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ABSTRACT

Noisy or uncertain data are common in machine learning and data mining
applications. Noisy data can significantly affect the behavior of data mining and
machine learning algorithms. Robust optimization and sensitivity analysis techniques
are applied to the support vector machine (SVM) learning problems to develop a
noise-immune solution, and suggest new approaches for dealing with noisy data.
Perturbations of model parameters are considered as well as perturbation of input data.
This approach determines how the levels of noise of data and model parameters
influence the SVM solution, both in linear and nonlinear problems. Probability and
scenario constrained approaches are also examined as alternatives to the robust
optimization approach. Several examples illustrate the proposed methods. An
application to real time traffic data for the prediction of the speed of a vehicle is also
discussed. Tornado data analysis is illustrated in a probability constrained approach as

well.
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CHAPTER 1. Introduction

1.1 Overview and Research Objectives

The objective of this dissertation is to investigate robust optimization and
sensitivity analysis techniques applied to the support vector machine (SVM) learning
problem and suggest new approaches for dealing with noisy data. An additional
objective is to develop a scenario constrained programming approach as an alternative
to the robust optimization approach. Sensitivity analysis in machine learning can be
used to show how the machine learning model performs when the model is changed.
Specifically, its aim is to determine how much the variation of the input can influence
the output of the learning machine. Sensitivity analysis is an issue for machine
learning because imperfect datasets occur frequently in practice. Several researchers
applied sensitivity analysis to the optimization problem using the perturbation of input
data (Bonnans and Shapiro, 2000). However, sensitivity analysis has not been
extensively studied in machine learning.

Similarly, a lot of researchers have dealt with data uncertainties, and many



different robust optimization approaches have been suggested. Ben-Tal and

Nemirovski (1998) introduced bounded uncertainty convex sets to describe uncertain

coefficients in mathematical programming. By using bounded convex uncertainty sets,

such as ellipsoidal uncertainty sets, they developed a robust optimization approach for

linear programming (LP), semi-definite programming (SDP) and other problems.

Based on minimax optimization arguments, they developed a robust counterpart (RC)

approach for convex programming. Chinneck and Ramadan (2000) considered LP

problems with interval coefficients.

Calafiore and Campi (2005) introduced an uncertain convex program (UCP)

using the concept of an &-level solution. The ¢ -level represents the risk of the

constraint violation. Since the two main approaches for the uncertainty constrained

optimization problem, robust optimization and probability constrained optimization,

lead to a computationally intractable problem formulation, they considered a

randomized scenario approach. This approach is based on constraint sampling with a

finite set of N constraints, which needs a sufficient number of constraints to represent

the whole set of constraints. They have addressed the problem of how many samples

(scenarios) need to be drawn in order to guarantee that the resulting randomized



solution violates only a “small portion” of the constraints.

Bertsimas et al. (2004) described an approach using a general norm to define

the uncertainty set and derived probabilistic guarantees on the feasibility of a robust

optimal solution with respect to a general and dual norm, respectively.

Recently a lot of attention has been given to SVM (Vapnik, 1995). The SVM

approach consists of finding the hyperplane that separates two sets of points in such a

way that the distance between the hyperplane and the nearest point of each of the data

set is maximum. The resulting SVM learning convex optimization problem provides

the “best” feasible solution in terms of generalization behavior for the separation

constraints with respect to w and b, where w is the vector defining the separation

hyperplane, and b is the offset of this hyperplane. The SVM approach has been

developed for input data without noise. An interesting problem is to investigate the

behavior of the SVM solution with noisy (perturbed) data and model parameters.

There are two ways that randomness can be applied to machine learning

algorithms; the first one originates from the sampling procedure to construct the

learning set, and the second one comes due to noise in the observations and parameters.

Bousquet and Elisseff (2002) focused on sampling randomness and how changes in the



learning set can influence the function produced (discriminant or regressor). Trafalis

and Alwazzi (2003a, 2003b), and Trafalis and Gilbert (2006) investigated a robust

optimization approach with bounded perturbations of the input training data applied to

support vector machines (SVMs). Ghaoui et al. (2003) considered binary, linear

classification problems where the data points are unknown but bounded within given

hyper-rectangles. They designed a robust classifier by minimizing the worst-case value

of given loss functions such as hinge loss, negative log likelihood function, and

minimax probability machines (MPM) loss function.

In the optimization literature, generally only perturbations of input data are

considered. Investigation of the stability of SVM solutions with respect to changes of

input data and model parameters is of concern in practical applications. We build on

previous research by Trafalis and Alwazzi (2003a, 2003b) by considering

perturbations both of input data and model parameters. The motivation for our analysis

is to design robust machine learning algorithms that are “immune” to noise of inputs

and parameters. We also develop a scenario constrained optimization approach as an

alternative to robust optimization approaches.



1.2 Organization of the Dissertation

Chapter 2 deals with the basic concepts of robust optimization and some
optimization methods which are related to this dissertation. The basic concepts of
Support Vector Machines (SVMs) and our novel approaches are outlined in chapter 3,
and a new approach with perturbations of input data and perturbations of the SVM
model parameters are also explored. Computational results for a classification and
regression problem are discussed in chapter 4. Probability constrained programming
and a scenario-based approach are discussed in chapter 5. Examples and computational
results are also shown in the same chapter. Lastly, chapter 6 concludes the

dissertation and describes future work.



CHAPTER 2. Literature Survey

Several formulations related to robust optimization and sensitivity analysis are
outlined in this chapter. In most real applications, an optimal solution is affected by the

structure of the data set. Very often the data may be inaccurate or missing.

2.1 Robust Optimization of Linear Programming

Ben-Tal and Nemirovski (1999, 2000) investigated LP problems with

uncertain data. The following linear program:

min ¢’ x

2.1
st Ax<b 1)

is assumed to be uncertain in the sense that the data set A and b are defined through
uncertainty convex bounded sets in the space of mxn matrices and R", respectively.
The key idea of their study about convex optimization problems with uncertainty is
that the data are not accurately specified. They defined the uncertainty set U in the
space of data, where the uncertain parameters belong to a bounded and convex set.

Therefore, the resulting optimization problem becomes:



min ¢'x

(2.2)
st Ax<b V(Ab)eU

The above problem is a semi-infinite optimization problem (Calafiore and Campi,

2005). Problem (2.2) is a robust counterpart (RC) of the linear programming problem

(2.1). They proposed two ways to implement this method: “unknown-but-bounded”

uncertainty and “random symmetric” uncertainty. They developed robust convex

programs corresponding to some of the most important generic convex problems. The

robust formulation of problems such as linear programming, semi-definite

programming and others, are either exactly or approximately tractable problems,

which can be solved by efficient polynomial time algorithms. An example of an

efficient algorithm that can be applied is a polynomial time interior point method when

the set U is an ellipsoidal uncertainty set.

In the case of ellipsoidal uncertainties, problem (2.2) will be as follows:

min ¢’ x
XeR" (2.3)
st A(O)x<hb, deA

where we assume that A(9)is affine in 6 and the set A is the direct product of

ellipsoids (Calafiore and Campi, 2005). We also assume each constraint row belongs

to an ellipsoid. That is,



a,(6)=4 +Es, |[d6],<L i=1A,m (2.4)
where &, e R"is the center of the ellipsoid and E, =E," e R™ is the shape matrix of
the ellipsoid describing the variation in a,. Then, the constraints of (2.3) become
a'x+06"Ex<b,. From the ellipsoidal uncertainty description, the constraints hold

forall 6 €A ifandonlyif:

max ' X+, E;xx<h,. (2.5)

il <1
Therefore, the robust formulation of the LP problem (2.3) can be expressed as the
second order cone (SOC) program (Lobo et al. (1998)) when Euclidean norm is

considered as follows:

min ¢’ x
xeR (2.6)
st & x+|Ex|, <b, i=LA,m

Second order cone programming (SOCP) is a convex nonlinear optimization problem
that includes linear and quadratic programs (Lobo et al., 1998, Alizadeh and Goldfarb,
2003). Lobo et al. (1998) showed how SOCP can be applied to solve the robust
convex optimization problems that the uncertainty in the data set is explicitly
represented.

The LP (2.1) can be also considered in a statistical framework. If we assume



that the parameter a, follows a normal distribution, with mean and covariance
(a,,%,), then the constraints can be expressed as:

Prla, x<h]1> g, (2.7)
where S represents a (probability) confidence level. This analysis is discussed in
Ben-Tal and Nemirovski (2000), Oustry et al. (1998), and Lobo et al. (1998). This

robust LP can be expressed as the following SOCP problem:

min ¢’ x

2.8
st éliTx+CI)‘l(ﬂ)H2i”2xH2 <b, i=LA,m @8)

where, £ is a given confidence level, and @ is the cumulative distribution function

(CDF).

2.2 Robust Classification with Interval Data
Ghaoui et al. (2003) considered uncertain data defined within a specific
uncertainty interval defined as:
X(p)={Z e R™ : X - p£ <Z <X+ p}, (2.9)

where X, £ and p describe an interval matrix model for a nx N data matrix (n



dimensions, N nominal data points). They considered N hyper-rectangles of
dimension n in the input space R". The data of this model is a set of points
{(x;,y;)}(training data), where x, e R" and y, =+1. The objective of this approach
is to find a classification hyperplane w'x+b=0, where weR" {0}, b is a
scalar, and x is a testing point that needs to be classified. The method of robust
classification with interval data minimizes a worst-case loss function. For the hinge
loss function, (Cristianini and Shawe-Taylor, 2000), they used the worst-case loss
function. This is defined as:
N T
Loym (W, D) :sza(),f);(l_ Yi(w z; +b)),
\ (2.10)
= Z(l_ y;i (W' x; +D) +po—iT|W|)+
i=1
where (-), represents the positive part of a scalar ().
To illustrate the above approach, an example is discussed in chapter 4. It is a

variation of the AND example for the robust LP problem with interval data. We also

use the same example to illustrate the primal SVM problem. (Vapnik, 1998).

2.3 Uncertain Convex Programs

Calafiore and Campi (2005) considered the following uncertain convex

10



program:

UCP:{ min ¢'x; f(x,0) <0, 6 € A} (2.11)

xeX cR"

where x e X is the optimization variable, X is convex and closed, and the function

f isconvexin x forall 6 A, where A isa parameter set.

A robust formulation (RCP) for UCP is as follows:

RCP : minc'x
XeR" (2.12)
st xeXI Q

where, Q=] {x: f(x,0)<0} and X1 Q=¢

deA

Let x be a candidate solution for UCP. The violation probability is defined as:
V(X)=P{o eA:f(x,5)>0} (2.13)
Let £<[0,1]. We say that x e X isan e-level robust feasible solution if V(x) < e.
In order to solve RCP, they proposed to collect N randomly chosen samples
and solved the following optimization problem:

SCP, : minc'x

xeR"
st f(x,6")<0,i=1A,N (2.14)
Xxe X

They addressed the question of how many samples (scenarios) need to be drawn in

order to guarantee that the resulting randomized solution violates only a “small

11



portion” of the constraints. They showed that the required number of constraints N is
as follows:

N > (2.15)

n_
&f

Specifically, they proved:
Proposition (Calafiore and Campi, 2005))

Fix two real numbers &¢€[0,1] (level parameter) and f<[0,1] (confidence

parameter) and let

N> _1
ep

Then, with probability no smaller than 1—- £, the randomized problem SCP,, returns

an optimal solution X, which is e-level robust feasible. They also showed the

following theorem:

Theorem 1 (Calafiore and Campi, 2005)

Let X, be the (unique) solutionto SCP, . Then

EpV(E]S (2.16)

where n isthe size of x,and p" is the probability measure in the space A" of the

multi-sample extraction oJ6(1),A ,06(N). Therefore, the average probability of

12



violation of X, is proportional to the dimensionality of the optimization variable x
and goes to zero linearly with the number N of sampled constraints.

In order to illustrate the above approach for problem (2.3), we consider 4 data
points {(-1, 0), (0, -1), (1, 0), (0, 1)} that define the rows of matrix A, where

b=[0 011]", and c=[-1 —1]. The problem is given by the linear program:

min ¢’ x

xeR"

(2.17)
st A(6")x<b, i=LA,N

Table 2. 1 Robust LP solution with different probability distributions of the
data set.

Uni(0,1) | N (0,1) | Exp(1) | Exp(0.3) | Exp(0.5) | N(0.5,0.1) | N(-0.5,0.1)
X1 | 0.8830 | 1.0139 | 0.8917 | 0.9157 | 0.9015 | 0.8462 1.2236
X2 | 0.8823 | 1.0141 | 0.8904 | 0.9153 | 0.9001 | 0.8462 1.2242

We choose probabilistic levels ¢ =0.01, £ =0.01. The number N of randomized

) n
constraints must be N> —-1=

&f

0.01*0.01

2

depend on the probability distribution of the data set.

13

—1=19,999. The solutions (Table 2.1)




2.4 Robust Optimization with Constraints

Robust optimization and probability constrained optimization are the main
approaches related to the handling of the uncertainties. The probability constrained
optimization problems consider probability distributions on the constraints with
specific confidence levels. However, the probability constrained optimization problem,
in general, is not easily solved, and the constraints of the problem cannot guarantee
convexity in general.

Ben-Tal and Nemirovski (1996) and Oustry et al. (1998) suggested an SOCP
problem formulation for the robust LP problem. Bhattacharyya (2004) and
Bhattacharyya et al. (2004) developed a robust formulation with a normal distribution

noisy model.

14



CHAPTER 3. Methodology

3.1 Support Vector Machines (SVMs)

Support vector machine (SVM) is a statistical learning system based on the
concept of the maximum margin separation. SVM can handle nonlinear separation
problems by mapping the input space into a high dimensional feature space where it
constructs an optimal maximum margin hyperplane (Vapnik, 1995). More specifically,
we can transform a nonlinear separation problem in the input space into a linear
problem in the feature space by use of the kernel function. Then the nonlinear problem
can be solved linearly in the feature space. SVM can handle complex nonlinear
problems such as pattern recognition, regression, and feature extraction, with excellent
generalization properties.

The choice of an appropriate kernel function is a main issue for the SVM
algorithms. Linear function, polynomial function, radial basis function (RBF), and
sigmoid (tangent hyperbolic) function are well-known kernel functions frequently used

by researchers, that satisfy Mercer’s Theorem (Vapnik, 1998 and Haykin, 1999). The

15



following kernel functions are frequently used in the SVM literature:

e Linear function: K(x;,X;)=xX;,

Polynomial function: K(x;,X;) = (X' X; + p)°,

Radial Basis function: K(x;,X;) = exp(—y”xi — xjHZ),

Sigmoid function: K(x;, x;) = tanh(y xiij +p)
where, d is degree, p is offset, and » is a scale parameter.

If the kernel function is selected properly, the SVM can provide a solution
with good generalization properties. Note that it is not necessary to compute the
feature map. This is expressed implicitly through the kernel function. Therefore, the
kernel method easily transforms nonlinear problems into linear problems. As a result,
linearly non-separable data in the input space become linearly separable in the feature

space.

3.1.1 Linearly Separable Case

The use of the SVM model is considered in the case of data points that can be
linearly separated. A set S of points x, € R" is assumed, where each x;, belongs to

either one of two different classes defined by a label y, e {-1, 1}. The objective is to

16



find an optimal hyperplane that divides a set S leaving all the points of the same class
on the same side while maximizing the minimum distance between the two classes and
the hyperplane (Cristianini and Shawe-Taylor, 2000 and Vapnik, 1995). Figure 3.1

shows a linearly separable optimal hyperplane between two classes.

wix+b =-1
& L ¥
o~ wix+b =+
[
[ ]
i
® L

Figure 3. 1 Linearly separable optimal hyperplane. Maximize distance between
two parallel supporting planes (w' x + b = £1). The distance (margin) between the

two classes is r =

M .

Definition 1. The set S s linearly separable if there exist a we R"and b e Rsuch

that

wix +b> 1 ify =+1 (3.1)

w'x;, +b<-1 if y, =-1

17



The SVM, or maximal margin classifier formulation, with | data points in the n-
dimensional space can be written in primal form as follows:
min <[’ (3.2)
wh 2 '
sty (W'x, +b)>1, i=1A I (3.3)
Since ||vv||2 is convex, w can be attained by the use of Lagrangian function:
1 |
L(W,b,a)=5||vv||2 > aly; - (W'x; +b)-1]. (3.4)
i=1
To find the saddle point of the Lagrangian function, one has to minimize equation
(3.4) over w and b and maximize it with respect to the Lagrange multiplierse; > 0.
The optimality condition must satisfy the following conditions:
a |
—L(wba)=>ay =0 (3.5)
b =
a |
%L(W,b,a):w—zfxiyixi =0 (3.6)

i=1

By substituting equations (3.5) and (3.6) into (3.4), the primal optimization problem

becomes:
| 1 | |
max W(a)zz%—EZZaiajyiyj <X X > (3.7)
i=1 i=1 j=1
with «; >0, i=1,..,1. Under constraint (3.5) this problem can be solved by using

quadratic programming (Bazaraa and Shetty, 1979). The optimal separating

18



hyperplane will be determined by w and b. From equation (3.6) and Kuhn-Tucker
conditions, we have:

W= leai YiX (3.8)

i=1

a;-[y;(w-x, +b)-1]=0 (3.9
Note that the Lagrange multipliers ¢, are always non-negative. The data points that
correspond to «; >0 play an important role in the determination of the optimal
separating hyperplane. The weight vector w is determined by those points, which are
called “support vectors”. The decision function of the primal problem can be written

as:

f (x) = sign (le y.a; < X - X >+h). (3.10)

3.1.2 Linearly Non-separable Case (Soft Margin Optimal
Hyperplane)
If the data are not linearly separable, then constraints (3.3) might not be

feasible. In order to compensate for the misclassification error, Vapnik (1995)

introduced non-negative slack variables t, to address the problem of infeasibilities

19



and the cost regularization parameter C as a weight for misclassification errors.
Therefore, in addition to maximizing the margin we need to minimize the sum of
misclassification errors, that is leti .

i=1
The constraints of (3.3) can be modified as in equation (3.12), and the resulting
optimization problem is as follows:

|
min %n wiF +CYt (3.11)
i=1

sty (w'x, +b)>1-t

3.12
t >0, =LAl (3.12)

Figure 3.2 illustrates the linearly non-separable (soft margin) optimal hyperplane,

which

Figure 3.2 Linearly non-separable optimal hyperplane

20



has misclassified data points. The parameter C in equation (3.11) is provided by the
user and controls the trade off between minimizing the training set error and
maximizing the margin.
As shown in (3.4), the above problem can be transformed into the unconstrained
problem by introducing the following Lagrangian function (Vapnik, 1998),

d(w,b,a, 5,£) =%||W||2 +C(iZI1:§i)—iZI1:ai[yi (W- X +b)—1+ti]—izll“,8iti (3.13)
where «,f are the Lagrange multipliers. The optimality condition must satisfy the

following equations:

%zw—gaiyixi =0 (3.14)
58%) _ i'l oy, =0 (3.15)
g;}ai+ﬁi —c (3.16)
From the above conditions, we derive:
w=Y o,y (3.17)
=

Izai y; =0
=

(3.18)

Substituting (3.17) and (3.18) into (3.13), the dual form of the problems becomes:
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! 1
max W («) =iz:l:06i —E%‘,;“i%yiyi(xi X;) (3.19)

st 0<g <C.

The upper bound of «,

is C, which is the only difference from the linearly separable
case. The soft margin parameter C also affects the slack variable t,. When ¢; is less
than C, the slack variable is t; must be zero by Karush-Kuhn-Tucker (KKT)

complementary slackness condition.

3.1.3 Kernel Functions for Nonlinear Support Vector Machines

The idea of a kernel method is based on mapping a data set from input space
into feature space. All we need is the inner product in the feature space. Suppose we
map the data into some higher dimensional feature space H, through the mapping ¢.
By replacing the inner product with a kernel function K, we can perform a non-linear
mapping into a high dimensional feature space. Then the optimization problem of

Equation (3.7) can be transformed as follows:

W(a):iai_%lzzllaiajyiyj}((xi'Xj)’ (3.20)

i=1 j=1

where the kernel K(x;, X;) = o(X;)-o(x;) = <X -X; >.
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Figure 3.3 Illustration of separating hyperplane and maximal margin
hyperplane.

Figure 3.3 (b) illustrates the SVM solution as the best line of separation. The best
margin is called maximal margin (Cortes et. al. 1995). From equation (3.13), (3.17),
and (3.18), we can transform the primal optimization formulation (3.11) into the
generalized kernel formulation as follows:

- |
min %aT Ko+ CZt-

i
abt i

st (3.21)
IZia+yib >1-t,
a; 20, i=1Al

where IZ” =V, Y;K(X,X;) and K; isthe i-th row of K.
Next we consider sensitivity analysis and robust optimization techniques applied to the

SVMs’ maximal margin classifier.
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3.2 Sensitivity Analysis and Robust Optimization
Sensitivity analysis and robust optimization methodology are slightly different
concepts with respect to data perturbations. Sensitivity analysis is focused on how
much the optimal solution to a perturbed problem can differ from the one of the
nominal problems. However, using the robust optimization methodology we are
interested in finding a feasible solution to the nominal problem that satisfies the
constraints of the perturbed problem for every realization of a bounded perturbation
(Ben-Tal and Nemirovski, 2000). A lot of research has dealt with data perturbations
for the optimization problem. In this research we also deal with perturbations of
parameters of the SVM model extending previous research by Trafalis and Alwazzi
(2003), and Trafalis and Gilbert (2006). Now we consider three cases of perturbation
for data and parameters respectively. Specifically perturbations of input data,
perturbation of parameters and perturbation of both data and parameters, are

considered.
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3.2.1 SVM for Classification

In this chapter we build up our models. We begin with the perturbation of
input data for the SVM classification problem, and then investigate how to handle
perturbation of parameters and finally we develop a SVM model where both
parameters and data are perturbed. Extension of our models for the regression problem

is also discussed.

Case 1: Perturbation of Data

The first case of perturbation of data is to make a slight change Ax; in the
input data (x — X+ Ax;). In the real world, the noise of measurements always exists
due to several reasons such as experimental errors, and missing values. It is assumed
that the perturbations are bounded according to our prior information. The constraint
of the primal formulation (3.2) becomes:

y, [(W' (% +Ax)+b]>1-t,
=y, [(W'x +W Ax +b]>1-t, (3.22)
We know that constraint (3.22) holds for Ax; bounded (||Ax;|<7) in a robust way if

and only if the minimum of the left hand side satisfies the following:
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min y, [(W'x +w'Ax +b]>1-t, (3.23)

laxil<n

Then (3.23) becomes:

Y, (W'x +b)+ min yw'Ax >1-t (3.24)

Jax<n
By Cauchy-Schwarz inequality, we have:
‘inTAxi‘ < |yi|-||w||~HAxi H <l-77-|w|.
Therefore, y,w'Ax; is bounded as follows:
— 7w < y,w" Ax; < nwi| : (3.25)

Thus the minimum of y,w'Ax; is —7|w|. Now the primal problem becomes:

w,b

|
min <[ +C>t
2

sty (W +b)—n|w|=1-t, (3.26)
i=1L ,I

This problem coincides with the original problem (3.2) when =0 and is a Second
Order Cone Programming (SOCP) problem (Lobo et al., 1998) which can be solved by

a primal-dual interior point method (Wright, 1997).

Case 2: Perturbation of Parameters

In the case 2 of perturbation of parameters, we consider a change of the
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weight vector Aw for problem (3.2) (w — w+ Aw). The primal constraint of (3.22)
becomes:
Y, [(w+Aw)" x, +b]>1-t,
=y, [Wx+Aw' x +b]>1-t (3.27)
Note that w is robust feasible with respect to bounded perturbations of the vector w

(|Aw| <7) if and only if for every i=1,A I

HrAnﬁn y, [W'x +Aw'x +b]>1-t,. (3.28)
Ww|<n
Then (3.28) becomes,
Y, (W'x, +b)+HrAnﬁn Y AW X, >1-t, (3.29)
W(<n

By Cauchy-Schwarz inequality, again we have:
‘yiAWTxi‘ <|yi|- |aw]- || <1-7- R.
Note that we assume that [x||<R.Then y,Aw'x; isbounded as follows:
~nR<y.AW' X <R (3.30)
Therefore, the minimum of y.Aw'x. is equivalentto —7R .

Hence the primal problem becomes,
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w,b

|
min  <[wf’ +Ct
o2

st y, Wx+b)-7R>1-t (3.31)
i=1L I

Case 3: Perturbation of Input Data and Parameters

In this case, we consider perturbation of data and parameters simultaneously
(X = X+ AX,,w —> W+ Aw). The constraint of (3.2) becomes,
Y. [((W+Aw)" (x +Ax)+b]>1-t.
=y [(W'x + W AX + AW X + (Aw)" (AX;) +b]>1-t,

=y [(W'x +b)+W AX + AW X, + (AwW)" (AX)]>1-t.. (3.32)

We know that the constraint of (3.32) holds for Ax and Aw if and only if:
" Hmﬁ‘? Y [(W'x, +b) + W' Ax, + AW' X, + (Aw)" (Ax,)] >1-t,
X <7 || AW|<77,
= y, (W'x +b)+ min  y[wAX +AW' X + (Aw)" (Ax)]>1-t,

Jaxi|<ny JAwl<rr,

By Cauchy-Schwarz inequality, we have:

ol < you” 8, <o

(3.33)
~1,R < y;Aw'x; <77,R

where we assume ||x[ < R. Similarly by Cauchy-Schwarz, we have:

[y: (aw)" (ax)| <y |- Aw] - ax; | <17, 7.
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Hence,

s s oo e o]
< 771||W|| +17,R+m17, |

Therefore,
Ia Hm‘l‘gl | Yi[WhAX + AW x; + (Aw)" Ax;] = _771||W||_772R_771772 (3.39)
Xi <77 AW|<77,
Finally, by substituting the above result in problem (3.29), the maximal margin
classifier problem considering uncertainty will be as follows:
. 1, 2 !
min  =|w[ +C>’t
wh 2 i-1

sty (Wx +b) = [w|-m,R-mm, 21~ (3.36)
i=1L I

3.2.2 SVM for Regression

Since Vapnik [27] introduced the & -insensitive loss function, the support
vector regression (SVR) problem has been generalized for function approximation and
forecast (Scholkopf and Smola, 2002). Let’s consider a set of training
data{(x;, y;),----,(X;,¥,)}, where each x, € R" represents a point in the input space of

the sample set and has a corresponding target value y; € R. In the regression problem,
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the 'y, are continuous real-valued outputs. The objective of the regression problem is

to find a function from the training data that predicts future values. The support vector
regression formulation with an ¢ -insensitive loss function is as follows:

min 1|| w||?
2

s.t (3.37)
y,—<w, X, >-b<eg
<W, X, >+b-vy, <eg,

and ¢ -insensitive loss function is defined as:

Loss (y):{o if |f(x)—y|£g.

f()-y|-¢ otherwise

The ¢ -insensitive function allows at most ¢ deviation between the target and actual
values. That is, if we have & precision, the problem is feasible. However, to allow
some errors, the soft margin loss function needs to be considered with slack variables.
Therefore, problem (3.37) becomes:

|
min %” W +C> (7 +7;)
i=1

s.t
Yi—<W, X, >-b<e+7 (3.38)
<w, X, >+b-y, <e+1z;

z.,2. >0

Minimizing the regularization term ||W||2 coincides with the flatness of the
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function, and the positive real number C plays a role of controlling the amount of
penalization for data points lying outside the & tube. According to the formulation
(3.38) and Figure 3.4, one can see the properties of the loss function: The & tube is
fitted to the data, any errors smaller than & are ignored, and the data points lying
outside of the tube are also penalized. We also introduce slack variables to compute
the error for underestimating and overestimating the function.

Using the Lagrangian function and optimality conditions, the decision function is
obtained as:

f(x)= i(zi — Z)K(x, %) +b (3.39)

function

L J

Figure 3.4 Thee - insensitive loss function for support vector regression.
(Scholkopf and Smola, 2002)
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where, K(x,x;) is defined by the kernel function as discussed in chapter 3, and
A, A are Lagrange multipliers (Vapnik, 1995). Now we deal with the three cases that

are discussed in the SVC problem.

Case 1: Perturbation of Data

The soft margin formulation of the regression problem is as follows

(Cristianini and Shawe-Taylor, 2000):

|
min %H W +C> (7 +7;)
i=1

s.t
Y, —W'X, —b<e+z, (3.40)
WX +b-y <e+z/
2,220

As shown in the classification cases, we consider the first case of perturbation of data
by making a slight change Ax; in the input data (X — x + AX;). It is assumed that the
perturbations are bounded according to our prior information. The first constraint of

the primal formulation (3.40) becomes:
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Y, —W' (X +AX)-b<e+7
= ¥y, —b-w'x, —W'AX, <&+, (3.41)

= -y +bh+wix +WIAX 2 -7,
We know that constraint (3.41) holds for Ax; (|Ax;[<#) in a robust way if and only

if the minimum of the left hand side satisfies the following:

Hgnﬂn — Y, bW X +WAX > —& -z, (3.42)
X [<n7

Then (3.42) becomes:
—y, +b+w'x +H£nXiﬁ‘ganAxi >—g -1, (3.43)
By Cauchy-Schwarz inequality, we have‘wT Axi‘ < {w- HAXi H <n-|w|
Therefore, w'Ax, is bounded as follows:
< o, < G
Thus, the minimum of w'Ax; is equivalent to —z|w|. Then constraint (3.41)

becomes:

—y; +b+wTx —n|w| > —& -z

(3.45)
=y —b-w'x +nw|< e+7
The second constraint of the primal formulation (3.40) becomes:
W (X, +AX)+b-y <g+1z;
(X; +4Ax)) Yi i (3.46)

= WAX, <-W'X, +y, —-b+s+2z

By maximizingw' Ax, and using of (3.44), the constraint (3.46) becomes:
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nw|<-w'x +y;, —b+e+z

. (3.47)
= WX +gw|-y,+b<e+z
By (3.45) and (3.47), the primal problem becomes:
1 ! .
min E” wi* +C> (z, +7;)
i=1
s.t
yi —W'x —b+rw|<e+z (3.48)

w'x, +b—y; +n|w|<e+z]

z2.,2.>0

Case 2: Perturbation of Parameters

In case 2 of perturbation of parameters, we consider a change of the weight

vector Aw for problem (3.38) (w — w+ Aw). The first constraint of (3.38) becomes:

Y, —(W+AwW)" X, —b <&+,
=y, —b-wx —AW'X, <g+7 (3.49)

= -y WX+ AW X > —e -7,
Note that w is robust feasible with respect to bounded perturbations of the vector w
(|aw|<#n), if and only if for every i=1A |l

min—y, +b+w'x, + AW' X, > —£ -2,
[aw]<n

(3.50)

Then (3.50) becomes:
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—y, +bh+w'x + Hgnﬁn AW' X, > —¢ - Z, (3.51)
W|<n

By Cauchy-Schwarz inequality, again we have:

‘AWT xi‘ <|law]- [x;] <7-R. (3.52)
Note we assume that |x[|<R.Then Aw'x; isbounded as follows:

~7R <AW" X, <7R (3.53)
Therefore, the minimum value of Aw'x, is equal to —#R. Then constraint (3.51)

becomes:

-y, +b+w'x, —7R > -& -z,
(3.54)
= Y, -b-w'x +7R< e+7z

The second constraint of (3.38) becomes:
WX +b-y <e+z/
=S W+AW)' X, +b-y, <e+z;
) (3.55)
SAW'X < g+
=SAW' X, <-W'X, —b+y +e+7

By maximizing Aw'x, and using of (3.52), the constraint (3.55) becomes:

nR<-W'x, —b+y +s+z,
. (3.56)
=W'X, +7R+b-y, <e+2

By (3.54) and (3.56), hence the primal problem becomes:
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|
min %uwnz +CY (2, +2)
i=1
s.t
Y, —~W'x, —b+7R < &+ (3.57)
WX, +b—y, +nR<e+1z;

z.,2. >0

Case 3: Perturbation of Input Data and Parameter

In this case, we consider perturbation of data and parameters simultaneously

(X = X+AX,W—> W+ AwW).

The first constraint of (3.38) becomes:
Y, —b— (W' %, + W AX, + AW' X, + (AW)" (AX;)) < & + Z;
=y, —b—(W'X, + W AX, + AW X, + (Aw)" (AX,)) < g+ Z,
(3.58)
=Y, —b-w'x, — (W' AX;, + AW X, + (AW)" (AX,)) < £ + 2,

= -y, +b+ W' x, + (W' AX, + AW X, + (AW)" (AX,)) > —& -z,

We know that the constraint of (3.58) holds for Ax and Aw, if and only if
— Y, +h+ W' X + (W AX + AW X, + (AW)" (AX,)) > —& -z,
(3.59)

min
HAXi HSzh ,HAWHSI;Z

= -y, +b+w'x, el mT\Q H (WTAX, + AW X, + (AW)" (AX,)) = —¢ - Z;
Xj [<771,| AW|[<175

By Cauchy-Schwarz inequality, we have:

-l < wTAX <7, | | (3.60)
—1,R < AW'X; < 7,R
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where we assume ||x[|<R.
Similarly by Cauchy-Schwarz, we have ‘(AW)T (AX, )‘ <|Aaw- |[ax | <7, -7,
Hence,
— 1| = 7, R =1, <[[WTAX, + AWT X, + (AW)" (AX)] < [ +7,R +mm,  (3.61)
Therefore,
" Hsrrg,HAwHSrrz [WTAX; + AWTX; + (AW) T (AX)] == 17, |[W]| =7, R — 13,77, (3.62)
The minimum value of w'Ax, +Aw'x +(Aw)" (Ax;) is equivalent to — 7, |w|-7,R

—m,7, . Then constraint (3.55) becomes:

—yi+b+w'x, _771||W||_772R_771772 2 =€~ 1,

(3.63)
= y,-b-w'x +771||W||+772R+771772 <e+1,
The second constraint of (3.38) becomes:
WX + W AX + AW X + (AW)T (AX.))+b—y. <e+1z,
(W', + W AX; + AW, + (W) (AX)) +D -y, <2+ 2 (360

= (W AX, + AW' X, + (AW)" (AX,))S -W'x, —b+y, +&+2,
By maximizing w'Ax, +Aw'x. +(Aw)" (Ax,) and the result of (3.61), the constraint

(3.64) becomes:

771||W||+772R+771772 <-w'x, —b+y, +&+ Zi* (3.65)
= W+ m,R+mm, +W'x +b-y, <e+z '

Finally by (3.63) and (3.65), the maximal margin classifier problem considering
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uncertainty will be as follows:

min %n wi? +CY (2, +2)
i=1
s.t
Y, —w' X; —Db +771||W||+772R +mn, <+ (3.66)
WTXi +b-y, +771||W||+772R +mn, <&+ Zi*

z2.,2. >0
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CHAPTER 4. Applications and Numerical

Examples

4.1 Computational Results for Sensitivity and Robust

Analysis applied to SVC

To illustrate the analysis of 3.2.1, we consider two well known linearly
separable and nonlinearly separable examples to the support vector classification
(SVC) problem. We assume that we have 4 input data points (1, 1), (1, -1), (-1, 1) and
(-1, -1) with labels +1 and -1 respectively. All the experiments for this example have
been performed by MATLAB and TOMLAB/SNOPT toolbox.

Table 4. 1 Relations between input and output of AND / XOR Problem.

X1 X2 AND XOR
1 1 1 1
1 1 1 1

1 1 -1 -1

-1 -1 -1 1
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4.1.1 Linearly Separable Case (AND Problem)

Case 1: Perturbation of Data

Formulation (3.26) is the SVC problem with respect to the perturbation of
input data. By changing the data perturbations we are able to inspect the sensitivity of
the classification problem. We can solve the AND classification problem with
different values of 7 as showing in Table 4.2. As expected, the results have been
quite interesting. First, the separating line does not change even if the uncertainty

parameter 7 is changed. In the precise case (7 =0), for example, the separating line

becomes

Wx+b=0 = (w, WZ)(:ljer:(l 1)(:1

2 2

]—1:xl+x2—1:0.

Table 4.2 shows the output of the support vector classification for the AND problem
using perturbations of data by varying the uncertainty parameter 7. Note that the
separating line is exactly the same line as shown in Figure 4.1 for several values of 7.
The other interesting outcome is related to the margin of separation. Note that if we
increase the uncertainty level, then the margin of separation becomes smaller. Observe

that the maximum perturbation value of # for which the separation line does not
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change is /2 /2. This says that the SVM solution is robust.

Table 4.2 SVC Output using perturbations of input data for AND problem

Eta (77) W, W, b margin
0 1.0000 1.0000 -1.0000 0.7071
0.1 1.1647 1.1647 - 1.1647 0.6552
0.2 1.3944 1.3944 -1.3944 0.5988
0.3 1.7369 1.7369 -1.7369 0.5365
0.4 2.3025 2.3025 - 2.3025 0.4660

Figure 4.1 Illustration of the hyperplane and margin using the AND problem
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Case 2: Perturbation of Parameter

Equation (3.31) shows a primal formulation for the SVC problem with

perturbations of the weight parameterw . In this case, we assume the data are bounded

by the maximum radius R of length 1. The separation line is not changed similar to

case 1. If the uncertainty parameter 7 becomes 0, the problem represents the precise

case and the result is as in Figure 4.1. If we increase the uncertainty parameter 7, the

separating margin is decreasing. It is similar to the result of case 1. Case 1

(perturbation of input), however, is more sensitive than case 2 (perturbation of

parameter).

Table 4.3 SVC Output using perturbation of parameter for the AND problem

Eta (77) W, W, b margin
0 1.0000 1.0000 -1.0000 0.7071
0.1 1.1000 1.1000 -1.1000 0.6428
0.2 1.2000 1.2000 -1.2000 0.5893
0.3 1.3000 1.3000 -1.3000 0.5439
0.6 1.6000 1.6000 -1.6000 0.4419
1.0 2.0000 2.0000 -2.0000 0.3536
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In addition, the result of case 2 is also influenced by the radius of the sphere

bounding the data. If the maximum radius R decreases, the separating margin also will

be decreased. Table 4.3 shows the output of the support vector classification problem

using perturbations of parameters by varying the uncertainty parameterr .

Case 3: Perturbation of Parameters and Data

In case 3, we examine the perturbation of parameter w and the data at the
same time. Here, we use two bounded values 7, and 7, for each parameter and data.
The formulation of case 3 shows more complicated constraints compared to case 2 and
case 3. This is mostly due to the fact that case 3 is created with a combination of
parameters and data unlike case 1 and case 2. Table 4.4 shows the output of the
support vector classification problem using perturbations of data and parameters
respectively. Here we experiment with a fixed 7, and varying 7, for several values
of these parameters. If we consider 7,=0, the problem becomes case 1. On the other
hand, it will be case 2 when 7, becomes 0.

To compare the impact of the uncertainty parameter, we experiment with
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several value of 7,, 7, such as n, =01, n,=03 and 7, =03, n,=0.1 as
shown in Table 3.4. In this table, we observe that the second case (7, =0.3, 7, =0.1)

has a smaller margin than in the first case. This means that the uncertainty parameter

of 7, input has more sensitivity effects than the uncertainty parameter of 7,. This

table also demonstrates the complexity of the combined affects of the elements.

Table 4. 4 SVC Output using perturbation of data and parameter for AND

problem.
Etal(7,) | Eta2(n,) W, w, b margin
0 1.0000 1.0000 | -1.0000 | 0.7071
0.1 1.1000 11000 | -1.1000 | 0.6428
° 0.3 1.3000 13000 | -1.3000 | 0.5439
05 1.5000 15000 | -1.5000 | 0.4714
0 1.1647 11647 | -11647 | 06071
0.1 1.2028 12028 | -1.2928 | 0.5469
o 0.3 15491 15491 | -15491 | 0.4565
0.5 1.8053 18053 | -1.8053 | 0.3917
0 1.7369 17369 | -17369 | 04071
0.3 0.1 1.9627 19627 | -1.9627 | 0.3603
0.5 2.8659 28659 | -2.8659 | 0.2467
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4.1.2 Linearly Non-separable Case (Exclusive OR (XOR)

Problem)

In the previous Chapter the support vector classification (SVC) problem was
applied to the linearly separable case. Here we use a polynomial kernel function with
degree 2 to extend our approach on the nonlinearly separable case. The polynomial
kernel function is formulated as K(x.,X:) = (xiTxj +1)%. Using the data in Table 4.1,

1777

the kernel matrix can be computed as follows:

K(x)  K(%) K(x) K(gx)] [9 1 11

_ KX, %) KX, %) KX, %) K(X;,%,) _ 1911 (4.1)
K(X3, %) K(X;,%,) KX, %) K(X;,%,) 11091
K(xx) K(x.%) K(,%) K(x.x)] [1 1109

In section 3.1.2 we have derived a nonlinearly separable problem formulation.
Perturbation of input data (Case 1) is illustrated for the XOR problem. Equation (3.26)
can be handled by kernelization and it is also known that

w=i'§l yap(x). 42)
where ¢; is non-negative Lagrange multiplier and vy, is the label. Now substitute

equation (4.2) to problem (3.26), then the objective function of the problem becomes:
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| | ~
Liwir=1y S aa,yy,(x x,) = 2a'Ka 4.3)
2 2 Lo 2
9 -1 -1 1
~ -1 9 1 -1
where, K = .
-1 1 9 -1
1 -1 -1 9

Using equation (4.3), the norm of w can be represented by as follows:

[ =Va Ka (4.4)
By substituting of (4.3) and (4.4) to equation (3.26), the robust formulation will be as
follows:

|
min loeTlf/%thCZti
abt 2 Y

st Ka+yb—nJa Ko >1-t (4.5)
a > 0, i=1L 1.

The formulation (4.5) is a constrained nonlinear optimization problem. The solutions
of the XOR problem with different uncertainty parameters z are summarized in
Table 4.5. The experiment increases the uncertainty parameter n from O to a value
that gives infeasibility. From the results, we know that we can obtain the separating
solution when the level of uncertainty does not exceed 1.42.

As expected, if we increase the uncertainty parameter 7, the value of ¢, is

increased and the problem is still separable. In the precise case (7 =0), we obtain the
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following results:
a=(0.125 0.125 0.125 0.125) (4.6)
We can compute the discriminant function, which is given by:
4
f(x) =D Vi K(x, %) +b=xXx, 4.7)
i=1
It is well known that the margin of the precise case is /2. That means we can make

perturbation of input data up to J2 . Table 4.5 explains the relationship between the

margin and uncertainty level.

Table 4.5 SVC Output using perturbations of input data for XOR problem

Eta (77) a, a, a, a, b

0 0.1250 0.1250 0.1250 0.1250 0.0000
0.3 0.1587 0.1587 0.1587 0.1587 0.0000
0.6 0.2171 0.2171 0.2171 0.2171 0.0000
0.9 0.3438 0.3438 0.3438 0.3438 0.0000
1.2 0.8252 0.8252 0.8252 0.8252 0.0000
14 12.4372 12.4372 12.4372 12.4372 0.0000
141 41.9542 41.9542 41.9542 41.9542 0.0000
1.42 No feasible solution
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4.1.3 Implementation on Real Data

From the AND and XOR problem examples, we obtain the fact that the
uncertainty of input has more sensitivity effects than the uncertainty of parameter. To
carry out the implementation, the well known Breast Cancer Wisconsin data is
considered (Mangasarian and Wolberg), where the two classes (malignant and benign)
could be decided from 9 attributes of the patients (683 data points are used). For the
experiment, 50% of the data points are used for training and the rest are placed in the
testing data set.

The experiments are controlled by varying the perturbation parameter 7 for
the three cases. The margin of the experiments is summarized in Table 4.6 and Table
4.7. Table 4.6 and Figure 4.2 show how much the variation of the input data and
parameter can influence the output of the learning machine. We also provide Table 4.7,
for case 3, which has considered the perturbation of both input and parameters. We
found that if the perturbation of input or parameter is increased, the margin between
the two classes decreases.

In order to visualize the sensitivity of the margin between Case 1 and Case 2,
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we provide a comparison of margin sensitivity in Figure 4.2 and Figure 4.3. The
margin of Case 1 rapidly decreases as the perturbation parameter 7 increases, but the
margin of Case 2 gradually decreases compared to Case 1. In Figure 4.3 the gap of
margin is slightly decreased as the parameters’ perturbation level decreased.

The margin is decreased with both perturbations of data and parameters and it is
increased when one of the perturbations is not affected: This shows the largest margin
when the perturbation of parameters is zero. Therefore, the real data experiment also

shows a similar result as in the simple cases experiments.

Comparison of the sensitivity of the margin between
Case 1 and Case 2

3
2.5
2 |
—eo—Casel
margin1-> —m—Case?2
1 |
0.5 \‘>
O T T T
0 0.5 1 1.5 2

Perturbation levels

Figure 4. 2 Comparison of the margin between the two cases. Case 1 looks more
sensitive than Case 2.

Table 4. 6 Comparison of SVC Output using perturbation of data (Case 1) and
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parameter (Case 2) for Breast Cancer Wisconsin data.

eta 0 0.1 0.3 0.5 0.7 0.9 1 1.5 2

Case 1 | 2.4808 | 2.3808 | 2.1808 | 1.9808 | 1.7808 | 1.5808 | 1.4808 | 0.9808 | 0.3075

Case 2 | 2.4808 | 2.2553 | 1.9083 | 1.6539 | 1.4593 | 1.3057 | 1.2404 | 0.9923 | 0.8269

Table 4. 7 SVC Output using perturbation of data and parameter for Breast
Cancer Wisconsin data.

etal(rn,) | eta2(n,) margin etal(n,) | eta2(n,) margin
0 2.4808 0 1.9808
0.1 2.2553 0.1 1.8007

0 0.5
0.5 1.6539 0.5 1.3205
1.0 1.2404 1.0 0.9904
0 2.3808 0 1.4808
0.1 2.1644 0.1 1.3462

0.1 1.0
0.5 1.5872 0.5 0.9872
1.0 1.1904 1.0 0.7404
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Comparison of the margin with perturbation of input data

3 ——
etal=0
25 etal=0.1
7 etal=0.5

27 etal=1
margin \A\\n\
1.5

0 0.2 0.4 0.6 0.8 1
Perturbation levels of parameters

Figure 4. 3 Comparison of the margin between the perturbation of input data
and parameters.

4.2 Computational Results for Sensitivity and Robust

Analysis Applied to SVR

4.2.1 Traffic Data Analysis

From the basic concepts of perturbation of input data and parameters, robust
SVR is applied to real time traffic data. The traffic data are provided by the Freeway
Performance Measurement System (PeMS) based on varying speeds recorded by

traffic sensors. To predict exact vehicle speeds at the specific spot, the data were
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collected in California by sensor 761552 during the year 2002. For the purpose of

predicting regular weekday vehicle speeds, we only used Monday data except holiday

and some special event days.

U T T T T T T T T
oo 224 443 12 9:36 1200 1424 1|\48 0 1912 236 oo

Time

Figure 4.4 Freeway vehicle speed patterns during Monday 2002. There shows
traffic congestion between 3 pm and 8 pm.

We used data from the first 20 weeks for the training set and used the last 10

weeks as the testing set. The speed measurements were taken at 10 minutes intervals

for the whole day. Figure 4.3 shows vehicle speeds on a daily basis for all Mondays

during 2002. In the experiment, polynomial kernel function with degree 2
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outperformed RBF and sigmoid kernel functions, even if RBF and sigmoid kernel

function also performed well. The SVR experiments were performed in the MATLAB

and TOMLAB/SNOPT toolbox (Holmstrom, 1999).

Case 1: Perturbation of Input Data

In the previous chapter the support vector regression (SVR) problem with
perturbed data and parameters was constructed. Problem (3.48) can be expressed as a
nonlinear regression problem by means of the kernel method. When we map the data,
the weight vector can be represented as follows:

W:ZI:ai o(x;) (4.8)
=]

The inner product can be replaced as kernel function, such as
K(x, ) =< ¢(x),o(x,) >. Then the weight vector w can be represented as kernel
function,

W] =a"Ka. (4.9)
By substituting (4.8), (4.9) into the robust SVR problem, we have the following

formulation:
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min

s.t

|
%aTK a+CY (z,+17))
i=1

y,—Ka-b+nJa'Ka <e+z,
Kia+b—yi+m/aTKa S€+Zi*

z,z >0.

Problem (4.10) is a constrained nonlinear optimization problem.

(4.10)

To investigate the behavior of the SVR solution with perturbed data, we

varied the uncertainty parameter 7 with different levels from 0 to 5. Figure 4.3

illustrates the vehicle speed with time-varying condition. Figure 4.4 and Table 4.8

show the fact that the relative absolute error (RAE) increases as the perturbation level

increased. From the results, we know that we can obtain the accurate solution when the

level of uncertainty decreased.

Table 4. 8 Relative Absolute Error (RAE) results for the five different data

perturbation levels.

n=0

n=1

n=2

n=3

n=4

n=>5

0.066093

0.080778

0.140899

0.19447

0.25047

0.284357
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RAE comparison for perturbation of input data

0.3
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Perturbation levels of input data

Figure 4.5 Relative Absolute Error (RAE) with different perturbation level
n. Itis natural result that the RAE increases as 7 increased.

Case 2: Perturbation of Parameter

Similar to the previous case, problem (3.57) can be reformulated as follows;

min

s.t

|
%aTK a+C> (z,+7)
i=1

Vi —Ka-b+nR<e+7z (4.11)

Kia+b—yi+77R£g+Z:

z,2 >0.

In the robust SVR formulation (4.11), we assume that the radius of the data is known

by prior information. The experiments are controlled by varying the perturbation
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parameter 7 and the radius of data R.

RAE comparison for perturbation of parameters

0.15
+R—l )
013 | = R=2 /A//-“//—*i
A R= /’_"’
0.11 R=3

0.09 /./
o ftE

0.05

Error

0.03 '
0 1 2 3 4 5
Perturbation levels of parameters

Figure 4. 6 Comparison of RAE. Three cases of experiment for different
bounded radius of data are illustrated. A large number of » and R decrease the

prediction accuracy.

Table 4. 9 Relative Absolute Error (RAE) results for the five different
parameter perturbation levels.
n=0 n=1 n=2 n=3 n=4 n=>5
R=1 0.066093 | 0.069518 | 0.074953 | 0.094155 | 0.116601 | 0.119611
R=2 | 0.066093 | 0.072552 | 0.084728 | 0.101773 | 0.120689 | 0.124552
R=3 0.066093 | 0.075553 | 0.088393 | 0.114934 | 0.127619 | 0.134553
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Figure 4.6 and Table 4.9 display three cases of bounded data radius (R=1, 2, 3) for the

different parameters’ perturbation level. The RAE increased when the perturbation

level and radius of data are increased. The slopes of the errors, however, are not

steeper than case 1. The gap of the errors among the three cases of R is relatively

stable as the perturbation level increased.

Case 3: Perturbation of Input Data and Parameters

Now we have a formulation considering both the perturbation of input data
and parameters.
- 1 T I *
min - ~a Ka+C) (z+1)
i=1

s.t Yy, —-Ka-b+na' Ka+n,R+nn, <e+1 (4.12)

Ka+b-y +n+Ja' Ka+n,R+nn, <e+1;
2,2, >0,

The uncertainty levels 7, and 7, are related to the input data perturbation and
parameters’ perturbation, respectively. Figure 4.6 and Figure 4.7 illustrate relations
between the different perturbation levels of input data and parameters.

The two figures show 36 combinations (6 data perturbation levels and 6 parameters’

perturbation levels) between the two different uncertainty levels 7, and 7, (see
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Table 4.10). Figure 4.6 shows the changes of error based on the input data perturbation

level 7,, on the other hand, Figure 4.7 illustrates the changes of error based on the

parameters’ perturbation level 7,. Figure 4.6 and Figure 4.7 show absolutely different

shapes and slopes.

Table 4.10 Combinational errors between the perturbation of input data and
parameters.

n,=0 n, =1 n,=2 n,=3 n,=4 n,=5
n, =0 0.066093 | 0.069518 | 0.074953 | 0.094155 | 0.116601 | 0.119611

n =1 0.080778 | 0.082114 | 0.093068 | 0.112414 | 0.120808 | 0.122936

n, =0 0.140899 | 0.124219 | 0.124301 | 0.137284 | 0.123594 | 0.137069

n, =0 0.19447 | 0.190648 | 0.168811 | 0.164644 | 0.162148 | 0.173636

7, =0 0.25047 | 0.21064 | 0.21064 | 0.184649 | 0.186852 | 0.194428

n, =0 0.284357 | 0.281115 | 0.247831 | 0.195007 | 0.210073 | 0.206718

From Figure 4.6 we find a pattern that the RAE increases as the input

perturbation level increased. It is similar to Figure 4.4, which just considered

perturbation of input data. Therefore, it is found that the perturbation of input data

affects the solutions of the optimization problem more, compared with the perturbation

of parameters.

From Figure 4.7 it is difficult to conclude that a pattern exists. The RAE
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increases when the data perturbation level 7, is small (7,=0 and 1), however, it

decreases when the data perturbation level 7, is large (7,=4 and 5). The error gap

also decreases when the parameters’ perturbation level 7, increases. The error gap is

extremely large when the parameters’ perturbation level 7, is zero. Therefore, we

conclude that the perturbation of input data is more significant than the perturbation of

parameters to the solution. This observation is the same as in the SVC problem as

shown in the previous section.

Comparison of RAE for perturbation of parameters

03 M —*— eta2=0

0.25
0.2 i ;r A —*—eta2=1
eta2=2

Error 0.15 %M eta2=3
0.1 ;I'F/b/ *— eta2=4

0.05 —*— eta2=5
0

0 1 2 3 4 5

Perturbation levels of input data

Figure 4. 7 Compare RAE for parameter perturbation based on the input data
perturbation level 7, .
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Comparison of RAE for perturbation of Input data

03 ‘b_’_\‘ ——

0.25 \ etal =0
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Perturbation level of parameters

Figure 4. 8 Compare RAE for input data perturbation based on the parameter
perturbation level 7,

By examining the three cases of sensitivity analysis, we found facts that:

e Perturbation of input is more sensitive than the perturbation of parameters

e However, if we consider the perturbation of parameters at the same time,

the effects of perturbation of input is decreased by the counter effect

between the two perturbations.
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CHAPTER 5. Support Vector Machines

Using Uncertain Programming Approach

5.1 Probability Constrained Approach

When it comes to considering an uncertainty framework for the optimization
model problem, one generally looks into either robust optimization or probability
constrained optimization. While the robust optimization approach handles the
uncertainty based on an uncertainty set, probability constrained optimization takes into
account the probability distribution for the uncertainty. In this chapter, we investigate a
novel probability constrained approach and scenario constrained approach as well.

As discussed in chapter 2, several researchers have investigated robust
optimization problems with different shapes of bounded uncertainty sets. Since the
robust optimization problem becomes an SOCP problem, which is difficult to solve,
researchers Calafiore and Campi (2005) tried to use sampling schemes to represent
bounded uncertain sets through random constraints. However, the suggested

approaches have a drawback. The number of random constraints is increasing with the
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accuracy of the optimal solution resulting in a large scale optimization problem.
Therefore, we provide a new alternative robust optimization problem.

The probability constrained approach described in this chapter will take into
consideration a bounded knowledge set in the neighborhood of a training point X,
where each point in this knowledge set keeps the same label value y,. Replicated
observations are randomly selected in the knowledge set, rather than working with
well-defined data points. Suppose we are given a training data set x, and
labels y,, i =1A ,l, where x, e R" and y. belongs to positive (+1) or negative (-1)
classes. Replicated data points X, ,A ,x; ~which belong to the knowledge set V (x;),

are also considered.

|1 ( J-L--}, Vix)
: s
e | d P} . P.I.
V()| 1,
l,.f:) A .";f \‘.I (3x4)

Figure 5.1 Illustration of four Knowledge sets (V (x;)) and four replicated
data points ( p,) in the knowledge sets.

62



Figure 5.1 illustrates the concept of knowledge sets V(x;) and replicated
measurements p, ; we have four knowledge or vicinity sets and four replicated
measurements in each knowledge set. It is assumed that each replicated measurement
has its own probability, and the sum of probabilities within an uncertainty set is one. If
we consider equal probability for each replication, the primal optimization problem
can be written as:

min Ljwi’ +C3t
whbt 2 ) :
1 N
st y, [WZ;‘< w,x; >+b]>1-t;, (5.1)
=

=LA I

where i is the number of training points (number of knowledge sets), and j is the
number of replications within each knowledge set of a training point. In the general
case, the generalized constraints of problem (5.1) can be expressed as follows:
N
YD Py <w,x; >+b]>1-t;, i=1A I, (5.2)
j=1
Pij in the constraint (5.2) represents a probability for each replicated measurement j in
the given knowledge set i. The selection of distribution functions for the probabilities
in (5.2) influences the SVM solutions. By considering probability constraint in

problem (5.1), we can employ the following probability constrained optimization
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problem.

.1 !
min S +C2t

N
st Y, [D Py <w,x; >+b]>1-t, (5.3)
1
t. >0, i=1A Il

Problem (5.3) can be transformed into an unconstrained optimization problem by
introducing Lagrange multipliers.

L(w,b,a, B) :%ll w|? +Ci|21ti —Zai[yi (JZ:: Py <W, X >+b)—1+ti]—izl_l:,8iti , (5.4)
where «,f are the Lagrange multipliers. By the optimality conditions, the partial

derivative of weight vector w must satisfy the following conditions:

aL | N
—=w->ay, > Px; =0 (5.5)
ow i1 =1

From the above conditions, we derive:

! N
W= 2 a; yizpijxij , (5.6)
i1 i1

which has a similar form to the traditional SVM solution. Substituting (5.6) into the

objective function of problem (5.3), we have:
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N N

1 1 | |
5 <SWWo>=—< zaiyiz Pinij'zakykszkad >
2 2 3 k=1 -1

-1
l | | J N N
:Ezzaiakyiykzz < Xijr XKig >
i=1 k=1 j=1d=1 (5.7)
1 | N
:_Zzaakylyk <z U,ZP Xig >
|lk =1
:laTIZa,
2

where k =YY, < Z i ZPkd X,q >, 1 and k are the number of samples, and j and
=1

d are the number of replicated observations.

The constraint of (5.3) also can be simplified by the use of modified kernel

function K . The constraint can be derived as follows:

Y, [ZP <W,x; > +b] =1t
j=1

N

| N
:>y'[ Pijzakykzpkd <Xkd’xij >+b]21_ti

=1 k=1 d=1
| N N

=YD aY < D PiXi D PaXg > +b] =1, (5.8)
k=1 j=1 d=1

| N N
=SV & < D PX, D BgXg > +Yb 21—t
k=1 -1 d=

1

:Izia+ yib>1-t,
~ N N
where, kik =YiYi < ZP” Xij’zpkd X >
j=1 d=1

From equations (5.7) and (5.8), the primal problem (5.3) becomes,
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- |
min iocT Ka+ CZ:ti

abt 2 i=1

st Ria +yb=1-t (5.9
t,>0
=LAl

- N N - ~

where, Kk, =YY, <D PX;, > PyX >and K; is the i-th row of the matrix K. The
=1 d=1

indices i and k are referring to the number of samples, and j and d to the number of

replicated observations in the knowledge set, respectively. Problem (5.9) becomes a

quadratic optimization problem.

5.2 Scenario Constrained Approach

In the previous section, we investigated the probability constrained approach
using the kernelization method. Another issue that can be investigated is the selection
of an appropriate probability distribution. The uncertainty is described through the
knowledge set.

In this section we consider an extended version of the probability constrained
approach. We call this extension a scenario constrained approach. Since the selection
of a probability distribution is critical in the above problem, we adopt an idea of

scenarios for different weights (coming from probability distribution function) for the
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replicate measurements. Let q°> be the probability of a scenario s for selecting
different weights (probability distributions) for the replicated measurements. Vector

(5.6) can then be expressed as follows:
| S s N S s
W:Zaiyizq ZP” Xij (5.10)
i=1 s=1

i1

The quadratic part of the objective function in equation (5.3) w also can be replaced by

the following:

1 ll | N S N . .
E<W’W>:_Zzaiakyiyk zqszpusxs quzpkd Xig >

i=1 k=1 s=1 j=1 e=1 d=1 (5 11)

=—a'Ka
2

We define a modified kernel matrix as follows:
— S s N s S S N . .
Kic = Yi Y« <Zq ZPU X ’quzpkd Xg > (5.12)
s=1 e=1 d=1

=t

Note that the constraint of problem (5.8) becomes:

s=1 j=1
s N I s N
=YD 0 Y P Y @ D AT R < X' > +b] > 1t
s=1 j=1 k=1 e
:yi[iqsiqe I & Y <ZN:PijSXjS ipk Xg >+b]21-1, (5.13)
s=1 e=1 k=1 j=1 d=1
s N N
:y,ykZaqu dYa<> JsxijS D BuX > +yb=1-t,
S= e=1 j=1 d=1

:>Kia+ yib>1-t,

The sum of the scenario probabilities also must be 1, and each scenario probability is
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not negative. The scenario s can be considered from the worst case to the best case,

depending on prior knowledge. The final scenario constrained optimization problem

we consider is as follows:

- !
rmnlaTKa+C§3i
abt 2 Py

st Kia +yb>1-t

t. >0, i=1A 1,
- N R NG
where,  ky =Yy, < zqazpij X;; ’Z gzpkd Xeg >+
s=1 j=1 e=1 d=1

5.3 Computational Experimentations

(5.14)

5.3.1 Computational Results for Probability Constrained

Approach

Figure 5.2 illustrates a simple example of the probability constrained approach.

By inserting the replicated data points into problem (5.9) as shown in Figure 5.2, we

obtain:
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. 1 ;-
min =o' Ka+C(t +t,)

a,a, bt t

st Ko +yh>1-t, (5.15)
Izza +y,b>1-t,
t,t,>0 =12

Note that (5.15) is a quadratic optimization problem with five variables. The replicated

points can be explained by the concept of perturbations of input data. This example has

two knowledge sets representing two data points with three observations. To each

observation we associate a weight (probability) within each knowledge set. Therefore,
~ - N N

the matrix K with k, =y,y, <D PX;, > PX,> will be affected by the
=1 d=1

probability of the replicated points; that is, the center of gravity of the knowledge set

will be shifted in terms of the weights of the observations.

Table 5.1 Examples for four different probability sets.

P11 P2 Py P2 P2, P23
Case 1 0.33 0.33 0.33 0.33 0.33 0.33
Case 2 0.1 0.2 0.7 0.5 0.2 0.3
Case 3 0.5 0.2 0.3 0.5 0.4 0.1
Case 4 0.4 0.3 0.3 0.2 0.8 0.0
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To compare the behaviors of the separating hyperplanes, we consider four different
weights in the observations (See Table 1). The probability p,;, is related to the class 1
(positive class), and p,; refers to the class 2 (negative class), where i=1,A ,3.

In Figure 5.2, for example p,, represents a weight of the first replicate

measurement in class 1.

Twio sample points with 3 replicated observations

5_ ........... SRR R R SR LR LR Gy
alboi e S T T
) RS S SR PR N S R -
: p11
2_ ..............
T U SRS ................................................ .......... .............
§ P2 : Class 1 g
0 ; A : : ; :
§ _/‘ —\' p12: § § p13
_'] ............. ..... } RS Do \' ........................................ ............. .............
L/ C|8”5552 N § |
_2 L. "-'-"'-'E'- ..... '. ....................................... ............. .............
p22 : p23 | |
23 _ .............
AF TP Y PP PSP s TORPI.
- T R S R .
-4 -3 -2 -1 ] 1 2 3 4

Figure 5. 2 Illustration of two
observations.

Table 5.2 summarizes the solutions of the optimization problem (5.32) for the
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four cases. We have obtained five parameters (¢, a,,b,t;, and t,) and the vector w
has been calculated based on (5.6). From Table 5.2 and Figure 5.3, we can see that
separating hyperplanes affects the different weights of observation. In case 4, we
consider an extremely skewed case: the negative class data point is skewed on the left
hand side from its center point ( p,, =0). For this reason, the separating hyperplane has
been shifted to the left, compared to the other cases. We can also see that the
hyperplanes are rotated by the changes in data weights.

Based on the example of the probability constrained approach, we find the
following important facts:

e The knowledge set will be given by the replicated observations.

e The center of gravity of the knowledge set shifts in terms of the weights

(probabilities) of replicate measurements.
e The dimensionality of the problem is decreased, since the input samples

are considered replicate measurements.
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Table 5.2 Solutions of probability constrained problem.

a, a, b t, t, W, W,
Case 1 -0.0349 | -0.0349 0 0 0 -0.1676 | -0.0419
Case 2 -0.0274 | -0.0274 0.0549 0 0 -0.1233 | -0.0493
Case 3 -0.0216 | -0.0216 1.0597 0 0 -0.1036 | -0.0518
Case 4 -0.0442 | -0.0442 0.3590 0 0 -0.1767 | -0.0883

Comparison of 4 cases of Probability Constrained Approach

Figure 5. 3 Behavior of separating hyperplanes with four different cases.
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To observe the behavior of the probability constrained problem in the real data,

tornado data was considered. For the training, we selected 3 replicate data points (same

day observations) from January to May. We obtained 15 tornado and 15 non-tornado

data for the training, and used 952 testing data (50% of tornado and 50% of non-

tornado).

Four cases of different weight in Table 5.1 were used for the experiments, and

the results are shown in Table 5.3. Case 1 was considered with the same weight for

every replicate measurement, and obtained same misclassification errors as traditional

SVM solutions. Case 3 shows the worst misclassification error in comparison to the

other cases. The interesting result is shown in case 2. The misclassification error in

case 2 (16.4%) is decreased about five percent compared with traditional SVM

solution (21.9%). In conclusion, if we select appropriate weights for the replicate

measurement, reduced misclassification error can be obtained.

Table 5.3 Misclassification errors with four different cases.

Cases Case 1 Case 2 Case 3 Case 4 SVM

Misclassification
Error

0.2195 0.1638 0.7447 0.3813 0.2195
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5.3.2 Computational Results for Scenario Constrained

Approach

To illustrate the scenario constrained approach, two sample points with three
replicate measurements described in section 5.3.1 are used. In the scenario constrained
approach, the replicate measurements were given with different scenarios in addition
to their weights. For example, the first replicate measurement was collected by the first
scenario, which had a higher probability in the positive class. In this example, three
scenarios were considered:

e Scenario 1: more weights to the positive class (class 1)

e Scenario 2: equal weights to the two classes

e Scenario 3: more weights to the negative class (class 2).

The knowledge sets constructed by the replicate measurements were shifted
by the given scenarios as shown in Figure 5.4. In this figure, the knowledge set of the
positive class is shifted to the right side from the original set, while the negative
knowledge set moved down to the left. Note that the centers of gravity of the

knowledge sets were shifted as shown in Figure 5.4, and the separating hyperplane was
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rotated to the left hand side while the margin was increased. In an application problem,

the scenarios are given from the experts based on their prior knowledge.

Scenario Constrained Approach

Figure 5.4 Scenario constrained approach: knowledge set and the
separating hyperplane have shifted by the scenarios.
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CHAPTER 6. Conclusions and Future

Research

6.1 Conclusions

In this research, we have developed a new robust optimization model for
solving SVM learning problems, where we consider the perturbations of the
parameters as well as the perturbations of input data. We illustrated examples for the
three cases of possible perturbations, and showed how the SVM solution is influenced
by the perturbation of input data, parameters, or both. In the classification and
regression problem, the perturbation of input, in general, is more sensitive than the
perturbation of parameters. However, if we consider the perturbation of input data and
parameters, the effects make the solution less sensitive. In the case of perturbations of
the input data with uniform spherical uncertainties, we observe that the resulting
separating line is the SVM solution. This occurs when the uncertainty parameter 7 is
smaller or equal to the margin of separation. This advocates the robustness of the SVM

solution. Our model can be a basis for real-world problems that check the robustness
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and feasibility of the SVM model under bounded perturbations.

The probability constrained approach and scenario constrained approach are

investigated as alternatives to the robust optimization approach. The replicated

measurements construct the knowledge set, which can be replaced with the uncertainty

set in the robust optimization approach. This approach has an advantage when a small

set of replicate measurements is given.

6.2 Future Research

There are several ways to measure uncertainties. Depending on the definition

of the uncertainty (sphere, ellipsoid, rectangle, or a bounded convex set), a resulting

classifier will be changed. Further research will handle more complicated uncertainties.

Even though we consider several concepts of the uncertainty set and approaches, there

still exist several assumptions - such as probability distributions and scenarios. If we

consider the probability distribution and scenario as parameters, the problem will

become more complicated.

In particular, when we do not have any information of prior knowledge for the

data, we should consider the weights or probability distribution as parameters in our
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models. Even if case 2 gives a good misclassification error in section 5.3.1, the optimal
weight still is not guaranteed. The probability constrained approach suggested in 5.3.1
can be extended to the nonlinear optimization problem when the weight (probability)
vector is considered as parameters. In future research, the weight (probability) for the
replicate measurement will be added as an extra constraint in the previous probability

constrained problem.
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APPENDICES

90%67%67% %% %% %% %% %677 % 0% % %6 %0 % %% % 00 T %o %6 %% %o o oo o Jo %6 % % %o o o o o e T T % % %o o o o e T Ko %% %o o o o e T % % % %o o o o e Ko % % %o
%%%%%%% Chapter 4.1 SVC problems (AND Prob | em)%%%%%%%%% %% %% % k%% % %% %% % K% %% % %% %% % %o
90%67%7% %% %% %% %6 %6767 %% 0% % K6 %6 % %% % % 0% % T %o T %% %o o 0% e T % % %6 e o o o e T T % % Yo o oo o Je Ko T %% %o o oo e do Ko % % % e o o e e do Ko % %
% Perturbation of input data (AND problem)

function f=funD(x,etat)

% Reassign the variables.

x1=x(1);

x2=x(2);

% Calculate the objective function.

f=0.5*sqrt (x1"2+x2"2) ;

end

90%67%67% %% %% %% %% %677 %0 % %6 %o % %% %% 0% T %o % %% %o o oo e Jo %6 % % %o e o o o e T T %% e o o o e T Ko % % %o %o o o e T % % % %o e o o e Ko % % %o
function [f,gl=nonlinD(x, etal)

% Reassign the variables.

x1=x(1);

x2=x(2);

x3=x(3);

% Nonlinear inequalities

f(1)=—x1-x2-x3tetalrsqrt(x1"2+x2"2)+1;

f(2)=x1-x2tx3tetalrsqrt (x1°2+x2"2)+1;
f(3)=—x1+x2+x3tetalrsqrt(x1"2+x2"2)+1;
f(4)=—x1-x2+x3tetalrsqrt(x1"2+x2"2)+1;

% Nonlinear equalities

o=[1:

end

% Find the solution

X=fmincon('funD", [0 0 O],[1,[1,[1,[1.[1.[], nonlinD",options,0)

%0 00000‘%)%)0 00 00000‘%)%)0 00 00000‘%)%)0 00 00000‘%)%)0 00 00000‘%)%)0 00 00000‘%)%)0 00 000%%%0 00 000%%%0 00 000%%%0 00 000%%%0 00 000%%%0 00 000%%%0 00 000%%%0 00 000%%
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% Perturbation of parameter (AND problem)
function f=funP(x,eta)

% Reassign the variables.

x1=x(1);

x2=x(2);

% Calculate the objective function.

f=0.5*sqrt (x1°2+x2"2) ;

end

%6%9%%9%7% %% %66 %6%% %% % To T %66 %% e T T oo e oo T o T oo e Yoo T T T oo T T T e e Yo T T K e % %o T K K
function [f,gl=nonlinP(x,eta)

% Reassign the variables.

x1=x(1);

x2=x(2);

x3=x(3);

% Nonlinear inequalities

f(1)=—2xx1-2xx2-x3tetat1;
f(2)=2#x1-2%x2tx3tetat1;

f(3)=—2+x1+2xx2+x3tetat1;
f(4)=—2xx1-2*x2+x3tetat1;

% Nonlinear equalities
o=[1;
end

% Find the solution

X=fmincon('funP',[0 0 O],[1,[1,[1,[1,[1,[], 'nonlinP',options,0)

9076767 7% %% %% 7676767 %% 0% %% T %% %% % % 0% % %6 %6 %% % %o %00 o %o %6 %6 % %% %o oo o T To %% %% o oo e T T %% %% o o Ko % % % %% o o e Ko T %%
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9%6%67%3%670% %% %6 %6 70% 7% % %06 %% 7% %% %6 7o %6 2o %o 76 o6 7o %6 Yo T %o 7o%6 76 T %o 6 o6 7o %o T6 o6 2ol T %6 o6 7o Yoo T o 2o %6 7o % o %6 o6 %o
%%%%%%%%6%%% %% Chap ter 4.1 SVC pr oblems ( XOR Problem ) 9%%%%%%%%6% % %%%% % % %6% 0% % %% %% % % %66 %0

9076767 7%% %% % 7676767 %% %0 %% % T %% %% % % 0% % %6 %6 %% % %o %00 o %o T %6 % %% %o oo o T To %% %% o oo T T %% %% o o Ko %6 % % % % o o e Ko T % %

% Perturbation of input data (XOR problem)
function y=funD_XOR(x,eta)

% Reassign the variables.

x1=x(1);

x2=x(2);
x3=x(3);
x4=x(4);
x5=x(5);
% Caculate kernel matrix * Lagrange multipliers (Alpha)

M=81% (X 1"24x2724x3"24x4"2 ) =2 (X 1 %X 24X 1x X B+ X2 X 4+x3*x4 ) +98* (X 1%x4+x2*X3) ;

% Calculate the objective function.
y= 0.5*m;

end
9%9%%%% %% %% % %% %% %% %6 %% %% %o T % 2odl Yo T T o Yo To T o Tod Teo T o6 ol Toe T 2ol Yo T o Yo To T o Yo% Te o % % %6 Yoo

% Perturbation of input data (XOR problem)
function [c,cel=nonlinD_XOR(x,eta)

% Reassign the variables.

x1=x(1);

x2=x(2);
x3=x(3);
x4=x(4);
x5=x(5);

% Caculate kernel matrix * Lagrange multipliers (Alpha)
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M=8 1% (X 1724 X224+ X3 24 x 472 ) 2% ( X 1% X2+ X 1 ¥ X3+ X2* XA+ x3* x4 ) +98* ( X 1*x4+x2*x3) ;

% Nonlinear inequalities

(

c(2)= (—x1+81*x2+49*x3—x4+x5)+eta*sqrt (m)+1;
(3)= (=X 1+49%x2+81*x3-x4+x5)+eta*sqrt (m)+1;
(4)=(-1)*(49%x1-x2-x3+81*x4+x5)+eta*sqrt(m)+1;

% Nonlinear equalities
ce=[1;% No nonlinear equality constraints

end

% Find the solution
X=fmincon('funD_XOR',x0,[1,[],[],[1,[1,[]," nonlinD_XOR',options,0.2,K)

% K is a kernel matrix.

%0 00000%%0 00 00000%%0 00 00000%%0 00 000%%‘%)0 00 000%%‘%)0 00 000%%‘%)0 00 000%%‘%)0 00 000%%‘%)0 00 000%%‘%)0 00 000%%‘%?!0 00 000%%‘%?!0 00 000%%‘%?!0 00 000%%‘%?!0 00 000%%
% Chapter 4. Computational Results for Sensitivity and Robust Analysis Applied to

SVC %7%3%%7%3%%7%%%67%3%6 7% 7e%%6 %% %76 % %o %6 7o % %6 7o %6 7% %6 7o %6 %o o %o oo %o %o % %ol T o T 7ol e 7ol oo %o %o % %o %
%%%%%%6% %% %% %% % %% %% %% Case 1: Perturbation of Input Data %%7%%7%%%%%%% %% %%%%% %% %% %%

clear all

data = load( 'breastcancerwisconsin.txt');
[vl wl=size(data);

v=round(.5*v1); % 50% of training
x=data(1:v,1:w-1);

y=data(1:v,w);

tstx=data(v+1:vi,1:w=1);
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tsty=data(v+i:vi,w);

ker="poly';

par=2;

eta=0.0;

[alpha,b]= chapter4_svc(x,y, ker,par,eta);

[ys,yt]=testsvc(x,tstx,ker,par,alpha,b);
error=find(yt'~=tsty);
error=length(error)

9076767 7%% %% % 7676767 %% %0 %% % T %6 % %% % %0 0% % %6 %6 %% % %o %00 o %o %6 %6 % %% %o oo o T T %% % %o o oo K T %% %% o o de %6 % % %% o o e Ko T %%

function [alpha,bl=chapter4_svc(x,y,ker,par,C,eta);

[m nl= size(x);

eta=1.5

k = zeros(m,m);
ker="poly';
par=2;

ki=kernel(x', ker, par);

for i = 1:m
for j = 1m
KO, J)=y () xy () k(i j)s
end
end
K;

x0=zeros(2*m+1,1);
lb2=zeros(m, 1);
Ib1=—inf*ones(mt+1,1);

ubc=-ones(m, 1);

if eta~=0
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%if 1
Prob = conAssign(‘obj_1",¢obj_2" ,[1,[],[Ib1;1b2],[], 'chapter4',x0,[],[],[],...
[1,01,"con_1","**con_2*, [1,[1,[], [ubc]):
else
Prob = conAssign(‘obj_1",'obj_2" ,[]1,[],[Ib1;1b2],[]," chapterd',x0,[],[],[],...
(1,01, "con_11"," con_22',[],[],[],[ubc]);
end
Prob.user .H=k;
Prob.user.z=z;
Prob.user.C=C;

Prob.user .eta=eta;

Return=tomRun( 'snopt', Prob,[])
alpha= Return.x_k(1:m);
margin=1/sart(alpha'*k*alpha)
b= Return.x_k(m+1);

L Y Y L L Y Y 3 L L Y L Y Y o Y Y Y Y Y Y Y
function [ys,yt]=testsvc(x,tstx,ker,par,alpha,b)

yt=[1:

m = size(tstx,1);

k=kernel (tstx',x', ker,par);

ys=(k*alpha)+b*ones(m,1);

for i=1:mm
if ys(i)<=0
yt(i)=—1;
else
yt(i)=1;

end

9076767 7%% %% % 7676767 %% %% %% T %6 % %% % % 0% % %6 %6 %% % %o %00 o %o T T % %% %o oo o T To %% % %o o oo K T %% %% o o Je % % % %% o o e Ko T % %
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function [f]=obj_1(x,Prob);
k=Prob.user .H;

z=Prob.user.z;

C=Prob.user.C;

m=size(x,1);

n=0.5%m-1);

f=0.5% x(1:n) "*k*x(1:n)+ Cxsum(x(n+2:m);

%%6%%%6%%%6%%%6% %0 %% % %% % %% % %% % X%l %% Gradient of ob J ective function %%%%%7%%%%%%%%% % %% % %%

function [J]=obj_2(x,Prob);
k=Prob.user .H;
C=Prob.user.C;

m=length(x);

n=0.5%(m-1);
J=zeros(length(x),1);
J(1:n) = x(1:n) "*k;
J(n+1)=0;
J(n+2:m)=C*ones(n,1);
9%7%%%3%%7%%%%% % %% %6 % %% %6 %% 0% %67 %096 %6 % %066 % %o % T % %o 0% %6 % %o % %6 %o oo T % %o e % %o ol T % %o o % %6 % oo %6 %o %o % % o % %o
function [gl=con_1(x,Prob);
k=Prob.user .H;
z=Prob.user.z;

m=length(x);

n=0.5%(m-1);

s = sart(x(1:n) "*k*x(1:n));
kx = k'*x(1:n);
slack=zeros(n, 1);

for j=1:n
slack(j)=x(nt+14j);

end

g=s —-kx— z.x(n+1)+slack;
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9%7%6%%3%%7%%%% % % %% %% % %% %6 %% 0% %677 %096 %6 % %o %0 % %o T % %o 0% %6 % oo % %6 %o oo e % %o e % %o o e T % %o o % %6 % oo % %6 %o %6 % % o % %o
function [J]=con_2(x,Prob);
k=Prob.user .H;
z=Prob.user.z;
eta=Prob.user .eta;
m=length(x);

n=0.5%(m-1);

J=zeros(n, length(x));

a = x(1:n)"*k*x(1:n);
x2k=at1e-10*eye(size(a));
etaxsqrt(x2k);
x(1:n)'*k;

1in,1:n) = —diag(z)*k"';
in,nt1) = -z;

- O
>
1] 1]

1:n,n+2:m)=—eye(n);
1:n,1:n) = J(1:n,1:n)-ones(n,1)*( eta/sart(x2k))*kx;

9076767 7%% %% %% %6%67% %% %% %% T %6 %% %% % 0% % %6 %6 %% % %o %00 o %o T %6 % %% %o oo o T T %6 % % %o o oo T %% %% o o Ko % % % %% o o e Ko T %%

%%%%%%% %% %% %% %% %% Perturbation of parameters %%%%%%7%%7%%%%% %% 7% %% % %% %% %% 6% %% %% % %%

function [gl=svmcon_par (x,Prob);
k=Prob.user .H;

z=Prob.user.z;

m=length(x);

n=0.5%(m-1);

s = eta*Rad;

kx = k'*x(1:n);
slack=zeros(n, 1);
for j=1:n
slack(j)=x(nt1+j);

end
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g= s —kx- z.x(n+1)+slack;

%%%%%%% %% %% %% %% %% Perturbation of input and parameters %%%%7%%%%%%% %% %% %% %% % %% %% %%

function [gl=svmcon_par (x,Prob);
k=Prob.user .H;

z=Prob.user.z;

m=length(x);

n=0.5%(m-1);
sart(x(1:n)'*k*x(1:n));

eta*Rad;

s1
s2

kx = k'*x(1:n);

slack=zeros(n,1);

for j=1:n

slack(j)=x(n+14j);

end

g= s1+s2 —kx- z.x(n+1)+slack;

9%7%%%7%%6 7% %% %% %6 % %o %o % % %o %6 7o %6 7o %o o %o o6 % %ol % To e T 7o % 7ol o %o o6 %o ol % o T Yoo % o e T o 2ol %o % o6 % %o %

%%%%%% %% %% %% %% %% %% Case 2: Perturbation of Parameters %%%%%%%%%% %% %% %% %%% %% %%
function f = obj_124(x, Prob)

k=Prob.user .k;

y=Prob.user.y;

m=length(x)-1;

f= .5 % x(1:m) ' *kxx(1:m);

%%%%%6%%%6% %7676 % %% % %% % %% % Constraint of the Problem %%%%%7%%%%%%%%%%%% % %% % %% % %% %

function ¢ = con_124(x, Prob)

k=Prob.user .k;

y=Prob.user.y;
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eta=Prob.user .eta;
R=Prob.user .R;
m=length(x)-1;

¢ = —k*x(1:m) — y.xx(m+1) + eta*Rxones(m,1);

%%%%%%%"%"%%l% Case 3: Perturbation of Input Data and Parameters  %%%%7%%7%%%%%%%%% %%
%%%%%7%%%6%6% % %%6%% % % %% %% % %% %% Constraint of the Problem %%%%%%%%%%%%%% %% %%%% %% %% %%

function ¢ = con_124(x, Prob)

k=Prob.user .k;
y=Prob.user.y;
etal=Prob.user.etal;
eta?=Prob.user.eta2;
R=Prob.user .R;

m=length(x)-1;

¢ = —-k*x(1:m) - y.*xx(mt1) +

etal.~ones(m, 1)*sqart(x(1:m) ' *k*x(1:m))+eta2*R.*ones(m,1);

9%9%%%% %% 76%% %% %% %% %6 %% %% %o To %% 2o%lo Yo Tl T o Yoo To T o Yo% Teo T o Todle Yoo T ol Yo T o Yo To T o To%e Teo %o o % %6 Yoo
% Chapter 4. Computational Results for Sensitivity and Robust Analysis Applied to

SVR %%7%7%7%%%%%7%67%6%7%7%% %% %% %6 %6% 7% %% %% %% %6 %% %% % 0% % % %676 % %% %o 0% T %676 %% % o 0o % %o %o %% %% o 0o e %o T %% %% %o oo %o

9%7%6%%3%%7%%%%% % %% 6% % %% %6 %% 0% %67 %09 %67 0% % %o % Jo % %o 0% %6 % %o % %6 7o To o6 % %o e % %ol T % %o o % %6 % oo %6 %o %6 % % o Yo %o
%%%%%%%%%%% Case 1: Perturbation of Input Data %%%%%7%%7%%%%% %% % %% % %% %% %% 6% %% %% 2% %%
clear all

data=xlsread('2002a1.x1s");

data=data(2:end,2:end);
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p ql= size(data);

valueerror=[];

cumvalerror=[];

predict=[];

|=144;

tstY=[1];

error=[];

for i=1:1 %
x=data(i,1:15)";
y=data(i,16)*ones(size(x));
tstX=data(i,17:27)";
tstY=data(i,28)*ones(size(tstX));

ker="poly';

par=2;

C=100;

epsi=.1;

eta=b; % eta and epsi are changad from O to 5

% e=1;

p=2;

[alpha,b]=traffic_reg(x,y,ker,par,epsi,eta);

[yt] = out_svr(x,y,tstX,ker,p,alpha,b);
avgl=[mean(yt)];
predict=[predict avgl];

end
predict=predict';

save 2002a1.txt predict —ASCI |

9%%%%% %% 7% %6 %% %% %% %6 %% %% %o To %% 2o%% Yo T T o Yo To T o Yol Teo T %o Yol Toe T 2ol Yo T o Yo To T o To%e Te e % % %6 Yoo
%%%%%%% Compute parameters of alpha, b, and t %%%%%%7%%7%%%%% %% %% %% % %% %% %% %6 %% % %% % %

9076767 7% %% %% 76767677 % 0% %% T %6 % %% % % 0% % %6 %6 %% % %o %o o %o %6 %6 % %% %o oo o T T %% %% o oo e T %% %% o o e %6 % %% % o o e Fo T % %

93



function [alpha,b]=traffic_reg(x,y,ker,par,epsi,eta)

[m,c] = size(x);

k = zeros(m,m);
k=kernel (x', ker,par);

Z=y,

x0=zeros(2+m,1); % initial setup
Ib2=zeros(1,1);
Ib1==inf*ones(m+1,1);
ubc1=epsi*ones(m,1);
ubc2=epsi*ones(m,1);
if eta~=0
Prob = ...
conAssign('traffic_regof', 'traffic_regof_g',[1,[],[Ib1;1b2],[], con2',x0,[],[],[],.

[],[], traffic_regcon', "traffic_regcon_dc',[],[],[], [ubct;ubc2]);
else
Prob = ...
conAssign('traffic_regof', 'traffic_regof_g',[1,[],[Ib1;1b2],[], 'con2",x0,[],[],[],.

[1,[], "traffic_regcont', "traffic_regconi_dc',[],[],[], [ubct;ubc2]);
end
Prob.user .H=k;
Prob.user.z=z;

Prob.user .eta=eta;

R=tomRun('snopt ", Prob, []);
alpha=R.x_k(1:m);
b=R.x_k(m+1);

t=R.x_k(m+2);

clear R;

clear k:
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9%%%6%7%6% 7% 7% %067 76% %o 70% Yo 6 %o Ta%6 7% 7o Yo %o Ta%o 7o 7% Yo T To Tee Fo%6 7o T 76T %a%6 7o %o o %o %o T T %o Yo %% %o 7o 267 %6 %6 %o %o o6
%%%%%%6%%6% %% %% % Caluculate SVR Output 9%%%6% 7% %%6%%6% 7% 7% %6 % %% 7% %% o767 7% 7% 76 %6 %6 %6 %6 7% %%

(%)0 00000%%0 l)0 00000%%0 l)0 00000%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 o°o%%%° 00 000%%%0 00 000%%%0 00 000%%%0 00 000%%

function [yt] = out_svr(x,Y,tstX,ker,p,alpha,b)

% This part is used by Steve Gunn (srg@ecs.soton.ac.uk)

size(x,1);
size(tstX,1);

n

m
k=kernel (tstX',x', ker,p);
yt = (k*alpha + b);

9%%%6%7%6% 7% 7% %067 76% %o 705 Yo 6 %o Ta%6 7o 7o Yoo %o Ta%o %o 7% Yo 6 To Tee Fo%6 7o T 76T %a%6 T %o o %6 %o %o 7o %6 %o Yo %% %6 7o %67 %o %6 %o 7o %o
%%%%6%%6%96% %% %% % %% 6% 6% % %% %% Objective Function %%%%6%7%%7%% %% %% %% 6% %% %% %% %% 6% %% %% 7% %

(%)0 00000%%0 l)0 00000%%0 l)0 00000%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 o°o%%%° 00 000%%%0 00 000%%%0 00 000%%%0 00 000%%

function f=traffic_regof(x,Prob)
m=size(x,1);

n=(m-2);

sum_s lack=sum(x(n+2));

f=sum_slack;
%0 00000%%0 00 00000%%0 00 00000%%0 00 00000%%0 00 00000%%0 00 00000%%0 00 00000%%0 00 000%%%0 00 000%%%0 00 000%%%0 00 000%%%0 00 000%%%0 00 000‘:'/0‘:'/0%0 00 000%%

%%%%%%%%6% % %%l % %% First derivative of ObJ ective function %%%%%%%%7%%%7%%%%%% % %% % %% %%

(%)0 00000%%0 l)0 00000%%0 l)0 00000%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 o°o%%%° 00 000%%%0 00 000%%%0 00 000%%%0 00 000%%

function g=traffic_regof_g(x,Prob)

m=length(x);
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n=(m2);
g=zeros(length(x),1);
g(1:n+1) =zeros(n+1,1);
g(n+2)=ones(1,1);

%% %% %765 %0766 %o 7067 %% %7067 Yo% % Yo% Yo% o %o Yo To o To To6 %o %o %% %% %o %% Yoo Yo T Yo Te e T To 6T 7o %o T %% e %o %ol o o T o Yoo
%%%%%%%%6% %% %1% %% %% %% constraints function %%%%%%%% %% %% %% % 7% % %% % %% % %o dde ol o Yo

(%)0 00000%%0 l)0 00000%%0 l)0 00000%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 o°o%%%° 00 000%%%0 00 000%%%0 00 000%%%0 00 000%%

[gl=traffic_regcon(x,Prob);
m=length(x);

n=(m-2);

k=Prob.user .H;
y=Prob.user.z;

eta=Prob.user .eta;

x2k = x(1:n) "*k*x(1:n);

s = etaxsqgrt(x2k);

kx = k'*x(1:n);

g=[y—kx+s—x(nt1)-x(n+2) ;=y+kxtst+x(n+1)-x(n+2) | ;

%%%%%6% %% %766 %7067 %% %0 7o%% Yo% %0 Yo% Yo T o T Yo T To To 6T %o %% %% %o %o Yoo Tt Yo %o T To 6T T %o T %% e Yol %ol o o T o Yoo
%%%3%%%6%%6%%6%% Case 2: Perturbation of Parameters %%%%%%%7%%7%%%%% %% %% %% % %% %% %% % %% %%

%0 000909/0‘%)0 00 000909/0‘%)0 00 000909/0‘%)0 00 000909/0‘%)0 00 000909/0‘%)0 00 0009/09/0‘%)0 00 0009/09/0‘%)0 00 0009/09/0‘%)0 00 0009/09/0‘%)0 00 0009/09/0‘%)0 00 000%%%0 00 000%%%0 00 000%%%0 00 000%%

clear all
data=xlIsread('2002a1.xls");
data=data(2:end,2:end);
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[p ql= size(data);

valueerror=[];
cumvalerror=[];
predict=[];
|=144;

tstY=[1];

error=[1];

for i=1:1
x=data(i,1:15)";
y=data(i,16)*ones(size(x));
tstX=data(i,17:27)";
tstY=data(i,28)*ones(size(tstX));

ker="poly';
par=2;
C=100;
epsi=.5;
eta=5;
Rad=3; % Radius considered 1,2,and 3
p=2;

[alpha,b]=traffic_reg(x,y,ker,par,epsi,eta,Rad);
[yt] = out_svr(x,y,tstX,ker,p,alpha,b);
avgl=[mean(yt)];

i

predict=[predict avgl];

end

predict=predict';

save 2002a1_R3_5.txt predict —ASCI |

9076767 7%% %% % 7676767 %% %% %% T %6 % %% % % 0% % %6 %6 %% % %o %00 o %o T T % %% %o oo o T To %% % %o o oo K T %% %% o o Je % % % %% o o e Ko T % %
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function [alpha,b]=traffic_reg(x,y, ker,par,epsi,eta,Rad)
[m,c] = size(x);

k = zeros(m,m);

k=kernel (x', ker,par);

Z=y,

x0=zeros(2+m,1);
Ib2=zeros(1,1);
Ib1==inf*ones(m+1,1);
ubc1=epsi*ones(m,1);
ubc2=epsi*ones(m,1);
if eta~=0
Prob
conAssign('traffic_regof', 'traffic_regof_g',[1,[],[Ib1;1b2],[], con2",x0,[],[],[],.

[],[], traffic_regcon', "traffic_regcon_dc',[],[],[], [ubct;ubc2]);
else
Prob
conAssign('traffic_regof', 'traffic_regof_g',[1,[],[Ib1;1b2],[], 'con2",x0,[],[],[],.

[1,[], "traffic_regcont', "traffic_regconi_dc',[],[],[], [ubct;ubc2]);
end
Prob.user .H=k;
Prob.user.z=z;
Prob.user.eta=eta;
Prob.user .Rad=Rad;

R=tomRun('snopt ", Prob, []);
alpha=R.x_k(1:m);

%pos=f ind(alpha>=0);
%xsup=x(pos, :);
b=R.x_k(m+1);

t=R.x_k(m+2);
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%ts=R.x_k(m+3)
clear R:

clear k:

L Y Y L L L Y Y 3 L L Y L Y Y o Y Y Y Y Y Y Y Y Y Y
%%%%6%%6%96% 7% %6 %% 1% 6% %% % %% %% %% Object ive Function %%7%%7%%%%% %% % %% % %% %% %% 6% %% %% 2% %%
9%7%%%7%%3%6 7% %% %% %6 % %o % 7o % %o %6 7o %6 7o %o o %o o6 %Yol % To e %6 7o %6 7ol o %o o6 %o o % o % Yoo % o e T ol 2ol %o % o6 % o6 %
function f=traffic_regof(x,Prob)

m=size(x,1);

n=(m-2);

sum_slack=sum(x(n+2));

f=sum_slack;

%% %% %765 %766 %7067 %% %7067 Yo% Yo% Yo% o %o Yo To o To To6 %o 7o %67 %% %o %% Yoo Tt Yo Te o T To 6T T %o T %% e %ot ol o o T o Yoo
%%%%%%% %% % %% %)% Problem constraints %%%%%7%%%7%%% %% %% %Yol T 7% 7% 7% %6 Yo% %o dedo ToJodo Yoo

(%)0 00000%%0 l)0 00000%%0 l)0 00000%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 o°o%%%° 00 000%%%0 00 000%%%0 00 000%%%0 00 000%%

function [gl=traffic_regcon(x,Prob);

m=length(x);

n=(m-2);

%n=(1/3)*(m-1);

k=Prob.user .H;

y=Prob.user.z;

eta=Prob.user .eta;

Rad=Prob.user .Rad;

x2k = x(1:n) "*k*x(1:n);

s = eta*Rad;

kx = k'*x(1:n);

o=[y-kx+s=x(n+1)-x(n+2); ...
—y+kxt+stx(n+1)-x(n+2) ];
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9%6%%6%% %% %% % %% %% %% %6 %% %% %o To %% 2od% Yo T T o Yo To T Yo Yol Teo T o Todle Yoo T 2ol Yo T o Yo To T o Yo% Te o %o % %6 Yoo
%%%%%%%%%%% Case 3: Perturbation of Input Data and Parameters %%%%%%%%7%%%%%%% %% %% %%

9076767 7%% %% % 76767677 % 0% %% T %% %% % % 0% % %6 %6 %% % %o %00 o %o T %6 % %% o 0o o T To %6 % %% %o oo e Ko T %% %% o o Ko %6 % %% % o o e Fo T % %

clear all
data=xlsread('2002a1.x1s");
data=data(2:end,2:end);

[p ql= size(data);

valueerror=[];
cumvalerror=[];
predict=[];
|=144;

tsty=[1];

error=[1];

for i=1:1 % 1=142
x=data(i,1:15)";
y=data(i,16)*ones(size(x));
tstX=data(i,17:27)";
tstY=data(i,28)*ones(size(tstX));
ker="poly';

par=2;

C=100;

epsi=.5;

etal=b;

eta?=b;

Rad=1;

p=2;

[alpha,b]=traffic_reg(x,y,ker,par,epsi,etal,eta2,Rad);

[yt] = out_svr(x,y,tstX,ker,p,alpha,b);
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avgl=[mean(yt)];

i

predict=[predict avgll];

end

predict=predict';

save 2002a1_5_5.txt predict —ASCI |

9076767 7% %% %% 7676767 %% %0 %% % T %6 % %% % % 0% % %6 %6 %% % %o %00 o %o T %6 % %% %o oo o T To %% % %o o oo e T T %% %% o o Ko % % % %% o o e Ko T % %

function [alpha,b]=traffic_reg(x,y, ker,par,epsi,etal,eta2,Rad)
[m,c] = size(x);

k = zeros(m,m);

k=kernel (x', ker,par);

Z=y,

x0=zeros(2+m,1);
Ib2=zeros(1,1);
Ib1==inf*ones(m+1,1);
ubc1=epsi*ones(m,1);
ubc2=epsi*ones(m,1);
if etal~=0
Prob =
conAssign('traffic_regof', 'traffic_regof_g',[1,[],[Ib1;1b2],[], 'con2",x0,[],[],[],.

[],[], traffic_regcon', "traffic_regcon_dc',[],[],[], [ubct;ubc2]);
else
Prob =
conAssign('traffic_regof', 'traffic_regof_g',[1,[],[Ib1;1b2],[], con2",x0,[],[],[],.

[1,[1,"traffic_regcont', 'traffic_regconi_dc',[],[],[],[ubct;ubc2]);

end

Prob.user .H=k;
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Prob.user.z=z;
Prob.user.etal=etal;
Prob.user.eta?=eta?;
Prob.user .Rad=Rad;

R=tomRun('snopt ', Prob, []);
alpha=R.x_k(1:m);
b=R.x_k(m+1);

t=R.x_k(m+2);

clear R;

clear k:

%% %% %765 %766 %7067 %% %7067 Yo% Yo% Yo% o %o Yo To e Yo To6 %o %o %% %% %o %% Yoo Tt Yo Te e T To 6T 7% %o T %% e %ol ol o o T o Yoo
%%%%%%%%6% % %% % %%% Problem constraints %%%7%%%7%%%%%% %% %% Y% % 7% % 7% 7% %6 Yo% %o To T o Yoo

(%)0 00000%%0 l)0 00000%%0 l)0 00000%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 000%%%0 l)0 o°o%%%° 00 000%%%0 00 000%%%0 00 000%%%0 00 000%%

function [gl=traffic_regcon(x,Prob);

m=length(x);

n=(m-2);

%n=(1/3)*(m-1);

k=Prob.user .H;

y=Prob.user.z;

etal=Prob.user.etal;

eta?=Prob.user.eta2;

Rad=Prob.user .Rad;

x2k = x(1:n) "*k*x(1:n);

s = etal*sart(x2k);

kx = k'*x(1:n);

o=[y-kx+s—x(n+1)-x(n+2)+eta2+Rad+etal*eta?; . ..
—yt+kx+stx(n+1)-x(n+2)+eta2+Radtetalxeta?] ;
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%%%7%%6% %765 %7667 7067 %% %7067 Yo% Yo% Yo% o %o Yo To e To To 6T %o %% %% %o %% Yoo Tt Yo T T To 6T T o T %% e %o %ol o o T o Yoo
%%%%%6% %767 7677067 %% % %% Chapter 5.1 Probabili ty Constrained Problem %%%%%%%%%%%%%%%%%

%0 00000%%0 00 00000%%0 00 00000%%0 00 00000%%0 00 000909/0‘%)0 00 000909/0‘%)0 00 000909/0‘%)0 00 0009/09/0‘%)0 00 0009/09/0‘%)0 00 0009/09/0‘%)0 00 0009/09/0‘%)0 00 0009/09/0%)0 00 0009/09/0%)0 00 000%%

%%%%%%%%h% Case 1 %%h%%%
clear all
p1=[0.1 0.2 0.7]";
p2=[0.5 0.4 0.1]";
x11=[2 2; 1 0; 3 0];
x22=[-2 0; -3 -2; -1 -2];
X1=p1'*x11;
X2=p2'*x22;
X=[X1;X2];
Y=[1-11";
n = size(X,1);

H = zeros(n,n);

for i=1:n
for j=1:n
H1(i,5) = Y(i)*Y(j)#ker ("poly ", X(i,:),X(j,:)):
end
end

col=zeros(2,3);

H=[H col];

row=zeros(3,5);

K=[H;row]

C=1000;

f=[0 0 0 Cx1 C*1];

A=[ H1(1,:) -1 -1 0;
H1(2,:) 10 -1;
000 -10;
0000 -1];

b=[-1 -1 0 0];

x0=[0 0 0 0 0];
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sol = quadprog(K,f,A,b,[],[1,[1,[],x0)
w=s0l (1)*xY(1).*X1+s0l (2)*Y(2).*X2

x1=[2 2; 1 0; 30; 2 2];
x2=[-2 0; -3 -2; -1 -2; -2 0];

s=—w(1)/w(2);
x=Ilinspace(-3,3);
y=s*x-s01(3);
plot(x,y, 'x=") % Blue
hold on
plot(x2(:,1),x2(:,2),'=.r+"); hold on;
plot(x1(:,1),x1(:,2),'-mo");
grid on
axis([-4 4 -5 5])
hold off
% title ('Robust LP with Polyhedral Uncertainty (ex.1)');

title ('Comparison of 4 cases of Probability Constrained Approach');

hold on

%%%%% Case 2 %k’
p1=[0.1 0.2 0.7]";
p2=[0.2 0.4 0.4]";

%%%%% Case 3 %k’
p1=[0.5 0.2 0.3]";
p2=[0.5 0.4 0.1]";

%%%%% Case 4 %k’

p1=[0.4 0.3 0.3]";
p2=[0.2 0.8 0.0]";
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9%%%6%7%6% 7% 7% %067 76% %o 70% Yo 6 %o Ta%6 7% 7o Yo %o Ta%o 7o 7% Yo T To Tee Fo%6 7o T 76T %a%6 7o %o o %o %o T T %o Yo %% %o 7o 267 %6 %6 %o %o o6
%%%%%%%%%%%%%% Tornado data analysis %%%%%%7%%7%%%6%%% %% %% %% %% 7% %% % %6% %% 7% 267 %% %% 7% %

%0 000909/0‘%)0 00 000909/0‘%)0 00 000909/0‘%)0 00 000909/0‘%)0 00 000909/0‘%)0 00 000909/0‘%)0 00 000909/0‘%)0 l)0 000909/0‘%)0 l)0 00000%%0 l)0 00000%%0 l)0 00000%%0 l)0 00000%%0 l)0 00000%%0 l)0 000%%

clear all
tst=xIsread('tst5.xls");
trn=xIsread( 'E:Wdata_tor.xIs");
p1=[0.2 0.3 0.5]";
p2=[0.4 0.3 0.3]";
pi=repmat(p1,[5,11);
p2=repmat (p2,[5,11);
pl=repmat (p1,[1,25]);
p2=repmat (p2,[1,25]);
X1=p1.*trn(1:15,1:end-1);
X2=p2.*trn(16:30,1:end-1);
trnx=[X1;X2];

[k I]=size(trn);
trnY=trn(:,end);

tstX=tst(:,5:29);
tstY=tst(:,end);

[trnX]
[tstX]

prestd(trnX')"';
prestd(tstX')"';

[nsv, alpha, bias] = svc(trnX,trnY, 'poly',100);

err = sveerror (trnX,trnY,tstX,tstY, 'poly',alpha,bias);

out = svcoutput (trnX,tstX,tstX, 'poly',alpha,bias);
[sign(out) tstY]

num_correct=size(find(sign(out)== tstY))

size_of_test=size(out)
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