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ABSTRACT 

Batteries are sought that can deliver high energy density and high power 

density over thousands of cycles, with minimum environmental impact and cost. 

Invariably no one material can achieve all of these requirements. Lithium Iron 

Phosphate (LFP) satisfies most of these requirements reasonably well with the 

exception of power density. Two coincident methods have been utilized to increase 

the power capability and cycle life of battery cathodes by reducing the electrode 

resistance to the reaction site and increasing the diffusion coefficient for ions and 

electrons. Electrode resistance is typically reduced by a combination of surface 

coatings and carbon additives in the composites. Recent work has demonstrated that 

spray deposition with PVdF as binder increases the cathode capacity resilience over 

extended cycling.
1 

Likewise, incorporation of carbon nanotubes (CNT) has 

demonstrated decreased cathode fade over many life cycles as well.
2-3

 Since capacity 

fade has been experimentally connected to loss of electrode contact, it stands to 

reason that a battery made with a process that optimizes the binder contact and 

utilizes a resilient and highly conductive carbon additive would have extended 

capacity life, with the potential added benefit of higher energy density from a small 

inactive material content in the cathode.
4
 In this work, we investigate the properties of 

the CNT, the processing of CNTs in cathode films made using slurry and spray 

deposition techniques with LiFePO4 as the cathode material, and the synthesis of the 

materials with CNTs. We demonstrate that with an optimized processing method 

composites with minimal inactive material (10%) can perform with rate capabilities 

comparable to 20% carbon black (25% inactive material) without capacity fade. 
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Preface 

I have tried to include as many salient topics as possible in this work without 

it becoming unmanageable. I hope that the perspective that I bring will be both 

unique and useful to students and scientists working on batteries. There are many 

related topics that influence this subject that I have not covered principal among these 

are electrolytes and anodes. I encourage the reader to explore these areas as well since 

the rate of change in the field of energy storage has increased in recent years. There 

are many advances and new techniques published every month. This is a vibrant and 

exciting time to study batteries. 

As with any good book on a subject, we must have organization. For those 

that are looking for introductory material on batteries chapter one should prove most 

interesting. On the other hand, for those that just want an executive summary look to 

chapter six. Chapter two develops the foundation of conductivity in composites in 

order to understand the composite formulation in chapter three. The CNTs 

measurements and properties as they pertain to battery composites are investigated in 

chapter four. An alternative method for incorporating CNTs into the battery material 

growth is discussed in chapter five. 
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Chapter 1. Introduction to Batteries 

1.1 Energy Storage 

Some say civilization began in order to purse making beer and all the 

merriment that comes with it. Others might argue this was really an attempt to make 

something clean to drink. Nevertheless, the mastering of fermentation made possible 

new realities in society. Thus, it is with energy storage; the ability to make and store 

energy for later use has revolutionized our way of life. This is especially important as 

we look to the future due to the ecological impacts of our energy use. The ability to 

store energy for later use allows us to select the source, whether it is renewable, 

inexpensive, slow in production, or based on a contract. Regardless of our motivation, 

energy storage mediums that can hold massive amounts of energy and deliver them 

quickly make possible new and exciting technologies. 

Batteries have enabled portable devices since their inception. Some notable 

technologies include metal detectors,
a
 smart phones, and fully electric vehicles. At the 

cell level, batteries are just a pair of electrodes called an anode and cathode with a 

separator (electronic insulator) soaked with electrolyte between them. The electrolyte 

saturates the electrodes and the separator, which allows ion conduction. Energy is 

stored by combing a pair of redox reactions at the cathode and anode. The standard 

cell is made by wrapping these layers up and packing them into a can, Figure 1.1. The 

names cathode and anode refer to the respective reactions that occur at the electrodes 

when a battery is under discharge. In electrochemistry, the cathode is the electrode 

where the reduction occurs (M
3+
M

2+
), and the anode refers to the electrode where 

                                                 
a
 Alexander Graham Bell invented the metal detector to search for a bullet in President James Garfield.  
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oxidation occurs (M
2+
M

3+
). When charging rechargeable batteries the oxidation 

and reduction locations actually flip. Thus, as a convention to reduce confusion, 

during discharging the anode refers to the negative terminal and cathode the positive 

terminal. 

 

 

 Figure 1.1. A cross-section view of a cylinder and a coin cell battery.
5
 

There are basically two classes of materials that can be used as battery 

materials: those that undergo a crystal structure change and those that incorporate 

ions by intercalation. Lead acid is the classic example of a battery material that acts 

by undergoing a phase change, where on the cathode metallic Lead is oxidized by the 

sulfuric acid to form Lead sulfate and on the anode Lead oxide is reduced to form 

Lead sulfate and water. These materials typically can produce very high current 

densities but suffer from corrosion at their electrodes that limits their life. 

Intercalation compounds, such a Lithium Iron Phosphate, on the other hand have the 

same crystal structure between charged and discharged states but with different unit 

cell volumes. Due to their stable nature, they typically are very durable batteries and 

will be useful for many thousands of cycles. The problem with these materials is they 
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tend to have poor power performance since getting the Lithium in and out completely 

tends to be very difficult unless one uses very small current densities. 

The problem now is to find solutions that can solve the electrochemical, 

phase, transport, and kinetic problems at every length scale, Figure 1.2; the redox 

reaction occurs between an Fe and a Li (at the atomic scale), the Lithium intercalation 

through a material causes a phase change (at the 100 nm scale), the current path is 

along the interfaces between the particles (at the 100 µm scale), and finally the 

package must manage the heat generated (at the device scale). 

 
Figure 1.2. The components of a prismatic cell at different length scales.

6
 

1.1.1 Lithium Iron Phosphate 

When under charging conditions the Lithium Iron Phosphate (LFP) cathode is 

oxidized (Fe
2+

  Fe
3+

 in LiFePO4) and the anode is reduced. The electrolyte shuttles 

the Li
+
 ions across the separator film (which is not electrically conductive).  After 

charging, when the external circuit is completed (discharged) the lithium stored in the 

anode is transported across the separator and reduces the cathode and an electron 

leaves the anode and completes the circuit through the load. Each half reaction 

(Equations 1.1 and 1.2.) occurs at each electrode to produce or consume a pair, one 

electron and one Li
+
 ion.  
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            -                - Equation 1.1. 

          -            Equation 1.2. 

The VOC is determined by the difference of the chemical potentials at the 

anode and cathode reaction sites, Equation 1.3. Under a current load we can further 

define cell polarization (η) as a deviation from VOC, Equation 1.4. The metal group 

need not be only iron, but it is plentiful and cheap. The chemical potentials vary 

depending on the metal, starting oxidation state, and the final state given in Table 1.1. 

                Equation 1.3. 

         Equation 1.4. 

Table 1.1 Chemical Redox Reactions of Selected Metals.
7
 
b
 

Cathode Reactions  Potential (V) 

V
2+

 + e ↔ V
+
  -1.18 

V
3+

 + e ↔ V
2+

  -0.26 

Cr
2+

 + e ↔ Cr
+
  -0.09 

Cr
3+

 + e ↔ Cr
2+

  -0.42 

Mn
2+

 + e ↔ Mn
+
  -1.18 

Mn
3+

 + e ↔ Mn
2+

  1.49 

Fe
2+

 + e ↔ Fe
+
  -0.44 

Fe
3+

 + e ↔ Fe
2+

  0.77 

Co
2+

 + e ↔ Co
+
  -0.28 

Co
3+

 + e ↔ Co
2+

  1.82 

Ni
2+

 + e ↔ Ni
+
  -0.26 

Cu
2+

 + e ↔ Cu
+
  0.34 

Anode Reactions   

Li
+
 + e ↔ Li (s)  -3.0401 

Li
+
 + e ↔ LiC  -2.9 

 

 LFP is particularly stable due to its olivine crystal structure, Figure 1.3. The 

tetrahedral bonds of the phosphate groups stabilize the structure. This advantage 

allows LFP to cycle for many thousands of cycles without severe capacity loss. Not 

all cathodes in use exhibit this capability. Lithium cobalt cells (LiCoO2) undergo a 

                                                 
b
 Potentials are versus the standard carbon electrode 
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more severe phase change when charging and discharging, thus there is the possibility 

of Lithium Oxide formation if the rate is too high. This is problematic because this 

will cause cell expansion and can lead to the failure of the cell. 

 
 

 

(a) (b) (c) 

Figure 1.3. Crystal structures of battery materials (a) LiFePO4 an Olivine,
8
(b) 

LiCoO2  a Layered Oxide,
9
 and (c) LiMn2O4 a Spinel.

10
 

1.2 Energy Density 

Energy density is the amount of usable energy that can be stored in a material 

per unit mass. Table 1.2 list the properties of some of the more common and up and 

coming battery materials. The theoretical energy densities of any material can be 

calculated if the redox reaction potential is known. It is simply a matter of 

stoichiometry to calculate the capacity. For example, LiFePO4 (or LFP) has a 

theoretical charge capacity of 170 mAh/g merely based on the molecular weight of 

the material, Eq. 1.6.  

                 
     

    
 

   

    
 Equation 1.5 

             

        

        

             

       

        

       

   

   

      
         ⁄  Equation 1.6 
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This is actually a useful method to understand what kind of energy densities 

can be expected from the best possible batteries. Materials with high redox potentials 

and low molecular mass should give the highest energy density; Li-O2 and Li-S are 

good examples of this. It should also be pointed out that capacity fade is a major 

concern. Many battery crystal structures break down with full utilization of the anion 

(Li+), e.g. in LiCoO2 only about half the Lithium can be extracted before a phase 

change occurs that destroys the reversibility. In other words, if the battery is 

discharged too completely, the battery is destroyed. Other materials, which do not 

rely on the anion for the crystal structure, such as LiFePO4 a so-called intercalation 

cathode, can deliver nearly all of their capacity without a structural phase change. 

Thus depending on the cathode type the capacity may be dependent on the power 

density, which is the topic of the next section.  

Table 1.2. Energy Density of Battery Materials. 

Cathodes
11

 

Redox 

Potential 

(V vs Li
+
/Li) 

Realized 

Capacity 

(mAh/g) 

Theoretical 

energy 

density 

(W·h/kg) 

Current 

life 

(cycles) 

LiCoO2 3.8 – 3.9 137 387 500 
½C6Li + Li0.5CoO2 + e- ↔ 3C+LiCoO2     

LiFePO4 3.4 170 578 >5000 
C6Li + FePO4 + e- ↔ C6 +LiFePO4     

NASICON Li3M2(PO4)3  2.7-3.0 190 475 100 
 M = Fe (Fe2+/Fe3+)     

Li-O2 (aqueous) 3.2  3,582 ~10 
2Li + ½O2 +H2O + 2e- ↔ 2LiOH     

Li-S 2.2  2,567 ~100 
2Li +S + 2e- ↔ Li2S     

Anodes     

Natural Graphite  0.5 340   

Silicon 0.5 – 1 4200   

LTO 1.55 170   
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Finally, it should be mentioned that there is an upper limit on magnitude of 

the redox potentials, see Table 1.2.  We do not currently have electrolytes that are 

stable above 5V vs Li
+
. In fact, the current electrolytes are not particularly stable with 

the currently available high voltage cathodes. Normally part of the electrolytes will 

decompose on a fresh anode and cathode surfaces and form a solid electrolyte 

interfaces (SEI). If the reaction potential is too extreme this interphase may not be 

stable and the electrolyte may continue to react with the surface during cycling use 

resulting in capacity fade and cell degradation. Some have suggested that this 

interface is better named an interphase since this is where the de-solvation, solvation 

occurs. With this limitation on increasing the redox potential on individual cells 

decreasing the mass of the battery seems the best way to improve battery energy 

density. 

It is common practice to report the energy density only in terms of the active 

material content. This can be problematic when there are large fractions of other 

materials. In order to be consistent, the general convention g for grams of active 

material will be used. When referring to the whole cathode mass g* will the indicated. 

For example, in a work by Goodenough et al
12

 LFP with different conductive 

polymers seems to indicate the LFP/16% Ppy-ED is best, Figure 1.4. After correcting 

for the inactive content, the capacities are much more similar, except at very high C-

rates. 
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g g* 

Figure 1.4. High additive content can mask the effective capacity.
12

 

1.3 Power Density 

Power density or specific power is the amount of energy per unit time a 

battery can deliver. We have three extrinsic parameters that we can adjust to increase 

power density: E the cell voltage, I the current delivered, or g the mass of the 

material,  Eq. 1.7. While power density appears directly proportional to energy 

density, that is not the case. Unit analysis does not reveal the transport limitation 

within the materials. Thus a critically important question is, “What is the rate limiting 

step?”  Since there are two current carriers it can be hard to distinguish which 

pathway limits the reaction more. Let us consider a simple model to outline the 

problem and potential remedies.  

                
   

    
 

   

           
 Equation 1.7 

A simple model to begin to understand the component cell potential would 

include the internal resistance    ), activation energy polarization (ηct), and the 

concentration polarizations (ηc) at both electrodes (anode and cathode, respectively, a 

and c in eq. 1.8). Although this is a very simple model the three major aspects of 

power production with batteries are included: the cost of moving electrons 
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(resistance), the cost of moving the ions (concentration polarization), and the energy 

stored as a new phase in the material (activation energy).  

      [    )      ) ]  [   )     ) ]         Equation 1.8 

Using Kirchhoff’s circuit laws, we can determine the maximum power the cell 

can transfer to a load. The maximum power transfer occurs when the impedances of 

the battery and load match, hence the name impedance matching. This is not the 

maximum power it could potentially produce since above that current the internal 

resistance dominates. It is clear, then that decreasing internal resistance is one of the 

most direct routes to increasing power density.  

Essentially, increasing the power density comes down to reducing the kinetic 

barriers to ion or electron transport. Both of these take very different routes in the 

battery system, but at the end points, they arrive at the same location. So now the 

question is, “What can be done about the kinetic barriers?” For electron transport it is 

a straightforward answer; reduce the resistance. For ion transport, the answer is likely 

one of the following: reduce the path length the ions have to diffuse, increase the 

diffusivity of the solid, or increase the effective rate of solvation at the interface. 

Some have suggested that lithium diffusion is primarily rate limited by the surface 

states, that is the rate of the solvation process is determined by the states available at 

the interface where the organic electrolyte is decoupled from the Li
+
 ion..

13
  

One needs to remember that there are many different interfaces within the 

cells with electrolytes that tend to be quite reactive in air thus studying these 

interfaces is not always straightforward. For example, Lithium carbonate was thought 
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to be a main component of the SEI layer, but now it appears that it is present only 

after exposure to air.
14

 

Using the resistance and the capacity from Table 1.2 we can now estimate the 

potential energy density at any given C-rate, eq. 1.9. This holds so long as the 

resistance is constant during the discharge of the cell. Unfortunately, RB is not 

constant with respect to the state of charge or with respect to the C-rate. 

                (  
  

   
  -    )        )     Equation 1.9 

At low current densities, the battery materials undergo a phase change from 

charged to uncharged (or vise-versa) without severe internal polarization. 

Additionally, parts of the battery cell that are less well connected to the electrode (say 

they have a more resistive path) are allowed to equilibrate with the rest of the cell and 

thus contribute to the produced power. At higher current rates, side effects can be 

driven by fast changing chemical potentials, concentration gradients in the electrolyte, 

kinetic limitations of the ion transport, or simple ohmic heating due to the high 

electron flux. These side effects could include side reactions: decomposition of the 

electrolyte, non-uniform diffusion or polarization of the battery material, or physical 

cracking of the battery particles due to differences in the unit cell volume across the 

particle. Nearly all of these problems can contribute to reduction in usable capacity. 

Furthermore, particle degradation or any damage to the electrode connections 

contributes to capacity fade. This is irreversible. Clearly it is advantageous to avoid 

these problems, thus it is no wonder that nearly all battery types perform best under 

low current density conditions.  
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1.4 Life Expectancy 

A good battery will not only produce the voltage and currents needed but will 

also last a long time. Obtaining good durability is still a major concern, since so many 

things can go wrong with high chemical potentials, intense heat, and long required 

shelf-life. The contact with the particles, the resilience of the film, and the transport 

of the electrolyte all must be maintained for batteries to last a long time. 

In order for the particles in the composite to contribute, they must be 

connected electrically to the electrode. Since the volume of the charged and 

discharged states can vary by as much as 7%
c
 there is significant stress both within 

and between particles formed and released between the discharged and charged 

stages. Particle cracking under this stress has been identified as one mechanism 

through which battery capacity fades. As the particles crack, parts of them lose 

contact to the electrode and become inactive in the battery composite. 

The severe volume change between charged and discharged states can also 

cause cracks in the film and separate large areas of the electrode from other areas. 

This can lead to internal polarization or worse, delamination, where whole sections of 

the composite become disconnected from the electrode. A binder polymer, e.g. PVdF, 

is typically used to stabilize the electrodes at a loading of between 5% and 10%. 

Although the decomposition of the electrolyte on the interfaces of the battery 

electrodes has long been a controversial subject it is well established now that a 

protective layer is required to protect the electrodes from reacting with the electrolyte. 

This is typically done using a natively formed layer from the electrolyte (e.g. 

LiPF6/ethylene carbonate) or a carbon coating. Cracking in this layer will result in 

                                                 
c
 Based on unit cell volume change, see Table 2.2. 
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irreversible capacity loss upon charging the cell. In addition to reducing the battery 

efficiency, the loss of the electrolyte increases the electrolyte polarization. 

 If the electrolyte has a sufficiently large enough over potential, lithiation on 

the surfaces of the materials can begin to occur. Large formations called dendrites can 

form and breach the electrically insulating barriers between the anode and cathode. 

Shorting of a battery in this way can result in a very serious runaway effect.
15

  

 These are some of the principal ways that batteries can fail. Poor diffusion can 

also contribute to battery capacity fade and will be discussed in the next chapter.  

1.5 The Way Forward 

Increasing the cathode conductivity of high energy density battery materials 

has been a major focus for many groups for some time. Carbon coatings, conductive 

polymers, isovalent substitution, particle size reduction, and conductive additives 

have all been investigated to increase the energy available at higher specific 

currents.
16

 Among the conductive additives, materials able to the deliver the highest 

current densities with the smallest impact on the composite weight will be the most 

advantageous, CNTs appear to fit this criteria well. CNTs, have been incorporated 

into battery systems by multiple groups,
17-19

 and reviewed by Liu et al,
20

 in fact CNT 

pastes as conductive additives are already commercially available. 

While most of these works found that nanotubes decreased the reactance 

(cathode resistance), improved the energy density (a smaller fraction of additive is 

required for the same conductivity), stabilized discharge capacity, and increased the 

energy available at higher current densities, these advantages were realized within 

formulations and with methods that did not fully utilize the CNT. The reasons for 
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these advantages have been attributed to the formation of distributed networks of 

CNTs formed within the electrode composite.
21

 The local current density at each 

battery particle can be reduced by directly connecting all the particles in the cathode 

to the distributed network.  

Of particular importance is the method for dispersing and separating the 

individual CNTs. Stirring alone is not energetic enough to overcome the Van der 

Waals attraction between bundles of nanotubes.
22,23 

Bundles of CNTs are particularly 

troublesome for two reasons; they reduce the total surface area coverage per gram of 

additive, and bundles of tubes are much less conductive than single tubes.
24

 Ball 

milling is the most common mixing technique for battery materials, as it can reduce 

aggregate particle size and thoroughly mix materials. Unfortunately, ball milling 

mixes by physical impact, which will dramatically reduce the CNT length.
25,26

 Since 

the percolation threshold is inversely proportional to length of the CNTs mixing 

methods that preserve high aspect ratios, such as shear mixing or ultrasonication, are 

more likely to produce highly conductive composites.
27

 

In summary, batteries are an enabling technology, enabling mobile 

technologies and electric vehicles. Improvements in battery technologies make 

possible new realities and new technologies. Higher energy dense and high power 

density capable devices are needed to power the next generation of electric vehicles. 

The specific energy is determined by the redox reaction couples between the anode 

and cathode and the mass of the unit cell. Decreasing the inactive material present is 

the most direct method to improving the energy density of battery materials today. 

Carbon nanotubes can be incorporated into composites at lower concentrations than 
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carbon black to obtain a highly conducting material. This work addresses the methods 

and problems associated with mixing CNTs into composites. CNTs can be 

incorporated mechanically using mixing tools or at an early stage during the growth 

of the LiFePO4. Both of these routes are investigated in this work.  
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 Chapter 2. Conductivity in a Composite 

2.1 Transport in Batteries 

Let us consider the transport steps that the electrons and Li-ions must undergo 

to charge a Li-Ion battery. Potentially any of these steps could be the rate limiting 

step by either a diffusion limitation or a kinetic rate limitation.
28

 

Adsorption Model of Lithium exchange 

(1) When charging a battery, work is done to apply a potential on the cathode vs. 

the anode. The electron density on the cathode electrode drops, shifting the 

Fermi level down. 

(2) Once there is a large enough potential difference the iron is oxidized from Fe
3+

 

to Fe
2+

 and an electron Lithium ion pair is released. 

(3) The electron is then driven by the field potential through the composite to the 

electrode (Al backing) and then on to the anode. 

(4) The Lithium diffuses to the surface, driven by the potential and phase gradient 

while flow is mitigated by defect sites and neighboring Li attraction. 

(5) Once at the surface (or in SEI layer if present) the Li can partially solvate. 

(6) (Optional) Lithium then transports along the surface to a preferable site. 

(7) It can then fully solvate and diffuse into the bulk to contribute to the electrolyte. 

(8) Once in the electrolyte the applied field then drags the Li to the anode. 

(9) Li
+
 then de-solvates in the SEI layer at the anode surface. 

(10) (Optional) After partial desolvation it can surface transport to a preferable 

insertion site. 

(11) The Li
+
 then diffuses into anode to balance the charge attraction and mechanical 

stress in the anode. 

There is still some argument about where the electron and Lithium interact. 

The adsorption or ad atom model as presented above places the exchange at the metal 

site. The exchange could also occur in the solid electrolyte interface (SEI) layer. 
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Figure 2.1 Schematic representation of the Li

+
 adsorption mechanisms. 

SEI Model of Lithium exchange 

(1) Lithium transport in an electrolyte 

(2) Lithium-ion migration through the SEI film 

(3) Charge-transfer through the electrode/electrolyte interface 

(4) Lithium-ion diffusion in an electrode 

(5) Accumulation-consumption of the Li in the electrode, a phase transition 

(6) Electron transport in an electrode and at an electrode/current collector interface 

This solution has two issues, although it matches the data well in EIS 

experiments. It glosses over the desolvation required to get a Lithium ion from the 

electrolyte. Secondly, a Lithium-electron pair under an applied field would separate, 

or if bound tightly (3 eV) the electrostatic field would be significantly shielded and 

the pair would not have as large of a driving force to intercalate. This is another issue 

with theories that merely match the data but do not yield any physical understanding. 

A theory is only as good as its predictions. Circuit element models developed later in 

this chapter suffer from this problem since their physical meaning is obscured. 
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Table 2.1 Li-ion conductivity and diffusivity of battery materials.
29

 

Material ρ (S/cm) DLi (cm
2
/s) 

LiCoO2 10
-4

 10
-7

 to 10
-14

 

LiMn2O4 10
-6

 10
-8

 to 10
-11

 

LiFePO4 10
-9

 10
-9

 to 10
-15

 

 

The wide range of diffusion rates reported is most likely due to the anisotropy 

of the Li-diffusion in these materials. Lithium transports most readily down channels 

in the {010} direction. Thus, crystal volume and orientation can have an inordinate 

effect on the diffusion rate. Control of the crystal growth to express these plains 

predominately on the surfaces has produced some very high rate capable cathodes.
30

  

Now we have one more issue: many batteries with high energy content are insulators, 

LFP is a prime example. An alternative view of these materials with ultra-low 

electron conductivity compared to their ionic conductivity is that they are 

semiconductors where the dominant charge carriers are the ion (Li
+
). This inversion 

of the typical charge carrier (ion instead of electron or hole) would in fact be the case 

if the activation energy were higher for electrons than Li-ions. Due to the anisotropy 

of the Lithium diffusion, it appears that this may only be the case in one crystal 

orientation (010).  

2.2 Electron Conductivity 

Battery composites consist of two phases (at least). To understand the 

transport of electrons through these materials one must consider both the meso-scale 

and nano-scale that the electron current will encounter. 
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2.2.1 Meso-Scale 

With a continuous conductive additive, electrons obey Ohm’s law, Eq. 2.1. 

Now we have to determine the conductivity of a composite with a highly conductive 

phase and a highly insulating phase. Levi and Aurbach
31

 developed a model of this 

particle intercalation in porous systems, and found that the admittances can be added 

together as an averaged sum, given in Eq. 2.2 where Z is admittance and θ is the 

fraction of additive material. Since the real part of the admittance, the conductivity, of 

the cathode materials is typically five or more orders of magnitude smaller than the 

additive, conductivity of the composite will be dominated by the additive, so long as 

enough is present (θ > δ).  Where δ is the percolation threshold, which will be 

discussed in the section 2.6. The cathode material particle size distribution should 

also be considered. While a narrow distribution is easy to model, a wide distribution 

requires more careful analysis, see Levi and Aurbach.
31

 

       Equation 2.1  

 
 

    
 

 

    
 

   

     
 Equation 2.2 

In the electrode the Lithium-ion, electron, and iron site must all meet in order 

for the reduction (or oxidation) to occur thus allowing for the storage (and use) of 

energy to occur. The path of the electron may include parallel and routes in series. 

The effective resistance of these interconnections is additive. The shorter these 

connections are, the lower the potential drop due to Ohmic losses and the lower the 

heat generation will be in the composite. 
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Figure 2.2. Schematic view of a porous electrode with electrochemically active 

particles (white-stripped) and conductive additive (black). 

  
Figure 2.3. Circuit diagram of a transmission line model of a battery composite. 

The porous electrode can be modeled as a transition line network, where the 

circuit model is given in Figure 2.3. Each particle is modeled as a single battery 

element with capacitance, internal resistance, and impedance.  The capacity of the 

battery is determined by the number of connected elements. The potential drop to 

electrode for each element is the sum of all Rm to the electrode. The impedance of 

this model is given in eq. 2.3. Although the attribution of the resistive elements in this 

model is straightforward, the competing ideas outlined above indicated widely 

different meanings for the capacitive and impedance fits found from these models.
32

 

   )  √         
 

        )
)⁄     [√         

 

        )
)⁄ ] Equation 2.3 

A distributed network where each element may be connected in any 

combination of series or parallel better represents the composite.
33

 If any of these 

connections were to fail then the capacity of the battery would fade. 
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2.2.2 Nano Scale 

Now suppose there were a small gap of width d in the conductive network. 

Electrons can tunnel across the gap so long as d is small. The conductivity is 

exponentially related to the strength of the near field, which is determined by the 

work function of the material. Effectively, there is a characteristic length that 

conduction will occur, Equation 2.4. This is determined by the work function of the 

material (Ф) and the mass of the tunneling electron (m). This demonstrates the 

localization of the current flows from the conductive network. The most effective 

network should completely cover the battery material, and be continuous and durable. 

      ( 
√   

 
 ) Equation 2.4 

Local probe measurements of electrode contacts on working batteries have 

shown that surfaces evolve with the electrode potential. Surface roughness and 

dendrites form and erode during discharging and charging cycles. Stress from volume 

changes due to Lithiation can crack the particles and also the conductive films on 

their surfaces.
34

 These problems can be mitigated by either increasing the number of 

routes to the electrochemically active site, or by increasing the durability. Thus in 

order to test new materials, a large fraction of conductive material is generally used to 

mitigate the electrode contact decay. Good reviews of these effects with respect to 

batteries can be found in the works by Sastry
29

 and  Goodenough.
35

  

2.3 Ionic Conductivity: Diffusion 

Diffusion describes the movement of atoms, in this case Lithium ions. When 

there is no force on the ions, Fick’s first law applies, as given in equation 2.5; D is the 

diffusion coefficient (cm
2
 per second), N is the volume concentration (atoms per 
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cm
2
), and y is the distance (cm). The flux density (the ionic current) is directly 

proportional to the concentration gradient. 

      
  

  
  Equation 2.5 

Now in batteries, during charging conditions and discharging, there is an 

applied field, either external or internal. The force on a charged particle is given in 

Equation 2.6, where Zq is the charge, E is the local electric field, v is the drift 

velocity, α is the factor of proportionality, and m
*
 is the effective mass. Additionally 

drift velocity and mobility in the steady state are typically defined by Equation 2.7, 

where µ is the mobility (cm
2
 per volt-second).  

             

  
      Equation 2.6 

     
     

 
     Equation 2.7 

At the cathode (anode) interface of the battery the electrolyte concentration is 

depleted during discharging (charging) and creates a region with reduced electrolyte 

concentration. If the electrolyte mobility is limited, possibly due to very low 

temperatures, this can contribute to cell polarization. Sever polarization can enhance 

the rate of dendrite growth and dendrites can internally short a battery in a 

catastrophic manner. Generally speaking, the ionic diffusivity of the liquid 

electrolytes far exceeds that of the cathode materials. Thus only in extreme conditions 

is this a concern. 

Generally, in a crystal lattice the diffusion rate for electrons is much higher 

than ions. This can create a space charge separation between the positively charged 

ions and the electrons. If the electron flux, equation 2.8, is merely due to the applied 
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field, which is a steady state condition, where n is the electron concentration, then one 

can derive an effective diffusion rate.
36

  

         
  

  
         Equation 2.8 
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 Equation 2.9 

       (  
 

 

  

  
)  Equation 2.10 

Diffusion in the cathode as derived above assumes no energy barrier to the 

movement of ions and that is, there is no contribution from the lattice to the 

localization of the ions. If there is an interaction, then diffusion can then progress 

either by interstitial or substitutional diffusion, as in Figure 2.4. This assumes, of 

course that there is insufficient energy for the ions to exchange with the metal sites, 

Fe. Generally, this is the case. One should recognize that these mechanisms can 

represent two extremes for the cathode; when a battery is depleted of Lithium 

(charged) the interstitial diffusion dominates and when a material is lithiated 

(discharged) the substitutional mechanics dominates. This is an important distinction 

since different kinetics can be revealed at different depths of discharge. In Equations 

2.11 and 2.12 Em is the activation energy for moving an ion in a dilute medium and Ed 

is the activation energy for moving a vacancy. 

 
 

 Figure 2.4. Diffusion by interstitial (left) or substitutional (right) mechanism. 
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       Equation 2.11 

       
       )    Equation 2.12 

2.4 The Influence of Strain on Conduction 

The unit cell volume increases as the FePO4 is lithiated to LiFePO4. Table 2.2 

gives the fundamental cell parameters. This stress has a measureable impact on the 

cell polarization and is one of the sources of irreversible capacity loss as the stressed 

regions have hysteresis and, if not relaxed, can cause defects that block regions from 

charging and discharging. These stress effects can be mitigated by using small 

charging currents. In fact, exceptionally small charge and discharge currents need to 

be used to avoid stress issues, C/20 or even C/100. 

Table 2.2. Lattice Constants for LiFePO4 and FePO4.
 37,38

 

 a (Å) b (Å) c (Å) volume (Å)
3 

FePO4 9.8 5.7 4.78 271.7 

LiFePO4 10.3 6.0 4.68 289 

 

A consequence of stress is the possibility of particle crack formation and even 

cleaving. One can use the Griffith Theory to estimate the critical particle diameter 

(dc), given fracture energy (Г), the mismatch strain, and the elastic modulus (ε), 

Equation 2.13.
39,40

 The critical diameter is the dimension below which particles will 

not crack under for a given fracture energy. The fracture energy increases with the 

current density. Thus, cathodes designed for high power applications should have 

uniformly smaller particle dimensions in order to avoid cracking and cleaving. A 

lower limit on particle size is determined by the thickness of the SEI layer. The 

smallest particles will completely become part of the solid electrolyte interface. For 

LiFePO4 dc is 600 nm.  
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  )⁄  Equation 2.13 

This strain is not all bad it actually assists in the battery during de-lithiation 

during charging as the energy released actually promotes whole channels to empty all 

together. The strain will then cascade across the battery perpendicular to the exit 

direction {010}.
41

 

2.5 Characterization of Conductivity 

In order to understand battery dynamics both the electron and ionic 

conductivities need to be measured. Further, the mixing methods need to be evaluated 

in terms of their effectiveness in the composites. 

2.5.1 Four Point Powder Probe 

Powder conductivity cannot be measured with a basic Ohmmeter. The density 

and geometry of the powder must be taken into account. A powder probe, Figure 2.5, 

was developed to measure to compress the powders while measuring their 

conductivity. It consists of a stainless steel tube of ¾-inch diameter with a Teflon tube 

insert that is tight within the outer wall. The conductivity is calculated by Eq. 2.14. 
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Figure 2.5. Cross Section of Powder Probe. 

                          ) Equation 2.14 

The four point probe schematic is given in Figure 2.6. The voltage leads 

contact points are made with a separate set of wire from the current source. In this 

way the random contact resistances of the voltage meter is in series with the high 

resistance of the meter. Thus, the contact resistances (R1, R2, R3, and R4) which 

normally make measuring ultra-small resistances impossible are insignificant and can 

be ignored. In order to maintain accuracy the Ohmmeter should be calibrated with the 

leads in contact before each measurement and the zero volume height should be 

recorded before adding the powders to be measured. 

 
Figure 2.6. Four Point Probe Circuit Diagram. 

CNT Powders were packed into the cylinder and measured under constant 

pressure and constant volume. It was found that the constant pressure technique 
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suffered from a continually dropping resistance. Most likely this is due to friction 

within the packed powder in the cylinder, see Figure 2.7.
52

 Empirical studies have 

suggested that packed powder towers will settling follows a log like behavior. 

 
Figure 2.7. Compressed powders resist packing due to particle-particle 

interactions and wall slip forces.  

Powders were prepared by mixing 0.01 g CNTs, 0.02g PVdF with LFP 

(amount varies from 0.5-0.2g) in 25-30ml NMP solvent using a ultra-sonicator 

(dismembrator) at 25% amplitude for 20 minutes (QSonic 500), drying the 

suspensions in a vacuum flask filter, and then drying them further in a vacuum oven 

at 80°C for 12 hours. The conductivity vs. density was then measured, using the 

powder conductivity probe. The probe measures powders under constant volume with 

a Keithly 580 micro ohmmeter. All static conductivity measurements reported here 

were taken at 2.1 g/cm
3
. 

Considering Figure 2.8, along each curve the conductivity starts small, as the 

contact is unreliable. As the pressure increases the unfilled pore volume decreases 

creating more and more internal connections. At the knee, the empty pore volume has 

been consumed. The movement of the knee to higher densities with the samples with 

more CNTs may be due to their increased “springiness” as the powders were well 

divided before packing and the SMW-CNTs are rigid rods with aspect ratio > 300. 
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Figure 2.8. Conductivity of packed powders vs. packed density for the SMW-200 

as measured by the Four Point Powder Probe. 

2.5.2 Cyclic Voltammetry (CV) 

A voltammagram is made by scanning the potential and recording the current. 

Any redox reactions will cause peaks in the current above and below the reaction 

potential during the up and down scans respectively. The Randles-Sevcik equation 

can be used determine the peak shapes and peak positions with respect to scan rate, 

v.
42

  

       
    

      
 (

   

  
)

 
 
  )

 
    )

 
       ) Equation 2.15 

The quasi-reversible peak position is represented by Eq. 2.15, where n is the 

electrons per reaction, F is the Faraday constant, A is the surface area, C is the 

concentration, R is the gas constant, T is the temperature, D is the diffusion 

coefficient of the Lithium ions and K(Λ,α) is the degree of irreversibility.
43
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Figure 2.10. Cyclic Voltammagram of LiFePO4 with 5% CNTs and 5% PVdF at 

various scan rates between 5 mV/second and 0.1 mV/second. 

The lack of additional peaks, even at higher scan rates, indicates that there are 

no corrosive impurities (e.g. water) in the battery. CV can be used in this manner to 

identify the redox potential of side reactions, and potentially identify the impurity. 

With the converse, where the voltage is held constant and the current is 

monitored, the Cottell equation is used to analyze the current response, Eq. 2.16. So 

long as there is sufficient concentration (c) in the electrolyte the current will 

proportional to the square root of time. 

   
    

 
    )

 
    )

 
   Equation 2.16 

2.5.3 Electrode Impedance Spectroscopy (EIS) 

A small AC voltage (5 mV) is applied to a DC offset. The phase and 

amplitude of the current are then measured to determine the impedance. The 

imaginary impedance is then plotted against the real resistance at each frequency, as 

in Figure 2.11. RC circuits will create semi-circles, inductors will induce loops, and 

resistance will shift the points to the right. Interpretation of this technique depends on 

the model of Lithium exchange that is used, be it the ad-atom or SEI exchange 
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models. Both models predict that the electron diffusion through the electrode should 

occur at highest frequencies. Subsequently the double layer effect due to electrolyte 

transport, the solvation/desolvation ion transfer, the ion diffusion through the bulk, 

and the crystal structure change all contribute to the impedance at lower and lower 

frequencies. 

 
Figure 2.11. Typical impedance spectra with the SEI layer interpretation 

designations of each frequency region.
44

 

Electro Impedance Spectroscopy (EIS) was completed with a Solatron 1287 

Electrochemical Interface and a 1260 Impedance/Gain-Phase Analyzer with 5mV AC 

amplitude between 80 kHz to 0.01 Hz. Analysis of these was completed with the 

Zplot simulator from Solatron. Equivalent circuits can be built up and then simulated 

as in Figure 2.12.  
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Figure 2.12. Simulation of Electrode Impedance Spectra with different battery 

models. 

Interfaces can be modeled as RC circuits to simulate charge buildup (or 

depletion due to diffusion limitations). The constant phase element (CPE) is used to 

model porous surfaces, Equation 2.17. Where P is 1 it is identical to a capacitor, when 

P is zero it is identical to a resistor, and when P is ½ it creates a line on the complex 

plane with constant phase (θ = 45°), hence the name. 

The finite length Warburg (WS) given in Equation 2.18, is a solution to the 

one-dimensional diffusion equation for a single particle. The Warburg generally 

dominates the impedance at the lowest frequencies and causes Z” to increase quickly. 

              ) ) Equation 2.17 

     
    (      ) )

      ) 
 Equation 2.18 

Connecting the circuit model parameters of the battery to the physical 

mechanisms is non-trivial. First there is the question of which model is the most 

appropriate. First principle physical models are not easily boiled down to circuit 
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elements. Thus, it is not perfectly clear which model is most correct from these 

measurements alone. Secondly, there may be multiple fitting solutions with a single 

model. For example, the battery model in Figure 2.12 the Warburg and electrode 

resistance (RS) both have series resistance values that could exchange places. Thus, in 

order to find the correct fit, one must have some idea of the magnitude of the 

elements. Using the conductivity of the composite measured with the four point 

probe, we can exclude solutions that have extreme values for the electrode contact 

resistance (R1).  

These techniques are extremely powerful, and reveal the characteristics of the 

transport phenomena in batteries. Takahashi et. al. was able to determine the 

activation energy for the Lithium and electron diffusion using cyclic voltammetry and 

electrode impedance spectroscopy, see Table 2.3.
44

 The electrode resistance can be 

directly read off the spectra as minimum real resistance. The semi-circle diameter is 

equal to the resistance of the Lithium charge transfer (or solvation depending on your 

model).  

Table 2.3. Activation Energy as determined by CV and EIS.
44

 

ELi Eelectron  

39 16 kJ per mol 

0.4 0.16 eV per electron 

2.5.4 Battery Performance 

The most basic characterization of a battery is to measure the charge delivered 

under use. Charging and discharging the cells measures their specific energy and 

power densities as discussed in chapter one. The electrochemical charge and 
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discharge testing was completed with an Arbin Battery Tester (BT 2000). A standard 

test protocol was used on all batteries made. Each battery was charged at C/5 and 

discharged at C/10, C/5, C/2, 1C, 2C, 5C and finally C/10 for ten cycles at each rate. 

1C corresponds to current that would discharge the cell in one hour with a capacity of 

170mAh/g of active material. Using this test protocol, we obtain both rate capability 

information, Figure 2.13, and power density information, Figure 2.14. 

 
Figure 2.13. Discharge and Charge Capacity of LFP with 20% carbon black and 

5% PVdF. 

In this example, the battery has severe capacity fade as it is cycled. The 

capacity fade is exacerbated under high C-rates, but the loss continues even at the 

small C-rates. This is typical of electrode contact decay. Since this cell has 20% 

carbon black there certainly is enough material to make the composite wholly 

conductive. In addition, the charge capacity closely matches the discharge capacity 

which suggests side reactions are at a minimum (or at least reversible), such as 

dendrite formation or other corrosion. The discharge capacity vs cell voltage plot 

shows that the second C/10 has increased cell polarization at only 30 mAh/g capacity. 

This indicates that the available capacity of the cell is severely reduced. This may be 

simple due to the electrode breaking and losing contact with particles within the 

matrix, thus cutting off the electron current. 
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Most battery materials are made from more conductive material than LFP. 

LFP batteries typically have a higher content of binder (10%) as well. Nevertheless, 

this is a failure mechanism that all electrochemical cells with composite electrodes 

have to deal with: in other words, all batteries that do not use solid metal electrodes. 

 
Figure 2.14. Discharge capacity vs. cell voltage for LFP with 20% carbon black 

and 5% PVdF. 

2.6 Percolation Threshold with Nanotubes 

Using both CNTs and carbon black in composites has been suggested to be 

the most advantageous way to increase the conductivity of a composite.
45

 We know 

that the conductive percolation threshold for CNTs in polymer blends is typically less 

than 0.5%.
46

 Nevertheless, batteries made with only CNTs with contents of 2% and 

less, exhibited poor capacity and stability. On the other hand, batteries made with at 

least 5% CNTs or more tend to be stable and resilient.
47

 It could very well be that 

either the total amount of CNTs was not enough to connect each and every surface, a 

so called surface threshold. On the other hand, the method of dispersing the CNTs 

could have been inadequate for the lower CNT content batteries.  

Percolation theory describes the behavior of networks of elements. 

Specifically the probability that they are connected across a volume, from one surface 
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to another. A critical density (PC) is defined as the concentration at which the 

probability of a continuously connected network changes from near zero to near one. 

For composites, the electrical percolation threshold is the minimum amount of 

conductive material needed to cause a sharp increase in the conductivity of the 

composite, where below that critical threshold the conductivity of a battery composite 

is limited by the cathode material. Recall from Table 2.1 that LFP is an basically an 

insulator. Above that critical threshold, the additive conductive material makes 

enough connections to provide a connected conductive pathway through the 

composite.
48

 Just above the threshold, the conductivity increases rapidly following 

Eq. 2.19, where α is the critical exponent, typically 1.5. 

                 )
              )      Equation 2.19 

The percolation threshold in epoxy composites has been shown to vary widely 

depending on the processing techniques, from 0.1% for CNTs dispersed by 

ultrasonication, to 0.4% by shear mixing, and no percolation below 1% loading for 

ball milled samples.
27

 These methods produce different sized agglomerates. 

Depending on the state of dispersion J. Li et al. predict that the percolation threshold 

can be either single CNT dominated, Equation 2.20 or agglomerate dominated, 

Equation 2.21, where d is the diameter of the CNTs l is the length, and   is a 

parameter representing the local density of the agglomerates.  

              )⁄   Equation 2.20 

                      ⁄   Equation 2.21 

Using Equation 2.2 and assuming there is no unfilled pore volume, we can 

estimate the PC for perfectly dispersed multiwalled CNTs with 10 nm diameter and 



36 

 

10 µm at 0.005% loading.
d
 Since we have yet to find a dispersion method that can 

remove agglomerates completely the percolation threshold will always be larger than 

predicted by Eq. 2.20. 

The conductivity of composites far above the percolation threshold will follow 

the general trend given in Eq. 2.22, where a depends on the aspect ratio and degree of 

dispersion and b depends on the quality of the conductive additive after dispersion, 

which should generally approach the conductivity of the additive, Eq. 2.23. 

      )         Equation 2.22. 

 b =              ) Equation 2.23. 

2.7 Surface Threshold 

While conductive additives are traditionally added to battery materials that are 

poor electron conductors to increase the charge that they can provide at higher 

currents (higher C-rates), many high energy dense materials are insulators, e.g. LFP. 

However, conductive additives are useful in conductive battery materials as well, e.g. 

LiCoO2. There are two roles that are generally well understood that additives should 

fulfill. 

1. Reduce the Power loss due to resistive heating (Ohmic Losses) 

2. Reduce the polarization, uniform battery particles discharge 

 

There is a third role that is often attributed to the binder that is to maintain 

interconnections when under mechanical stress. As Lithium intercalates in and out of 

the ceramic large volume changes occur. These stresses can be severe enough to 

crack particles if the stress is not uniformly distributed. Higher specific currents are 

the most likely cause of this problem.  

                                                 
d
 Densities  used were 1.2 g/cm

3
 for CNTs and 3.6 g/cm

3
 for LFP. 



37 

 

This is one of the main mechanisms of battery capacity fade and failure that is 

not related to the electrolyte. It is also irreversible if either of the two halves of the 

cracked particle is not in contact with the electrode. Thus, a conductive additive 

should maintain contact to every particle and cracked particle. 

The model that derived Eq. 2.20 assumed the CNTs were dispersed 

throughout the volume uniformly. However, battery composites are a combination of 

binders and solid crystallites. No method of mixing will place a CNT in the center of 

a crystal. Conductive additives are confined to the regions between particulates, the 

interfaces and surfaces. If the total inactive material volume is small, the percolation 

is not across a volume, but rather across a surface. Let us define a surface threshold: 

Surface Threshold – the minimum amount of material need to make contact 

with every surface within a composite to form a stable and interconnected network.  

Any surface not in contact with the electrode increases the diffusion length of 

the electrons to the redox centers near that surface. This decreases the power 

performance by increasing the specific currents at every other interface. With 

increased specific currents and longer diffusion lengths, polarization within the cells 

can lock out more capacity by increasing the lattice strain over short distances within 

the cell. The polarization or strain could be due to the layers of lithiated and de-

lithiated regions induced by the ion current, or due to defects already present in the 

cell, e.g. isovalent substitutions.  

The best measure of good dispersion and good contact to every surface is not 

conductivity but capacity from a cycled cell. The conductivity of the composite will 

impact the EIS initial offset resistance, and the quality of the surface coverage will 
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impact the specific power performance. Cells that have networks that are not resilient 

under strain will lose contact to surfaces and will lose capacity with progressive 

cycling or higher C-rates. 
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 Chapter 3. Identifying the optimal nanotubes 

3.1 Introduction 

Carbon nanotubes (CNTs) have been shown to be a viable conductive additive 

in Li-Ion batteries.
49

 By using CNTs battery life, energy, and power capability can all 

be improved over carbon black, the traditional conductive additive. A loading of 20% 

carbon black can be replaced by only 5% CNTs. In addition, many of the previous 

efforts found that a combination of conductive additives is the most advantageous.
50

 

Unfortunately, many of these efforts did not attend to the unique challenge that 

dispersing nanotubes presents and used non-optimal methods to disperse CNTs (e.g. 

ball milling).
51,52

 With poor dispersion, a stable and resilient conductive network in 

the cathode is hard to form with CNTs alone. For example, in Figure 3.1 ball milled 

CNTs form larger agglomerates leaving most of the particle surface area 

unconnected, while ultrasonicated tubes form loose networks over the entire surface. 

 
Figure 3.1. SEM micrographs of Aerosol deposited cathodes with 5% CNTs and 

5% PVdF with CNTs dispersed by ball milling and ultrasonication. 
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3.2 Properties of Carbon Nanotubes 

A nanotube is a graphene sheet that has been wrapped up into a cylinder. The 

angle that the sheet is wrapped at is referred to as the chiral angle. With multiple 

layers of graphene wrapped around the central cylinder, we have a multiwalled CNT. 

Single walled CNTs usually have outer diameters on the order of a nanometer while 

multiwalled CNTs can be much larger, from a few nanometers to tens of nanometers, 

depending on the number of walls. 

 
Figure 3.2 High Resolution TEM of SMW-200 

Nearly everything about a carbon nanotube (CNT) is determined during 

growth. The catalyst, the support, the partial pressure of the carbon source, the partial 

pressure of any etching agents, and the temperature of the reaction all determine the 

conditions for the formation of the CNT. By altering these parameters, one can 

produce single walled or multiwalled tubes with different average diameters, numbers 

of walls, or length. A wide selection of CNTs can be made from a carefully controlled 

CVD reaction. While the growth of CNTs is outside the scope of this work, the 

question of the best properties for a CNT to have in a battery composite is relevant.  

The best performing cathode composites published to date were made with 

multiwalled CNTs grown via arc-discharge.
53

 Arc-discharged CNTs tend to be very 
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long and defect free. This should result in a CNT that is both highly conductive and 

easily dispersible, thus able to form highly conductive, well connected networks in a 

composite. Unfortunately, arc-discharge CNTs are not cost effective when scaling up 

to high capacity production, compared to other growth methods.
54

 

As established in the previous chapter, conductivity and resilience of the 

network are needed to make durable and powerful batteries. Another parameter not 

yet considered is the cost of the CNTs. The goal of this work is to develop methods to 

incorporate CNTs into products. It would be a moot point if the materials were cost 

prohibitive. The reaction conditions of multiwalled CNTs typically increase the 

carbon yield dramatically over single walled CNTs. Thus, they can be as much as a 

hundred times cheaper per gram. 

CNT physical attributes can be evaluated by: Length (100 μm to 300 μm as 

measured with TEM or AFM); chiral angle (measured with florescence spectroscopy 

or if purified UV-vis spectroscopy); defect density (measured with Raman); bend 

density (investigated with TEM, SEM, or XRD); and the number of walls (most 

easily measured by TEM). Since the inter-wall spacing is regular, the number of walls 

can be calculated from the outer (D) and inner (d) diameters, e.g. Figure 3.3.  
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(a) (b) 

Figure 3.3. (a) Transmission Electron Micrograph of SMW-200 CNTs.  

(b) Principle dimensions of Multiwalled Carbon Nanotubes. 

3.3 Evaluating Carbon Nanotubes 

Southwest Nanotechnologies kindly provided sample CNTs for evaluation in 

battery composites. CNTs were tested for dry powder conductivity, Figure 3.4. Single 

walled (SW) and multiwalled (SMW) carbon nanotubes were evaluated with the Four 

point Powder Probe. Typical resistances were on the order of an Ohm and as small as 

¼ Ohm for a 100 mg sample with ¼ inch diameter and ½ inch height. The four point 

method was essential in measuring these small resistances. As expected the 

conductivity of SW-40G, a single walled CNT, was the highest. The SMW-200 had 

surprisingly high conductivity as well.   

 
Figure 3.4. 4-Point Powder Probe Conductivity of pure CNTs as received. 
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Figure 3.5. TEM micrographs of multiwalled carbon nanotubes obtained from 

SWeNT with designations (a) SMW-069, (b)SMW-071, (c) SMW-285, (d) SMW-

288, (e) SMW-292, and (f) SMW-200. 



44 

 

Figures 3.5 shows transmission electron micrographs of the multiwalled CNTs 

evaluated with the dry powder conductivity in Figure 3.4. Several qualitative qualities 

can be observed: Bends, defined as a turn in a CNT with radius less than twice the 

diameter; defects, which are voids in the CNTs side walls; surface carbon, which is 

extrusions.  The density of CNT bends per unit length is significantly lower for 

SMW-200, Table 3.1. For the CNTs in Figure 3.5 the bend density appears to be 

inversely correlated with conductivity. The CNTs also appear to have a rather high 

density of defects (SMW-285, SMW-069). 

Table 3.1 Density of Bends in CNTs per 275 nm.  

CNT Bend Density  Sample Size 

SMW-069 75% 24 

SMW-071 35% 26 

SMW-285 96% 20 

SMW-288 40% 24 

SMW-292 38% 13 

SMW-200 10% 21 

 

 
Figure 3.6. Density of bend defects per 275 nm of CNT. 

The problem with TEM as a measurement tool is that it only measures one 

small section of the sample. For instance, a high resolution image of the SMW-200, 

Figure 3.2, reveals that it has few defects and very little surface carbon. However, it 
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only represents one single tube and does not represent the average. By measuring 

hundreds of tubes, a diameter distribution can be built up that better represents the 

sample, Figure 3.7. 

 
Figure 3.7. CNT diameter distributions as measured by TEM. 

We can now plot the mean diameter vs. conductivity, in Figure 3.8.  

 
Figure 3.8. Diameter of CNTs as measured by TEM vs. 4-point conductivity. 



46 

 

The reduction in bend density may in fact be a by-product of an overall 

increase in CNT diameter between samples. The larger the diameter, the higher the 

number of walls, the stiffer and more pipe like the CNT will be.  

 
Figure 3.9. Conductivity and Bend Density vs. CNT diameter. 

Based on the measurements of the dry powdered and composite conductivity 

the SMW-200 CNT appears to have the highest conductivity (1100 S/m), which is 

roughly half the conductivity of single walled CNTs. Although the average diameter 

for this CNT is larger there does not appear to be a trend relating conductivity and 

outside diameter in for the CNTs mixed into the composite, Figure 3.8. Increasing the 

diameter of the CNTs increases the dry powered conductivity and decreases the bend 

density,  Figure 3.9. Thus, the bend density and the lack of CNT defects appear to be 

the distinctive qualities of the SMW-200 CNT. 

3.4 Dispersing Carbon Nanotubes 

 Although understanding the intrinsic properties of a CNT is helpful in 

distinguishing between products of the growth reaction, this does not establish how 
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the CNTs will perform within a battery. We must investigate the CNTs in the 

composite. 

LFP, PVdF, and three different kinds of CNTs were prepared as composites 

by wet ball milling and ultrasonication both in NMP. After the constituents are 

mixed, the powders are dried by vacuum flask filtration. A flask trap was used on the 

vacuum system vacuum line to trap the excess NMP. A 4-point powder probe 

conductivity measurement was then made on each sample, given in Figure 3.10. The 

SMW-069 10 hour ball milled increased in conductivity over sonication. The SMW-

071 did not significantly change in conductivity.  The SMW-200 proved the easiest to 

disperse with ultrasonication and produced the highest conductivity composite. 

 
Figure 3.10. Conductivity of ball milled and sonicated composites with 5% CNTs 

and 5% PVdF in LFP. 

We have been consistently using 5% CNTs for all of these investigations 

having not established the optimal loading of CNTs for battery composites. As 

established in chapter one, in order to maximize the specific power, the inactive 

fraction of material in the composite should be kept to a minimum, yet still produce a 

highly conductive and resilient network. 
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CNTs were dispersed by ultrasonication in NMP and mixed with a PVdF 

solution and commercial LFP. The mass ratios of the constituents included 2-5% 

CNTs, 5% PVdF, and the balance LFP from MTI Corp, the 4-point probe 

conductivities are given in Figure 3.11. Since the conductivity of LFP is 10
-8

 S/cm, all 

of the loadings of CNTs used are well above the percolation threshold. Almost all of 

the CNTs investigated increased in conductivity according to Eq. 2.17. That is, the 

log of conductivity (σ) increased linearly with concentration (P).  The SMW-200 

composite was nearly at its powder conductivity at 4% CNT loading. 

 
Figure 3.11. Conductivity LFP composite with various amounts of multi-walled 

CNTs. 

3.5 Post Processing CNTs 

After CNTs are made, the catalysts and supports must be removed. This is 

usually done with a series of baths and washes with HF to etch the support and metal 

catalysts away. This acid treatment can cause further defects in the CNT where 

imperfections already reside. One method to “heal” the CNTs is to anneal them in an 

anaerobic atmosphere. We investigated calcination and annealing treatments on 
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several CNT series in Figure 3.12. Of the three CNTs tested, only one increased in 

conductivity significantly, SMW-071. Although SMW-069 and SMW-288 have a 

significantly higher bend density than SMW-071 it is not clear why only SMW-071 

increased so dramatically in conductivity.  

 

 
Figure 3.12. Conductivity of CNTs before and after annealing in Argon at 900°C 

or burning in air at 350°C. 
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 Chapter 4. Film Formation and Processing 

4.1 Introduction 

Processing techniques are sought to disperse, deposit, and dry the composite 

materials while maintaining the high aspect ratio of the CNTs, without adding steps 

that would damage the cathode material. In this chapter, we investigate different 

mixing methods and deposition techniques.  Each of these is then evaluated based on 

the conductivity of the composites and the electrochemical performance of the 

produced films. 

4.2 Materials 

Lithium Iron Phosphate (LFP) with average diameter of 2 µm (95% less than 

21 μm) and binder (PVdF) was purchased from MTI Corporation.
e
 Anhydrous n-

methyl 2-prolylodone (NMP) and all other reagents were purchased from Sigma 

Aldrich. PVdF was prepared by dissolving 1g in 100 mL of NMP and heating the 

solution to 100°C for 6 hours. All CNTs in this work were multiwalled (SMW) and 

were graciously supplied by Southwest Nanotechnologies. 

4.3 Formulation 

In order to increase the specific capacity, we investigated reducing the 

inactive material content, either the conductive additive or the binder. PVdF was used 

as the binding agent; although an insulator, it is needed to stabilize the contact of the 

conductive additives to the active material. Any amount of PVdF in the composite 

will impact the cathode conductivity, as can be seen in Figure 4.1.
55

 A sharp decrease 

                                                 
e
 A 2 μm particle diameter material are not considered high rate. Nanosized materials tend to produce 

the highest rate cathode material.  
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in conductivity is observed with even a small amount of binder added (0% vs. 0.6%) 

for the intermittent sonicated samples. The principle concern is that at the lowest 

loading of binder the films of cathode material will delaminate in the battery can. 

 
Figure 4.1 Effect of PVdF content on composite conductivity with 5% CNTs 

dispersed using intermittent and continuous sonication. 

In order to investigate the PVdF impact we prepared batteries with the drawn 

down method, with binder content between 0.6% and 6% and measured their 

discharge capacity, Figure 4.2. Here we see that for samples with PVdF content above 

4%, the initial discharge capacity represents full utilization of the cell.  As the content 

of PVdF is reduced, the capacity and stability of the batteries diminishes. The battery 

with 6% PVdF has the highest capacity at 5C (85 mAh/g) and the capacity fade is 

minimal as it is able to return to its original capacity when at the C/10 current 

discharge rate. 
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Figure 4.2. Effect of PVdF content on the electrochemical performance of half 

cells with 5% CNTs in composite deposited with the drawn down method. 

As discussed in chapter two, in order for a composite to be conductive there 

needs to be enough conductive material to meet the percolation threshold. Figure 4.3 

displays the discharge capacity of batteries made with CNT loading between 2% and 

5%, where the CNTs were dispersed by an ultrasonic horn just prior to aerosol spray 

deposition. All of the batteries below 5% exhibit capacity fade that is characteristic of 

a loss of electrode contact for a fraction of the battery particles every cycle, although 

at first the battery capacity is higher with low CNT content. This suggests that the 

method of dispersion was effective but the 3-dimentional network is not resilient after 

higher current density discharge cycles. Only with 5% CNT content does the battery 

retain the initial capacity when returning to lower discharge current (C/10). 

We know from the conductivity measurements that the amount of CNTs 

needed to reach percolation threshold is well below 2%. Percolation does not mean 

every surface is in contact with the electrode. It appears the surface threshold is 

between four and five percent for this composite. 
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We investigated the same preparation technique with carbon black, Figure 4.4, 

and found that the delivered capacity was poor below for the 5, and 10% loading 

samples. With 20% carbon black the capacity delivered was good, but the capacity 

fade was severe and irreversible.  

 
Figure 4.3. Discharge capacity of LiFePO4 half cells with various CNTs loading 

and 5% PVdF prepared by aerosol spray deposition. 

 
Figure 4.4. Discharge Capacity of LiFePO4 with various Carbon Black loading 

and 5% PVdF prepared by aerosol spray deposition. 
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4.4 Dispersion 

Flocculation, or the formation of aggregates in a fluid, is a difficult problem to 

deal with when trying to disperse and maintain the separation distance between long 

rope-like members like CNTs. If the CNTs make contact with each other they will 

likely form bundles, and thus reduce the concentration and reduce their own effective 

conductivity. When starting with a dried powder of CNTs (typically freeze dried) one 

should expect that the CNTs are already in bundles or at least in intimate contact.  

Some sort of high energy mechanism is needed to separate the CNTs. 

Surfactants (surface active agents) are often used for this application by minimizing 

the surface energy. They keep CNTs dispersed by utilizing either charge repulsion or 

hindrance, depending on the end group of the surfactant molecule. Mechanical 

dispersion and dilution can also be utilized to separate bundles. The mechanical 

energy could be delivered by ball milling, mortar and pestle hand grinding, 

ultrasonication, or any one of numerous other techniques, see the work by J.K. 

Beddow for a summary of this very well developed art.
56

 

In order to optimize the dispersion and reduce flocculation within the 

suspensions we varied the method of mixing the constituents into the mixtures. We 

investigated dispersing the CNTs using ball milling, intermittent ultrasonication, and 

continuous sonication and deposited these films by aerosol spray, Figure 4.5. For 

comparison, a slurry made battery with a CNTs and PVdF paste is also included. 

Since ultrasonication is energetic enough to cleave CNTs over time a pulsed mixing 

procedure might better preserve the high aspect ratio of the as produced CNTs. 

Unfortunately, as can be observed in Figure 4.5, continuous sonication is much more 
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effective at separating the CNTs before deposition via aerosol spray. On the other 

hand, ball milled CNTs and CNTs prepared as pastes exhibit poor performance at 

high C-rates. While both of these methods were able to reproduce the initial capacity 

after returning to smaller current densities, this indicates that the materials are well 

mixed, but there was a lack of good contact between the CNTs and the LFP. 

 
Figure 4.5. Effect of dispersion method on batteries with CNTs added as a mixed 

in a paste of PVdF (diamond) or an Aerosol deposition with intermittent 

sonication (circles), continuous sonication (triangles), or ball milling (squares). 

4.5 Deposition 

In order to make the batteries, the cathode film was done using two different 

deposition methods, one with a standard microgravure rod (wire size #22) and 

another with an aerosol sprayer (Paasche).  In the standard microgravure rod method, 

the mixture of CNTs and LFP are dispersed in NMP by ultrasonication (25ml NMP 

for every 1g of solids). Then this suspension is dried in a vacuum flask filter, and then 

dried further in a vacuum oven at 80°C for 12 hours.  A binder solution is prepared by 

mixing PVdF in NMP. The NMP is brought to just below the melting point of PVdF 

and mixed vigorously. The PVdF is mixed in at a 1% concentration. This viscous 

liquid is then added to the dry mixture of CNTs and LFP. Typically, enough is added 
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to obtain 5% PVdF in the final solid solution. After adding the viscous binder 

solution to the dry mixture, it will form a slurry paste the can be deposited on the 

Aluminum film easily. The microgravure rod is used to control the thickness of the 

film, and also to create a consistent deposition of the paste on the Aluminum film. An 

amount is dropped at the top of the film and the rod is rolled over the backing to 

distribute the material. The film is then heated with a heat gun until dry. Multiple 

layers can be deposited in this manner, but delamination can be a problem if the film 

is too dry underneath. A large fraction of material is lost in the grooves of the rod. For 

making 5” by 5” squares, this accounts for more than half of the prepared material. 

In the aerosol sprayer method, the first step is also to sonicate the mixture of 

CNTs and LFP in NMP (25ml NMP for every 1g mixture). The binder solution is 

prepared in a similar manner to that described above. This binder solution is added to 

the solution of CNTs and LFP in NMP and the whole mixture is stirred at 350 rpm for 

another 20 minutes. This mixture is sprayed on a hot aluminum film. The aluminum 

backing is secured on a hot plate (160°C or 120°C on the surface unless otherwise 

noted.) The mixture is sprayed with 40 PSI nitrogen. Between each pass, the film was 

allowed to dry. 

Film Deposition: Cathode films were prepared by microgravure slurry, 

aerosol spray, and atomizer spray, as seen in Figure 4.6. Each of these films was 

prepared with 5% CNTs and 5% PVdF in NMP with the commercial LFP. The 

atomized sprayed cathode appeared to have the most cohesion formed within the 

droplets as they were sprayed. The droplets on the surface were largely preserved 

even after compression. As such, the film had a higher tendency to crack since 
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material did not form strong interconnections. On the other hand, the aerosol sprayed 

cathode and the slurry cathode were well connected and did not form cracks.  
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Figure 4.6. Films of LFP, CNTs and PVdF prepared by microgravure drawn 

down method (top), aerosol spray (middle), and atomized spray (bottom). 
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The spray-coated film had the best electrochemical performance, see Figure 

4.7, of the three deposition methods with a capacity of 100mAh/g at 5C, followed by 

the slurry (85 mAh/g).  Based on the SEM the aerosol cathode appears to have been 

more effective at dispersing the PVdF and CNTs. The atomizer sprayed cathode 

seems to have been too effective at coating the droplets with PVdF, which partially 

insulated them from the electrode. 

Although spraying techniques have been suggested to be highly advantageous, 

the specifics of the conditions of the film deposition have not been clearly stated, the 

most important step in spray deposition is the removal of the solvent.
1,57

 The high 

surface tension in small droplets will force materials to make intimate contact as the 

droplet size is reduced as the solvent evaporates. In the atomized sprayed cathode, the 

solvent is mostly removed even before the droplet lands on the surface, due to the 

high energy of that technique. In the slurry deposition, drying is controlled by a heat 

gun, and is only begun after the whole film has been deposited. Additionally, the rate 

of drying can occur much more slowly.  

 
Figure 4.7. Effect of deposition techniques on the discharge capacity. 
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4.6 Drying 

The speed of aerosol spray deposition depends on the rate at which the 

material can be dried once it is on the backing. This will depend on the surface area 

(A), the temperature of the backing (Ti), the partial pressures of the solvents present, 

the mass fraction of solvent to remove (X), and possibly the size of the droplets 

extruded out of the aerosol nozzle on the surface. The drying rate (W) is a 

combination of convective (Eq. 4.2) and conductive mechanisms (Eq. 4.3.). Where U 

is the integral coefficient of heat transmission, λi is the latent heat of vaporization of 

the liquid and ki is the coefficient of mass transport.  

   
 

 
( 

  

  
) Equation 4.1. 

              ) Equation 4.2. 

                ) Equation 4.3. 

The dry air flowing over the sample and the heat from the hot plate drive the 

solvents out of the sample into the air. During the aerosol deposition, the small 

droplet size will increase the rate of solvent removal before deposition onto the 

backing surface, due to the high surface tension. Individual small droplets on the 

surface will also have increase drying rates due to the surface tension. During aerosol 

deposition, the drying time varied between a few seconds per layer to minutes. Thus 

at low temperature the spraying time could exceed 4 hours. 

In Figure 4.8(a), we show the discharge capacity of batteries made from films 

deposited with NMP as the only solvent where the hot plate setting was varied from 

100°C to 200°C. All films were subsequently dried in a vacuum oven at 120°C 

overnight to ensure there was no residual NMP in the battery. Since NMP has a high 
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boiling point (202°C), the time between applications to allow the film to dry can be 

excessive. With the surface temperature below 100°C, the battery fails when 

delivering current densities of C/2 and does not recover. At higher surface 

temperatures the battery improved significantly but still exhibited capacity fade after 

delivering current densities of 1C and higher. This effect was exaggerated even 

further with surface temperatures above 200°C. 

In order to reduce the drying time and to reduce the evaporation temperature a 

solvent that was compatible with PVdF and miscible with NMP was sought. Water, 

Isopropanol, and Ethylene cause the PVdF to coagulate.  Acetone was identified as a 

potential candidate. Mie scattering is observed in all samples but the acetone in 

Figure 4.9. Acetone was added in a 1:1 ratio to NMP in the spray mixture after 

ultrasonication. Due to the small droplet size of the aerosol spray, the Acetone 

evaporates even before contact with the surface. This effectively reduces the droplet 

size and increases the rate of evaporation.  As seen in Figure 4.8(b) the temperature of 

the surface during deposition impacts the discharge capacity. In particular the 

batteries exhibit capacity fade at both low and high temperature depositions. Finally, 

Acetone was added during the sonication step, Figure 4.8(c). The film deposited at a 

lower temperature still exhibited capacity fade at 5C, although the capacity returned 

when the C/10 current density returned for both batteries. 
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Figure 4.8. Capacity of batteries made by aerosol spray deposition (a) with NMP 

as the only suspention solvent, (b) with acetone added to NMP before spraying, 

and (c) with acetone and NMP mixed during sonication step. Depositions were 

done over a range of temperatures: 130°C(diamond), 140°C and 190°C 

(triangle), and above 200°C (triable). Acetone was mixed in at 1:1 vol/vol. 
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a b 

Figure 4.9. Mixing of PVdF in Acetone, 2-Propanol, Ethylene, and Water (a) 

after mixing and (b) after one hour. 

4.7 Hot Pressing, Punching, and Assembly 

All cathode films were pressed for two minutes at 5,000 kg between Kapton® 

at 200°C. Films with low PVdF content were much more likely to crack or exhibit 

delamination issues. Furthermore, any area where the backing was not clean would 

delaminate in this step as well. 

All samples were subsequently punched into ½” disks and dried in a vacuum 

oven at 120°C for 12 hours before being stored and assembled in a dry box. The films 

were packaged in 2032 coin cells (Pred Materials Inc.) with a Celgard 2400 separator, 

versus a Lithium anode, and with 1M LiPF6 in EC:DMC (1:1 v/v) as the electrolyte. 

See Appendix B for a review of issues with packaging, identification, and the 

solutions. 

Ultra-thin areas of the sample were avoided. It was found that samples with 

less than 2 mg of material would exhibit higher than reasonable capacity due to the 

ultra-thin film present. All samples measured should have at least 2 mg of active 

material. 
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4.8 Temperature  

Although under anaerobic conditions (or reducing conditions) the LiFePO4 is 

stable up to high temperature (500 to 900°C) with oxygen present it was found that 

LFP undergoes a phase change above 300°C. Due to the long drying rates at low hot 

plate temperature, it is tempting to drive off the solvents with high temperature hot 

plate or hot air flows. 

After discovering films that were heated to 300°C in air had poor cycling 

capacities (2 mAh/g) we investigated a film with XPS, Figure 4.10. Since the Lithium 

peak is hard to resolve with XPS it was ignored in this analysis. The ratio of the 

concentration of each element in FePO4 should be 1:1:4 (Fe, P, O). Since iron and 

phosphor should be present in equal concentrations, the lack of phosphor in Table 4.1 

relative to iron indicated that the surface had evolved. Either the film had lost 

Phosphate and Oxygen content or Fe had migrated to the surface. In either case, the 

interface is no longer LiFePO4. 

 
Figure 4.10. XPS of source LiFePO4 and a film calcined at 200°C. 

Table 4.1 Atomic Concentration as measured by XPS of source LiFePO4 and a 

film calcined at 200°C. 

element Li Fe P O 

Untouched LiFePO4  69.77 4.30 4.00 21.93 

High Temp. Aerosol Spray 68.56 3.66 3.60 24.17 
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4.9 Summary 

We have optimized the deposition conditions for producing composites with 

CNTs as the conductive additive. The initial efforts used CNT pastes with PVdF 

already mixed with the CNTs, Figure 4.11(a). These cathodes exhibited very poor 

capacity due to the bundles formed by the CNTs and the lack of dispersion of CNTs 

across the cathode. A ultrasonicated mixture of CNTs in the slurry produces a much 

higher capacity cell, Figure 4.11(b). Dispersion of the CNTs is essential to create 

cathodes with high capacity. 

 

a 

 

b 

Figure 4.11. Voltage vs. Capacity at different C-rates using (a) CNT paste (series 

3), (b) CNT mixed slurry (series 11) made with commercial LiFePO4 and 5% 

CNTs and 5% PVdF.  
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We found that optimization of the cathode composite by aerosol spray 

deposition would further improve the charge capacity and cell potential during 

discharge, Figure 4.12(a). We have further optimized these parameters including: 

formulation, dispersion method, dispersion solvents, and deposition hot plate 

temperature. The optimal formulation was 5% CNTs and 5% PVdF. The optimal 

dispersion method was continuous ultrasonication for 20 minutes with all materials 

present in a NMP and Acetone mix. The optimal dispersion solvent was found to be 

NMP and Acetone with at least 50% Acetone. The optimal hot plate deposition 

temperature was found to be between 150 and 190°C. 

 

a 

 

b 

Figure 4.12. Voltage vs. Capacity at different C-rates using (a) Commercial 

LiFePO4 made with 5% CNTs and 5% PVdF (series 28) and (b) 20% carbon 

black both made by aerosol spray deposition (series 51). 
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We investigated the benefit of the CNTs vs carbon black and compared the 

deposition methods using EIS. In Figure 4.13 the semi-circle crossing point for the 

aerosol spray is at 100Ω, nearly half that of the drawn-down method and one fifth of 

the carbon black mixture. This represents a significant decrease in the CPE resistance. 

If the porous surface model is used this represents a much more effective surface 

contact.  

 
Figure 4.13. Electrode Impedance Spectroscopy of cathodes (blue square) 

aerosol sprayed with CNTs, (red square) drawn down with CNTs, and (circle) 

aerosol sprayed with carbon black. 

The initial resistance crossing point with both the drawn down and the aerosol 

spray are reduced to 3.9Ω. This is the most direct measure of the electrode resistance.  

The slope of the Warburg, the increasing tail, in all these samples is the same. 

This is to be expected as the cathode material is identical and thus the rate of phase 

change after polarization due to the electrode contact is accounted for should be the 

same. 
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 Chapter 5. Embedding CNTs into Lithium Iron Phosphate 

5.1 Motivation 

The best batteries have high energy density, can discharge and charge fast, 

and will do so for thousands of cycles. The primary limitation to high current 

densities in LiFePO4 is the diffusion of lithium in and out of the crystal.
58

. Since 

LiFePO4 is also not particularly conductive, the electrode contact should be as near as 

possible in order to enable the fastest diffusion pathways. Here we investigate the 

formation of LiFePO₄ with CNTs that can form an  internal distributed network, thus 

shorten the path length for diffusion. Growth was achieved using a Polyol synthesis. 

 
Figure 5.1. A Representation of films with poor (left) and good (center) 

dispersion of the CNTs. Lithium Iron Phosphate grown onto CNTs would have 

an even shorter diffusion length (right). 

 

Highly conductive few walled carbon nanotubes were used in this work for 

their durability and high aspect ratio. Based on the analysis of the conductivity of 

CNT dry powders and 5% CNT composite, (see Figure 5.1) we selected the SMW-

200. The SMW-200 from Southwest Nanotechnologies was the most highly 

conductive and produced the highest conductivity in the composite. 
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Figure 5.2.  Multi-walled CNTs were evaluated as dry powders and in 

composites (left). Under TEM, the selected CNT appears highly crystalline with 

few bends or defects (right). 

5.2 Initial Material Formation 

LiFePO4 was synthesized by reducing iron acetate, lithium acetate, and 

ammonium dihydrogen phosphate with ethylene glycol as the reducing medium, 

Table 5.1. The reaction is allowed to run for 18 hours open to the air (without a vapor 

lock). The materials were then annealed at 550°C under Argon for 6 hours. Based on 

the SEM and XRD analysis LiFePO4 was the only crystalline material formed. 

Nevertheless, the material did not have large domains. PVP and Gum Arabic were 

included in the reaction to increase the dispersion of the CNTs. The formation of the 

crystalline LFP was further limited as can be observed in the XRD of the samples, 

Figure 5.3. 
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Figure 5.3. XRD analysis of polyol grown LiFePO4 with 2% CNTs, CNTs and 

PVP in water, and CNTs and Gum Arabic in water. 

Table 5.1. Precursors to Lithium Iron Phosphate Growth. 

Name Properties Role 

Ethylene glycol 
 

Supporting Solvent & 

Reducing medium 

 Boiling point: 197.3°C 

 

Triethylene glycol  

Supporting Solvent & 

Reducing medium  

Boiling point: 285°C 

N-Methyl-2-pyrrolidon 

 

Dispersing Solvent 

Boiling point: 202°C 

 

Dihydrogen Oxide OH2  
Dispersing Solvent 

Boling point: 100°C 

Lithium Acetate 

 

Lithium Source 

Iron Acetate 

 

Iron Source 

Ammonium Dihydrogen 

Phosphate 
 

Phosphate Source 
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a 

  

 

b 

  

 

c 

Figure 5.4. SEM micrographs of LiFePO4 formed at 160°C with 2% CNTs 

without a vapor lock (a), with CNTs dispersed in PVP in water (b), with CNTs 

dispersed in water with Gum Arabic (c). 
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By including PVP, the particle size was drastically reduced but so was the 

crystallinity. It appears that the introduction of water inhibited the growth reaction. 

Based on these results this suggests an anaerobic reaction might be required.  

5.3 Anaerobic LFP Growth 

The above reactions were repeated with a vapor lock and nitrogen bubbler to 

ensure an anaerobic growth condition at a series of temperatures. The improved 

conditions have increased the crystallinity compared to the previous 160°C reaction, 

Figure 5.4. 

The reaction temperatures 160°C, 180°C, and 190°C were investigated. The 

morphology of LiFePO₄ formed at 180°C is strikingly different from anything 

obtained at 160°C where the CNTs did not appear to impact the LiFePO₄ growth, 

Figure 5.6(c). At 180°C, the produced material appears to coat the CNTs to forms 

cylinder, Figure 5.7(c). Furthermore, nearer the ethylene glycol boiling point (190°C) 

the LiFePO₄ forms crystallites that are attached along the CNTs, Figure 5.8(c). We 

also observed a large fraction of the material forming larger crystals as well. XRD 

analysis demonstrates that the domains of these materials are much smaller than the 

solid state reaction produced LiFePO4. Based on the relative heights of the peaks it 

appears the lithium uptake was not complete, the [121] peak should dominate with 

full lithium uptake instead of the [211] peak. This is reflected in the discharge 

capacity with rather unremarkable performance, see Figure 5.9, although the EIS 

spectra do demonstrate a reduction in impedance with increasing reaction 

temperature. To test these films we packed them in a half cell versus a lithium anode, 

LiPF6 electrolyte, and cycled them with the standard cycling reaction.  
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Figure 5.5. XRD diffractogram for LiFePO₄ solid state reaction reference and 

polyol formed at 160°C, 180°C, 190°C, 190°C with NMP, and 190°C with PVP 

and NMP. 

Table 5.2. Diffraction peak angles, plane indices, and relative intensity.
59

 

Angle 2θ hkl Intensity 

17.348 [020] 34 

20.768 [011] 76 

22.666 [120] 26 

24.019 [101] 10 

25.545 [111] 70 

29.700 [121] 100 

32.187 [031] 34 

35.554 [211] 81 

36.496 [140] 25 

36.886 [221] 15 

39.597 [112] 19 

42.189 [112] 15 
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a 

  

 

b 

  

 

c 

Figure 5.6. SEM micrograph of LiFePO4 grown by polyol in ethylene glycol at 

160°C under anaerobic conditions. 
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a 

  

 

b 

  

 

c 

Figure 5.7. SEM micrograph of LiFePO4 grown by polyol in ethylene glycol at 

180°C under anaerobic conditions. 
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a 

  

 

b 

  

 

c 

Figure 5.8. SEM micrograph of LiFePO4 grown by polyol in ethylene glycol at 

190°C under anaerobic conditions. 
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Figure 5.9. Electrochemical Performance of polyol (ethylene glycol) grown LFP 

with a vapor lock at different reaction temperatures. 

 
Figure 5.10. Electrochemical Impedance of LiFePO4 grown by polyol in ethylene 

glycol under anaerobic conditions, cells held at 3.4V vs open circuit. 

Although the relative intensities of the XRD diffractogram do not match the 

reference material, there were no other discernable peaks observed in the 

diffractogram. Additional peaks would be present if other possible crystallites were 

formed, Figure 5.5. Since these peaks were not present, only FePO4 and LiFePO4 

were formed.  

0 150 300 450 600
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Figure 5.11. Crystal phases with Li-Fe-P and the glass-phase area.

60
 

5.4 Growth with Dispersion 

The formation of large particles in the matrix suggested that there might have 

been bundles of CNTs still present in the growth reaction thus limiting effectively 

utilizing all the surface area. We ultrasonicated the CNTs in N-Methyl-2-pyrrolidone 

(NMP) to ensure that they were well dispersed. The LiFePO₄ formed (190°C) in this 

reaction produced larger and extended structures that were interconnected (Figure 

5.12). The LiFePO₄ did not coat the CNTs as it did in previous reactions. We also 

utilized polyvinylpyrrolidone (PVP) in NMP to disperse the CNTs. The LiFePO4 

(190°C) reaction produced much smaller particles with PVP introduced as compared 

to the above reaction (Figure 5.13). 
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a 

  

 

b 

  

 

c 

Figure 5.12. SEM micrograph of LiFePO₄ grown at 190°C with 2% CNTs 

dispersed with NMP. 
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a 

  

 

b 

  

 

c 

Figure 5.13. SEM micrograph of LiFePO₄ grown at 190°C with 2% CNTs 

dispersed with PVP in NMP. 
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Figure 5.14. Discharge capacities of LiFePO₄ grown at 190°C with 2% CNTs 

dispersed with NMP and CNTs dispersed with PVP in NMP. 

 

Although the capacity at low C-rates is increased for cathodes made with 

NMP and PVP, the capacity at higher currents does not change. This suggests a 

diffusion limitation at the particles. Based on stable capacity at low C-rates and the 

small domains as determined by XRD it is most likely that defects in the battery 

particles are the primary constraint. 

5.5 Summary on Growth of LiFePO4 with embedded CNT  

We investigated methods to incorporate CNTs into battery particle formation. 

Specifically growing LiFePO₄ on the CNTs . The LFP precursors were placed in an 

ethylene glycol a bath medium with CNTs dispersed in combinations of water, n-

methyl-2-pyrrolidone, and surfactants and heated to the reaction temperature for 18 

hours. We have demonstrated the formation of battery material on CNTs using the 

polyol process is viable. The initiation of growth on CNTs is highly dependent on the 

temperature of the reaction. Common CNT dispersing agents reduced the contact with 

LFP particles and impacted the crystal particle size. Where crystal growth with NMP 

alone inhibits the interaction of CNTs and increases the crystal agglomerate size and 
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crystal growth with both PVP & NMP results in materials with reduced particle size. 

Neither dispersing agent increased the capacity at high C-rates. As noted before, in 

the XRD peak [121] or the [111] should be higher than the [211] if full Lithiation has 

occurred. In Figure 5.4, we observed that the sample with the CNTs dispersed with 

NMP only has the closest ratio to the desired peak intensities, and in addition, this 

series had slightly higher capacity than the other cells. The domain size in this sample 

appears to be larger, as the XRD peaks are narrower and well defined. This may be 

due to the larger particles formed in this reaction. The insertion of Lithium into the 

structure is difficult to do after the particles are formed. it appears now that excess 

Lithium acetate should have been used to ensure full uptake during crystal formation.  

Some mechanical optimization could have assisted in the material formation, 

specifically, ultrasonication during the reaction to ensure CNT dispersion. Higher 

CNT content to meet the full conductivity needs of the composite without further 

added carbons. Mechanical milling of the produced materials before annealing could 

have reduced particle size and ensured complete mixing. Although mechanical 

mixing (ball milling) will reduce CNT aspect ratio. CNTs already encased in LFP 

should be able to withstand the milling action. Further optimization is required to 

increase the domain size to enhance the lithium uptake and thus the capacity of these 

materials.  
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 Chapter 6. Technology Implications 

6.1 Motivation—Electric Vehicles 

This work was originally motivated for the purpose of increasing the power 

capacity of Li-ion cells with the eventual goal of making cathodes for use in electric 

vehicles. Unfortunately the main limitation to high power rates is the Lithium 

diffusion (since the activation barrier for Lithium diffusion is much larger than the 

electrons, Table 2.3), not the electronic conduction, though the conductivity does 

have some small impact on the Lithium diffusion as the driving force moving the 

ions. We found that by using carbon nanotubes we could replace 20% carbon black 

with 5% CNTs. This represents a large increase in specific capacity and specific 

power.  

 
Figure 6.1. Average Performance of Batteries across the Surface Threshold. 
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Furthermore, we found that the carbon nanotubes networks, when made well, 

are more resilient than carbon black. The electrode contact decay that is typical of 

batteries with amorphous conductive additives is resolved by having a net of CNTs 

that coat the battery particles. The material will swell and crack, it will evolve, as the 

battery is uses. Nevertheless, the electrode contact will be maintained due to the high 

aspect ratio of the CNTs, their high strength, and their resilience in the high chemical 

potential environment. 

We would very much like batteries that were long lasting, that carried enough 

capacity, at a high enough potential to move our cars 300 miles per charge. It would 

additionally be great if these materials were inexpensive, sustainable, and easy to 

make. The DOE has developed guidelines for hybrid and fully electric vehicle battery 

systems that could power our transportation fleet, Table 6.1. These are ambitious and 

demanding goals and yet no battery system to date has achieved all of them.  

Table 6.1. Summary Requirements of PHEV Batteries from the DOE.
61

 

Characteristics at the End of Life  
High Power/Energy 

Ratio Battery  

High Energy/Power 

Ratio Battery  

Reference Equivalent Electric Range  miles  10  40  

Peak Pulse Discharge Power (2 

sec/10 sec)  
kW  50/45  46/38  

Peak Regen Pulse Power (10 sec)  kW  30  25  

Available Energy for CD (Charge 

Depleting) Mode, 10 kW Rate  
kWh  3.4  11.6  

Available Energy in Charge 

Sustaining (CS) Mode  
kWh  0.5  0.3  

CD Life  Cycles  5,000  5,000  

CS HEV Cycle Life, 50 Wh Profile  Cycles  300,000  300,000  

Calendar Life, 35°C  year  15  15  

Maximum System Weight  kg  60  120  

Maximum System Volume  Liter  40  80  

System Recharge Rate at 30°C  kW  1.4 (120V/15A)  1.4 (120V/15A)  

Unassisted Operating & Charging 

Temperature  
°C  -30 to +52  -30 to +52  

Maximum System Price @ 100k 

units/yr  
$  $1,700  $3,400  
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The energy and power density for vehicle batteries should be in terms of the 

whole mass of the battery, including: electrodes, separators, cathode, anode, 

electrolyte, and housing. Since power from these batteries is determined by the series 

and parallel combination of individual cells, parallel banks increase the capacity and 

series banks increase the voltage. As discussed in chapter 1, we can either increase 

the voltage or increase the current to produce more power. Until an electrolyte is 

found that is stable over a larger electrode potential than we currently have, we must 

look to reducing the electrode mass as the primary method to increase the energy and 

power densities. 

Let us look at the requirements set by the DOE report. In particular, let us 

focus on durability requirements. Three hundred thousand cycles is a very large 

number for battery life. A cell must be resilient and must be able to recover from high 

current discharges and charging. This represents a maximum loss of 2×10
-4 

% per 

cycle, essentially no capacity loss. Both the interface and the electrode must be 

stabilized in order to meet this demand. In order to ensure this is the case, the charge 

efficiency should be nearly 100%. During the first cycles an SEI layer is formed. This 

layer should not continue to grow thicker and thicker as the battery is used. This 

would represent the formation of dendrites or a reaction that is depleting the 

electrolyte. The charge capacity should nearly match the discharge capacity on a 

stable cell.  

We tested the CNT and carbon black cells at a 2C charge rate and 1C 

discharge rate. As expected the fast charge rate polarized the cathode material 

significantly, leading to low capacity from all the cells. The CNT stabilized cell 
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reproduced the charge capacity with high fidelity and with the highest capacity. 

Furthermore, the capacity produced under these strenuous conditions is stable from 

cycle to cycle. Only at every 50
th

 cycle, when the batteries are charged slowly and 

discharged slowly again, is there a change disruption in this pattern. The carbon black 

batteries repeat this trend as well, meaning that the effect is likely due to the particles 

or interface and not the electrode. 

 

 
Figure 6.2. Battery Life Testing with 2C charge and 1C discharge on a cells with 

5% CNTs or Carbon Black. 

If we estimate the weight of the battery as no more than 40% of the anode and 

cathode then from Table 6.1 we can derive the expected capacity upon full discharge 

of the cell. The 10 kW rate on a 3.4 kWh energy cell is effectively a C/3 C-rate. With 

a mass of 60 kg for the entire battery, and using the potential of LFP vs. graphite the 

expected capacity is only 40 mAh/g. The cells we made have achieved a stable 35 
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mAh/g at a 2C charge rate. That is a half hour charge time, which is within reason for 

recharging an electric vehicle. We have achieved nearly this specific energy density 

with a current density three times the requirement. LFP with CNTs as the conductive 

additive alone meets the sustained power requirements for high power cells in hybrid 

electric vehicles. We have not established if it can meet the peak power requirements, 

which would be effectively a rate greater than 10C, or below the 3.6 s line in Figure 

6.3. It seems clear that a capacitor system is better suited for peak power. 

 
Figure 6.3. Energy and Power available with common battery technologies as of 

2008 with the Energy density of this work added.
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6.2 CNT Enhanced Cathodes 

In chapter 4, we examined in detail the optimization of CNT enhanced Li-Ion 

battery composites films, their processing, and formulation with PVdF as the binder 

and LFP as the active material. The conductive additives, dispersion steps, deposition 

methods, and drying conditions were all considered. Given that the LFP was 

purchased and made via solid state reaction with a wide distribution of particle sizes 

with 10% as large as 20 microns and a with a reported typical capacity of 150mAh/g 

at C/2, it is fair to say this material is considered fairly non-ideal. This material has no 
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advantage from surface coatings to bridge gaps in the conductive additive or small 

particle size to reduce the path length of the lithium or electron diffusion. The only 

way this material will perform well is by ensuring all of the battery material is 

connected to the electrode. Since the available capacity of LFP is highly dependent on 

the current density, reducing the local C-rate at each particle will increase the battery 

performance. We found that by optimizing the processing of the CNTs a 3-

dimensional network that is both highly conductive and resilient can be formed that 

connects a large fraction of the total surface area. Ideally, each and every particle 

surface in the composite should be connected to the electrode. 

The conductivity of multiwalled carbon nanotubes were evaluated as 

compressed powders and as additives in composites in chapter 3. Just as with single 

walled CNTs, multiwalled carbon nanotubes can have a range of properties based on 

their growth conditions. The physical differences may be in crystallinity, aspect ratio, 

or defect density, all of which can impact their conductivity. As previously stated and 

shown by others, the primary advantage of CNTs over acetylene black is the ability to 

make a highly conductive and resilient 3-D network with much less conductive 

additive.  This means that the inactive material can be significantly reduced and 

replaced by only 5% CNTs and 5% PVdF instead of 20% CB and 10% PVdF. The 

energy density delivered at different C-rates with different contents of CNTs 

demonstrates that 5% CNTs is needed to reach the surface threshold. 
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Figure 6.4. Energy density of MTI Corp. LFP made with aerosol spray method. 

If proper attention is paid to the dispersion of the CNTs and an optimized 

deposition procedure is used, highly conductive and resilient networks can be formed 

with either the draw down method or the aerosol spray coating, Figure 6.5. The 

aerosol spray application may be most advantageous for studying new materials, as 

there is very little material loss as compared to the draw down method.  

  
Figure 6.5. Charge and Discharge Capacity of LiFePO4 cathodes with standard 

and optimized procedures and different deposition methods. Samples included 

5% CNTs and 5% PVdF or 20% carbon black and 5% PVdF. 
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We also investigated high surface area cathode materials and found that, with 

a cathode material designed to deliver higher current densities, we were able to 

reproduce the high energy densities, and the high rate performance improved 

significantly over the commercial LFP. The rate limitation of LFP composites is 

primarily due to the diffusion of Lithium within the crystal. Particle size engineering 

to obtain small particle size or large crystals facets in the (010) direction could greatly 

increase the rate capability of these materials. Nevertheless, the stabilization of the 

electrode contact under high strain demonstrates the unique advantage of the CNTs 

incorporated as the conductive additive.  

6.3 Competition 

Lithium Iron Phosphate (LiFePO4) is one among many battery cathodes that 

are commercially viable. It is helpful to review some of the benefits and problems of 

some of the most prominent competing systems to understand the full advantage of a 

particular system. These materials were first introduced in Table 1.2. 

The Li-O2 or Li-Air battery has a theoretical energy density that could rival 

that of the combustion engine. The Li-air battery is similar to a fuel cell in that gas or 

liquid is fed into the cell to drive the reaction. Unfortunately, Li-Air batteries have a 

problem with water and carbon dioxide passing through the separator and corroding 

the anode. There is also the problem of numerous side reactions that interrupt the Li-

O2 or Li-OH reactions on the cathode side. Needless to say, the full capacity of Li-Air 

has not been realized yet. If these problems can be worked out Li-Air could 

potentially replace the combustion engine as the predominate energy storage medium 

for personal transport. 
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Super capacitors are particularly advantageous for high power applications but 

suffer from poor energy density. The difference between batteries and capacitors is 

the relationship with the state of charge and the battery voltage. With capacitors, this 

is a linear relationship. This means the state of charge is straight forward to interpret 

merely based on the battery voltage. This advantage makes super capacitors much 

less expensive to implement in circuits since the capacity used does not have to be 

monitored to know the state of charge. These are usually materials with high surface 

areas to store large amounts of charge. 

Another crystalline material is the NASICON structure. Although its capacity 

is less than LiFePO4, it has a more open 3-D structure, which lends itself to higher 

diffusion rates. Unfortunately even with the high rate capability this material suffers 

from unrealized capacity, typically 140 mAh/g at C/10, clear capacity fade over time,  

and with the presence of two redox reactions during charge and discharge the 

potential for many other intermediate reactions is possible at high potentials. This of 

course is a problem all high voltage batteries have. Work with surface coatings, nano-

directed growth, and conductive additives may reduce the severity of these problems.  

For all of these systems the problem remains to deliver energy, power, and 

long life between two electrode contacts at an economically viable cost. 
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 Appendix A. Summary of Samples Made 

Table 8.1. All Cells made with Commercial LFP. 

Series # 
LiFePO

4 

SMW 

200 
PVdF 

CNT : 

LiFePO4 

(%) 

Sonication 

Solvent 

Deposition 

method 
Sonication  

Deposition 

temperature 

(0C)  

5 94.67 4.73 0.6 5 NMP Drawdown Intermittent Used heat gun 

7 91.43 4.57 4 5 NMP Drawdown Intermittent Used heat gun 

8 93.33 4.67 2 5 NMP Drawdown Intermittent Used heat gun 

9 91.43 4.57 4 5 NMP Drawdown Continuous Used heat gun 

11 89.52 4.48 6 5 NMP Drawdown Intermittent Used heat gun 

12 86.95 4.35 8.7 5 NMP Drawdown Intermittent Used heat gun 

14 91.5 4.5 4 5 NMP Spraying Continuous   

22 90.5 4.5 5 5 
Acetone 
ONLY 

- -   

23 90.5 4.5 5 5 
NMP : 

Acetone (1:3) 
Spraying Continuous   

24 90.5 4.5 5 5   Spraying Continuous 80C 

26 90.5 4.5 5 5 
PVP in DI 

water 
Spraying Continuous - 

27 90.5 4.5 5 5 NMP 
Spraying with 

Acetone & NMP 
Continuous 170-200 

28 90.5 4.5 5 5 
NMP:Acetone 

=50:50 
Spraying Continuous 160-180 

29 90.5 4.5 5 5 
NMP:Acetone 

=25:75 
Spraying Continuous 130 

31 93.14 1.86 5 2 NMP 
Spraying with 

Acetone & NMP 
Continuous ~130 

32 92.23 2.77 5 3 NMP 
Spraying with 

Acetone & NMP 
Continuous ~130 

33 91.35 3.65 5 4 NMP 
Spraying with 

Acetone & NMP 
Continuous ~130 

34 90.5 4.5 5 5 NMP 
Spraying with 

Acetone & NMP 
Continuous 140 

35 90.5 4.5 5 5 NMP 
Spraying with 

Acetone & NMP 
Interupted 200 

36 90.5 4.5 5 5 NMP 

Spraying with 

Acetone 3x & 
NMP 

Interupted 80-100 

37 90.5 4.5 5 5 NMP 
Spraying with 

Acetone & NMP 
Continuous 80-90 

39 90.5 4.5 5 5 NMP Spraying Continuous 70-80 

40 90.5 4.5 5 5 NMP Spraying Continuous 130 

41 90.5 4.5 5 5 NMP Spraying Continuous 160-180 

50 90.5 
CB 

5% 
5 - NMP 

Spraying with 

Acetone & NMP 
Continuous 120 

51 75 
CB 
20% 

5 - NMP 
Spraying with 

Acetone & NMP 
Continuous 120 

52 85 
CB 

10% 
5 - NMP 

Spraying with 

Acetone & NMP 
Continuous 120 

67 90.5 4.5 5 5 Ball Milled 
Spraying with 

Acetone & NMP 
Continuous 120 
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Table 8.2. All Series made with High Surface Area LFP. 

Series # 
LiFePO

4 

SMW 

200 
PVdF 

CNT : 

LiFePO4 

(%) 

Sonication 

Solvent 

Deposition 

method 
Sonication  

Deposition 

temperature 

(0C)  

15 90.5 4.5 5 5 LFP-BASF NMP Spraying 

Continuous, 

D=1/2', 20 

min, 25% 

16 90.5 4.5 5 5 
NCM - 

BASF 
NMP Spraying 

Continuous, 

D=1/2', 20 

min, 25% 

17 75 
CB 

20% 
5   LFP-BASF NMP Spraying 

Continuous, 

D=1/2', 20 

min, 25% 

18 75 
CB 

20% 
5   

NCM - 

BASF 
NMP Spraying 

Continuous, 

D=1/2', 20 

min, 25% 

19 90.5 4.5 5 5 LFP-BASF THF Spraying 

Continuous, 

D=1/2', 20 

min, 25% 

20 90.5 4.5 5 5 
NCM - 

BASF 
THF Spraying 

Continuous, 

D=1/2', 20 

min, 25% 

21 90.5 4.5 5 5 LFP-BASF Acetone, NMP - 

Continuous, 

D=1/2', 20 

min, 25% 

 

Table 8.3. All LiFePO4 Series Synthesized with a 18 hour reaction time and 

NMP bubbler air lock. 

Series # Precursors 

CNTs & 

Carbon 

Coating 

Solvent, vol Dispersion 
Reaction 

Temp 

60 
Fe-Acetate, H2-PO4, 

Li-acetate 
2% 

Ethlene Glycol, 

500mL 
 No bubbler 

HP 230C -> 

170C 

61 
Fe-Acetate, H2-PO4, 

Li-acetate 
2% 

Ethlene Glycol, 

500mL 
 No bubbler 

HP 230C -> 

170C 

62 
Fe-Acetate, H2-PO4, 

Li-acetate 
4%, PVP 4% EG and Water 

CNTs w/ PVP in 

water & No bubbler 

HP 230C -> 

170C 

63 
Fe-Acetate, H2-PO4, 

Li-acetate 

2%, Gumm 

Arabic 6% 
EG and Water 

CNTs w/ GA in 

water & No bubbler 

HP 230C -> 

170C 

61.b 
Fe-Acetate, H2-PO4, 

Li-acetate 

2% Ethlene Glycol, 

500mL 
CNTs in EG 

Set Temp: 

160C 

61.d 
Fe-Acetate, H2-PO4, 

Li-acetate 

2% Ethlene Glycol, 

500mL 
CNTs in EG 

Set Temp: 

180C 

61.f 
Fe-Acetate, H2-PO4, 

Li-acetate 

2% Ethlene Glycol, 

500mL 
CNTs in EG 

Set Temp: 

190C 

64.a 
Fe-Acetate, H2-PO4, 

Li-acetate 

2% 
EG and NMP CNTs in NMP 

Set Temp: 

190C 

64.b 
Fe-Acetate, H2-PO4, 

Li-acetate 
2%, PVP 4% EG and NMP 

CNTs w/ PVP in 

NMP 

Set Temp: 

190C 

65 
Fe-Acetate, H2-PO4, 

Li-acetate 
2% EG  CNTs in EG  

Vacuum 

Run: 146C 

66 
Fe-Acetate, H2-PO4, 

Li-acetate 
2% TTEG, 500mL CNTs in TTEG   

68 FePO4, Li-acetate 2% EG CNTs in EG   
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 Appendix B. Battery Failure 

9.1 Introduction 

Our goal here is to introduce battery failure mechanisms and their 

characterizes. This is a practical guide and not meant to be a review of the physical 

mechanisms. I hope that this will give the reader some idea as to what kinds of 

problems one might encounter when making battery cells. 

9.2 Packaging 

Ironically, the battery packaging is the most essential part of the battery. 

Battery packages can fail by either unsealing or by shorting. If a battery is not sealed, 

the electrolyte will escape and more often than not, the water content will increase 

within the cell. A battery short can be a simple stacking fault, a dendrite, or a hole in 

the separator. Any path that allows electrons to complete the circuit within the battery 

behaves as a short. These problems should have the following characteristics: 

1. Unsealed 

o Battery exterior corrodes in air.  

o Overcapacity observed when discharging, due to water in cell 

o Corrosion on the electrode surfaces will confirm a leaky package 

2. Short 

o Low potential on cell after packaging (less than 2 Volts)  

o Battery does not maintain a potential after charging 

o Battery can be charged beyond their nominal capacity 

o An ultra-low potential and a low reactance confirm a short 
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9.3 Electrolyte 

Whenever you are working with Lithium water is a problem. With water alone 

it reacts and forms Lithium hydroxide quite readily. In electrolytes, HF is the prime 

product, which can then reduce the electrolyte further and produce more water thus 

propagating the reaction. This reaction is kinetically limited thus, heightened 

temperatures can exacerbate the problem. Thus using battery at high current rates can 

produce power at the cost of the battery surfaces. This is one of the mechanisms that 

will foul Li-Ion interfaces if water is in the cell. A dry box, as in Figure 9.1, with an 

active drying system is essential to avoid the most basic contamination problems. 

 
Figure 9.1. Dry box for working with water sensitive materials and battery 

assembly. 

9.4 Separators 

Transport is the name of the game for separators. Any separator that does not 

allow conduction of the electrolyte is doing too good of a job. The PVdF material 

these separators are usually made of does not conduct electricity well and are not 

(generally) good ionic conductors either. In liquid cells, the electrolyte travels 

through pores in the film. Aging and heat can reduce the pore volume, which can be 

severe enough to cut off electrolyte flow. A battery with a bad separator (that is not a 
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short) will behave as a capacitor with a very small capacitance, charging and 

discharging reliable but with extremely small capacitance.  


