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ABSTRACT 

 

 Noisy or uncertain data are common in machine learning and data mining 

applications. Noisy data can significantly affect the behavior of data mining and 

machine learning algorithms. Robust optimization and sensitivity analysis techniques 

are applied to the support vector machine (SVM) learning problems to develop a 

noise-immune solution, and suggest new approaches for dealing with noisy data. 

Perturbations of model parameters are considered as well as perturbation of input data. 

This approach determines how the levels of noise of data and model parameters 

influence the SVM solution, both in linear and nonlinear problems. Probability and 

scenario constrained approaches are also examined as alternatives to the robust 

optimization approach. Several examples illustrate the proposed methods. An 

application to real time traffic data for the prediction of the speed of a vehicle is also 

discussed. Tornado data analysis is illustrated in a probability constrained approach as 

well.
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CHAPTER 1. Introduction 

 

1.1 Overview and Research Objectives 

The objective of this dissertation is to investigate robust optimization and 

sensitivity analysis techniques applied to the support vector machine (SVM) learning 

problem and suggest new approaches for dealing with noisy data. An additional 

objective is to develop a scenario constrained programming approach as an alternative 

to the robust optimization approach. Sensitivity analysis in machine learning can be 

used to show how the machine learning model performs when the model is changed. 

Specifically, its aim is to determine how much the variation of the input can influence 

the output of the learning machine. Sensitivity analysis is an issue for machine 

learning because imperfect datasets occur frequently in practice. Several researchers 

applied sensitivity analysis to the optimization problem using the perturbation of input 

data (Bonnans and Shapiro, 2000). However, sensitivity analysis has not been 

extensively studied in machine learning.  

Similarly, a lot of researchers have dealt with data uncertainties, and many 
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different robust optimization approaches have been suggested. Ben–Tal and 

Nemirovski (1998) introduced bounded uncertainty convex sets to describe uncertain 

coefficients in mathematical programming. By using bounded convex uncertainty sets, 

such as ellipsoidal uncertainty sets, they developed a robust optimization approach for 

linear programming (LP), semi-definite programming (SDP) and other problems. 

Based on minimax optimization arguments, they developed a robust counterpart (RC) 

approach for convex programming. Chinneck and Ramadan (2000) considered LP 

problems with interval coefficients.  

Calafiore and Campi (2005) introduced an uncertain convex program (UCP) 

using the concept of an ε -level solution. The ε -level represents the risk of the 

constraint violation. Since the two main approaches for the uncertainty constrained 

optimization problem, robust optimization and probability constrained optimization, 

lead to a computationally intractable problem formulation, they considered a 

randomized scenario approach. This approach is based on constraint sampling with a 

finite set of N constraints, which needs a sufficient number of constraints to represent 

the whole set of constraints. They have addressed the problem of how many samples 

(scenarios) need to be drawn in order to guarantee that the resulting randomized 
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solution violates only a “small portion” of the constraints. 

Bertsimas et al. (2004) described an approach using a general norm to define 

the uncertainty set and derived probabilistic guarantees on the feasibility of a robust 

optimal solution with respect to a general and dual norm, respectively.  

Recently a lot of attention has been given to SVM (Vapnik, 1995). The SVM 

approach consists of finding the hyperplane that separates two sets of points in such a 

way that the distance between the hyperplane and the nearest point of each of the data 

set is maximum. The resulting SVM learning convex optimization problem provides 

the “best” feasible solution in terms of generalization behavior for the separation 

constraints with respect to w  and b , where w  is the vector defining the separation 

hyperplane, and b  is the offset of this hyperplane. The SVM approach has been 

developed for input data without noise. An interesting problem is to investigate the 

behavior of the SVM solution with noisy (perturbed) data and model parameters.  

There are two ways that randomness can be applied to machine learning 

algorithms; the first one originates from the sampling procedure to construct the 

learning set, and the second one comes due to noise in the observations and parameters. 

Bousquet and Elisseff (2002) focused on sampling randomness and how changes in the 
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learning set can influence the function produced (discriminant or regressor). Trafalis 

and Alwazzi (2003a, 2003b), and Trafalis and Gilbert (2006) investigated a robust 

optimization approach with bounded perturbations of the input training data applied to 

support vector machines (SVMs). Ghaoui et al. (2003) considered binary, linear 

classification problems where the data points are unknown but bounded within given 

hyper-rectangles. They designed a robust classifier by minimizing the worst-case value 

of given loss functions such as hinge loss, negative log likelihood function, and 

minimax probability machines (MPM) loss function.  

In the optimization literature, generally only perturbations of input data are 

considered. Investigation of the stability of SVM solutions with respect to changes of 

input data and model parameters is of concern in practical applications. We build on 

previous research by Trafalis and Alwazzi (2003a, 2003b) by considering 

perturbations both of input data and model parameters. The motivation for our analysis 

is to design robust machine learning algorithms that are “immune” to noise of inputs 

and parameters. We also develop a scenario constrained optimization approach as an 

alternative to robust optimization approaches. 
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1.2 Organization of the Dissertation 

Chapter 2 deals with the basic concepts of robust optimization and some 

optimization methods which are related to this dissertation. The basic concepts of 

Support Vector Machines (SVMs) and our novel approaches are outlined in chapter 3, 

and a new approach with perturbations of input data and perturbations of the SVM 

model parameters are also explored. Computational results for a classification and 

regression problem are discussed in chapter 4.  Probability constrained programming 

and a scenario-based approach are discussed in chapter 5. Examples and computational 

results are also shown in the same chapter.  Lastly, chapter 6 concludes the 

dissertation and describes future work. 
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CHAPTER 2. Literature Survey  

 

Several formulations related to robust optimization and sensitivity analysis are 

outlined in this chapter. In most real applications, an optimal solution is affected by the 

structure of the data set. Very often the data may be inaccurate or missing.   

 

2.1 Robust Optimization of Linear Programming 

Ben–Tal and Nemirovski (1999, 2000) investigated LP problems with 

uncertain data. The following linear program: 

bAxts
xcT

≤.
min

      (2.1) 

is assumed to be uncertain in the sense that the data set A and b are defined through 

uncertainty convex bounded sets in the space of nm×  matrices and nR , respectively. 

The key idea of their study about convex optimization problems with uncertainty is 

that the data are not accurately specified. They defined the uncertainty set U in the 

space of data, where the uncertain parameters belong to a bounded and convex set. 

Therefore, the resulting optimization problem becomes: 
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UbAbAxts
xcT

∈∀≤ ),(.
min

   (2.2) 

The above problem is a semi-infinite optimization problem (Calafiore and Campi, 

2005). Problem (2.2) is a robust counterpart (RC) of the linear programming problem 

(2.1). They proposed two ways to implement this method: “unknown-but-bounded” 

uncertainty and “random symmetric” uncertainty. They developed robust convex 

programs corresponding to some of the most important generic convex problems. The 

robust formulation of problems such as linear programming, semi-definite 

programming and others, are either exactly or approximately tractable problems, 

which can be solved by efficient polynomial time algorithms. An example of an 

efficient algorithm that can be applied is a polynomial time interior point method when 

the set U is an ellipsoidal uncertainty set.  

In the case of ellipsoidal uncertainties, problem (2.2) will be as follows: 

Δ∈≤
∈

δδ  b,x)A(t.

min

s

xcT

Rx n           (2.3) 

where we assume that )A(δ is affine in δ  and the set Δ  is the direct product of 

ellipsoids (Calafiore and Campi, 2005).  We also assume each constraint row belongs 

to an ellipsoid. That is,  
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miEaa iiiii ,,1,1,ˆ)(
2

Λ=≤+= δδδ          (2.4) 

where n
i Ra ∈ˆ is the center of the ellipsoid and nnT

ii REE ×∈=  is the shape matrix of 

the ellipsoid describing the variation in ia . Then, the constraints of (2.3) become 

ii
T

i
T

i Exa bxˆ ≤+ δ . From the ellipsoidal uncertainty description, the constraints hold 

for all Δ∈δ  if and only if: 

ii
T

i
T

i Exa
i

bxˆmax
12

≤+
≤

δ
δ

.           (2.5) 

Therefore, the robust formulation of the LP problem (2.3) can be expressed as the 

second order cone (SOC) program (Lobo et al. (1998)) when Euclidean norm is 

considered as follows: 

mibxExas

xc

i
T

i

T

Rx n

,,1 ,ˆt.

min

2i Λ=≤+
∈      (2.6) 

Second order cone programming (SOCP) is a convex nonlinear optimization problem 

that includes linear and quadratic programs (Lobo et al., 1998, Alizadeh and Goldfarb, 

2003).  Lobo et al. (1998) showed how SOCP can be applied to solve the robust 

convex optimization problems that the uncertainty in the data set is explicitly 

represented.  

The LP (2.1) can be also considered in a statistical framework. If we assume 
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that the parameter ia  follows a normal distribution, with mean and covariance 

( iia Σ,ˆ ), then the constraints can be expressed as:  

   ,][Pr β≥≤ i
T

i bxa     (2.7) 

where β  represents a (probability) confidence level. This analysis is discussed in 

Ben-Tal and Nemirovski (2000), Oustry et al. (1998), and Lobo et al. (1998). This 

robust LP can be expressed as the following SOCP problem: 

  
mibxxats

xc

ii
T

i

T

,,1,)(ˆ.

min

2

2/11 Λ=≤ΣΦ+ − β
  (2.8) 

where, β is a given confidence level, and Φ  is the cumulative distribution function 

(CDF).  

 

 

2.2 Robust Classification with Interval Data 

Ghaoui et al. (2003) considered uncertain data defined within a specific 

uncertainty interval defined as: 

{ }Σ+Χ≤≤Σ−Χ∈=Χ × ρρρ ZRZ Nn :)( ,    (2.9) 

where X , Σ  and ρ  describe an interval matrix model for a Nn×  data matrix ( n  
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dimensions, N  nominal data points). They considered N  hyper-rectangles of 

dimension n in the input space nR . The data of this model is a set of points 

)},{( ii yx (training data), where n
i Rx ∈  and 1±=iy . The objective of this approach 

is to find a classification hyperplane ,0=+ bxwT  where }0{−∈ nRw , b  is a 

scalar, and x  is a testing point that needs to be classified. The method of robust 

classification with interval data minimizes a worst-case loss function. For the hinge 

loss function, (Cristianini and Shawe-Taylor, 2000), they used the worst-case loss 

function. This is defined as: 

    

∑

∑

=
+

=
+Χ∈

++−=

+−=

N

i

T
ii

T
i

N

i
i

T
iZSVM

wbxwy

bzwybwL

1

1)(

))(1(

))(1(max),(

ρσ

ρ
   (2.10)        

where +⋅)(  represents the positive part of a scalar )( ⋅ .  

To illustrate the above approach, an example is discussed in chapter 4. It is a 

variation of the AND example for the robust LP problem with interval data. We also 

use the same example to illustrate the primal SVM problem. (Vapnik, 1998). 

 

2.3 Uncertain Convex Programs 

Calafiore and Campi (2005) considered the following uncertain convex 
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program: 

},0),(;min{: Δ∈≤
⊆∈

δδxfxcUCP T

RXx n
      (2.11) 

where Xx∈  is the optimization variable, X  is convex and closed, and the function 

f  is convex in x  for all Δ∈δ , where Δ  is a parameter set. 

A robust formulation (RCP) for UCP is as follows: 

Ω∈
∈

ΙXxts

xcRCP T

RX n

.

min:
    (2.12) 

where, Ι
Δ∈

≤=Ω
δ

δ }0),(:{ xfx  and φ≠ΩΙX    

Let x  be a candidate solution for UCP. The violation probability is defined as: 

}0),(:{)( >Δ∈= δδ xfPxV         (2.13) 

Let ]1,0[∈ε . We say that Xx∈  is an ε-level robust feasible solution if V(x) ≤ ε. 

In order to solve RCP, they proposed to collect N randomly chosen samples 

and solved the following optimization problem: 

Xx
Nixfts

xcSCP
i

T

Rx
N n

∈
=≤

∈

,,1,0),(.

min:
)( Λδ    (2.14) 

They addressed the question of how many samples (scenarios) need to be drawn in 

order to guarantee that the resulting randomized solution violates only a “small 
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portion” of the constraints. They showed that the required number of constraints N is 

as follows:  

1−≥
εβ
nN           (2.15) 

Specifically, they proved: 

Proposition (Calafiore and Campi, 2005)) 

Fix two real numbers ]1,0[∈ε  (level parameter) and ]1,0[∈β  (confidence 

parameter) and let 

1−≥
εβ
nN      

Then, with probability no smaller than β−1 , the randomized problem NSCP  returns 

an optimal solution Nx̂  which is ε-level robust feasible. They also showed the 

following theorem: 

 

Theorem 1 (Calafiore and Campi, 2005) 

Let Nx̂ be the (unique) solution to NSCP . Then 

1
)]ˆ([

+
≤

N
nxVE NPN      (2.16)        

where n  is the size of x , and Np  is the probability measure in the space NΔ of the 

multi-sample extraction ).(,),1( Nδδ Λ  Therefore, the average probability of 
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violation of Nx̂  is proportional to the dimensionality of the optimization variable x  

and goes to zero linearly with the number N  of sampled constraints.   

In order to illustrate the above approach for problem (2.3), we consider 4 data 

points {(-1, 0), (0, -1), (1, 0), (0, 1)} that define the rows of matrix A, where 

,]1100[ Tb = and ]11[ −−=c . The problem is given by the linear program: 

NibxAts

xc

i

T

Rx n

,,1,)(.

min

)( Λ=≤
∈

δ
   (2.17) 

 
 
Table 2. 1  Robust LP solution with different probability distributions of the 
data set. 

 Uni(0,1) N (0,1) Exp(1) Exp(0.3) Exp(0.5) N(0.5, 0.1) N(-0.5, 0.1)

X1 0.8830 1.0139 0.8917 0.9157 0.9015 0.8462 1.2236 

X2 0.8823 1.0141 0.8904 0.9153 0.9001 0.8462 1.2242 

 

We choose probabilistic levels 01.0,01.0 == βε . The number N of randomized 

constraints must be =−≥ 1
εβ
nN =−1

01.0*01.0
2 999,19 . The solutions (Table 2.1) 

depend on the probability distribution of the data set. 
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2.4 Robust Optimization with Constraints 

Robust optimization and probability constrained optimization are the main 

approaches related to the handling of the uncertainties. The probability constrained 

optimization problems consider probability distributions on the constraints with 

specific confidence levels. However, the probability constrained optimization problem, 

in general, is not easily solved, and the constraints of the problem cannot guarantee 

convexity in general.  

 Ben-Tal and Nemirovski (1996) and Oustry et al. (1998) suggested an SOCP 

problem formulation for the robust LP problem. Bhattacharyya (2004) and 

Bhattacharyya et al. (2004) developed a robust formulation with a normal distribution 

noisy model.  
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CHAPTER 3. Methodology 

 

3.1 Support Vector Machines (SVMs) 

Support vector machine (SVM) is a statistical learning system based on the 

concept of the maximum margin separation. SVM can handle nonlinear separation 

problems by mapping the input space into a high dimensional feature space where it 

constructs an optimal maximum margin hyperplane (Vapnik, 1995). More specifically, 

we can transform a nonlinear separation problem in the input space into a linear 

problem in the feature space by use of the kernel function. Then the nonlinear problem 

can be solved linearly in the feature space. SVM can handle complex nonlinear 

problems such as pattern recognition, regression, and feature extraction, with excellent 

generalization properties. 

The choice of an appropriate kernel function is a main issue for the SVM 

algorithms. Linear function, polynomial function, radial basis function (RBF), and 

sigmoid (tangent hyperbolic) function are well-known kernel functions frequently used 

by researchers, that satisfy Mercer’s Theorem (Vapnik, 1998 and Haykin, 1999). The 
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following kernel functions are frequently used in the SVM literature: 

• Linear function: ,),( j
T
iji xxxxK =  

• Polynomial function: d
j

T
iji pxxxxK )(),( += γ , 

• Radial Basis function: )exp(),(
2

jiji xxxxK −−= γ , 

• Sigmoid function: )tanh(),( pxxxxK j
T
iji += γ  

 where, d is degree, p is offset, and γ  is a scale parameter. 

If the kernel function is selected properly, the SVM can provide a solution 

with good generalization properties. Note that it is not necessary to compute the 

feature map. This is expressed implicitly through the kernel function.  Therefore, the 

kernel method easily transforms nonlinear problems into linear problems. As a result, 

linearly non-separable data in the input space become linearly separable in the feature 

space.   

 

3.1.1 Linearly Separable Case 

The use of the SVM model is considered in the case of data points that can be 

linearly separated. A set S of points n
i Rx ∈  is assumed, where each ix  belongs to 

either one of two different classes defined by a label }1,1{−∈iy . The objective is to 
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find an optimal hyperplane that divides a set S leaving all the points of the same class 

on the same side while maximizing the minimum distance between the two classes and 

the hyperplane (Cristianini and Shawe-Taylor, 2000 and Vapnik, 1995). Figure 3.1 

shows a linearly separable optimal hyperplane between two classes. 

 
Figure 3. 1  Linearly separable optimal hyperplane. Maximize distance between 

two parallel supporting planes ( 1±=+ bxwT ). The distance (margin) between the 

two classes is 
w
2

=r . 

Definition 1. The set S  is linearly separable if there exist a nRw∈ and Rb∈ such 

that 

        (3.1) 
1 if        1

1 if          1

−=−≤+

+=≥+

ii
T

ii
T

ybxw

ybxw
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The SVM, or maximal margin classifier formulation, with l  data points in the n -

dimensional space can be written in primal form as follows: 

2

, 2
1min w

bw
        (3.2) 

libxwyts i
T

i ,,1,1)(. Λ=≥+   (3.3) 

Since 2w  is convex, w can be attained by the use of Lagrangian function: 

∑
=

−+⋅−=
l

i
i

T
ii bxwywbwL

1

2 ]1)([
2
1),,( αα .       (3.4) 

To find the saddle point of the Lagrangian function, one has to minimize equation 

(3.4) over w and b and maximize it with respect to the Lagrange multipliers 0>iα . 

The optimality condition must satisfy the following conditions: 

             0),,(
1

==
∂
∂ ∑

=
i

l

i
i yabwL

b
α          (3.5) 

0),,(
1

=−=
∂
∂ ∑

=
ii

l

i
i xywbwL

w
αα       (3.6) 

By substituting equations (3.5) and (3.6) into (3.4), the primal optimization problem 

becomes:  

 ∑ ∑∑
= = =

>⋅<−=
l

i

l

i

l

j
jijijii xxyyW

1 1 12
1)(max αααα      (3.7) 

with .,...,1,0 lii =≥α Under constraint (3.5) this problem can be solved by using 

quadratic programming (Bazaraa and Shetty, 1979). The optimal separating 
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hyperplane will be determined by w and b. From equation (3.6) and Kuhn-Tucker 

conditions, we have: 

   ii

l

i
i xyw ∑

=

=
1
α                (3.8) 

   0]1)([ =−+⋅⋅ bxwy iiiα        (3.9) 

Note that the Lagrange multipliers iα  are always non-negative. The data points that 

correspond to 0>iα  play an important role in the determination of the optimal 

separating hyperplane. The weight vector w is determined by those points, which are 

called “support vectors”. The decision function of the primal problem can be written 

as: 

.)()(
1
∑
=

+>⋅<=
l

i
iii bxxysignxf α     (3.10) 

   

3.1.2 Linearly Non-separable Case (Soft Margin Optimal 

Hyperplane) 

If the data are not linearly separable, then constraints (3.3) might not be 

feasible. In order to compensate for the misclassification error, Vapnik (1995) 

introduced non-negative slack variables it  to address the problem of infeasibilities 
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and the cost regularization parameter C as a weight for misclassification errors. 

Therefore, in addition to maximizing the margin we need to minimize the sum of 

misclassification errors, that is ∑
=

l

i
it

1
.          

The constraints of (3.3) can be modified as in equation (3.12), and the resulting 

optimization problem is as follows: 

 2

1

1min     || ||
2

l

i
i

w C t
=

+ ∑            (3.11) 

lit
tbxwyts

i

ii
T

i

,,1,0
1)(.
Λ=≥
−≥+

    (3.12) 

Figure 3.2 illustrates the linearly non-separable (soft margin) optimal hyperplane, 

which  

 

Figure 3. 2  Linearly non-separable optimal hyperplane 
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has misclassified data points. The parameter C in equation (3.11) is provided by the 

user and controls the trade off between minimizing the training set error and 

maximizing the margin.  

As shown in (3.4), the above problem can be transformed into the unconstrained 

problem by introducing the following Lagrangian function (Vapnik, 1998),   

∑ ∑∑
= ==

−+−+⋅−+=Φ
l

i

l

i
iiiiii

l

i
i ttbxwyCwbw

1 11

2 ]1)([)(||||
2
1),,,,( βαξξβα  (3.13) 

where α , β  are the Lagrange multipliers. The optimality condition must satisfy the 

following equations: 

   0
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=−=
∂
Φ∂ ∑

=

l

i
iii yw

w
xα         (3.14) 

   0
1

==
∂
Φ∂ ∑

=

l

i
ii y

b
α         (3.15) 

Cii =+=
∂
Φ∂ βα
ξ

        (3.16) 

From the above conditions, we derive: 

∑
=

=
l

i
iii yw

1
xα      (3.17) 

  0
1

=∑
=

l

i
ii yα

     (3.18) 

Substituting (3.17) and (3.18) into (3.13), the dual form of the problems becomes: 



 22

.0.
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α
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  (3.19) 

The upper bound of iα  is C, which is the only difference from the linearly separable 

case. The soft margin parameter C also affects the slack variable it . When iα  is less 

than C, the slack variable is it  must be zero by Karush-Kuhn-Tucker (KKT) 

complementary slackness condition.  

 

3.1.3 Kernel Functions for Nonlinear Support Vector Machines 

The idea of a kernel method is based on mapping a data set from input space 

into feature space. All we need is the inner product in the feature space. Suppose we 

map the data into some higher dimensional feature space H, through the mapping ϕ . 

By replacing the inner product with a kernel function K , we can perform a non-linear 

mapping into a high dimensional feature space. Then the optimization problem of 

Equation (3.7) can be transformed as follows: 

∑ ∑∑
= = =

⋅−=
l

i

l

i

l

j
jijijii xxKyyW

1 1 1
)(

2
1)( αααα ,  (3.20) 

where the kernel ),( ji xxK  = )()( ji xx ϕϕ ⋅  = >⋅< ji xx . 

 



 23

 

  Figure 3. 3  Illustration of separating hyperplane and maximal margin 
hyperplane. 

 

Figure 3.3 (b) illustrates the SVM solution as the best line of separation. The best 

margin is called maximal margin (Cortes et. al. 1995). From equation (3.13), (3.17), 

and (3.18), we can transform the primal optimization formulation (3.11) into the 

generalized kernel formulation as follows: 

li
tbyK

ts

tCK

i

iii

l

i
i

T

tb

,,1,0
1~

.

~
2
1min

1,,

Λ=≥
−≥+

+ ∑
=

α
α

αα
α

       (3.21) 

where ),(~
jijiij xxKyyK =  and iK  is the i-th row of K~ . 

Next we consider sensitivity analysis and robust optimization techniques applied to the 

SVMs’ maximal margin classifier. 
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3.2 Sensitivity Analysis and Robust Optimization 

Sensitivity analysis and robust optimization methodology are slightly different 

concepts with respect to data perturbations. Sensitivity analysis is focused on how 

much the optimal solution to a perturbed problem can differ from the one of the 

nominal problems. However, using the robust optimization methodology we are 

interested in finding a feasible solution to the nominal problem that satisfies the 

constraints of the perturbed problem for every realization of a bounded perturbation 

(Ben-Tal and Nemirovski, 2000). A lot of research has dealt with data perturbations 

for the optimization problem. In this research we also deal with perturbations of 

parameters of the SVM model extending previous research by Trafalis and Alwazzi 

(2003), and Trafalis and Gilbert (2006). Now we consider three cases of perturbation 

for data and parameters respectively. Specifically perturbations of input data, 

perturbation of parameters and perturbation of both data and parameters, are 

considered. 

 



 25

3.2.1 SVM for Classification 

In this chapter we build up our models. We begin with the perturbation of 

input data for the SVM classification problem, and then investigate how to handle 

perturbation of parameters and finally we develop a SVM model where both 

parameters and data are perturbed. Extension of our models for the regression problem 

is also discussed. 

  

Case 1: Perturbation of Data 

The first case of perturbation of data is to make a slight change ixΔ  in the 

input data ( ixxx Δ+→ ). In the real world, the noise of measurements always exists 

due to several reasons such as experimental errors, and missing values. It is assumed 

that the perturbations are bounded according to our prior information. The constraint 

of the primal formulation (3.2) becomes: 

         [( ( ) ] 1T
i i i iy w x x b t+ Δ + ≥ −    

      ⇒ [( ] 1T T
i i i iy w x w x b t+ Δ + ≥ −    (3.22) 

We know that constraint (3.22) holds for ixΔ  bounded ( η≤Δ ix ) in a robust way if 

and only if the minimum of the left hand side satisfies the following:  
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min [( ] 1
i

T T
i i i ix

y w x w x b t
ηΔ ≤

+ Δ + ≥ −   (3.23) 

Then (3.23) becomes: 

 ( ) min 1
i

T T
i i i i ix

y w x b y w x t
ηΔ ≤

+ + Δ ≥ −   (3.24)  

By Cauchy-Schwarz inequality, we have: 

wxwyxwy iii
T

i ⋅⋅≤Δ⋅⋅≤Δ η1 . 

Therefore, i
T

i xwy Δ  is bounded as follows: 

wxwyw i
T

i ηη ≤Δ≤−  .   (3.25) 

Thus the minimum of i
T

i xwy Δ  is wη− . Now the primal problem becomes: 
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iw b i
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w C t

s t y w x b w t
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η
=

+

+ − ≥ −

=

∑

L

  (3.26) 

This problem coincides with the original problem (3.2) when 0=η  and is a Second 

Order Cone Programming (SOCP) problem (Lobo et al., 1998) which can be solved by 

a primal-dual interior point method (Wright, 1997).  

 

Case 2: Perturbation of Parameters 

In the case 2 of perturbation of parameters, we consider a change of the 
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weight vector wΔ  for problem (3.2) ( www Δ+→ ). The primal constraint of (3.22) 

becomes:  

[( ) ] 1T
i i iy w w x b t+ Δ + ≥ −  

        ⇒ [ ] 1T T
i i i iy w x w x b t+ Δ + ≥ −         (3.27) 

Note that w  is robust feasible with respect to bounded perturbations of the vector w  

)( η≤Δw if and only if for every li ,,1Λ=  

min [ ] 1T T
i i i iw

y w x w x b t
ηΔ ≤

+ Δ + ≥ − .  (3.28) 

Then (3.28) becomes, 

( ) min 1T T
i i i i iw

y w x b y w x t
ηΔ ≤

+ + Δ ≥ −   (3.29) 

By Cauchy-Schwarz inequality, again we have:  

.1 Rxwyxwy iii
T

i ⋅⋅≤⋅Δ⋅≤Δ η  

Note that we assume that Rxi ≤ . Then i
T

i xwy Δ  is bounded as follows: 

RxwyR i
T

i ηη ≤Δ≤−     (3.30) 

Therefore, the minimum of i
T

i xwy Δ  is equivalent to Rη− . 

Hence the primal problem becomes, 
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   (3.31) 

 

Case 3: Perturbation of Input Data and Parameters 

In this case, we consider perturbation of data and parameters simultaneously 

( ixxx Δ+→ , www Δ+→ ). The constraint of (3.2) becomes, 

[(( ) ( ) ] 1T
i i i iy w w x x b t+ Δ + Δ + ≥ −      

  ⇒ [( ( ) ( ) ] 1T T T T
i i i i i iy w x w x w x w x b t+ Δ + Δ + Δ Δ + ≥ −   

 ⇒   [( ) ( ) ( )] 1T T T T
i i i i i iy w x b w x w x w x t+ + Δ + Δ + Δ Δ ≥ − .  (3.32) 

We know that the constraint of (3.32) holds for xΔ  and wΔ  if and only if: 

  
1 2,

min [( ) ( ) ( )] 1
i

T T T T
i i i i i ix w

y w x b w x w x w x t
η ηΔ ≤ Δ ≤

+ + Δ + Δ + Δ Δ ≥ −   

⇒  
1 2,

( ) min [ ( ) ( )] 1
i

T T T T
i i i i i i ix w

y w x b y w x w x w x t
η ηΔ ≤ Δ ≤

+ + Δ + Δ + Δ Δ ≥ −  

By Cauchy-Schwarz inequality, we have:  

RxwyR

wxwyw
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ηη

ηη

≤Δ≤−

≤Δ≤−
,    (3.33)  

where we assume Rxi ≤ . Similarly by Cauchy-Schwarz, we have: 

211)()( ηη ⋅⋅≤Δ⋅Δ⋅≤ΔΔ iii
T

i xwyxwy . 
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Hence, 

2121

)(])([

ηηηη ++≤

ΔΔ+Δ+Δ≤ΔΔ+Δ+Δ

Rw

xwxwxwxwxwxwy i
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i
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i      (3.34) 

Therefore,  

])([min
21 , i

T
i

T
i

T
iwx

xwxwxwy
i

ΔΔ+Δ+Δ
≤Δ≤Δ ηη

 = 2121 ηηηη −−− Rw     (3.35) 

Finally, by substituting the above result in problem (3.29), the maximal margin 

classifier problem considering uncertainty will be as follows: 
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1 2 1 2
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. ( ) 1
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iw b i

T
i i i

w C t
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i l

η η ηη
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=

∑
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    (3.36) 

 

3.2.2 SVM for Regression 

Since Vapnik [27] introduced the ε -insensitive loss function, the support 

vector regression (SVR) problem has been generalized for function approximation and 

forecast (Schölkopf and Smola, 2002). Let’s consider a set of training 

data )},(),....,,{( 11 ll yxyx , where each n
i Rx ∈  represents a point in the input space of 

the sample set and has a corresponding target value Ryi ∈ . In the regression problem, 
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the iy  are continuous real-valued outputs. The objective of the regression problem is 

to find a function from the training data that predicts future values. The support vector 

regression formulation with an ε -insensitive loss function is as follows: 

,,        
,        

s.t     

||||
2
1     min 2

ε
ε

≤−+><
≤−><−

ii

ii

ybxw
bxwy

w

    (3.37) 

and ε -insensitive loss function is defined as: 

  
⎪⎩
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ε

ε

yxf

yxf
yLoss . 

The ε -insensitive function allows at most ε  deviation between the target and actual 

values. That is, if we have ε  precision, the problem is feasible. However, to allow 

some errors, the soft margin loss function needs to be considered with slack variables. 

Therefore, problem (3.37) becomes:  
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ε

ε    (3.38) 

Minimizing the regularization term 2w  coincides with the flatness of the 
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function, and the positive real number C plays a role of controlling the amount of 

penalization for data points lying outside the ε  tube. According to the formulation 

(3.38) and Figure 3.4, one can see the properties of the loss function: The ε  tube is 

fitted to the data, any errors smaller than ε  are ignored, and the data points lying 

outside of the tube are also penalized. We also introduce slack variables to compute 

the error for underestimating and overestimating the function.  

Using the Lagrangian function and optimality conditions, the decision function is 

obtained as: 

 ),()()(
1

*∑
=

+−=
l

i
iii bxxKxf λλ    (3.39) 

 

 
 Figure 3. 4  Theε - insensitive loss function for support vector regression.  

(Schölkopf and Smola, 2002) 
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where, ),( ixxK  is defined by the kernel function as discussed in chapter 3, and 

*, ii λλ  are Lagrange multipliers (Vapnik, 1995). Now we deal with the three cases that 

are discussed in the SVC problem. 

 

Case 1: Perturbation of Data 

The soft margin formulation of the regression problem is as follows 

(Cristianini and Shawe-Taylor, 2000): 
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s.t

)(||||
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T
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zz
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zbxwy

zzCw

ε

ε    (3.40) 

As shown in the classification cases, we consider the first case of perturbation of data 

by making a slight change ixΔ  in the input data ( ixxx Δ+→ ). It is assumed that the 

perturbations are bounded according to our prior information. The first constraint of 

the primal formulation (3.40) becomes: 
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   (3.41) 

We know that constraint (3.41) holds for ixΔ  ( η≤Δ ix ) in a robust way if and only 

if the minimum of the left hand side satisfies the following:  
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zxwxwby
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−−≥Δ+++−
≤Δ

ε
η

min    (3.42) 

Then (3.42) becomes: 

ii
T

xi
T

i zxwxwby
i

−−≥Δ+++−
≤Δ

ε
η

min    (3.43)  

By Cauchy-Schwarz inequality, we have wxwxw ii
T ⋅≤Δ⋅⋅≤Δ η   

Therefore, i
T xw Δ  is bounded as follows: 

wxww i
T ηη ≤Δ≤−     (3.44) 

Thus, the minimum of i
T xw Δ  is equivalent to wη− . Then constraint (3.41) 

becomes: 
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The second constraint of the primal formulation (3.40) becomes: 
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By maximizing i
T xw Δ  and using of (3.44), the constraint (3.46) becomes: 
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   (3.47) 

By (3.45) and (3.47), the primal problem becomes: 
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Case 2: Perturbation of Parameters 

In case 2 of perturbation of parameters, we consider a change of the weight 

vector wΔ  for problem (3.38) ( www Δ+→ ). The first constraint of (3.38) becomes:  
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Note that w  is robust feasible with respect to bounded perturbations of the vector w  

)( η≤Δw , if and only if for every li ,,1Λ=  
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T

i
T

iw
zxwxwby −−≥Δ+++−

≤Δ
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η
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(3.50) 

Then (3.50) becomes: 
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min          (3.51) 

By Cauchy-Schwarz inequality, again we have: 

 .Rxwxw ii
T ⋅≤⋅Δ≤Δ η     (3.52) 

Note we assume that Rxi ≤ . Then i
T xwΔ  is bounded as follows: 

RxwR i
T ηη ≤Δ≤−     (3.53) 

Therefore, the minimum value of i
T xwΔ  is equal to Rη− . Then constraint (3.51) 

becomes: 
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The second constraint of (3.38) becomes:  
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By maximizing i
T xwΔ  and using of (3.52), the constraint (3.55) becomes: 
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By (3.54) and (3.56), hence the primal problem becomes: 
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Case 3: Perturbation of Input Data and Parameter 

In this case, we consider perturbation of data and parameters simultaneously 

( ixxx Δ+→ , www Δ+→ ). 

The first constraint of (3.38) becomes: 
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We know that the constraint of (3.58) holds for xΔ  and wΔ , if and only if 
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By Cauchy-Schwarz inequality, we have:  

RxwR

wxww

i
T

i
T

22

11

ηη

ηη

≤Δ≤−

≤Δ≤−
,   (3.60)  
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where we assume Rxi ≤ . 

Similarly by Cauchy-Schwarz, we have 21)()( ηη ⋅≤Δ⋅Δ≤ΔΔ ii
T xwxw . 

Hence, 
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Therefore,  
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The minimum value of )()( i
T

i
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i
T xwxwxw ΔΔ+Δ+Δ  is equivalent to Rw 21 ηη −−  

21ηη− . Then constraint (3.55) becomes: 
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The second constraint of (3.38) becomes: 
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By maximizing )()( i
T

i
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i
T xwxwxw ΔΔ+Δ+Δ  and the result of (3.61), the constraint 

(3.64) becomes: 
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Finally by (3.63) and (3.65), the maximal margin classifier problem considering 
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uncertainty will be as follows: 
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CHAPTER 4. Applications and Numerical 

Examples 

 

4.1 Computational Results for Sensitivity and Robust 

Analysis applied to SVC 

 To illustrate the analysis of 3.2.1, we consider two well known linearly 

separable and nonlinearly separable examples to the support vector classification 

(SVC) problem. We assume that we have 4 input data points (1, 1), (1, -1), (-1, 1) and 

(-1, -1) with labels +1 and -1 respectively. All the experiments for this example have 

been performed by MATLAB and TOMLAB/SNOPT toolbox.  

  Table 4. 1 Relations between input and output of AND / XOR Problem. 

X1 X2 AND  XOR  

 1 1  1  1 

 1 -1 -1 -1 

-1  1 -1 -1 

-1 -1 -1  1 
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4.1.1 Linearly Separable Case (AND Problem) 

Case 1: Perturbation of Data  

Formulation (3.26) is the SVC problem with respect to the perturbation of 

input data. By changing the data perturbations we are able to inspect the sensitivity of 

the classification problem. We can solve the AND classification problem with 

different values of η  as showing in Table 4.2. As expected, the results have been 

quite interesting. First, the separating line does not change even if the uncertainty 

parameter η  is changed. In the precise case (η =0), for example, the separating line 

becomes 

 ( ) 011)11(0 21
2
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⎛
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⎝

⎛
⇒=+ xx

x
x

b
x
x

wwbxwT . 

Table 4.2 shows the output of the support vector classification for the AND problem 

using perturbations of data by varying the uncertainty parameter η . Note that the 

separating line is exactly the same line as shown in Figure 4.1 for several values of η . 

The other interesting outcome is related to the margin of separation. Note that if we 

increase the uncertainty level, then the margin of separation becomes smaller. Observe 

that the maximum perturbation value of η  for which the separation line does not 
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change is 2/2 . This says that the SVM solution is robust. 

 

 Table 4. 2  SVC Output using perturbations of input data for AND problem 

 

 
Figure 4. 1  Illustration of the hyperplane and margin using the AND problem 

 

Eta (η ) 1w  2w  b margin 

0 1.0000 1.0000 -1.0000 0.7071 

0.1 1.1647 1.1647 - 1.1647 0.6552 

0.2 1.3944 1.3944 - 1.3944 0.5988 

0.3 1.7369 1.7369 - 1.7369 0.5365 

0.4 2.3025 2.3025 - 2.3025 0.4660 
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Case 2: Perturbation of Parameter  

Equation (3.31) shows a primal formulation for the SVC problem with 

perturbations of the weight parameter w . In this case, we assume the data are bounded 

by the maximum radius R of length 1. The separation line is not changed similar to 

case 1. If the uncertainty parameter η  becomes 0, the problem represents the precise 

case and the result is as in Figure 4.1. If we increase the uncertainty parameter η , the 

separating margin is decreasing. It is similar to the result of case 1. Case 1 

(perturbation of input), however, is more sensitive than case 2 (perturbation of 

parameter).  

 

Table 4. 3  SVC Output using perturbation of parameter for the AND problem 

Eta (η ) 1w  2w  b margin 

0 1.0000 1.0000 -1.0000 0.7071 

0.1 1.1000 1.1000 -1.1000 0.6428 

0.2 1.2000 1.2000 -1.2000 0.5893 

0.3 1.3000 1.3000 -1.3000 0.5439 

0.6 1.6000 1.6000 -1.6000 0.4419 

1.0 2.0000 2.0000 -2.0000 0.3536 
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In addition, the result of case 2 is also influenced by the radius of the sphere 

bounding the data. If the maximum radius R decreases, the separating margin also will 

be decreased. Table 4.3 shows the output of the support vector classification problem 

using perturbations of parameters by varying the uncertainty parameterη . 

 

Case 3: Perturbation of Parameters and Data 

In case 3, we examine the perturbation of parameter w  and the data at the 

same time. Here, we use two bounded values 1η  and 2η  for each parameter and data. 

The formulation of case 3 shows more complicated constraints compared to case 2 and 

case 3. This is mostly due to the fact that case 3 is created with a combination of 

parameters and data unlike case 1 and case 2. Table 4.4 shows the output of the 

support vector classification problem using perturbations of data and parameters 

respectively. Here we experiment with a fixed 1η  and varying 2η  for several values 

of these parameters. If we consider 2η =0, the problem becomes case 1. On the other 

hand, it will be case 2 when 1η  becomes 0.   

To compare the impact of the uncertainty parameter, we experiment with 
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several value of 1η , 2η  such as 1.01 =η , 3.02 =η  and 3.01 =η , 1.02 =η  as 

shown in Table 3.4. In this table, we observe that the second case ( 3.01 =η , 1.02 =η ) 

has a smaller margin than in the first case. This means that the uncertainty parameter 

of 1η  input has more sensitivity effects than the uncertainty parameter of 2η . This 

table also demonstrates the complexity of the combined affects of the elements. 

 

Table 4. 4  SVC Output using perturbation of data and parameter for AND 

problem. 

Eta 1( 1η ) Eta 2( 2η ) 1w  2w  b margin 

0 1.0000 1.0000 -1.0000 0.7071 

0.1 1.1000 1.1000 -1.1000 0.6428 

0.3 1.3000 1.3000 - 1.3000 0.5439 
0 

0.5 1.5000 1.5000 -1.5000 0.4714 

0 1.1647 1.1647 -1.1647 0.6071 

0.1 1.2928 1.2928 -1.2928 0.5469 

0.3 1.5491 1.5491 -1.5491 0.4565 
0.1 

0.5 1.8053 1.8053 -1.8053 0.3917 

0 1.7369 1.7369 -1.7369 0.4071 

0.1 1.9627 1.9627 -1.9627 0.3603 0.3 

0.5 2.8659 2.8659 -2.8659 0.2467 
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4.1.2 Linearly Non-separable Case (Exclusive OR (XOR) 

Problem) 

In the previous Chapter the support vector classification (SVC) problem was 

applied to the linearly separable case. Here we use a polynomial kernel function with 

degree 2 to extend our approach on the nonlinearly separable case. The polynomial 

kernel function is formulated as 2)1(),( += j
T

iji xxxxK . Using the data in Table 4.1, 

the kernel matrix can be computed as follows: 
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In section 3.1.2 we have derived a nonlinearly separable problem formulation. 

Perturbation of input data (Case 1) is illustrated for the XOR problem. Equation (3.26) 

can be handled by kernelization and it is also known that 

∑
=

=
l

i
iii xyw

1
)(ϕα ,    (4.2) 

where iα  is non-negative Lagrange multiplier and iy  is the label. Now substitute 

equation (4.2) to problem (3.26), then the objective function of the problem becomes: 
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Using equation (4.3), the norm of w can be represented by as follows:  

αα Kw T ~=      (4.4) 

By substituting of (4.3) and (4.4) to equation (3.26), the robust formulation will be as 

follows: 
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The formulation (4.5) is a constrained nonlinear optimization problem. The solutions 

of the XOR problem with different uncertainty parameters η  are summarized in 

Table 4.5. The experiment increases the uncertainty parameter η  from 0 to a value 

that gives infeasibility. From the results, we know that we can obtain the separating 

solution when the level of uncertainty does not exceed 1.42.  

As expected, if we increase the uncertainty parameter η , the value of iα  is 

increased and the problem is still separable. In the precise case ( 0=η ), we obtain the 
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following results: 

( )125.0125.0125.0125.0=α    (4.6) 

We can compute the discriminant function, which is given by: 

 21

4
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i
iii =+= ∑
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α    (4.7) 

It is well known that the margin of the precise case is 2 . That means we can make 

perturbation of input data up to 2 . Table 4.5 explains the relationship between the 

margin and uncertainty level.  

 

Table 4. 5  SVC Output using perturbations of input data for XOR problem 

Eta (η ) 1α  2α  3α  4α  b 

0 0.1250 0.1250 0.1250 0.1250 0.0000 

0.3 0.1587 0.1587 0.1587 0.1587 0.0000 

0.6 0.2171 0.2171 0.2171 0.2171 0.0000 

0.9 0.3438 0.3438 0.3438 0.3438 0.0000 

1.2 0.8252 0.8252 0.8252 0.8252 0.0000 

1.4 12.4372 12.4372 12.4372 12.4372 0.0000 

1.41 41.9542 41.9542 41.9542 41.9542 0.0000 

1.42 No feasible solution 
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4.1.3 Implementation on Real Data 

From the AND and XOR problem examples, we obtain the fact that the 

uncertainty of input has more sensitivity effects than the uncertainty of parameter. To 

carry out the implementation, the well known Breast Cancer Wisconsin data is 

considered (Mangasarian and Wolberg), where the two classes (malignant and benign) 

could be decided from 9 attributes of the patients (683 data points are used). For the 

experiment, 50% of the data points are used for training and the rest are placed in the 

testing data set.  

The experiments are controlled by varying the perturbation parameter η  for 

the three cases. The margin of the experiments is summarized in Table 4.6 and Table 

4.7. Table 4.6 and Figure 4.2 show how much the variation of the input data and 

parameter can influence the output of the learning machine. We also provide Table 4.7, 

for case 3, which has considered the perturbation of both input and parameters. We 

found that if the perturbation of input or parameter is increased, the margin between 

the two classes decreases.  

 In order to visualize the sensitivity of the margin between Case 1 and Case 2, 
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we provide a comparison of margin sensitivity in Figure 4.2 and Figure 4.3. The 

margin of Case 1 rapidly decreases as the perturbation parameter η  increases, but the 

margin of Case 2 gradually decreases compared to Case 1. In Figure 4.3 the gap of 

margin is slightly decreased as the parameters’ perturbation level decreased.  

The margin is decreased with both perturbations of data and parameters and it is 

increased when one of the perturbations is not affected: This shows the largest margin 

when the perturbation of parameters is zero. Therefore, the real data experiment also 

shows a similar result as in the simple cases experiments. 

 

Comparison of the sensitivity of the margin between 
Case 1 and Case 2
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Figure 4. 2  Comparison of the margin between the two cases. Case 1 looks more 

sensitive than Case 2. 

Table 4. 6  Comparison of SVC Output using perturbation of data (Case 1) and 
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parameter (Case 2) for Breast Cancer Wisconsin data. 

eta 0 0.1 0.3 0.5 0.7 0.9 1 1.5 2 

Case 1 2.4808 2.3808 2.1808 1.9808 1.7808 1.5808 1.4808 0.9808 0.3075

Case 2 2.4808 2.2553 1.9083 1.6539 1.4593 1.3057 1.2404 0.9923 0.8269

 
 
Table 4. 7  SVC Output using perturbation of data and parameter for Breast 
Cancer Wisconsin data. 

 

eta 1( 1η ) eta 2( 2η ) margin eta 1( 1η ) eta 2( 2η ) margin 

0 2.4808 0 1.9808 

0.1 2.2553 0.1 1.8007 

0.5 1.6539 0.5 1.3205 
0 

1.0 1.2404 

0.5 

1.0 0.9904 

0 2.3808 0 1.4808 

0.1 2.1644 0.1 1.3462 

0.5 1.5872 0.5 0.9872 
0.1 

1.0 1.1904 

1.0 

1.0 0.7404 
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Figure 4. 3  Comparison of the margin between the perturbation of input data 
and parameters.  

 

4.2 Computational Results for Sensitivity and Robust 

Analysis Applied to SVR 

4.2.1 Traffic Data Analysis  

From the basic concepts of perturbation of input data and parameters, robust 

SVR is applied to real time traffic data. The traffic data are provided by the Freeway 

Performance Measurement System (PeMS) based on varying speeds recorded by 

traffic sensors. To predict exact vehicle speeds at the specific spot, the data were 

Comparison of the margin with perturbation of input data 
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collected in California by sensor 761552 during the year 2002. For the purpose of 

predicting regular weekday vehicle speeds, we only used Monday data except holiday 

and some special event days.  

 

 
  Figure 4. 4  Freeway vehicle speed patterns during Monday 2002. There shows 

traffic congestion between 3 pm and 8 pm. 

 

We used data from the first 20 weeks for the training set and used the last 10 

weeks as the testing set. The speed measurements were taken at 10 minutes intervals 

for the whole day. Figure 4.3 shows vehicle speeds on a daily basis for all Mondays 

during 2002. In the experiment, polynomial kernel function with degree 2 
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outperformed RBF and sigmoid kernel functions, even if RBF and sigmoid kernel 

function also performed well. The SVR experiments were performed in the MATLAB 

and TOMLAB/SNOPT toolbox (Holmström, 1999).  

 

Case 1: Perturbation of Input Data 

In the previous chapter the support vector regression (SVR) problem with 

perturbed data and parameters was constructed.  Problem (3.48) can be expressed as a 

nonlinear regression problem by means of the kernel method. When we map the data, 

the weight vector can be represented as follows: 

∑
=

=
l

i
ii xw

1

)(ϕα      (4.8) 

The inner product can be replaced as kernel function, such as 

),( ixxK = >< )(),( 21 xx ϕϕ . Then the weight vector w can be represented as kernel 

function, 

.αα Kw T=      (4.9) 

By substituting (4.8), (4.9) into the robust SVR problem, we have the following 

formulation: 



 54

.0,          

          

 t      s.

)(
2
1     min

*
i

*

1

*

≥

+≤+−+

+≤+−−

++ ∑
=

i

i
T

ii

i
T

ii

l

i
ii

T

zz

zKybK

zKbKy

zzCK

εααηα

εααηα

αα

   (4.10) 

Problem (4.10) is a constrained nonlinear optimization problem.  

To investigate the behavior of the SVR solution with perturbed data, we 

varied the uncertainty parameter η  with different levels from 0 to 5. Figure 4.3 

illustrates the vehicle speed with time-varying condition. Figure 4.4 and Table 4.8 

show the fact that the relative absolute error (RAE) increases as the perturbation level 

increased. From the results, we know that we can obtain the accurate solution when the 

level of uncertainty decreased.  

 
 

Table 4. 8  Relative Absolute Error (RAE) results for the five different data 

perturbation levels. 

0=η  1=η  2=η  3=η  4=η  5=η  

0.066093 0.080778 0.140899 0.19447 0.25047 0.284357 
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   Figure 4. 5  Relative Absolute Error (RAE) with different perturbation level 
η . It is natural result that the RAE increases as η  increased. 

 
 

Case 2: Perturbation of Parameter 

Similar to the previous case, problem (3.57) can be reformulated as follows; 
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    (4.11) 

In the robust SVR formulation (4.11), we assume that the radius of the data is known 

by prior information. The experiments are controlled by varying the perturbation 
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parameter η  and the radius of data R.  

 

Figure 4. 6  Comparison of RAE. Three cases of experiment for different 
bounded radius of data are illustrated. A large number of η  and R decrease the 
prediction accuracy. 

 

Table 4. 9  Relative Absolute Error (RAE) results for the five different 

parameter perturbation levels.  

 0=η  1=η  2=η  3=η  4=η  5=η  

R=1 0.066093 0.069518 0.074953 0.094155 0.116601 0.119611

R=2 0.066093 0.072552 0.084728 0.101773 0.120689 0.124552

R=3 0.066093 0.075553 0.088393 0.114934 0.127619 0.134553

RAE comparison for perturbation of parameters 
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Figure 4.6 and Table 4.9 display three cases of bounded data radius (R=1, 2, 3) for the 

different parameters’ perturbation level. The RAE increased when the perturbation 

level and radius of data are increased. The slopes of the errors, however, are not 

steeper than case 1. The gap of the errors among the three cases of R is relatively 

stable as the perturbation level increased.  

 

Case 3: Perturbation of Input Data and Parameters 

Now we have a formulation considering both the perturbation of input data 

and parameters.  
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  (4.12) 

The uncertainty levels 1η  and 2η  are related to the input data perturbation and 

parameters’ perturbation, respectively. Figure 4.6 and Figure 4.7 illustrate relations 

between the different perturbation levels of input data and parameters.  

The two figures show 36 combinations (6 data perturbation levels and 6 parameters’ 

perturbation levels) between the two different uncertainty levels 1η  and 2η  (see 
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Table 4.10). Figure 4.6 shows the changes of error based on the input data perturbation 

level 1η , on the other hand, Figure 4.7 illustrates the changes of error based on the 

parameters’ perturbation level 2η . Figure 4.6 and Figure 4.7 show absolutely different 

shapes and slopes.  

 
Table 4.10  Combinational errors between the perturbation of input data and 
parameters. 

 02 =η  12 =η  22 =η  32 =η  42 =η  52 =η  

01 =η  0.066093 0.069518 0.074953 0.094155 0.116601 0.119611

11 =η  0.080778 0.082114 0.093068 0.112414 0.120808 0.122936

01 =η  0.140899 0.124219 0.124301 0.137284 0.123594 0.137069

01 =η  0.19447 0.190648 0.168811 0.164644 0.162148 0.173636

01 =η  0.25047 0.21064 0.21064 0.184649 0.186852 0.194428

01 =η  0.284357 0.281115 0.247831 0.195007 0.210073 0.206718

 

 From Figure 4.6 we find a pattern that the RAE increases as the input 

perturbation level increased. It is similar to Figure 4.4, which just considered 

perturbation of input data. Therefore, it is found that the perturbation of input data 

affects the solutions of the optimization problem more, compared with the perturbation 

of parameters.  

 From Figure 4.7 it is difficult to conclude that a pattern exists. The RAE 
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increases when the data perturbation level 1η  is small ( 1η =0 and 1), however, it 

decreases when the data perturbation level 1η  is large ( 1η =4 and 5). The error gap 

also decreases when the parameters’ perturbation level 2η  increases. The error gap is 

extremely large when the parameters’ perturbation level 2η  is zero. Therefore, we 

conclude that the perturbation of input data is more significant than the perturbation of 

parameters to the solution. This observation is the same as in the SVC problem as 

shown in the previous section. 

 
Figure 4. 7 Compare RAE for parameter perturbation based on the input data 
perturbation level 1η . 
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Figure 4. 8 Compare RAE for input data perturbation based on the parameter 
perturbation level 2η  
 
 

By examining the three cases of sensitivity analysis, we found facts that: 

• Perturbation of input is more sensitive than the perturbation of parameters 

• However, if we consider the perturbation of parameters at the same time, 

the effects of perturbation of input is decreased by the counter effect 

between the two perturbations. 
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CHAPTER 5. Support Vector Machines 

Using Uncertain Programming Approach 

 

5.1 Probability Constrained Approach 

When it comes to considering an uncertainty framework for the optimization 

model problem, one generally looks into either robust optimization or probability 

constrained optimization. While the robust optimization approach handles the 

uncertainty based on an uncertainty set, probability constrained optimization takes into 

account the probability distribution for the uncertainty. In this chapter, we investigate a 

novel probability constrained approach and scenario constrained approach as well.  

As discussed in chapter 2, several researchers have investigated robust 

optimization problems with different shapes of bounded uncertainty sets. Since the 

robust optimization problem becomes an SOCP problem, which is difficult to solve, 

researchers Calafiore and Campi (2005) tried to use sampling schemes to represent 

bounded uncertain sets through random constraints. However, the suggested 

approaches have a drawback. The number of random constraints is increasing with the 
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accuracy of the optimal solution resulting in a large scale optimization problem. 

Therefore, we provide a new alternative robust optimization problem. 

The probability constrained approach described in this chapter will take into 

consideration a bounded knowledge set in the neighborhood of a training point ix  

where each point in this knowledge set keeps the same label value iy . Replicated 

observations are randomly selected in the knowledge set, rather than working with 

well-defined data points. Suppose we are given a training data set ix  and 

labels liyi ,,1, Λ= , where n
i Rx ∈  and iy  belongs to positive (+1) or negative (-1) 

classes. Replicated data points 
Nii xx ,,

1
Λ  which belong to the knowledge set )( ixV , 

are also considered.  

 

     Figure 5. 1  Illustration of four Knowledge sets ( )( ixV ) and four replicated 
data points ( ip ) in the knowledge sets. 
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Figure 5.1 illustrates the concept of knowledge sets )( ixV  and replicated 

measurements ip ; we have four knowledge or vicinity sets and four replicated 

measurements in each knowledge set. It is assumed that each replicated measurement 

has its own probability, and the sum of probabilities within an uncertainty set is one. If 

we consider equal probability for each replication, the primal optimization problem 

can be written as: 

li

tbxw
N

yts

tCw

i

N

j
iji

l

i
itbw

,,1

1],1[.

2
1min

1

1

2

,,

Λ=

−≥+><

+

∑

∑

=

=

,   (5.1) 

where i is the number of training points (number of knowledge sets), and j is the 

number of replications within each knowledge set of a training point. In the general 

case, the generalized constraints of problem (5.1) can be expressed as follows:   
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.    (5.2) 

Pij in the constraint (5.2) represents a probability for each replicated measurement j in 

the given knowledge set i. The selection of distribution functions for the probabilities 

in (5.2) influences the SVM solutions. By considering probability constraint in 

problem (5.1), we can employ the following probability constrained optimization 
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problem.  
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Problem (5.3) can be transformed into an unconstrained optimization problem by 

introducing Lagrange multipliers.    
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where α , β  are the Lagrange multipliers. By the optimality conditions, the partial 

derivative of weight vector w must satisfy the following conditions: 
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From the above conditions, we derive: 
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which has a similar form to the traditional SVM solution. Substituting (5.6) into the 

objective function of problem (5.3), we have: 
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where ∑ ∑
= =
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1 1
,~ , i and k are the number of samples, and j and 

d are the number of replicated observations.  

 The constraint of (5.3) also can be simplified by the use of modified kernel 

function K~ . The constraint can be derived as follows: 
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From equations (5.7) and (5.8), the primal problem (5.3) becomes, 
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where, ,,~
1 1
∑ ∑
= =

><=
N

j

N

d
ktktijijkiik xPxPyyk and iK~  is the i-th row of the matrix K~ . The 

indices i and k are referring to the number of samples, and j and d to the number of 

replicated observations in the knowledge set, respectively. Problem (5.9) becomes a 

quadratic optimization problem.  

 

5.2 Scenario Constrained Approach 

 In the previous section, we investigated the probability constrained approach 

using the kernelization method. Another issue that can be investigated is the selection 

of an appropriate probability distribution. The uncertainty is described through the 

knowledge set. 

 In this section we consider an extended version of the probability constrained 

approach. We call this extension a scenario constrained approach. Since the selection 

of a probability distribution is critical in the above problem, we adopt an idea of 

scenarios for different weights (coming from probability distribution function) for the 
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replicate measurements. Let Sq  be the probability of a scenario s for selecting 

different weights (probability distributions) for the replicated measurements. Vector 

(5.6) can then be expressed as follows: 
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The quadratic part of the objective function in equation (5.3) w also can be replaced by 

the following: 
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We define a modified kernel matrix as follows: 
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Note that the constraint of problem (5.8) becomes: 
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The sum of the scenario probabilities also must be 1, and each scenario probability is 
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not negative. The scenario s can be considered from the worst case to the best case, 

depending on prior knowledge. The final scenario constrained optimization problem 

we consider is as follows: 
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5.3 Computational Experimentations 

5.3.1 Computational Results for Probability Constrained 

Approach 

 Figure 5.2 illustrates a simple example of the probability constrained approach. 

By inserting the replicated data points into problem (5.9) as shown in Figure 5.2, we 

obtain: 
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Note that (5.15) is a quadratic optimization problem with five variables. The replicated 

points can be explained by the concept of perturbations of input data. This example has 

two knowledge sets representing two data points with three observations. To each 

observation we associate a weight (probability) within each knowledge set. Therefore, 

the matrix K~  with ∑ ∑
= =

><=
N

j

N

d
ktktijijkiik xPxPyyk

1 1
,~  will be affected by the 

probability of the replicated points; that is, the center of gravity of the knowledge set 

will be shifted in terms of the weights of the observations.  

  

Table 5. 1  Examples for four different probability sets. 

 11p  12p  13p  21p  22p  23p  

Case 1 0.33 0.33 0.33 0.33 0.33 0.33 

Case 2 0.1 0.2 0.7 0.5 0.2 0.3 

Case 3 0.5 0.2 0.3 0.5 0.4 0.1 

Case 4 0.4 0.3 0.3 0.2 0.8 0.0 
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To compare the behaviors of the separating hyperplanes, we consider four different 

weights in the observations (See Table 1). The probability ip1  is related to the class 1 

(positive class), and ip2  refers to the class 2 (negative class), where 3,,1Λ=i .  

 In Figure 5.2, for example 11p  represents a weight of the first replicate 

measurement in class 1.  

 
 Figure 5. 2 Illustration of two sample points with three replicated 

observations. 
  

 Table 5.2 summarizes the solutions of the optimization problem (5.32) for the 
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four cases. We have obtained five parameters ( 1α , 2α ,b , 1t , and 2t ) and the vector w 

has been calculated based on (5.6). From Table 5.2 and Figure 5.3, we can see that 

separating hyperplanes affects the different weights of observation. In case 4, we 

consider an extremely skewed case: the negative class data point is skewed on the left 

hand side from its center point ( 23p =0). For this reason, the separating hyperplane has 

been shifted to the left, compared to the other cases. We can also see that the 

hyperplanes are rotated by the changes in data weights.  

 Based on the example of the probability constrained approach, we find the 

following important facts:  

• The knowledge set will be given by the replicated observations. 

• The center of gravity of the knowledge set shifts in terms of the weights 

(probabilities) of replicate measurements.  

• The dimensionality of the problem is decreased, since the input samples 

are considered replicate measurements.  
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Table 5. 2  Solutions of probability constrained problem. 

   1α   2α  b    1t   2t   1w   2w  

Case 1 -0.0349 -0.0349 0 0 0 -0.1676 -0.0419

Case 2 -0.0274 -0.0274 0.0549 0 0 -0.1233 -0.0493

Case 3 -0.0216 -0.0216 1.0597 0 0 -0.1036 -0.0518

Case 4 -0.0442 -0.0442 0.3590 0 0 -0.1767 -0.0883

 

 
      Figure 5. 3  Behavior of separating hyperplanes with four different cases. 
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 To observe the behavior of the probability constrained problem in the real data, 

tornado data was considered. For the training, we selected 3 replicate data points (same 

day observations) from January to May. We obtained 15 tornado and 15 non-tornado 

data for the training, and used 952 testing data (50% of tornado and 50% of non-

tornado).  

 Four cases of different weight in Table 5.1 were used for the experiments, and 

the results are shown in Table 5.3. Case 1 was considered with the same weight for 

every replicate measurement, and obtained same misclassification errors as traditional 

SVM solutions. Case 3 shows the worst misclassification error in comparison to the 

other cases. The interesting result is shown in case 2. The misclassification error in 

case 2 (16.4%) is decreased about five percent compared with traditional SVM 

solution (21.9%). In conclusion, if we select appropriate weights for the replicate 

measurement, reduced misclassification error can be obtained.    

 

Table 5. 3  Misclassification errors with four different cases. 

Cases Case 1 Case 2 Case 3 Case 4 SVM 

Misclassification  
Error 

0.2195 0.1638 0.7447 0.3813 0.2195 
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5.3.2 Computational Results for Scenario Constrained 

Approach 

 To illustrate the scenario constrained approach, two sample points with three 

replicate measurements described in section 5.3.1 are used. In the scenario constrained 

approach, the replicate measurements were given with different scenarios in addition 

to their weights. For example, the first replicate measurement was collected by the first 

scenario, which had a higher probability in the positive class. In this example, three 

scenarios were considered:  

• Scenario 1: more weights to the positive class (class 1) 

• Scenario 2: equal weights to the two classes 

• Scenario 3: more weights to the negative class (class 2).  

 The knowledge sets constructed by the replicate measurements were shifted 

by the given scenarios as shown in Figure 5.4. In this figure, the knowledge set of the 

positive class is shifted to the right side from the original set, while the negative 

knowledge set moved down to the left. Note that the centers of gravity of the 

knowledge sets were shifted as shown in Figure 5.4, and the separating hyperplane was 
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rotated to the left hand side while the margin was increased. In an application problem, 

the scenarios are given from the experts based on their prior knowledge.  

 
     Figure 5. 4  Scenario constrained approach: knowledge set and the 

separating hyperplane have shifted by the scenarios. 
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CHAPTER 6. Conclusions and Future 

Research 

 

6.1 Conclusions 

 In this research, we have developed a new robust optimization model for 

solving SVM learning problems, where we consider the perturbations of the 

parameters as well as the perturbations of input data. We illustrated examples for the 

three cases of possible perturbations, and showed how the SVM solution is influenced 

by the perturbation of input data, parameters, or both. In the classification and 

regression problem, the perturbation of input, in general, is more sensitive than the 

perturbation of parameters. However, if we consider the perturbation of input data and 

parameters, the effects make the solution less sensitive. In the case of perturbations of 

the input data with uniform spherical uncertainties, we observe that the resulting 

separating line is the SVM solution. This occurs when the uncertainty parameter η  is 

smaller or equal to the margin of separation. This advocates the robustness of the SVM 

solution. Our model can be a basis for real-world problems that check the robustness 
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and feasibility of the SVM model under bounded perturbations. 

 The probability constrained approach and scenario constrained approach are 

investigated as alternatives to the robust optimization approach. The replicated 

measurements construct the knowledge set, which can be replaced with the uncertainty 

set in the robust optimization approach. This approach has an advantage when a small 

set of replicate measurements is given. 

 

6.2 Future Research 

 There are several ways to measure uncertainties. Depending on the definition 

of the uncertainty (sphere, ellipsoid, rectangle, or a bounded convex set), a resulting 

classifier will be changed. Further research will handle more complicated uncertainties. 

Even though we consider several concepts of the uncertainty set and approaches, there 

still exist several assumptions - such as probability distributions and scenarios. If we 

consider the probability distribution and scenario as parameters, the problem will 

become more complicated.  

In particular, when we do not have any information of prior knowledge for the 

data, we should consider the weights or probability distribution as parameters in our 
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models. Even if case 2 gives a good misclassification error in section 5.3.1, the optimal 

weight still is not guaranteed. The probability constrained approach suggested in 5.3.1 

can be extended to the nonlinear optimization problem when the weight (probability) 

vector is considered as parameters. In future research, the weight (probability) for the 

replicate measurement will be added as an extra constraint in the previous probability 

constrained problem.  
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APPENDICES 
 
 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%% Chapter 4.1 SVC problems (AND Problem)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Perturbation of input data (AND problem)  

function f=funD(x,eta1) 

% Reassign the variables. 

x1=x(1); 

x2=x(2); 

% Calculate the objective function. 

f=0.5*sqrt(x1^2+x2^2); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [f,g]=nonlinD(x, eta1) 

% Reassign the variables. 

x1=x(1);  

x2=x(2);  

x3=x(3);  

% Nonlinear inequalities 

f(1)=-x1-x2-x3+eta1*sqrt(x1^2+x2^2)+1; 

f(2)=x1-x2+x3+eta1*sqrt(x1^2+x2^2)+1; 

f(3)=-x1+x2+x3+eta1*sqrt(x1^2+x2^2)+1; 

f(4)=-x1-x2+x3+eta1*sqrt(x1^2+x2^2)+1; 

% Nonlinear equalities 

g=[]; 

end 

% Find the solution 

X=fmincon('funD',[0 0 0],[],[],[],[],[],[],'nonlinD',options,0) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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% Perturbation of parameter (AND problem)  

function f=funP(x,eta) 

% Reassign the variables. 

x1=x(1); 

x2=x(2); 

  

% Calculate the objective function. 

f=0.5*sqrt(x1^2+x2^2); 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function [f,g]=nonlinP(x,eta) 

% Reassign the variables. 

x1=x(1);  

x2=x(2);  

x3=x(3);  

% Nonlinear inequalities 

f(1)=-2*x1-2*x2-x3+eta+1; 

f(2)=2*x1-2*x2+x3+eta+1; 

f(3)=-2*x1+2*x2+x3+eta+1; 

f(4)=-2*x1-2*x2+x3+eta+1; 

 

% Nonlinear equalities 

g=[]; 

end 

 

% Find the solution 

X=fmincon('funP',[0 0 0],[],[],[],[],[],[],'nonlinP',options,0) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%% Chapter 4.1 SVC problems (XOR Problem)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
% Perturbation of input data (XOR problem)  

function y=funD_XOR(x,eta) 

% Reassign the variables. 

x1=x(1);  

x2=x(2);  

x3=x(3);  

x4=x(4);  

x5=x(5); 

  

% Caculate kernel matrix * Lagrange multipliers (Alpha) 

m=81*(x1^2+x2^2+x3^2+x4^2)-2*(x1*x2+x1*x3+x2*x4+x3*x4)+98*(x1*x4+x2*x3); 

  

% Calculate the objective function. 

y= 0.5*m; 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Perturbation of input data (XOR problem)  

function [c,ce]=nonlinD_XOR(x,eta) 

% Reassign the variables. 

x1=x(1);  

x2=x(2);  

x3=x(3);  

x4=x(4);  

x5=x(5); 

  

% Caculate kernel matrix * Lagrange multipliers (Alpha) 
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m=81*(x1^2+x2^2+x3^2+x4^2)-2*(x1*x2+x1*x3+x2*x4+x3*x4)+98*(x1*x4+x2*x3); 

  

 

% Nonlinear inequalities 

c(1)=(-1)*(81*x1-x2-x3+49*x4+x5)+eta*sqrt(m)+1; 

c(2)=     (-x1+81*x2+49*x3-x4+x5)+eta*sqrt(m)+1; 

c(3)=     (-x1+49*x2+81*x3-x4+x5)+eta*sqrt(m)+1; 

c(4)=(-1)*(49*x1-x2-x3+81*x4+x5)+eta*sqrt(m)+1; 

  

% Nonlinear equalities 

ce=[];% No nonlinear equality constraints 

end 

 

 

% Find the solution 

X=fmincon('funD_XOR',x0,[],[],[],[],[],[],' nonlinD_XOR',options,0.2,K) 

% K is a kernel matrix. 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Chapter 4. Computational Results for Sensitivity and Robust Analysis Applied to 

SVC %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%  Case 1: Perturbation of Input Data %%%%%%%%%%%%%%%%%%%%%%%% 

 

clear all 

data = load('breastcancerwisconsin.txt'); 

[v1 w]=size(data); 

v=round(.5*v1); % 50% of training 

x=data(1:v,1:w-1); 

y=data(1:v,w); 

tstx=data(v+1:v1,1:w-1); 



 87

tsty=data(v+1:v1,w);  

  

ker='poly'; 

par=2; 

eta=0.0; 

[alpha,b]= chapter4_svc(x,y,ker,par,eta); 

  

[ys,yt]=testsvc(x,tstx,ker,par,alpha,b); 

error=find(yt'~=tsty); 

error=length(error) 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

 

function [alpha,b]=chapter4_svc(x,y,ker,par,C,eta); 

[m n]= size(x); 

  

eta=1.5 

k = zeros(m,m); 

ker='poly'; 

par=2; 

k1=kernel(x', ker, par); 

for i = 1:m 

    for j = 1:m 

        k(i,j)=y(i)*y(j)*k1(i,j); 

    end 

end 

k; 

 

x0=zeros(2*m+1,1); 

lb2=zeros(m,1); 

lb1=-inf*ones(m+1,1); 

ubc=-ones(m,1); 

  

if eta~=0 
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   %if 1 

    Prob = conAssign(‘obj_1’,‘obj_2’,[],[],[lb1;lb2],[],'chapter4',x0,[],[],[],... 

    [],[],’‘‘con_1’,’‘‘con_2’,[],[],[],[ubc]); 

else 

   Prob = conAssign(‘obj_1’,'obj_2’,[],[],[lb1;lb2],[],' chapter4',x0,[],[],[],... 

           [],[],'con_11',' con_22',[],[],[],[ubc]); 

end 

Prob.user.H=k; 

Prob.user.z=z; 

Prob.user.C=C; 

Prob.user.eta=eta; 

 

Return=tomRun('snopt', Prob,[]) 

alpha= Return.x_k(1:m); 

margin=1/sqrt(alpha'*k*alpha) 

b= Return.x_k(m+1); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

function [ys,yt]=testsvc(x,tstx,ker,par,alpha,b) 

    yt=[]; 

    m = size(tstx,1); 

    k=kernel(tstx',x',ker,par); 

    ys=(k*alpha)+b*ones(m,1); 

  

for i=1:m 

    if ys(i)<=0 

        yt(i)=-1; 

    else 

        yt(i)=1; 

    end 

end 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
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function [f]=obj_1(x,Prob); 

k=Prob.user.H; 

z=Prob.user.z; 

C=Prob.user.C; 

m=size(x,1); 

n = 0.5*(m - 1); 

f= 0.5* x(1:n)'*k*x(1:n)+ C*sum(x(n+2:m); 

  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Gradient of objective function %%%%%%%%%%%%%%%%%%%% 

  

function [J]=obj_2(x,Prob); 

k=Prob.user.H; 

C=Prob.user.C; 

m=length(x); 

n = 0.5*(m-1); 

J=zeros(length(x),1); 

J(1:n) = x(1:n)'*k; 

J(n+1)=0; 

J(n+2:m)=C*ones(n,1); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

function [g]=con_1(x,Prob); 

k=Prob.user.H; 

z=Prob.user.z; 

m=length(x); 

n = 0.5*(m-1); 

s = sqrt(x(1:n)'*k*x(1:n)); 

kx = k'*x(1:n); 

slack=zeros(n,1); 

for j=1:n 

slack(j)=x(n+1+j); 

end 

g=s -kx- z.x(n+1)+slack; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

function [J]=con_2(x,Prob); 

k=Prob.user.H; 

z=Prob.user.z; 

eta=Prob.user.eta; 

m=length(x); 

n = 0.5*(m-1); 

J=zeros(n,length(x)); 

a = x(1:n)'*k*x(1:n); 

x2k=a+1e-10*eye(size(a)); 

s  = eta*sqrt(x2k); 

kx = x(1:n)'*k; 

J(1:n,1:n) = -diag(z)*k'; 

J(1:n,n+1) = -z; 

J(1:n,n+2:m)=-eye(n); 

J(1:n,1:n) = J(1:n,1:n)-ones(n,1)*( eta/sqrt(x2k))*kx; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

%%%%%%%%%%%%%%%%%% Perturbation of parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

 

function [g]=svmcon_par(x,Prob); 

k=Prob.user.H; 

z=Prob.user.z; 

m=length(x); 

n = 0.5*(m-1); 

s = eta*Rad; 

 

kx = k'*x(1:n); 

slack=zeros(n,1); 

for j=1:n 

slack(j)=x(n+1+j); 

end 
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g= s -kx- z.x(n+1)+slack; 

  

%%%%%%%%%%%%%%%%%% Perturbation of input and  parameters %%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [g]=svmcon_par(x,Prob); 

k=Prob.user.H; 

z=Prob.user.z; 

m=length(x); 

n = 0.5*(m-1); 

s1 = sqrt(x(1:n)'*k*x(1:n)); 

s2 = eta*Rad; 

 

kx = k'*x(1:n); 

slack=zeros(n,1); 

for j=1:n 

slack(j)=x(n+1+j); 

end 

g= s1+s2 -kx- z.x(n+1)+slack; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

%%%%%%%%%%%%%%%%%%%%%%  Case 2: Perturbation of Parameters %%%%%%%%%%%%%%%%%%%%%%%% 

 

function f = obj_124(x, Prob) 

  

k=Prob.user.k; 

y=Prob.user.y; 

m=length(x)-1; 

f= .5 * x(1:m)'*k*x(1:m); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%    Constraint of the Problem %%%%%%%%%%%%%%%%%%%%%%%%%%%  

function c = con_124(x, Prob) 

  

k=Prob.user.k; 

y=Prob.user.y; 
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eta=Prob.user.eta; 

R=Prob.user.R; 

m=length(x)-1; 

c = -k*x(1:m) - y.*x(m+1) + eta*R*ones(m,1); 

 

 

%%%%%%%%%%%%%  Case 3: Perturbation of Input Data and Parameters  %%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%    Constraint of the Problem %%%%%%%%%%%%%%%%%%%%%%%%%%%   

function c = con_124(x, Prob) 

  

k=Prob.user.k; 

y=Prob.user.y; 

eta1=Prob.user.eta1; 

eta2=Prob.user.eta2; 

R=Prob.user.R; 

m=length(x)-1; 

  

c = -k*x(1:m) - y.*x(m+1) + 

eta1.*ones(m,1)*sqrt(x(1:m)'*k*x(1:m))+eta2*R.*ones(m,1); 

 

 
 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Chapter 4. Computational Results for Sensitivity and Robust Analysis Applied to 

SVR %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%% Case 1: Perturbation of Input Data %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

clear all 

data=xlsread('2002a1.xls'); 

data=data(2:end,2:end);  
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p q]= size(data); 

valueerror=[]; 

cumvalerror=[]; 

predict=[]; 

l=144; 

tstY=[]; 

error=[]; 

for i=1:l %  

     x=data(i,1:15)'; 

 y=data(i,16)*ones(size(x)); 

 tstX=data(i,17:27)'; 

 tstY=data(i,28)*ones(size(tstX)); 

ker='poly'; 

par=2; 

C=100; 

epsi=.1; 

eta=5;  % eta and epsi are changad from 0 to 5 

% e=1; 

p=2; 

[alpha,b]=traffic_reg(x,y,ker,par,epsi,eta); 

 [yt] = out_svr(x,y,tstX,ker,p,alpha,b); 

avg1=[mean(yt)]; 

predict=[predict avg1]; 

end 

 

predict=predict'; 

save 2002a1.txt predict -ASCII 

  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%% Compute parameters of alpha, b, and t %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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function [alpha,b]=traffic_reg(x,y,ker,par,epsi,eta) 

[m,c] = size(x); 

 

k = zeros(m,m); 

k=kernel(x',ker,par); 

z=y; 

  

x0=zeros(2+m,1); % initial setup 

lb2=zeros(1,1); 

lb1=-inf*ones(m+1,1); 

ubc1=epsi*ones(m,1); 

ubc2=epsi*ones(m,1); 

if eta~=0 

    Prob = … 

conAssign('traffic_regof','traffic_regof_g',[],[],[lb1;lb2],[],'con2',x0,[],[],[],.

.. 

    [],[],'traffic_regcon','traffic_regcon_dc',[],[],[],[ubc1;ubc2]); 

else 

   Prob = … 

conAssign('traffic_regof','traffic_regof_g',[],[],[lb1;lb2],[],'con2',x0,[],[],[],.

.. 

           [],[],'traffic_regcon1','traffic_regcon1_dc',[],[],[],[ubc1;ubc2]); 

end 

Prob.user.H=k; 

Prob.user.z=z; 

Prob.user.eta=eta; 

 

R=tomRun('snopt', Prob, []); 

alpha=R.x_k(1:m); 

b=R.x_k(m+1); 

t=R.x_k(m+2); 

clear R; 

clear k; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%   Caluculate SVR Output   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 function [yt] = out_svr(x,Y,tstX,ker,p,alpha,b) 

% This part is used by Steve Gunn (srg@ecs.soton.ac.uk) 

  

    n = size(x,1); 

    m = size(tstX,1); 

    k=kernel(tstX',x',ker,p); 

    yt = (k*alpha + b); 

 

   

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%% Objective Function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

function f=traffic_regof(x,Prob) 

m=size(x,1); 

n=(m-2); 

sum_slack=sum(x(n+2)); 

f=sum_slack; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%% First derivative of objective function %%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

function g=traffic_regof_g(x,Prob) 

m=length(x); 
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n = (m-2); 

g=zeros(length(x),1); 

g(1:n+1) =zeros(n+1,1); 

g(n+2)=ones(1,1); 

  

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%% constraints function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

[g]=traffic_regcon(x,Prob); 

m=length(x); 

n=(m-2); 

k=Prob.user.H; 

y=Prob.user.z; 

eta=Prob.user.eta; 

  

x2k = x(1:n)'*k*x(1:n); 

s = eta*sqrt(x2k); 

kx = k'*x(1:n); 

g=[y-kx+s-x(n+1)-x(n+2);-y+kx+s+x(n+1)-x(n+2)]; 

 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%    Case 2: Perturbation of Parameters %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

clear all 

data=xlsread('2002a1.xls');  

data=data(2:end,2:end);  
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[p q]= size(data); 

  

valueerror=[]; 

cumvalerror=[]; 

predict=[]; 

l=144; 

tstY=[]; 

error=[]; 

  

for i=1:l  

     x=data(i,1:15)'; 

 y=data(i,16)*ones(size(x)); 

 tstX=data(i,17:27)'; 

 tstY=data(i,28)*ones(size(tstX)); 

 ker='poly'; 

 par=2; 

 

C=100; 

epsi=.5; 

eta=5; 

Rad=3; % Radius considered 1,2,and 3 

p=2; 

[alpha,b]=traffic_reg(x,y,ker,par,epsi,eta,Rad); 

[yt] = out_svr(x,y,tstX,ker,p,alpha,b); 

avg1=[mean(yt)]; 

i; 

predict=[predict avg1]; 

end 

predict=predict'; 

save 2002a1_R3_5.txt predict -ASCII 

  

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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function [alpha,b]=traffic_reg(x,y,ker,par,epsi,eta,Rad) 

 [m,c] = size(x); 

k = zeros(m,m); 

k=kernel(x',ker,par); 

z=y; 

  

x0=zeros(2+m,1); 

lb2=zeros(1,1); 

lb1=-inf*ones(m+1,1); 

ubc1=epsi*ones(m,1); 

ubc2=epsi*ones(m,1); 

if eta~=0 

    Prob = 

conAssign('traffic_regof','traffic_regof_g',[],[],[lb1;lb2],[],'con2',x0,[],[],[],.

.. 

    [],[],'traffic_regcon','traffic_regcon_dc',[],[],[],[ubc1;ubc2]); 

else 

   Prob = 

conAssign('traffic_regof','traffic_regof_g',[],[],[lb1;lb2],[],'con2',x0,[],[],[],.

.. 

           [],[],'traffic_regcon1','traffic_regcon1_dc',[],[],[],[ubc1;ubc2]); 

end 

Prob.user.H=k; 

Prob.user.z=z; 

Prob.user.eta=eta; 

Prob.user.Rad=Rad; 

 

R=tomRun('snopt', Prob, []); 

alpha=R.x_k(1:m); 

%pos=find(alpha>=0); 

%xsup=x(pos,:); 

b=R.x_k(m+1); 

t=R.x_k(m+2); 
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%ts=R.x_k(m+3) 

clear R; 

clear k; 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Objective Function %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

function f=traffic_regof(x,Prob) 

m=size(x,1); 

n=(m-2); 

sum_slack=sum(x(n+2)); 

f=sum_slack; 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%% Problem constraints %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [g]=traffic_regcon(x,Prob); 

m=length(x); 

n=(m-2); 

%n=(1/3)*(m-1); 

k=Prob.user.H; 

y=Prob.user.z; 

eta=Prob.user.eta; 

Rad=Prob.user.Rad; 

x2k = x(1:n)'*k*x(1:n); 

s = eta*Rad; 

kx = k'*x(1:n); 

g=[y-kx+s-x(n+1)-x(n+2);... 

   -y+kx+s+x(n+1)-x(n+2)]; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%% Case 3: Perturbation of Input Data and Parameters %%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

clear all 

data=xlsread('2002a1.xls');  

data=data(2:end,2:end);  

[p q]= size(data); 

  

valueerror=[]; 

cumvalerror=[]; 

predict=[]; 

l=144; 

tstY=[]; 

error=[]; 

  

for i=1:l % l=142 

     x=data(i,1:15)'; 

 y=data(i,16)*ones(size(x)); 

 tstX=data(i,17:27)'; 

 tstY=data(i,28)*ones(size(tstX)); 

 ker='poly'; 

par=2; 

C=100; 

epsi=.5; 

eta1=5;    

eta2=5; 

Rad=1; 

p=2; 

[alpha,b]=traffic_reg(x,y,ker,par,epsi,eta1,eta2,Rad); 

[yt] = out_svr(x,y,tstX,ker,p,alpha,b); 
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avg1=[mean(yt)]; 

i; 

predict=[predict avg1]; 

end 

predict=predict'; 

save 2002a1_5_5.txt predict -ASCII 

  

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [alpha,b]=traffic_reg(x,y,ker,par,epsi,eta1,eta2,Rad) 

 [m,c] = size(x); 

k = zeros(m,m); 

k=kernel(x',ker,par); 

z=y; 

  

x0=zeros(2+m,1); 

lb2=zeros(1,1); 

lb1=-inf*ones(m+1,1); 

ubc1=epsi*ones(m,1); 

ubc2=epsi*ones(m,1); 

if eta1~=0 

    Prob = 

conAssign('traffic_regof','traffic_regof_g',[],[],[lb1;lb2],[],'con2',x0,[],[],[],.

.. 

    [],[],'traffic_regcon','traffic_regcon_dc',[],[],[],[ubc1;ubc2]); 

else 

   Prob = 

conAssign('traffic_regof','traffic_regof_g',[],[],[lb1;lb2],[],'con2',x0,[],[],[],.

.. 

           [],[],'traffic_regcon1','traffic_regcon1_dc',[],[],[],[ubc1;ubc2]); 

end 

Prob.user.H=k; 
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Prob.user.z=z; 

Prob.user.eta1=eta1; 

Prob.user.eta2=eta2; 

Prob.user.Rad=Rad; 

 

R=tomRun('snopt', Prob, []); 

alpha=R.x_k(1:m); 

b=R.x_k(m+1); 

t=R.x_k(m+2); 

clear R; 

clear k; 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%% Problem constraints %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

function [g]=traffic_regcon(x,Prob); 

m=length(x); 

n=(m-2); 

%n=(1/3)*(m-1); 

k=Prob.user.H; 

y=Prob.user.z; 

eta1=Prob.user.eta1; 

eta2=Prob.user.eta2; 

Rad=Prob.user.Rad; 

x2k = x(1:n)'*k*x(1:n); 

s = eta1*sqrt(x2k); 

kx = k'*x(1:n); 

g=[y-kx+s-x(n+1)-x(n+2)+eta2*Rad+eta1*eta2;... 

    -y+kx+s+x(n+1)-x(n+2)+eta2*Rad+eta1*eta2]; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%% Chapter 5.1 Probability Constrained Problem %%%%%%%%%%%%%%%%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%% Case 1 %%%%% 
clear all     

   p1=[0.1 0.2 0.7]'; 

   p2=[0.5 0.4 0.1]'; 

    x11=[2 2; 1 0; 3 0]; 

    x22=[-2 0; -3 -2; -1 -2]; 

    X1=p1'*x11; 

    X2=p2'*x22; 

    X=[X1;X2]; 

    Y=[1 -1]'; 

   n = size(X,1); 

   H = zeros(n,n);   

    for i=1:n 

       for j=1:n 

          H1(i,j) = Y(i)*Y(j)*ker('poly',X(i,:),X(j,:)); 

       end 

    end 

col=zeros(2,3); 

H=[H col]; 

row=zeros(3,5); 

K=[H;row] 

C=1000; 

f=[0 0 0 C*1 C*1]; 

A=[ H1(1,:) -1 -1 0; 

    H1(2,:) 1 0 -1; 

    0 0 0 -1 0; 

    0 0 0 0 -1]; 

b=[-1 -1 0 0];     

x0=[0 0 0 0 0]; 
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sol = quadprog(K,f,A,b,[],[],[],[],x0) 

w=sol(1)*Y(1).*X1+sol(2)*Y(2).*X2 

   

x1=[2 2; 1 0; 3 0; 2 2]; 

x2=[-2 0; -3 -2; -1 -2; -2 0]; 

  

 s=-w(1)/w(2); 

 x=linspace(-3,3); 

y=s*x-sol(3); 

 plot(x,y,'x-') % Blue 

 hold on 

plot(x2(:,1),x2(:,2),'-.r*'); hold on; 

plot(x1(:,1),x1(:,2),'-mo'); 

 grid on 

axis([-4 4 -5 5]) 

hold off 

% title ('Robust LP with Polyhedral Uncertainty (ex.1)'); 

title ('Comparison of 4 cases of Probability Constrained Approach'); 

 

hold on 

 

%%%%% Case 2 %%%%% 

 p1=[0.1 0.2 0.7]'; 

 p2=[0.2 0.4 0.4]'; 

 

%%%%% Case 3 %%%%% 

p1=[0.5 0.2 0.3]'; 

p2=[0.5 0.4 0.1]'; 

 

%%%%% Case 4 %%%%% 

p1=[0.4 0.3 0.3]'; 

p2=[0.2 0.8 0.0]'; 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%% Tornado data analysis %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

clear all 

tst=xlsread('tst5.xls'); 

trn=xlsread('E:₩data_tor.xls'); 

    p1=[0.2 0.3 0.5]'; 

    p2=[0.4 0.3 0.3]'; 

    p1=repmat(p1,[5,1]); 

    p2=repmat(p2,[5,1]); 

    p1=repmat(p1,[1,25]); 

    p2=repmat(p2,[1,25]); 

    X1=p1.*trn(1:15,1:end-1); 

    X2=p2.*trn(16:30,1:end-1); 

    trnX=[X1;X2]; 

 

[k l]=size(trn);   

trnY=trn(:,end); 

  

tstX=tst(:,5:29); 

tstY=tst(:,end); 

  

[trnX] = prestd(trnX')'; 

[tstX] = prestd(tstX')'; 

  

[nsv, alpha, bias] = svc(trnX,trnY,'poly',100); 

err = svcerror(trnX,trnY,tstX,tstY,'poly',alpha,bias); 

out = svcoutput(trnX,tstX,tstX,'poly',alpha,bias); 

 [sign(out) tstY] 

num_correct=size(find(sign(out)== tstY)) 

size_of_test=size(out) 


	ACKNOWLEDGEMENTS 
	 LIST OF FIGURES 
	 ABSTRACT 
	 
	Case 1: Perturbation of Data 
	Case 2: Perturbation of Parameters 
	Case 3: Perturbation of Input Data and Parameters 
	Case 1: Perturbation of Data 
	Case 2: Perturbation of Parameters 
	Case 3: Perturbation of Input Data and Parameter 
	Case 1: Perturbation of Data  
	Case 2: Perturbation of Parameter  
	Case 3: Perturbation of Parameters and Data 
	Case 1: Perturbation of Input Data 
	Case 2: Perturbation of Parameter 
	Case 3: Perturbation of Input Data and Parameters 

	 


