic forecast.   

An ensemble of forecasts is particularly important for convective forecasts due 

to the difficulties in modeling convective initiation, precipitation structure, and 

convective flows, which lead to rapid model error growth (e.g., Brooks et al. 1992; 

Stensrud et al. 2000; Dawson and Xue 2006).  For example, Brooks and Doswell (1993) 

pointed out that numerical models typically perform the best when large-scale, quasi-

geostrophic forcing dominates, which is also when the forecasting situation is the 

easiest.  Brooks and Doswell (1993) also suggested that numerical guidance is most 

needed when mesoscale and storm-scale details dominate the forecast situation.  

However, the numerical guidance is more likely to be wrong when mesoscale and 

storm-scale details dominate.  Thus, an ensemble of forecasts that provide guidance on 

the uncertainties is desired.   

Short-range ensemble forecasting (SREF) refers to applying ensemble NWP 

techniques to regional scale (1-3 days).  Advancements in computational capabilities 

have facilitated NWP progress of SREF systems (e.g., Du et al. 2006; Clark et al. 

2012a).  Further, advances in the understanding of mesoscale and storm-scale 

phenomena, NWP models, initial conditions, and observations have contributed to the 

ongoing development of SREF systems.   

The ensemble forecasts created for the Spring Experiments held in the NOAA 

Hazardous Weather Testbed (preceded by the Science Support Area) have been the 

cornerstone of SREF development (Kain et al. 2003; Kain et al. 2005; Kain et al. 
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2008a,b; Xue et al. 2008; Coniglio et al. 2010; Clark et al. 2011; Johnson and Wang 

2012; etc.).  The real-data, real-time Spring Experiment forecasts have begun to address 

the challenge of providing useful information on storm attributes for severe weather 

forecasting.  The early Spring Experiment output with parameterized-convection 

resolution (grid spacing coarser than 4 km; Kain et al. 2003) laid the groundwork for the 

more recent convective-allowing resolution models (Clark et al. 2011).   

Convective-allowing models (CAMs) have sufficient resolution to develop 

convective circulations explicitly, precluding the need for convective parameterization.  

The horizontal grid spacing of CAMs is between 1 and 4 km.  Kong et al. (2006) 

advanced SREF via a case study with multiple nested grids including a CAM (spacings 

of 24, 6, and 3 km), terrain, horizontally varying initial conditions, and the assimilation 

of real Doppler radar observations.  Kong et al. (2006,2007) showed that for a 3-km 

horizontal grid spacing forecast, an ensemble has greater value than a single 

deterministic forecast, and the 3-km ensemble has greater value than an ensemble or 

deterministic forecast at coarser spacing.  Clark et al. (2009) also found that the use of a 

CAM with limited size ensemble (5 member) outperforms a larger ensemble (15 

member) of parameterized-convection resolution, indicating the importance of resolving 

finer scales.  Further, CAMs improve the simulation of convective diurnal 

characteristics (Done et al. 2004; Lui and Moncrieff 2007) and convective mode and 

structure (Clark et al. 2007; Kain et al. 2008a,b; Schwartz et al. 2009; Sobash et al. 

2011).  Thus, the use of CAM for severe weather forecasts is superior to mesoscale 

models.   



18 

Despite the progress in SREF, significant scientific and technical challenges 

regarding the details of data assimilation methodology, quality of observations, model 

parameterizations, storm environment representation, and physical understanding need 

to be addressed.  The importance of these issues will continue as NWP moves from 

CAMs to convective-resolving scales (horizontal grid spacing on the order of 100 m).  

For CAMs, it may not be possible to accurately predict details of the convection, such 

as precipitation distribution and amount and propagation speed (Bryan et al. 2003).  

Further, the current formulation of convective-resolving models with traditional subgrid 

large-eddy simulation are not suitable for grid spacing of the order 1 km, rather grid 

spacing on the order of 100 m is appropriate (Bryan et al. 2003).  Thus, it is likely that 

the movement towards progressively small grid spacings will continue.   

CAMs are difficult to initialize due to the coarse resolution of traditional 

observational data sources.  If coarse-resolution initial and boundary conditions are 

used, there is a “spinup” period of approximately 3-hours for smaller-scale circulations 

to develop (Skamarock 2004).  Initialization that includes observations on scales that 

commensurate with model resolution could significantly improve the CAM forecasts.  

Thus, improvements to data assimilation including the assimilation of Doppler radar 

data and other fine-scale observations are needed.  “Data assimilation, in the overall 

process of forecasting convective precipitation, may be the most critical path through 

which the pace of forecast advances will be modulated.” (Fritsch and Carbone 2004).  
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2.2 Data assimilation 

As convective forecasts have progressed, so have the techniques used to 

initialize forecasts.  The diagnostic step, introduced by Bjerknes (1904, translated by 

Mintz 1954) is the process of creating initial conditions for subsequent forecasts.  It is 

vital for producing accurate weather forecasts of the future state.  Data assimilation is 

the essential tool for this step.  Data assimilation is the process through which all of the 

available information (observations and the physical laws that govern the evolution of 

the flow) is used to determine as accurately as possible the state of the atmosphere 

(Talagrand 1997).  For example, the best estimate of the true temperature at a given 

point uses information from both observations and their errors with numerical forecasts 

and their errors.  

Doppler radars represent the only regularly available observations with the 

spatial and temporal resolution to sample convective structures.  Thus, throughout the 

following sections there is an emphasis on radar data assimilation.  However, the 

techniques discussed are also used for assimilation of all observation types.   

The following discussion does not include a description of all analysis systems.  

Methods such as the successive corrections method (SCM) or observation nudging, 

optimal interpolation (OI; Gandin 1963), state estimation through retrieval (Gal-Chen 

1978; Sun et al. 1991; Shapiro et al. 1995; Shapiro et al. 2003), adjoint (Qiu and Xu 

1992; Xu et al. 1994; Gao et al. 2001), and dual-Doppler (Doviak et al. 1976; Gal-Chen 

and Kropfli 1984; Ray et al. 1975; Ray et al. 1980; Dowell and Bluestein 1997) 

techniques are not discussed because the focus of this work is on the forefront of 

advanced ensemble data assimilation techniques.   
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2.2.1 Variational approaches 

Variational data assimilation methods are actively used for convective-scale data 

assimilation (e.g. Gao et al. 2004).  They use a cost function composed of terms that 

represent the departure between an analysis and various pieces of information (i.e. 

observations and physical laws) (Sasaki 1970).  Variational methods are different from 

other single Doppler retrieval techniques because the model variables are determined 

simultaneously in a dynamically consistent way (Sun and Crook 1998).  Variational 

methods seek to obtain a solution to the cost function through an iterative approach.  In 

three-dimensional variational assimilation (3DVar) the cost function includes a static 

estimate of background errors.  However, the true background error covariance 

structure is flow-dependent (especially for meso- and convective-scales).  

Four-dimensional variational assimilation (4DVar) includes observations within 

an assimilation window, rather than observations at a single time (Talagrand and 

Courtier 1987; Sun and Crook 1998, Caya et al. 2005).  4DVar minimizes the difference 

between the observations and the model predictions as in 3DVar, but 4DVar evolves the 

background error covariance matrix and compares the observations to the analysis state 

valid at the same time (Lorenc and Rawlins 2005).  Although 4DVar is a valuable 

technique, it is limited due to the requirement of developing a tangent-linear and adjoint 

model.  Thus, physics parameterization schemes cannot easily be changed or replaced.  

4DVar also does not provide an ensemble of initial conditions for ensemble forecasts.  

Further, Caya et al. (2005) compared 4DVar and Ensemble Kalman filtering (EnKF; 
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discussed in the following sections) at the convective scale and found that EnKF 

produced better analyses after at least 10 minutes of data assimilation.  Major 

advantages of EnKF methods include the production of initial conditions for ensemble 

forecasts, and ease of implementation relative to four-dimensional variational 

techniques (Caya et al. 2005; Wang et al. 2008a; Wang 2011). 

 

 

2.2.2 Kalman filter 

The Kalman Filter (KF; Kalman 1960) is a data assimilation technique that 

estimates the state and the uncertainty.  Consider a discrete representation of the 

atmosphere on a three-dimensional numerical model grid with a large number of 

observations.  The state of the system, x, consists of every variable (θ, u, v, w, π, qc, 

etc.), at every gridpoint, concatenated into a single vector of length Nx.  The true state of 

the atmosphere, xt, is considered a random variable because it cannot be exactly 

determined.  Thus, the KF will use observations and governing equations to estimate 

and forecast the probability distribution function (hereafter PDF), denoted  p( ), of xt.   

Begin with a background forecast, which is the first guess at the true state and a 

set of Ny observations, yo, which try to measure the true state, xt.  The KF assumes the 

observations are unbiased and linearly related to xt: 

 , (1.) 

where H is a Ny × Nx matrix , the observation operator, mapping the state variables onto 

the observations.  H often includes the interpolation to the observation location as well 

as the conversions to the observed quantity.  For example, the observation operator will 

y = Hxt + !
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convert model winds to Doppler velocities.  The observational error, ε , is a random 

error vector of dimension Ny that is independent of xt and includes instrument errors and 

representativeness errors.  The KF assumes that the PDF of ε  is Gaussian, with zero 

mean and known covariance R.  The PDF of the true state, xt, given the observations, 

yo, denoted p(xt | yo), is also assumed Gaussian.  The KF provides formulas for 

calculating p(xt | yo), which have mean xa and covariance Pa, 

 , (2.) 

 , (3.) 

where the weight is called the Kalman gain, K, 

 . (4.) 

The optimal gain matrix is found using error covariances.  In general, an error 

covariance matrix, P, is obtained by multiplying a vector error by its transpose and 

averaging over many cases to obtain an expected value,   

 , (5.) 

where ε  is a vector error and the overbar represents expected value (Kalnay 2006).   

PfHT in Equation (4.) is the forecasted (or background or prior) covariance of 

the state and observed variables, and Houtekamer and Mitchell (1998) define Pf
xy = 

PfHT.  The forecasted covariance is, for example, the covariance between the forecasted 

potential temperature (state variable) and the forecasted Doppler velocity (observed 

variable) and is expressed as, 

 . (6.) 

xa = x f +K(yo !Hx f )

Pa = (I !KH)P f

K = P fHT (HP fHT + R)!1

P = !!T

Pxy
f = P fHT = cov(xt ,H(xt ))
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In the KF the forecast error covariance, Pf, is advanced for each analysis cycle using the 

model itself.  Thus, it is assumed that the forecast model error covariances are known.  

The forecast model is also assumed to be linear and unbiased.  Lastly, the KF assumes 

the forecast errors and the observation errors are uncorrelated so their covariance is zero 

(Kalnay 2006).  For Doppler radar data assimilation with an advanced atmospheric 

model the KF assumptions are not valid making the analyses suboptimal.  Also, it is 

difficult to implement the error covariance calculation because of the computational 

cost, nonlinear dynamics, and poorly characterized error source (Tippett et al. 2003).   

 

 

2.2.3 Ensemble Kalman Filter 

Using an ensemble representation of the forecast and analysis error covariances 

in the KF decreases the computation cost and mitigates problems with the nonlinear 

dynamics (Evensen 1994).  Evensen (1994) introduced the Ensemble Kalman filter 

(EnKF), which is a Monte Carlo approximation to the KF.  In other words, instead of 

estimating and forecasting p(xt | yo), an ensemble is used to represent a sample of p(xt | 

yo) (Snyder and Zhang 2003).  In EnKF, the model error covariances are an 

approximation that typically underestimates the true covariances and assimilating 

observations reduces the ensemble spread.  This underestimation leads to a systematic 

underweighting of the observations in the Kalman gain, which then leads to filter 

divergence.  Therefore, artificial means of maintaining ensemble spread are required.   

Houtekamer and Mitchell (1998) applied EnKF to atmospheric data assimilation 

and took a stochastic approach to maintain ensemble spread.  They used perturbed sets 
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of observations to update each member.  Perturbed observations are the actual 

observations plus random noise.  However, the use of perturbed observations reduces 

the accuracy of analysis error covariances and increases the probability of the ensemble 

underestimating the analysis error covariance (Whitaker and Hamill 2002).  

Alternatively, deterministic EnKF algorithms first update the ensemble mean, then the 

ensemble members are updated in a manner that maintains the analysis error 

covariance.  The deterministic algorithms used in this study are discussed in the 

following sections.   

 

 

2.2.4 Ensemble Square Root Filter 

Whitaker and Hamill (2002) developed a deterministic EnKF algorithm that 

avoids the systematic underestimation of the analysis covariance, by using a “reduced” 

Kalman gain to update the deviations from the ensemble mean.  This method involves 

the square root of observation error covariance, making it a Monte Carlo 

implementation of a square root filter.  Thus, Whitaker and Hamill (2002) called this 

method the Ensemble Square Root Filter (EnSRF).  Their EnSRF method requires the 

observations to be processed one at a time to avoid the computation of matrix square 

roots.  This is called sequential assimilation.   

The EnSRF was the first EnKF variation applied to the assimilation of Doppler 

radar observations (Snyder and Zhang 2003).  Algorithmically, EnSRF loops over each 

observation valid at the assimilation time, applying the observation operator to the prior 

ensemble state and then updating the analysis using the Kalman gain and innovation.  
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Using the notation from Holland and Wang (2013; hereafter HW03), the following 

equation is used to update the ensemble mean state vector, !a,  

 xa=xb+! y-!(!!) , (7.) 

where !b is the background or forecasted ensemble mean state vector.  Both !a and !b 

have dimensions of nx1, where n is the number of state variables.  y contains the 

observations.  In the serial EnSRF, y is a single, scalar observation.  H is the nonlinear 

observation operator.  The Kalman gain K, is given by:  

 !=ρB∘ !b!T !!!!! + ! -1
, (8.) 

where Pb is the background error covariance matrix estimated by the ensemble sample 

covariance.  R is the observations’ error covariance.  In the serial EnSRF, R is a scalar 

representing observation error variance.  ∘ represents a Schur product (element-by-

element multiplication), and !! is the localization matrix.  Since ρB is applied on the 

background error covariances, it is denoted as B-localization.  In the sequential EnSRF, 

!!!!! is a scalar, and !b!T and ρB are nx1 matrices.  As in Houtekamer and Mitchell 

(1998), the full Pb matrix is not computed.  Instead, the nonlinear observation operator 

is applied on the state vectors before calculating the ensemble covariances. 

The ensemble perturbations are updated according to the following equation:   

 X!=Xb-K H!! , (9.) 

where !! is the nxk analysis ensemble perturbation matrix (ensemble members minus 

ensemble mean), and !! is the nxk background ensemble perturbation matrix.  !!! is 

calculated by first applying the nonlinear observation operator on the state vectors, and 
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then taking the ensemble mean out.  The “reduced” Kalman gain matrix, !, has 

dimensions of nx1, and is computed as:   

 ! = 1+ !
!!!!!!!

!!

!.  (10.) 

The reduction to the Kalman gain arises because the scheme does not use perturbed 

observations (Whitaker and Hamill 2002).  In the sequential EnSRF, !!!!! and ! 

reduce to scalars.  

After the first observation is assimilated, the resulting analysis state is used as 

the background for the second observation, and so on.  In the EnSRF implementation in 

this study, reflectivity and terminal fall velocity are treated as state variables in the filter 

(but not in the forecast model).  This means that they are updated by each observation 

and then the updated values are used for subsequent observation assimilation 

(observation operator is interpolation only) (Anderson and Collins 2007).  The 

alternative is to apply the full observation operator to re-compute the reflectivity and 

terminal fall velocity from the updated prognostic state variables after each observation 

is assimilated.  Both strategies were compared and no significant differences were 

produced between the two methods (not shown).  EnSRF will be used in Chapter 3. 

 

 

2.2.5 Parallelized Ensemble Adjustment Kalman Filter  

Anderson (2001) developed a deterministic EnKF algorithm that is 

mathematically equivalent to the EnSRF (Tippett et al. 2003), called the Ensemble 

Adjustment Kalman Filter (EAKF).  Anderson and Collins (2007) realizes 
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parallelization for the sequential EAKF algorithm by calculating the prior ensemble 

estimates for each observation initially, then the observation increment updates both the 

state vector and the subsequent prior ensemble estimates1.   

The parallel algorithm presented in Anderson and Collins (2007) proceeds as 

follows.  First, the observation operator is applied to the background ensemble for all 

available observations.  Next, the increment is calculated from the first observation and 

it’s observation error variance.  The increments are applied to update the state vector 

and the prior ensemble estimates for all subsequent observations.  The parallel 

algorithm allows the computations to be partitioned onto any number of processors and 

produce identical answers to a single-processor implementation (for the low-latency 

implementation).  When the observation operator is a complicated, high cost 

calculation, time can be saved by updating the prior ensemble estimates directly.  

Further, assimilation of derived variables becomes much easier with the parallel 

method.  For example, rainfall is derived from a physical parameterization package over 

sequence of model time steps.  Thus, in order to assimilate accumulated rainfall 

observations you must make a model forecast, calculate observation operator, calculate 

increment, update model state vector, and re-run model forecast.  This process must be 

repeated for each observation.  Thus, it is impractical in large models.  With the parallel 

algorithm re-computing the forecast is unnecessary because the prior ensemble is 

updated directly.  One caveat is that the parallel algorithm is only identical to the 

sequential algorithm for linear observation operators.  But, derived variables like 

                                                
1	  The	  Ensemble	  Square	  Root	  Filter	  can	  also	  be	  implemented	  as	  a	  parallel	  algorithm.	  	  
However,	  the	  ‘EnSRF’	  refers	  to	  the	  sequential	  algorithm	  in	  this	  text.	  	  	  
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rainfall often have highly nonlinear observation operators.  Thus, the results will not be 

the same as the sequential algorithm.   

The Anderson and Collins (2007) parallel algorithm can be implemented for 

several flavors of EnKF to optimize performance for a variety of parallel computing 

environments.  Depending on the computing system the low-latency or high-latency 

implementation can be used to speed up the assimilation and decrease computational 

cost.  The parallel algorithm does require additional calculations but in some cases it 

can substantially decrease assimilation time.  In general, the Anderson and Collins 

(2007) algorithm parallelizes as much as possible the serial EnSRF method.  The 

parallel version of EAKF will be used in Chapter 4. 

 

 

2.2.6 Local Ensemble Transform Kalman Filter 

The Ensemble Transform Kalman Filter (ETKF; Bishop et al. 2001; Wang and 

Bishop 2003) is another deterministic square root EnKF method (Tippett et al. 2003).  

The ETKF ensemble is used to estimate the forecast error covariance for predicting the 

analysis error covariance but it is not used for updating the mean (Wang and Bishop 

2003).  Therefore, the control analysis may not be as accurate as the control analysis in 

the EnSRF but the computational expense of the ensemble generation in ETKF is 

considerably less.  The Local Ensemble Transform Kalman Filter (LETKF) is a local 

implementation of the ETKF (Hunt et al. 2007).   

Hunt et al. (2007) developed the LETKF with the primary goals of ease of use 

and improved computational speed compared to previous EnKF variations.  The latter 
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goal is achieved by generating local analyses for each grid point independently through 

simultaneously assimilating local observations.  The LETKF has been used as a data 

assimilation scheme for both global and regional atmospheric models (e.g., Ott et al. 

2004; Szunyogh et al. 2005; Miyoshi and Yamane 2007; Miyoshi 2010; Miyoshi and 

Kunii 2012).  The LETKF is beginning to be applied to assimilating Doppler radar data 

into convection-permitting models to improve rainfall forecasts (e.g., Tsai et al. 2012).  

Chapter 3 focuses on using the LETKF for Doppler radar data assimilation on scales 

where storm structures are important.   

Algorithmically, the LETKF begins by applying the observation operator to the 

prior ensemble state for all of the observations valid at the time of the assimilation.  For 

each grid point, all of the observations within the localization cutoff length are 

identified and used to simultaneously update the model state at that point.  Using the 

notation from HW2013 and following Hunt et al. (2007), the mean update at a grid 

point is given by  

 !! = !! + !!!!, (11.) 

where the dimensions of !! and !! are 1x1.  The ensemble perturbation matrix, !!, has 

dimensions of 1xk, where k is the number of ensemble members.  The kx1 “weight” 

vector for the observations within the local localization radius is given by 

 !! = ! − 1 !+ !!! T !! ∘ ! !! !!!
!!

!!! T !! ∘ ! !! !− ! !! , 

  (12.) 

where I is a kxk identity matrix.  !!! has dimensions of pxk, where p is the number of 

local observations.  R has dimensions of pxp.  !! is a pxp diagonal localization matrix 

with non-zero elements equal to the inverse of the corresponding elements of !! in 
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Equation (8.).  Since the localization is applied through modifying the observation error 

covariance, this method of localization is called R-localization.  The perturbation update 

is given by  

 !! = !!!!, (13.) 

where the dimensions of !! and !! are 1xk.  The kxk weight matrix, !!, is given by 

 !! = ! − 1 ! ! − 1 !+ !!! T !! ∘ ! !! !!!
!! !/!

. (14.) 

The core LETKF algorithm used in this study, based on Miyoshi (2010), was obtained 

from http://code.google.com/p/miyoshi/.   

 

 

2.2.7 Hybrid data assimilation methods 

Data assimilation systems that merge ensemble based methods and variational 

methods are referred to as hybrid methods.  Since hybrid techniques have gained 

increasing interest in the research and operational NWP communities, they are briefly 

introduced here for completeness.  Instead of using static covariance in a variational 

system, hybrid techniques employ a variational system and estimate the background 

error covariance flow-dependently from an ensemble of background states.  The 

ensemble background states are typically produced by an EnKF variant.  The potential 

advantage of the coupled ensemble-variational system compared to a stand alone 

variational system is the flow-dependent covariances (Wang et al. 2008a,b).  Compared 

to a stand alone EnKF system, the hybrid method is more robust for small ensemble 

sizes or large model errors, and benefits from dynamic constraints during the variational 
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minimization (Wang 2010; Wang and Lei 2014).  Future studies should consider the use 

of hybrid techniques.   

 

 

2.3 Summary 

The development of advanced data assimilation techniques for the initialization 

of convective-scale ensemble forecasts are possible today due to the extensive previous 

research in the areas of numerical weather prediction, predictability, storm dynamics, 

and Doppler radar.  The origins of numerical weather prediction were connected to the 

onset of digital computers.  However, the prospect of numerically predicting 

thunderstorms did not exist until the 1990s and is related to the availability of Doppler 

radar observations.  Predictability limits can restrict the length of a skillful numerical 

forecast.  However, improving data assimilation techniques used to initialize forecasts 

can limit the practical predictability constraints.  Ensemble forecasts can provide an 

estimate of uncertainty and extend the practical predictability of a skillful numerical 

forecast compared to a single deterministic forecast.  This study builds on the previous 

attempts to numerically predict thunderstorms and works to extend the predictability of 

a convective event using advanced data assimilation for initial conditions of ensemble 

forecasts.   

The ensemble Kalman Filter techniques developed and implemented in many 

previous studies are used in this study.  The Ensemble Square Root Filter and the Local 

Ensemble Transform Kalman Filter are compared for the convective-scale assimilation 
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of Doppler radar observations in Chapter 3.  Chapter 4 uses the Ensemble Adjustment 

Filter in the development of a multi-scale data assimilation system.   
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Chapter 3: A comparison between the Local Ensemble Transform 

Kalman Filter and the Ensemble Square Root Filter for the 

assimilation of radar data in convective-scale models 

 

3.1 Introduction 

Exploring the efficiency and accuracy of different EnKF data assimilation 

techniques on the convective-scale is part of the Warn-on-Forecast project (as discussed 

in Chapter 1).  The essence of the EnKF data assimilation method is the use of an 

ensemble to provide flow-dependent estimates of the background error covariances (as 

discussed in Chapter 2).  Deterministic EnKF approaches (observations are not 

perturbed) are equivalent when the ensemble priors and observations have Gaussian 

errors and no localization is applied.  In real applications, however, these conditions are 

not met (due, e.g., to model error and non-linear observation operators) and the specific 

implementation of the EnKF can impact the analysis.  The choice of “assimilation 

pattern”, meaning the choice of whether to assimilate all observations simultaneously 

(Evensen 1994) or sequentially (Houtekamer and Mitchell 1998) is an important part of 

the EnKF algorithm.  The sequential and simultaneous assimilation patterns are not 

equivalent when covariance localization is applied (Ehrendorfer 2007) and/or when the 

observation operators are nonlinear.  The method used to apply covariance localization 

is also an important consideration.  The two most common approaches are “B-

localization” or “covariance localization”, applying a localization function to the 

background error (Houtekamer and Mitchell 2001), and “R-localization” or 

“observation localization”, applying an inverse localization function to the observation 
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error covariance (Hunt et al. 2007).  Several previous studies have compared the effects 

of the assimilation pattern and/or the method of localization.  For example, Whitaker et 

al. (2008) found a simultaneous scheme with R-localization and a sequential scheme 

with B-localization had similar performance.  Greybush et al. (2011) obtained similar 

analysis error and balance from a sequential scheme with B-localization, a simultaneous 

scheme with B-localization, and a simultaneous scheme with R-localization.  HW2013 

compared the choice of assimilation pattern and the choice of B- or R-localization in a 

two-layer primitive equation model.  They found that the combination of the 

simultaneous assimilation with the R-localization method produced the smallest 

analysis errors.  Their diagnostic experiments show that such differences were 

associated with the different amounts of dynamical imbalance in the analysis as a result 

of systematic differences between the schemes in mass and wind increments.  Previous 

studies indicate that complications in real-world applications such as observation type 

and number, characteristic ratio between background and observation errors, ensemble 

size, and application of a digital filter might lead to different EnKF performance for 

specific applications (Miyoshi and Yamane 2007; Nerger et al. 2012; HW2013).  This 

consideration motivates the continued exploration of the relative strengths and 

weaknesses of different assimilation patterns and localization methods in the present 

study, including for the real-world application of EnKF radar data assimilation at 

convective scales. 

This chapter compares two EnKF variants: the Ensemble Square Root Filter 

(EnSRF; Whitaker and Hamill 2002; see Section 2.2.4) and the Local Ensemble 

Transform Kalman Filter (LETKF; Hunt et al. 2007; see Section 2.2.6).  The EnSRF is 
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the variation that has been most often used in Doppler radar assimilation studies (e.g., 

Zhang et al. 2004; Dowell et al. 2004; Tong and Xue 2005; Caya et al. 2005; Aksoy et 

al. 2009; Dawson et al. 2012; Potvin and Wicker 2013).  The EnSRF assimilates 

observations sequentially and typically uses B-localization.  The LETKF, on the other 

hand, assimilates observations simultaneously and uses R-localization.  Unlike the 

EnSRF, the LETKF has not been thoroughly tested using Doppler radar data 

assimilation at convective-scales.  This chapter applies the LETKF to convective-scale 

radar data assimilation to examine if it performs with similar accuracy as the EnSRF, 

and to identify any impacts of the simultaneous update relative to the sequential update 

used in the EnSRF.  If the LETKF compares favorably to the EnSRF when applied to 

convective scales, then other considerations such as parallelization, algorithmic 

flexibility, etc., can be considered by the user when choosing a particular method. 

Given the chaotic and unbalanced nature of convection, and the complexities of 

Doppler radar observations, the Observing System Simulation Experiments (OSSE) 

framework is used to make initial comparisons of the filters at convective scales.  

Simulated Doppler velocity and reflectivity data are assimilated using both algorithms 

in a set of perfect model OSSEs.  Filter analysis and forecast performance are compared 

(Section 3.5), as well as the sensitivity to localization length (Section 3.4) and 

implementation (Section 3.6).  Experiments with only Doppler velocities assimilated are 

also examined to compare the performance of the two filters given a quasi-linear 

observation operator (Section 3.7).  Lastly, the filter performance is compared using a 

real-data assimilation case (8 May 2003 Moore Oklahoma supercell; Section 3.8) to 

extend the OSSE results. 
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3.2 EnKF algorithms 

 To facilitate comparisons between the EnSRF (Section 2.2.4) and LETKF 

(Section 2.2.6), both algorithms were written in a simple framework using a hybrid code 

comprised of Python and Fortran.  Most aspects of the data assimilation systems are the 

same for both algorithms.  For example, both filters create analysis increments on the 

unstaggered (A-), which means all variables in the state vector are at the same grid 

point.  The use of the unstaggered grid simplifies the code and improve its performance.  

This necessitates that the model velocity field be destaggered (from the C-grid) and 

(after being updated) restaggered using the 4th-order interpolation formulas from 

Sanderson and Brassington [1998; see their equations (2) & (3)].  The interpolation 

formulas are not reversible, and therefore introduce small errors during the A-C grid 

conversions.  However, analyses do not qualitatively change when data assimilation 

updates are done on the C-grid instead of the A-grid (not shown).  The observation 

operator used to convert from model space to observation space is also the same in both 

filters.  For Doppler velocity, a point operator is used. (The three components of the 

model wind and the terminal fall velocity from the microphysical parameterization are 

trilinearly interpolated to the observation location.)  Thompson et al. (2012) showed that 

use of a simple point operator did not impact the data assimilation results compared to 

using a more realistic volumetric radar-sampling operator.  The observation operator for 

reflectivity, simply consists of the reflectivity values computed by the microphysics 

scheme being trilinearly interpolated to the observation locations.  Within the Ziegler 
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Variable Density (ZVD) microphysics scheme (Mansell et al. 2010, Ziegler 1985) used 

in this study, the total equivalent reflectivity is calculated from the sum of the 

reflectivities for all hydrometeor species (raindrops, dry ice, wet ice, snow, graupel, 

hail) using the equations presented by Ferrier (1994; see their Appendix C). 

 Both filters apply a form of localization to restrict the update of state variables to 

a region within a certain radius of the observation location and proportions the influence 

of the observation based on distance to each grid point.  These restrictions account for 

the fact that correlations between an observation and distant grid points become small 

relative to the sampling errors (due to the finite ensemble size) in the background error 

covariance estimates (Houtekamer and Mitchell 1998; Snyder and Zhang 2003).  The 

localization isotropic weighting function is the fifth-order correlation function (Gaspari 

and Cohn 1999).  Due to the different localization implementations in each algorithm, 

the shape of the localization function is slightly different for each filter (Nerger et al. 

2012; HW2013).  The impacts of localization cutoff length and implementation are 

explored in Section 3.4 and Section 3.6, respectively. 

 

 

3.3 Observing System Simulation Experiment design 

3.3.1 Model and data assimilation system 

 The similarities and differences between the two data assimilation methods are 

first compared using OSSEs with the perfect model assumption.  The OSSE framework 

is chosen to allow comparisons in a setting where the truth is known, and is 

implemented as in Thompson et al. (2012).  The National Severe Storms Laboratory 
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Collaborative Model for Multiscale Atmospheric Simulation (NCOMMAS; Wicker and 

Skamarock 2002; Coniglio et al. 2006) with Ziegler Variable Density (ZVD) 

microphysics scheme (Mansell et al. 2010, Ziegler 1985) is used for the supercell 

(“truth”) simulation.  A flat earth approximation is used and no land surface or radiation 

effects are included.  The model domain size is 100 km in the horizontal and 20 km in 

the vertical.  The model grid moves to match the storm motion, which is 8 m s-1 toward 

the east and 7 m s-1 toward the north.  The domain is designed to encompass the storms 

and their outflows throughout the simulation period.  The horizontal grid spacing is 1 

km, and the vertical grid spacing increases from 200 m near the surface to a maximum 

600 m near the model domain top.  The ensemble members in the assimilation 

experiments use the same grid setup except the horizontal domain is 120 km. 

 The initial environment is derived from a sounding that is favorable for severe 

convection, taken at Weatherford, Oklahoma on 29 May 2004 (Thunderstorm 

Electrification and Lightning Experiment; MacGorman et al. 2008).  A warm bubble is 

used to initiate convection, and a storm develops after ~25 minutes in the truth 

simulation.  The simulated storm quickly becomes strong with reflectivity exceeding 65 

dBZ by 44 minutes (Figure 3.1b).  By 56 minutes, the storm begins to exhibit 

supercellular structure, including a divided mesocyclone containing both updrafts and 

downdrafts (Lemon and Doswell 1979) and hook echo radar signature (Fujita 1958) 

(Figure 3.1c).  At 68 minutes, additional convection develops on the left flank of the 

supercell (Figure 3.1d).  At 80 and 92 minutes, the mature supercell coexists with a less 

organized storm that moves off to the north (Figure 3.1e,f). 
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Figure 1. Reflectivity and ground relative wind vectors at 2.125 km AGL for the truth 
simulation every 12 minutes.  The central (60 km)2 of the domain is shown. 
 

 Synthetic Doppler velocity observations are generated from the truth simulation 

via a radar sampling observation operator from Wood et al. (2009) and Thompson et al. 

(2012).  The synthetic observational resolution mimics a typical WSR-88D storm mode 

scan, with fourteen elevation angles ranging from 0.5° to 19.5°.  One radar volume scan 

is generated every 4-minutes.  In order to simulate observation non-simultaneity, model 

fields at progressively later times are used to generate observations at progressively 

higher elevation angles (Yussouf and Stensrud 2010).  To simulate measurement errors, 

the observations are perturbed with Gaussian random errors having zero mean and 2 m 

s-1 standard deviation for Doppler velocity and 5 dBZ standard deviation for reflectivity.  



40 

The filter-assumed observational error variances are set to 4 m2 s-2 for Doppler velocity 

and 25 dBZ2 for reflectivity to match the random errors added to the synthetic 

observations.  The simulated observation errors have no correlation.  The observations 

are objectively analyzed to a 2 km quasi-horizontal grid on each radar sweep surface 

(Dowell et al. 2004) in order to thin the data to twice the model grid spacing.  The 

synthetic Doppler velocity, positive reflectivity, and clear air reflectivity (zero 

reflectivity) observations are assimilated every 2-minutes.  Therefore, two analysis 

cycles are needed to assimilate one complete radar volume and at worst, any individual 

observation is temporally displaced from the analysis time by one minute. 

 Forty-five ensemble members are used in each experiment.  Ensemble members 

are initialized from the sounding used in the truth simulation but with random 

perturbations added to the horizontal wind components, temperature, and dew point 

temperature fields of each member.  A 16-minute forecast is made prior to the first data 

assimilation to allow variation to develop in the ensemble background.  The data 

assimilation begins at 32 minutes, when there are at least 500 radial velocity 

observations.  To help maintain sufficient ensemble spread, the additive noise method 

of Dowell and Wicker (2009) is used.  This technique adds Gaussian perturbations with 

standard deviations of 1.0 m s-1 or 1.5 K to the horizontal wind components, 

temperature and dew point temperature fields in regions where  observed reflectivity > 

20 dBZ.  The perturbations are subsequently spatially smoothed.  The model three-

dimensional winds, potential temperature, and microphysical variables (water vapor, 

cloud liquid water, cloud ice, rain, snow, graupel, and hail) are updated during the 

assimilation. 
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3.3.2 OSSE Performance Evaluation 

 Two summary statistics are computed to compare the performance of the 

two filters throughout the data assimilation and forecast periods.  The difference total 

energy (DTE) is evaluated because it includes the three-dimensional winds and 

potential temperature:  

 
DTE = 1

2
!u( )2 + !v( )2 + !w( )2 +

Cp
Tr

!"( )2
!
"
#

$
%
&

, (15.) 

where δ denotes the difference between the ensemble mean and true values, Cp = 1004.7 

J kg-1 K-1 is the specific heat of dry air at constant pressure, and Tr = 270 K is the 

reference temperature (Zhang et al. 2007; Wang et al. 2013).  Wang et al. (2013) 

calculates DTE only at grid points where the true reflectivity > 10 dBZ.  However, this 

excludes most of the main updraft in the supercell simulated in the present study.  Thus, 

the mean DTE is computed by averaging grid points inside a verification domain 

extending from 20 to 80 km in the horizontal (shown in Figure 1) and from 0.125 

(lowest model layer) to 9.82 km AGL in the vertical.  The square root of the mean DTE 

(hereafter, “RM_DTE”) is then computed.   

The hydrometer difference total energy (HydroDTE)2 is used to evaluate errors 

in the hydrometeor fields:   

 
HydroDTE = 1

2
!qv( )2 + !qr( )2 + !qs( )2 + !qg( )

2
+ !qh( )2{ } , (16.) 

                                                
2	  The	  author	  is	  aware	  this	  quantity	  does	  not	  have	  units	  of	  energy.	  	  	  We	  choose	  to	  
use	  the	  label	  “HydroDTE”	  to	  be	  consistent	  with	  previously	  published	  literature.	  	  
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where qv, qr, qs, qg, and qh are the mixing ratios of water vapor, rainwater, snow, 

graupel, and hail, respectively (Wang et al. 2013).  The root-mean HydroDTE 

(RM_HydroDTE) is computed over the subset of the RM_DTE verification domain 

where true reflectivity > 10 dBZ. The reflectivity threshold accounts for the fact that the 

mixing ratios (with the exception of water vapor) are near zero outside the storm. 

RM_DTE and RM_HydroDTE statistics provide a more complete view of experimental 

analysis errors than comparing individual state variable (such as vertical velocity or 

rainwater mixing ratio) errors.   

 

 

3.4 Localization sensitivity tests 

3.4.1 Localization length comparisons 

When comparing the EnSRF and LETKF convective-scale analyses, one issue to 

consider is the difference in the application of localization.  As discussed previously, 

the EnSRF typically uses B-localization (applies localization to the background error 

covariance matrix; e.g., Snyder and Zhang 2003; Dowell and Wicker 2009) while the 

LETKF uses R-localization (applies the inverse of the localization function to the 

observation error variance; Hunt et al. 2007).  For a given cutoff length (the distance at 

which the correlation function becomes zero), B-localization yields less observation 

influence at a given distance than does R-localization (Nerger et al. 2012; Miyoshi and 

Yamane 2007; HW2013).  Increasing the B-localization cutoff length to be 25% larger 

than the R-localization cutoff length gives an observation less influence on nearer grid 

points but more influence on more distant grid points (see Fig. 1 in Holland 2011).  
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Since B- and R-localization are not equivalent, several values for the horizontal and 

vertical cutoff lengths are tested to optimize each assimilation methodology.  Previous 

convective-scale radar data assimilation studies have used cutoff lengths around 6 km in 

both the horizontal and vertical directions (e.g. Dowell et al. 2004, see Table 1 in 

Sobash and Stensrud 2013).  Sobash and Stensrud (2013) suggest that the vertical cutoff 

length should be shorter than the horizontal cutoff length in radar data assimilation due 

to the smaller vertical length scales of convective structures.  The cutoff lengths in the 

sensitivity experiments that follow were therefore initially set to 6 km (3 km) in the 

horizontal (vertical) directions, then increased to 9 km (4.5 km) and 12 km (6 km) in the 

horizontal (vertical) directions.  Analysis errors from each localization length test are 

examined to determine the sensitivity to localization length scales for the LETKF and 

EnSRF (Figure 2 and 3). 

For both filters, the RM_DTE and RM_HydroDTE are only weakly sensitive to 

the localization cutoff lengths (Figure 2a and 3a).  The EnSRF errors vary more than the 

LETKF errors, indicating the EnSRF is more sensitive to the chosen localization 

lengths.  For both filters, increasing the localization cutoff length increases the size of 

the analyzed updraft core (region where w > 10 m s-1; Figure 2).  The reflectivity core 

(where reflectivity > 55 dBZ) also increases with localization cutoff length (Figure 3).   
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Figure 2. Progressively larger localization cutoff lengths in the horizontal/vertical are 
compared via RM_DTE for the mean EnSRF (solid) and LETKF (dashed) analyses and 
forecasts (shaded region) (a), and via cross-sections at 2.125 km AGL of vertical 
velocity (color filled contours every 1 m s-1; red = positive, blue = negative) and 
reflectivity (black contours every 20 dBZ) for the mean EnSRF (c,e,g) and LETKF 
(d,f,h) analyses at 56 minutes (6.5 radar volumes have been assimilated). The 
horizontal/vertical cutoff in km, beyond which the covariance are zero, is listed in the 
title of each subplot.  The truth cross-section is shown for reference (b). 
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Figure 3. Progressively larger localization cutoff lengths in the horizontal/vertical are 
compared via RM_HydroDTE for the mean EnSRF (solid) and LETKF (dashed) 
analyses and forecasts (shaded region) (a), and via cross-sections at 2.125 km AGL of 
reflectivity (color filled contours every 5dBZ) and horizontal wind vectors for the mean 
EnSRF (c,e,g) and LETKF (d,f,h) analyses at 56 minutes (6.5 radar volumes have been 
assimilated). The horizontal/vertical cutoff in km, beyond which the covariance are 
zero, are listed in the title of each subplot.  The truth cross-section is shown for 
reference (b). 
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The results in Figure 2 and 3 show that selecting a “best” localization cutoff 

length to use for filter comparisons is challenging.  We chose the 12/6 km 

horizontal/vertical cutoff lengths for the EnSRF (i.e., B-localization) and the smaller, 

9/4.5 km, lengths for the LETKF (i.e., R-localization) for the filter comparisons that 

will be discussed.  The B-localization cutoff length is 25% longer since it yields less 

observation influence at a given distance than does R-localization (Nerger et al. 2012; 

Miyoshi and Yamane 2007; HW2013).  A comparison using a 10.5/5.25 km 

horizontal/vertical cutoff for EnSRF (B-localization) and a smaller cutoff, 7.5/3.75 km, 

for LETKF (R-localization) yield similar relative filter performance.  The ratio of the 

horizontal to vertical cutoff lengths was varied in additional experiments.  When this 

ratio became too large (e.g., a 12 km horizontal cutoff with a 4.5 km vertical cutoff), the 

development of the secondary storm on the left flank of the main supercell (Figure 1e) 

was inhibited (not shown).  The tuning experiments required to obtain an appropriate 

cutoff motivates the use of adaptive localization techniques as suggested by Sobash and 

Stensrud (2013).   

 

 

3.4.2 Consistency ratio comparisons 

Localization affects ensemble spread, which affects analysis and forecast 

metrics.  Doppler velocity innovation statistics are computed to compare the ensemble 

spread in the experiments.  To the extent that the Kalman filter assumptions are satisfied 

(e.g., Gaussian error distributions), the consistency ratio (CR) approximates the ratio of 

the actual to optimal ensemble forecast spread (variances), therefore approaching unity 
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if the ensemble represents the forecast error statistics accurately and the observation 

error variances are correctly specified in the filter (Aksoy et al. 2009).  CR values < 1 

may indicate insufficient ensemble spread in the analysis.  The CR is computed for the 

priors over the domain where reflectivity > 15 dBZ in order to isolate the measurement 

of performance to the main convective regions (Snyder and Zhang 2003, Tong and Xue 

2005, Aksoy et al. 2009).  Although the radar data are assimilated every 2 minutes, the 

statistics are aggregated over 4 minutes so that each time bin contains one complete 

radar data volume, similar to Aksoy et al. (2009).   

Producing ensemble spread that results in comparable consistency ratios among 

different experiments is a challenge.  Both EnSRF and LETKF appear underdispersive 

near the start of the analysis period (Figure 4).  Suboptimal spread is a common 

problem in convective scale radar data assimilation (Aksoy et al. 2009).  The spread 

increases through most of the analysis period.  The reason for this trend is unclear, but 

may be related to the increasing areal expansion of reflectivity as the supercell matures, 

which results in additive noise being applied over a larger area.  Less localization 

(longer cutoff length) leads to smaller CR values indicating less ensemble spread.  This 

result is expected because less localization allows observations to influence more grid 

points (decreases spread) and the additive noise used to maintain spread was not varied.  

The ensemble spread during the beginning of the analysis period is most deficient for 

the longer cutoff lengths.  This may contribute to the slightly increased analysis errors 

for the longer cutoff lengths shown in Figures 2a and 3a.  The large CR values for the 

6/3 km horizontal/vertical cutoff length experiments during the later analysis cycles 

may contribute to the increase in errors during the forecast (Figure 3.2a and 3.3a).  The 
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CRs for the chosen EnSRF experiment  (yellow solid line in Figure 4) and the chosen 

LETKF experiment (red dashed line in Figure 4) follow the same trend and are 

reasonably close in magnitude.  Since the differences between the EnSRF and LETKF 

CRs are small and the values of CR are similar to those of previous work (Aksoy et al. 

2009, Dowell et al. 2011), we conclude that the experiments are sufficiently tuned for 

the present comparisons.   

 

 

Figure 4. Progressively larger localization cutoff lengths in the horizontal/vertical (6/3: 
black, 9/4.5: red, 12/6: yellow) are compared via consistency ratio for radial velocity 
during the assimilation period for the EnSRF (solid) and LETKF (dashed) experiments. 
 

 

3.5 EnSRF and LETKF OSSE comparisons 

The EnSRF and LETKF are compared for the convective-scale assimilation of 

synthetic radar observations.  The data assimilation begins at 32 minutes, while the 

storm is developing (Figure 1a).  Eight volumes of radar data are assimilated and the 
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final analysis time is at 62 minutes.  The final analyses initialize ensemble forecasts that 

are run out until 96 minutes.   

 

 

3.5.1 Storm analysis comparisons 

The mean analyses for both the EnSRF and LETKF experiments contain the 

same storm features as the truth simulation.  After three and a half radar volumes are 

assimilated, at 44 minutes, the vertical velocity patterns in the EnSRF and LETKF 

analyses are similar to each other (Figure 5b,c).  The EnSRF analysis has a stronger 

updraft that is closer in magnitude to the truth than does the LETKF analysis.  However, 

the EnSRF analysis also contains stronger downdrafts, than are present in the truth 

simulation.  Both the EnSRF and LETKF analyses have overly strong upward motion 

on the left (northern) flank of the storm compared to the truth simulation.  The EnSRF 

updraft is also slightly larger in areal extent than the LETKF updraft; both are slightly 

larger than the truth’s updraft.  The larger updraft areas are in part due to the averaging 

of ensemble member position errors in the ensemble means.  At 68 minutes, eight 

volumes have been assimilated followed by a 6-minute forecast.  The mean EnSRF and 

LETKF analyses are still very similar to each other and they capture the vertical 

velocity pattern in the truth (Figure 5d,e,f).  The LETKF forecast’s main updraft is 

closer to the truth, while the EnSRF captures better the small left-split cell (near x = 30 

km, y = 68 km). Overall, both algorithms have the main features of the true supercell.  

This suggests that the LETKF is roughly as effective as the EnSRF for assimilating 

radar data at convective-scales.  
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Figure 5. . Cross-sections at 2.125 km AGL of vertical velocity (color filled contours 
every 1 m s-1; red = positive, blue = negative) and reflectivity (black contours every 20 
dBZ) for the truth simulation (a), mean LETKF analysis (b) and mean EnSRF analysis 
(c) at 44 minutes (3.5 radar volumes have been assimilated).  Cross-sections are also 
shown for the truth simulation (d), mean of LETKF ensemble forecasts (e) and mean of 
EnSRF ensemble forecasts (f) at 68 minutes (8 radar volumes have been assimilated 
followed by a 6 minute forecast).  The maximum and minimum vertical velocity values 
(m s-1) are printed in the lower right corner of each panel.   
 

 

3.5.2 Surface pressure tendency comparisons 

The surface pressure tendency is often used to measure the noise or dynamical 

imbalance in the model state.  For example, Huang et al. (1994) used the mean absolute 

tendency of surface pressure as a global measure of high-frequency noise.  Similarly, 

the surface pressure tendency in a non-hydrostatic model can be used as a measure of 

analysis balance (Reich et al. 2011).  The magnitude of the surface Exner function time 

tendency (hereafter, DPDT) can also be used as a measure of noise (e.g., Wang et al. 

2009).  In the truth simulation, the maximum DPDT associated with the supercell storm 
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remains below 10-7 sec-1 (not shown).  The ensemble mean DPDT rapidly increases to 

25-35 x 10-6 sec-1 after data assimilation begins in the EnSRF and LETKF experiments 

(Figure 6).  The DPDT from the LETKF experiment is 10-20% smaller than the EnSRF 

DPDT.  This suggests that the column divergence in the wind field analyses is more in 

balance with the forecast pressure gradients (the pressure field is not updated in our 

experiments) in the LETKF experiment, inducing smaller responses in the surface 

pressure field when the ensemble is integrated forward.  That is, the LETKF increments 

appear to better preserve the mass balance in the forecast states than do the EnSRF 

increments.  These results agree with Bowler et al. (2012), who found that for a simple 

model and a nonlinear observation operator, a simultaneous update performs better than 

a sequential update.  The results are also consistent with those obtained in HW2013 

using a large-scale primitive equation two-layer model.  Interestingly, the DPDT in the 

LETKF forecasts remains slightly smaller than in the EnSRF forecasts through the end 

of the forecast period. 
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Figure 6. Change in surface perturbation Exner function every third model time step (15 
seconds) throughout the EnSRF (solid) and LETKF (dashed) experiments.  Thick (thin) 
lines indicate the statistics are valid for a mean ensemble analysis (mean ensemble 
forecast). 
 

 

3.5.3 Analysis and forecast errors comparisons 

To quantitatively compare the filters, the RM_DTE and RM_hydroDTE are 

computed for the analyses and forecasts.  An example horizontal cross-section of DTE 

for each experiment at 56 minutes is shown in Figure 7b,c.  The LETKF analysis has 

the largest maximum DTE, 46.9 m2 s-2.  The EnSRF analysis has a larger number of 

grid points with DTE values greater than a given threshold.  For example, EnSRF has 

529 grid points with DTE greater than 4 m2 s-2, compared to 458 grid points for LETKF.  

There are spatial differences in the errors between the two filters (Figure 7c).  However, 
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in general the errors are of similar magnitude and occur over approximately the same 

amount of grid points.   

The LETKF analysis RM_DTE are consistently less than in the EnSRF analyses 

(Figure 7a).  The RM_DTE differences between the filters are larger early in the 

assimilation periods.  This implies that the LETKF analysis increments initially improve 

the ensemble’s three-dimensional winds and potential temperature faster than the 

EnSRF increments do.  Thereafter, the LETKF errors decrease at roughly the same rate 

as the EnSRF errors, and therefore remain substantially lower through most of the 

assimilation period, indicating the LETKF ensemble mean is closer to the truth.  

Smaller LETKF errors are also observed in root-mean-square errors for individual state 

variables (three-dimensional winds and temperature; not shown).  Both filters have 

similar RM_DTE values during the forecast period (63-96 minutes).  The LETKF and 

EnSRF have similar RM_HydroDTE values during the analysis and forecast, indicating 

that both filters appear to generate hydrometeor fields of similar accuracy (Figure 7a).   
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Figure 7. (a) RM_DTE (reds) and and RM_HydroDTE (blues) for the EnSRF (solid) 
and LETKF (dashed) experiments.  Example cross-section of DTE at 2.125 km AGL at 
56 minutes for (b) the EnSRF analysis, (c) the LETKF analysis, and (d) differences 
between the two analyses > 4 or < -4 m2 s-2. 
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3.6 Localization method comparisons 

We largely attributed the differences between the EnSRF and LETKF 

performance in the previous section (3.5) to the difference in how observations are 

processed (sequentially versus simultaneously).  To test this hypothesis, we now 

eliminate the difference in localization formulations between the EnSRF (B-

localization) and LETKF (R-localization) by implementing the R-localization in the 

EnSRF code.  Note that the B-localization cannot be simply implemented in the LETKF 

because the background error covariance is not explicitly computed (Nerger et al. 

2012).  R-localization is implemented in the EnSRF by removing the correlation 

function, !! from Equation (8.) and elementwise-multiplying the observation error 

variance, R, by the correlation function !! in Equation (8.) and Equation (10.), as is 

done in the LETKF in Equation (12.) and Equation (14.).   

Three assimilation experiments are used to test the hypothesis that the 

localization method is not the primary reason for the differences in filter performance.  

The results from the EnSRF with B-localization (12/6 km horizontal/vertical cutoff 

length, hereafter referred to as “EnSRF-B”) and the EnSRF with R-localization (9/4.5 

km horizontal/vertical cutoff length, hereafter referred to as “EnSRF-R”) show almost 

no difference in analysis error (Figure 8).  The control LETKF (9/4.5 km 

horizontal/vertical cutoff length) is shown for comparison.  Both EnSRF experiments 

have larger errors than the LETKF experiment.  Experiments using other localization 

cutoff lengths produce qualitatively similar results (not shown).  Thus, the differences in 

error between EnSRF and LETKF are not primarily caused by the difference in 

localization.  This conclusion combined with the previous results indicates that the 
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simultaneous update in LETKF has a small positive impact on the convective-scale 

analysis errors.   

 

 

Figure 8. RM_DTE (reds, left axis) and RM_HydroDTE (blues, right axis) for the 
EnSRF with B localization (solid), EnSRF with R localization (dash-dot) and LETKF 
(dashed) experiments. 
 

 

3.7 Observation type 

In the results discussed thus far, the simultaneous update in LETKF produces 

slightly improved error performance relative to the EnSRF.  To further examine the 
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filter performance differences, the EnSRF and LETKF experiments are performed with 

only Doppler velocity observations assimilated.  These experiments are motivated by 

the fact that EnKF methods assume observations are linearly related to the model state, 

a condition that is approximately satisfied in the case of Doppler velocity but not for 

reflectivity.  The nonlinearity of the reflectivity observation operator makes it 

challenging to optimize reflectivity assimilation (Dowell et al. 2011).  Due to the 

complexities involved with reflectivity assimilation, several EnKF studies have 

assimilated only Doppler velocities (e.g., Snyder and Zhang 2003, Zhang et al. 2004).  

The nonlinearity in the reflectivity observation operator could enhance the analysis 

differences that arise due to the different assimilation patterns of the two filters (recall 

that the LETKF uses the reflectivity priors only from the forecast state, while the 

EnSRF re-computes an updated reflectivity prior directly after each observation 

update).   

 Verification statistics for the velocity-only assimilation experiments are shown 

in Figure 9.  Unlike in the previous experiments (Figure 8), the LETKF does not 

outperform the EnSRF when only Doppler velocity is assimilated.  Rather, both 

assimilation methods produce analyses of similar accuracy.  We hypothesize that 

LETKF’s simultaneous update mitigates some of the approximation errors associated 

with the nonlinear observation operator for radar reflectivity.  This would explain the 

lower errors of the LETKF relative to the EnSRF in the experiments that assimilate 

reflectivity and the similar performance of the LETKF and EnSRF in the experiments 

that only assimilate Doppler velocity.   
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Figure 9. RM_DTE (reds, left axis) and RM_HydroDTE (blues, right axis) for the 
EnSRF (solid) and LETKF (dashed) experiments that assimilate only radial velocity 
observations.   
 

 

During the first four radar volume assimilations (32 to 50 minutes), the velocity-

only experiments have smaller errors than the experiments that assimilate all data 

(Figure 8, 9).  However, examination of horizontal cross-sections of model winds and 

hydrometeor variables during this time show that the default EnSRF experiments 

develop convection more quickly than, and qualitatively improve upon, the velocity-

only experiments.  The velocity-only experiments analyses contain smaller mixing 

ratios for the hydrometeor variables indicating slower storm development.  During the 

rest of the assimilation period (52 to 90 minutes), the RM_DTE and RM_HydroDTE 
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indicate the reflectivity assimilation improves the analyses, particularly of the 

hydrometeor state variables.   

 

 

3.8 Real data experiment 

3.8.1 design 

On 8 May 2003 a destructive tornadic storm passed over central Oklahoma, 

producing damage rated at category 4 on the Fujita scale (F4) in the town of Moore.  

This storm has been studied extensively (Burgess 2004; Hu and Xue 2007; Romine et 

al. 2008; Dowell and Wicker 2009; Dowell et al. 2011; Yussouf et al. 2013).  Storms 

initiated along the dryline around 2050 UTC, and by 2130 UTC a dominant cell 

matured into a supercell.  The supercell intensified as it moved to the northeast.  A 

violent tornado developed around 2210 UTC and traveled approximately 30 km before 

dissipating at 2238 UTC.  The experimental polarimetric WSR-88D KOUN radar 

documented the life cycle of the supercell.  The data were edited manually to remove 

ground clutter, range folding, and spurious data and to unfold aliased Doppler velocities 

(Dowell et al. 2011).  The data were then objectively analyzed to a 2 km quasi-

horizontal grid and assimilated every 2 minutes from 2100 UTC to 2200 UTC.  This 

helps to decrease observational error correlations caused by the relatively coarse radar 

effective beamwidth.  Any observation error correlations that exist in the assimilated 

observations are ignored, which allows the R matrix to remain diagonal.  The EnSRF 

and LETKF filters, assumed observation variance, and additive noise technique are the 

same as in the OSSEs.  The NCOMMAS model is used with 1 km horizontal grid 
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spacing over a 100 km horizontal domain (as in the OSSEs).  The vertical grid has 400 

m spacing near the surface and stretches to 700 m near the domain top, 20 km AGL.  

The domain moves to match the storm motion, which is 14 m s-1 towards the east and 8 

m s-1 towards the north.  The initial environment is derived from the Norman, 

Oklahoma sounding on 0000 UTC 9 May 2003.  The double moment ZVD 

microphysics scheme and forty-five ensemble members are used, as in the OSSEs.   

 

 

3.8.2 Storm analysis comparisons 

The EnSRF and LETKF filters are compared for the convective-scale 

assimilation of KOUN radar observations over 1 hour and for a subsequent 15-minute 

forecast.  The mean analyses for both the EnSRF and LETKF experiments contain the 

supercell storm features expected within the May 8th storm.  The vertical velocity 

analyses have a strong, comma-shaped updraft at the end of the analysis period (Figure 

10a,b).  The differences between the analyses are limited to a small area (Figure 10c).  

There are some differences within the main updraft region.  For example, the updraft in 

the LETKF analysis extends slightly farther to the northeast along the forward flank 

gust front.  Also, the EnSRF updraft has higher values in the comma head, despite 

having a lower maximum value.   
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Figure 10. Cross-sections for the 8 May 2003 real-data case at 1.0 km AGL of vertical 
velocity (color filled contours every 1 m s-1; red = positive, blue = negative) and 
reflectivity (black contours every 20 dBZ) for the mean LETKF analysis (a) and mean 
EnSRF analysis (b) at 2200 UTC (after 1 hour of data assimilation).  Difference 
between (a) and (b) that are greater than 1.0 m s-1 and less than -1.0 m s-1 are shown in 
(c) along with the reflectivity from the mean LETKF analysis at 2200 UTC.  The 
bottom row of panels (d-f) is as in the top row except for 15-minute forecasts valid at 
2215 UTC.  The maximum and minimum vertical velocity values or difference values 
(m s-1) are printed in the lower right corner of each panel.  Overlain in each panel is the 
NWS-observed tornado damage track that starts at 2210 UTC and ends at 2238 UTC. 

 

 

The means of the ensemble forecasts for both filters exhibit a common problem 

with forecasts of the May 8th supercell; the storm decays too rapidly and is shifted to the 

southeast compared to the observations (Figure 10d,e). The portion of the updraft that 

extends along the rear flank gust front is farther south in the LETKF forecast than in the 

EnSRF forecast.  The vertical velocity maximum is larger in the EnSRF forecast 



62 

indicating that the LETKF forecast has decayed faster (since it’s maximum was larger 

in the last analysis).  Overall, however, the 15-minute forecasts initialized from the two 

filters are quite similar.  In longer forecasts (up to an hour), initialized from the EnSRF 

and the LETKF, the storm decays at a similar rate.   

The OSSE surface pressure tendency comparisons indicated that the LETKF 

analyses contain less noise than the EnSRF analyses (Figure 6).  The 8 May 2003 

EnSRF and LETKF analyses, however, contain roughly the same amount of noise 

(Figure 11), indicating that the LETKF simultaneous update does not substantially 

decrease the dynamical balance disturbance in this real-data case.  It is possible that any 

small improvement from the simultaneous update is undetectable given the relatively 

large values of DPDT (double the OSSE values), which are likely caused by the larger 

and/or more correlated errors in the real observations being assimilated. 
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Figure 11. Change in surface perturbation Exner function every third model time step 
(15 seconds) throughout the EnSRF (solid) and LETKF (dashed) real-data 8 May 2003 
experiments.  Thick (thin) lines indicate the statistics are valid for a mean ensemble 
analysis (mean ensemble forecast). 
 

 

3.8.3 Ensemble probabilistic forecasts of low-level vorticity 

Forecasts for the real data experiments can be evaluated by examining the 

predicted tornadic potential compared to the observed tornado track.  Since the 1 km 

horizontal grid spacing used in the May 8th experiments is too coarse to explicitly 

resolve a tornadic circulation a proxy must be used.  The presence of significant low-

level rotation (vorticity) can be used as a proxy for tornadic potential because it is 

indicative of a significant mesocyclone (Stensrud and Gao 2010; Dawson et al. 2012; 

Stensrud et al. 2013; Yussouf et al. 2013).  The vorticity can be used as metric for the 

location of rotation, however it may not always correlate well to tornado strength or 
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indicate whether a tornado exists (Markowski et al. 2011, Marquis et al. 2012).  

Forecast probabilities (i.e. ensemble frequencies) of vorticity exceeding a threshold 

value of 0.01 s-1 are calculated at each grid point during the period 2200-2230 UTC 

(Figure 12a-f).  Recall there are 45 ensemble members in each experiment.  There are 

small differences between the EnSRF and LETKF high probability vorticity swath 

locations.  To explore the importance of these differences, the EnSRF and LETKF 

experiments are repeated twice using different random number seeds in the ensemble 

member initialization.  The differences between the EnSRF and LETKF vorticity 

swaths in the original experiments (Figure 12a,b) are no larger than the differences 

among the EnSRF or LETKF vorticity swaths obtained by varying the random number 

seeds (Figure 12a,c).  When the ensemble members from the three seed experiments are 

combined, in each case (EnSRF and LETKF), the ensemble probabilities can be 

calculated based on 135 members.  The EnSRF and LETKF combined-ensemble 

vorticity swaths are very similar for low to moderate probabilities, but differences 

increase for higher probabilities.  For example, for probabilities > 90%, the LETKF 

combined-ensemble vorticity swath covers a smaller area and is less continuous than the 

EnSRF combined-ensemble swath.  Compared to the observed tornado track, all of the 

forecast vorticity swaths are shifted to the southeast and are not long enough.  Thus, the 

forecasts initialized from the EnSRF and the LETKF suffer from the same model bias.  

Overall, both sets of forecasts are similar.   
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Figure 12. 8 May 2003 Ensemble probability of vorticity exceeding 0.01 s-1 at 1 km 
AGL during a 30 minute forecast period starting from the analysis at 2200 UTC and 
ending at 2230 UTC for the EnSRF (a,c,e) and LETKF (b,d,f) with different random 
number seeds.  The combined-ensemble probabilities for the EnSRF (g) and LETKF 
(h). Overlain in each panel is the NWS-observed tornado damage track (black outline) 
that is from 2210 to 2238 UTC. 
 

 

3.9 Conclusions and discussion 

This chapter applies the LETKF to convective-scale radar data assimilation and 

compares it to the EnSRF, which has been the primary algorithm for many previous 

convective-scale radar data assimilation studies.  The LETKF assimilates observations 
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simultaneously while EnSRF uses a sequential assimilation pattern.  Comparisons are 

first performed in an OSSE framework where synthetic WSR-88D radar observations 

are generated from a supercell thunderstorm (“truth”) simulation and assimilated every 

2-minutes using forty-five-member ensembles.   

To facilitate comparisons, the filters are tuned to produce similar observation 

space statistics.  In both filters, the choice of localization cutoff length impacts the wind 

and temperature analyses, and has slightly smaller impact on hydrometeor state 

variables.  The EnSRF is slightly more sensitive than the LETKF to the localization 

cutoff length.  However the localization method and choice of cutoff length do not 

prevent meaningful comparisons between the filters and do not dominate the differences 

between the filters.  For both filters, the localization length sensitivity tests indicate a 

preference for longer cutoff lengths than the values commonly used in the literature for 

convective-scale radar data assimilation.  This result agrees with Sobash and Stensrud 

(2013).  Once the differences in the effective localization length of the B- and R-

localization functions are accounted for (by using a smaller cutoff length in the latter), 

the performance of the EnSRF with localization applied to the background error 

covariance matrix (B-localization) is nearly the same as that with localization applied to 

the observation error matrix (R-localization).  Both EnSRF methods produce larger 

analysis errors than the LETKF.  

The LETKF produces less noise and somewhat smaller analysis errors than the 

EnSRF in the OSSE.  The slightly improved performance is likely due to the 

simultaneous observation assimilation used in the LETKF as opposed to the sequential 

assimilation in the EnSRF.  When only Doppler velocity observations are assimilated, 



67 

however, the filters produce very similar errors.  This indicates that analysis differences 

between the assimilation methodology occurs when the observation operator is 

nonlinear, as with radar reflectivity.  This result agrees with conclusions from a simple 

model study (Bowler et al. 2012) and merits further investigation.   

Experiments with real radar observations from 8 May 2003 help to further 

elucidate the similarities and differences between the filters.  The EnSRF and LETKF 

analyses and forecasts have some small differences, however, both are able to capture 

the supercell.  Changing the random number seed value used to initialize the 

perturbations that are added to each ensemble member reveals that the analysis and 

forecast differences between the EnSRF and the LETKF are similar in magnitude to the 

differences that arise from the sampling variability associated with a finite ensemble.  

Therefore, the difference in accuracy between the filters does not appear to be of great 

practical importance.  The overall results strongly suggest the LETKF is an acceptable 

alternative to the EnSRF for convective-scale radar data assimilation.   

Convective-scale numerical weather prediction may require very high-resolution 

grids (e.g., Dx ~ 0.2 - 1 km; Bryan et al. 2003) and therefore, very large computational 

resources (e.g., 105-106 cpu cores).  Since the EnSRF and the LETKF show similar 

assimilation performance, future work can investigate the differences in scalability 

between the filters.  The ability to interpolate the analysis perturbation weights from the 

LETKF analysis (Yang et al. 2009) may increase the efficiency for high-resolution 

grids.  The application of weight interpolation to convective-scale data assimilation will 

be investigated in the future.  Additionally, more work is needed in the future to 

determine if weight interpolation is also possible for the EnSRF.  Further investigation 
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is also needed to explore how the results of this study generalize to other convective 

modes.   
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Chapter 4: Multi-Scale Data Assimilation of the 13 June 2010 

Tornadic Supercell Storm Environment during VORTEX2 

 

 

4.1 Introduction 

4.1.1 Overview 

A framework for multi-scale EnKF data assimilation is developed to enable 

accurate analysis of both storms and their parent environment.  Herein, multi-scale data 

assimilation is defined as a method that combines radar data assimilation with 

simultaneous assimilation of conventional observations, analyzing the primary synoptic 

and mesoscale convective forcing features and the convection itself.  The development 

of multi-scale data assimilation techniques, with the goal of creating an accurate storm 

environment is discussed in this chapter.  Further, the potential of this approach to 

improve ensemble convective forecasts is assessed, and the hypothesis that starting 

from an accurate storm environment will improve forecasts of severe convective storms 

is also tested.   

Creating analyses and forecasts of a complex convective environment, with 

boundary interactions playing a significant role, represents a forecast challenge 

particularly well suited to the multi-scale approach and the Warn-on-Forecast mission 

(discussed in Chapter 1).  The severe convective storms event on 13 June 2010, 

included the interaction of a storm with an outflow boundary and stationary front.  

Thus, 13 June is used as an example case study for multi-scale data assimilation 
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development.  Section 4.2 reviews the meteorological events that occurred on 13 June 

2010.  

Using EnKF to assimilate multi-scale observations, with the goal of improving 

both the storm environment and storm forecasts, has not been well documented in the 

literature (see Section 4.1.2).  The experiments in this chapter are designed to address 

some of the outstanding research questions regarding the generation of an accurate 

storm environment.  These questions are provided below and the motivation for these 

foci is discussed in the following section (4.1.2). 

• Is data assimilation at convective-allowing model (CAM) resolution required to 

obtain an accurate storm environment? 

• How does cycling frequency impact the near-storm environment and convective 

forecast? 

• Can infrequent (hourly) assimilation of radar observations improve the near-

storm environment and convective forecast?   

• Is multi-scale data assimilation cycling sensitive to the background ensemble 

used for initialization? 

• What are the challenges and limitations for producing analyses/forecasts of a 

complex convective event? 

• Does improving the storm environment via multi-scale data assimilation result 

in improved convective forecasts?  How much improvement and for how long 

are these improvements realized?   

The EnKF data assimilation software, forecast model, and observation processing 

used in the data assimilation and forecast system are described in Section 4.3.  All of the 
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experiments are overviewed in Section 4.4.  Mesoscale data assimilation and forecast 

experiments are discussed in Section 4.5.  The results of the multi-scale data 

assimilation and forecast experiments are presented in Sections 4.6-4.8.  Section 4.6 

discusses the frequency of data assimilation cycles.  Section 4.7 focuses on the impact 

of radar observations.  Section 4.8 examines the development of and subsequent 

forecast sensitivity to the initial background ensemble.  Lastly, a summary and 

discussion are presented in Section 4.9.   

 

 

4.1.2 Previous work and motivation 

This study will leverage previous findings on mesoscale (e.g. Fujita et al. 2007; 

Torn and Hakim 2008; Romine et al. 2013) and storm-scale (e.g. Aksoy et al. 2009, 

2010; Dowell and Wicker 2009) ensemble-based data assimilation in a combined 

approach to achieve a multi-scale system.  This study will also build on previous efforts 

to produce convective storm forecasts with fully complex heterogeneous environments 

(e.g., Lei et al. 2009; Stensrud and Gao 2010; Dowell et al. 2010; Yussouf et al. 2013).  

The advantages and limitations of the existing mesoscale and storm-scale assimilation 

techniques are discussed below to motivate the need for a multi-scale analysis system 

and the associated the sensitivity experiments used to develop it.   

Current operational analysis systems use mesoscale grid spacing (O(15 km) 

horizontal grid spacing), which is often downscaled to convective-allowing model 

resolution (CAM; O(3 km) horizontal grid spacing) for real-time convective forecast 

applications (e.g. WRF-NSSL, Kain et al. 2010; AFWA ensemble, Hacker et al. 2011; 
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HRRR, Alexander et al. 2010).  Several previous case studies have shown that CAMs 

improve forecasts compared to the mesoscale, cumulus-parameterizing resolution (e.g. 

Clark et al. 2009; see Section 2.1.3).  Experimental forecast systems developed at the 

National Center for Atmospheric Research (NCAR) (e.g., Weisman et al. 2008) 

indicated sensitivity of convective forecasts to the initial state drawn from external 

analysis systems, motivating further investigation of data assimilation systems used to 

provide initial conditions.  Romine et al. (2013) implemented a real-time continuously 

cycled assimilation system that generated mesoscale analyses to initialize deterministic 

CAM forecasts.  They found that skill in the forecasts is limited by systematic bias in 

the initial conditions.  However, Romine et al. (2013) also found that short-term 

forecasts of convection benefitted from a data assimilation system that used the same 

model system as the forecast model.  Further, results from Schwartz et al. (2014) 

indicate ensemble forecasts initialized from a mesoscale EnKF system are skillful, and 

have a minimal ‘spinup’ relative to forecasts initialized from external analysis systems.  

These results motivate building a data assimilation system and forecast system that 

share the same modeling framework.  This study will expand on these findings by using 

a shared assimilation and modeling framework.  The first experiment in this study 

mimics the system design of Romine et al. (2013) and Schwartz et al. (2014) to 

investigate the skill of a mesoscale analysis, and downscaled CAM ensemble forecasts 

(Section 4.5).   

The alternative approach to initializing convective-scale forecasts, uses 

convective-scale EnKF data assimilation that focuses on assimilating Doppler radar 

observations using horizontally homogeneous and temporally constant environmental 
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conditions (e.g. Dowell et al. 2004a; Tong and Xue 2005; Aksoy et al. 2009, 2010; 

Yussouf and Stensrud 2010; Dowell et al. 2011; Dawson et al. 2012).  Many of theses 

previous studies have shown that the initial conditions and subsequent forecast of 

convection can be substantially improved with ensemble data assimilation methods 

using Doppler radar observations.  Radar data assimilation enhances the initial state by 

adding or removing convection to better match observations and also by correcting 

errors in the representation of convection in the analysis.  Radar observations can 

provide information about the parent convective environment, though techniques to 

extract this have yet to be fully developed.  This work will expand on these findings by 

merging the assimilation of radar observations in a CAM with the assimilation of 

conventional observations.   

Representing mesoscale environmental uncertainty is important for maintaining 

ensemble spread and improving fit to the observations in an analysis system (Fujita et 

al. 2007; Aksoy et al. 2009).  Yet, only a few radar data assimilation studies have 

attempted to incorporate more realistic representation of mesoscale uncertainties, 

through the use of a heterogeneous environment.  For example, Stensrud and Gao 

(2010) found that a more realistic inhomogeneous mesoscale environment led to 

substantial improvement in forecast accuracy compared to using a homogeneous, 

single-sounding environment in their 3DVAR, Advanced Regional Prediction System 

(ARPS; Xue et al. 2000, 2001, 2003) forecast system.  Further, Lei et al. (2009) were 

able to improve a deterministic forecast of the 8 May 2003 supercell through a 

heterogeneous environment nested-grid strategy with EnKF data assimilation of both 

radar data and surface mesonet data.  These results illustrate the potential value of a 
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multi-scale approach.  Yussouf et al. (2013) also employed a nested grid system (outer 

domain with horizontal grid spacing of 18 km and inner domain with horizontal grid 

spacing of 2 km) to investigate the impact of single- and double-moment microphysics 

schemes.  Since the larger domain provided initial conditions for the inner domain, the 

radar data assimilation and ensemble forecasts received the benefits of a heterogeneous 

environment.  However, the radar data assimilation was only done in the afternoon of 

the event of interest on the inner domain and no conventional observations were 

assimilated on the inner domain.  Thus, the analysis cycles were not multi-scale as 

defined in this study.  Using a similar nested grid system for another case study, Sobash 

(2013) found that high-frequency assimilation of surface observations led to 

improvements in forecasts of convective initiation.  Sobash (2013) also found that 

analyses where both radar and surface observations are assimilated produced the best 

forecasts.  Each of the studies suggest that a multi-scale data assimilation and 

forecasting system could provide improved skill relative to a system in which only radar 

data were assimilation. 

This study builds on the previous data assimilation studies with heterogeneous 

environments by systematically exploring potential design configurations for a multi-

scale data assimilation and forecasting system that merges mesoscale and storm-scale 

techniques.  The data assimilation system design begins with strategies similar to real-

time mesoscale analysis systems (Romine et al. 2013; Schwartz et al. 2014); then 

concepts from storm-scale radar data assimilation systems are incorporated.  One of the 

main differences between the mesoscale and storm-scale data assimilation approaches is 

the cycling frequency; mesoscale systems typically use 6-hour cycles, and storm-scale 
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systems typically use 5-minute cycles.  Thus, to bridge this gap, this study investigates 

the potential value of hourly cycles.  Next, since mesoscale systems typically assimilate 

conventional observations and storm-scale systems typically assimilate radar 

observations, this study examines the impact of assimilating radar observations with 

conventional observations.  Lastly, since the focus of this work is on the storm 

environment, the sensitivity to ensemble initialization is explored by comparing a 

simple approach, using an available large-scale global analysis for initialization, and a 

more sophisticated continuously cycled analysis for initialization.  The data assimilation 

techniques will be applied to the 13 June convective events.   

 

 

4.2 Case overview: 13 June 2010 

A complex and volatile convective environment transpired on the afternoon of 

13 June 2010 in the Oklahoma-Texas panhandle, leading to several tornadoes. This 

event was well sampled by the Second Verification of the Origins of Rotation in 

Tornadoes Experiment (VORTEX2; Wurman et al. 2012) instrumentation.  Therefore, 

13 June is an ideal case to explore the capabilities of a multi-scale ensemble data 

assimilation system.  The convective environment and storm evolution are discussed in 

the following section.  The VORTEX2 field operations are reviewed in Section 4.2.2 

and real-time forecasts are reviewed in Section 4.2.3.   
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4.2.1 Storm environment and evolution 

The large-scale pattern provided weak accent supportive of convection, as a 

mid-level closed low over Utah evolved into an open wave (Figure 13).  The 

approaching upper low provided 40 knots of southwesterly flow over the Texas 

panhandle region, contributing to more than sufficient deep-layer shear for supercells.  

Although the mid-level temperatures were relatively warm for a severe convective 

event (e.g. -6 °C was observed by the 1200 UTC Amarillo, Texas radiosonde), the lapse 

rates were fairly steep (e.g. approximately 7°C/km at Amarillo; not shown) and the 

boundary layer was extremely moist (dew points above 70 °F in the Texas panhandle; 

Figure 15) that contributed to between 2000-3000 J kg-1 of Convective Available 

Potential Energy (CAPE) by early afternoon.  While the synoptic scale pattern was 

supportive of organized thunderstorms, forcing along surface boundaries would 

primarily drive storm development and subsequent evolution.   
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Figure 13. The 500 mb analysis chart at 1200 UTC on 13 June 2010 (a) and 0000 UTC 
on 14 June 2010 from the SPC archive. 
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Strong convection developed during the evening of 12 June 2010 and continued 

throughout the overnight hours into the early morning of 13 June.  This is illustrated in 

Figure 14, which shows snapshots of the southern plains composite WSR-88D radar 

reflectivity throughout the 13th.  The mesoscale convective systems (MCSs) that moved 

into Kansas overnight generated a cold pool that persisted through the afternoon.  The 

cooler outflow air was separated from the warn sector by an east-west oriented outflow 

boundary that settled just south of the Oklahoma-Texas Panhandle border in the 

afternoon.  The surface winds on the north side of this boundary were easterly, while 

winds south of this boundary were southerly.  A southwest to northeast oriented, stalled 

cold front (stationary front) was also located in the Oklahoma and Texas Panhandles.  

The front was the primary source of lifting that lead to storm initiation.  Gaps in the 

surface observing network in this region limited identifying the exact position of the 

intersection of the front and surface outflow boundary (Figure 15).  Modest convection 

initiated just behind the surface cold front between 1700 and 1800 UTC and slowly 

moved to the northeast (Figure 14).  The early storms approaching the Oklahoma 

Panhandle struggled to sustain surface-based updrafts as they crossed to the cool side of 

the outflow boundary, decaying as they moved towards/into southern Kansas.  Further 

south, more intense surface-based storms developed closer to the intersection of the 

front and the dryline, the most northerly of which moved over the intersection of the 

cold front and outflow boundary around 2000 UTC.  This storm rapidly intensified, 

gained supercell characteristics, and become tornadic at approximately 2052 UTC.  

Thus, the outflow boundary intersection with the front played an important role in the 

generation of low-level rotation.  The tornado formed approximately 5 miles north of 



79 

Booker, Texas (tornado was in Oklahoma), moved to the northeast, and lasted 

approximately 8 minutes (hereafter referred to as the “Booker tornado” and the “Booker 

storm”; Figure 16).  The storm produced a second rain wrapped multiple vortex tornado 

from approximately 2117 to 2122 UTC between Elmwood and Slapout, Oklahoma, 

which also moved to the northeast.  Both of these tornadoes traversed over open land 

and no damage was reported (rated EF0).  Around 2200 UTC there was no longer 

rotation present at low-levels in the Booker storm.  Southwest of the tornadic storm, 

other storms had developed near the triple point and also moved to the northeast.  One 

other storm briefly became tornadic at approximately 2226 UTC in Lipscomb County, 

Texas.  By 0000 UTC on 14 June, the storms had evolved into several convective line 

segments that moved eastward into Oklahoma and south-central Kansas.  The 

preliminary storms reports for 13 June from NOAA’s Storm Prediction Center (SPC) 

are shown in Figure 17, and serve as a summary of the severe events on the 13th.   
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Figure 14. Composite WSR-88D reflectivity on 13 June 2010 at 0000 UTC (a), 0600 
UTC (b), 1200 UTC (c), 1800 UTC (d), 1900 UTC (e), 2000 UTC (f), and 2100 UTC 
(g) from the VORTEX2 field catalog archive. 
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Figure 15. Surface station plot at 2000 UTC on 13 June 2010 from the VORTEX2 field 
catalog archive.  The stationary front (red half circles and blue triangles), dryline (tan 
line and half circles), and outflow boundary (black dashed line) are hand analyzed in the 
Texas Panhandle.   
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Figure 16. The Booker, Texas tornado on 13 June 2010.  Picture provided by Glen 
Romine. 

 

 

Figure 17.  The preliminary storm reports on 13 June 2010 from the SPC archive. 
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The stationary cold front was the primary lifting mechanism for thunderstorm 

initiation and the presence of the outflow boundary was likely important to the 

development of the tornadoes.  Numerous previous studies have presented evidence that 

tornadoes can be associated with storms that interact with low-level boundaries (e.g. 

Maddox et al. 1980; Markowski et al. 1998).  Preexisting boundaries, such as those 

generated by outflow, can provide a rich source low-level horizontal vorticity, which 

can become vertical vorticity through tilting, and concentrated though stretching by a 

thunderstorm’s updraft (e.g. Markowski et al. 1998; Atkins et al. 1999).  The backed 

winds associated with the boundary also led to a more elongated hodograph enhancing 

storm organization.  The Booker tornado likely resulted from the enhanced vorticity 

generated by the mesoscale outflow boundary interacting with the storm’s updraft.  

Thus, to properly forecast the tornadic potential on 13 June, representing the outflow 

boundary is an essential component of the storm environment.   

The 13 June event occurred in a complex mesoscale environment, in a region 

with sparse conventional observations, and the storms were distant from adjacent WSR-

88D radars.  Thus, it is hypothesized that the use of a multi-scale data assimilation 

approach can leverage available observations to generate an analysis with the essential 

components of the Booker storm environment.  A successful retrieval of the storm 

environment for this event may hold promise that a similar approach could be applied to 

additional cases.   
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4.2.2 VORTEX2 operations 

The field phase of VORTEX2 was ongoing during 13 June 2010.  Teams 

collected data on three storms on the 13th, including the tornadic storm that produced 

the Booker tornado (Figure 18; VORTEX2 data archive site, 

http://data.eol.ucar.edu/master_list/?project=VORTEX2).  The first storm VORTEX2 

targeted for data collection was one of the storms that developed on the cool side of the 

front (Figure 18a).  VORTEX2 operations abandoned that storm in favor of a storm 

developing to the southwest because of its more favorable position along the front, 

referred to as target storm #2 (Figure 18b), which produced the Booker tornado (Figure 

18c).  VORTEX2 teams also briefly targeted a third storm, but that storm became cutoff 

from warm inflow air by outflow from the previous storms (Figure 18d). 
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Figure 18. Field Coordinator (FC) overview the VORTEX2 field operations on 13 June 
2010 via screen captures of the Situation Awareness for Severe Storms Intercept 
(SASSI) from the VORTEX2 field catalog archive. 

 

The NOAA-NSSL dual-polarized X-Band mobile radar (NOXP) collected 

detailed observations of the Booker storm (target storm #2) interacting with the 

boundaries and becoming tornadic (Figure 19).  At the beginning of the NOXP 

deployment, the Booker storm had moved over the boundary intersection and the low-

level rotation began to increase (Figure 19a) leading to tornagenesis and continuing 
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through the mature tornadic phase (Figure 19b).  After approximately 2200 UTC, the 

Booker storm had a more linear appearance at low-levels on radar and was abandoned 

by VORTEX2 due to its limited tornado potential. 

 

 

Figure 19. NOXP reflectivity and Doppler velocity data at 1958 UTC (a) and 2058 UTC 
(b).  These data were manually quality controlled by David Dowell.   
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The wealth of observations collected by VORTEX2 can provide ground truth 

data for assimilation and verification of convective-resolving models.  However, these 

data cannot be fully realized without including the analysis and forecast of the storm 

environment with the surface boundaries (the focus of this study).  VORTEX2 field 

teams collected numerous sounding profiles of the environment on 13 June, which will 

be discussed in Section 4.3.5.   

 

 

4.2.3 Real-time forecasts 

Operational forecast products from the Storm Prediction Center (SPC) 

recognized the risk for severe thunderstorms to develop on 13 June in the Oklahoma 

and Texas Panhandles.  The SPC convective outlook included discussion of the 

potential for enhanced storm-relative inflow and storm-relative helicity for any storms 

that moved over the outflow boundary in the Oklahoma and Texas panhandles.  The 

SPC also issued a mesoscale discussion to highlight this potential tornado threat (Figure 

20) and a subsequent tornado watch.   
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Figure 20. The mesoscale discussion #0923 graphical forecast generated by the Storm 
Prediction Center. 
 

The real-time experimental convection-allowing model forecasts (CAMs) 

captured the presence of the stationary front and initiated convection in the Oklahoma-

Texas Panhandle region.  The CAMs were more accurate in terms of precipitation 

location than operational mesoscale models such as the North American Mesoscale 

Forecast System (NAM).  However, neither the operational nor experimental models 

included an accurate representation of the observed outflow boundary.  For example, 

the NOAA Earth System Research Laboratory’s High Resolution Rapid Refresh 

(HRRR; Alexander et al. 2010) model forecasts contained convection in the Panhandle 

and Western Kansas (Figure 4.21b).  However, the forecast at the surface did not 
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contain the residual cold pool air or the easterly 10 m winds associated with the outflow 

boundary (Figure 21a).  Nonetheless, the forecasted updraft helicity, which is a measure 

of rotating storms in the model (see Section 4.3.7), did indicate that some potential for 

rotating storms existed near Booker at 2100 UTC (Figure 21c).  The updraft helicity 

also indicated potential for rotating storms in Southwest Kansas and North-Central 

Oklahoma that did not occur.  The generally positive performance of the real-time 

HRRR indicates that this event is not beyond the predictability limit for CAMs.   
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Figure 21. The High Resolution Rapid Refresh (HRRR) real-time forecast of 2 m 
temperature (a), composite reflectivity (b), and maximum updraft helicity and 0-1 km 
shear (c) valid at 2100 UTC from the VORTEX2 field catalog archive. 
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4.3 EnKF data assimilation and forecast system design 

The EnKF data assimilation and forecast system design is based on the 

experience of several experimental analysis and forecast systems developed at NCAR 

for real-time forecasts (as discussed in Section 4.1; Romine et al. 2013, Schwartz et al. 

2014).  The forecast model is described in the following Section, 4.3.1.  The EnKF 

system is reviewed in Section 4.3.2.  Information about the conventional (Section 4.3.3) 

and radar (Section 4.3.4) observations is also presented.  Section 4.3.5 explains the steps 

of a data assimilation and forecast cycle.  The VORTEX2 sounding observation 

processing for verification is discussed in Section 4.3.6.  Finally, Section 4.3.7 

introduces the verification methods used throughout the rest of the Chapter.   

 

 

4.3.1 WRF model and physical parameterizations 

Since the focus of this study is on the development of a multi-scale EnKF data 

assimilation framework for the Warn-on-Forecast initiative (Stensrud et al. 2009, 2013), 

the use of an advanced, state-of-the-art atmospheric model is an essential component to 

generate probabilistic forecasts of weather hazards.  This study uses the Advanced 

Research core of the Weather Research and Forecasting Model (WRF-ARW; hereafter 

WRF; Skamarock et al. 2008) version 3.3.1 with nested, limited-area domains for both 

ensemble cycled analysis and forecasts.  The outer domain covers an extended area 

beyond the continental U.S. (CONUS) with a horizontal grid spacing of 15 km, while 

the one-way nested interior domain with 3 km grid spacing has an area of 810 square 

km centered over the convective region of interest (Figure 4.22a).  56 vertical Eta levels 



92 

stretch from the surface to 50 hPa aloft (Figure 4.22b).  Care was taken in selecting the 

vertical Eta levels to provide enhanced resolution near the surface and smooth changes 

in vertical spacing between levels.  A time step of 30 (7.5) seconds was used on the 

outer (inner) domain.  Positive definite moisture advection (Skamarock and Weisman 

2009) was used on both domains.  The ARW core uses a 3rd-order Runge-Kutta time 

integration scheme coupled with a split-explicit 2nd-order time integration scheme for 

the acoustic and gravity wave modes, and 5th-order upwind-biased advection operators 

are used in the fully conservative flux divergence integration (Skamarock et al. 2008).   

 

 

Figure 22. The map view of the horizontal coverage for the outer and inner WRF 
domains (a). The white dots indicate the WSR-88D locations that are utilized and the 
white star is the location of the Booker tornado.  The vertical Eta levels approximate 
height and spacing between levels used for both domains (b).   

 

The WRF model provides a wide range of physics parameterizations to 

represent phenomenon and processes that are not fully resolved in the model.  The WRF 

physics settings and domain information is summarized in Table 1.   

!" #"
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Table 1. WRF Settings Summary. 

WRF	  setting	   Domain	  1	  value	   Domain	  2	  value	  

Horizonatl	  grid	   415	  x	  325,	  Δx	  =	  15	  km	   271	  x271,	  Δx	  =	  3	  km	  

Vertical	  grid	   50	  levels,	  ptop	  =	  50	  hPa	  

PBL	  scheme	   MYJ	  

Microphysics	  scheme	   Morrison	  2-‐moment	  

Radiation	  (LW)	  scheme	   RRTMG	  

Radiation	  (SW)	  scheme	   RRTMG	  

Land-‐surface	  scheme	   NOAH	  

Cumulus	  scheme	   Tiedtke	   none	  

 

In this study, the Mellor-Yamada-Janjić scheme (MYJ) is used for the planetary 

boundary layer (PBL) parameterization (Janjić 1994).  The MYJ PBL scheme uses the 

1.5-order turbulence closure model of Mellor and Yamada (1982) and determines eddy 

diffusion coefficients from prognostically calculated turbulent kinetic energy (TKE).  

The MYJ PBL scheme is a local closure scheme, meaning the turbulent fluxes at each 

model grid point are estimated from the mean atmospheric variables and/or their 

gradients at that point.  Thus, it assumes that the fluxes depend solely on local values 

and gradients of basic model variables.  This assumption is least valid under convective 

conditions when turbulent fluxes are dominated by large eddies that transport fluid 

longer distances (Troen and Mahrt 1986; Stull 1984; Hu et al. 2010).  However, the 

MYJ PBL scheme has commonly been used in convection focused forecast systems 

(e.g. Yussouf et al. 2013; Johnson et al. 2011).  Further, Romine et al. (2013) found that 
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when the MYJ scheme was used in a continuously cycled data assimilation system, 

subsequent forecasts had less bias than forecasts from an analysis system leveraging the 

Yonsei University PBL scheme (YSU; Hong et al. 2006).  Previous studies have 

identified the MYJ PBL scheme to have a cool and moist bias due to too little mixing 

(Kain et al. 2005; Weisman et al. 2008).  While the MYJ PBL scheme may be one of 

the better-performing schemes in WRF, the use of any PBL scheme at CAM resolution 

(~3 km horizontal grid spacing) could be impinging upon a “gray area” in grid spacing, 

in which resolved large eddies blend with the parameterized mixing from the PBL 

scheme (Stensrud 2007).  The PBL scheme is likely one of the largest contributors to 

model error (Coniglio et al. 2013) and the forecast sensitivity to the PBL choice 

warrants future investigation.   

Both domains also use the Morrison double-moment bulk microphysics scheme 

(Morrison et al. 2009).  Double-moment bulk schemes predict both the mixing ratios 

and number concentrations of hydrometeor size distributions.  The Morrison scheme 

uses five hydrometeor species: cloud droplets, cloud ice, snow, rain, and graupel.  

Several studies have shown that the use of double-moment microphysics provides a 

better representation of modeled storms (e.g. Morrison et al. 2009; Dawson et al. 2010; 

Yussouf et al. 2013). The Rapid Radiative Transfer Model for General circulation 

models (RRTMG) is used for the longwave and shortwave radiation schemes (Iacono et 

al. 2008).  The Noah land surface model is used for the land surface parameterization 

(Chen and Dudhia 2001; Ek et al. 2003).  The radiation and land surface scheme 

choices are expected to have less impact on short range (0-3 hour) forecasts compared 

to the PBL and microphysics schemes, but could play an increasingly important role as 
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the cycling period extends for longer windows (Johnson et al. 2011).  The outer WRF 

domain (15 km horizontal grid spacing) additionally requires the use of a cumulus 

parameterization to account for subgrid-scale vertical redistribution of heat and 

moisture resulting from moist convection.  This study uses the Tiedtke cumulus 

parameterization scheme (Tiedtke 1989; Zhang et al. 2011) following the results of 

Torn and Davis (2012) and Romine et al. (2013), as the latter study found smaller 

analysis errors using the Tiedtke scheme compared to when the Kain-Fritsch scheme 

(Kain 2004) was used in the cycled data assimilation system.  

The WRF grids are initialized starting from a downscaled 6-hourly National 

Centers for Environmental Prediction’s (NCEP) Global Forecast System (GFS) 

analysis.  The 50-member ensemble initial conditions are generated by adding random 

draws with zero mean and covariances from the global background error covariances 

using the WRF data assimilation software (WRFDA; Barker et al. 2012) random ‘CV3’ 

option, as in Torn and Hakim (2008).  These samples are added to the horizontal 

components of wind, water vapor mixing ratio, and temperature of the analysis state.  

The lateral boundary condition for the analysis and target states (perturbed boundary 

conditions) are updated using the fixed covariance technique (Torn et al. 2006).  The 

perturbations are an attempt to account for uncertainties in both the initial and boundary 

conditions.  Further discussion of the ensemble initialization and its impact can be 

found in Section 4.7.  Since the edges of the interior domain are spatially distant from 

the outer domain boundary edges, the imposed state on the outer domain lateral 

boundaries does not have a significant influence on the interior domain in short duration 

forecasts (e.g., Romine et al. 2013).  The soil state is initialized identically for all 
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ensemble members from the GFS analysis, but is allowed to evolve freely in each 

ensemble member thereafter.  Tests in which the soil state is re-initialized from the GFS 

at every analysis time led to slightly larger errors in the analysis fit to surface 

observations (not shown).   

 

 

4.3.2 DART EAKF data assimilation system 

This study uses the ensemble adjustment Kalman filter (EAKF; Anderson 2001; 

see Section 2.2.5) option within the Data Assimilation Research Testbed toolkit 

(DART; Anderson and Collins 2007; Anderson et al. 2009).  In order to maintain 

ensemble spread, adaptive spatially and temporally varying inflation (Anderson 2009) is 

applied to the prior (background first guess) state.  The initial inflation has a mean of 

1.0 and standard deviation of 0.8.  Sampling error correction (Anderson 2012) is also 

applied to help reduce influence from spurious correlations due to a limited ensemble 

size.  Horizontal and vertical localization is used to reduce impact of sampling errors 

using the isotropic weighting function from Gaspari and Cohn (1999).  The cutoff 

length (weight becomes zero) in the horizontal (vertical) for conventional observations 

is 1020 (13) km away from the observation location and 24 (12) km for radar 

observations.  Observations are rejected when the squared difference between the 

observation and the prior ensemble mean exceeded 3 times the sum of the prior 

ensemble variance and observation error variance.  The analysis is updated using DART 

from a 50-member ensemble of WRF forecasts.  The parameters used here are based on 

Romine et al (2013) and additional real-time cycling experiments using DART 
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performed at NCAR (e.g. Schwartz et al. 2014).  Table 2 summarizes the DART 

settings.   

 

Table 2. DART settings summary. 

DART	  setting	   Conventional	  Obs.	  Value	   Radar	  Obs.	  Value	  

Filter	  type	   EAKF	  

Ensemble	  members	   50	  

Outlier	  threshold	   3	  

Sampling	  error	  
correction	   TRUE	  

Adaptive	  prior	  inflation	   Initial	  =	  1.0,	  SD	  =	  0.6	  

Localization	  type	   Gaspari	  and	  Cohn	  (1999)	  

Horizontal	  localization	  
cuttoff	   1020	  km	   24	  km	  

Vertical	  localization	  
cuttoff	   13	  km	   12	  km	  

Additive	  noise	   none	   1	  m	  s-‐1,	  1.0	  K	  

 

When high-density observations are assimilated, there is a tendency for the 

ensemble to become under dispersive, which can lead to filter divergence.  In particular, 

for the assimilation of radar observations, additional spread is often provided by using 

an additive noise technique (Dowell and Wicker 2009).  As described in Section 3.2.1, 

the technique employed in this study adds Gaussian perturbations with standard 

deviations of 1.0 m s-1 or 1.0 K respectively for the horizontal wind components, 

temperature and dewpoint temperature fields.  This random noise is applied each 

analysis cycle, in regions where observed reflectivity > 40 dBZ, to the model state 

variables immediately before the updated ensemble is integrated forward in time. 
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4.3.3 Conventional observation sources and processing 

Routinely available observations are obtained from the NOAA’s Global Systems 

Division (GSD) Meteorological Assimilation Data Ingest System (MADIS), which 

includes automated quality control (described at http://madis.noaa.gov/madis_qc.html).  

The observations used in this study include mandatory and significant level 

rawinsondes [u,v,T,Td, altimeter (Alt)], standard aviation routine weather report 

(METAR) and maritime reports [u,v,T,Td,Alt], and Aircraft Meteorological Data Relay 

(AMDAR) reports [u,v,T].  AMDAR report density is reduced by averaging 

observations over boxes of dimension 30 km in the horizontal and 25 hPa in the 

vertical, following Torn (2010).  Atmospheric motion vectors (AMVs; Velden et al. 

2005) [u,v] are obtained from the Cooperative Institute for Satellite Studies Space 

Science and Engineering Center.  AMVs are also averaged spatially but over 60 km in 

the horizontal and are excluded over land.  Global Positioning System (GPS) radio 

occultation observations (Kursinski et al. 1997) are obtained from the Constellation 

Observing System for Meteorology Ionosphere and Climate (COSMIC) with profiles 

thinned to 15 levels in the vertical.   

MADIS also provides surface observations [u,v,T,Td,Alt] from various local 

mesoscale networks, collectively referred to as mesonets.  These data can be valuable 

due to the increased observation coverage that they provide at the surface.  However, 

the instruments and instrument sighting are not standardized, with limited quality 

control by MADIS, and therefore these observations are less reliable for use in the 
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assimilation system.  Separately, Oklahoma Mesonet data [u,v,T,Td,Alt] are obtained 

from the Oklahoma Climatological Survey.  Given the questionable reliability, mesonet 

data are only used for the data assimilation and forecast verification on June 13th.   

A complete list of the observation types and assumed observation errors appear 

in Table 3.  The moisture observation type from all platforms is dew point temperature.  

Dew point observation errors are assigned following Lin and Hubbard (2004), with the 

errors increasing for decreasing relative humidity.  Surface observations are excluded 

when the model terrain and station height differ by more than 300 m, in order to reduce 

potential observation quality errors near steep terrain.  To enhance system stability, 

analysis increments adjacent to the grid lateral boundary edges are minimized; all 

observations within three grid lengths of the lateral boundaries are excluded, and 

observation errors for observations within five grid lengths of lateral boundaries are 

inflated.   
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Table 3. Observation types and errors. 

Platform	   Variable	   Observation	  error	  

Radiosonde	  
Temperature	  
E-‐W,	  N-‐S	  winds	  
Dew	  Point	  

NCEP	  statistics	  
NCEP	  statistics	  

Lin	  &	  Hubbard	  (2004)	  

AMDAR	  
(30	  km,	  25	  hPa)*	  

Surface	  altimeter	  
Temperature	  
E-‐W,	  N-‐S	  winds	  

2	  hPa	  
NCEP	  statistics	  
NCEP	  statistics	  

METAR	  

Altimeter	  
Temperature	  
E-‐W,	  N-‐S	  winds	  
Dew	  Point	  	  

0.75	  hPa	  
2	  K	  

1.75	  m	  s-‐1	  
Lin	  &	  Hubbard	  (2004)	  

Maritime	  reports	  

Altimeter	  
Temperature	  
E-‐W,	  N-‐S	  winds	  
Dew	  Point	  	  

1	  hPa	  
2	  K	  

1.75	  m	  s-‐1	  
Lin	  &	  Hubbard	  (2004)	  

Mesonet	  

Altimeter	  
Temperature	  
E-‐W,	  N-‐S	  winds	  
Dew	  Point	  	  

1	  hPa	  
2	  K	  

1.75	  m	  s-‐1	  
Lin	  &	  Hubbard	  (2004)	  

AMV	  
(60	  km,	  25	  hPa)*	   E-‐W,	  N-‐S	  winds	   50	  %	  NCEP	  statistics	  

GPS	  
(thinned	  to	  15	  levels)	   RO	  refractivity	   Kuo	  et	  al.	  (2004)	  

*	  Superobs	  (horizontal,	  vertical)	  
	   

All the available observations at 2000 UTC on 13 June are plotted in Figure 23, 

as an example of the observational coverage for the interior WRF domain.  The 

majority of the available observations are located at the surface (METAR and 

mesonets).   
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Figure 23. The available conventional observations at 2000 UTC.  The inner WRF 
domain is the black box and the observation locations are marked with symbols for each 
observation platform.  The locations of the four WSR-88D radars are shown for 
reference. 
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4.3.4 WSR-88D radar observations and processing 

Doppler velocity, radar reflectivity factor above 10 dBZ (hereafter referred to as 

reflectivity), and clear air reflectivity (less than or equal to zero reflectivity) data from 

four operational WSR-88D sites are simultaneously assimilated.  The WSR-88D sites 

are the Amarillo, Texas (KAMA), Dodge City, Kansas (KDDC), Wichita, Kansas 

(KITC), and Vance, Oklahoma (KVNX) (white circles in Figure 22; yellow circles in 

Figure 23, 24).  The WSR-88D data is obtained from the National Climatic Data Center 

(NCDC).  A single volume of data that is closest to the assimilation time is selected 

from each radar site.  The reflectivity data are automatically edited using the Quality 

Control Neural Network (QCNN; Lakshmanan et al. 2007) method to remove non-

meteorological echoes, anomalous propagation, and ground clutter.  The Doppler 

velocity is dealiased using the method from Eilts and Smith (1990) and the built-in 

DART quality control check that uses ensemble estimates of the radial observation at 

several Nyquist velocity offsets to determine the appropriate unfolding, if needed.  The 

edited reflectivity and velocity observations are objectively analyzed using the 

Observation Processing and Wind Synthesis (OPAWS; 

http://code.google.com/p/opaws/; Majcen et al. 2008) software.  To reduce spatial error 

correlation and improve computational efficiency, radar observations are analyzed onto 

a regularly spaced 6 km grid in the horizontal, but on the original conical scan surfaces 

(Sun and Crook 2001; Dowell et al. 2004; Dowell and Wicker 2009) using a two-pass 

Barnes (1964) scheme.  Clear air reflectivity observations are also assimilated to help 

suppress spurious convection that may develop in the model (Tong and Xue 2005; 

Aksoy et al. 2009; Dowell et al. 2011), but are analyzed on a coarser 12 km grid 
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(limited testing has found reduced observation density of clear-air reflectivity can be 

used to suppress spurious convection while reducing the computational cost).   

Radar observation error standard deviations are uniformly assumed to be 5 dBZ 

and 2 m s-1 for reflectivity and Doppler velocity, respectively.  Reducing observation 

errors would increase confidence (weighting) of observations on the analysis, but has 

the potential to enhance bias. An example of the WSR-88D radar reflectivity 

observation coverage is shown in Figure 24 for 2000 UTC on 13 June, 2010.  While the 

observations cover much of the horizontal interior domain, vertical coverage varies by 

distance from radars.  
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Figure 24. The available reflectivity observations at 2000 UTC from the KAMA, 
KDDC, KITC, and KVNX WSR-88D radars. 
 

 

4.3.5 Data assimilation and forecast cycles 

A cycle refers to the two-step process of creating an analysis and a forecast, 

which was originally introduced by Bjerknes (Bjerknes 1904, translated by Mintz 1954; 

see Section 2.1.1).  Here, the diagnostic step is provided by the DART data assimilation 
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system and the prognostic step is the WRF model forecast.  This process is further 

broken down to explain the flow of a cycle in more detail.   

For the assimilation of conventional observations, a cycle proceeds as follows:  

(1) Run a set of WRF forecasts to create the prior ensemble.  

(2) Apply adaptive inflation to the state, based on conventional observations.  

(3) Assimilate the conventional observations with DART to generate a new 

analysis state, providing ensemble initial conditions    

These three steps are repeated for each time interval (cycle; Figure 25a).  
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Figure 25. The flow chart of a data assimilation – forecast cycle for the assimilation of 
conventional observations (a) and for the assimilation of both radar and conventional 
observations (b).   
 

To allow for the assimilation of both conventional and radar observations, the 

above analysis step is modified into two sub-steps based on observation platform type 
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for practical reasons owing to runtime performance. The DART EAKF algorithm 

searches for nearby grid points an observation should update using the largest specified 

localization cutoff length.  Recall, the horizontal cutoff length for conventional (radar) 

observations is 1020 (24) km away from the observation location, with radar 

observations typically available every 6 km in the horizontal.  The unnecessarily large 

search radius for radar observations, combined with the large number of available 

observations, required excessive computational resources at the time of this study3.  In 

fact, the wall clock time required is so excessive that it is impossible to run on some 

computing systems.  The difficulties were avoided by doing the data assimilation step in 

two sub-steps, first the radar assimilation followed by assimilation of conventional 

observations.  Thus, a single cycle for radar and conventional observation assimilation 

proceeds as follows:  

(1) Run a set of WRF forecasts to create the prior ensemble.  

(2) Apply adaptive inflation to the state, based on the radar observations.  

(3) Assimilate the radar observations.   

(4) Apply adaptive inflation to the state, based on conventional observations.  

(5) Assimilate the conventional observations.   

(6) Apply additive noise to the state.   

These steps are repeated for each time interval (Figure 25b).  

If the observations are uncorrelated, the order observations are assimilated does 

not matter.  However, since real observations are correlated, the order they are 

                                                
3	  Subsequent	  to	  this	  study,	  an	  alternate	  approach	  was	  developed	  with	  the	  DART	  
toolkit	  enabling	  significantly	  improved	  computational	  performance	  for	  
assimilation	  of	  observation	  sets	  with	  vastly	  different	  horizontal	  cutoff	  lengths.	  
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assimilated can have an impact.  Further, since adaptive inflation is separated into two 

parts, along with the use of an outlier threshold, the order observations are assimilated is 

even more likely to have an impact.  The radar observations are assimilated first to 

allow them to take advantage of the largest ensemble spread that exists in the 

background.  When the ensemble spread is larger, the observations are less likely to be 

rejected by the analysis system.  The opposite assimilation order (conventional 

observations first) was also tested, revealing that the increments from the radar 

observations are slightly smaller when they are assimilated after the conventional 

observations.  Ideally, the radar and conventional observations would be assimilated 

during the same analysis step.  Errors introduced from using a two-step process are not 

well known at this time, but are not expected to significantly impact results. This topic 

will be investigated further in the future.  

 

 

4.3.6 VORTEX2 sounding observations and processing for verification 

The VORTEX2 mobile sounding teams launched 17 balloons on 13 June 2010 

with Vaisala RS92 radiosondes.  The Earth Observing Laboratory (EOL) at NCAR 

provided a quality-controlled version of the data (additional information is available in a 

“readme” document on the EOL VORTEX2 data archive site; 

http://data.eol.ucar.edu/master_list/?project=VORTEX2).  The quality controlled 

sounding data are usually available every second while the balloon is ascending.  Thus, 

there are more than 2500 individual observations within a single sounding.  This far 

exceeds the vertical resolution of the model estimates of the atmospheric state, so prior 
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to using the sounding data for verification, the data are thinned to contain approximately 

10% of the observations below 700 hPa, 5% of the observations between 700 hPa and 

500 hPa, and 2% of the observations above 500 hPa.  Any observations above 200 hPa 

are removed.  The thinned data sets contain approximately 110 observation locations for 

each sounding profile, which is still about twice as dense as the vertical levels in the 

model (the model extends to 50 hPa, not 200 hPa).   

Radiosondes can travel up to 200 km horizontally during the hour-long ascent. 

As such, observation locations are updated based on the location of the ascending 

balloon. Further, observations are split into 15-minute time windows centered on the 

forecast output times to better match the time of the observations with the forecast 

model state.  To evaluate the skill of ensemble forecasts, DART is used in evaluation 

mode to interpolate the forecast model state to the observation type and location.  This 

allows quantitative measures such as the root mean squared error to be computed.  The 

10 sounding launch sites used for forecast verification from 1800 to 2100 UTC across 

the region of interest are shown in Figure 26. 
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Figure 26. The VORTEX2 sounding launch sites on 13 June 2010. 
 

The VORTEX2 sounding launched at 1958 UTC, was released just north of the 

outflow boundary location near Booker, Texas.  Thus, it collected observations of the 

environment in the inflow region of the Booker storm.  The ability to reproduce the 

inflow environment in the model forecasts is believed to be important for the 

reproduction of the Booker storm in the model forecast.  Comparisons between the 

observed profile and the model forecast profiles are examined to investigate the 

differences in the forecast experiments.   
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4.3.7 Verification metrics 

Analyses and forecasts are compared against available observations to assess 

their relative skill.  In this study, the term ‘analysis fit’ refers to the quantitative 

difference between an observed quantity (O) and the model analysis (A) value of the 

same quantity at the observation location, (O - A).  Also, model ‘forecast errors’ refers 

to subtracting the forecasted value of an observed quantity (F) at the observation 

location from the observation itself (O - F).  Another quantitative evaluation metric is 

the Root Mean Squared Error (RMSE).  RMSE is computed by squaring the analysis 

fits (or forecast errors), computing the mean value for all observations, and then 

computing the square root.  The ensemble mean analysis (forecast) can be used to 

represent the best estimate of the true state in a least squares sense (Toth and Kalnay 

1993; Stensrud et al 2000).   

Model, Error, and Observation Weather (MEOW) plots will be used to display 

the results of the data assimilation and forecasts.  An example MEOW plot for 

temperature is shown in Figure 27.  A MEOW plot has two components; a contour plot, 

and an overlain scatter plot with markers of varying sizes.  First, the ensemble mean 

analysis or forecast state is contoured (the model).  Then, circular markers are overlain 

at the locations of available observations, which are also referred to as dots.  The color 

of each dot represents the value of the observation using the same color scale as the 

model field (the observation).  For example, the bright green color indicates 

temperatures between 69 °F and 72 °F (Figure 27).  The dot sizes vary based on the 
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magnitude of the absolute value of the analysis fit or forecast error (the error).  For 

example, if the analysis fit is close the dot is small, while if the analysis fit is poor the 

dot is large.  Thus, differences in the dot color relative to the background color indicates 

where the analysis (forecast) is warmer or cooler (drier or more moist) than 

observations, with the locations having greater disagreement highlighted by large 

markers.  The RMSE is shown in the title of the MEOW plots.  MEOW plots for 

temperature and dew point temperature are shown throughout the result sections of this 

chapter.   
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Figure 27. Model, Errors, and Observations Weather plot example.  The contours are 
the mean model temperature.  The dot sizes are the model error.  The dot colors are the 
temperature observation. 

 

The forecast experiments can also be evaluated by comparing model proxies for 

storm tracks and severe weather events to the observed storm locations and tornado 

tracks.  For example, updraft helicity is a diagnostic quantity indicating rotating 

updrafts in simulated storms.  Updraft helicity is computed by taking the integral of the 

vertical vorticity times the updraft velocity between 2 and 5 km AGL (Kain et al. 

2008a; Clark et al. 2013).  The 50-member ensemble forecasts are used to generate grid 

point probabilistic forecasts (i.e. ensemble frequencies) of strong rotation, as in Clark et 

al. (2012b; 2013) where updraft helicity exceeds the 100 m2 s-2 threshold.  To account 
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for point displacement errors and ensemble variability, a “neighborhood approach” (e.g. 

Ebert 2008; Romine et al. 2013) is applied to the probabilities; a three by three grid 

point stencil is specified around each grid box and a hit at any grid point in the stencil is 

counted as a hit for that grid box.   

In addition to updraft helicity, the presence of significant low-level rotation 

(probability of near surface vorticity tracks) can be used as a proxy for tornadic 

potential because it is indicative of a strong low-level mesocyclones in model forecasts 

(see Section 3.8.3; Stensrud and Gao 2010; Dawson et al. 2012; Stensrud et al. 2013; 

Yussouf et al. 2013).  The surface vorticity tracks serve only to indicate where strong 

low-level mesoscyclones are forecast.  The magnitude of the surface vorticity in model 

forecasts at 3 km grid spacing is not expected to be correlated with tornado strength or 

even indicate whether a tornado exists (Markowski et al. 2011, Marquis et al. 2012), but 

may indicate a model forecast storm with enhanced risk to produce a tornado event.  

Herein, the maximum vorticity below 1 km AGL is found at every grid point, for each 

ensemble member forecast.  Then the neighborhood probability for maximum 0-1 km 

vorticity exceeding 0.0025 s-1 is computed in the same manner as the updraft helicity 

probabilities.  The surface vorticity probabilities are used as an additional forecast 

metric to differentiate between forecast experiments that contain similar updraft helicity 

probabilities (Section 4.8).   
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4.4 Experiment overview 

This section overviews all of the data assimilation experiments to provide a 

holistic view of the research.  The experiments start with a mesoscale assimilation 

approach, and proceed towards storm-scale assimilation techniques.   

The first experiment is simple in that it performs mesoscale data assimilation 

(hereafter referred to as “MesoOnly”; Table 4, row 1).  Herein, mesoscale data 

assimilation is defined as assimilating conventional observations, every 6-hours, on a 

domain with 15 km horizontal grid spacing (Domain 1, Figure 22).  A CAM (3 km 

horizontal grid spacing; Domain 2, Figure 22) is not included in the data assimilation 

system.  The complex near-storm environment preceding the Booker storm is not well 

represented in the ensemble analysis using this mesoscale configuration (Section 4.5).  

When the MesosOnly analysis is downscaled to CAM, subsequent forecasts exhibit 

notable shortcomings in storm development and intensity relative to the observed 

thunderstorm event (Section 4.5).  The use of more sophisticated data assimilation 

strategies is expected to yield more accurate analyses and improved forecast skill.  

Thus, the following experiments explore how to improve the analysis and forecasts of 

the 13 June event with multi-scale data assimilation.   

The remaining experiments are separated into three sets of multi-scale data 

assimilation experiments, and each set investigates a research question regarding the 

development of a multi-scale data assimilation and forecast system.  The first 

experiment set investigates the potential value of more frequent data assimilation 

cycling (Section 4.6); hourly cycling is compared to 6-hour analysis cycles (6Hourly), 

which are typically used in mesoscale analysis systems (Table 4, red and blue rows).  In 
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addition, the lead-time for hourly cycles is evaluated (HourlyFrom12utc, 

HourlyFrom0utc) to examine the differences in the overnight convection preceding the 

Booker storm, which played a vital role in setting up the convective environment.  The 

second experiment set investigates the use of Doppler radar observations with 

conventional observations (Table 4, red and purple rows).  Previous studies have 

typically focused on either the assimilation of conventional observations or the 

assimilation of radar observations (Section 4.1.2).  This study determines the impact of 

radar observations on the mesoscale environment and the convective forecast by 

comparing an experiment in which both radar and conventional observations are 

assimilated (RDA) to an experiment in which only conventional observations are 

assimilated (DA).  Further, an experiment where radar data assimilation is limited to 

observations of the storms of interest (AddRDA) provides additional insight on the 

impact of the radar observations on the environment.  The radar experiment set is 

discussed in Section 4.7.  The final experiment set investigates the sensitivity to the 

background ensemble initialization (Table 4, red and green rows).  A simple approach 

to ensemble initialization, initializing the ensemble from a global analysis on the day of 

interest (DayOfStart) is compared to the use of a continuously cycled system for 

ensemble initialization, motivated by the success of real-time continuously cycled 

analysis systems (Romine et al. 2013; Schwartz et al. 2014).  In addition, the impact of 

model resolution on the continuous cycling is investigated in Section 4.8 

(Cycled15Add3, Cycled).  
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Table 4. Data assimilation experiments. 

Experiment	  name	   Starts	  From	   Cycling	  
Frequency	  

Assimilated	  
Observations	  

DA	  on	  
Domain	  

MesoOnly	   8	  June	  -‐	  1800	  UTC	  
GFS	  analysis	   6	  hours	   Conventional	   1	  

6Hourly	   8	  June	  -‐	  1800	  UTC	  
GFS	  analysis	   6	  hours	  

Conventional,	  
+	  Radar	  on	  13	  

June	  
1	  &	  2	  

HourlyFrom12utc	   13	  June	  -‐	  1200	  UTC	  
6Hourly	  forecast	   1	  hour	   Conventional	  

+	  Radar	   1	  &	  2	  

HourlyFrom0utc/
RDA/Cycled	  

13	  June	  -‐	  0000	  UTC	  
6Hourly	  forecast	   1	  hour	   Conventional	  

+	  Radar	   1	  &	  2	  

DA	   13	  June	  -‐	  0000	  UTC	  
6Hourly	  forecast	   1	  hour	   Conventional	   1	  &	  2	  

AddRDA	   13	  June	  -‐	  1800	  UTC	  
DA	  forecast	   1	  hour	   Conventional	  

+	  Radar	   1	  &	  2	  

Cycled15Add3	  

D1:	  8	  June	  -‐	  1800	  UTC	  
GFS	  analysis	  

D2:	  downscaled	  from	  
D1	  at	  12	  June	  -‐	  1800	  

UTC	  

6	  hours	  
1	  hour	  on	  
13	  June	  

Conventional,	  
+	  Radar	  on	  13	  

June	  

1,	  
1	  &	  2	  

DayOfStart	   12	  June	  -‐	  1800	  UTC	  
GFS	  analysis	   1	  hour	   Conventional	  

+	  Radar	   1	  &	  2	  

 

The three experiment sets are conducted in parallel, because in order to carry out 

an experiment set that tests one data assimilation parameter, all other parameters are 

held constant, including the parameters that are tested in the other experiment sets.  For 

example, cycling frequency cannot be tested without a choosing which observations to 

assimilate.  The default data assimilation parameter choices for initialization, cycling 

frequency, and observation type are based on previous studies (Section 4.1.2) and 

intuition about which setting might give the best convective forecast performance.  The 

red highlighted row in Table 4 show the default choices.  A continuously cycled 

analysis is used as the default initialization.  Hourly assimilation cycles is the default 
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cycling frequency, and both radar and conventional observations are the default 

observations.   

 

 

4.5 Mesoscale data assimilation 

The skill of a mesoscale data assimilation system is investigated, to further 

verify the need for a multi-scale data assimilation system being developed in this 

chapter.  As discussed in Section 4.1.2 and 4.4, current operational data assimilation 

systems use mesoscale grid spacing (~15-20 km horizontal grid spacing), and the 

analyses are often downscaled to CAMs for real-time convective forecast applications.  

In this section, results from data assimilation on a WRF domain defined at mesoscale 

(cumulus-parameterizing resolution) are discussed, and downscaled CAM ensemble 

forecasts are examined.   

The MesoOnly analysis is on a 15 km horizontally spaced grid, and is updated 

every 6-hours with conventional observations using continuous EAKF cycling from 

1800 UTC on 8 June through 1800 UTC on 13 June.  The 1200 UTC mean analysis 

captures the observed synoptic pattern (Figure 13), such as the 500 mb trough position 

and orientation across the western U.S. (Figure 28).  The eastward progression of this 

trough from 1200 UTC on 13 June to 0000 UTC on 14 June provides weak ascent over 

the Oklahoma-Texas Panhandle region and contributes to favorable deep layer shear for 

organized thunderstorms in that region.  The 1200 UTC mid-level wind analysis above 

the Oklahoma-Texas Panhandle indicates a uniform 40 knots of southwesterly flow 

similar to that observed by the 1200 UTC sounding released from Amarillo, Texas.   
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Figure 28. The 500 mb heights and isotachs at 1200 UTC on 13 June 2010 (a) and 0000 
UTC on 14 June 2010 (b). 
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By 1800 UTC, the mean MesoOnly surface analysis includes the stationary front 

across the target region (Figure 29a), but it is further northwest relative to the observed 

frontal location (Figure 29b).  The observed outflow boundary from overnight 

convection is not well resolved in the 1800 UTC analysis, although the temperature 

analysis is cooler (~70 °F) in a small region just north of the Oklahoma-Kansas border 

(approximately located at latitude 37.5° and longitude -99.5°) and in Central Kansas 

(approximately located at latitude 38.5° and longitude -98.5°).  Still, the cold pool in the 

analysis was considerably smaller in spatial extent and weaker in intensity relative to 

the observed cold pool and outflow boundary.  Summarizing, the 6-hourly cycled 

MesoOnly analysis contains some representation of the core elements believed to be 

important for this event, but these key features are spatially displaced and contained 

weaker gradients relative to the observations.  Thus, the near-storm environment for the 

Booker storm is not well represented.   
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Figure 29. The 2 m temperature MesoOnly analysis (a) and observations (b) at 1800 
UTC.  The MesoOnly 2100 UTC forecasted ensemble probability of reflectivity 
exceeding 30 dBZ (c), and the observed WSR-88D reflectivity (d).  The MesoOnly 
2000-2100 UTC forecasted ensemble probability of updraft helicity exceeding 100 m2 s-

2 (e), and the WSR-88D derived rotation tracks from NSSL (f). 
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To further evaluate the storm environment provided by the MesoOnly analysis, 

the 13 June 1800 UTC ensemble analysis is downscaled to an inner WRF domain (3 km 

horizontal grid spacing; See Figure 22) to initialize CAM forecasts.  The 50-member 

ensemble forecasts with the inner domain are integrated for 3-hours (2100 UTC) and 

compared to the observed radar reflectivity valid at the forecast time.  The ensemble 

forecasts indicate convection developing along the stationary front from Kansas into the 

Oklahoma Panhandle (Figure 29c).  Ensemble probabilities of reflectivity greater than 

30 dBZ indicate that the ensemble forecast generated from downscaling the MesoOnly 

analysis has a high probability of convection in central Kansas, where little was 

observed, with only low probabilities of storms in the Texas Panhandle region, where 

the most intense storms were observed at this time (Figure 29d).  Ensemble probabilities 

for updraft helicity exceeding 100 m2 s-2 indicate rotating storms in the forecast (Figure 

29e), but displaced well northeast of the observed Booker storm rotation (Figure 29f).  

These rotating storms are associated with the cold front and the outflow boundary in 

Central Kansas.   

The CAM forecasts initialized from the mesoscale domain provide general 

guidance for the potential for organized severe storms in the region, but are not 

sufficient for capturing the observed evolution of storms in the target region.  These 

results motivate the need for more accurate ensemble initial conditions, which is the 

goal of the multi-scale assimilation approaches that follow.  The MesoOnly downscaled 

forecasts discussed here will serve as a control and provide a baseline for the 

assimilation experiments presented in the following sections.   
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4.6 Data assimilation cycling frequency 

To improve the deficiencies of the convective forecasts initialized with the 

MesoOnly analysis in the previous section, a CAM grid is included in the data 

assimilation cycling and more frequent observations are provided to the analysis 

system.  The goal of this section is to investigate the impact of the cycling frequency on 

the storm environment and convective forecasts with a combined mesoscale and CAM 

analysis system.   

To investigate the impacts of cycling frequency, three experiments are 

compared.  The first experiment mimics the cycling frequency of mesoscale analysis 

systems; conventional, mesonet, and radar observations are assimilated every 6-hours 

on 13 June, using a mesoscale WRF domain (15 km horizontal grid spacing) and a 

nested WRF domain (3 km horizontal grid spacing; Figure 22).  It is referred to as the 

“6Hourly” experiment (Figure 30).  The analysis and forecast results discussed below 

indicate deficiencies with the 6Hourly multi-scale cycling.  Thus, the potential value of 

hourly analysis cycles is examined.  Hourly cycles from 1200 to 1800 UTC are added to 

the 6Hourly experiment, which is referred to as “HourlyFrom12utc” (Figure 30).  

HourlyFrom12utc is designed to investigate the advantages or disadvantages of starting 

hourly assimilation cycling in the morning of the day of interest.  Since the overnight 

convection preceding the Booker event played a vital role in setting up the convective 

environment, the HourlyFrom12utc forecasts also have limited skill.  Thus, the third 

cycling frequency experiment begins hourly cycling at 0000 UTC on 13 June, 

“HourlyFrom0utc” (Figure 30).   
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Figure 30. Data assimilation cycle timeline on 13 June. Times are in UTC.  The 
experiment name textboxes are colored to match the Table 4 (experiment overview) row 
colors.   

 

The system design and data assimilation cycling methodology will be identical 

in each experiment (see Section 4.3.5; Figure 25), with the exception of the number of 

observations assimilated.  Both experiments are initiated from the same background 

ensemble forecast (the initial ensemble will be discussed in Section 4.8), use the same 

boundary conditions, and employ the same model physics.  Data assimilation is 

performed on both the outer WRF domain (15 km horizontal grid spacing) and the 

nested WRF domain (3 km horizontal grid spacing).  The conventional observations for 

the 6Hourly experiment are selected using a 90-minute window centered at the 
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assimilation time, which allows more observations to be included for one cycle 

compared to the 30-minute window on either side of the assimilation time for hourly 

assimilation.  However, the mesonet observations for both 6-hour and hourly are the 

same; a 15-minute window on either side of the assimilation time is used for the 

mesonet data.  One volume of radar observations from the four WSR-88Ds is 

assimilated during each assimilation cycle of the experiments.  

 

 

4.6.1 Analysis results 

First, the analysis of the overnight convection on 13 June is examined.  The 

prior mean reflectivity at 0600 and 1200 UTC are plotted in Figure 31.  During the 

overnight hours the 6Hourly reflectivity priors appear smoother than the 

HourlyFrom0utc priors.  At 0600 UTC, the high reflectivities (>45 dBZ) in the mean 

6Hourly prior do not match the location of the high reflectivity cores in the observed 

storms.  The 6Hourly prior also does not capture the broken line convective mode.  The 

area that is covered by low reflectivities (< 20 dBZ) in the 6Hourly prior does generally 

match the observed storms, with the exception of the western extent of the reflectivities 

in the Texas Panhandle and into New Mexico.  At 1200 UTC, the 6Hourly forecasted 

reflectivity is much less intense as the observed MCSs and does not represent the 

convective mode.  Further, the 6Hourly mean prior reflectivities do not extend into the 

Oklahoma Panhandle.  The HourlyFrom0utc mean reflectivity prior qualitatively 

matches the observations better than the 6Hourly prior.   
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Figure 31. WSR-88D composite reflectivity at 0600 UTC (a) and 1200 UTC (b).  Mean 
prior maximum column reflectivity at 0600 UTC and 1200 UTC for 6Hourly (b,e) and 
HourlyFrom0utc (c,f) experiments.   

 

Despite the reflectivity errors, the 6Hourly analysis fit to the surface temperature 

observations is only slightly worse than the hourly data assimilation (Figure 32a,b).  

The 6Hourly surface temperature analysis at 1200 UTC does not contain the cold pool 

in Southwest Kansas that is present in the HourlyFrom0utc analysis, but the depiction of 

the cold front is similar in both analyses.  Both experiments have a cool bias across the 

body of Oklahoma and Texas (dots are warmer colors than the contours).  This could be 

caused by the MYJ BPL scheme, which has been found to have a cool bias in previous 

studies (Kain et al. 2005; Weisman et al. 2008).  It could also be caused by a under 
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estimation of the morning heating from solar radiation.  The 6Hourly surface dew point 

analysis errors are slightly smaller than the HourlyFrom0utc experiment (Figure 32c,d).  

Although, higher dew points (e.g. 70 °F isodrosotherm) do not extend as far to the west 

in Western Oklahoma and the Texas Panhandle in the 6Hourly analysis as in the 

HourlyFrom0utc analysis, which is important for the development of afternoon 

convection in the Panhandle.   

 

 

Figure 32. Model, Errors, and Observations Weather at 1200 UTC.  The contours are 
the analysis mean surface temperature for 6Hourly (a) and HourlyFrom0utc (b), and the 
analysis mean surface dew point for 6Hourly (c) and HourlyFrom0utc (d).  The dot 
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sizes are the model errors.  The dot colors are the temperature or dew point 
observations. 

 

The surface analysis differences that exist at 1200 UTC are smaller than 

expected, given that only three assimilation cycles have occurred in the 6Hourly 

experiment (0000,0600,1200 UTC) compared to 13 assimilation cycles (0000-1200 

UTC) in the HourlyFrom0utc experiment.  This result can be further examined by 

comparing the data assimilation increments and ensemble spread.  An increment is the 

prior subtracted from the posterior.  The surface temperature increments in the 6Hourly 

experiment are larger than the HourlyFrom0utc experiment (Figure 33).  Specifically, at 

1200 UTC the total temperature increments in 6Hourly have greater magnitude, cover 

larger spatial area, and are less noisy (Figure 33d,f).  The larger increments are moving 

the state closer to the observations, which improves the analysis surface fit in Figure 32.  

The larger increments are partially explained by the larger surface spread (Figure 

34a,b).  Since there is little surface temperature spread in the HourlyFrom0utc 

experiment, the increments are limited compared to the 6Hourly increments.  While the 

ensemble surface temperatures have less spread in the HourlyFrom0utc analyses, above 

the surface the spread is much larger.  The column mean and column maximum 

perturbation potential temperature ensemble spread show that the HourlyFrom0utc 

experiment contains more spread throughout the domain than in the 6Hourly 

experiment (Figure 34c-f).  This indicates that the hourly data assimilation cycles do not 

collapse the ensemble spread through the depth of the domain.  But the hourly data 

assimilation does limit the surface spread.  This is due to the relatively large number of 

surface observations compared to the number of observations above the surface.  The 
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adaptive inflation used to maintain spread contains much larger values at the surface, 

and throughout the domain, in the 6Hourly experiment than in the HourlyFrom0utc 

experiment (Figure 35).  Thus, the selected inflation settings seem to be more 

appropriate for 6-hourly data assimilation cycles.  The adaptive inflation employed here 

was developed and tested with 6-hourly cycles on global grids and the lack of ensemble 

spread is a known problem (Anderson 2009; Romine et al. 2013; Schwartz et al. 2014).  

Thus, the inflation technique needs to be more carefully tuned for hourly assimilation or 

new techniques need to be employed for ensemble spread maintenance.  This is outside 

the scope of the present work.   

 



130 

 

Figure 33. Temperature increments for the lowest model layer at 1200 UTC, after the 
radar observations are assimilated for 6Hourly (a) and HourlyFrom0utc (b), after the 
conventional observations are assimilated for 6Hourly (c) and HourlyFrom0utc (d), and 
the total increment after all observations are assimilated for 6Hourly (e) and 
HourlyFrom0utc (f). 
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Figure 34. Temperature spread at 1200 UTC at the surface for 6Hourly (a) and 
HourlyFrom0utc (b).  Vertical column mean temperature spread for 6Hourly (c) and 
HourlyFrom0utc (d).  Vertical column maximum temperature spread for 6Hourly (e) 
and HourlyFrom0utc (f). 
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Figure 35. Temperature inflation at 1200 UTC at the surface for 6Hourly (a) and 
HourlyFrom0utc (b).  Vertical column mean temperature inflation for 6Hourly (c) and 
HourlyFrom0utc (d).  Vertical column maximum temperature inflation for 6Hourly (e) 
and HourlyFrom0utc (f). 
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The analysis fit to the radiosondes observations is another measure of the data 

assimilation performance.  The analysis fit to radiosonde temperature across all of the 

available 1200 UTC sounding temperature observations is shown in Figure 36a,b.  The 

6Hourly and HourlyFrom0utc have similar RMSE values and appear to fit the 

observations with similar accuracy, which indicates good agreement with the large-

scale temperature pattern.  The analysis fit to radiosonde temperature observations 

within the interior domain is shown in Figure 36c,d.  The HourlyFrom0utc temperature 

analysis has a lower RMSE than the 6Hourly analysis, which indicates the hourly 

cycling improves the temperature profiles in the region of interest.  HourlyFrom0utc 

also has lower RMSE for the interior domain analysis fit to radiosonde dew point, u 

wind component, and v wind component (Table 5).  Thus, within the convective region 

of interest the HourlyFrom0utc analysis has an improved mesoscale environment.   
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Figure 36. Analysis fit to Radiosonde temperature observations.  Each blue marker is an 
observation minus analysis value and the red line is the mean.  The RMSE is shown 
above the each panel.  All observatiosn are plotted for 6Hourly (a) and HourlyFrom0utc 
(b).  Only the observation within the interior domain for 6Hourly (c) and 
HourlyFrom0utc (d).   
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Table 5. RMSE values for analysis fit to Radiosonde observations in the interior domain 
at 1200 UTC. 

Variable	   6Hourly	   HourlyFrom0utc	  

Temperature	   1.170	   0.664	  

Dew	  point	   6.883	   5.308	  

u	  wind	  component	   1.369	   0.995	  

v	  wind	  component	   11.924	   6.511	  

 

 

The final surface temperature and dew point analyses at 1800 UTC are shown in 

Figure 37.  The 6Hourly temperature and dew point analysis RMSE is the lowest.  

Similar to the comparisons at 1200 UTC, the 6Hourly surface spread is larger (not 

shown), which leads to larger surface increments (not shown) and the closer analysis fit 

to the surface observations.  The HourlyFrom12utc surface temperature analysis has 

less RMSE than the HourlyFrom0utc analysis.  However, the HourlyFrom12utc has 

slightly higher RMSE than the 6Hourly analysis.  Consistent with the results shown 

above, these comparisons indicate that the hourly assimilation is decreasing the spread 

too much at the surface, which leads to an under dispersive ensemble and worse fit.  

This result is counter-intuitive, because assimilating additional surface observations 

should improve the analysis.  
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Figure 37. Model, Errors, and Observations Weather at 1800 UTC.  The contours are 
the analysis mean surface temperature for 6Hourly (a), HourlyFrom12utc (b), and 
HourlyFrom0utc (c), and the analysis mean surface dew point for 6Hourly (d), 
HourlyFrom12utc (e), and HourlyFrom0utc (f).  The dot sizes are the model errors.  The 
dot colors are the temperature or dew point observations. 

 

The near surface wind analyses at 1800 UTC contain a wind shift associated 

with the observed outflow boundary in each experiment (Figure 38).  However, in the 

HourlyFrom0utc analysis the easterly winds in the Texas Panhandle (just south of the 

Oklahoma border) extend slightly farther west, to the point where they intersect the 

northerly cold front winds.  The horizontal wind RMSE is almost the same for all three 

experiments.   
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Figure 38. At 1800 UTC, the 10 m wind observations (a), and mean analysis for 
6Hourly (b), HourlyFrom12utc (c), and HourlyFrom0utc (d).  Half barb = 5 m s-1, full 
barb = 10 m s-1.  The observation minus analysis wind difference for 6Hourly (e), 
HourlyFrom12utc (f), and Hourly From0utc (g). Half barb = 2.5 m s-1, full barb = 5 m s-

1. 
 

The HourlyFrom0utc ensemble mean reflectivity analysis at 1800 UTC matches 

the observed storm in the Texas Panhandle (Figure 39c,g).  However, the 6Hourly and 
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Hourlyfrom12utc ensemble mean analyses do not contain the developing storm at the 

correct location (Figure 39b,e&c,f).  Thus, despite the worst surface temperature and 

dew point fit, and similar near surface wind fit, the HourlyFrom0utc analysis has the 

best reflectivity fit.   

 

 

Figure 39. At 1800 UTC, the WSR-88D composite reflectivity (a), and the mean 
analysis maximum column reflectivity for 6Hourly (b,e), HourlyFrom12utc (c,f), and 
HourlyFrom0utc (d,g).  The KAMA WSR-88D reflectivity above 45 dBZ is contoured 
in black in the lower panels (e,f,g).   
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In summary, the hourly assimilation cycles provide more details on the storm 

structure of the overnight MCSs compared to the 6-hourly cycles.  The temperature and 

dew point analyses of the mesoscale forcing features at the surface are similar for the 6-

hourly and hourly cycles, due to differences in surface ensemble spread.  However, the 

experiments with hourly analyses cycles have lower RMSE values when evaluated 

against the VOTREX2 radiosonde observations.  When the hourly cycling begins at 

1200 UTC, the storm environment RMSE lies between the 6-hourly and hourly cycles 

analyses.  Finally, the hourly cycling beginning at 0000 UTC is the only experiment 

containing convection that approximately matches the observed storms at 1800 UTC.    

 

 

4.6.2 Forecast results 

Ensemble forecasts (50 members) are initiated from the analyses at 1800 UTC.  

First, the forecasted storm environment in the three experiments is evaluated.  The 

MEOW plots (see Section 4.3.7) for 2-hour forecasts indicate that each experiment has 

similar fit to the surface observations (Figure 40).  The 6Hourly forecast has the lowest 

RMSE for temperature and the HourlyFrom0utc forecast has the lowest RMSE for dew 

point.  The HourlyFrom0utc dew point forecast also qualitatively appears to be the 

closest match to the observed location of the dry line.  The MEOW temperature plot is 

also used to qualitatively assess the location of the cold air associated with the outflow 

boundary, which is an important feature of the near-storm environment. The cold air 

associated with the outflow is farther north in the 6Hourly temperature forecast 

compared to the HourlyFrom0utc temperature forecast.  For example, in the 
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HourlyFrom0utc surface temperature forecast, the 81 °F isotherm does not extend north 

of the Oklahoma Panhandle, and the fit to the observations is slightly better than the 

6Hourly or HourlyFrom12utc forecast in the Panhandle region (smaller dots).  The cold 

air associated with the outflow is farther south in the HourlyFrom12utc forecast 

compared to the 6Hourly forecast despite being shifted to the north compared to the 

observations. Thus, the both experiments with hourly analysis cycles improve the 

forecasts of the outflow air.  

 

 

Figure 40. Model, Errors, and Observations Weather at 2000 UTC.  The contours are 
the mean forecast surface temperature for 6Hourly (a), HourlyFrom12utc (b), and 
HourlyFrom0utc (c), and the mean forecast surface dew point for 6Hourly (d), 
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HourlyFrom12utc (e), and HourlyFrom0utc (f).  The dot sizes are the model errors.  The 
dot colors are the temperature or dew point observations. 

 

The forecasted near-surface winds at 2000 UTC (2-hour forecast) are similar in 

the three experiments (Figure 41).  The HourlyFrom12utc forecast has the lowest 

RMSE and appears to qualitatively match the observed winds the closest.  Each of the 

experiments have a wind shift associated with the outflow boundary.  However, the 

forecasted wind shift is too far to the north compared to the observed wind shift.  The 

6Hourly wind forecast does not represent the calm winds along stationary front in the 

Panhandle.  Thus, the 6Hourly forecast does not contain the observed boundary 

intersection.  The boundary intersection is present in the HourlyFrom0utc and 

HourlyFrom12utc wind forecasts.  However, the forecasted intersection in both of the 

hourly experiments is shifted to the northwest of the observed intersection.   
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Figure 41. At 2000 UTC, the 10 m wind observations (a), and mean forecast for 
6Hourly (b), HourlyFrom12utc (b), and Hourly From0utc (c).  Half barb = 5 m s-1, full 
barb = 10 m s-1.  The observation minus forecast wind difference for 6Hourly (e), 
HourlyFrom12utc (f), and Hourly From0utc (g). Half barb = 2.5 m s-1, full barb = 5 m s-

1. 
 

The forecast fit to the VORTEX2 sounding observations (see Section 4.3.6) is 

used as a measures how accurately the vertical profiles of wind, temperature, and 
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humidity are being forecasted.  The HourlyFrom0utc forecast has the lowest RMSE 

values below 800 mb for temperature and below 500 mb for the v component of the 

winds (Figure 42a,d).  The sounding RMSE values in the mid- and upper-levels is 

similar among the forecast experiments (Figure 42).  The HourlyFrom0utc storm 

environment forecast is quantitatively more accurate than the HourlyFrom12utc and 

6Hourly forecasts.   

 

 

Figure 42. The VORTEX2 sounding temperature RMSE (a), relative humidity RMSE 
(b), u-wind component RMSE (c), v-wind component RMSE (d), and number of 
observations (e) for the 6Hourly (dashed-dot), HourlyFrom12utc (dashed), and 
HourlyFrom0utc (solid) forecasts.   
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The forecasts at 2100 UTC (3-hour forecast) are compared to investigate how 

the differences in the near-storm environment forecast affect the location and character 

of the thunderstorms.  The probabilistic reflectivity forecasts at 2100 UTC show that 

although each of the three experiments’ ensemble forecasts have convection close to the 

observed storms, none of the experiments forecast the location of the observed storms 

(Figure 43).  The HourlyFrom0utc forecasts have ensemble reflectivity probabilities of 

approximately 25% co-located with the three observed storms and 25% probabilities 

that extend to the northeast of the observed storms.  These forecasted storms evolve 

from the analyzed storms that were added to the state during the last assimilation cycle.  

The HourlyFrom0utc forecast also includes higher probabilities, ~60%, to the west of 

the observed storms, which initiate along the cold front during the forecast.  Thus, the 

HoulryFrom0utc ensemble forecast is over-predicting the spatial extent of the 

convection.  The ensemble reflectivity probabilities in the 6Hourly forecast indicate 

relatively high confidence of convection, >60% probability for reflectivity above 30 

dBZ.  However, the forecasted storm probabilities are concentrated to a small area west 

of the observed Booker storm location.  Thus, the 6Hourly forecast does not contain 

reflectivity probabilities associated with the all of the observed storms; it is under-

predicting the spatial extent of the observed convection.  The HourlyFrom12utc 

ensemble reflectivity probabilities cover less spatial area than the HourlyFrom0utc 

forecast but more area than the 6Houlry forecast.  The highest probabilities (near 60%) 

in the HourlyFrom12utc forecast are also west of the observed storms and there are zero 

probabilities co-located with the observed Booker storm.   
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Figure 43. The 2100 UTC forecast ensemble probability of reflectivity greater than 30 
dBZ for the 6Hourly (a), HourlyFrom12utc (b), and HourlyFrom0utc (c) forecasts.  The 
KAMA 30, 60 dBZ reflectivity observations are contoured in black.  The 2000-2100 
UTC forecast ensemble probability of updraft helicity greater than 100 m2 s-2 for the 
6Hourly (d), HourlyFrom12utc (e), and HourlyFrom0utc (f) forecasts.  The observed 
tornado track is marked in black.  The 2000-2100 UTC WSR-88D derived rotation 
tracks (g) from the NSSL archive.   

 

In order to determine if the forecasted storms are rotating, the updraft helicity is 

compared.  The forecasted ensemble probability of updraft helicity above 100 m2 s-2 

from 2000 UTC to 2100 UTC is plotted in Figure 43d-f.  The WSR-88D derived 

rotation tracks (Smith and Elmore 2004) are shown in Figure 43g for reference.  All 
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three experiments contain rotation tracks indicating rotating storms.  The 

HourlyFrom0utc forecast contains the highest probabilities of the three experiments, 

30%, within a short swath in the Oklahoma Panhandle.  The location of the swath is 

shifted to the north of the observed Booker tornado track.  The scattered nature of the 

additional low probabilities across the Panhandle region indicate ensemble variability.  

The 6Hourly forecast has a longer swath of updraft helicity, however it appears to be 

caused by the front instead of by the boundary intersection.  Recall, that the wind 

forecast in the 6Hourly experiment does not have a boundary intersection.  The 

HourlyFrom12utc updraft helicity probabilities indicate low probability for storm 

rotation.   

 In summary, forecasts initialized from HoulryFrom0utc qualitatively matched 

the observed mesoscale environment better than the HourlyFrom12utc and the 6Hourly 

forecasts.  Further, the HourlyFrom0utc forecasts quantitatively fit the VORTEX2 

sounding observations more closely than the HourlyFrom12utc and the 6Hourly 

forecasts.  Despite errors in each of the experiments’ forecasts, the HourlyFrom0utc 

forecast is the closest to forecasting the Booker storm in the correct location and with 

rotation.  The HourlyFrom0utc forecast has more skill, indicating the value of the 

hourly analysis cycles and the need for hourly cycling during the overnight hours in this 

case.   

 

4.6.3 Conclusions 

The cycling frequency does impact the quality of the analysis for the storm 

environment.  Hourly assimilation cycles improve the fit to radiosonde observations.  
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The analyses of the mesoscale forcing features at the surface are similar for the hourly 

and 6-hourly cycles, due to differences in surface ensemble spread.  The ensemble 

spread is larger for the 6-hourly cycles, which allows the increments to be larger and the 

surface fit to be close to the hourly analyses.  Future work should investigate techniques 

to improve the maintenance of ensemble spread for hourly data assimilation cycles, 

which will likely lead to better analysis and forecast performance for hourly data 

assimilation.   

When hourly cycling begins at 1200 UTC, the storm environment is similar to 

the 6-hourly analyses.  However, beginning the hourly assimilation cycles from 0000 

UTC results in a more accurate representation of the reflectivity structure in the 

overnight MCSs and improves the location of the outflow boundary.  Further, the 

hourly cycling beginning at 0000 UTC is the only experiment with analyzed storms that 

match the observed storms at 1800 UTC.   

The differences in the storm environment analyses lead to differences in the 

character of the forecasted storms.  Hourly cycling from 0000 UTC produces an 

ensemble forecast that is closest to predicting the Booker storm location and rotation.  

Thus, hourly assimilation cycles are used to investigate the impact of radar observations 

in the following section.   

 

 

4.7 Hourly radar data assimilation 

Due to the success of previous Doppler radar data assimilation studies (see 

Section 4.1.2), the impact of assimilating radar observations in a multi-scale data 
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assimilation framework is examined in this section.  The goal of this section is to 

determine if radar data assimilation can contribute to creating an accurate storm 

environment and improve convective forecasts.   

To investigate the impact of radar data assimilation on the storm environment 

and storm forecasts, two data assimilation experiments are compared.  The 

HourlyFrom0utc experiment discussed Section 4.6, which assimilates radar and 

conventional observations every hour, is hereafter referred to as the “RDA” experiment 

in this section.  The RDA experiment uses the radar and conventional observation cycle 

described in Section 4.3.5, which includes both the additive noise technique and the 

adaptive inflation technique to maintain ensemble spread (Figure 25b).  One volume of 

radar observations from the four WSR-88D radars is assimilated each hour in the RDA 

experiment.  The RDA experiment is compared to an experiment that assimilates only 

conventional observations, hereafter referred to as “DA”.  The DA experiment uses the 

conventional observation assimilation cycle described in Section 4.3.5 (Figure 25a).   

The difference between the RDA and DA experiments is the inclusion of the 

radar data assimilation in RDA; otherwise the experiments are identical.  Both 

experiments are initiated from the same background ensemble forecast (the initial 

ensemble will be discussed in Section 4.8), use the same boundary conditions, and 

employ the same model physics.  Hourly data assimilation is performed on both the 

outer WRF domain (15 km horizontal grid spacing) and the nested WRF domain (3 km 

horizontal grid spacing) from 0000 UTC through 1800 UTC on 13 June (Figure 44).  

The conventional observations used in both experiments are the same, and include 

mesonet observations.   
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Figure 44. Data assimilation cycle timeline on 13 June.  Times are in UTC.  The 
experiment name textboxes are colored to match the Table 4 (experiment overview) row 
colors.  RDA is in red to indicate it is the same experiment discussed in the previous 
section (HourlyFrom0utc).   
 

A third experiment, in which only WSR-88D observations are assimilated (no 

conventional observations are assimilated) every hour, was briefly investigated.  The 

mesoscale environment is very poor in terms of the fit to surface and sounding 

observations and the mesoscale forcing features (front, dry line, outflow boundary) are 

not well represented.  The subsequent forecasts did produce convection however, the 

location and evolution of the storms does not resemble the observed storms.  The results 

from this experiment indicate that the assimilation of conventional observations is 

essential and they will not be shown.   
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4.7.1 Analysis results 

Early in the analysis period differences can be seen between the DA and RDA 

experiments.  For example, after 6-hours of data assimilation the RDA reflectivity prior 

more accurately represents the observed convection compared to the DA prior (Figure 

45a-c).  Specifically, the RDA experiment is able to forecast the convection close to the 

observed location, including capturing the stronger intensity convection measured by 

reflectivity > 40 dBZ, from Northeast New Mexico into the Texas Panhandle and across 

Kansas.  In addition, the RDA reflectivity prior captures the observed convective mode, 

which is a broken line of heavy convective cells.  However, the DA reflectivity prior 

consists of a slightly bowed line with trailing precipitation.  The DA > 40 dBZ 

reflectivity is also shifted to the southeast of the observed storms.  Further differences 

between the reflectivity priors are evident at 1200 UTC (Figure 45d-f).  The RDA mean 

prior is able to represent the strong MCS in the western half of Kansas with 

reflectivities > 45 dBZ.  However, the DA mean prior has weak storms in Western 

Kansas with reflectivities of approximately 35 dBZ, and the spatial area of the 

convection is larger than observed, extending westward into Colorado.  Further, the 

reflectivity associated with the western MCS does not extend into the Oklahoma 

Panhandle in the DA prior.  The RDA mean prior is also able to represent the MCS in 

Central Kansas with convective cells of 40 dBZ.  The DA mean prior of the Central 

Kansas MCS is too broad in the east-west direction and is not decaying as quickly as 

observed.  Overall, the radar assimilation is improving the model’s representation of the 

overnight convection.   
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Figure 45. WSR-88D composite reflectivity at 0600 UTC (a) and 1200 UTC (b).  Mean 
analysis maximum column reflectivity at 0600 UTC and 1200 UTC for DA (b,e) and 
RDA (c,f) experiments.   

 

The radar assimilation also has an impact on unobserved variables, such as 

temperature.  Improvements to the representation of convection in the model lead to 

improvements for the rest of the state variables via the dynamic and thermodynamic 

relationships in the model.  For example, increased convection represented by higher 

values of hydrometeor mixing ratios can lead to a larger sized and/or colder cold pool at 

the surface.  The radar observations also have a direct impact on unobserved variables 

through the EAKF increments, which are investigated by examining the increments to 

the state.  For example, Figure 46 shows the temperature increments at model level 5 
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(approximately 135 m AGL) at 0600 UTC.  The increments from the radar observation 

assimilation, conventional observation assimilation, and the total increments (sum of 

increments from radar and conventional observations) in the RDA experiment are 

shown in Figure 46b,c,d.  The total temperature increment (from conventional 

observations) in the DA experiment is shown in Figure 46a.  Even though the majority 

of the radar observations are located farther above the ground than the 5th model level, 

the radar assimilation increments show that the radar observations are changing the 

unobserved temperature state.  Positive temperature increments (yellows and reds) 

occur near the edges of the MCS in the Panhandle and in Kansas and negative 

temperature increments (blues) occur under the convective cores of the MCS.  The total 

increments in the DA experiment are on average smaller than the total increments in the 

RDA experiment.   
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Figure 46. Temperature increments for model layer 5 (approximately 135 m AGL) at 
1200 UTC, after the radar observations are assimilated for RDA (b), after the 
conventional observations are assimilated for RDA (c), and the total increment after all 
observations are assimilated for DA (a) and RDA (d). 

 

The direct and indirect impacts of radar observations in the RDA analyses of the 

overnight convection lead to superior fit to surface observations compared to the DA 

analyses at 1200 UTC (Figure 47).  For example, the RDA surface temperature analysis 
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in the morning contains a cold pool in Southwest Kansas, and the cool air associated 

with the front extends farther to the southeast in the Northeast Texas Panhandle.  

Further, the RMSE for the RDA temperature and dew point analysis is lower than the 

DA analysis RMSE.  The surface analysis differences persist into the afternoon on 13 

June (Figure 48).  The RDA surface analysis has lower RMSE and a better fit to the 

temperature and dew point observations (smaller dots) than the DA analysis.  The RDA 

surface temperature analysis at 1800 UTC contains cooler air (~72 °F) in the northeast 

corner of the Texas Panhandle (bright green contours).  This cooler air indicates the 

north side of the outflow boundary.  However, the DA surface temperature analysis fit 

is the worst along the outflow boundary, which is indicated by the large dots along 

approximately 36° - 37° latitude in Figure 4.36a.  The outflow boundary can also be 

seen in the RDA 10 m horizontal wind analysis at 1800 UTC (Figure 49c,e).  The RDA 

wind analysis shows an abrupt shift from southerly to easterly winds associated with the 

outflow boundary in the Northeast Texas Panhandle.  The DA analyzed winds in the 

Northeast Texas Panhandle have a small easterly component, but the abrupt wind shift 

is not present (Figure 49b,d).  Despite limited wind observations (Figure 49a), a shift 

from southerly to easterly winds associated with the outflow boundary was observed, 

and the RDA analysis has lower RMSE and a better fit to the observations than the DA 

analysis.  Therefore, the inclusion of radar observations has generated a more accurate 

storm environment that better represents the surface outflow boundary critical to the 

afternoon’s convective evolution.   
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Figure 47. Model, Errors, and Observations Weather at 1200 UTC.  The contours are 
the analysis mean surface temperature for DA (a) and RDA (b), and the analysis mean 
surface dew point for DA (c) and RDA (d).  The dot sizes are the model errors.  The dot 
colors are the temperature or dew point observations. 
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Figure 48. Model, Errors, and Observations Weather at 1800 UTC.  The contours are 
the analysis mean surface temperature for DA (a) and RDA (b), and the analysis mean 
surface dew point for DA (c) and RDA (d).  The dot sizes are the model errors.  The dot 
colors are the temperature or dew point observations. 
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Figure 49. At 1800 UTC, the 10 m wind observations (a), and mean analysis for DA (b) 
and RDA (c).  Half barb = 5 m s-1, full barb = 10 m s-1.  The observation minus analysis 
wind difference for DA (d) and RDA (e). Half barb = 2.5 m s-1, full barb = 5 m s-1. 

 

 

The dry line and the stationary front are also better analyzed in the RDA 

experiment compared to the DA experiment at 1800 UTC (Figure 48), which is 

important for convective initiation because storms initiate near the triple point.  The 

initiation of storms in the Texas Panhandle northeast of the triple point can be seen in 

the RDA reflectivity analyses (Figure 50c,e).  Specifically, near 36° latitude in the 

Texas Panhandle, the RDA mean analysis has maximum column reflectivity values > 

50 dBZ within the black contour that indicates where the KAMA observed reflectivity 

is ≥ 45 dBZ.  However, the DA reflectivity analysis does not match the observed !"#$%&'()*+'
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development (Figure 50b,d).  Instead, the DA reflectivity analysis has scattered storms 

in the Oklahoma Panhandle and Southwest Kansas.  These spurious storms are likely 

caused by the northward shift in the surface frontal boundary.  In general, the RDA 

experiment has a more accurate analysis of the developing convection than the DA 

experiment.   

 

 

Figure 50. At 1800 UTC, the WSR-88D composite reflectivity (a), and the mean 
analysis maximum column reflectivity for DA (b,d) and RDA (c,e).  The KAMA WSR-
88D reflectivity above 45 dBZ is contoured in black in the lower panels (d,e).   

 

In summary, the RDA analyses contain overnight convection that is similar to 

the observed MCSs, whereas the DA analyses struggle with the location and intensity of 

the convection.  Further, the RDA representation of the storm environment at the 

surface includes the observed mesoscale forcing features (front, dry line, and outflow 

boundary) with more accuracy than the DA experiment.  The RDA reflectivity analysis 

!"#$%&'()*+'

,-./++0'123425"6&'7'
8' 9'

:;7<=5"5'>7?'12<$3;'.&@&9AB"6='76'C+DD'EF1'

0:' .0:'

G' &'



159 

in the afternoon also resembles the observed storms, unlike the DA analysis.  Hourly 

assimilation of radar data improves the analyses of the storm environment and the 

thunderstorms themselves.   

 

 

4.7.2 Forecast results 

The more accurate analysis of the storm environment in the RDA experiment 

leads to improved forecast performance when compared to the DA experiment.  The 

RDA surface temperature and dew point forecasts are a better fit to the observations 

(Figure 51).  At 2000 UTC, the cool air associated with the both the front and the 

convective outflow have been mixed out in the Texas Panhandle.  However, the RDA 

forecasts contain sharper temperature gradients associated with the boundaries 

compared to the DA forecasts.  For example, the dots in Figure 51a are larger then those 

in Figure 51b near 37° latitude, -101.5° longitude, which indicates larger 2 m 

temperature forecast errors in the DA forecast associated with the cold front and 

residual cold pool.   In addition to the thermodynamic environment differences, the 

forecasted winds differ in the RDA and DA experiments.  The 10 m horizontal winds in 

the RDA forecasts have the southerly-to-easterly wind shift associated with the outflow 

boundary, although it is slightly farther to the north, into the Oklahoma Panhandle than 

the observed boundary (Figure 52a,c,e).  In the DA forecast, the easterly component of 

the 10 m winds increases from south to north in the Texas Panhandle to Kansas region 

(Figure 53b,d).  However, the wind forecast RMSE and fit to the observations is worse 

than the RDA forecast.   
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Figure 51. Model, Errors, and Observations Weather at 2000 UTC.  The contours are 
the mean forecast surface temperature for DA (a) and RDA (b), and the mean forecast 
surface dew point for DA (c) and RDA (d).  The dot sizes are the model errors.  The dot 
colors are the temperature or dew point observations. 
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Figure 52. At 2000 UTC, the 10 m wind observations (a), and mean forecast for DA (b) 
and RDA (c).  Half barb = 5 m s-1, full barb = 10 m s-1.  The observation minus forecast 
wind difference for DA (d) and RDA (e). Half barb = 2.5 m s-1, full barb = 5 m s-1. 

 

The differences in the forecasted storm environment, lead to differences in the 

forecasts of the storms.  At 2100 UTC, the probabilistic reflectivity forecasts for the DA 

experiment have only a 15% probability of reflectivity > 30 dBZ co-located with the 

observed storms in the Panhandle (Figure 53a).  The DA forecast has 40% reflectivity 

probabilities to the northeast of the Booker storm, near 37° latitude and 99.7° longitude. 

The RDA forecast has 30% reflectivity probabilities co-located with the observed 

storms in the Panhandle (Figure 53b).  The RDA forecast also has high probabilities 

(>60%) to the west of the observed storms, which is caused by the shifted location of 

the forecasted cold front compared to the observed cold front.  Despite the location !"#$%&'()(*'
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offset, the RDA 3-hour forecast has an enhanced signal for storms near the observed 

storms relative to the DA forecast.  The forecasts are also compared for the presence of 

rotating storms, measured by the ensemble probability for updraft helicity exceeding 

100 m2 s-2 from 2000 to 2100 UTC (Figure 53c,d).  Although, neither experiment has a 

probability swath for updraft helicity co-located with the Booker tornado (36.5°, -

100.5°), the RDA forecast has an enhanced signal for the risk of supercells compared to 

the DA forecast.  The WSR-88D derived rotation tracks (Smith and Elmore 2004) are 

shown in Figure 53e for reference.  In summary, with 18 hours of hourly radar data 

assimilation, the ensemble forecasts produce storms that resemble the observed severe 

convection.   
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Figure 53. 2100 UTC forecast ensemble probability of reflectivity greater than 30 dBZ 
for the DA (a) and RDA (b) forecasts.  The KAMA 30, 60 dBZ reflectivity observations 
are contoured in black.  The 2000-2100 UTC forecast ensemble probability of updraft 
helicity greater than 100 m2 s-2 for the DA (c) and RDA (d) forecasts.  The observed 
tornado track is marked in black.  The 2000-2100 UTC WSR-88D derived rotation 
tracks (e) from the NSSL archive.   
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4.7.3 Radar assimilation in the afternoon 

The previous section indicated that the assimilation of radar and conventional 

observations throughout the day provide superior forecasts compared to only 

conventional observation assimilation.  In this section, the impact of assimilating only 

the afternoon radar observations is investigated.  Thus, the radar observations provide 

information about the storms of interest on the 13th, but do not include the overnight 

MCSs.  This investigation will determine if the radar observations in the RDA 

analyses/forecasts had an impact on the storm environment, or if the radar observation 

simply forced the convection to look like the observations.   

Three experiments will be examined (Figure 54).  The DA and RDA 

experiments previously discussed are cycled until 2000 UTC.  The third experiment 

begins from the DA analysis at 1700 UTC and assimilates both radar and conventional 

observations at 1800, 1900, and 2000 UTC (as in RDA).  The third experiment is 

referred to as the “AddRDA” experiment.   
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Figure 54. Data assimilation cycle timeline on the afternoon on 13 June.  Times are in 
UTC.  The experiment name textboxes are colored to match the Table 4 (experiment 
overview) row colors.  RDA is in red to indicate it is the same experiment discussed in 
the previous section (HourlyFrom0utc).   

 

The surface analyses at 2000 UTC show that the RDA experiment has a better 

representation of the outflow boundary than the AddRDA or DA experiments (Figure 

55, 56).  The RDA surface temperature analysis maintains the cooler air, < 80 °F, along 

the Eastern Oklahoma-Texas Panhandle border.  Further, the RDA 10 m wind analysis 

contains the abrupt shift from southerly-to-easterly winds near the Eastern Oklahoma-

Texas Panhandle border, which indicates the outflow boundary.  The AddRDA 
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experiment surface analysis is very similar to the DA surface analysis, which is 

expected because the experiments only differ by three cycles of radar data assimilation.  

Thus, the afternoon radar assimilation appears to have minimal impact on the storm 

environment.   

 

 

Figure 55. Model, Errors, and Observations Weather at 2000 UTC.  The contours are 
the mean forecast surface temperature for DA (a), AddRDA (b), and RDA (c), and the 
mean forecast surface dew point for DA (d), AddRDA (e), and RDA (f).  The dot sizes 
are the model errors.  The dot colors are the temperature or dew point observations. 
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Figure 56. At 2000 UTC, the 10 m wind observations (a), and mean forecast for DA (b), 
AddRDA (b), and RDA (c).  Half barb = 5 m s-1, full barb = 10 m s-1.  The observation 
minus forecast wind difference for DA (e), AddRDA (f), and RDA (g). Half barb = 2.5 
m s-1, full barb = 5 m s-1. 

 

At 2000 UTC, the RDA and AddRDA ensemble mean reflectivity analyses are 

similar (Figure 57).  They both have intense thunderstorms in the Texas Panhandle that 
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fit the KAMA WSR-88D observed storms (Figure 57f,g).  The RDA and AddRDA 

analyses also capture the observed storms in Kansas (Figure 57a,c,d).  However, the DA 

analysis does not fit the observations well (Figure 57a,b,e).  It is missing the intensity of 

the observed thunderstorms, and is not as accurate in terms of the location of the 

thunderstorms across the region.  Thus, the addition of the afternoon radar observations 

makes a positive impact on the analyzed storms.   

 

 

Figure 57. At 2000 UTC, the WSR-88D composite reflectivity (a), and the mean 
analysis maximum column reflectivity for DA (b,e), AddRDA (c,f), and RDA (d,g).  
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The KAMA WSR-88D reflectivity above 45 dBZ is contoured in black in the lower 
panels (e,f,g).   
 

 

4.7.4 1-Hour forecast results 

Ensemble forecasts (50 members) are initiated from the analyses at 2000 UTC.  

The 1-hour RDA forecasts have the highest reflectivity ensemble probabilities, 

approximately 85% (Figure 58a-c).  The RDA probabilities do not exactly match the 

KAMA observed storm locations.  But the RDA forecast probabilities are a better fit 

than the other experiments.  The AddRDA forecasts contain two regions of enhanced 

ensemble reflectivity probabilities, > 50%.  However, the probabilities are lower than 

and the location errors are worse than the RDA forecasts.  The DA forecasts have one 

area of low probabilities of approximately 40% in the Panhandle region and are the 

worst fit to the observations.   
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Figure 58. The 2100 UTC forecast ensemble probability of reflectivity greater than 30 
dBZ for the DA (a), AddRDA (b), and RDA (c) forecasts.  The KAMA 30, 60 dBZ 
reflectivity observations are contoured in black.  The 2000-2100 UTC forecast 
ensemble probability of updraft helicity greater than 100 m2 s-2 for the DA (d), 
AddRDA (e), and RDA (f) forecasts.  The observed tornado track is marked in black.  
The 2000-2100 UTC WSR-88D derived rotation tracks (g) from the NSSL archive.   

 

The RDA forecasted ensemble probability of updraft helicity exceeding 100 m2 

s-2 indicates strong rotation associated with the Booker storm (Figure 58f).  The 

AddRDA forecasted probabilities shows a weak signal of rotation in the Oklahoma 

Panhandle (Figure 58e).  The DA probabilities are lower than the AddRDA forecast, 
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and misplaced to the northeast of the observed rotation.  This result indicates that the 

superior storm analysis in the RDA experiment, which includes the outflow boundary, 

leads to improved forecasts of the potential for updraft rotation co-located with the 

observed Booker storm.  Thus, the assimilation of radar observations throughout the day 

on 13 June is beneficial to forecast skill.   

 

 

4.7.5 Conclusions 

The analyses and forecasts using conventional observation data assimilation is 

compared to the analyses and forecasts using Doppler radar and conventional 

observation data assimilation for hourly cycles on 13 June.  Even though only one 

volume of WSR-88D observations (from 4 radars) is assimilated every hour, the data 

still has an impact on the analyses and subsequent forecasts.  The RDA priors match the 

observed overnight convection, whereas the DA priors struggle to capture the observed 

location, intensity, and mode of the convection.  The RDA analyses contain the 

mesoscale surface boundaries; stationary front, dry line, and outflow boundary.  The 

representation of the boundaries leads to improved convective forecasts in terms of 

storm location, intensity, and updraft rotation.  Without radar data assimilation, the 

ensemble forecasts do not resemble the observed storm environment and severe 

convection in the Panhandle region.  Thus, the simultaneous assimilation of radar and 

conventional observations does contribute to creating a more accurate storm 

environment and improved convective forecasts.   
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The addition of radar observations in the afternoon hours improves the analyses 

and forecasts of the storms.  However, it makes little impact on the storm environment.  

The RDA experiment provides a better storm environment than the DA or AddRDA 

experiment, which leads to improved forecasts of storm rotation.  Thus, the addition of 

radar observations in the afternoon can force the model to have convection resembling 

the observations.  However, the forecasted storm evolution is dependent on the 

mesoscale environment.  For this case, the overnight assimilation of radar observations 

is important to the accurate analysis of the mesoscale environment.  The comparisons 

presented here suggest the need for radar observations to be included in multi-scale data 

assimilation systems.   

 

 

4.8 Initial conditions for multi-scale data assimilation 

In the experiments previously discussed, the focus was on the data assimilation 

on 13 June, the day of the event of interest.  However, another open question is, how 

should a multi-scale data assimilation system be initialized?  The use of data 

assimilation cycling for the initialization of ensemble forecasts was discussed in Section 

4.1.2.  However, it is unclear how far in advance of the event of interest data 

assimilation cycling is needed, which is the focus of this section.  Previous studies have 

ranged from including forecasts from 10 days prior to the event (Jung et al. 2012), to 

starting from a sounding or analysis within a few hours of the event (e.g. Dawson and 

Xue 2006; Aksoy et al. 2009).  Further, the forecast sensitivity to the background 

environment has been discussed in the literature (e.g. Dawson and Xue 2006).  
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However, most previous studies have focused on the background for convection, rather 

than the background for the storm environment.  In this section, three choices for 

background ensemble initialization are investigated.  The experiments described below 

do not represent all of the possible options for ensemble initialization, nor will they be 

able to solve all of the problems discussed here.  However, the goal is to compare three 

reasonable choices for ensemble initialization, and to investigate the sensitivity of the 

forecasts to the initialization choice.   

 

 

4.8.1 Experiment design 

In the first experiment, the background ensemble is initialized from the GFS 

analysis at 1800 UTC on 12 June, and is referred to as the “DayOfStart” experiment 

because it starts data assimilation on the day of interest.  The GFS analysis contains 

information from observations at 1800 UTC and from previous GFS forecasts.  Thus, it 

should be a reasonably accurate representation of the large-scale weather pattern.  The 

GFS analysis is downscaled to both the outer WRF domain (15 km horizontal grid 

spacing) and the nested WRF domain (3 km horizontal grid spacing).  A 6-hour forecast 

is made from 1800 UTC on the 12th to 0000 UTC on the 13th.  Then, the hourly cycling 

with both radar and conventional observations is executed on the 13th (as discussed 

previously).  A schematic of the experiment start time and data assimilation cycling is 

shown in Figure 59.   
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Figure 59. Data assimilation cycle timeline for the full assimilation period.  Times are in 
UTC.  The experiment name textboxes are colored to match the Table 4 (experiment 
overview) row colors.  Cycled is in red to indicate it is the same experiment discussed 
in the previous sections (RDA/HourlyFrom0utc).   
 

Another approach to initialize the background ensemble is to start from an 

analysis created with data assimilation cycling, which is referred to as the “Cycled” 

experiment.  The Cycled experiment is also initialized from a GFS analysis but data 

assimilation cycles begin 4-days prior to the day of interest.  On 8 June at 1800 UTC, 

both the outer WRF domain (15 km horizontal grid spacing) and the nested WRF 

domain (3 km horizontal grid spacing) are initialized from the GFS analysis.  Next, a 6-
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hour WRF forecast is run.  Then, conventional observations are assimilated every 6-

hours leading up to 0000 UTC on the 13th.  Finally, the hourly data assimilation with 

radar and conventional observations is executed on the 13th (Figure 59).  The Cycled 

experiment is identical to the “HourlyFrom0utc” experiment in Section 4.6 and the 

“RDA” experiment in Section 4.7.  Each of the experiments in Sections 4.6 and 4.7 is 

initialized from the cycled background ensemble at 0000 UTC on 13 June. 

The third background ensemble experiment is a combination of the 

aforementioned approaches.  The outer WRF domain (15 km horizontal grid spacing) is 

initialized 4-days prior to the event and has 6-hourly conventional assimilation, as in the 

Cycled experiment.  The nested WRF domain (3 km horizontal grid spacing) is 

initialized through downscaling of the outer WRF domain at 1800 UTC on 12 June.  

Finally, both grids are used for the hourly data assimilation with radar and conventional 

observations on the 13th.  This experiment is referred to as the “Cycled15Add3” 

experiment (Figure 59).  The observations assimilated in the Cycled15Add3 experiment 

are identical to those assimilated in the Cycled experiment.  The nested grid takes 

advantage of the ensemble variability and finer resolved scales from the outer domain 

compared to being initialized from the GFS as in the DayOfStart experiment.  However, 

the adaptive inflation for the data assimilation on the 13th is not spun up like it is in the 

Cycled experiment.  Also, due to technical complications, the soil state for the nested 

grid is initialized from the GFS analysis at 1800 UTC on the 12th.  (The WRF 

interpolation routine used to downscale to a nested grid is only implemented for the 

atmospheric state variables.)  The difference between using the downscaled cycled soil 

state and the GFS analysis soil state appear to be small (Romine personal 
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communication).  The initial differences in the three experiments are discussed in the 

following section.   

 

 

4.8.2 Initial analysis 

As mentioned in the previous section, the Cycled experiment has an atmospheric 

state, soil state, and adaptive inflation field that have evolved through the previous 4-

days of cycling.  Comparisons at 0000 UTC on 13 June between the Cycled and the 

DayOfStart experiment (and Cycled15Add3 experiment for the atmospheric state) are 

investigated to examine the similarities and differences in the ensemble after the nested 

CAM WRF domain is initialized.   

At 0000 UTC on 13 June the Cycled experiment has an adaptive inflation field 

that has evolved over 4-days of cycling.  For example, the perurbation temperature 

inflation varies across the domain (Figure 60c).  The inflation field already contains 

knowledge of the available observations.  However, the inflation for the DayOfStart 

(and Cycled15Add3) experiment was initialized at 0000 UTC to a constant value of 1.0 

with a standard dievation of 0.8 (Figure 60a,b).  A spun-up inflation field might be an 

advantage because the inflation acts to increase ensemble spread when observations are 

assimilated.  Thus, for the following assimilation cycles the ensemble spread should be 

maintained more effectively for the Cycled experiment.   
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Figure 60. Column mean temperature inflation at 0000 UTC for DayOfStart (a), 
Cycled15Add3 (b) and Cycled (c). 

 

At 0000 UTC on 13 June, the soil state for the Cycled experiment has been 

freely evolving for 4-days.  However, the soil state for the DayOfStart (and 

Cycled15Add3) experiment was initialized only 6-hours prior to 0000 UTC.  Despite 

this difference, the Cycled and DayOfStart top layer soil moisture is very similar 

(Figure 61).  The DayOfStart ensemble members forecasts have a smoother soil 

moisture pattern across the domain, but they still contain the increased moisture in the 

regions where precipiation occurred during the forecast.  The top layer soil moisture is 

likely the part of the soil state that impacts the atmosphere the most through surface 

exchanges (Romine personal communication).  The general similarity between these 

soil states indcates that the 4-days of cycling does not have a significant impact on the 

soil state.   
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Figure 61. Top layer (closest to the atmosphere) soil moisture at 0000 UTC for member 
3 (a), 33 (b), 47 (c) in the Cycled experiment and for member 3 (d), 33 (e), 47 (f) in the 
DayOfStart experiment.  The members are randomly chosen.   

 

The 6-hour forecasts valid at 0000 UTC on 13 June are used to indicate 

differences in the ensemble initialization.  The three experiments have similar surface 

temperature forecasts (Figure 62a-c).  The cold front is shifted to the northwest in the 

DayOfStart experiment compared to the Cycled and Cycled15Add3 forecasts.  Also, the 

DayOfStart surface temperature is not as cool in the northwest corner of the domain and 

warmer along the southern third of the domain compared to the Cycled and 

Cycled15Add3 forecats.  Thus, it appears that the DayOfStart has a warm bias at the 

surface and/or the Cycled/Cycled15Add3 have a cool bias.  A cool bias could be caused 

by the MYJ PBL scheme (see Section 4.3.1).   
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Figure 62. Ensemble mean surface temperature forecast valid at 0000 UTC on 13 June 
for the DayOfStart (a), Cycled15Add3 (b), and Cycled (c) experiments.  Model, Errors, 
and Observations Weather at 0000 UTC.  The contours are the analysis mean surface 
temperature for DayOfStart (d), Cycled15Add3 (e), and Cycled (f).  The dot sizes are 
the model errors.  The dot colors are the temperature observations. 

 

The 0000 UTC analysis indicates that the DayOfStart forecast was not as cold as 

the observations in the northwest corner of the doamin.  Further, the 

Cycled/Cycled15Add3 forecasts were too cool in most of Oklahoma and North Texas 

compared to the observations (Figure 62d-f).  Thus, there is evidence of bias in each of 

the experiments.  The DayOfStart analysis has the lowest RMSE of the three analyses 

and might indicate that the analysis is overfitting the surface observations.  Although, 
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the fit to the observations appears to be better (smaller circles) in the Oklahoma and 

Texas Panhandle for the Cycled analysis.   

The 6-hour surface dew point forecast (valid at 0000 UTC on 13 June) are 

similar in each experiment (Figure 63).  The biggest differences are for the shape and 

location of the dryline near the wester edge of the domains.  Unfortunately, 

comparisons of the modeled drylines to observations are difficult due to a limilted 

number of observations in this region.  The Cycled15Add3 dew point analysis at 0000 

UTC has the lowest RMSE.   

 

 

Figure 63. Ensemble mean surface dew point forecast valid at 0000 UTC on 13 June for 
the DayOfStart (a), Cycled15Add3 (b), and Cycled (c) experiments.  Model, Errors, and 
Observations Weather at 0000 UTC.  The contours are the analysis mean surface dew 

!"#$%&'()*+'

,'-'

&' .'

/'

0'

1/23.45/%5' 62,7&0'62,7&0+*8009'

8:/72;";'<'='1&>'?@":5'

!@%&,/;5'<'='1&>'?@":5'

1/23.45/%5' 62,7&0'62,7&0+*8009'



181 

point for DayOfStart (d), Cycled15Add3 (e), and Cycled (f).  The dot sizes are the 
model errors.  The dot colors are the dew point observations. 

 

The differences between the general weather pattern for each background 

initialization is small at 0000 UTC on the 13th, which indicates that each of the 

ensemble initialization methodologies are reasonable choices.  However, the details of 

the mesoscale pattern, including the location of the cold front and dryline, will be 

shown to have an impact on later data assimilation cycles and forecasts in the following 

section.   

 

 

4.8.3 Analysis results 

This section evaluates if the initial differences between the DayOfStart, 

Cycled15Add3 and Cycled analyses lead to differences in the hourly analysis cycles on 

13 June.   

The reflectivity priors in all three experiments are able to capture the convective 

mode and approximate location/orientation of the MCSs during the overnight hours 

(Figure 64).  The details in the forecast at 0600 and 1200 UTC differ slightly, but fit the 

observations reasonably well.  Specifically, the low reflectivities (< 25 dBZ) are over 

the same area in each prior.  However, the higher reflectivies (> 40 dBZ) vary between 

the mean priors.  Since these are mean forecasts, the reflectivity values are below the 

observed peak intensity.  At 0600 UTC, the DayOfStart reflectivity prior does not 

contain the observed storms in Northeast New Mexico, but it does contain the observed 

storms near Goodland, Kansas.  



182 

 

 

Figure 64. WSR-88D composite reflectivity at 0600 UTC (a) and 1200 UTC (b).  Mean 
prior maximum column reflectivity at 0600 UTC and 1200 UTC for DayOfStart (c,f), 
Cycled15Add3 (d,g), and Cycled (e,h) experiments.   

 

At the last analysis time (1800 UTC), the surface analyses of all three 

experiments have a close fit to the temperature and dew point observations (Figure 65).  

The errors in the three experiments are of similar magnitude, but the DayOfStart has the 

lowest RMSE value for temperature.  The Cycled15Add3 surface temperature analysis 

!"#$%&'()*+'

,-./012-%2' 3.45&6'3.45&67*866+'

9%":%';-<'3:5$=>'?&@&4AB"2.'-2'CDCC'EF3'

G1?HII,'3:=J:K"2&'-2'CDCC'EF3' G1?HII,'3:=J:K"2&'-2'7LCC'EF3'

M'-'

,-./012-%2' 3.45&6'3.45&67*866+'

9%":%';-<'3:5$=>'?&@&4AB"2.'-2'7LCC'EF3'

4' &'6'

0' #' N'



183 

appears to have the closest fit to the observations near the front and outflow boundary, 

as shown by the smaller sized dots in Figure 65b.  The DayOfStart and Cycled surface 

analyses are more similar to each other at 1800 UTC (Figure 65a,c) than they were at 

0000 UTC (Figure 32d,f and Figure 63d,f).  Thus, hourly data assimilation cycles with 

radar and conventional observations converge the analyses.  The Cycled15Add3 wind 

analysis has the lowest RMSE value, and appears to have the closest fit to the 

observations as shown by the calm and low magnitude winds in the wind difference plot 

(Figure 64).  Future work can focus on seeing the errors get low (Lil’ Jon 2002).   
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Figure 65. Model, Errors, and Observations Weather at 1800 UTC.  The contours are 
the analysis mean surface temperature for DayOfStart (a), Cycled15Add3 (b), and 
Cycled (c), and the analysis mean surface dew point for DayOfStart (d), Cycled15Add3 
(e), and Cycled (f).  The dot sizes are the model errors.  The dot colors are the 
temperature or dew point observations. 
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Figure 66. At 1800 UTC, the 10 m wind observations (a), and mean analysis for 
DayOfStart (b), Cycled15Add3 (c), and Cycled (d).  Half barb = 5 m s-1, full barb = 10 
m s-1.  The observation minus analysis wind difference for DayOfStart (e), 
Cycled15Add3 (f), and Cycled (g). Half barb = 2.5 m s-1, full barb = 5 m s-1. 
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4.8.4 Forecast results 

Ensemble forecasts are initiated from the analyses at 1800 UTC.  Each 

experiment forecasts storms in the Oklahoma and Texas Panhandle at 2100 UTC (3-

hour forecast), which indicates that the environments are supportive of convection 

(Figure 67).  The highest ensemble reflectivity probabilities in the Cycled experiment 

are approximately 60%, and are shifted to the west of the three observed storms (Figure 

67c).  The Cycled15Add3 forecasted reflectivity probabilities are in a swath co-located 

with the observed storm locations.  The highest reflectivity probabilities in the 

Cycled15Add3 forecast are greater than 70 %, which indicates that the Cycled15Add3 

forecast has greater ensemble agreement than the Cycled forecast.  The highest 

DayOfStart forecasted ensemble reflectivity probabilities are ~65%, and are co-located 

with the middle storm of the three observed storms.  Thus, the DayOfStart forecast also 

has less ensemble agreement, compared to the Cycled15Add3 forecast.   
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Figure 67. The 2100 UTC forecast ensemble probability of reflectivity greater than 30 
dBZ for the DayOfStart (a), Cycled15Add3 (b), and Cycled (c) forecasts.  The KAMA 
30, 60 dBZ reflectivity observations are contoured in black.  The 2000-2100 UTC 
forecast ensemble probability of updraft helicity greater than 100 m2 s-2 for the 
DayOfStart (d), Cycled15Add3 (e), and Cycled (f) forecasts.  The 2000-2100 UTC 
forecast ensemble probability of 0-1 km maximum vorticity greater than 0.0025 s-1 for 
the DayOfStart (g), Cycled15Add3 (h), and Cycled (i) forecasts. The observed tornado 
track is marked in black (d-i).  The 2000-2100 UTC WSR-88D derived rotation tracks 
(j) from the NSSL archive.   
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The updraft helicity forecasts are also different for each experiment (Figure 67d-

f).  The Cycled15Add3 probability of updraft helicity has three clusters of rotating 

updrafts, and probabilities of 35% exist in same location as the observed Booker storm.  

The DayOfStart updraft helicity is orientated along the cold front, and probabilities of 

30 % exist near the Booker storm.  The Cycled forecast has some small areas of updraft 

helicity probability > 20% scattered across the region, and the highest probabilities in 

the forecast, 30%, are near the observed Booker storm.   

The ensemble probabilistic forecasts of maximum vorticity exceeding 0.0025 s-1 

in the 0-1 km layer are compared to examine the tornadic potential.  The Cycled15Add3 

forecast has probabilities of 35% near the observed tornado track, and has the highest 

probabilities, 55%, near the triple point.  The Cycled forecast has scattered low 

probabilities (~20%), including an area of low probabilities just north of the outflow 

boundary and co-located with the location of the tornado.  The DayOfStart forecast also 

has low probabilities (~20%) near the triple point and the observed Booker tornado.  

The 3-hour probabilistic vorticity forecast results show that the storm environments are 

supportive of storms with low-level rotation.  However, the ensemble agreement for 

rotation near the observed tornado is fairly low and additional regions (triple point) are 

forecasted to have low-level vorticity values above the 0.0025 s-1 threshold as well.   
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4.8.5 Forecast sounding verification 

The VORTEX2 soundings (see Section 4.3.6) can be used for verification of the 

near-storm environment.  The temperature and relative humidity profiles in the 

Cycled15Add3 forecast have the lowest RMSE values and the Cycled forecast has the 

highest temperature and relative humidity RMSE values (Figure 68).  Further, the 

Cycled15Add3 forecast has the smallest RMSE values (by a small margin) for u and v 

winds, except for the low-level v winds, which has a higher RMSE value than the other 

two experiments.  The lower RMSE values indicate that the Cycled15Add3 forecast has 

a more accurate storm environment.  This result provides evidence for why the 

probabilistic forecasts in the Cycled15Add3 are more accurate in terms of storm 

location and storm rotation (as discussed in the previous section).   
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Figure 68. The VORTEX2 sounding temperature RMSE (a), relative humidity RMSE 
(b), u-wind component RMSE (c), v-wind component RMSE (d), and number of 
observations (e) for the DayOfStart (dashed-dot), CycledAdd3 (dashed), and Cycled 
(solid)  forecasts.   
 

The forecast errors compared to the VORTEX2 sounding launched at 1958 UTC 

is examined to investigate environmental differences in the inflow region of the Booker 

storm (see Section 4.3.6).  The Cycled forecast, for most of the 50 members, does not 

contain the observed cool temperature profile near the surface (Figure 69e).  The 

temperature error (observation minus forecast) profile clearly shows the warm bias in 

the cycled forecasts (Figure 69f).  However, the DayOfStart and Cycled15Add3 

ensemble forecasts do have ensemble members with cool low-level temperature profiles 

!"#$%&'()*+'

,'-' .'

/012345'67$8."8#'/&%"9:-;78'

'''
:'

<$=,&%'7>'7,?&%@-;78?'
1A63' 1A63' 1A63' 1A63'

&'

:7$8B'



191 

and a mean temperature profile that is close to the observed profile (Figure 69a,c).  The 

Cycled15Add3 temperature forecast has less ensemble spread near the surface than the 

DayOfStart temperature forecast (Figure 69b,d).   
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Figure 69. The low-level temperature observations from the 1958 UTC VORTEX2 
sounding (blue), and the ensemble members (black) and ensemble mean (red) estimate 
of the low-level temperature at 2000 UTC for the DayOfStart (a), Cycled15Add3 (c) 
and Cycled (e) forecast.  The low-level temperature difference (observation minus 
forecast) at 2000 UTC for the DayOfStart (b), Cycled15Add3 (d) and Cycled (f) 
forecast.   

!"#$%&'

#'

%' ('

)' *'

&'

+%,-%.)/0.%'123' +%,-%.)/0.%'456%.%7#%'123'

+%,-%.)/0.%'123' +%,-%.)/0.%'456%.%7#%'123'!"#$%&89:&&;'

''' '''4)"<(=/)./'+%,-%.)/0.%'123' +%,-%.)/0.%'456%.%7#%'123'

''''''

''''''



193 

The observed wind profile for the 1958 UTC VORTEX2 inflow sounding has 

easterly surface winds, and backing winds with height (red lines in Figure 70).  The 

Cycled ensemble forecast does not capture the magnitude of the easterly winds near the 

surface in the u wind profile (Figure 70e).  Further, approximately half of the ensemble 

members in the Cycled forecast have v wind component profiles that are close to 

uniform magnitudes with height, 5 m s-1 from the surface to 800 mb (Figure 70f).  Thus, 

the Cycled mean v wind profile does not follow the observed trend of magnitude 

increasing with height; v observations go from 0 to 13 m s-1 from the surface through 

850 mb.  The trend with height in the Cycled u and v profile does not clearly indicate 

backing winds.  The Cycled15Add3 and DayOfStart ensemble forecast wind profiles 

are a better fit to the wind observations (Figure 70a-d).  The Cycled15Add3 forecast 

contains the easterly surface winds in all of the ensemble member u profiles (Figure 

70c).  The DayOfStart forecasted profiles also have easterly low-level winds (Figure 

70a).  However, the magnitudes of some DayOfStart members are weak (< 5 m/s), 

which causes the mean u profile to have weaker easterly winds when compared to the 

observed and the Cycled15Add3 profile.  The v winds for approximately half of the 

ensemble members in the DayOfStart forecast are southerly at the surface, and increase 

in magnitude slowly with height to 5 m s-1 at approximately 850 mb.  The 

Cycled15Add3 v wind values increase in magnitude with height closer to the ground.  

Most Cycled15Add3 ensemble members v wind values is > 5 m s-1 at 875 mb.  Thus, 

the Cycled15Add3 ensemble mean v profile is closer in magnitude to the observed 

profile than the DayOfStart mean v profile.  The mean Cycled15Add3 wind profile is 

the closest to the observed low-level winds and the backing winds with height.   
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Figure 70. The low-level wind component observations from the 1958 UTC VORTEX2 
sounding (blue), and the ensemble members (black) and ensemble mean (red) estimate 
of the low-level wind components at 2000 UTC for the DayOfStart (a,b), 
Cycled15Add3 (c,d) and Cycled (e,f) forecast.  
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In summary, the Cycled15Add3 forecast has the most accurate near-storm 

environment and lowest errors for the low-level profile of the Booker storm inflow air.  

The errors in the Cycled experiment forecast are the largest near the surface.  This result 

suggests accumulated bias near the surface, which may be caused by too little ensemble 

spread.   

 

 

4.8.6 1-Hour forecast results 

The Warn-on-Forecast project is focused on the 0- to 1-hour forecast timeframe.  

This section compares the background ensemble initialization experiments for 1-hour 

forecasts to investigate the differences for short lead times.  Ensemble forecasts are 

initiated from the analyses at 2000 UTC.   

Similar to the analyses at 1800 UTC (previously discussed), the 2000 UTC 

analyses of the three experiments have small differences in the location and character of 

the mesoscale forcing features (front, outflow boundary, and dryline).  The 

Cycled15Add3 surface temperature and dew point analysis has the lowest RMSE values 

(Figure 71).  Near the forcing features, the Cycled15Add3 fit to the observations is 

better than the fit in the Cycled and DayOfStart analyses, which is represented by the 

smaller dots in Figure 71.  All three analyses have easterly winds associated with the 

outflow boundary in the northeast corner of the Texas Panhandle at 2000 UTC (Figure 

72).  The Cycled wind analysis has the lowest RMSE.  However, the front – outflow 

boundary intersection depicted by the shift from easterly winds to calm winds is well 
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represented in the Cycled15Add3 wind analysis near 36.5° latitude and -101.5° 

longitude.   

 

 

Figure 71. Model, Errors, and Observations Weather at 2000 UTC.  The contours are 
the mean forecast surface temperature for DayOfStart (a), Cycled15Add3 (b), and 
Cycled (c), and the mean forecast surface dew point for DayOfStart (d), Cycled15Add3 
(e), and Cycled (f).  The dot sizes are the model errors.  The dot colors are the 
temperature or dew point observations. 
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Figure 72. At 2000 UTC, the 10 m wind observations (a), and mean forecast for 
DayOfStart (b), Cycled15Add3 (c), and Cycled (d).  Half barb = 5 m s-1, full barb = 10 
m s-1.  The observation minus forecast wind difference for DayOfStart (e), 
Cycled15Add3 (f), and Cycled (g). Half barb = 2.5 m s-1, full barb = 5 m s-1 
 

The 1-hour ensemble probabilistic reflectivity forecasts have better ensemble 

agreement and more accurate storm locations than the 3-hour forecast discussed in the 

previous section (Section 4.7.4).  All three experiments have high ensemble 
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probabilities (>75 %) for storms near the observed storm locations (Figure 73).  Thus, 

each forecast indicates the potential for storms near the Booker storm.  However, the 

forecasted high ensemble reflectivity probabilities also extend to the northeast, beyond 

the location of the observed storms.  The displacement of the high probabilities to the 

northeast of the observed storms is most pronounced in the Cycled forecast.  The 

Cycled forecast also has probabilities for storms in Central Oklahoma, which did not 

occur.  The ensemble reflectivity probabilities in the Cycled15Add3 forecast reach 

100% co-located with the southern most of the observed storms.  The DayOfStart 

forecast also has 100% probabilities for reflectivity > 30 dBZ, slightly offset to the 

southwest of the southern most storm.  Each of the experiments has reflectitivy 

probabilities associated with the observed storms in Northwest Kansas, although they 

are missing the orientation of the storms.   
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Figure 73. WSR-88D composite reflectivity at 2100 UTC (a). The 2100 UTC forecast 
ensemble probability of reflectivity greater than 30 dBZ for the DayOfStart (b,e), 
Cycled15Add3 (c,f), and Cycled (d,g) forecasts.  The KAMA 30, 60 dBZ reflectivity 
observations are contoured in black (e-g).  
 

The ensemble probability for updraft helicity indicate the presence of rotating 

storms in each model forecast over the location of the Booker storm (Figure 74).  

Further, the probabilistic forecasts for low-level vorticity, indicate forecasted tornadic 

potential co-located with the Booker tornado track.  The Cycled forecast has the highest 

probability (~85%) of 0-1 km vorticity exceeding 0.0025 s-1 near the observed Booker 

tornado track compared to the DayOfStart (~80%) and Cycled15Add3 (~75%) (Figure 
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74f).  Thus, the slight differences in the mesoscale environment have less impact in the 

1-hour forecasts compared to the 3-hour forecasts.  The other area highlighted by the 

vorticity probabilities in all three experiments is associated with the triple point.  In 

particular, the Cycled15Add3 forecast low-level vorticity probabilities are 70 % near 

the triple point.   

 

 

Figure 74.  The 2000-2100 UTC forecast ensemble probability of updraft helicity 
greater than 100 m2 s-2 for the DayOfStart (a), Cycled15Add3 (b), and Cycled (c) 
forecasts.  The 2000-2100 UTC forecast ensemble probability of 0-1 km maximum 
vorticity greater than 0.0025 s-1 for the DayOfStart (d), Cycled15Add3 (e), and Cycled 
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(f) forecasts. The observed tornado track is marked in black (a-f).  The 2000-2100 UTC 
WSR-88D derived rotation tracks (g) from the NSSL archive.   
 

 

4.8.7 Conclusions 

Three ensemble initialization choices are compared in this section.  Despite the 

ensemble initializations taking place prior to 18 (or 20) hours of data assimilation, the 

differences in the ensemble background impact the storm environment and 

thunderstorm forecasts.  Thus, the data assimilation analyses and forecasts are sensitive 

to the ensemble initialization.   

The analyses of the storm environment at 1800 UTC show that the 

Cycled15Add3 fits the observation the best.  The 3-hour forecast initiated at 1800 UTC 

indicate the potential for storms in the Panhandle region in all three experiments.  The 

Cycled15Add3 ensemble forecasts of reflectivity, updraft helicity and vorticity match 

the observed Booker storm slightly better than the other experiments.  The more 

accurate depiction of the convection can be attributed to a more accurate depiction of 

the storm’s mesoscale environment.  The VORTEX2 soundings verifications indicated 

that the Cycled15Add3 forecast has the lowest RMSE.  Further, the 1958 UTC inflow 

sounding comparison shows the Cycled15Add3 forecast has the observed cool air near 

the surface and easterly low level winds that back with height.  The DayOfStart forecast 

contains the same features but has slightly larger profile errors.  The Cycled forecast is 

missing the key features in the observed inflow sounding profile.  Thus, the 

Cycled15Add3 3-hour forecasts produce the most accurate representation of the 13 June 

storm environment.  Differences between the initialization experiments’ 3-hour 
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ensemble forecasts are larger than the differences in the 1-hour ensemble forecasts.  

However, the 1-hour ensemble forecasts initialized with the Cycled15Add3 analysis is 

also a closer match to the observed Booker storm location, intensity, and rotation, 

relative to the DayOfStart and Cycled 1-hour ensemble forecasts.   

 

 

4.9 Summary and Discussion 

A multi-scale EnKF data assimilation and forecast system for the analysis and 

prediction of the environmental conditions and the severe convective storms is 

developed in this chapter.  The multi-scale system is applied to 13 June 2010.  The 

severe thunderstorms on 13 June occurred within a complex mesoscale environment, 

which developed subsequent to overnight mesoscale convective systems.  Two 

boundary intersections, between a stationary front and a dryline, and the stationary front 

and an outflow boundary, played a significant role in the initiation and evolution of the 

severe thunderstorms during the afternoon of 13 June.  One thunderstorm moved over 

the front – outflow boundary intersection and became tornadic near Booker, Texas.   

The WRF model and DART data assimilation toolkit are used for the analysis 

and forecast of the storm environment and convection on 13 June.  WRF forecasts are 

made with a mesoscale domain (15 km horizontal grid resolution), covering an area 

beyond the CONUS, and a convective allowing model (CAM) interior nest (3 km 

horizontal grid spacing), covering the Oklahoma-Texas Panhandle region.  

Conventional observations (including mesonets) collected from the MADIS database 
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(and Oklahoma Climatological Survey), and quality-controlled observations from four 

WSR-88D radars are assimilated.   

The questions that motivated this research can now be addressed: 

• Is data assimilation at convective-allowing model (CAM) resolution 

required to obtain an accurate storm environment? 

To investigate this question, a continuously cycled mesoscale data assimilation 

system is examined.  The mesoscale assimilation uses only the 15 km horizontally 

spaced domain and executes 4-days of 6-hourly data assimilation cycles to assimilate 

conventional observations.  The mesoscale analysis captures the observed synoptic 

pattern, and contains some representation of the core mesoscale elements: the stationary 

cold front, dryline, and outflow boundary.  However, these key boundaries lacked the 

sharpness and correct placement to match the observed near-storm environment for the 

Booker storm.  When the mesoscale analysis is used to initialize convective-allowing (3 

km horizontal grid spacing) ensemble forecasts, the forecasts have rotating 

thunderstorms developing along the stationary front in Central Kansas, where few 

storms were observed, and does not forecast storms in the Texas Panhandle, where the 

most intense storms were observed.  Thus, the CAM forecasts initialized by 

downscaling the mesoscale analyses provide general guidance on the potential for 

organized severe storms in the region, but are not sufficient for capturing the observed 

location and evolution of storms in the target region.  These results indicate the need for 

multi-scale data assimilation within the CAM.   

• How does cycling frequency impact the near-storm environment and 

convective forecast? 
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A multi-scale data assimilation system, which uses both the 15 and 3 km 

horizontally spaced domains and assimilates conventional and radar observations, is 

examined at two cycling frequencies: 6-hourly and hourly.  Hourly cycling constrains 

the storm environment more than 6-hourly cycling.  However, a large number of 

available conventional observations are located at the surface, which leads to little 

ensemble spread at the surface, and the surface analysis fit to the observations is similar 

for hourly and 6-hourly assimilation cycles.  Using hourly cycling during the overnight 

hours on the 13th, qualitatively and quantitatively improves the forecast of the 

mesoscale environment, compared to starting the hourly cycling in the morning on the 

13th.  In addition, continuous hourly cycling on the 13th leads to the best forecast skill in 

terms of predicting the Booker storm location and rotation.  Thus, hourly assimilation 

cycles are used to investigate the impact of radar observations and ensemble 

initializations.   

• Can infrequent (hourly) assimilation of radar observations improve the 

mesoscale environment and convective forecast?   

Yes, despite only assimilating one volume of WSR-88D observations (from 4 

radars) every hour, the simultaneous assimilation of radar and conventional 

observations improves the accuracy of analyses and subsequent forecasts, compared to 

the assimilation of conventional observations alone.  When radar data is assimilated 

with conventional observations, the analyses fit the observed overnight convection and 

the representation of the mesoscale surface boundaries (stationary cold front, dry line, 

and outflow boundary) are more accurate.  Subsequent forecasts have more skill 
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compared to forecasts initialized with the conventional observation assimilation 

analysis.   

The addition of radar observations in the afternoon hours improves the analyses 

and forecasts of the storms, compared to the assimilation of conventional observations 

alone.  However, it makes little impact on the storm environment.  For this particular 

case, the assimilation of radar observations during the overnight hours is needed to 

generate an accurate storm environment.   

• Is multi-scale data assimilation cycling sensitive to the background 

ensemble used for initialization? 

Yes, differences in the background ensemble initialization impact the storm 

environment and thunderstorm forecasts.  For this case, the most accurate forecast of 

the storm environment and Booker storm are obtained with the CAM that is initialized 

24-hours prior to the event from a mesoscale domain that has been cycled for 4-days 

(Cycled15Add3).  When the CAM and the mesoscale domain are initialized from a 

global analysis on the day of interest, the storm environment is slightly worse 

(DayOfStart), and when the CAM is cycled for 4-days with the mesoscale domain the 

forecasts are worse (Cycled).   

• What are the challenges and limitations in producing analyses/forecasts of a 

complex convective event? 

Maintaining appropriate values of ensemble spread is the biggest limitation 

encountered in this study.   Deficiencies in ensemble spread at the surface limit the 

benefit from of hourly assimilation of dense observations.  The development of 
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techniques to improve ensemble spread, particularly in regions with dense observations 

is an important research area that needs to be addressed in future work.   

The density of available observations is highly variable, which in addition to 

impacting the ensemble spread, leads to several data assimilation challenges associated 

with localization, observation errors, and observation operators.  In particular, the high-

resolution Doppler radar observations are smoothed via objective analysis for their use 

in the multi-scale data assimilation.  However, much work is needed to improve radar 

observation processing and how the assimilation techniques use the radar observations.   

The quality control of observations is also a challenge for data assimilation 

systems.  In this study, analyses indicated the presence of a few bad conventional 

observations that passed the quality control.  The ability to find and remove bias and 

errors in the observations before they are assimilated will improve the analyses.   

Verification of ensemble analyses and forecasts is another challenge.  In this 

study, surface observations and sounding observations are used for verification of the 

storm environment and radar observations are used for the verification of the modeled 

storms.  However, it is difficult to determine which metrics provide the most insight.  

Additional techniques to take advantage of the ensemble statistics could allow more 

detailed comparisons or expedite the verification process.   

• Does improving the storm environment via multi-scale data assimilation 

result in improved convective forecasts?  How much improvement and for 

how long are these improvements realized?   

To address this question, the 13 June forecasts with the most skill and the worst 

skill are reviewed.  The MesoOnly experiment (Section 4.5), which does not use multi-
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scale data assimilation (the CAM is initialized through downscaling), has the least 

skillful convective forecast.  The Cycled15Add3 experiment (Section 4.8), which 

initialized the CAM from the mesoscale cycling analysis 24-hours prior to the Booker 

storm and executed multi-scale cycling on the 13th (hourly cycling with radar and 

conventional observations) has the most skillful convective forecast.   

The 3-hour forecast valid at 2100 UTC for reflectivity, updraft helicity, and low-

level vorticity probabilities from the MesoOnly and Cycled15Add3 experiments are 

shown in Figure 75.  The Cycled15Add3 forecast probability of reflectivity exceeding 

30 dBZ clearly indicates the potential for convection where the severe storms were 

observed.  However, the MesoOnly forecast has low reflectivity probabilities and they 

are shifted to the northeast of the observed storms.  The Cycled15Add3 updraft helicity 

and low-level vorticity probabilities indicate the potential for rotation associated with 

the modeled storms.  However, the signal for rotation is weak in the MesoOnly forecast 

and shifted to the northeast of the Booker storm.   
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Figure 75.  The 2100 UTC forecast ensemble probability of reflectivity greater than 30 
dBZ for the Cycled15Add3 (a) and MesoOnly (b) forecasts.  The KAMA 30, 60 dBZ 
reflectivity observations are contoured in black.  The 2000-2100 UTC forecast 
ensemble probability of updraft helicity greater than 100 m2 s-2 for the Cycled15Add3 
(c) and MesoOnly (d) forecasts.  The 2000-2100 UTC forecast ensemble probability of 
0-1 km maximum vorticity greater than 0.0025 s-1 for the Cycled15Add3 (e) and 
MesoOnly (i) forecasts. The observed tornado track is marked in black (d-i).  The 2000-
2100 UTC WSR-88D derived rotation tracks (j) from the NSSL archive.   
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These comparisons highlight the advantages of multi-scale data assimilation 

compared to mesoscale data assimilation for predicting severe storms.  All of the multi-

scale analysis experiments investigated in this chapter demonstrate superior forecast 

skill than the mesoscale analysis system.  Further, the multi-scale results provide 

evidence that improved analysis of the storm environment leads to improved convective 

forecast skill.  This result emphasizes the importance of the data assimilation system 

used to initialize forecasts.   

The experiments compared in this chapter show that multi-scale data 

assimilation improves convective forecasts on 13 June, which indicates the potential of 

a mulit-scale approach.  Building on the results presented, more work is needed to 

implement a multi-scale analysis and forecast system for the Warn-on-Forecast mission.  

In particular, future studies should investigate more cases that have complex 

environments and continue to improve the multi-scale techniques.   
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Chapter 5: Summary 

Two ensemble data assimilation challenges are investigated in this dissertation 

to improve the initial conditions for convective-allowing model forecasts.  Chapter 3 

compares the Local Ensemble Transform Kalman Filter (LETKF) and the Ensemble 

Square Root Filter (EnSRF) for convective-scale Doppler radar data assimilation, to 

determine if one of the methods consistently produces more accurate analyses and 

forecasts.  Second, data assimilation strategies are investigated to improve the analysis 

of a complex mesoscale near-storm environment.  Several configurations of a multi-

scale data assimilation and forecast system are implemented for 13 June 2010.  Special 

observations from the VORTEX2 field program are used to help quantify the accuracy 

of the forecasts.  A brief summary of the primary findings of this dissertation is 

provided in this chapter.   

 

 

5.1 LETKF versus EnSRF 

Chapter 3 describes a quantitative and qualitative comparison between the Local 

Ensemble Transform Kalman Filter (LETKF; Hunt et al. 2007) and the Ensemble 

Square Root Filter (EnSRF; Whitaker and Hamill 2002).  The major difference between 

these two approaches is the assimilation pattern and the application of observations 

localization.  The LETKF assimilates all observations that impact the state vector at a 

given location simultaneously, and applies localization via inflating the observation 

error covariance (i.e., “R-localization”).   The EnSRF assimilates observations 

sequentially, to generate analysis increments for multiple state vector locations from an 
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individual observation, and applies a localization function to the background error 

covariance (i.e. “B-localization”).  The analyses and forecasts from each method are 

compared using a convective-scale (1 km horizontal grid spacing) cloud model with 

Doppler radar data assimilation for an Observing System Simulation Experiment 

(OSSE) and a real-data case, the 8 May 2003 Oklahoma City, Oklahoma tornadic 

supercell (Burgess 2004; Hu and Xue 2007; Romine et al. 2008; Dowell and Wicker 

2009; Dowell et al. 2011; Yussouf et al. 2013).   

The major findings for this study are: 

• The OSSE is used to perform localization length sensitivity tests, and when 

comparing the LETKF and the EnSRF a smaller localization cutoff length is 

used for the R-localization to account for the difference in the effective 

localization length between R- and B-localization (HW2013).   

• The OSSE results suggest longer localization cutoff lengths should be used 

compared to the values commonly used in the literature for convective-scale 

radar data assimilation.  For B-localization (R-localization), a horizontal cutoff 

length of 12 km (9 km) and a vertical cutoff length of 6 km (4.5 km) are used.  

• The choice of localization cutoff length impacts the wind and temperature 

analyses, and has slightly smaller impact on hydrometeor state variables.  The 

EnSRF is slightly more sensitive than the LETKF to the localization cutoff 

length.   

• The OSSE performance of the EnSRF with B-localization is nearly the same as 

that with R-localization.   
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• The EnSRF method produces larger analysis errors than the LETKF, as 

measured by the difference total energy and hydrometer difference total energy 

in the OSSE. 

• The LETKF appears to provide slightly better dynamic balance, as measured by 

the noise seen in surface pressure tendencies in the OSSE.   

• When only Doppler velocity observations are assimilated in the OSSE, the 

filters produce very similar analyses.  This indicates that analysis differences 

arising from the different assimilation algorithms is larger when the observation 

operator is nonlinear, as with radar reflectivity.   

• Assimilation of real radar observations from the 8 May 2003 Oklahoma City 

supercell indicates the LETKF and the EnSRF analyses and forecasts are 

qualitatively similar.   

• Changing the random number seed value used to initialize the numerical 

perturbations added to each ensemble member reveals that the analysis and 

forecast differences between the EnSRF and the LETKF in the real data case are 

similar in magnitude to the differences that arise from the sampling variability 

associated with a finite ensemble.  Therefore, the difference in accuracy between 

the filters does not appear to be of great practical importance.   

• The results strongly support the use of either the LETKF or the EnSRF as 

viable convective-scale radar data assimilation algorithm. 
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5.2 Multi-scale data assimilation 

Chapter 4 describes the development of a multi-scale data assimilation and 

forecast system, which is applied to the complex convective environment from 13 June 

2010.  The multi-scale system simultaneously assimilates Doppler radar and 

conventional observations, to analyze the primary synoptic and mesoscale convective 

forcing features and the convection itself.  Convective forecasts initialized with a 

mesoscale analysis system are compared to the convective forecast initialized from 

various configurations of a multi-scale analysis system.  Cycling frequency, observation 

type, and initialization of the background ensemble are varied to determine optimal 

settings for a multi-scale analysis system.  A mesoscale WRF model domain (15 km 

horizontal grid spacing), and a nested convective-allowing WRF model domain (3 km 

horizontal grid spacing), are used along with the DART data assimilation toolkit for the 

analysis and forecast of the storm environment and convection on 13 June 2010.   

The major findings for this study are: 

• A mesoscale-only data assimilation system captures the observed synoptic 

pattern.  However, the location and amplitude of mesoscale surface boundaries 

in the pre-storm environment have significant errors.  Thus, downscaling the 

mesoscale analysis grid (15 km) to a CAM grid (3 km) leads to inaccurate CAM 

forecasts.   

• In a multi-scale data assimilation system, hourly cycling improves the 

convective environment as measured by the fit to VORTEX2 soundings.  

Further, the hourly reflectivity analysis and subsequent forecasts qualitatively 

match the WSR-88D observations better compared to 6-hourly analysis cycles.   
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• Hourly multi-scale cycling that begins at 0000 UTC on the 13th outperforms 

hourly multi-scale cycling that begins at 1200 UTC on the 13th, which 

emphasizes the importance of accurately representing the overnight convection 

for the 13 June case.   

• The hourly simultaneous assimilation of radar and conventional observations on 

13 June improves the mesoscale environment when compared to the assimilation 

of conventional observations alone.  The outflow boundary is poorly represented 

in the conventional observation assimilation experiment.  Further, the forecasts 

initialized with the hourly simultaneous assimilation of radar and conventional 

observations have a much stronger signal for rotating storms near the observed 

tornadic Booker storm.   

• When radar observations of the storms of interest are added to the conventional 

observation assimilation only during the afternoon of 13 June (after 1800 UTC), 

the storm analyses are somewhat improved.  However, the radar data have little 

impact on the convective environment, and the forecast skill is worse than the 

experiment that assimilated radar and conventional observations hourly 

beginning at 0000 UTC on 13 June.   

• The multi-scale analysis and forecast system is sensitive to the background 

ensemble initialization.  For this study, the most accurate forecast of the storm 

environment and Booker storm are obtained with the CAM that is initialized 24-

hours prior to the event via downscaling of a mesoscale domain that has been 

cycled for several days, and uses multi-scale hourly cycling with radar and 

conventional observations leading up to the forecasts.   
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• A multi-scale data assimilation system produces a more accurate analysis 

and superior forecasts compared to a mesoscale-only data assimilation 

system.   

• Convective forecasts are sensitive to the storm environment, and forecast 

skill is improved when a more accurate storm environment is used for 

initialization.   

 

 

5.3 Future Work: Implications for a Warn-on-Forecast system 

The results discussed above have implications for the proposed data assimilation 

analysis and short-term (approximately 1-hour) forecast Warn-on-Forecast system 

(Stensrud et al. 2009, 2013).   

Since the EnSRF and the LETKF show similar assimilation performance, either 

filter can be used for convective-scale data assimilation and future work can investigate 

the differences in scalability between the filters.  The ability to interpolate the analysis 

perturbation weights from the LETKF analysis (Yang et al. 2009) may increase the 

efficiency for high-resolution grids and should be investigated for radar data 

assimilation in the future.   

Since the 13 June convective forecasts are sensitive to the storm environment, 

future work should focus on using fully heterogeneous environments in a Warn-on-

Forecast system.  Specifically, the use of a multi-scale data assimilation approach will 

improve convective forecast skill.  Implementing hourly analysis cycles, which 

assimilate both conventional and Doppler radar observations should provide an accurate 
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mesoscale environment and lead to improved convective forecasts.  The difficulty in 

maintaining ensemble spread in regions with dense observations needs to be addressed 

in future studies.  Given the large number of configuration parameters in a multi-scale 

data assimilation prediction system, as well as the wide variety of pre-storm 

environments that generate severe weather in the U.S. each year, the testing and 

development of this and more sophisticated multi-scale data assimilation systems will 

remain an active area of research for scientists during the coming decade. 
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