
 

UNIVERSITY OF OKLAHOMA 
 

GRADUATE COLLEGE 
 
 
 
 
 
 
 

MOISTURE AND THERMAL CHARACTERISTICS OF SOUTHERN PLAINS ICE 

STORMS: INSIGHTS FROM A REGIONAL CLIMATOLOGY AND HIGH-

RESOLUTION WRF-ARW SENSITVITY STUDY 

 
 
 

 
 

A DISSERTATION 
 

SUBMITTED TO THE GRADUATE FACULTY 
 

in partial fulfillment of the requirements for the 
 

Degree of 
 

DOCTOR OF PHILOSOPHY 

 
 
 
 
 
 

 
 

By 
 

ESTHER DANIELLE MULLENS 
 Norman, Oklahoma 

2014



 
 
 
 
 
 

MOISTURE AND THERMAL CHARACTERISTICS OF SOUTHERN PLAINS ICE 
STORMS: INSIGHTS FROM A REGIONAL CLIMATOLOGY AND HIGH-

RESOLUTION WRF-ARW SENSITIVITY STUDY 
 
 

A DISSERTATION APPROVED FOR THE 
SCHOOL OF METEOROLOGY 

 
 
 
 
 
 
 
 

BY 
 
 
 

    ______________________________ 
Dr. Lance Leslie, Chair 

 
 

______________________________ 
Dr. Michael Richman 

 
 

______________________________ 
Dr. David Parsons 

 
 

______________________________ 
Dr. David Stensrud 

 
 

______________________________ 
Dr. May Yuan 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by ESTHER DANIELLE MULLENS 2014 
All Rights Reserved. 



 iv 

Acknowledgements 

My time at OU has been enormously challenging, but greatly rewarding, and I 

have many people to thank. Firstly, Dr Peter Lamb, my co-Chair, who sadly passed 

away just a couple of months prior to the conclusion of this work. Pete created the OU-

Reading (UK) exchange program that established my interest in studying abroad. I will 

always be immensely grateful for the opportunity he gave me, and the skills I have 

accumulated under his mentorship. Pete was a hands-off Advisor, he emphasized a self-

teaching approach to problem solving, including developing the research focus, tools 

and implementation of a doctoral project. As I look back upon my time here, I can see 

the benefits this approach has provided me, and feel equipped to translate the successes 

and mistakes of the past several years to inform all that I do from now on. I also am 

extremely appreciative of co-Chair Lance Leslie, who has been very approachable, 

tremendously supportive and helpful in the science and technical aspects of this work. 

Dr Dave Stensrud was invaluable in helping me understand and build competence in 

WRF, and set me on the right path following errors encountered in the earlier stages of 

this research. Dr Mike Richman is a statistics guru and I appreciate his patience in 

helping me build a skill set in this area, especially as I’m not a natural! Thanks also to 

May Yuan for her efforts, and Dr Dave Parsons, who served on the committee last 

minute and has provided some constructive comments that served to strengthen this 

work. Additional appreciation to Zewdu Segele for getting me started on the WRF and 

sharing his codes. I have had many good years in Oklahoma, and have developed a 

wonderful community. In terms of moral support, thank you to Rebekah LaBar, Jeff 

Makowski, my roommates Rachel Riley and Becky Cintineo and the wonderful Masters 



 v 

class of 2010/2011 who shared joys and pains of the coursework element of this degree. 

My UK friends have lifted my spirits through skype dates and a good catch up 

whenever I’m back in the country. My husband Stephen Mullens has often been more 

confident of me than I have been, and his love has sustained me. Thanks to my 

wonderful family, separated by many thousands of miles but with me always in spirit, to 

my new US Family, who have cheered me on, both literally and figuratively, and to my 

Church family, who have provided wisdom, encouragement and perspective.  

The smooth running of this project would not have been possible without the 

dedication and expertise of the OCSER supercomputing team who has helped me out 

with many a problem I couldn’t understand. The NCAR-NCL site has also been very 

useful in forming the programs used for data analysis. Thanks to the many scientists 

from which this work is built upon. I’d also like to acknowledge the use of the SPIA© 

index in this work, created by Sydney Sperry and Steven Piltz.  

Finally, thank you God and my savior Jesus Christ for creating a world that is 

complex yet observable. The Earth is a beautiful home and has been entrusted to us to 

protect.   

 

Trust in the Lord with all your heart 

And do not lean on your own understanding.  

In all your ways acknowledge him.  

And he will make your path straight.  

     --- Proverbs 3 v 5-6



 vi 

Table of Contents 

Acknowledgements.........................................................................................................iv 
List of Tables ..................................................................................................................ix 
List of Figures .............................................................................................................. xii 
Abstract .......................................................................................................................xxix 
 
Chapter 1: Literature Context .......................................................................................1 

1.1 Introduction and Research Statement....................................................................1 
1.2 History and Definitions .........................................................................................4 
1.3 Geographic Distribution of Winter Precipitation ..................................................7 
1.4 Synoptic-Dynamic Evolution................................................................................9 
1.5 Thermal Features of Freezing Precipitation ........................................................13 
1.6 Regional Analyses...............................................................................................16 
1.7 Large Scale Dynamics.........................................................................................20 
1.8 Dissertation Content............................................................................................23 

Chapter 2: Developing a Thermodynamic Climatology of Freezing Precipitation 
and Snow for the Southern Great Plains 1993-2011 ......................................27 

2.1 Introduction .........................................................................................................27 
2.2 Spatial Analysis...................................................................................................28 

2.2.1 Development of winter storm database......................................................28 
2.2.2 Spatial and temporal winter precipitation distribution...............................33 

2.3 Sounding Analysis ..............................................................................................36 
2.3.1 Methodology ..............................................................................................36 
2.3.2 Thermal characteristics ..............................................................................42 
2.3.3 Wind characteristics ...................................................................................47 
2.3.4 Cloud characteristics ..................................................................................51 
2.3.5 Composite precipitation type profiles and comparison to prior studies.....56 

Chapter 3: Preliminary Synoptic Climatology of SGP Winter Storms ...................62 
3.1 Introduction .........................................................................................................62 
3.2 Methodology .......................................................................................................62 

3.2.1 Selection of cases, and rationale for technique ..........................................62 
3.2.2 Accuracy of NARR data against in-situ observations................................67 
3.2.3 Rotated Empirical Orthogonal Function (EOF) analysis ...........................70 
3.2.4 Composites .................................................................................................77 
3.2.5 Caveats .......................................................................................................78 

3.3 Results: Synoptic Patterns for Freezing Precipitation (Ice) ................................79 
3.4 Synoptic Patterns for Snowfall and Comparison to Section 3.3 .........................93 
3.5 Summary of Key Differences............................................................................103 

3.5.2: Mid-level trough and surface cyclone.....................................................107 
Chapter 4: Introduction to Case Studies, and Development of a WRF-ARW Sea 

Surface Temperature (SST) Sensitivity Study .............................................110 
4.1 Introduction .......................................................................................................110 
4.2 Physical Basis....................................................................................................110 

4.2.1: Check 1: Air mass trajectories ................................................................111 
4.2.2: Check 2: Trends ......................................................................................115 



 vii 

4.2.3 Research questions ...................................................................................119 
4.3 Introduction to Case Studies .............................................................................121 

4.3.1 Case 1: December 9-11 2007 ...................................................................122 
4.3.2 Case 2: January 28-30 2010 .....................................................................129 

4.4 SST Sensitivity Study: Experiment Configuration ...........................................134 
4.4.1 Rationale for imposed SST Anomalies (SSTA).......................................134 
4.4.2 Final configuration of SSTA, and datasets used ......................................139 

Chapter 5: Configuration and Validation of WRF Control Simulations ..............145 
5.1 Introduction .......................................................................................................145 
5.2 WRF-ARW .......................................................................................................145 

5.2.1 Model overview .......................................................................................145 
5.2.2 Domain and Physics options ....................................................................147 

5.3 Configuration of Microphysics and Planetary Boundary Layer options...........151 
5.3.1 Microphysics ............................................................................................151 
5.3.2 Planetary Boundary Layer (PBL).............................................................154 
5.3.3 ‘Test’ simulations.....................................................................................156 

5.4 Verification of Control Part I: December 2007.................................................162 
5.4.1: Precipitation ............................................................................................163 
5.4.2 Thermal profile.........................................................................................168 
5.4.3 Synoptic evolution ...................................................................................171 
5.4.4 Cloud properties/radiation........................................................................173 
5.4.5 Summary ..................................................................................................173 

5.5 Verification of Control Part II: January 2010 ...................................................173 
5.5.1 Precipitation .............................................................................................174 
5.5.2 Thermal profile.........................................................................................179 
5.5.3 Synoptic evolution ...................................................................................182 
5.5.4 Cloud properties/radiation........................................................................182 
5.5.5 Summary ..................................................................................................185 

5.6 Final Note..........................................................................................................185 
Chapter 6: SST Sensitivity Study for the December 9-11 2007 Ice Storm ............188 

6.1 Introduction .......................................................................................................188 
6.2 Precipitation Accumulation and Phase Partitioning..........................................189 

6.2.1 Total accumulation...................................................................................189 
6.3 Thermal Profile .................................................................................................199 
6.4 Moisture and Dynamics ....................................................................................203 

6.4.1. First convective period: December 9 ......................................................205 
6.4.3 Second convective period: December 10 .................................................209 

6.5 Air Mass Trajectories and Meteorological Characteristics ...............................216 
6.5.1 Central Oklahoma: 12 UTC December 9.................................................218 
6.5.2 Central Oklahoma: 12 UTC December 10...............................................224 

6.6 SST Impacts to Ice Storm Severity ...................................................................228 
Chapter 7: SST Sensitivity Study for the January 28-30 2010 Winter Storm ......230 

7.1 Introduction .......................................................................................................230 
7.2 Precipitation Accumulation and Phase Partitioning..........................................230 

7.2.1 Total accumulation...................................................................................230 
7.2.2 Radar reflectivity, and changes in precipitation intensity. .......................236 



 viii 

7.3 Thermal Profile .................................................................................................237 
7.3.1 Southwestern Oklahoma ..........................................................................237 
7.3.3 Cloud and radiation ..................................................................................245 

7.4 Moisture and Dynamics ....................................................................................245 
7.5 Air Mass Trajectories and Meteorological Characteristics ...............................257 

7.5.1 West-central Oklahoma............................................................................257 
7.5.2 West-central Arkansas..............................................................................265 

7.6 Ice Storm Impacts by SST Scenario..................................................................271 
Chapter 8: Conclusions and Future Work ...............................................................275 

8.1 Overview ...........................................................................................................275 
8.2 Climatology: Principal Results .........................................................................276 

8.2.1 Thermodynamic Profile ...........................................................................276 
8.2.2 Synoptic circulation .................................................................................278 

8.3 Modeling: Principal Results ..............................................................................283 
8.3.1 Role of Microphysics and PBL ................................................................283 
8.3.2 Verification of Case Study Simulations ...................................................284 
8.3.3 SST Impacts for Case Study 1 .................................................................286 
8.3.4 SST Impacts for Case Study 2 .................................................................289 
8.3.5 Discussion ................................................................................................295 

8.4 Future Work ......................................................................................................297 
8.4.1 Database Extension and Alternate Climatology.......................................297 
8.4.2 Model Development.................................................................................298 
8.4.3 Synoptic and Climate Dynamics ..............................................................299 

References ....................................................................................................................303 
Appendix ......................................................................................................................319 

Section 2: Additional Material from Regional Climatology (Chapter 2)................319 
Section 3: Additional Material from Synoptic Climatology (Chapter 3)................326 
Section 4: SST Interpolation Uncertainty (Chapter 4) ............................................331 
Section 5: Additional Interpretation of Methodology (Chapter 5)..........................332 
Section 6: RIP 4 Ensemble Trajectories (Chapter 6, sec 6.5) .................................340 
Section 7: RIP 4 Ensemble Trajectories (Chapter 7, sec 7.5) .................................340 
Section 8: Appendix References .............................................................................342 

  



 ix 

List of Tables 

2.1a.    Thermal categories for SGP freezing rain, drizzle and ice pellet events.  
Hydrometeor sub-categories were defined in the text. Values expressed as the % 
of soundings that agree with the parameter/range. Shaded values indicate the 
greatest % agreement. .........................................................................................45 

 
2.1b.    As Table 2.1a but for a subset of snowfall events. Variables related to the warm  

layer are removed. ...............................................................................................46 
 
2.2a.    Wind profile characteristics for SGP freezing precipitation. Table structure  

described in caption to Table 2.1a.......................................................................50 
 
2.2b.    Wind profile characteristics for a subset of snowfall events. Low-level  

directional changes estimated over the surface-700 hPa layer in lieu of no warm 
layer.....................................................................................................................50 

 
2.3a.    Cloud properties of freezing precipitation in the SGP. See Table 2.1a for  

description of table structure. CTT estimated for all profile-estimated cloud 
layers. ..................................................................................................................53 

 
2.3b.    As Table 2.3a but for the snowfall subset. Dashed line (--) indicates missing or  

non-applicable information. ................................................................................54 
 
2.4.      Contingency table demonstrating the relationship between observed maximum  

Tw (oC) in the warm layer, and the presence of convection for freezing 
precipitation soundings. ......................................................................................56 

 
2.5.      Description in text ...............................................................................................60 
 
3.1.      NARR versus ACRF-SGP air temperature at the surface for (a) ice storm  

(December 9-11 2007) (b) snowfall event (December 22-23 2004). ..................69 
 
3.2.      Example of the method to derive the most suitable number of retained PRPCs.  

The table shows congruence coefficients between correlation matrix and EOF 
loadings for 10 to 2 rotated PCs for the ice dataset. The final number retained 
was 4, shown in bold, which represented the greatest number of RPCs with high 
congruence values. ..............................................................................................76 
 

4.1:      Description of the SST anomalies used in the WRF-ARW sensitivity study.  
Columns 3 and 4 show the magnitude of each basin-average anomaly with 
respect to the 1981-2010 climatology (real) field in Kelvin for December 9 and 
January 28 respectively (based on OI V2). Each SST field has a daily temporal 
resolution, and 0.5o (~55 km) horizontal grid spacing. .....................................142 

 
5.1.      Description of each simulation testing the performance of the MP and PBL  



 x 

schemes described in section 5.3.......................................................................157 
 
5.2.      Skill scores for 48-hour accumulated precipitation (domain 3) at thresholds of  

0, 1 10 (~median), 20 (~75th  percentile), 25 (~ 1 inch), and 40 mm (~90th 
percentile). Scores are calculated using a neighborhood of 5x5 grid points. This 
allows a precipitation ‘hit’ if precipitation falls within the grid box, which 
avoids unfairly penalizing a high-resolution model for a small displacement in 
location. Rightmost column shows perfect’ value of each skill score. Data to 2 
decimal places. Definitions for each skill metric in Appendix Sec, 5 ..............165 

 
5.3.      Precipitation object-based skill scores for 48-hour accumulations ≥  20 mm (see  

also Fig. 5.8, appendix section 5)......................................................................165 
 
5.4.      Summary table for the simulated December 2007 case study, and its verification  

against observations. Notable model biases are described for the variables 
considered. ........................................................................................................174 

 
5.5.      As Table 5.2 but for January 2010 using threshold values that correspond to near  

minimum (5 mm), median (25 mm), upper quartile (40 mm), and above 90th  
percentile (60 mm). Values to nearest 5 mm of distribution value. ..................176 

 
5.6.      As Table 5.3, but for the Jan 2010 event at an accumulation threshold of 40 mm  

(see Fig. 5.15 for precipitation objects).  
...........................................................................................................................176 

 
5.7.      As Table 5.4, for the January 2010 case study..................................................186 
 
5.8.      Basic model setup for December 2007 (Case 1) and January 2010 (Case 2) ...187 
 
6.1.      Precipitation characteristics and their change with SST, evaluated for freezing  

rain/ice pellets, snow and rain. For each, the total number of gridpoints with 
precipitation (and total number of total accumulation above the 75th percentile of 
non-zero values; ice=15 mm, all phase=20 mm), the total summed 
accumulation, and total summed accumulation for precipitation > 2.5 mmhr-1 are 
estimated. Furthermore, the ratio of these summed accumulations are shown to 
provide intensity proportion. At the base of the table, these results are expressed 
as a percentage difference from REAL for the total domain, and FZRA/IP in 
parenthesis.........................................................................................................194 

 
7.1.      As Table 6.1 in chapter 6, but for the January 2010 case study, using the  

designation of FZRA/IP as discussed in the text (sec. 7.2). *The number of 
FZRA/IP gridpoints is accumulation > 5 mm, which was chosen since no 
portion of the domain had zero accumulation. Upper quartile of each phase type 
and all phase distributions used as measure of upper distribution change without 
compromising too much of the sample size: ice = 13 mm, rain = 30 mm, snow = 
20 mm, and all phase (total) = 45 mm. .............................................................234 



 xi 

A2.1.   Summarizes some basic information from the database by quadrant. ..............320 
 
A2.2.   Normalization factors and adjusted 18-year average event frequency (days per  

year) for each CD. Applicable CDs are shown by state abbreviation and 
number.Figure. A2.3 shows these visually, that image courtesy of 
http://www.esrl.noaa.gov/psd/data/usclimdivs/data/map.html. Note that these 
factors to not have a summation of 1, as is typically preferred when weighting. 
Normalization by the CD mean area, rather than its sum, is necessary to preserve 
the correct frequency magnitudes. ....................................................................322 

  
A2.3.    Number of soundings used by station site for ice (snow). 51 profiles were from  

12 UTC, 38 at 00 UTC, 5 at 18 UTC and 3 at 06 UTC. ...................................323 
 

A2.4.   Case studies with ≥  4 sounding profiles in the dataset. Rightmost column lists  
the locations, time and precipitation type for each............................................324 

 
A3.1.   List of events forming dataset for ice used in the rotated principal component  

analysis (PRPC). Table highlights time T0, the patterns each case study was 
found to correspond with (where 0 indicates the event did not correlate with any 
of the resolved patterns from the PRPCs) and approximate locations impacted 
(state abbreviations). Using a combination of information, including Storm 
Data, and NCDC local climate summaries, durations and liquid precipitation 
equivalent (LPE) are estimated. LPE is evaluated from surface observations for 
several major stations over the impacted area, and the uppermost value is used, 
to provide an upper (recorded) threshold for each event. In cases where events 
are in two or more pattern groups, the highest correlated pattern is denoted by +.
...........................................................................................................................326 

 
A3.2.   As Table A1, but for snow events. Snow amounts are estimated in a similar  

fashion to the LPE estimates. When the estimate is uncertain (e.g. snowfall 
bands outside of measurement locations), measurement ranges from the Storm 
Data archive are used. As in Table A1, upper thresholds or ranges are shown 
below. Missing information is shown as a dash................................................327 
 

 

 

 

 

 

 



 xii 

List of Figures  
 
1.1.     Conceptual representation of vertical thermal profiles associated with  

precipitation phase (A) rain, (B) freezing rain, (C) ice pellets, (D) snow and (E) 
snow with an initial surface temperature greater than 0oC, under the influence of 
diabatic cooling (as in Fuhrmann 2011). The Vertical dashed is the 0oC 
isotherm, while the purple solid line is the idealized environmental temperature 
profile. ...................................................................................................................7 

 
1.2.      Distribution of freezing precipitation events by average number of days per year  

1949-2000. From Changnon and Karl (2003), available at: 
http://mrcc.isws.illinois.edu/living_wx/icestorms/index.html#frequency ..........11 

 
1.3.     Annual average number of snowstorms 1901-2001, based on accumulation > 6  

inch. From Changnon et al. (2006), their Fig. 2..................................................11 
 
1.4.      Non-terrain surface synoptic archetypes for freezing precipitation, from Rauber  

et al. (2001), their Fig. 2. Shaded area indicates region where freezing 
precipitation was observed. Archetypes manually identified from sounding 
analysis. ...............................................................................................................13 

 
1.5.     Top: Hydrometeor mass versus depth of warm layer required to melt 99% of this  

mass. Each curve represents a different lapse rate. Bottom: Mass versus depth of 
a layer required to refreeze a hydrometeor with initial fractions of ice between 
0.01 and 0.5 for lapse rates of -5 K/km and -10 K/km. From Zerr (1997), his Fig 
13 and 14. ............................................................................................................17 
 

1.6.     (a) Maximum wetbulb temperature (oC); (b) of max wetbulb temperature; (c)  
low-level minimum wetbulb temperature; (d) height of low-level minimum for 
all cases in the dataset. Each box encloses 50% of the data. ALB = Albany NY, 
BUF = Buffalo NY, GSO = Greensboro NC, GEG = Spokane WA, PIA = Peoria 
IL, All = All soundings. Note the distinctive differences in the median and 
spread of each variable with location. From Robbins and Cortinas (2002). .......20 

 
1.7.     Top: Airmass trajectories (calculated using NOAA HYSPLIT model) for ice  

storms (left), and snowstorms (right) in central North Carolina. Bottom: 
Adiabatic and diabatic contributions to temperature variations within the low 
level warm layer for a subset of ice storms (left) and snowstorms (right). From 
Fuhrmann (2011).................................................................................................23 

 
1.8.      Air temperature profiles (oC) for control (black line) and perturbed Atlantic SST  

simulations (-4 oC = dashed line, +4 oC = dotted line) near Greensboro, NC at 
two times during an ice storm (a) 2100 UTC 4th Dec 2002, (b) 0400 UTC 5th 
Dec 2002. From Ramos De Silva et al (2006), their Fig. 7.................................24 

 
2.1.      Map of the Southern Great Plains domain, including study region (dark blue  



 xiii 

box) and its quadrants (thin blue lines), NOAA climate divisions used (thin 
black lines), rawinsonde stations (black dots) with the ACRF Lamont site 
circled, and elevation above sea level (shaded, in km). Other rawinsonde stations 
are (from west-to-east) Amarillo (TX), Dodge City (KS), Oklahoma City (OK), 
Dallas-Ft Worth (TX), Shreveport (LA), Springfield (MO), and Little Rock 
(AR).....................................................................................................................29 
 

2.2.      Flowchart summarizing the collection, criteria, and decision process for the  
spatial and sounding-based regional climatology described in section 2.2.1. The 
dissertation appendix, section 2, further documents this methodology. .............31 

 
2.3.     Spatial distribution of ice and snow events, expressed as average number of days  

per year, normalized by the total mean CD area to account for their differing 
size. (a) Snow (b) freezing precipitation (ice), (c) ratio of freezing precipitation 
to snowfall (days per year). Study region is enclosed in purple box. .................35 

 
2.4.      Average monthly variation of ice and snow events by quadrant during  

November-March. Frequency is number of days per month, normalized by CD 
mean area, with each CD assigned quadrants in which ≥  50% of CD area 
resides. Box and whisker diagram shows the median (thick black line), 
interquartile range (colored box), 10th and 90th percentiles (horizontal bar) and 
extreme values (>90%, <10%, circles) for each month, valid 1993-2011. Lines 
give the monthly average normalized frequency for ice and snow.....................36 

 
2.5.     Vertical profile of cloud fraction (blue, %), derived from the ARM Southern  

Great Plains field site vertically pointing cloud radar and ARSCL products, 
contrasted with radiosonde-estimated relative humidity (red, %) for 3 separate 
freezing rain events. The drifting of the sounding with altitude likely contributed 
to the discrepancies at mid/upper levels of the atmosphere. ...............................43 

 
2.6.      Environmental melting and freezing potentials for each freezing precipitation  

category. EMP/EFP are expressed as oCm. ‘Svr’ indicates ice storm freezing 
rain, while ‘weak’ indicates lower accumulation or mixed phase freezing rain. 47 

 
2.7.     Wind roses for freezing rain, freezing drizzle, ice pellets and snow at the surface  

(left) and 850 hPa layer (right). Directions follow standard compass. Concentric 
rings indicate frequency increments of 10%, while shading is wind speed in 
knots. Values are binned into 8 directional bounds, N, NE, E etc. .....................49 

 
2.8.     Schematic composite soundings for all categories of freezing precipitation, based  

on 10 vertical profiles (4 for freezing drizzle without a warm layer). 
Temperature ranges between 0oC -10oC, and -10oC to -20oC are shaded to 
indicate the warm layer and dendritic growth layers respectively. Black line is 
temperature profile for a standard atmosphere....................................................58 
 

2.9.      Composite soundings for light snow (left), and heavy snow (right).  



 xiv 

Aforementioned shaded regions from Fig. 2.8 are also applied here..................58 
 

3.1.      Flowchart depicting the sequence of decisions used to select snow and ice case  
study events for each dataset. ..............................................................................66 
 

3.2.     Vertical profile plots between 1000-500 hPa for NARR (blue) and ACRF (black)  
air temperature at 12 UTC 9, 00 UTC 10 and 12 UTC 10 (left), and specific 
humidity for the same times (right). Bottom panels show the corresponding 
difference values for NARR minus ACRF (red lines). .......................................69 
 

3.3a.    NARR versus Mesonet observations for Oklahoma at 12 UTC 9 (top), 00 UTC  
10 (middle), and 12 UTC 10 (bottom) December 2007. Mesonet surface 
temperatures (oC) interpolated to NARR 1ox1o lat/lon grid. Leftmost panel 
displays NARR minus Mesonet difference, while right two panels show NARR 
and Mesonet temperature distributions respectively...........................................70 

 
3.3b.    In the style of Fig. 3.3(a) but for a snowfall event on December 22-23 2004. Left  

column: 00 UTC 22, center: 12 UTC 22, right: 00 UTC 23. ..............................70 
 
3.4.      Eigenvalues (y-axis) associated with 33 ice events (x-axis). ..............................73 
 
3.5.      Pair-wise plots of rotated PC loadings for Varimax rotation. Simple structure is  

indicated when loadings cluster near the center of the axis, or along the 
hyperplanes (~±0.1) of the EOF-x and y axis.....................................................74 
 

3.6.      As Fig. 3.5 but for Promax (k=2) rotation. .........................................................74 
 
3.7.      Multi-panel plot for composite Ice Pattern 1. The layout of this and subsequent  

figures was described in the text (section 3.3). The SGP domain is highlighted in 
each panel. Please note the different domains plotted. Additionally, panel (b) 
displays 975 hPa winds> 15 kt in red, and SLP > 1026 hPa in light grey. Panel 
(c) shows 850 hpa (surface) zero (1oC) isotherms in red (black), while panel (d) 
displays the same isotherms in blue (black). For the top panel, locations of 
NARR derived categorical freezing rain (ice pellets) are displayed in solid 
(stippled) purple. .................................................................................................83 

 
3.8.      As Fig. 3.7 but for Ice Pattern 2. For panel (b), SLP < 1012 hPa is shaded in  

dark grey..............................................................................................................85 
 

3.9.      As Fig. 3.7/3.8 but for Ice Pattern 3. ..................................................................88 
 
3.10.    As Fig. 3.7/3.8 but for Ice Pattern 4. ..................................................................90 
 
3.11.    As Fig. 3.7/3.8 but for Ice Pattern 5. ..................................................................92 
 
3.12.    As Fig. 3.7/3.8 but for Snow Pattern 1. Note that the top panel now displays  



 xv 

categorical snowfall (20% coverage contour), with blue stippling for each 
constituent event, providing a measure of common location..............................96 

 
3.13.    As Fig. 3.7/3.8, 3.12 but for Snow Pattern 2. .....................................................98 
 
3.14.    As Fig. 3.7/3.8, 3.12 but for Snow Pattern 3. ...................................................100 
 
3.15.    As Fig. 3.7/3.8, 3.12 but for Snow Pattern 4. Note that the NARR categorical  

snowfall was not well resolved for at least one event in this category (December 
24-25 2009), despite the observation of heavy snowfall...................................102 
 

3.16.    As Fig. 3.7/3.8, 3.12 but for Snow Pattern 5. ...................................................104 
 
3.17.    Schematic depicting the precipitation types accompanying ‘cold surge’ events in  

the SGP..............................................................................................................107 
 
3.18.    Student’s (2-tailed) t-test for ice events against snow events SLP at T-24 (left).   

Number of events per dataset shown by text in main figure. Only statistical 
significance ≤  10% shown, with values < 5% more a more robust indication of 
significance. Temporally averaged grid point distributions of SLP for ice and 
snow shown by boxplots for the Northern and Southern Plains, defined 40-50oN, 
90-105oW, and 30-40oN, 90-105oW respectively. Calculations using NCL ‘ttest’ 
function. Caution should be applied when interpreting t-test due to low sample, 
and the possibility of non-normal distributions, albeit test is generally insensitive 
unless non-normality is large. ...........................................................................108 

 
3.19.    Approximate paths surface cyclones between T-24 and T+24 for snow (left) and  

ice (right). These tracks were based on calculation of local minima, and manual 
removal of stationary pressure signals (e.g., lee troughing), and cyclones not 
present over the southern U.S. The tracks are color coded by pattern type, 
pattern 1 = blue, 2 = black, 3 = cyan, 4= red, 5=purple. The corresponding SLP 
time series is marked by a number for each track, and displayed in the time 
series plots snow (bottom left), ice (bottom right). The period within 6-hours of 
T0 is shaded in grey. ..........................................................................................109 

 
4.1.     Trajectory profiles for different source regions (a-e, right), including height  

(left), and equivalent potential temperature (right). The median of the total 
number of profiles for each (n) is shown by the red line, while the interquartile 
range is shown by the gray shaded area. Each trajectory is integrated over 96-
hours, with t-96 representing the source region, and t-0 (0 on the x-axis) the 
warm layer zone. Dashed horizontal lines present to aid visual interpretation.116 
 

4.2.      Multi-panel plot for (a) level of warm (melting) layer maximum temperature (b)  
top of warm layer. Back trajectories for the top 6 events by precipitation amount 
are displayed (top left), as is the average mixing ratio and air temperature for the 
48-hours preceding trajectory end-point (top right). The bottom left and right 



 xvi 

time series show altitude and air temperature along the trajectory path 
respectively, with the median (inter-quartile range) shown by the solid line 
(shaded area). Gray thin line (273 K) on temperature time series present to aid 
interpretation. ....................................................................................................117 

 
4.3.     The GOM domains used in a linear regression against warm layer EMP. The  

SGP domain and sounding sites are also shown (see also chapter 2, Fig. 2.1). 
The domains were selected to provide good coverage over the interior basin 
(away from the northern and western continental shelf), while examining 
possible key sub-regions. ..................................................................................119 
 

4.4.      Results of linear regression of SST against EMP for basin average SST  
preceding each winter storm event (top left), storm averaged SST for region 1 
(top right), region 2 (bottom left), and region 3 (bottom right). Heavy freezing 
rain (ice storm) profiles shown by the blue cross, ice pellets by the open red 
circles, and freezing rain by the green triangles................................................120 
 

4.5.      Multi-panel plot depicting the average meteorological conditions between  
December 3-11 2007. (a) Shows the geopotential height anomaly (relative to a 
1971-2000 NARR climatology) in gpm, (b) shows 975 hPa temperature 
anomalies (shaded, K), vector wind anomalies (arrows), and mixing ratio 
anomalies (g kg-1, blue contours), (c) shows the 850-700 hpa layer average 
anomalies as in panel (b), (d) is a time-height plot from 00 UTC December 3-00 
UTC December 11 showing air temperature (shaded, oC), and vector winds 
(barbs, intervals of 5 knot) from 0-5 km AGL valid at the ARCF-SGP facility in 
Lamont, Oklahoma............................................................................................123 

 
4.6.      Synoptic chart valid 12 UTC December 9, depicting sea level pressure (blue  

solid contours, hPa), fronts, station weather and wind speed (intervals of 5 kt), 
infrared satellite, and composite radar reflectivity. Image courtesy of 
http://locust.mmm.ucar.edu and Unisys............................................................124 
 

4.7.     Thermodynamic sounding profile at Norman, Oklahoma (OUN) valid at 12 UTC  
December 9. Red (green) lines indicate air (dewpoint) temperature (oC). The 
shaded region shows the elevated unstable layer from ~850 hPa to near 500 hPa. 
Sounding profile image courtesy of http://locust.mmm.ucar.edu. ....................125 

 
4.8.      500 hPa geopotential height field (gpm, black contours), and 250 hPa wind  

velocity (kts, barbs and shaded contours) valid at 12 UTC December 9. .........126 
 
4.9.      Composite anomalies of NARR geopotential height (gpm,, top left), sea level  

pressure (SLP, hPa, top center), precipitable water (PWV, mm, top right), 850-
700 hPa thickness (m, bottom left), and 1000-925 hPa thickness (m, bottom 
center), valid from 12 UTC 9 – 00 UTC 11 December and relative to the NARR 
baseline 1979-2001 climatology. The bottom right panel shows the anomaly 
correlations for each 6-hour period from 18 UTC December 8 to 06 UTC 



 xvii 

December 12, while the grey shading is the approximate duration of freezing 
precipitation at OUN. ........................................................................................127 

 
4.10.   TOP: Accumulated 48-hour precipitation in liquid (rain), and freezing  

(IP/FZRA) phases ending at 00 UTC December 11. BOTTOM: Time-series of 
precipitation at 1-hour intervals for OUN. Dashed line is a running mean filter 
for every 5-th hour. Red shaded regions denote the two nocturnal episodes of 
convective precipitation. Data from NCEP Stage IV........................................128 

 
4.11.    Four-day Ensemble HYSPLIT trajectories ending at OUN at 850 hPa for 12  

UTC December 9 (top left), 00 UTC December 10 (top center), 12 UTC 
December 10 (top right). 48-hour average mixing ratios overlaid (g kg-1, filled 
contours). Trajectory members with mixing ratios > 8 g kg-1 at T0 shown in red. 
Bottom panels show time series the altitudes of each trajectory (AGL, m) for the 
corresponding end-times. ..................................................................................129 

 
4.12.    As Fig. 4.5 but for January 23-30 2010 ............................................................130 
 
4.13.    As Fig. 4.8 but for 12 UTC January 28 2010....................................................131 
 
4.14.   Synoptic analysis, valid 15:30 UTC January 28. Similar to that described in  

Figure 4.6 but with the addition of phase discrimination for radar derived 
precipitation, where green-yellow-red indicates rain, purple ice and blue snow. 
Image courtesy of http://mmm.ucar.edu and Unisys.........................................132 

 
4.15.   As Fig. 4.9 but for the January 28-30 winter storm. Anomalies calculated  

between 00 UTC 28 and 12 UTC 29, based on storm timing over Oklahoma. 
The gray shaded times on the lower panel denote the approximate duration of 
the winter storm over western and central Oklahoma.......................................133 
 

4.16.    As Fig. 4.10 for January 28-30 2010, with the addition of the snow-phase (top  
right panel). .......................................................................................................134 

 
4.17.    HYSPLIT ensemble trajectories, members with mixing ratios at T0 > 5.5 g kg-1  

shown in red valid for times during freezing precipitation at OUN on January 
28/29. Figure layout as in Fig. 4.11. .................................................................135 

 
4.18.    A schematic diagram illustrating the loop current circulation, including its  

northward push into the GOM, the shedding of eddies and their westward 
translation. Image courtesy of: 
http://www.wunderground.com/hurricane/loopcurrent.gif. ..............................136 

 
4.19.    Main Panel: SST anomaly time series for the GOM basin, expressed as an  

average for the whole basin, and relative to the default 1971-2000 climatology 
in the ERSST (extended reconstructed) SST analysis for 1900-2012 November-
March (blue lines). The black solid line is a 10-year moving average, and the red 



 xviii 

dashed line demarks a zero anomaly. The top panel inset shows the phase of the 
Atlantic Multidecadal Oscillation, with the corresponding times to the right of 
the black dashed line. Inset courtesy of http://eoearth.org................................137 

 
4.20.    SSTA fields (in Kelvin) derived from a 31-year dataset valid for the week  

preceding the winter storm case study. TOP: lowest and highest basin average 
for the December 2007 event (corresponding to the years 2010, and 2004 
respectively). BOTTOM: as TOP but for January 2010, corresponding to the 
years 2011 and 2002. Anomalies expressed relative to 1981-2010. .................140 
 

4.21.    SST fields (in Kelvin) used as input to the WRF-ARW sensitivity study. These  
plots are valid for December 9. .........................................................................141 
 

4.22.    As Fig. 4.21 but for January 28. As a note to the reader, the unusual isolated  
positive SST anomaly and sharp gradient in the northeastern GOM in the ‘LO’ 
SST field for this case study was observed by multiple SST datasets, thus we do 
not have reason to suspect that this field is erroneous. .....................................141 

 
5.1.     WRF-ARW simulated 200 hPa geopotential height (intervals of 20 gpm, blue  

contours, negative dashed) and air temperature (oC, color fill), expressed as a 
difference field relative to the NCEP/GFS Final Analysis at the corresponding 
time (00 UTC 8 December). Panel (a) shows the results for the original domain 
used, while (b) shows the final chosen domain.................................................149 

 
5.2.      Domains selected for the 1-way nested simulations for (left) December 2007,  

and (right) January 2010. ..................................................................................150 
 
5.3.      48-hour accumulated precipitation (mm) from 00 UTC 9 – 00 UTC 11  

December for domain 3 (x and y axis show grid point number). Top panels show 
YSU PBL 3.1 (left) and 3.4 (right) with WSM6 MP, while bottom panels show 
MYJ PBL 3.1 (left) and 3.4 (right). Stage IV observations (interpolated to WRF 
grid, see appendix section 5 for details) shown in the rightmost panel. ...........158 
 

5.4.      48-hour accumulated precipitation (mm) as in Fig. 5.3 but for the four MP  
schemes evaluated, with PBL fixed as MYJ. Performance of WRF 3.1 and 3.4 
using WSM6 are also shown, while observations from Stage IV (interpolated to 
WRF grid) are shown on the bottom right. .......................................................159 

 
5.5.      Selection of skill score metrics for each perturbed domain 3 simulation, using a  

neighborhood method of 25 gridpoints surrounding each gridpoint location. 
Scores are evaluated at three accumulation thresholds (based on 48-hour accum) 
of 0, 10 and 25 mm in blue, light green and red respectively. Microphysics 
scheme designations are provided in Fig. 5.4. ..................................................160 

 
5.6.      Root mean squared error (RMSE, K) for each perturbed simulation (domain 3)  



 xix 

at 6-hour intervals over storm duration. The values are the average of 35 grid 
points (bottom right inset), and are calculated relative to interpolated Mesonet 
data at the same locations. Missing data at 18 UTC due to power outage........161 

 
5.7.      Spatial distribution of RMSE (K) relative to Mesonet data, interpolated to a  

0.5x0.5 grid over Oklahoma ending at 99oW and 36.5oN. The spatial average is 
a storm total average (00 UTC 9 – 00 UTC 11 December). The four PBL 
simulations (two WRF-3.1, and two WRF3.4) are shown, with the retained 
configuration displayed by the bottom right panel (*). .....................................162 

 
5.8.      MODE tool in MET to evaluate precipitation by spatially matching  

accumulation thresholds > 20 mm. Top two panels show the original 
precipitation field (mm), while middle and bottom left hand panels show the 
method by which MET define precipitation objects. The technique is sensitive to 
smoothing radius (here we used 10 km, see appendix, sec 5) and threshold. The 
larger panels on the right show the spatially matched forecast (simulation) and 
observed (Stage IV) objects. Other parameters are defined in the users guide to 
METv3.1, and appendix, sec 5..........................................................................166 
 

5.9.      6-hourly precipitation accumulation time series between 12 UTC 9 and 00 UTC  
11 December for four quadrants over Oklahoma, and the central axis of freezing 
precipitation over Oklahoma, based on 35 grid point locations. WRF (Stage IV) 
shown in red (blue)............................................................................................168 
 

5.10.   48 hour precipitation accumulation in mm, valid 00 UTC December 11, for  
WRF-ARW domain 1 (left), 2 (center) and 3 (right) for mixed phase 
precipitation (freezing rain, ice pellets). Location corresponding to domain 3 
shown by the purple box. County and State boundaries overlaid. ....................169 

 
5.11.   WRF vertical temperature profile for domains 1-3 (color-coded, see legend), and  

observations based on radiosonde information via ACRF-SGP (Lamont, OK), at 
6-hour intervals during the ice storm. Thin grey line denotes the 0oC isotherm.
...........................................................................................................................170 
 

5.12.    As Fig. 5.11 but for mixing ratio (g kg-1)..........................................................170 
 
5.13.    Evolution of the geopotential height field, as shown by a representative height  

contour of 5580 m, for NARR (top) and WRF domain 1 (bottom). Contours are 
plotted at 6-hour intervals between 00 UTC 9-11 December, with the color key 
legend on the right.............................................................................................172 

 
5.14.    As Fig. 5.13 but for the 1026 hPa sea level pressure contour for NARR (left) and  

WRF domain 1 (right). Color code legend shown in Fig. 5.13.........................172 
 

5.15.    As Fig. 5.8 but for the January 2010 event, using 48-hour accumulations ending  



 xx 

at 00 UTC January 30, and an accumulation threshold of 40 mm. Blue shaded 
area indicates a ‘missed’ object - observed but not simulated. .........................177 
 

 
5.16.    In the style of Fig. 5.9 but for four ‘quadrants’ in domain 3 of the Jan 2010  

simulation at 6-hour intervals from 12 UTC 28-00 UTC 30. The extension and 
number of grid point locations used is described in the header of the plot.. 
Quadrants are: ‘southwest’ 31 to 33N, 98 to 100W; ‘northwest’ 34 to 36N, 98 to 
100W; ‘southeast’ 31 to 33N, 92 to 96W; ‘northeast’ 34 to 36N, 92 to 96W. .178 

 
5.17.    As Fig. 5.10 but for 48-hour WRF accumulated precipitation in mm, ending 00  

UTC January 30 2010. Top (bottom) three panels display freezing precipitation 
(rainfall),............................................................................................................179 

 
5.18.    6-hourly time series of surface air temperature (in Kelvin) for WRF (red) versus  

Mesonet (green), based on 30 grid point locations earlier described (Fig. 5.16), 
between January 28-30. Error bars denote one standard deviation about the mean 
temperature for the gridpoints. RMSE shown by the blue bars. .......................181 
 

5.19.   As Fig. 5.11 but for the January 2010 case study. .............................................181 
 
5.20.   As Fig. 5.12 but for the January 2010 case study. .............................................181 
 
5.21.   As Fig. 5.13 for the January 2010 case study, and displaying the 5640 m  

geopotential height contour...............................................................................183 
 
5.22.   As Fig. 5.14 for the January 2010 event. The color legend is shown in Fig. 5.21. 

...........................................................................................................................183 
 
5.23.  (a) Observed ACRF (Lamont, OK) cloud fraction, versus WRF simulated cloud  

(from the radiation scheme, panel b), and cloud presence as derived from an 
accumulated hydrometeor mixing ratio (water, ice, snow, graupel, rain) in panel 
(c). The x-axis for each shows time since 00 UTC January 28 (hours), while the 
y-axis shows height in km. .................................................................................184 
 

6.1.    48-hour accumulated freezing precipitation (FZRA, IP), valid 00 UTC December  
11 2007 for WRF-ARW domain 3 for each SST simulation, denoted by the 
textbox. REAL is highlighted by the red box. State and county boundaries are 
overlaid. ..............................................................................................................192 
 

6.2.    As Figure 6.1 for rainfall, with reduced southward edge of domain. .................192 
 
6.3.     Simulated equivalent radar reflectivity histograms (> 20 dbZ) showing the  

change in frequency for each SST scenario with respect to REAL for all domain 
3. The percentage value in parenthesis denotes the relative change in frequencies 
> 35 dbZ..............................................................................................................196 



 xxi 

 
6.4.    As Figure 6.3, but for central Oklahoma (approximately 34.5-35.5N, 96-98W). 

............................................................................................................................197 
 

6.5.     Maximum layer CAPE (shaded in increments of 100 Jkg-1), and 850 hPa CAPE  
(contoured, every 100 Jkg-1, from 100 Jkg-1) for domain 3 of each SST 
simulation, valid at 06 UTC December 09 as convection was beginning to 
initiate. REAL is highlighted by the red box. .....................................................198 
 

6.6.    Thermodynamic (skew-T) profile valid at 09 UTC December 9 near Norman,  
Oklahoma for M2, LO and REAL......................................................................298 
 

6.7.    Simulated radar reflectivity (dbZ) valid 09 UTC 9 December for each SST  
simulation. REAL highlighted by the red box....................................................200 

 
6.8.    Timeseries of environmental melting potential (EMP, red), and freezing potential  

(EFP, blue) in oCm valid for 34.9-35.3 oN, and 97-98oW between 00 UTC 
December 9 (t12) and 00 UTC December 11 (t60). Horizontal gray line at 15,000 
oCm to aid interpretation.....................................................................................201 

 
6.9.    As Fig. 6.8 for maximum warm layer air temperature (red) and minimum  

refreezing layer temperature (blue). Horizontal gray lines at 0 and 8oC shown to 
aid interpretation. . ..............................................................................................201 

 
6.10.  Timeseries of WRF downward shortwave (solar) radiation flux calculated over  

central Oklahoma (left), and all domain 3 (right) in Wm-2. Line color 
designations are: red = P2, orange = HI, black = REAL, green = CLIM, blue = 
LO, purple = M2. ................................................................................................203 

 
6.11.  Timeseries of WRF longwave radiation components for each SST simulation.  

Top is downward flux for (left) central Oklahoma and (right) domain, while 
bottom is the top of atmosphere outgoing longwave flux. See Fig. 6.10 caption 
for line color key.................................................................................................204 
 

6.12.   Sum of rain, snow, graupel, ice and cloud mixing ratios as a proxy for cloud  
cover valid over the ACRF Lamont site for all SST scenarios (REAL highlighted 
by a red box). The x-axis of each panel shows time (hour) from 12 UTC 
December 8, while the vertical axis shows height in km above ground.............204 
 

6.13.   Domain 3 shearing (shaded) and deformation (blue contoured) frontogenesis in  
K (100 kmh-1) valid at 09 UTC December 9 for each SST scenario. REAL is 
highlighted by the red box. Potential temperature (θ) contours are overlaid at 1 K 
intervals, with θ  ≤  294 K in black, and θ  ≥  294 K in red. .................................207 
 

 
 



 xxii 

6.14.  WRF domain 2 850 hPa mixing ratio (g kg-1), wind fields (barbs, ms-1) and 900- 
400 hPa integrated horizontal moisture transport (kgm-1s-1) contoured in red at 
intervals of 0.5 above 3 x 102 kgm-1s-1 for 00 UTC 18 UTC December 9. REAL 
highlighted by the red box. .................................................................................209 
 

6.15.  WRF 850 hPa vector winds (barbs, knots), magnitudes (shaded, knots), and 850  
hPa geopotential height (m) for domain 2, averaged 00-18 UTC December 9. 
REAL highlighted by a black box. .....................................................................210 
 

6.16.  WRF 24-hour accumulated precipitation (all phase types) for December 9 2007 in  
mm. Only values above 10 mm are shaded. REAL highlighted by the red box. 
Values for each SST simulation panel (values in parenthesis) are the percentage 
departure from REAL for total accumulated precipitation (accumulations > 10 
mm).....................................................................................................................211 

 
6.17.   As Fig. 6.13 but for 06 UTC December 10........................................................213 
 
6.18.   As Fig. 6.15 but for 00 UTC -18 UTC December 10. .......................................214 
 
6.19.   As Fig. 6.14 for 00 -18 UTC December 10........................................................215 
 
6.20.   As Fig. 6.16 for December 10 2007. ..................................................................215 
 
6.21.  Top: 850 hPa back trajectories, valid 12 UTC December 9 during the first  

convective episode. Each trajectory displays triangular markers at 3-hour 
intervals, with intersecting green line at T-24 and T-48. Overlaid on each panel is 
the SST anomaly field relative to climatology (CLIM displays full SST), with 48-
hour average latent heat flux (Wm-2) ending at 12 UTC (black contoured lines), 
and 850 hPa mixing ratio (blue dashed lines) at intervals of 1 gkg-1 (>5 gkg-1).  
Bottom: Time series of trajectory altitudes for each SST simulation.................221 
 

6.22.  Top: timeseries of air temperature (solid lines, oC), and θe following the trajectory  
for each SST simulation ending at 850 hPa in the warm layer. Bottom: relative 
humidity (solid lines, %), and precipitation (bars, mmhr-1). The color key is the 
same as that of Fig. 6.21 (bottom), that is: red = P2, maroon = HI, black = REAL, 
green = CLIM, light blue = LO, dark blue = M2................................................222 
 

6.23.  Top: 725 hPa trajectory paths for each SST scenario. Trajectories displayed as in  
Fig. 6.22. Air temperatures (filled contours) averaged over 48-hours ending at 12 
UTC 9 for the 650-850 hPa layer, while mixing ratio (blue dashed lines) 
estimated over the same time and layer. Bottom: timeseries of trajectory altitudes 
for each SST simulation......................................................................................223 

 
6.24.   As Fig. 6.21, for 12 UTC December 10. ............................................................226 
 
6.25.   As Fig. 6.22, for 12 UTC December 10. ............................................................227 



 xxiii 

 
6.26.   As Fig. 6.23 for 12 UTC December 10. .............................................................228 
 
7.1.    48-hour accumulated freezing precipitation (FZRA, IP) for 00 UTC 28 – 00 UTC  

30 January 2010 for WRF-ARW domain 3 for each SST simulation, denoted by 
the textbox. REAL is highlighted by the red box. State and county boundaries are 
overlaid. ..............................................................................................................235 

 
7.2.    As Fig. 7.1 for 48-hour accumulated rainfall (mm). ...........................................235 
 
7.3.    As Fig. 7.1 for accumulated snowfall (mm) .......................................................236 
 
7.4.    Simulated equivalent radar reflectivity histograms (> 20 dbZ) showing the  

change in frequency for each SST scenario with respect to REAL for all domain 
3. The percentage value in parenthesis denotes the relative change in frequencies 
> 35 dbZ..............................................................................................................238 
 

7.5.    As Fig. 7.4 but for central-western Oklahoma bounded by 34.2-35.7oN, -97 to - 
99.5oW. ...............................................................................................................239 
 

7.6.    WRF-simulated equivalent radar reflectivity (dbZ) for each SST scenario valid at  
18 UTC January 28. REAL highlighted by the red box. The observed composite 
reflectivity is shown on the right hand panel for the same domain. Note the 
difference in color-scheme for the observed case...............................................240 

 
7.7.    Timeseries of environmental melting potential (EMP, red), and freezing potential  

(EFP, blue) in oCm valid for 34.9-35.3 oN, and 97.4-98oW between 12 UTC 
January 28 (T12) and 12 UTC January 30 (T60). ..............................................242 
 

7.8.    As Fig. 7.7 for maximum 850 hPa warm layer air temperature (red) and minimum  
surface temperature (blue). Area > 0oC shaded to aid interpretation. ................242 
 

7.9.    Timeseries of environmental melting potential (EMP, red), and freezing potential  
(EFP, blue) in oCm valid for 34.7-35.0 oN, and 93.2-93.7oW between 12 UTC 
January 28 (t12) and 12 UTC January 30 (t60). .................................................244 
 

7.10.   As Fig. 7.9 for maximum 850 hPa warm layer air temperature (red) and surface  
temperature (blue). Area > 0oC shaded to aid interpretation. .............................244 
 

7.11.  Sum of rain, snow, graupel, ice and cloud mixing ratios as a proxy for cloud  
cover valid over ACRF Lamont for all SST scenarios (REAL highlighted by a 
red box). The x-axis of each panel shows time (hour) from 00 UTC January 28, 
while the vertical axis shows height in km above ground. .................................246 

 
7.12.   Longitude-time hovmuller diagram of sea level pressure (SLP) averaged over  



 xxiv 

latitude band 31-38oN. Each scenario other than REAL is expressed as a 
difference from REAL in hPa, while full SLP for REAL is displayed. The y-axis 
shows the time from 12 UTC January 28, ending at hour 48 (12 UTC January 
30). ......................................................................................................................248 

 
7.13.  Average 850-500 hPa thickness tendency per 2-hours between 12 UTC 28-12  

UTC 30 January (shaded, in m). 850 – 500 hPa used in place of 1000-500 hPa 
layer due to higher terrain in the west. Sea level pressure average tendencies are 
contoured (black lines), with dashed > 0, intervals of 0.2 hPa per 2 hours. .......251 
 

7.14.  WRF domain 2 850 hPa mixing ratio (g kg-1), wind field (barbs, ms-1) and 900- 
400 hPa integrated horizontal moisture transport (x102 kgm-1s-1) contoured in red 
at intervals of 0.5 above 3x102 for 12 UTC 28 – 00 UTC 29 January. REAL 
highlighted by the red box. .................................................................................252 
 

7.15.  As Fig. 7.14 for 12 UTC 29 – 00 UTC 30 January. ............................................253 
 
7.16.  Multi-panel plot depicting the spatial distribution of potential vorticity and  

associated circulation during heavy precipitation at 2000 UTC January 28 for M2 
(left), REAL (center), and P2 (right). Top panels show PV in PVU (1 PVU = 10-6 
K kg-1m-2s-1), with black (red) contours below (above) 2.5 PVU at 0.5 PVU 
intervals. Simulated radar reflectivity (dbZ) is shaded, and 850 hPa geopotential 
height (blue contours) and wind vectors overlaid. Center panels show 850 hPa 
winds and wind speed, with values > 20 ms-1 shaded. Equivalent potential 
temperature (θe) overlaid in black contours (intervals of 5 K above 310 K), and 
potential temperature above (below) 284 K in red (blue) at 850 hPa. The 284 K 
isotherm when reduced to 100 hPa is approximately 273 K. The bottom panels 
show a cross section SE-NW through A-B (top center) north of the center of 
circulation and roughly perpendicular to the low-level temperature gradient. PV 
is shaded in PVU, with condensational heating above 2 K hr-1 (red contours), and 
θe in K (black contours)......................................................................................256 

 
7.17.  Top: 850 hPa back trajectories into west-central Oklahoma (~35oN, 98oW), valid  

at 21 UTC January 28. Each trajectory displays triangular markers at 3-hour 
intervals, with intersecting green line at t-24 and t-48. Overlaid is the SST 
anomaly field relative to climatology (CLIM displays full SST), with 48-hour 
average latent heat flux (Wm-2) ending at 21 UTC (black contoured lines), and 
850 hPa mixing ratio (blue dashed lines) at intervals of 1 gkg-1 > 5 gkg-1.  
Bottom: timeseries of trajectory altitudes for each SST simulation. ..................261 

 
7.18.  (TOP): Timeseries of air temperature (solid lines, oC), and θe (dashed lines, K)  

following the trajectory for each SST simulation ending at 850 hPa (21 UTC Jan 
28) .......................................................................................................................262 

 
7.19.  (MID): Relative humidity (solid lines, %), and precipitation (mmhr-1) along  

trajectory (color code as in Fig. 7.17, 7.18)........................................................262 



 xxv 

7.20.  (BOT): Mixing ratio (gkg-1 lines), and diabatic contribution to temperature (bars,  
6-hour accumulated temperature change) for the final 60-trajectory hours into the 
850 hPa layer. Diabatic component calculated as in Fuhrmann and Konrad 
(2013)..................................................................................................................262 
 

7.21.  Top: 725 hPa trajectory paths. Trajectories displayed as in Fig. 7.18. Air  
temperatures (filled contours) averaged over 48-hours ending at 21 UTC 28 for 
the 650-850 hPa layer, while mixing ratio (blue dashed lines) was estimated over 
the same time and layer. Bottom: Timeseries of trajectory altitudes for each 
simulation. ..........................................................................................................263 
 

7.22.   (TOP): As Fig. 7.19 but for the 725 hPa trajectories in Fig. 7.22......................264 
 
7.23.   (BOT): As Fig. 7.20 but for the 725 hPa trajectories.........................................264 
 
7.24.  As Fig. 7.17 but for trajectories incident to west central Arkansas during heavy  

freezing precipitation on 12 UTC January 29. The 800 hPa is used as the warm 
layer maximum temperature was observed to be closer to this altitude at this time 
(not shown). ........................................................................................................268 

 
7.25.  (TOP): As Fig 7.18 but for the 800 hPa layer, 12 UTC January 29 west-central  

Arkansas .............................................................................................................269 
 

7.26.  (MID): As Fig 7.19 but for the 800 hPa layer, 12 UTC January 29 west-central  
Arkansas .............................................................................................................269 

 
7.27.  (BOT): As Fig 7.20 but for the 800 hPa layer, 12 UTC January 29 west-central  

Arkansas .............................................................................................................269 
 
7.28.  As Fig. 7.21 for 12 UTC January 29 west-central Arkansas...............................270 
 
7.29.  Derived SPIA© index, based on upper limit FZRA assumption from Sec. 7.2,  

and calculated accretion of the 48-hour precipitation accumulation (assessed 
based on conditions over 1-hour intervals). The text indicates the spatial extent 
(number of grid points) with an index greater than 2 and 3 relative to REAL...274 
 

8.1.    Conceptual diagrams for ice patterns at T0 corresponding to the derived  
subgroups for the SGP. (a) Shows freezing rain in association with a slow 
moving broad amplified 500 hPa trough (‘L’) with anomalous warm (cold) air 
over the southern (northern states-shaded, color approximating strength of 
anomaly), moisture advection via strong low-level flow (green, arrows), and a 
broad upper southwesterly tropospheric jet (orange shaded, arrow); (b) Freezing 
rain during the passage of a amplified shortwave (‘L’) in the presence of an arctic 
high to the north (‘H’) and cold air advecting in behind the trough and weak 
surface low. Region bounded approximately in the left exit and right entrance 
region of two jet streaks (orange, blue arrows). In each case, the inset figure 



 xxvi 

displays temperature advection in the freezing rain zone at 6-hour intervals T-24, 
T+24 for representative composites (a, ice pattern 3, b ice pattern 1) with units of 
K hr-1 (100 km-1). ................................................................................................281 
 

8.2.    As Fig. 8.1 but for derived snow subgroups. (a) Shows snow produced from  
broad zonal trough and/or weak amplitude shortwave (‘L’) with a pronounced 
arctic airmass (‘H’) cold air advection (blue arrows) and cooler air over the 
subtropics (shaded); (b) depicts a well-developed surface cyclone with attendant 
high-amplitude mid-level trough (‘L’), with arctic air absent over the northern 
Plains, and cold surface air advecting into the region behind the low (shaded). Air 
east of the cyclone center is warm and moist, while favorable upper jet streak 
locations (brown arrows) promote ascent. Advection profiles as before but for (a) 
snow pattern 3, and (b) snow pattern 2...............................................................282 

 
8.3.    Top: Schematic diagram depicting the airflow characteristics incident to the lower  

and upper warm layer (e.g., windspeed and direction, ‘jet’ shown by concentric 
rings). The impact of these trajectories is shown on the right hand side, 
displaying an idealized warm layer profile for positive and negative SSTA 
(crudely analogous to the differences between LO/HI, M2/P2). WAA denotes 
warm air advection. Bottom: Timing of precipitation and relative accumulations 
for REAL (CNTL), positive and negative SSTA for December 9 and 10. Y-axis 
shows start time relative to REAL (hour), while the length of the bar is 
proportional to precipitation accumulation.........................................................290 

 
8.4.    Flowchart describing some observed changes from control for positive and  

negative SSTA. Top row shows changes to the stability and thermal profile, 
while the bottom describes changes to low-level jet (especially December 10), 
and moisture transport. Here melting layer = warm layer. .................................291 
 

8.5.    Top: Thermal and dynamical changes with positive and negative SSTA. Larger  
L850 denotes deeper circulation, while dashed curved lines denote northward 
extent of warmer air through advection. Arrows display wind direction, with size 
approximating relative speed. LHmax describes the latent heat flux contribution 
from the GOM. Bottom: Timing and approximate precipitation intensity with 
SST changes, and REAL (CNTL) for southwest Oklahoma (left), and south 
central Arkansas (right), indicating the higher (lower) precipitation and faster 
(slower) progression with warmer (cooler) SST. ...............................................294 
 

8.6.     Flowchart description of thermal (top) and dynamical (bottom) changes to winter  
storm evolution with SST. Here melting layer = warm layer.............................295 
 

8.7.     Composites of 5 bottom (a) and top (b) ice storm events by basin average SST  
anomaly (from 22 cases). Geopotential height (gpm, blue contours), 850 hPa 
wind vectors (barbs, intervals 5 kt), and precipitable water vapor (mm, shaded). 
Note the more meridional long-wave pattern for higher-SST cases, including an 
eastern ridge and GOM basin anticyclonic flow. ...............................................301 



 xxvii 

 
8.8.     Composite Circulation anomalies (winter DJF) for three years of high ice  

frequency minus three years of low ice frequency (based on 1993-2011 database). 
Top left is geopotential height at 500 hPa (gpm anomaly), top right, sea level 
pressure (pa, anomaly) and bottom center is SST over much of the global tropics 
and mid-latitudes (K, anomaly). .........................................................................302 

 
A2.1.  Screen-shot of winter storm database, which includes year and day, approximate  

durations, spatial location expressed as affected quadrant(s), and whether snow 
and/or ice occurred. Definitions of ‘weak’, ‘moderate’ and ‘heavy’ icing were 
quasi-subjective (especially in thresholds used) and based on event descriptions 
from Storm Data/Storm Event, included maximum reported accumulations (can 
be anywhere within the storm and not necessarily a widespread average). Weak is 
approximately < 0.25 ice and < 5 in snow, moderate 0.25-0.5 in ice, 5-8 in snow, 
and heavy > 0.5 in ice, >8 in snow. ....................................................................319 
 

A2.2.  Example of methods used to derive spatial estimates of ice and snow by climate  
division. Top: Use of NCDC weather charts (3-hour interval) to assess locations 
for various times during a 24-hour period, Bottom: Use of NARR categorical 
precipitation type (both FZRA and IP). Right hand side shows how the spatial 
information is translated to a number (1 = 1-day observation). Where possible, 
these techniques were used in combination........................................................321 

 
A2.3.  See Table A2.2. ..................................................................................................322 
 
A2.4.  Autocorrelations computed from ‘R’ for each hydrometeor subcategory of  

freezing precipitation. Observation lag on x-axis (not strictly time as the samples 
were generally discrete), with magnitude of autocorrelation (ACF) on the y-axis. 
Range of statistical significance shown by the blue dashed lines. .....................325 

 
A3.1.  Ice Pattern 6 (n=5), variable descriptions shown in appendix sec. 3. ................329 
 
A3.2.  As Fig. A3.1 but for Ice Pattern 7 (n=6) ............................................................330 
 
A4.1.  Interpolation errors (in Kelvin) expressed as a histogram for (left) 1/12o to 0.5o,  

and (right) 0.25o to 0.5o for the Gulf of Mexico region (100-78 oW, 14-30 oN). 
Total average domain error is the average over all grid points (top)..................331 

 
A5.1   Histograms of regridding error (in mm) of 48-hour accumulated Stage IV  

precipitation using MET for (a) December 9-11 2007, (b) January 28-30 2010. 
Values calculated for WRF model domain 3......................................................333 

 
A5.2.  Air temperature time series for the January 2010 winter storm for the Mesonet s 

station site at Oilton, OK (black), and a nearest interpolated grid (red). Inset 
histogram shows frequency of errors associated with this time series. ..............334 

 



 xxviii 

A5.3.  WRF simulated (‘Forecast’) and Stage IV (‘observation’) precipitation objects  
for 48-hour accumulations > 20 mm. Top panels show total precipitation (mm), 
center panels show precipitation objects for (left) radius R of 10 km, and (right) 
R=15 km. Areas of precipitation generally captured by the MODE process 
circled in orange, while regions with maximum precipitation above the threshold 
that were not resolved circled in dark blue. Use of a smaller radius of influence 
aids to better characterize spatial distribution for both WRF and observations, 
which are too smoothed on the right. Other parameters were altered, but their 
influence on the objects was much weaker (not shown). These changes included 
reducing area (merge) threshold to 10 mm (5 mm) on the left plot from 20 mm 
and 10 mm respectively. .....................................................................................339 

 
A6.1.  Air parcel ensemble trajectories initiated over a grid and interval described in  

above text valid (a) 12 UTC December 9, and (b) 12 UTC December 10. 
Trajectory altitude is accounted for by the width of the arrows but is not 
necessarily easy to pick out in the ensemble. Changes in altitude were not 
investigated. ........................................................................................................340 
 

A7.1.  Air parcel ensemble trajectories as in Fig. A6.1, valid (a) 21 UTC January 28  
(850 hPa) for west-central OK, and (b) 12 UTC January 29 (800 hPa) for western 
AR.......................................................................................................................341 



 xxix 

Abstract 
 

Winter storms, including snowstorms and ice storms, are infrequent in the 

Southern Great Plains of the United States (SGP), but can produce significant hazard 

and socioeconomic disruption. During 2000-2010, several severe ice storms impacted 

the region. These events combined resulted in nearly $800 million in damages, over 30 

fatalities, and power disruption to over 3 million homes and businesses. Hitherto, basic 

climatological information for winter storms in this region remain understudied. This 

dissertation examines the characteristics of freezing precipitation events for the SGP by 

developing a regional spatial and synoptic climatology (1993-2011). Thermal profiles 

conducive to winter precipitation of varying types and intensities are also examined and 

compared with past literature. A combination of sounding analysis, and Principal 

Component (PC)/composite techniques are used to derive this climatology. Results 

identified that the SGP experiences freezing precipitation of varying intensity, but that 

ice storms to the region are notable for their large above-freezing inversion layer 

(‘warm layer’) temperatures/depths and mixing ratio. Freezing precipitation occurs most 

often over the central and eastern domain during December-February, while snowfall 

maximizes northwest of this zone with broader seasonal occurrence. The synoptic 

analysis showed that patterns conductive to storms with a pronounced mixed-phase 

region typically involved topographically aided ageostropic down-gradient advection of 

cold stable air in the lee of the Rocky Mountains, with an arctic high pressure over the 

northern/central Great Plains. A mid-level trough and low-level warm air advection 

provided ascent, and anomalously warm air to the south provided sufficient support for 

a warm layer. Long-duration ice storms were observed with a slow-moving high-
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amplitude western trough, direct moisture transport from the Gulf of Mexico, and a 

ridge over the southeastern U.S.  

Based on the climatology and past literature, a hypothesis is proposed that the 

Gulf of Mexico, as the proximal basin and major moisture source, may impact ice storm 

severity by modulation of the warm layer profile associated with strongly positive or 

negative SST anomalies. This hypothesis is tested using high-resolution nested WRF-

ARW sensitivity studies with six representations of SST, including the 30-year 

climatology, a uniform ±2 degrees K perturbation to the control, and a physical upper 

and lower limit using the SST field for the warmest and coolest basin-average 

anomalies 1981-2011. Two case studies were utilized corresponding to different 

synoptic types.  

The simulations revealed discernable influence of SST on freezing precipitation, 

including its temporal evolution and intensity. For the December 9-11 2007 case study, 

the warm layer formed well prior to the event, associated with persistent southerly flow 

and a warm anomaly over the southern U.S. The impact of SST on the warm layer 

intensity was weak in comparison to its existing magnitude, however the atmospheric 

stability profile was altered such that strongly negative SST produced stabilization 

above the maximum inversion temperature and markedly reduced precipitation on the 

first day of the ice storm. A dynamical weakening of the low-level jet and moisture 

transport in the strongly positive SST case counteracted observed increases in mixing 

ratio to yield weaker accumulation differences during the second precipitation episode.  

For the January 28-30 2010 case study, the impact of SST was more pronounced 

on the warm layer, which had formed in association with return flow from the Gulf. 
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Warmer SST, especially strongly positive localized anomalies within the fetch of the 

impacted area, lead to both a moisture induced intensification of precipitation, and 

increased peak warm layer temperature, leading to changes in the location of freezing 

precipitation versus rain/snow, especially for Arkansas. Dynamical intensification 

(weakening) of precipitation occurred as increased (decreased) baroclinicity, warm air 

advection and latent heat release promoted a stronger geopotential low at 850 hPa, and a 

strengthened (weakened) low-level jet yielding greater (less) moisture transport.  

Despite the differing thermal and dynamical responses, both case studies 

displayed potential for enhanced icing conditions with warmer SST, while cooler SST 

produced a marked reduction in severity. The January 2010 event showed greater 

sensitivity in the location and amount of icing due to the warm layer evolution being 

more directly connected to diabatic processes over the Gulf of Mexico 24-48 hours 

prior. Results showed discernable impact even with comparatively small SST 

perturbations (e.g., climatology versus control) indicating that winter precipitation is 

sensitive to basin SST anomalies. This work may be of use to forecasters and regional 

climatologists in gaining situational awareness and recognizing the role of both large-

scale synoptic and regional thermodynamic drivers of phase type and intensity. 

Furthermore, given the observed increases in SST resulting from global climate change, 

this work provides physical understanding of processes that may impact ice storm 

evolutions in a warming climate, particularly with respect to the warm layer.  
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Chapter 1: Literature Context 

1.1 Introduction and Research Statement  

 Winter precipitation type depends on the complex interplay between 

atmospheric dynamics, mesoscale and microscale processes, and the vertical thermal 

profile. The United States experiences numerous precipitation types, including snowfall, 

freezing rain and ice pellets. While all produce socio-economic hazard, arguably one of 

the most severe forms of winter weather is freezing rain, or ‘ice storms’. An ice storm is 

the National Weather Service designation for a freezing rain event producing glaze (ice) 

accumulation in excess of 0.25 inch (Grout et al. 2012). Detrimental impacts include 

widespread shutdown of transport and infrastructure, ice loading on power-lines and 

trees, and heightened risk of personal injury. Cited causes of injury and death include 

automobile accidents, falling branches or trees, and occasionally carbon monoxide 

poisoning from faulty backup generators (National Climatic Data Center, Storm Data). 

Freezing rain strongly impacts forest ecology, including damage and tree mortality 

throughout impacted temperate hardwood forests (e.g., Olthof et al. 2004, Bragg et al. 

2003, Hauer et al. 1994). Economic loss can result from interruption in timber 

production (e.g., Warrillow and Mou, 1999) and other commodities or produce (the 

1998 northeast ice storm lead to loss of maple trees and thus maple syrup – a major 

economic contributor in eastern Canada, according to Kidon et al. 2001). Other adverse 

impacts include damage and loss of revenue to recreational areas, wildlife refuges, and 

private land, among others (Warrillow and Mau, 1999).  

Compared to other regions of the contiguous U.S and Canada, winter storms are 

relatively uncommon in the Southern Plains states, with typically only a few events 
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annually (e.g., Houston and Changnon, 2007, Changnon and Karl 2003). It is their 

infrequency that may potentially increase adverse effects due to a lack of preparedness 

and adaptive capacity. Regional forecasters also have less opportunity to accrue 

experience in their prediction (Lackmann 2011, p221). Winter weather forecasting 

remains an operational challenge due to the multi-scale dynamic and thermodynamic 

processes that impact precipitation type (Castellano, 2012). Call (2009) polled 15 

warning coordination Meteorologists in the Eastern region, noting that issuing a winter 

weather (e.g., ice storm) watch was much more common than issuing warnings more 

than 24-hours ahead of an event. Numerical model guidance has been known to struggle 

with mixed phase winter weather, such as microphysics, and the depth/southward extent 

of cold air (e.g., Ikeda et al. 2013, Leatham et al. 2010, Lackmann et al. 2002).  

During 2000-2010, the Southern Plains experienced seven major ice storms. 

These events combined resulted in nearly $1bn dollars in damage1, at least 35 directly 

attributable fatalities, numerous injuries, and power disruption to over 3 million homes 

and businesses (average > 100,000 per storm). This frequency and magnitude was 

considered somewhat unprecedented in recent memory for Oklahoma (Grout et al. 

2012, Oklahoma Climatological Survey, Personal Comm.), with Oklahoma leading the 

nation in the number of winter weather-related major federal disaster declarations, 

particularly for ice storms (e.g., Grout et al. 2012). Additionally, the southeast regional 

climate center, encompassing the southern Appalachians (Fuhrmann and Konrad, 2009 

http://erh.noaa.gov/ilm/ClimateConference/20.ppt) reported high variability in annual 

trends but also evidenced a recent increase in intense freezing rain events (1990-2007), 

                                                
1 Estimates compiled from NCDC Storm Event Database. Note however, that these values are expressed 
for guidance purposes, and may not represent a conclusive quantitative value, see Branick, 1997.  
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linked to a positive Atlantic Multidecadel Oscillation (AMO). There are no clear 

present or historical trends in freezing precipitation occurrence (Kunkel et al. 2013), and 

available information supports high interannual-decadal variability (e.g., Changnon and 

Karl 2003). However Call (2010) suggests that the increased dependence on electrical 

power has strained resources and exacerbated power outages and negative societal 

impacts during recent ice storms. The susceptibility of U.S sub-regions to financial 

damage from freezing precipitation was also investigated by Changnon (2003). South 

central states ranked fourth in total damage losses (1949-2000), but first in the ratio of 

number of freezing rain days to significant financial loss (roughly 3.5 freezing rain days 

to $1 million damage). The result was attributed to higher observed ice accumulations, 

potentially resulting from longer single-duration events and greater moisture availability 

leading to comparatively more damaging individual events.  

This dissertation provides a detailed meteorological analysis of winter storms, 

with focus on ice storms, for the U.S Southern Great Plains (SGP). The spatial extent of 

the SGP domain is shown in chapter 2, and includes Oklahoma, portions of Texas, 

Kansas, Arkansas, Missouri and Louisiana. This research intends to improve 

understanding of the regional nature of freezing precipitation events, especially with 

regard to temperature and moisture profile characteristics. In particular, we consider the 

question of what factors control or influence the severity of freezing precipitation? The 

study has two components: The first is a climatological analysis of the thermal profile 

and synoptic scale evolution, based on a manually compiled dataset 1993-2011 (chapter 

2 & 3). The second uses the Weather Research and Forecasting Model (WRF-ARW, 

Skamarock et al. 2008) to perform a suite of high-resolution sensitivity simulations 
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evaluating possible connections between sea surface temperature anomalies in the Gulf 

of Mexico with the thermodynamics of freezing precipitation, a hypothesis based on the 

developed climatology and past literature (chapters 4-7). The simulations use two recent 

case studies with different synoptic evolutions. Since to date limited research exists for 

the region, this dissertation work stands to make an important contribution. Further 

literature background2 on freezing precipitation research is now presented. Later 

chapters provide further contextual literature as needed.  

 

1.2 History and Definitions  

According to Robbins and Cortinas (2002) freezing precipitation was reportedly 

first identified during an ice storm in central Germany, October 1898. It was observed 

from measurements taken from a nearby mountain that a near saturated region of above 

freezing temperature was present throughout the event in the lower troposphere, with 

sub-freezing air at the surface. Later case studies of ice storms in the United States by 

Frankenfield (1915) and Meisinger (1920) noted a similar vertical thermal profile. Reihl 

et al. (1952) advanced understanding of the larger-scale environment by identifying two 

common synoptic patterns associated with freezing precipitation in Illinois. In 1959, 

Bennett published a study that built upon this work, providing further synoptic contexts 

(see section 1.4).  

In the late 1980s-1990s a surge of papers sought to better characterize the 

microphysical complexity of freezing precipitation, in relation to the evolution of the 

thermodynamic profile (e.g., Stewart 1987, Hoffman and Norman 1988, Czys 1996, 

                                                
2 Although important, the ecological literature on freezing precipitation is not further considered.  
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Zerr 1997). These studies heavily drew upon radiosonde data, and more recently remote 

sensing (e.g., Zhang et al. 2010). Given the forecasting challenges associated with 

correctly delineating precipitation phase type, interest lay in finding empirical 

distinctions between them. Whilst the specific details are complex and can vary for 

individual regions (described in section 1.5), this work improved understanding of the 

thermal profiles more associated to ice pellets, versus freezing rain. Figure 1.1 

schematically illustrates conceptual temperature profiles for all winter precipitation 

types.  

Rain (Panel A): Liquid precipitation that occurs in a near saturated environment 

with a vertical thermal profile characterized by above freezing surface temperatures and 

a general decrease in temperature with height (low level inversion layers sometimes 

present). 

Freezing Rain (panel B): Supercooled liquid precipitation classically associated 

with a (near) saturated above freezing inversion layer, known as the ‘warm layer’ 

‘warm nose’ or ‘melting layer’. Here we apply the term ‘warm layer’. Precipitation 

generated above this layer descends into the above freezing inversion and melts to form 

a liquid raindrop. These drops then pass through a subfreezing layer near the surface, 

which if sufficiently shallow and saturated, prevents precipitation from refreezing until 

it impacts a surface. Hoffman and Norman (1988) identified another microphysical path 

associated with the collision and coalescence of supercooled droplets in an environment 

characterized by a completely sub-zero vertical thermal profile. In most cases, a 

substantial dry layer was present in the mid-troposphere- the region associated with 

efficient growth of snowflakes (the ‘dendritic grown zone’ with temperatures typically -
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12 to -17oC). The lack of ice crystals, which would tend to encourage rapid glaciation 

within the cloud, allows the maintenance of distinct supercooled layers. Rauber et al. 

(2000) determined that this ‘supercooled warm rain’ process was most commonly 

associated with freezing drizzle. This dissertation focuses on the classic warm layer 

profile.  

Ice Pellets (panel C):  Partially frozen precipitation that has the characteristics of 

small hail or graupel. In the U.S definition ‘sleet’ is interchangeable with ice pellets. 

However internationally the definition of sleet varies, therefore ‘ice pellets’ is the 

preferred designation. The primary mechanism by which ice pellets form is similar to 

that of freezing rain and can be co-located with freezing rain. Some observed 

distinctions include cooler/shallower warm layers and/or deeper refreezing surface 

layers. This thermal profile can result in insufficient melting and/or partial refreezing 

(Stewart and King, 1987, Zerr 1997).  

Snow (subzero profile: panel D): The classic snow profile is entirely subfreezing. 

Ingredients for the formation of heavy snowfall commonly include rising motion near a 

saturated or saturated isothermal layer near -15oC, where growth by deposition and 

aggregation is particularly efficient. In many cases a deep saturated layer at any level 

supports snowfall generation, as deposition, riming and aggregation occur throughout 

the profile (e.g., Pruppacher and Klett 1981, Schultz et al. 2001).  

Snow (above zero near surface profile: panel E): Snowfall may occur in 

temperatures exceeding 0oC if the low level airmass is sub-saturated. There are a couple 

of mechanisms that may occur in these cases: The first is the evaporation and 

subsequent cooling of the airmass, especially during heavy precipitation. Lab 
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experiments by Matuso and Sasyo (1981, a,b) demonstrate that snow can occur in 

relative humidities of 40% with temperatures as high as 7oC (Schultz et al. 2001). The 

second mechanism occurs when snowflakes melt as they descend into the near surface 

above freezing environment. This can cool the airmass through diabatic cooling (e.g. 

Bosart and Sanders 1991, Kain et al. 2000, Fuhrmann 2011), and typically occurs in a 

more humid environment.  

 

 

Figure 1.1: Conceptual representation of vertical thermal profiles associated with 
precipitation phase (A) rain, (B) freezing rain, (C) ice pellets, (D) snow and (E) snow 
with an initial surface temperature greater than 0oC, under the influence of diabatic 
cooling (as in Fuhrmann 2011). The Vertical dashed is the 0oC isotherm, while the 
purple solid line is the idealized environmental temperature profile.  
 

1.3 Geographic Distribution of Winter Precipitation  

National freezing precipitation climatologies (e.g., freezing rain and drizzle, ice 

pellets, hereafter FZPCP) across the contiguous U.S and Canada have been constructed 
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by Bennett (1959), Baldwin (1973), Bernstein and Brown (1997), Branick (1997), 

Bernstein (2000), Cortinas (2000), Rauber et al. (2000, 2001), Robbins and Cortinas 

(2002), Houston and Changnon (2007). Most indicate a broad zone of increased FZPCP 

frequency along an axis from the Texas Panhandle, north and east through Michigan 

and New England where a maximum is observed. Another maximum extends much of 

the length of the Appalachians southward to South Carolina. FZPCP is uncommon in 

intermountain regions west of the Rockies (except Washington), and subtropical 

southern states. The spatial climatology of Changnon and Karl (2003) is shown in 

Figure 1.2. This distribution reflects perhaps a number of features including the 

frequency of surface cold airmassess, availability and transport of moisture, and the 

occurrence of sufficient lifting mechanisms for the generation of precipitation (e.g., 

cyclones, storm tracks, topography). In contrast, the climatological distribution of 

snowfall, as derived by Changnon et al. (2006) for events exceeding 15.2 cm (6 inches) 

showed strong latitudinal dependence over the Great Plains. In the western, northern 

and eastern U.S, topography and water sources (notably the great lakes) appear to drive 

the frequency distribution (Figure 1.3).  

FZPCP temporal distribution was examined by Cortinas et al. (2004) and 

Changnon and Karl (2003), among others. The majority occurs during the winter 

months of December, January and February, especially December and January 

(Changnon and Karl, 2003). There is an apparent seasonal dependence with latitude, 

and to a lesser extent longitude (e.g., Stuart and Issac, 1999). Snowfall events revealed 

broader seasonal range, particularly for the intermountain west. In the Great Plains and 

eastern U.S, snowstorms occur between October-April, with latitudinal dependence for 
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peak month(s). Changnon et al. (2006) showed peak months of January and February 

for the Southern Plains. Studies considering sub-daily records have noted that FZPCP is 

more frequent overnight and during the morning hours (e.g., Strapp et al. 1996, Cortinas 

et al. 2004) and often of short duration (e.g., mean 4.3 hours at Quebec, CA, Ressler et 

al. 2012).  

 

1.4 Synoptic-Dynamic Evolution  

Early analysis into synoptic conditions producing FZPCP was by Reihl et al 

(1952) who identified two leading patterns of freezing rain formation for winter storms 

in Illinois. One was associated with a surface cyclone, with observations of freezing 

rain about 50 miles north of a warm front in the northern sector of the system. This zone 

was narrow, bounded by snow to the north in the deeper cold airmass, and rain near the 

warm front. The other was characterized by a surface stationary front with a shallow 

arctic airmass to the north, and ascent of warm southwesterly flow over the cold air. 

Freezing rain in this latter case was often widespread, lighter, but of longer duration 

than the former (see also Robbins and Cortinas 2002, Ressler et al. 2012). Bennett 

(1959) suggested that the arctic airmass can be classified as polar continental, while the 

low-level warm airmass typically has its origins from the low latitudes (e.g., tropical 

maritime). Favorable conditions for freezing rain occur when the polar continental 

airmass is modified through low level moistening, preferentially occurring in proximity 

to large water bodies (e.g., Bernstein et al. 1998).  

Rauber et al. (2001) developed a set of archetypal surface synoptic patterns 

common to FZPCP in the contiguous U.S east of the Rocky Mountains using nearly 
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1000 soundings over 24 years. This comprehensive assessment formed seven synoptic 

archetypes, three of which related to Appalachian topography (e.g., cold air damning). 

The four remaining patterns are shown in Figure 1.4.  The most common archetype, 

‘Pattern A’ (31% frequency) was associated with an arctic quasi-stationary front. 

Rauber et al. (2001) note that FZPCP fell near and just north of the surface 0oC 

isotherm. The longer duration of these events also supported the earlier findings of 

Reihl et al. (1952) and recent work by Ressler et al. (2012), who compartmentalized 46 

ice storm events into three categories based on the location and orientation of the 500 

hPa trough. A western trough, accompanied by a persistent arctic anticyclone, yielded 

longer duration freezing precipitation but weakened forcing for ascent. Arctic 

anticyclones translating over the U.S during the winter can produce a proportionately 

large swath of FZPCP near their southern boundary (e.g., Bernstein et al, 1998). Pattern 

B was also earlier identified by Mesinger (1920) and Reihl et al. (1952) and occurs with 

the passage of a surface cyclone. FZPCP forms in a narrow band north of the warm 

front near the 0oC isotherm as warm air ascents over the frontal boundary. Rauber et al. 

(2001) note that this pattern was less common (about 14% of events) and associated 

with short-lived FZPCP, usually due to thermal transitions associated with the faster 

system progression. Pattern C was a combination of patterns A and B, and was 

associated with strong surface winds produced from pressure gradient between the 

cyclone and anticyclone centers (e.g. Bennett, 1959). This pattern contributed to 19% of 

all events, and was second to pattern A in duration. Pattern D (10% frequency) 

developed FZPCP in the western quadrant of a surface anticyclone. In this case surface 

winds can have southerly component, implying warm advection in the refreezing layer 
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Figure 1.2: Distribution of freezing precipitation events by average number of days per 
year 1949-2000. From Changnon and Karl (2003), available at: 
http://mrcc.isws.illinois.edu/living_wx/icestorms/index.html#frequency 
 

 

Figure 1.3: Annual average number of snowstorms 1901-2001, based on accumulation 
> 6 inch. From Changnon et al. (2006), their Fig. 2. 
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(excluding frictional effects). Depending on the characteristics of the surface airmass, 

and in the absence of reinforcing arctic air, winter precipitation accompanying this 

pattern was generally of short duration.  

While the presence and maintenance of a shallow subfreezing surface airmass is 

essential for FZPCP, the low-level warm layer inversion (typically considered to be in 

the vicinity of 850 hPa, ~1km above ground) must be present and sustained in order for 

such precipitation to persist. Warm air advection (WAA) was demonstrated in the 

literature to be important to maintaining this layer against cooling associated with 

precipitation phase changes and vertical motion (e.g., Zerr, 1997, Rauber et al. 2001, 

Robbins and Cortinas 2002). Low-level veering of winds from northerly/northeasterly 

to south/southwesterly around 850 hPa is common. Robbins and Cortinas (2002) 

evaluate quasi-geostrophic (QG) advection and vorticity, finding that WAA tends to 

dominate at low levels (~850 hPa) in FZPCP north of stationary fronts, while 

differential vorticity advection becomes important as forcing for ascent in well-

developed cyclonic systems. The temporal persistence of WAA relates to the synoptic-

dynamic evolution of the system. Persistent freezing rain events over the U.S (e.g., 

Rauber et al. 1994, Gyakum and Roebber 2001) and elsewhere, including the prolonged 

damaging Chinese ice storm (e.g., Bao et al. 2010, Sun and Zhou. 2010) have noted 

pronounced circulation anomalies, including slow moving strong southwesterly flow 

and moisture advection from the subtropics, propagating disturbances promoting ascent, 

and continual replenishment of surface cold air through mesoscale (e.g., ice melting and 

sublimation regarding warm front northerly movement, Rauber et al. 1994), and 
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synoptic processes (e.g., persistent northerly component winds, slow moving or blocked 

flow promoting quasi-stationary arctic airmass and baroclinic zone).   

 

 

Figure 1.4: Non-terrain surface synoptic archetypes for freezing precipitation, from 
Rauber et al. (2001), their Fig. 2. Shaded area indicates region where freezing 
precipitation was observed. Archetypes manually identified from sounding analysis.  
 

1.5 Thermal Features of Freezing Precipitation  

An introduction to general properties of freezing and frozen precipitation was 

given in section 1.2. However, the evolution of each mixed phase winter storm tends to 

be different with regard to the placement of key thermodynamic parameters as 

mesoscale and microscale processes heavily influence the amount and duration of a 

given precipitation phase. A goal of past research has been to distinguish 

thermodynamic properties of ice pellets from freezing rain. Freezing rain can lead to 
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destructive ice accretion, whereas ice pellets largely accumulate at the surface, posing 

less threat to elevated structures (Lackmann 2011 p225). It is well known that the 

characteristics of the warm layer (depth, maximum temperature, saturation) are 

important to the formation of both hydrometeor types (Stewart and King 1987, Martner 

et al. 1993, Zerr 1997). Climatological studies by Rauber et al. (2001), Robbins and 

Cortinas (2002) have identified typical bounds on warm and refreezing layers 

associated with freezing rain. For example, Rauber et al. (2001) find that when a warm 

layer is present, 80% of freezing rain cases exceed +2oC, 50% exceed +4oC, and 30% 

exceed +6oC, with a mean (mode) of +5oC (+3o). Studies have also identified a strong 

statistical relationship between warm layer depth and its maximum temperature. For 

example, Zerr (1997) analyzed 34 freezing precipitation case studies and found a 

correlation of 0.71. Rauber et al. (2001) obtain a similar result (0.8) using a far larger 

dataset (820 soundings). They suggest that this relationship is a natural result of the fact 

that a dry-adiabatic lapse rate must be supported above the inversion, and thus a greater 

central temperature implies greater layer depth exceeding 0oC.  

For the surface subfreezing layer, Rauber et al. (2001) report 84% of events with 

temperature < -2oC, 53% of events < 4oC, and 22% of events < -6oC, with a mean and 

mode of -5oC and -3oC respectively (implying national average warm and refreezing 

layer temperatures roughly symmetric around 0oC). Robbins and Cortinas (2002) find a 

median minimum refreezing layer temperature of -2.9oC, where the minimum 

temperature was located on average a few hundred meters above ground level. Layer 

depths average around 600-800m, with a range of 400-1100m. Unlike the warm layer, 
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there is no clear linear relationship between refreezing layer depth and its minimum 

temperature (e.g., Rauber et al. 2001, Zerr 1997).  

Zerr (1997) applied a theoretical melting and freezing heat transfer model, using 

observed FZPCP thermodynamic profiles, and assuming different particle mass sizes. 

His results demonstrated (i) a size dependence of the warm (refreezing) layer 

temperature required to completely melt (freeze) a falling hydrometeor, (ii) A cooler 

refreezing layer promotes refreezing of the particle (ice pellets), especially if the warm 

layer was not sufficient to completely melt it. Figure 1.5 shows Zerr’s plot of particle 

mass against temperature for both layers. This conceptual study was highly idealized, 

considering a single hydrometeor with constant vertical velocity, irrespective of phase 

changes, and a relative humidity of 100%. The initial particle was also assumed to be a 

dendritic snowflake as in Mitra et al (1990). It was recognized that all of these factors 

can have a large impact on precipitation type. For example, a subsaturated profile 

introduces evaporative cooling, increasing (decreasing) the distances required for 

complete melting (freezing). Multiple falling hydrometeors introduce added complexity 

as they interact with one another, increase sensible and latent heat transport, assume a 

spectrum of different sizes, and thus the potential for mixed phases. The introduction of 

ice nuclei within the refreezing layer may also support partial refreezing of 

hydrometeors. Furthermore, not all FZPCP scenarios start with spherical particles aloft. 

Zhang et al (2010) used remote sensing techniques to evaluate particle shapes and size 

distributions within Southern Plains winter storms, identifying a high degree of 

variability. In many cases weak vertical motion and ample moisture provide an 

environment that is conducive to the formation of highly non-spherical aggregates.  
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The microphysical complexity of FZPCP is the fundamental reason for a relative 

lack of success in creating nationally consistent algorithms to enable forecasters to 

distinguish between freezing rain and ice pellets. Early algorithms evaluated low-mid 

atmospheric thickness (e.g., 1000-500 hPa) and empirically derived thresholds to 

distinguish rain from snow, and eventually freezing rain and ice pellets, using thickness 

measures in the lower atmosphere (e.g. 1000-900 hPa, 850-700 hPa). More recently, the 

entire thermodynamic profile has been evaluated to determine precipitation phase (e.g., 

Ramer 1993, Baldwin et al 1994, Bourgouin 2000). Czys et al. (1996), in an approach 

similar to Zerr (1997), modeled a single ice sphere’s descent through a given 

thermodynamic profile. The final phase of the sphere was diagnosed from the ratio of 

the time the sphere is present in the warm layer, and the theoretical time for complete 

melting. Cortinas et al. (2000,2002) advocate that using a selection of algorithms to 

diagnose precipitation type from model output may be more beneficial than a single 

approach. This probabilistic assessment can be used to determine a ‘most likely’ 

precipitation phase for a given situation, methodology that accounts for inherent 

uncertainty in the simplifying assumptions for each.  

 

1.6 Regional Analyses 

Regional analyses of FZPCP have included the Canadian Arctic (Roberts and 

Stewart 2007), central and eastern Canada (McKay and Thompson 1969, Strapp et al 

1996, Laflame and Periard 1998, Stewart and Issac 1999, Ressler et al. 2012), the 

northeast U.S (Castellano 2012, DeGaetano 2000, Gyakum and Roebber 2001), east 

coast/mid Atlantic (Forbes et al. 1987), southeast (Gay and Davis 1993, Ramos DeSilva 
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Figure 1.5:Top: Hydrometeor mass versus depth of warm layer required to melt 99% of 
this mass. Each curve represents a different lapse rate. Bottom: Mass versus depth of a 
layer required to refreeze a hydrometeor with initial fractions of ice between 0.01 and 
0.5 for lapse rates of -5 K/km and -10 K/km. From Zerr (1997), his Fig 13 and 14. 
 

et al. 2006, Fuhrmann and Konrad 2013), the Midwest (Riehl et al. 1952, Rauber et al. 

1994), and the Great Lakes (Cortinas 2000). At least a couple of studies examined 

radiosonde profiles at multiple locations in order to point out regional variability in 

thermodynamic structure (e.g., Bernstein 2000, Robbins and Cortinas 2002). Further 

regional research is ongoing, with initiatives in the Northeastern US (e.g., Castellano, 
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Bosart and Keyser, Suny-Albany), and the Southern Plains (this Dissertation, Oklahoma 

Climatological Survey/Southern Climate Impacts Planning Program). 

The results of these studies show a high degree of variability of features ranging 

from synoptic to micro-scale. Bernstein et al (2004) posits that variability results from 

the position of a region with respect to storm tracks, large bodies of water, and 

topography. For example areas of topography, especially N-S orientated mountain 

chains, were favored locales for FZPCP due to cold air that can become trapped at low 

levels through ageostropic pressure gradient flow (e.g., Forbes et al. 1987, Roebber and 

Gyakum 2003). The proximity of a given domain to a large water source, such as an 

ocean, influence the magnitude of the warm layer and the availability of moisture. In 

Bernstein’s (2000) analysis, warm layers, along with increasing amounts of freezing 

rain and ice pellets relative to freezing drizzle, appeared more prevalent in locations 

including Pennsylvania, central North Carolina and Maine. As well as favorable 

topography, these sites were all proximate to the Atlantic Ocean, and so Bernstein, and 

later Gyakum and Roebber (2001), Robbins and Cortinas (2002), Fuhrmann and Konrad 

(2013) have attributed the generation and maintenance of the warm layer to low-level 

advection of moist subtropical maritime air. Bernstein considered two other locations 

within close proximity to water, one in the Pacific Northwest. In this case, observed 

warm layers were shallow and had temperatures only slightly above 0oC, which 

Bernstein linked to cooler sea surface temperatures (SST) of the northern Pacific. The 

second location, in northern Wisconsin (Green Bay), was adjacent but west-southwest 

of the Great Lakes, and tended to experience a much greater proportion of freezing 

drizzle, especially when winds had a long fetch over the lakes. The propensity for 
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freezing drizzle over freezing rain is likely synoptically driven, with large-scale weak 

ascent over stationary fronts being the primary mechanism for the former.  

The synoptic pattern that generates FZPCP was seen to vary markedly with 

location. For example, in the eastern U.S, many events are associated with the passage 

of a surface cyclone to the south/southeast, and in some cases, the development of a 

secondary cyclone (e.g., Robbins and Cortinas 2002, Cortinas et al. 2004). Further west 

within the Great Plains, FZPCP may be more frequent with arctic anticyclones (e.g., 

Rauber et al. 2001, pattern A), however a unified region-by-region synoptic 

classification remains to be evaluated. We can surmise, based on these studies, that 

FZPCP frequency, type, and severity is regionally determined. Figure 1.6 demonstrates 

an example of regional thermodynamic variation from Robbins and Cortinas (2002). In 

general:  

(i) Proximity to warm oceans is associated with higher moisture content and 

greater warm layer temperature/depth.  

(ii) Freezing drizzle may be more common further north, and is frequently 

associated with arctic anticyclones.  

(iii) The synoptic pattern that contributes the most FZPCP varies with location.  

(iv) Southern latitudes experience less frequent winter storms, but a greater 

proportion of these are mixed phase. Cortinas et al (2004) hypothesize that 

this is due to preponderance of shallow cold air on the leading edge of Arctic 

airmasses, better sustaining a mixed phase thermodynamic profile.  
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Figure 1.6: (a) Maximum wetbulb temperature (oC); (b) of max wetbulb temperature; 
(c) low-level minimum wetbulb temperature; (d) height of low-level minimum for all 
cases in the dataset. Each box encloses 50% of the data. ALB = Albany NY, BUF = 
Buffalo NY, GSO = Greensboro NC, GEG = Spokane WA, PIA = Peoria IL, All = All 
soundings. Note the distinctive differences in the median and spread of each variable 
with location. From Robbins and Cortinas (2002). 
 

1.7 Large Scale Dynamics  

An aim of this dissertation is to relate the evolution and precipitation 

characteristics (e.g., intensity, phase), to the larger scale environment. Determining 

links with global circulation anomalies including atmospheric teleconnections is outside 

the scope of this work. Focus in instead on the concept that ‘the sensible weather that 

results from a particular circulation pattern is highly dependent on details of the 

airflow’ (Roebber and Bosart 1998, Fuhrmann 2011). In other words, the intensity and 

precipitation phase of a given winter storm is a function of the characteristics of the 
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regional environment and the air masses ingested into the system. A lagrangian method 

for examining airflow is through calculation of air parcel trajectories. Gyakum and 

Roebber (2001), Fuhrmann (2011), Fuhrmann and Konrad (2013) examined back-

trajectories (a trajectory integrated back in time from a point and time of interest) for 

several winter storms. Gyakum and Roebber (2001) computed 3-week trajectories 

incident to heavy freezing rain within the severe 1998 northeast ice storm. Low-level air 

parcels spent considerable time near the surface over the subtropical Atlantic Ocean. 

Diabatic heating and moistening advected very high values of equivalent potential 

temperature (θe ~330K) into the precipitation region. Five synoptic analogues for this 

event all showed differing θe evolutions, related to their path and altitude above the 

marine boundary layer, implying that despite similar synoptic features (e.g., location of 

pressure systems, trough), the evolution of event-specific air masses may be distinctly 

different.  

Fuhrmann and Konrad (2013) examined trajectories for near surface, warm 

layer, and dendritic growth zone within snowstorms and ice storms in central North 

Carolina. They also observed that the establishing of the warm layer was the result of 

diabatic processes accumulating heat and moisture along the trajectory path, 

thermodynamic characteristics of the source region, and/or the region over which the air 

parcel spends much of its time. Like Gyakum and Roebber (2001), Furhmann and 

Konrad (2013) identified that air parcels residing for long durations in the marine 

boundary layer (PBL) of the subtropical Atlantic were associated with warmer, moister 

warm layers, which is illustrated in Figure 1.7. Snowstorms typically had more 

northerly trajectories and/or air parcels remaining aloft of the marine PBL.  
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By focusing on the generation and maintenance of the warm layer, the above 

results place considerable emphasis on the role of adjacent oceans. Only one paper by 

Ramos De Silva et al. (2006) attempted to directly relate ocean SST to the evolution of 

FZPCP. In that study, uniform Atlantic SST anomalies (SSTA) of ±2oC, ±4oC were 

imposed within a regional domain of the RAMS numerical weather prediction model 

(Pielke et al. 1992, Walko and Tremback 2001), and the thermodynamic and 

precipitation response examined for an ice storm in the southeastern U.S. The results 

supported a significant relationship between SSTA and the depth and magnitude of the 

warm layer for the analyzed case study. A more positive SSTA produced a moister, 

warmer inversion, shown in Figure 1.8, and a greater proportion of freezing rain. 

Negative SSTA was associated with a weaker warm layer, and relative increases in ice 

pellets and snow. This result was further supported by a linear regression between 

observed warm layer properties and weekly mean SST during FZPCP. The SST 

perturbation magnitude primarily evaluated in this work was beyond physical limits, 

largely to promote trend identification. As an extension to the above, and recognizing 

the repetition of this research question in the literature (e.g., mentioned by Castellano 

2012, and Fuhrmann 2011 as a topic for further study) we apply a more nuanced set of 

perturbations based on realistic fields to produce a more physically constrained 

assessment of the magnitude of association between SSTA and warm layer evolution.  

For the SGP, the Gulf of Mexico (GOM) is the closest ocean basin by distance, 

and is also well known to influence sensible weather over the domain. The GOM 

primarily influences SGP meteorology through the advection of moisture. Wintertime 

interior SST is typically on the order of 20-25oC, which yields ample moisture given  
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Figure 1.7: Top: Airmass trajectories (calculated using NOAA HYSPLIT model) for 
ice storms (left), and snowstorms (right) in central North Carolina. Bottom: Adiabatic 
and diabatic contributions to temperature variations within the low level warm layer for 
a subset of ice storms (left) and snowstorms (right). From Fuhrmann (2011). 
 

 appropriate atmospheric conditions. The role of SST in the thermodynamic evolution 

of winter precipitation is hypothesized to be important to the evolution and regulation of 

precipitation phase – and thus the severity of SGP ice storms.  Further literature 

discussion of GOM SST variability is presented in chapter 4.  

 

1.8 Dissertation Content  

This dissertation content is outlined below by chapter. This work incorporates a 

broad set of topics, including synoptic-dynamic meteorology, climatology, numerical 
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Figure 1.8: Air temperature profiles (oC) for control (black line) and perturbed Atlantic 
SST simulations (-4 oC = dashed line, +4 oC = dotted line) near Greensboro, NC at two 
times during an ice storm (a) 2100 UTC 4th Dec 2002, (b) 0400 UTC 5th Dec 2002. 
From Ramos De Silva et al (2006), their Fig. 7. 
 

modeling, lagrangian airflow characteristics, microphysics and large-scale climate, all 

within the context of understanding SGP freezing precipitation. This research should 

hopefully be useful to forecasters, climatologists and modelers, and the preliminary 

nature of some of our results sets up a platform for future regional analyses/extension. 

Chapter contents include:  

Chapter 2: A Regional Climatology of Winter Precipitation over the Southern Great 

Plains: Background and methodology are presented on the manual compilation of a 

database of winter weather for the study domain 1993-2011. Using this database, spatial 

and temporal distribution of freezing and frozen precipitation are analyzed for the 

region. Using upper air data, the thermodynamic characteristics of freezing precipitation 

within the domain are examined, and placed into a national context, including 

comparison with prior studies.   



 25 

Chapter 3: A Synoptic Climatology of Southern Great Plains Winter Storms: 1993-

2011: This chapter provides a preliminary synoptic climatology for winter storms 

within the domain, with an emphasis on elucidating features between snowfall events, 

and those with a distinct freezing precipitation component. Using principal component 

(EOF) and composite analysis, and considering a suite of variables from the North 

American Regional Reanalysis (NARR), common synoptic flow patterns are shown, 

and their specific characteristics described.  

Chapter 4: Development of a WRF-ARW Sea Surface Temperature Sensitivity Study: 

Based on earlier results, and a brief summary of air parcel trajectories incident to the 

warm layer during freezing precipitation, a hypothesis regarding the relationship 

between sea surface temperature (SST) and the thermal/moisture structure of the warm 

layer is presented. In order to test this, a set of SST anomaly fields for the GOM is 

required. Background literature is considered on the nature of SST variability in the 

GOM, and the types of SST anomaly perturbations that can be utilized. The final set of 

SST anomaly fields for two ice storm case studies are presented and justified. 

Furthermore the observed evolutions of both cases are discussed.   

Chapter 5: Configuration of the WRF-ARW: Validation of Control Simulations: In 

order to conduct a sensitivity study truthful to a given event, a reliable simulation of the 

actual unperturbed event must be obtained. Here we discuss the WRF setup, including 

the choice of physical parameterization schemes. Simulations of the December 9-11 

2007 ice storm, varying two PBL and 4 microphysical schemes, are validated against a 

suite of observations, including the Atmospheric Radiation Measurement (ARM) 
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central facility, Oklahoma Mesonet, and NCEP Stage IV precipitation, in order to 

obtain the ‘best’ configuration. Model biases and uncertainties are summarized.   

Chapter 6: Results of SST sensitivity study: December 9-11 2007: The results of the 

SST study are presented for the first case study. Four key variables and their evolutions 

are investigated. These variables include: precipitation, thermal profile, synoptic and 

mesoscale features (fronts, forcing for ascent, moisture transport), and cloud 

cover/radiation. The impacts of the SST perturbations are compared relative to the 

‘REAL’ or control scenario. The chapter concludes with an estimate of the change in 

ice storm severity resulting from SST perturbations, where the amount of freezing rain 

and ice pellets is assessed using a basic algorithm developed by Bourgouin et al. (2000).  

Chapter 7: Results of SST Sensitivity Study: January 28-30 2010: This case study had 

a markedly different synoptic evolution to the former, which yields some comparisons 

that can be made between them regarding the impact of SST perturbations versus the 

impact of the synoptic ‘type’ (see Chapter 3) on the warm layer. The outline of this 

chapter is essentially the same as above.  

Chapter 8: Conclusions and Further Work: This summary chapter reiterates our key 

results and provides a deeper comparison between the two case studies used and their 

response to the SST perturbations. Further research questions and opportunities are 

described.  

 

 

 

 



 27 

Chapter 2: Developing a Thermodynamic Climatology of Freezing 

Precipitation and Snow for the Southern Great Plains 1993-2011 

 

2.1 Introduction 

Chapter 1 provided literature background and context for this dissertation 

research. In this chapter, and chapter 3, techniques and insight from prior literature, 

notably Rauber et al. (2000,2001), Robbins and Cortinas (2002), Zerr (1997), are used 

to develop a regional climatology of winter storm events, and their synoptic and 

thermodynamic characteristics for the U.S Southern Great Plains (SGP).  Readers 

should be aware that the geographical definition of SGP varies in the literature (e.g., 

compare this analysis to Lamb et al. 2012), so our domain may not necessarily 

correspond with other studies. Possibly due to event infrequency, winter storm 

climatologies, particularly for freezing precipitation (FZPCP), have not been attempted 

comprehensively for the region. This work aims to address this dearth of knowledge in 

a preliminary sense, and promote further research. Aims of this present chapter include: 

i. Development of a winter storm database for the SGP domain 1993-2011 

(Sec. 2.1).  

ii. Evaluation of spatial and temporal distribution for freezing and frozen 

precipitation (Sec. 2.2). 

iii. Examination of domain wide thermodynamic characteristics of freezing 

precipitation (freezing rain, drizzle, ice pellets) using upper-air profiles  

 from several stations (Sec 2.3). 
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iv. Scientific and regional context of results through comparison with prior 

studies.  

 

2.2 Spatial Analysis  

2.2.1 Development of winter storm database 

The SGP study region is shown in Figure 2.1. It encompasses 10 (8) degrees of 

longitude (latitude), including portions of Arkansas, Louisiana, Kansas, Missouri, 

Oklahoma and Texas. The domain is further subdivided into four equally spaced 

quadrants, created primarily to aid initial selection of winter precipitation events for 

inclusion to the database. Since each precipitation episode impacted a different portion 

of the domain, the quadrants provided a first order measure of location(s) of greatest 

impact. As spatial coverage of most winter storm events was typically large, it was not 

necessary to further subdivide the region at this stage.  

Winter weather events encompassing ice storms, freezing precipitation, 

snowstorms and winter storms, between January 1993 and February 2011, were 

obtained using NOAA’s National Climatic Data Center Center (NCDC) Storm Event 

database (http://www.ncdc.noaa.gov/stormevents/). A decision flowchart, shown in Fig. 

2.2, illustrates the process by which the database was developed. Storm Event archives 

notable weather events by county, state, and approximate duration, providing brief 

descriptions of salient features. The designation of event type (e.g., ‘ice storm’, ‘winter 

storm’, ‘winter weather’, ‘glaze’) in some cases was inconsistent with the magnitude 

and/or type of the resulting event. For example, a ‘winter storm’ accompanied by 

significant icing, or a ‘winter weather’ event reaching the storm criteria established 
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Figure 2.1: Map of the Southern Great Plains domain, including study region (dark 
blue box) and its quadrants (thin blue lines), NOAA climate divisions used (thin black 
lines), rawinsonde stations (black dots) with the ACRF Lamont site circled, and 
elevation above sea level (shaded, in km). Other rawinsonde stations are (from west-to-
east) Amarillo (TX), Dodge City (KS), Oklahoma City (OK), Dallas-Ft Worth (TX), 
Shreveport (LA), Springfield (MO), and Little Rock (AR).  
 

for this dissertation (see below). The text description was generally the most important 

aspect for event screening, providing more detail into socioeconomic disruption, 

location, and often maxima in ice/snow accumulations.   

The first year (1993) for the present analysis was chosen to coincide with the 

start year of the online record when this research was initiated in 2010. Information of 

winter storm type, i.e., ice storm, freezing rain or drizzle, ice pellets and snow, were 

gathered separately for each state, and manually combined to form a database denoting 

the date, duration, quadrant locations and phase type(s) of each event traversing the 
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SGP3. A temporal gap of 48-hours (2-days) at a given location was required to class an 

event as a separate storm. As the Storm Event archive (and its corresponding Storm 

Data publication) provide brief quantitative estimate of precipitation accumulation, 

approximations for event impact were ascertained. Included cases typically had reported 

accumulation at any location ≥ 3 (trace to 0.1 in) inches of snow (freezing rain).  

Given the qualitative nature of Storm Event archive/Storm Data, locations of 

precipitation and its attendant phase type were further appraised from NCDC surface 

analysis charts at 3-hour intervals. (http://nomads.ncdc.noaa.gov/ncep/NCEP), or from 

local station climate summaries for Oklahoma City (OK), Tulsa (OK), Wichita (KS), 

Dodge City (KS), Amarillo (TX), Dallas (TX), Little Rock (AR) and Springfield (MO), 

sourced from http://www.ncdc.noaa.gov/IPS/lcd/lcd.html. Events after 2005 were also 

documented using regional surface analysis at 2-hour intervals, available from the 

Meteorological Case Study Selection database (http://locust.mmm.ucar.edu/). This 

process of selection yielded nearly 160 individual winter storm events included to the 

dataset.  

Unfortunately, no direct measurements of freezing precipitation (notably spatial 

extent) were readily available from the aforementioned sources, and this analysis was 

not restricted to a point location (e.g., compare Ressler et al. 2012, who evaluated a 

single site). Some past studies have utilized Automated Surface Observing Data (ASOS, 

e.g., Jones et al. 2004, DeGaetano, 2000) to consider sub- daily freezing precipitation, 

including time series and accumulation. The use of this dataset was outside the scope of 

this work, especially given the volume of data that would have been necessary to subset 

                                                
3 The Storm Data publication extends back to ~1950, however temporal considerations precluded 
development of a longer dataset at this stage.  
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Figure 2.2: Flowchart summarizing the collection, criteria, and decision process for the 
spatial and sounding-based regional climatology described in section 2.2.1. The 
dissertation appendix, section 2, further documents this methodology.  
 

and analyze. Freezing precipitation can be estimated from liquid equivalent 

precipitation, but this method struggles to accurately quantify individual phase 

proportions to the total accumulation during winter storms with rapid transition. One 

additional source of information used here to assess spatial extent and phase of 
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precipitation was obtained from the North American Regional Reanalysis (NARR, 

Meisinger et al. 2006, see chapter 3 for a description of this dataset), which includes 

variables that estimate the daily fractional coverage of a particular phase type (snow, 

freezing rain, ice pellets) based on the Eta model and using an algorithm based on 

Baldwin and Contorno (1993). Unpublished work by Blunden and Arndt (2011) used 

NARR data to construct climatologies for several station sites over Oklahoma, 

Arkansas. NARR captured the number of FZRA days and monthly trends for each 

station site, with inter-station uncertainties but no apparent secular bias.  

 From the information gathered from these sources, freezing (ice) and frozen 

(snow) precipitation events can be matched to NOAA climate divisions (CDs) over the 

domain (see appendix, sec 2 for example). The CDs used are shown in Fig. 2.1. Much 

of this investigation was manually intensive; fairly consistent with some prior 

methodologies utilized in the literature (e.g., Zerr 1997, Rauber et al. 2001, Ressler et 

al. 2012). Using the database, the number of days per calendar year that either freezing 

precipitation/ice or snow (freezing rain, drizzle and ice pellets are included in the 

definition of ice) were recorded to have been falling e.g. both a 1-hour or 12-hour 

precipitation episode would be given equal weight (1-day).  

 The spatial distribution of precipitation was evaluated by CD, subsequently 

normalized by CD area using a weighting factor (see appendix, section 2), and 

expressed as a frequency (days per year). Storm Event does provide some information 

on counties impacted, however, it was occasionally intermittent - available for some 

case studies and not others. The compromise was to evaluate over the broader spatial 

extent of the CDs instead (see appendix). This removes the potential for higher 
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resolution detail, but captures the gross nature of the ice and snow climatology of the 

region. It is likely that the values in this climatology may be underestimated, 

particularly as light, short lived and/or highly localized winter precipitation may not 

always be reported to the database. Future research could further develop this work by 

examining surface METAR/ASOS, Cooperative Observer and radar data. One might 

then be able to construct a higher resolution spatial analysis from more quantitative 

sources.  

One additional caveat of particular note for Storm Events/Storm Data relates to 

the potential for reporting inconsistencies. Unpublished work by Kovacik et al. (2010) 

identified some abrupt changes in spatial ice storm frequency (2000-2009) between 

National Weather Service County Warning Areas (CWA) that indicated differing 

practices of local forecast offices regarding the designation of winter precipitation 

systems, particularly in terminology (e.g., ‘ice storm’ versus ‘winter storm’). Given that 

our study is performed over less than 6 CWAs, along with use of multiple sources, and 

careful examination of event descriptions regardless of terminology, we hope to have 

minimized errors associated with reporting.  

 

2.2.2 Spatial and temporal winter precipitation distribution  

Figure 2.3 (a) and (b) display the spatial distribution of snow and ice by 

frequency of occurrence per CD, while the rightmost plot (c) expresses these as a ratio 

of ice to snow days (18-year mean). The distribution suggests a higher number of 

freezing precipitation events in the central and northeastern SGP, with some evidence of 

a southwest to northeast zone of higher frequency, noted previously by Kovacik et al. 
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(2010) and Grout et al (2012). Snowfall was more frequent in western and northern sub-

sections, along with regions of elevated terrain in the east (Ozarks of northwest 

Arkansas). The elevated terrain (approx 1 km increase from east to west) of the western 

sub-region and upslope ascent may aid in winter precipitation development. This region 

is also potentially more remote with respect to low-level warm moist air conductive to a 

warm layer.  

The ratio of ice events to snow events showed a northwest to southeast increase. 

This implies a higher proportion of winter storms with freezing (frozen) precipitation to 

the southeast (northwest). The lack of smooth transitions between CDs may reflect both 

their differing areas, relatively small sample, discrepancies in reporting frequency, 

possible human error (e.g., Branick 1997). Further work would be required to establish 

this conclusively. In addition, winter weather events can be localized, particularly 

freezing rain and drizzle, which can occur in narrow bands associated with the position 

of the 0oC isotherm. Topographic variation (e.g., aforementioned Ozarks) likely 

promoted localized changes to event frequency.  

Figure 2.4 shows the average annual distribution of events for each domain 

quadrant for the winter months of November through March. The overall frequency of 

winter weather increased south to north. Freezing precipitation is primarily confined to 

November-February, with peak frequencies in December and January. Snow events 

evidence broader seasonal distribution, especially in the western sub-domain, with a 

secondary peak in March. The unique ingredients that combine to create a suitable 

environment for freezing precipitation may control its seasonal distribution, specifically 

in the requirement of a shallow surface subfreezing layer. Rauber et al. (2001) suggest  
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Figure 2.3: Spatial distribution of ice and snow events, expressed as average number of 
days per year, normalized by the total mean CD area to account for their differing size. 
(a) Snow (b) freezing precipitation (ice), (c) ratio of freezing precipitation to snowfall 
(days per year). Study region is enclosed in purple box.  
 

 

that this commonly occurs along the leading edge and within a cold anticyclone. These 

airmasses are typically shallow, commonly developing over snow-covered regions of 

the Canadian arctic (e.g., Wang et al. 1995). This is due principally to the high albedo 

of snow, which induces radiative cooling of the overlying air (Namias 1962). High 

latitude snow cover tends to reach its maximum extent and depth during mid-winter, 

and thus the frequency of these airmasses may increase during this time. The seasonal 

pattern for freezing precipitation was similar to Changnon and Karl (2003). 

Nonetheless, we confirm the low overall frequency of winter precipitation, typically 

impacting less than 4 days per year (based on derived median).  
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Figure 2.4: Average monthly variation of ice and snow events by quadrant during 
November-March. Frequency is number of days per month, normalized by CD mean 
area, with each CD assigned quadrants in which ≥ 50% of CD area resides. Box and 
whisker diagram shows the median (thick black line), interquartile range (colored box), 
10th and 90th percentiles (horizontal bar) and extreme values (>90%, <10%, circles) for 
each month, valid 1993-2011. Lines give the monthly average normalized frequency for 
ice and snow.  
 

2.3 Sounding Analysis 

2.3.1 Methodology 

The second stage of our regional climatology was to examine the vertical 

atmospheric profile characteristics of SGP winter storms. Given its thermal dependence 

and complexity, the focus was on freezing precipitation and its hydrometeor categories 

(freezing rain, FZRA; drizzle, FZDR; ice pellets, IP), however, a non-exhaustive small 

subset of snowfall (SN) events were examined for comparison. For this study, sounding 

profiles from eight locations were used (shown in Figure 2.1). Seven are National 

Weather Service operated, providing upper air profiles at 12-hour intervals for 00 and 
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12 UTC (06, 18 CST). Occasionally, extra soundings, typically at 06 or 18 UTC, are 

launched in advance or during significant weather. The final location is operated by the 

Department of Energy Atmospheric Radiation Measurement (ARM) program, located at 

their central facility (ACRF, Stokes and Schwartz 1993, Ackerman and Stokes 2003), 

generating higher vertical resolution research soundings every 6 hours (00, 06, 12, 18 

UTC). The NWS soundings were obtained from the University of Wyoming online 

sounding archive, and the ACRF soundings from their archive (http://www.arm.gov/) 

Winter storm precipitation soundings were identified from the aforementioned 

developed database. Soundings launched within 1-hour of a precipitation observation at 

or near the site were considered. ‘Near’ was difficult to define objectively, but typically 

referred to an adjacent observation or set of observations to the sounding site. A total of 

97 (24) vertical profiles were obtained for freezing precipitation (snow). The freezing 

precipitation soundings were subdivided into categories including FZRA (light and 

heavy, 57), FZDR (21), IP (19), heavy FZRA associated with significant icing events 

(station site 24 hr or storm accumulations > 0.25 inch, 25), and light FZRA associated 

with weak icing (station site 24-hr or storm accumulations ≤ 0.25 in., 32).  

The combination of limited domain, and limited temporal/spatial co-location of 

precipitation type produces a relatively small sample size for each category, particularly 

IP, FZDR and SN. Since the dataset was manually compiled and analyzed, it did take 

time to evaluate variables from each profile. A greater sample size could be generated 

by (i) evaluating cases prior to 1993, and (ii) reviewing the database and adding 

additional profiles that may have been missed. These results should be interpreted with 

the caveat that a larger dataset may alter the range and average magnitude of the 
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variables considered. In addition, the low sample size precludes the use of robust 

statistical evaluation. Despite these limitations, insight may be gathered from this study, 

which remains to be expanded upon.  

 The techniques used here are subject to the same limitations as previous 

sounding based analyses. A key uncertainty is the fact that surface observations and 

sounding data may not exactly coincide in time and space. Another is the likely 

underrepresentation of brief localized winter precipitation. Rauber et al. (2001) suggest 

that these caveats do not significantly bias their results. In most cases, nearby stations 

reported the same precipitation type, reducing the impact from non co-located 

information. Here, visual examination of surface observations temporally co-incident 

with the included sounding profiles yields conclusions consistent with Rauber et al’s. 

(2001) assertions, with the possible exception of IP where nearby stations reported 

FZRA or FZDR (not shown), highlighting problems with delineating between phase in 

cases of rapid transition. With the expansion of dual-polarimetric radar though the NWS 

and SGP ACRF it may soon be possible to examine thermodynamic and microphysical 

environments associated with ice and mixed phase precipitation in much finer detail and 

exactly coincident in space and time.  

From each sounding, variables relevant to the thermal, dynamic, cloud and 

microphysical characteristics of FZRA, FZDR, IP and SN were utilized. Thermal 

quantities include maximum and minimum wetbulb temperatures (Tw in the warm layer 

if present, and refreezing surface layer respectively), warm and refreezing layer depths 

(WLD, FLD), surface temperature, mixing ratio, height of maximum and minimum 

wetbulb temperatures (Hmax) above ground level (AGL), and environmental melting 
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(EMP) and refreezing parameters (EFP). The EMP and EFP, developed by Robbins and 

Cortinas (2002), and derived from Pruppacher and Klett (1980), represent the effects of 

the environmental thermal profile on the melting and refreezing of ice particles. The 

form of EMP and EFP used are shown in Eq. 2.1 and 2.2.  

€ 

EMP = −(T0 −Tw )dz
zmbase

zmtop

∫
          (2.1)

 

           

€ 

EFP = (T0 −Tw )dz
zfbase

zftop

∫             (2.2)                     

Where T0 = 0oC, and zmtop (zftop) and zmbase (zfbase) warm (refreezing) layer top and base 

respectively.  

Dynamic variables include wind speed, wind direction, speed and directional 

differences across the warm layer, or surface to 700 hPa layer if none was present. 

These choices were motivated by the observed importance of low-level WAA in 

developing and maintaining the warm layer (Zerr 1997, Stewart et al. 1995, Rauber et 

al. 2000, Robbins and Cortinas 2002). In addition, near-surface wind conditions can 

influence the severity of icing impacts, and the advection of surface cold and/or dry air, 

and thus the thermal profile of the refreezing layer.  

Variables that describe cloud characteristics include cloud top temperature 

(CTT), cloud depth, cloud base height, number of cloud layers and the existence of 

convective potential instability (CI), as in Rauber et al. (2001). Cloud layers were 

identified from a sounding using profiles of relative humidity (RH), dewpoint 

depression and air temperature. Cloud base was defined as the first level at which 

temperature increases with height, coincident with near saturated conditions (RH>95%) 

or an increase in relative humidity to near saturation (Chernykh and Eskridge 1996). 
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The fraction of cloud aloft is considered a function of temperature and dewpoint 

depression, as in Arabey (1975), who noted that at least partial cloud coverage can still 

be present aloft (T < -50oC) in relative humidities as low as 55%. However, the 

precipitation generation region within the cloud is typically defined as the highest layer 

with dewpoint depressions less than 2-3oC (Rauber et al. 2000). In this study a threshold 

of 2.5oC was used. Since the precipitating portion of the cloud is of primary interest, 

‘cloud top’ is defined as the highest level with 2.5oC sub-saturation (RH~84%). Cloud 

depths are the vertical depth over which this threshold is met, although layers less than 

1 km deep with lower relative humidities may still be considered within the same cloud. 

Soundings with distinct and deep dry layers between near-saturated regions were 

assumed to possess more than one cloud layer.  

The temperature at the top of the precipitation generation region (CTT) provides 

an indication of initial precipitation phase. For example, temperatures less than -10oC 

imply the presence of ice nuclei and cold rain processes (Pruppacher and Klett 1997). 

Between -10oC and 0oC, Rauber et al. (2000) suggest that warm rain (collision-

coalescence) processes operate, but the extent of this is unclear. Precipitation generation 

in this temperature range may be expected to contain lower concentrations of ice nuclei 

and higher concentrations of supercooled water. In some cases, the entire cloud may be 

located within the warm layer (CTT>0oC). In others, freezing precipitation has been 

observed without a warm layer (Huffman and Norman 1988).   

Sources of uncertainty related to the estimation of the aforementioned variables 

can include missing data, erroneous readings, rounding/interpolation errors in the 

calculation of thermodynamic metrics, such as layer depths bounded by the 0oC 
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isotherm (which does not necessarily fall neatly on a measurement level). For ARM-

SGP soundings, the vertical resolution was ultra-high at ~2 hPa, contrasted with NWS 

at ~25-30 hPa, Therefore errors in the former were negligible as the resolution was 

sufficient to resolve 0oC levels bounding the warm layer. For the latter, sharp 

temperature changes between adjacent levels were observed at the warm layer 

intersection. Interpolation of the 0oC height involved a simple linear procedure shown 

by equation A2.1 (appendix) that may depart from the ‘true’ layer height, but not by a 

large degree. In addition, the instrument has small measurement errors for each 

variable. A representative error for temperature, relative humidity and wind within the 

troposphere is around 0.2-0.5K, 5% and 3-5 ms-1 respectively (e.g. WMO 1996, 

McGrath et al. 2006). McGrath et al. (2006) note that an ascending radiosonde is 

steered by in-situ flow such that it may drift from its original location by as much as 

200 km. Thus, it is conceivable that the soundings considered remain within the 

synoptic storm system but drift out of the location of freezing precipitation aloft. A 

comparison of cloud height data from the ACRF site, versus sounding derived cloud 

information (Figure 2.5), showed some distinct differences in the mid-upper 

troposphere. The ACRF cloud fraction data was radar/profiler derived and a measure of 

cloud directly above that location. Despite the advantage of the ACRF suite of cloud 

measurements, the radiosonde derived cloud cover was used for the sake of consistency 

with other domain station sites.  

Missing data was not a significant problem as any affected variable was simply 

removed. Examination of each profile revealed no erroneous readings within the lower 

troposphere. An infrequent type of error aloft was a rapid drop in relative humidity, 
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possibly associated with the radiosonde exiting a cloud layer and encountering rapid 

drying (e.g., WMO 1996). One final caveat of note was the fact that, due to the limited 

number of case studies, the 97 sounding profiles are obtained from approximately 36 

events of varied duration. Though no soundings were duplicated in location, soundings 

at the same time were evaluated at different sites. It is anticipated that processes on the 

meso- and micro-scale should vary to the extent that no two soundings will be precisely 

alike. It is expected that freezing precipitation soundings are biased toward longer 

duration, significant freezing precipitation, which produce the majority of observed 

icing to the SGP (Changnon 2003).  

 

2.3.2 Thermal characteristics  

 Table 2.1 (a) and (b) summarize important thermal features associated with 

freezing and frozen precipitation respectively. The tables express these in terms of the 

proportion of soundings; a percentage of the total number of soundings in each category 

corresponding to the variable description (leftmost column). The table structure is 

similar to that of Rauber et al. (2000). Table 2.1(a) indicates that SGP FZRA can be 

highly variable in their vertical thermal structure, but were often distinct from IP. Our 

results were also generally consistent with prior sounding analyses discussed in chapter 

1. Based on this sample, freezing precipitation in the region typically involved a warm 

layer, pronounced for FZRA during ice storms, where the majority (92%) of profiles 

exhibited maximum inversion temperature ≥ 5oC. Conversely, FZRA associated with 

light icing, FZDR and IP all indicated cooler warm layers  (63%-73% with maximum 

Tw ≤ 5oC). This may reflect the possibility that such events contain a mixture of FZRA 
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Figure 2.5: Vertical profile of cloud fraction (blue, %), derived from the ARM 
Southern Great Plains field site vertically pointing cloud radar and ARSCL products, 
contrasted with radiosonde-estimated relative humidity (red, %) for 3 separate freezing 
rain events. The drifting of the sounding with altitude likely contributed to the 
discrepancies at mid/upper levels of the atmosphere. 
 

 and IP, lowering the proportion of ice accumulation.  

The elevation and depth of the warm and refreezing layers were determined 

from the WLD/FLD and heights of the maximum and minimum Tw. Deep (shallow) 

warm (refreezing) layers are found to be conducive to the complete melting of a falling 

hydrometeor, and subsequent supercooling, rather than refreezing. (Robbins and 

Cortinas 2002). Warm layer depth exceeded 2 km in approximately 47% of FZRA 

profiles. The majority of these high-depth cases affiliate with ice storms (84%). 

Conversely, light FZRA, and FZDR WLDs were typically shallower (21, 33% > 2 km 

respectively). IP in particular was infrequently associated with WLD > 2 km (16%). 

Given that WLD is significantly correlated to maximum Tw (Zerr 1997, Rauber et al. 

2001), these results are consistent with expectations.  

Only 4 of 97 profiles indicated no above-freezing inversion layer, 3 FZDR and 1 
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FZRA. The vertical profile of these cases (see composite sounding, section 2.3.5) was 

analogous to that identified by Rauber et al. (2000). The low number of observations 

may be both a factor of this phase type typically occurring for short durations, and often 

concurrently with light snowfall, or conditions where weak ascent, coupled with dry air 

aloft in the crystal growth zones promotes supercooled water. However, Rauber et al. 

(2000) did suggest that the spatial distribution of subfreezing-profile freezing 

precipitation showed a marked decrease in frequency with decreasing latitude. 

Additionally, Bernstein (2000), Robbins and Cortinas (2002) show FZDR maxima 

typically located over the northern half of the contiguous U.S, and immediately east of 

the Rocky mountains, the latter case often associated with weak saturated upslope flow 

(e.g., Bernstein 2000).  

While warm layer characteristics of IP were not distinct from FZDR and light 

FZRA, IP evidenced a tendency to deep refreezing layers with nearly 53% of profiles 

exceeding 1 km FLD (compared to 21%, 24% and 28% for FZRA, FZDR and light 

FZRA respectively). Heavy FZRA only had 8% of events with FLD ≥ 1 km, and 36% ≤ 

500 m. Refreezing layer temperature is also important in predicting hydrometeor phase 

as lower temperatures (≤ -5oC) may support ice nuclei. Houze (1993), Wallace and 

Hobbs (1977) estimate ice nuclei concentration increases by a factor of ten for every 

4oC temperature decrease below freezing. IP had the coolest median minimum Tw (-

7.5oC, not shown), while FZDR also evidenced profiles with comparatively low Tw 

(median temperature -6.5oC, not shown). The average FZRA profile showed a near 

50/50 split between categories, with a median value of -5oC (not shown). These 

aforementioned thermal results are further encapsulated in the EMP/EFP ratio. A  
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Table 2.1a: Thermal categories for SGP freezing rain, drizzle and ice pellet events. 
Hydrometeor sub-categories were defined in the text. Values expressed as the % of 
soundings that agree with the parameter/range. Shaded values indicate the greatest % 
agreement.  

 

notably high ratio was found for heavy (ice storm) FZRA, associated with the higher 

magnitude warm layer. Figure 2.6 shows the EFP and EMP associated with the freezing 

precipitation subcategories. The key result is that the defining difference between severe 

and non-severe FZRA, assuming an adequate and comparable lifting mechanism for 

precipitation, is with the characteristics of the warm layer. A pronounced deep and 

warm inversion also contain increased moisture (mixing ratio), with 88% of ice storm  

 
 

Parameter/Range 

Number of 
Rawinsonde 
Soundings  

 
 

All 
 
 

97  

 
 

FZRA 
 
 

57 

 
 

FZDR 
 
 

21 

 
 

IP 
 
 

19 

 
 

Heavy (Ice 
Storm) 
FZRA 

25 

 
 

Light 
FZRA 

 
53 

Maximum Tw< 5oC 52.6 43.9 63.6 63.2 8.0 73.1 
Maximum Tw > 5oC 47.4 56.1 36.4 36.8 92.0 26.9 
Max. Tw height < 
1km 

35.1 40.4 42.9 10.5 44.0 40.4 

Max. Tw height 1-2 
km 

57.7 57.9 42.9 73.7 56.0 51.9 

Max. Tw height > 2 
km 

7.2 1.8 14.3 15.8 0.0 7.7 

WLD 1-2 km 37.1 33.3 33.3 52.6 16.0 44.2 
WLD > 2 km 38.2 47.4 33.3 15.8 84.0 21.2 
FLD 1-2 km 24.8 21.1 19.0 42.1 8.0 26.9 
FLD > 2 km 3.1 0.0 4.8 10.5 0.0 1.9 
FLD < 500 m 23.7 35.1 9.5 5.3 36.0 26.9 
Minimum Tw > -5oC 38.1 49.1 23.8 21.1 56.0 36.5 
Minimum Tw < -5oC 61.9 50.9 76.2 78.9 44.0 63.5 
Ratio EMP/EFP < 1 49.0 42.1 40.9 78.9 8.0 59.6 
Ratio EMP/EFP of 2-
5 

11.2 14.0 9.1 5.3 24.0 7.7 

Ratio EMP/EFP > 5 23.6 33.3 13.6 5.3 56.0 11.5 
Warm layer mixing 
ratio < 5 gkg-1 

28.5 28.1 40.9 15.8 12.0 42.3 

Warm layer mixing 
ratio 5-7 gkg-1 

52.2 50.9 31.8 78.9 40.0 57.7 

Warm layer mixing 
ratio > 7 gkg-1 

15.4 21.1 9.1 5.3 48.0 0 

No Warm layer  4.2 1.8 14.3 0.0 0.0 5.8 
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Table 2.1b: As Table 2.1a but for a subset of snowfall events. Variables related to the 
warm layer are removed.  
 

 

 

 

 

 

 

 

 

 

 

FZRA exceeding 5 gkg-1. IP also possessed on average a deep moist layer, but 

maximized between 5-7 gkg-1, compared to ≥ 7 gkg-1 in the former case.  

The thermal profile for SN events (stratified into heavy and light based on 

station site accumulation) are included for brief comparison. As anticipated, SN was 

favored when the vertical temperature profile is sub-freezing, with 87% (100%) of light 

(heavy) SN with maximum Tw < 0oC. In two cases of light SN, Tw > 0oC, one with 

maximum temperature at the surface, and the other aloft near 1700 m AGL. In neither 

case did this maximum exceed 1oC. In 58% of events, the height of maximum Tw was in 

the lowest 1 km, with 54% at the surface. The remainder of cases; 47% (33%) light 

(heavy), had weak sub-zero inversion layers above 1 km. Temperatures near the surface 

were typically colder than most freezing precipitation profiles, with nearly 89% of 

events < -5oC.   

 
Parameter/Range 

Number of Rawinsonde 
Soundings  

 
 

SN 
 

24  

 
 

Light SN 
 

15 

 
 

Heavy SN 
 

9 
Maximum Tw< 0oC 91.7 86.7 100.0 
Maximum Tw > 0oC 8.3 13.3 0.0 
Max. Tw height < 1km 58.3 53.3 66.7 
Max. Tw height 1-2 km 29.2 26.7 33.3 
Max. Tw height > 2 km 12.5 20.0 0.0 
Max Tw height at surface 54.2 53.3 55.6 
Minimum Tw > -5oC 12.5 13.3 11.1 
Minimum Tw < -5oC 88.5 86.7 88.9 
900-800hPa mixing ratio < 2 
gkg-1 

4.2 6.7 0.0 

900-800hPa mixing ratio 2-5 
gkg-1 

95.8 93.3 100.0 

900-800hPa mixing ratio > 5 
gkg-1 

0.0 0.0 0.0 
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Figure 2.6: Environmental melting and freezing potentials for each freezing 
precipitation category. EMP/EFP are expressed as oCm. ‘Svr’ indicates ice storm 
freezing rain, while ‘weak’ indicates lower accumulation or mixed phase freezing rain.  
 

2.3.3 Wind characteristics  

Wind speed and direction statistics are useful in elucidating information 

regarding air-mass sources, and inferring presence of warm and/or cold air advection 

(WAA and CAA respectively). The results of this analysis are shown in Table 2 (a) and 

(b) for freezing and frozen precipitation respectively. Additionally, Figure 2.7 displays 

wind roses for each hydrometeor type at the surface and 850 hPa. For all SGP freezing 

precipitation surface wind direction at the sounding location was typically north-

northeasterly (62% IP to 72% FZRA), with southwesterly flow within/aloft of the warm 

layer (e.g., 180-270o, 63% IP to 76% FZDR and heavy FZRA). IP was associated with 

slightly higher proportions of northwesterly (southeasterly) surface (850 hPa layer) 

flow. Northwesterly (300-360o) surface winds were most common for SN (Table 2b, 

Fig. 2.8), presumably advecting cold air behind and to the north of a surface cold front. 
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In addition, winds during SN had a greater frequency of northerly component flow at 

low-levels (e.g., 50% at 330-90o for the surface-700 hPa layer).  

Approximation for the presence of WAA/CAA was ascertained from the speed 

and directional shear across the warm layer (roughly 900-700 hPa, or 850-700 hPa 

layer for snow). Light FZRA, FZDR events typically showed a lower magnitude change 

in wind speed and direction, or even a weakening of wind speed (29% of FZDR cases 

with change in wind speed < 0 kt). Speed shear of > 20 kt was most common for heavy 

FZRA (56%), which also experienced substantial veering in direction (52%, 60-200o). 

While frictional effects near the surface may contaminate some of the signal, this 

implied low-level WAA aids to maintain the existence of the warm layer against 

cooling associated with melting hydrometeors, also promoting vertical motion and 

additional precipitation. The remaining freezing precipitation categories peaked in a 

more moderate speed shear range (0-20 kt), however directional veering was generally 

most frequent for all categories in the 60-200o range. IP was associated with a slightly 

greater proportion of backed (negative) directional shear (26%, versus 8-15% for the 

other categories). This result may imply a transition to CAA at low-levels. SN events 

generally indicated stronger winds at the surface and aloft, especially the few heavy 

snow samples (67% with speeds > 15 kt at the surface, and 78% above 20 kt (850 hPa). 

Directional shear (850-700 hPa) indicated higher frequency of low-level backed flow 

(50%).  
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Figure 2.7: Wind roses for freezing rain, freezing drizzle, ice pellets and snow at the 
surface (left) and 850 hPa layer (right). Directions follow standard compass. Concentric 
rings indicate frequency increments of 10%, while shading is wind speed in knots. 
Values are binned into 8 directional bounds, N, NE, E etc.  
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Table 2.2a: Wind profile characteristics for SGP freezing precipitation. Table structure 
described in caption to Table 2.1a.  

 

Table 2.2b: Wind profile characteristics for a subset of snowfall events. Low-level 
directional changes estimated over the surface-700 hPa layer in lieu of no warm layer.  

 
 

Parameter/Range 
Number of Rawinsonde 

Soundings  

 
 

All 
 

97 

 
 

FZRA 
 

57 

 
 

FZDR 
 

21 

 
 

IP 
 

19 

 
 

Heavy 
FZRA 

25 

 
 

Light 
FZRA 

53 
Wind Dir at surface 300-
360o 

13.4 8.8 19.0 21.1 16.0 7.7 

Wind Dir at surface 0-90o 69.1 70.2 71.4 63.2 72.0 69.2 
Wind Dir at maximum Tw 
100 -179o 

18.6 21.1 4.8 26.3 8.0 21.2 

Wind Dir at maximum Tw 
180 - 270o 

66.0 63.2 76.2 63.2 76.0 61.5 

Speed change (top-
bottom) over warm layer  
0-20 kt 

51.7 47.4 52.4 63.2 40.0 50.0 

Speed change over warm 
layer  > 20 kt 

33.0 38.6 23.8 26.3 56.0 25.0 

Speed change over warm 
layer  
< 0 kt 

19.6 14.0 28.6 15.8 4.0 25.0 

Directional change (top-
bottom) over warm layer 
0-50o 

31.0 35.1 28.6 21.1 24.0 40.4 

Directional change over 
warm layer 60-200o 

41.3 43.9 33.3 42.1 52.0 34.6 

Directional change over 
warm layer < 0o 

14.4 10.5 14.3 26.3 8.0 15.4 

Parameter/Range 

Number of Rawinsonde Soundings  

SN 
 

24 

Light SN 
 

15 

Heavy SN 
 

9 
Wind Dir at surface 300-360o 25.0 20.0 

 
33.3 

Wind Dir at surface 0-90o 54.2 66.7 44.4 
Wind Dir at 850 hPa100 -179o 16.7 20.0 11.1 
Wind Dir at 850 hPa 180-270o 12.5 6.7 22.2 
Wind Dir at 850 hPa 330-90o 50.0 46.7 55.6 
Wind Speed at surface < 10 kt 25.0 40.0 22.2 
Wind Speed at surface >15 kt 37.5 20.0 66.7 
Wind Speed at 850hPa <20 kt 50.0 66.7 22.2 
Wind Speed at 850hPa > 20 kt 50.0 33.3 77.8 
Directional change (top-bottom) over 850-700hPa 0-
50o 

25.0 13.3 44.4 

Directional change over 850-700hPa 60-200o 20.8 20.0 22.2 
Directional change over 850-700hPa = negative 50.0 60.0 33.3 
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2.3.4 Cloud characteristics  

Inferences to cloud microphysics may be made simply by examining the thermal 

profile of a cloud resolved through a sounding profile. This analysis is similar to that of 

Rauber et al. (2000) who inferred cloud properties from freezing precipitation 

soundings over the contiguous U.S. Table 2.3 (a) and (b) shows the results for the SGP, 

using the definitions described earlier. Note that these definitions are merely 

approximations of cloud cover, uncertainties include aforementioned radiosonde drift, 

and precise levels for cloud base/top, e.g., pronounced near saturated surface layer and 

inversion complicating classical methods for obtaining cloud base (LCL). The region 

exhibits a range of CTT (RH ≥84%) related largely to the intensity of precipitation at 

the sounding location. FZDR for example had over 60% of events with CTT > -5oC, 

while FZRA and IP have 68-88% with CTT <-10oC. IP in particular evidences low 

CTT, with 50% less than -20oC. Low cloud entirely embedded within a warm layer 

and/or shallow supercooled cloud layer were most associated with FZDR, with cloud 

depths typically ≤ 2 km - well documented by the aforementioned studies. FZDR 

soundings also had a greater proportion of cloud layers aloft, (43%), generally in the 

mid-troposphere (78% with upper CTT > -40oC). It was not clear whether a seeder-

feeder process was at work in some of these events, as a substantial dry air mass was 

observed to separate layers aloft. FZRA (including ice storms) also had nearly 40% of 

cases with more than one cloud layer, however the lowest precipitating cloud layer was 

notably deeper, and the upper cloud layer displaced further aloft (44% with CTT < -

40oC). No sounding produced a sub-saturated depth sufficient to qualify as a separate 

cloud layer for IP, however, caution should be implied when interpreting this result 
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physically due to the low sample size. Nonetheless, heavy FZRA and IP are associated 

with deep cloud layers and cloud top temperatures sustaining ice processes. In 

conjunction with their varied intensities and moisture availability (see also Table 2.1a, 

the depth of the near saturated (RH>95%) cloud layer was greater for IP and heavy 

FZRA (60-63%) than the other categories.  

The cloud characteristics of snowfall (Table 2.3b) are also related to 

precipitation intensity. Heavier SN events have a vertical cloud profile similar to IP 

with typically a single deep cloud layer, and cold cloud top temperatures (100% CTT < 

-10oC). Light snow has a more varied range of CTT (60% < -10oC), with evidence of 

multiple cloud layers (40%). Typically for SN, the atmosphere is moist, with near 

saturated cloud depths exceeding 2.5 km in 38% of cases. Both light and heavy SN have 

cloud depths extending to 4 km, and 46% beyond 5 km. Temperatures within the 

uppermost near saturated layer were in the -12 to -19oC range in 29% of cases (56% for 

heavy SN). Houze (1993) explains that the ambient supersaturation between ice and 

water is greatest in this temperature range, which increases the surface-to-volume ratio 

of the ice crystal. The primary habit of ice in this range is dendrites and sector plates. 

The structure of dendritic snow crystals promotes aggregation at -10 to -16oC, as 

observations suggest the arms of the dendrites become entangled, resulting in 

enhancement of snowfall rates. For FZRA/FZDR where cloud top temperatures are 

warmer, the dominant precipitation growth mechanisms may take a variety of forms 

depending on the specific temperature and humidity structure.  

Motivated by the conclusions of Rauber et al. (2001) and Robbins (1998), the 

potential for upright elevated convection was briefly assessed by evaluating temperature  
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Table 2.3a: Cloud properties of freezing precipitation in the SGP. See Table 2.1a for 
description of table structure. CTT estimated for all profile-estimated cloud layers. 
 

 

 

 

 

.  

 
Parameter/Range 

Number of Rawinsonde 
Soundings 

 
All 

 
97 

 
FZRA 

 
57 

 
FZDR 

 
21 

 
IP 

 
19 

 
Heavy 
FZRA 

25 

 
Light 
FZRA 

53 
Lowest layer cloud depth < 
1km 

9.3 7.0 23.8 0.0 4.0 15.4 

Lowest layer cloud depth 
1.01 – 4.99 km 

44.3 38.6 76.2 26.3 36.0 53.8 

Lowest cloud layer depth > 5 
km 

45.4 54.4 0.0 68.4 60.0 30.8 

> 1 Cloud Layer  28.5 32.7 42.9 0.0 39.1 32.7 
CTT > 0oC  19.8 12.7 57.1 0.0 13.0 28.9 
CTT < 0oC (below warm 
layer) 

1.0 0.0 4.8 0.0 0.0 1.9 

CTT -5oC to 0oC 9.5 5.5 23.8 5.6 8.7 11.5 
CTT -10oC to <-5oC 11.8 12.9 14.3 5.6 8.7 13.5 
CTT -20oC to <-10oC 31.1 38.2 4.8 38.9 52.2 21.2 
CTT < -20oC 28.0 30.9 0.0 50.0 17.4 25.0 
Depth of near saturated cloud 
layer (RH ≥ 95%) < 500 m 

7.2 7.0 14.3 0.0 8.0 9.6 

Depth of RH ≥ 95% cloud 
layer 500 m to < 1.5 km 

22.7 22.8 38.1 5.3 12.0 34.6 

Depth of RH ≥ 95% cloud 
layer > 2.5 km 

45.3 49.1 19.0 63.2 60.0 32.7 

Temperature of uppermost 
RH ≥ 95% layer (oC)  -18 to -
12 

1.7 5.7 0.0 0.0 12.0 0.0 

Temp of uppermost RH ≥ 
95% layer  -10 to 0 

56.6 59.6 42.9 63.2 44.0 63.5 

Temp of uppermost RH ≥ 
95%  layer > 0 

32.6 31.6 38.1 31.6 44.0 26.4 

Combined depth of upper 
cloud layers < 2 km 

37.0 38.9 33.3 0.0 55.6 29.4 

Combined depth of upper 
cloud layers > 2 km 

62.9 61.1 66.6 0.0 44.4 70.6 

CTT of deepest upper cloud 
layer > -40oC 

63.0 55.6 77.8 0.0 66.6 64.7 

CTT of deepest upper cloud 
layer < -40oC 

37.0 44.4 22.2 0.0 33.3 35.3 

Presence of Convective 
instability 

34.3 40.0 18.2 36.8 52.0 21.2 
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Table 2.3b: As Table 2.3a but for the snowfall subset. Dashed line (--) indicates 
missing or non-applicable information. 

 

and pressure excess from the saturated adiabat, associated with lifting of an air parcel 

above the maximum warm layer wetbulb temperature for each vertical profile. 

Slantwise convective potential was not considered. The two aforementioned studies had 

concluded that precipitation in winter storms is generally non-convective. Rauber et al. 

(2001) had found the potential for convective instability in 12.5% of their sounding 

database, with only 0.8% exhibiting deep convective potential (defined as ≥ 300 hPa 

ascent). In this smaller regional analysis, the proportion of soundings possessing 

 
Parameter/Range 

Number of Rawinsonde Soundings  

 
SN 

 
24 

 
Light SN 

 
15 

 
Heavy SN 

 
9 

Lowest layer cloud depth < 1km 8.3 13.3 0.0 
Lowest layer cloud depth 1.01 – 4.99 km 41.7 46.7 44.4 
Lowest cloud layer depth > 5 km 45.8 40.0 55.6 
> 1 Cloud Layer 25.0 40.0 0.0 
CTT > 0oC 0.0 0.0 0.0 
CTT < 0oC (below warm layer) 0.0 0.0 0.0 
CTT -5oC to 0oC 8.3 13.3 0.0 
CTT -10oC to <-5oC 16.7 26.7 0.0 
CTT -20oC to <-10oC 33.3 20.0 55.6 
CTT < -20oC 33.3 40.0 33.3 
Depth of near saturated cloud layer (RH > 95%) < 
500 m 

8.3 
 

13.3 0.0 

Depth of RH ≥ 95% layer 500 m to < 1.5 km 25.0 26.7 0.0 
Depth of  RH ≥ 95% layer > 2.5 km 37.5 33.3 44.4 
Temperature of uppermost RH ≥ 95% layer (oC) =-
19 to -12 

29.2 20.0 55.6 

Temp of uppermost RH ≥ 95% layer = -10 to 0 25.0 40.0 0.0 
Temp of uppermost RH ≥ 95% layer > 0 0.0 0.0 0.0 
Combined depth of upper cloud layers < 2 km 8.3 13.3 0.0 
Combined depth of upper cloud layers > 2 km 16.7 26.7 0.0 
CTT of deepest upper cloud layer > -40oC 8.3 13.3 0.0 
CTT of deepest upper cloud layer < -40oC 16.7 26.7 0.0 
Presence of Convective instability within or above 
cloud layer 

-- -- -- 
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instability, weak or strong, was much higher, approximately 34%. This proportion was 

highest for FZRA (particularly ice storms), and IP. Out of these soundings, only 25.7% 

(~9% total) possessed the potential for deep convection, with these profiles restricted to 

just 4 winter storms.  

Table 2.4 considers the relationship between the maximum warm layer 

temperature and the presence of convection by way of a contingency table. The 

resulting values suggest that convective instability above the warm layer was more 

common with higher warm layer temperatures (T>5oC). This may result from (i) 

increased lapse rate above the inversion, and (ii) warmer antecedent environment and/or 

stronger WAA and isentropic ascent. The presence of convection within winter storms 

complicates precipitation type forecasting, as higher vertical velocities in convective 

cells favor increased condensation rates of supercooled water, collected by ice particles 

to form graupel (Houze 1993). Graupel has a higher fall speed than snowflakes and 

aggregates (~0.5-1.5 ms-1); observations suggest velocities of 1-3 ms-1, increasing 

sharply with graupel diameter. Physically based precipitation type algorithms (e.g., 

Czys 1996) have traditionally assumed an approximately spherical snow aggregate as 

the initial hydrometeor type above the warm layer. In convection, this produces a 

potential overestimate of freezing rain if graupel is present. The enhanced precipitation 

rates that may be associated with hydrometeors in convective cells, along with 

downdraft cooling of the warm layer, mean that convective freezing rain can be brief, 

and often mixed with ice pellets. The observed connection between convective 

potential, and warm layer maximum temperature most likely is representative of the fact 

that the freezing rain thermal profile can typically only be sustained during convection 
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by high maximum warm layer temperatures.  

 

Table 2.4: Contingency table demonstrating the relationship between observed 
maximum Tw (oC) in the warm layer, and the presence of convection for freezing 
precipitation soundings.   

 
 

2.3.5 Composite precipitation type profiles and comparison to prior studies 

The above results have demonstrated preliminary key characteristics of SGP 

FZPCP. As an additional summary, composite vertical profiles were constructed for 

each hydrometeor category using a subset of 10 randomly selected profiles (4 for no-

warm layer FZDR, 9 for heavy SN), displayed in Figure 2.8 and Fig. 2.9 for FZPCP and 

snow respectively. The aforementioned notable differences between subcategories 

(Tables 2.1-2.3) were confirmed, most especially in the magnitude and depth of the 

warm layer, and the increase in moisture depth for heavy FZRA and IP events. 

Furthermore, the composite profile for FZDR further demonstrates the tendency for 

warm CTTs. Rauber et al. (2000) find that this profile is common to FZDR in the 

Southern U.S (their figure 3c). Cases with no warm layer appear to be associated with 

light drizzle, evidenced by very shallow cloud layers. This profile differs from light 

snow in that the near saturated region is shallower with a pronounced dry layer in the 

mid-troposphere near the dendritic growth region. Light snow profiles typically exhibit 

a deeper layer of higher relative humidity, with average CTT closer to -15oC favoring 

the development of snowflakes/aggregates over supercooled droplets.  

 Presence of Convection:  
Max T in the Warm Layer Yes No 
Greater than 5oC 20 19 
Less than 5oC 7 42 
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The composite profile for IP in Fig. 2.8 revealed that, on average, much of the 

low-level profile is sub-saturated (typically ≥10%). This can produce additional cooling 

of the ambient atmosphere through evaporation, and according to Zerr (1997), and 

Mitra et al. (1990), a drop in RH by 10% increases the total distance for complete 

melting by 100 m. When the refreezing layer is cold and sub-saturated, the additional 

evaporative cooling may be sufficient to refreeze a partially melted hydrometeor. Tables 

2.1-2.3 demonstrated some spread in the temperature and moisture of IP profiles, such 

that more than one thermodynamic evolution emerged. The first is arguably the ‘classic’ 

profile – a weak elevated warm layer and deep refreezing layer with a deep near-

saturated cloud layer (Fig. 2.8). An additional profile for the SGP suggested a deep 

warm layer (e.g., WLD > 2 km, Tw > 5oC), but a comparatively deep (≥ 1 km) and cold 

(<-5oC) refreezing layer. The primary mechanism for the generation of IP in this case 

appeared to be associated with low temperatures within the refreezing layer, as 

complete melting for a range of hydrometeor sizes would be anticipated in the warm 

layer. Of the 19 IP profiles in this dataset, 7 had maximum Tw exceeding 5oC.  

Table 2.5 summarizes key thermodynamic observations for different regions 

across the U.S derived from a selection of past literature, providing inter-regional 

context for our results. As discussed in chapter 1, freezing precipitation shows high 

regional variability. In some locations FZDR is favored over FZRA. For example, 

Albany, NY, Spokane, WA and Green Bay, WI on average exhibit shallower, cooler 

warm layers. Greensboro, North Carolina shows a thermal range similar to the SGP. 

Freezing precipitation in central North Carolina occurs frequently with winter cold air 

damming along the Appalachian mountain chain (Furhmann 2011). The predominant  



 58 

 

Figure 2.8: Schematic composite soundings for all categories of freezing precipitation, 
based on 10 vertical profiles (4 for freezing drizzle without a warm layer). Temperature 
ranges between 0oC -10oC, and -10oC to -20oC are shaded to indicate the warm layer 
inversion and dendritic growth layers respectively. Black line is temperature profile for 
a standard atmosphere.  
 

 

Figure 2.9: Composite soundings for light snow (left), and heavy snow (right). 
Aforementioned shaded regions from Fig. 2.8 are also applied here.  
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synoptic patterns conductive to freezing precipitation also vary by region, and although 

North Carolina and the SGP have similar thermal profiles, their wind profiles differ. In 

the former case, freezing precipitation is common to cyclonic low-pressure systems 

advecting warm-moist air from the southeast. In the Plains states and elsewhere, most 

events exhibit low-level southwesterly flow. Aloft (above 700 hPa, ~3 km), 

southwesterly flow is ubiquitous. In terms of cloud profiles, which also reflect the 

dominant precipitation type, within the contiguous U.S away from oceanic moisture 

sources, most freezing precipitation is light and associated with shallow (< 4 km) cloud 

layers. Both Greensboro, NC and the SGP evidence higher average cloud depths and 

lower CTT, potentially associated with a larger proportion of events in the FZRA and IP 

categories.  

The fact that the SGP exhibits thermodynamic profile supportive of heavy 

freezing precipitation may result from its geographic location, alluded to by past studies 

including Robbins and Cortinas (2002) and Changnon (2003) but not studied in depth. 

Robbins and Cortinas (2002), in their analysis of the Spokane, WA area, identify a 

plausible connection between the temperature of a nearby oceanic moisture source 

(northern Pacific), and the maximum temperature achievable in the warm layer. They 

suggested, “the maximum wet-bulb temperature of the warm (melting) layer can be 

determined by calculating the wet-bulb potential temperature of the source region air.” 

In this particular case, the cool sea surface temperatures (SST) associated with the 

adjacent ocean (~8-10oC), produced maximum warm layer temperatures on the order of 

2oC, accounting for adiabatic cooling of the ascending air parcel. Fuhrmann (2011), 

Fuhrmann and Konrad (2013) demonstrated the key role of the subtropical Atlantic in 
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moderating air parcels ingested into winter storm systems. During boreal winter, 

average SST in the western subtropical Atlantic are 20-23oC (based on data from 

NCEP-NCAR Reanalysis, not shown). When lifted to 850hPa, and assuming no 

dynamic and diabatic processes, the resulting warm layer maximum temperatures are 

approximately 7-10oC. For the SGP, the Gulf of Mexico (GOM) moisture source is 

important in regional precipitation and severe weather. In addition, the region 

experiences a regular topographically forced southerly low-level jet (e.g., Maddox 

1983, Stensrud 1996, Higgins et al. 1997). Wintertime GOM temperatures are similar to 

the sub-tropical Atlantic. Therefore, assuming that the sub-tropical maritime GOM 

airmass is the primary airmass associated with a warm layer, the range of maximum 

temperatures is potentially similar, supporting the results of this present analysis. We 

suggest that the favorable thermal profiles for freezing precipitation, particularly 

freezing rain, is supported in the SGP by virtue of its proximity to the Gulf of Mexico 

and the subtropics, associated with warmer and deeper warm layers and greater 

moisture availability. Note however, that not all events necessarily derive their warm 

layer characteristics from the GOM. In some situations, attendant synoptic and 

mesoscale circulation promote alternative moisture source regions and/or indirect 

transportation of GOM moisture (chapter 3,4).  

 

 

 

 

 



 61 

 

 



 62 

Chapter 3: Preliminary Synoptic Climatology of SGP Winter Storms 

 

3.1 Introduction 

In this chapter our climatology is extended by examining synoptic evolutions 

common to winter storms for the region. The 18-year period of study means that this 

investigation is preliminary and based on limited sample size. Given the lack of 

information to date, even preliminary work was an opportunity to contribute some 

original insight, which could hopefully be of use to SGP forecasters in recognizing 

common evolution, and for prediction of precipitation type. Research aims of this 

chapter included: 

(i) Ascertaining the nature and distinctions for synoptic patterns containing a 

broad mixed phase/freezing precipitation zone (hereafter ‘ice’), versus those 

dominated by snow over the SGP.  

(ii) Investigating common locations for winter precipitation for each derived 

pattern.  

(iii) Obtaining distinguishing thermodynamic characteristics of synoptic type, 

and between ice and snow.  

The content of this chapter forms a forthcoming article by Mullens et al. 

 

3.2 Methodology  

3.2.1 Selection of cases, and rationale for technique  

Chapter 2 (sec. 2.1, 2.2) provided details on the study domain and database 

development. The events used in this work were drawn from that database. Figure 3.1 
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illustrates criteria used to select events forming the datasets used here. A key objective 

of this particular work was to differentiate the evolution of SGP winter storms that 

produced a broad region of freezing precipitation, from those primarily producing 

snowfall with no well-defined transition zone. To facilitate this, events were 

subjectively (manually) categorized as ‘ice’ or ‘snow’ depending on whether or not they 

exhibited this transition zone, also with regard to the socioeconomic impact of each 

phase type. Snow events were classified as winter storms with snowfall typically 

exceeding 3 inches, and freezing precipitation (primarily freezing rain) of short duration 

and low intensity (< 0.1 inch). Ice pellet accumulations above 0.1 inch were permitted, 

as presence/absence of freezing rain was of primary interest. For ‘ice’ events, a broad 

zone of freezing precipitation (freezing rain) should be observed, even if snowfall 

accompanied the system. The lower limit for accumulation was 0.1 inch, provided the 

event had a broad impact region and duration ≥ 6 hours. NCDC Storm Data publication 

was used to scan through all qualitative information for each event, including 

accumulation estimates. Additional data sources described in chapter 2 were further 

perused.  

The temporal evolution of synoptic conditions accompanying winter 

precipitation was examined by defining an approximate onset time, T0. This time was 

based on first observations of a given precipitation type from a representative station 

and/or Storm Data in the impacted sub-region. Since the majority of our data sources 

were of 3-hour resolution or lower, there was some uncertainty in demarking T0.  For 

the composite analysis (sec 3.2.4, 3.3, 3.4) various meteorological parameters of note 

were examined 24-hours prior to, and after T0 (T-24, T+24 respectively) to extract 
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information on duration and persistence of key features. Criteria for selection of events 

included (Figure 3.1):   

(i) Precipitation category as previously described. Events were assigned as 

either ‘ice’ or ‘snow’, thus forming two separate datasets.  

(ii) To prevent overly biasing results to a specific sub-region of the domain, only 

events impacting at least two of the four quadrants (Fig. 2.1) were used.  

(iii) An exception to the dominant precipitation definition was made in cases 

where an event was displaying heavy ice and snow accumulations over the 

domain at T0, resulting in estimated > 6 (>0.25) in snow (ice) over more than 

2 domain quadrants. Although the dominant precipitation phase was 

ambiguous the event was likely high-impact, so inclusion to the dataset(s) 

was desired. Five events meeting these criteria were identified and assigned 

to both datasets4.  

(iv) Events of a temporal duration less than 6 hours, provided only small 

accumulation of either phase, were not included.  

By performing the selection criteria (i)-(iv) on the database, 42 snowfall events, 

and 33 ice events were retained, forming the datasets used in this chapter. The dataset 

primary variable was the 500 hPa geopotential height (gpm), for approximate 

precipitation onset time, T0. The list of case studies used is provided in appendix Tables 

A3.1 and A3.2 for ice and snow respectively. The choice of the mid-tropospheric height 

field as the primary variable in the initial identification of common synoptic flow was 

motivated by its extensive use in the literature to classify weather regimes (e.g., Casola 
                                                
4 Two ice events meeting this threshold criterion for snowfall may have been erroneously left out from 
inclusion to the snow database, but their absence was unlikely to have drastically changed the synoptic 
patterns derived here.  
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and Wallace 2007, Horel 1981, Blackmon 1976). Flow at this level strongly influences 

weather system movement and surface pressure evolution.  

The next stage was to identify an appropriate objective technique for simplifying 

the information within the two datasets to a set of common 500 hPa flow patterns for ice 

and snow5. A method was desired that would generally retain a height field visually 

comparable to those observed during actual events. Given the relatively small number 

of case studies, it was possible to individually plot the T0 geopotential heights for each 

event, along with their standardized anomalies (relative to the mean and standard 

deviation calculated from all events within the desired dataset, not shown). A couple of 

common techniques for pattern identification include cluster techniques and principal 

component analysis (PCA). Both are high-level statistical methods to convert a complex 

dataset to one of reduced dimensionality, where underlying simplifying structures may 

be revealed. For the atmospheric sciences, examples include establishing common flow 

fields and variable interrelationships (e.g., pressure, height, precipitation), or 

atmospheric teleconnections that explain a large proportion of the variability of a given 

parameter. Our dataset sample size is limited to the extent that only a comparatively 

simple analysis to group events using just the height field was performed.  The method 

of choice was PCA (sec. 3.2.3). 

The 500 hPa height data used was from North American Regional Reanalysis 

(NARR, Mesinger et al. 2006). The NARR dataset is a higher resolution extension of 

NCEP-NCAR Global Reanalysis (Kalnay et al. 1996), for North America, developed 

                                                
5 Manual techniques e.g., pseudo-subjective clustering based on trough axis location (e.g., Ressler et al. 
2012), or surface features (e.g., Rauber et al, 2001, Castellano 2012) are alternative methods that tackle a 
similar problem.  
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Figure 3.1: Flowchart depicting the sequence of decisions used to select snow and ice 
case study events for each dataset.  
 

using a 32km grid size NCEP Eta model with the Regional Data Assimilation system 

(RDAS). For computational efficiency, NARR fields were interpolated to 1ox1o 

horizontal resolution, with 29 vertical levels. Geopotential height was evaluated over 

much of the contiguous U.S and eastern Pacific (20-50oN, 220-280oW), and converted 

to standardized anomalies for the ice and snow datasets separately (based on the mean 
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and standard deviation of each). Due to the large latitudinal extent of the domain a 

simple and common technique to adjust for the change in latitude-longitude grid area 

toward the poles was used, which weights the height field by the square root of the 

cosine of latitude. This avoids overrepresentation of variance from higher latitudes.  

 

3.2.2 Accuracy of NARR data against in-situ observations  

The NARR dataset is a 33-year (1979-2012)6, gridded dataset, with numerous 

variable options, making it attractive for regional, climatological and case study work. 

Nonetheless, despite its high resolution and sophisticated data assimilation techniques it 

is wise to evaluate briefly NARR performance against in-situ observations. Oklahoma 

in particular is a heavily instrumented state. Surface temperature data from the 

Oklahoma Mesonet (Brock et al. 1996, McPherson et al. 2007) and upper air data from 

the ACRF-SGP in Lamont, Oklahoma were compared against equivalent NARR 

variables for two case studies, one freezing rain event between December 9 and 11 

2007, and a snowfall event during December 22-23 2004. Vertical profiles of NARR 

zonal and meridional winds (not shown), specific humidity and air temperature (Figure 

3.2) above the surface agreed well, in a smoothed sense, with ACRF sounding 

observations, but with peak magnitudes typically underestimated. The greatest 

discrepancy was for near surface (below 900 hPa) air temperatures, for which NARR 

values almost always were warmer than observations. Comparisons of ACRF and 

NARR surface temperatures for both events are given in Table 3.1, which indicate that 

NARR relative warmth included a distinct diurnal maximum around noon CST (1800 

                                                
6 At the time of this dissertation research.   
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UTC).  

This warm NARR surface temperature bias also was suggested by spatial 

comparison with interpolated Mesonet observations (for method uncertainty estimates, 

see appendix section 5) across Oklahoma, shown in Figure 3.3 (a,b). Importantly, those 

comparisons revealed slower southward progression of the NARR surface 0oC. This 

isotherm remained north of its observed location, especially in the ice storm case, this 

difference maximizing between 100oW and 96oW (~80 km), with an erroneously zonal 

orientation. The snow case study also exhibited northward error but by a lesser amount 

(~30 km). These results suggest that NARR data may not correctly represent shallow 

cold arctic airmasses common in SGP winter storms, possibly resulting from inadequate 

treatment by the Eta model’s planetary boundary layer and radiation schemes. Kennedy 

et al (2011) noted large positive bias in downward shortwave (solar) radiation with 

NARR reanalysis. They attributed this finding to an erroneous lack of low cloud cover, 

and insufficient absorption by aerosols and water vapor in the Eta model. Our analysis 

produced composited representations of the surface 0oC isotherm (section 3.2.4), 

requiring an accounting for surface warm bias. Median NARR minus ACRF/Mesonet 

surface temperature difference was about +1.7oC. Therefore the composites use the 

+1oC isotherm in place of 0oC to approximate the freezing line. It should be noted that 

during severe ice storms Mesonet stations encounter power disruption, resulting in loss 

of data (which was the case at 18 UTC for December 9 2007, chapter 5), and erroneous 

readings resulting from iced instruments, particularly rain gauges and anenometers. 

Fortunately, for this work neither instrument was required, and the temperature data was 

consistent with the progression of the event.  
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Table 3.1: NARR versus ACRF-SGP air temperature at the surface for (a) ice storm 
(December 9-11 2007) (b) snowfall event (December 22-23 2004).  
(a) 

Time/Day 
(UTC) 

ACRF Air 
Temperature 

(oC) 

NARR Air 
Temperature 

(oC) 

Difference 
NARR minus ACRF 

(oC) 
1200/9 -5.67 -3.34 +2.33 
1800/9 -4.49 -0.49 +4.00 

0000/10 -4.28 -3.12 +1.10 
0600/10 -4.90 -5.81 -0.91 
1200/10 -4.42 -3.45 +0.97 
1800/10 -2.73 +1.59 +4.32 

(b)  
 

 

 

 

 

 

 

Figure 3.2: Vertical profile plots between 1000-500 hPa for NARR (blue) and ACRF 
(black) air temperature at 12 UTC 9, 00 UTC 10 and 12 UTC 10 (left), and specific 
humidity for the same times (right). Bottom panels show the corresponding difference 
values for NARR minus ACRF (red lines). 

Time/Day 
(UTC) 

ACRF Air 
Temperature 

(oC) 

NARR Air 
Temperature 

(oC) 

Difference 
NARR minus ACRF 

(oC) 
0000/22 +3.65 +3.32 -0.33 
0600/22  +0.15 +0.45 +0.30 
1200/22  -2.75 -1.85 +0.90 
1800/22  -6.50 +1.50 +8.00 
0000/23  -6.30 -2.33 +3.97 
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Figure 3.3a: NARR versus Mesonet observations for Oklahoma at 12 UTC 9 (top), 00 
UTC 10 (middle), and 12 UTC 10 (bottom) December 2007. Mesonet surface 
temperatures (oC) interpolated to NARR 1ox1o lat/lon grid. Leftmost panel displays 
NARR minus Mesonet difference, while right two panels show NARR and Mesonet 
temperature distributions respectively.  
 

3.2.3 Rotated Empirical Orthogonal Function (EOF) analysis  

EOF (PC) analysis is a technique to relate a correlation (covariance) dispersion 

matrix for a given dataset to computed eigenvectors, to determine an optimal number of 

eigenmodes to retain. Ideally, those retained explain a large variance of the desired 

variable, with modes of variability being well separated from one another.  This allows 

the user to extract physically meaningful information regarding atmospheric behavior 

(e.g., Richman 1986). Richman (1986) details some of the benefits of rotated EOF/PCA 

over unrotated solutions for meteorological applications. The goal of rotation is to 

further analyze PCs to retrieve clearer and more separated loading patterns, while  
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Figure 3.3b: In the style of Fig. 3.3(a) but for a snowfall event on December 22-23 
2004. Left column: 00 UTC 22, center: 12 UTC 22, right: 00 UTC 23.  
 

maximizing simple structure. Rotation adds complexity to a solution, and is sensitive to 

the number of retained PCs, however it is insensitive to domain shape, does not suffer 

from large sampling errors from poorly separated eigenvalues, and may in many cases 

yields physically more meaningful results. Two main types of rotation include 

orthogonal and oblique. An orthogonal rotation (e.g., Varimax) assumes that factors in 

the analysis are not correlated, while an oblique rotation (e.g., Promax) makes no such 

assumption.  

Two common approaches to PCA include spatial (S) mode and temporal (T) 

mode (Richman 1986). In S-mode, time series of a variable are constructed at each 

domain grid-point, and the correlation between adjacent grid-point time series are 

examined to identify sub-regions with similar patterns. For T-mode, correlations 
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between the overall spatial distribution of a variable at each time are examined, 

identifying subgroups of times with similar spatial patterns. S-mode analysis is often 

used in the study of atmospheric teleconnections, while T-mode examines atmospheric 

flow fields. For this work each time-point represents a discrete 500 hPa height field 

associated with a winter storm event. Given that the intention is to resolve common 

flow patterns, a T-mode analysis seemed intuitively more appropriate in this context.  

In order to evaluate a suitable rotation technique for this work, both Promax and 

Varimax rotations were performed on the ice dataset, and plots of rotated PC (RPC) 

loadings inspected to determine the degree of simple structure. Strong simple structure 

should show most loadings within the hyper-plane and along or near the (x,y) axis, with 

increasing departure from the axis in all directions for moderate and weak simple 

structure (e.g., Richman 1986). Figure 3.4 shows the eigenvalues for the ice dataset, 

while Figure 3.5 and 3.6 show pairwise plots of RPC loadings for the initially retained 

RPCs for Varimax and Promax k=2 respectively. Promax k=3 and 4 were also 

considered but yielded evidence of less simple structure compared to k=2 (based on 

pair-wise plots of PC loadings, not shown) Based on this information, Promax k=2 was 

used here.   

 

The Promax RPC (PRPC) analysis was performed using the statistical software 

program “R”. R possesses a simple user interface and has a number of powerful 

statistical routines. The calculation of PRPCs for the snow and ice datasets were as 

follows:  
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(i) Eigenvalues were computed from a correlation matrix of the 500 hPa 

standardized height anomalies and the separation between them examined 

visually (Figure 3.4).  

(ii) Unrotated PC loadings were calculated from the eigenvalues. Rotated PCs 

were then formed from a subset of the initial unrotated PCs. The number to 

retain was determined by the plot of eigenvalues. All eigenvalues were 

included in the PRPC until their separation was approximately even, and the 

gradient of the eigenvalues approaches zero. In practice, 10 PCs were 

initially rotated for both ice and snow.  

 

 

Figure 3.4: Eigenvalues (y-axis) associated with 33 ice events (x-axis). 
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Figure 3.5: Pair-wise plots of rotated PC loadings for Varimax rotation. Simple 
structure is indicated when loadings cluster near the center of the axis, or along the 
hyperplanes (~±0.1) of the EOF-x and y axis.  
 

 

Figure 3.6: As Fig. 3.5 but for Promax (k=2) rotation.  
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(iii) Since the initial number of rotated loadings may not be optimal, the number 

of PRPCs to eventually retain was determined via an analysis of congruence 

between each PC loading vector, and the correlation matrix of the original 

standardized height field. The equation for congruence is displayed in 

equation 3.1 below, and was previously given by Harman (1976), and 

Richman (1986). Table 3.2 illustrates the process to reduce the number of 

PRPCs for the ice dataset. A congruence of less than |0.68| was considered to 

have little to no match to the original data, while greater than |0.92| is 

considered a good match, and above |0.98| an excellent match. The average 

value of congruence across loadings was assessed, and the number of 

retained loadings exhibited both maximum number of PRPCs with 

congruence > 0.9, and the highest average congruence across all PRPCs. For 

ice and snow, the total number retained was 4 and 3 respectively.  

           (3.1) 

Where Cab is congruence, eja the PC loading vector, and ejb the correlation 

matrix. 

(iv) Once the desired number of PRPCs had been retained, scores were 

calculated. For every score one can resolve two possible meteorological 

fields, the additive inverse of the score, and the score itself. Equation 3.2 

may be used to subsequently resolve the height field from the scores 

directly, however, it was decided instead to composites (sec. 3.2.4) to 

resolve the height field.  
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€ 

x = ±Zσ + X                                            (3.2) 

                                                                                       

Where x is the resolved height field (m), Z the PRPC score, σ the standard  

deviation, and the mean of all height fields in the dataset (m).  

Once PRPC scores were calculated, the constituent events within the datasets for 

ice and snow were binned into groups based on their scores. The technique in this case 

was to use the standardized anomalies for each event, and evaluate the magnitude of the 

loading correlation against each PRPC score, using a threshold value of |0.45| to include 

or reject. In a previous iteration (not shown) a threshold value of |0.6| was used. 

Unfortunately, given the low sample size, this threshold reduced the number of events 

in each pattern. The subsequent choice of threshold was chosen to balance the need to 

have a sufficient number of events per pattern to generate suitably representative  

 
 
Table 3.2: Example of the method to derive the most suitable number of retained 
PRPCs. The table shows congruence coefficients between correlation matrix (col) and 
PC loadings (row) for 10 to 2 rotated PCs for the ice dataset. The final number retained 
was 4, shown in bold, which represented the greatest number of RPCs with high 
congruence values. 

 1 2 3 4 5 6 7 8 9 10 
10 
RPC 

-0.961 0.973 -0.853 -0.942 0.881 -0.94 0.772 0.842 -0.699 -0.22 

9 RPC -0.961 0.972 0.855 -0.940 0.883 -0.943 0.760 0.839 -0.211  

8 RPC -0.963 0.972  0.859 -0.937 0.883 -0.943 0.784 0.840   

7 RPC -0.964 0.970 0.865 -0.928 0.850 -0.980 0.779    

6 RPC 0.971 0.936 0.870 -0.908 0.870 -0.945     

5 RPC -0.984 0.926 0.926 0.942 0.600      

4 RPC -0.974 0.951 0.925 0.950       

3 RPC 0.952 -0.848 0.950        

2 RPC 0.932 -0.957         
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composite evolutions with the necessity to retain separated 500 hPa height fields. Even 

so, the threshold was low enough such that several cases in each dataset correlated to 

more than one score (e.g., Tables A3.1, A3.2), indicative of weak simple structure and 

‘blending’ of flow fields. During grouping, each event 500 hPa height field was visually 

examined and compared with the results of the PRPCA (not shown). This was an 

available option for this sample, but far less practical with a larger dataset. 

 

3.2.4 Composites 

Once events were partitioned into appropriate pattern groups, composites of 

atmospheric variables were constructed. Composites are a highly utilized basic 

statistical method, which evaluates the spatial average of a given field over a domain. 

The intention of this work was to consider some distinguishing features of the 

dynamics, thermal and moisture properties of each pattern type for ice and snow 

respectively at T-24, T0 and T+24 hours. Furthermore, perhaps ambitiously for the sample 

size, we attempt to derive specific patterns physically observed in nature, rather than 

utilizing more general techniques that tend to smooth over a greater range of trough 

characteristics (amplitude, location), but have the benefit of greater sample size (e.g., 

Ressler et al. 2012). Variables composited (using NARR data) include precipitable 

water vapor, vector winds near the surface and aloft, air temperature, and sea level 

pressure. In addition, the composite 500 hPa height field was displayed for each pattern 

type. In order to account for uncertainty in T0, time T0, T-24, T+24 ± 3 hours are included 

in the composite. For example, a composite with n=6 events would have 6x3 (18) 

composited times.  
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3.2.5 Caveats   

The above methodology was subject to uncertainty, as were the patterns 

revealed by the analysis. Arguably the most significant concern was the small 

(temporal) sample size. More events should be obtained and added to the dataset(s) in 

order to make robust assertions regarding the prevalence and structure of resolved 

pattern types. At this time the manually intensive nature of the project made obtaining a 

larger sample prohibitive. It is hoped that significant extension to this work can be 

completed in the future. Additional caveats included:   

(i) While based on objective criteria, selection of the final number of retained 

PRPCs was quasi-subjective, especially when congruence coefficients were 

similar. In some cases, the choice of the number of PRPCs to keep will 

change the pattern structure of the resulting scores.   

(ii) Each event in the dataset had a different domain distribution of freezing 

and/or frozen precipitation. Unlike many studies, the analysis was not 

performed with reference to a specific station site. To do so would have 

likely reduced the number of cases within the dataset. Whether specific 

patterns tend to impact specific regions within the domain was also a 

research question, and is briefly addressed in sections 3.3 and 3.4.  

(iii) This analysis was not concerned with the variance explained by each pattern, 

the major test of the methodology was in its ability to resolve physically 

realistic patterns. The relative frequency of these patterns over the period of 

study was assessed by counting the number of events within each pattern 
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group. However, event frequency is likely to change with a larger dataset, as 

is the potential number of resolved pattern types.   

(iv) The PRPC domain may play a non-trivial role in the resultant grouping of 

events. It was noted in a few cases that height fields disagreeing visually in 

the location/amplitude of the trough axis were placed in the same groups. It 

may be that a portion of the domain less pivotal for the development of 

precipitation (e.g., structure of the eastern ridge) may have accounted for this 

correlation. Future work should examine potential impacts of a varying 

domain size.  

 

3.3 Results: Synoptic Patterns for Freezing Precipitation (Ice) 

From the analysis described in section 3.2, four PRPCs were retained from the 

ice dataset, with produced eight height fields, using the described logic. In this section 

particular attention is paid to the ‘leading’ five pattern types, while an appendix (section 

3) outlines the basic evolution of some remaining types. These five patterns were 

identified and ranked from three criteria: (i) number of events per group (n); (ii) 

magnitude of the average correlation between PRPC loading and event standardized 

height field and; (iii) number of events not also correlated to another pattern type (using 

the threshold discussed previously). The same methodology was used for snow PRPC 

scores and their subsequent flow patterns (section 3.4).  

In this and the following section, composite progression of each pattern between 

T-24 and T+24 hours were evaluated. In reality the evolution of the upper level trough, 

thermodynamics, surface pressure, wind fields and precipitation will differ with each 
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storm system. The variables must also be considered to be intrinsically related, 

especially for freezing precipitation, where the thermal and pressure fields 

accompanying the upper level flow pattern are essential components to the analysis. In 

other words, winter weather requires a specific set of ingredients that cannot be 

identified through mid-tropospheric flow alone. These composites are a guide to one 

possible sequence of evolution, with respect to duration, precipitation magnitude, 

location, and phase type.  Note that the five patterns shown for freezing precipitation 

incorporate 70% of the dataset. The number of events per composite are: Ice Pattern 1 

(6), Ice Pattern 2 (5), Ice Pattern 3 (5), Ice Pattern 4 (5) and Ice Pattern 5 (4), with two 

events overlapping two pattern types (see Table A3.1). These patterns regionally extend 

the work of Rauber et al. (2001) by concentrating on the holistic evolution of each type 

with respect to multiple parameters, but also by using the geopotential height field as 

the typing variable, rather than surface features.  

Figures 3.7, 3.8, 3.9, 3.10 and 3.11 are multi-panel plots displaying key aspects 

of the composite average circulation for Ice Patterns 1-5 respectively. The top panel 

shows NARR constituent event precipitation (fractional coverage of precipitation type > 

20%); panel (a) displays 500 hPa geopotential height and 250 hPa winds; panel (b) sea 

level pressure and 975 hPa vector winds; panel (c) standardized 850 hPa temperature 

anomalies and location of surface and 850 hPa freezing line isotherms in purple and 

blue respectively; and panel (d) precipitable water vapor (PWV) standardized PWV 

anomalies (> 1.5σ, stippled) and 850 hPa vector winds for patterns 1-5 (T-24 to T+24) 

respectively. Standardized anomalies were calculated relative to a 1979-2012 mean and 

standard deviation and expressed relative to 1 standard deviation (1σ).   



 81 

Ice Pattern 1 (Fig. 3.7) shows a positively tilted trough south of a zone of 

northwesterly flow over the northern U.S (a). The northwesterly flow corresponds to the 

southeastward movement of a cooler airmass (c), indicated by the high sea level 

pressure at T-24 (b). As the trough moves eastward over the ensuing 24-hours, low-level 

southerly winds increase to 15-25 knots, implying moisture advection from the Gulf of 

Mexico (GOM) (d). In addition, 850hPa temperatures increase under southerly flow (c), 

and sustain an above-freezing inversion layer above the cool surface airmass associated 

with the arctic high centered over the Northern Plains (b). Colder air filters into the 

domain on the western edge of the mid-level low (c). At time T0, the composite trough 

axis is just west of the domain, with quasi-geostrophic height falls promoting ascent, 

and adequate moisture (~+1.5σ, d). The composite depicts the domain under the left 

exit/right entrance region of two upper jet streaks, indicating divergence at this level.  

The composite storm suggests a favorable region for freezing precipitation over 

western, through central and northeastern sections of the domain at T0 (region bounded 

by the zero-degree surface and 850 hPa isotherms). For individual events freezing 

precipitation locations are determined primarily by the southward extent of the surface 

arctic airmass. Additionally, subtle changes in the magnitude of the low-level 

temperature inversion, moisture, wind fields and trough axis, as well as mesoscale 

focuses for ascent (fronts, WAA maxima) can alter the mixed phase region. This pattern 

type suggests high variability between constituent events, likely for the above reasons. 

This composite also indicates the later formation of a weak low-pressure system along 

the coastal Gulf (b, T+24).  



 82 

At T+24, the mid-level trough axis resides over the domain. Colder air aloft 

behind the trough deepens into the region (c), gradually limiting the potential for 

sustained freezing precipitation. Snowfall may occur with suitable moisture and lift, and 

multiple phase types have been observed for the domain with this pattern. Recent 

examples of winter storms in this category include the Christmas storm of 2000 

(December 24-26), which produced heavy icing (~ 1 in) over southern Oklahoma into 

Arkansas, and ice pellets and snow further north, and January 28-29 2010, where 

several hours of freezing rain and ice pellets, followed by snowfall over Oklahoma 

translated east into Arkansas on the 29th.  

 

Ice Pattern 2 (Fig. 3.8) depicts a longwave positively tilted trough over the 

western U.S through Baja California at T-24 (a). Over the ensuing 48-hours the major 

trough axis does not progress much. A baroclinic zone, possibly associated with a 

quasi-stationary surface front (not shown), is present within the low-level troposphere, 

orientated southwest to northeast. A strong upper level jet streak (a) is promoted by the 

enhanced temperature gradient (c). Formation and orientation of the frontal zone is 

aided by apparent pressure gradient driven southward acceleration of an arctic airmass 

east of the Rocky Mountains (b, also evident from the inverted pressure trough). 

Composite sea level pressure at T-24 and T0 show a pressure dipole across the Rockies. 

Such structures are commonly observed during cold air damming in the lee of the 

Appalachians. Lackmann (2011, p.196) describes the process as a westward deflection 

of northerly flow, leading to mass accumulation east of the mountain barrier and 

increased sea level pressure. Conversely, on the western slopes the Coriolis force 
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Figure 3.7: Multi-panel plot for composite Ice Pattern 1. The layout of this and 
subsequent figures was described in the text (section 3.3). The SGP domain is 
highlighted in each panel. Please note the different domains plotted. Additionally, panel 
(b) displays 975 hPa winds> 15 kt in red, and SLP > 1026 hPa in light grey. Panel (c) 
shows 850 hpa (surface) zero (1oC) isotherms in red (black), while panel (d) displays 
the same isotherms in blue (black). For the top panel, locations of NARR derived 
categorical freezing rain (ice pellets) are displayed in solid (stippled) purple.  
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deflection draws mass away from the barrier promoting lower surface pressure. A 

weakening of this dipole might be observed associated with pressure falls promoted by 

the approaching trough. Standardized temperature anomalies by T0 within the arctic 

airmass range from -1 to -1.75σ (c), a notable departure from the 1979-2012 average, 

while air to the south remains above climatology, between +0.5 and +1.25σ. The 

pronounced broad anticyclone over the southeastern U.S promotes suggests sustained 

low-level WAA, evidenced by increased 850 hPa temperatures by T0. Anticyclonic flow 

also advects moisture from the western GOM. Panel (d) shows 25-30kt southwesterly 

wind at 850hPa, and a region of positive PWV anomalies exceeding +1.5σ southwest to 

northeast over the domain. Moisture trajectories at this level derive from the GOM, but 

also the Mexican Plateau and eastern subtropical Pacific. The composite average 

potential freezing precipitation zone is north of the surface front and parallel to the jet 

axis.  

There is less spread in the location of freezing precipitation with this pattern 

type (top panel), with locations generally extending from Oklahoma northeastward. 

Examples of recent events include January 26-28 2009, which produced a swath of 

freezing drizzle followed by ice pellets over central Oklahoma, with more substantial 

freezing rain over eastern portions of the state into Arkansas. Since the longwave trough 

remains anchored in the west during the initiation of freezing precipitation, mechanisms 

for ascent may involve shortwave troughs ejected ahead of the long-wave, and 

persistent isentropic ascent over a quasi-stationary frontal boundary.    
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Figure 3.8: As Fig. 3.7 but for Ice Pattern 2. For panel (b), SLP < 1012 hPa is shaded 
in dark grey.  
 

Ice Pattern 3 (Fig. 3.9) shows amplification of certain features associated with 

Ice Pattern 2, notably in the amplitude of the western trough (a), and the magnitude of 
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temperature and moisture anomalies. At T-24, 850 hPa temperatures are particularly 

warm over the domain (c), while composite SLP (b) shows an arctic high over the 

northern high plains, translating south and east with time. The SLP pattern suggests 

topographical damming, and the airmass by T0 shows negative anomalies near -1.5 to -

2σ over the western high plains, which weaken by T+24. A strong jet streak (~100 + kt) 

extends from the subtropical Pacific through to the northeast U.S (a).  

By T0 the trough axis has not advanced significantly, but has expanded 

meridionally. WAA ahead of the trough over the domain keeps low-level temperatures 

notably warmer than climatology over the southeastern U.S (> +1.5σ). The composite 

location of potential freezing precipitation is located to the north of that in Ice Pattern 2, 

and broader due to the higher 850 hPa temperatures (c,d). There is also more agreement 

in the location of freezing precipitation for each constituent event, shown in the top 

panel. This consistency may serve to compound the magnitude of anomalies (e.g., c, d) 

relative to the other pattern types. Freezing precipitation aligns with the upper jet, and 

surface zero degree isotherm, along an axis from southwest to northeast. Precipitable 

water vapor exceeds +2σ over a broad region, and +3σ over much of the domain. This 

increase over Ice Pattern 2 may in part result from more direct moisture transport from 

the Gulf of Mexico (d). Between T0 and T+24 eastward movement of the trough is slow, 

retaining favorable conditions for precipitation (assuming sustained ascent). With this 

pattern type snow over the domain is uncommon (unless the cold air is deeper and/or 

the trough more progressive), and freezing precipitation concludes either through 

erosion of the freezing layer by warming (e.g., latent heat release from refreezing 

precipitation, and/or WAA), or southward movement and deepening of the arctic 
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airmass. A notable event in this category was an ice storm on December 9-11 2007 over 

the central domain. Isentropic ascent, WAA and convective instability above a 

particularly pronounced warm layer produced icing locally exceeding 1 inch. Rates of 

accumulation were large due to the preponderance of training cellular convection 

(chapter 4).  

Ice Pattern 3 can be associated with significant icing, with four long duration 

severe events since 2000 corresponding to this type. Factors contributing to potential 

severity include: (i) the quasi-stationary frontal boundary, strong WAA with slow 

moving upper level flow; (ii) direct Gulf moisture transport with large positive 

precipitable water anomalies; (iii) upper level steering flow parallel to the front; (iv) 

high temperatures in the warm layer sustaining freezing rain at higher precipitation 

rates.  

 

Ice Pattern 4 (Fig. 3.10) depicts a progressive composite trough. At T-24, high 

SLP moves southward from Canada, in the wake of a low-pressure system over the 

Great Lakes (b). Winds are down-gradient, but the temperature profile does not suggest 

that on average this airmass is particularly cold (c), showing weak negative anomalies 

over the high plains, and positive anomalies over the southern and eastern CONUS. 

Positive anomalies are second only to Pattern 3 in magnitude. The location of the 

surface and 850 hPa freezing isotherms suggest a composite region of freezing 

precipitation focused over the northern half of the domain since cool surface airmass is 

more aggressively modified further south. As the trough axis amplifies the zero degree 

isotherms orientate parallel to this axis and the upper jet. Moisture is also significant 
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Figure 3.9: As Fig. 3.7/3.8 but for Ice Pattern 3.  
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over the domain by T0, derived largely from the GOM for the warm layer (d). As 

freezing precipitation evolves, the high surface pressure weakens, associated with 

height falls ahead of the upper trough. Behind the trough, cooler and drier air advects 

into the SGP (c,d).  

Fig. 3.10 shows that the regions experiencing freezing precipitation in Ice 

Pattern 4 include the northern and western domain extending northeast. Freezing 

precipitation is typically of shorter duration than Patterns 2 and 3. An event of note for 

this pattern was a winter storm during January 4 1998 (a day prior to the long duration 

northeast U.S/Canada Ice Storm). The event was short lived and largely restricted to the 

morning hours, but associated with rapid accumulations over southeastern Kansas to 0.5 

inch (along with > 1 inch of ice pellets) during elevated thunderstorms, while north-

central, and western and Panhandle Oklahoma experienced several hours of moderate-

intensity precipitation with 0.25-0.5 inch of ice on elevated surfaces. To the south flash 

flooding was observed in many locations over Oklahoma, Missouri, Arkansas and 

Texas.  

 

Ice Pattern 5 (3.11) shows a long-wave trough axis over the far western U.S at 

T-24 that moves eastwards and amplifies west of the domain over southwest Texas and 

New Mexico at T0 (a). The more zonal nature of the trough with respect to the other 

patterns may result from the expansive area of particularly cold low-level air across the 

northern half of the U.S prior to winter storm development (b,c). The resulting 

temperature gradient promotes a strong west-southwesterly jet by T0, with the domain 

located in the composite right entrance region, favorable for upper level divergence  
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Figure 3.10: As Fig. 3.7/3.8 but for Ice Pattern 4.  
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and ascent. SLP at T-24 (b) suggests that the cold airmass penetrates almost to the Gulf 

of Mexico. Nonetheless, warm low-level temperatures persist in the far southern U.S 

(>+0.5σ, c).  

By T0, low-level southerly flow east of the trough axis warms the low-levels, 

and promotes broadening of an above 0oC temperature inversion over southern portions 

of the domain. The 850 hPa wind trajectories also become more favorable for moisture 

advection into the region, particularly to eastern portions (d), where PWV anomalies 

exceed +1.5σ. Freezing precipitation was primarily generated to the northeast of the 

mid-level trough at T0 in conjunction with height falls and WAA.  By T+24, the upper 

trough has moved to the east, and colder air from the northwest moves aloft into the 

domain, shifting the warmer airmass south and east (c).  

Ice Pattern 5 is another pattern type favorable for multiple phases of winter 

precipitation, which often occur simultaneously over the domain. An example includes 

12-13 December 2000, which produced heavy snow over Oklahoma and points north, 

with ice pellets and ice accumulation over north Texas into southern/western Arkansas. 

Fig 3.11 demonstrates the locations of freezing precipitation for the events in this 

pattern, indicating a preference to the south and east.  

 

The five patterns described represent a large subset of cases within our small ice 

dataset. Nonetheless, they are not exhaustive. Some key observations based on this 

preliminary work include:  
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Figure 3.11: As Fig. 3.7/3.8 but for Ice Pattern 5.  
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(i) A tendency for a slower-moving western trough (Ice Pattern 2, 3), 

producing weaker large-scale dynamics over the domain but the possibility 

of multiple propagating shortwaves as focus for ascent (see also Sanders et 

al. 2013). Isentropic ascent and WAA north of a quasi-stationary front 

demarking the boundary between the arctic and subtropical airmass appears 

common. 

(ii) High sea level pressure over the northern tier of the U.S, and in some cases, 

a pressure dipole across the Rocky Mountains reminiscent of cold air 

damming. This high SLP was almost always present preceding SGP freezing 

precipitation.  

(iii) Warm air at low levels (approximate level of warm layer inversion) over the 

southern U.S. Notably, severe icing events for the central domain typically 

corresponded with larger positive departures from climatology.  

(iv) Moisture transport from the Gulf of Mexico, or the eastern Pacific, with the 

more significant events possessing greater precipitable water content, and 

direct Gulf moisture transport of longer duration.  

(v) Weak or absent surface cyclone development, even with a proximal trough 

axis. Surface low-pressure occasionally forms by T+24 and as a result is 

largely unrelated to freezing precipitation for the region.  

 

3.4 Synoptic Patterns for Snowfall and Comparison to Section 3.3   

In order to better understand evolution of freezing precipitation, it was helpful to 

provide a contrast with events that produced a weak or absent transition zone. Below 
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are descriptions of the five leading patterns from the retained three PREOFs for 

snowfall. These five patterns describe 71% of all cases in the dataset. The number of 

events per composite are: Snow Pattern 1 (9), Snow Pattern 2 (6), Snow Pattern 3 (7), 

Snow Pattern 4 (6), Snow Pattern 5 (6).  Figures 3.12-3.16 are formatted in the same 

fashion as Fig. 3.7-3.11 for Snow Patterns 1-5 respectively.  

 

Composite Snow Pattern 1 (Fig. 3.12) is associated with development of a 

broad, low amplitude trough in the south, and west-northwesterly flow over much of the 

northern states (a). This airmass is particularly cold, similar to Ice Pattern 2 and 5 (Fig. 

3.8, 3.11), while the airmass to the south is close to the 1979-2012 mean (c). SLP at T-24 

and T0 (b) shows southeastward movement of arctic high pressure over this period, 

similar to that observed for ice. At T-24 northwesterly near-surface flow over the plains 

and Midwest is evident, appearing to be in the wake of a low-pressure system situated 

east of the Great Lakes, at the periphery of the figure. By T0, pressure has increased 

over the Northern Plains, associated with further cold air advection and airmass 

deepening. Cold anomalies exceed -1.5σ over a broad area (c). The increasing 

temperature gradient over the southern U.S may contribute to strengthen the jet aloft 

over the ensuing 48-hours (a).  

From the SLP and height fields, forcing for precipitation is possibly associated 

with mid-level short-waves and isentropic ascent. The location of snowfall associated 

with constituent events tends to northern portions of the domain, however exact 

locations will depend on moisture availability, focus for ascent, and location of surface 

front, among others. An example of an event in this category was a snowstorm during 
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February 15th-16th 1993, which produced widespread and locally heavy snowfall (~12 

in) over the northern domain.  

The height field of Snow Pattern 1 is most visually comparable to Ice Pattern 5. 

However, the Snow composite does not reveal a region suitable for sustained freezing 

precipitation (850 hPa freezing isotherm is further south that its surface counterpart, c, d 

versus Fig. 3.11 c, d).  Comparison of SLP and 975 hPa wind vectors for the two 

patterns (b, versus Fig. 3.11b) indicates persistent and stronger northwesterly flow into 

the SGP for Snow, at T-24, with a long fetch extending into Canada. Conversely at the 

same time for Ice, flow over the northern tier has backed to the west, and the area of 

high pressure in the central plains appears to weaken, implying modification of the 

arctic airmass. In the former case, strong northwesterly flow at 850 hPa well into the 

domain evidences a deeper layer of cold air (c, d), while to the south Snow composite 

standardized temperature anomalies are less pronounced. Partially as a consequence of 

the lack of warm air aloft, moisture into the domain is less for Snow Pattern 1, with 

PWV on the order of 14mm or less at T0 (d, versus Fig. 3.11d).  

 

Snow Pattern 2 (Fig. 3.13) depicts a trough over the western U.S at T-24, 

amplifying by T0, with an axis through west-central portions of the domain (a). A weak 

jet streak at trough base intensifies after T0 and propagates the trough axis eastward. 

The domain low-level airmass (c) is warmer than climatology (+0.5 to +1σ) , extending 

into the central and eastern U.S at T-24. In the absence of a shallow cold surface layer, 

the vertical temperature profile decreases with height (c, d). As the upper level trough 

moves east, southern Rocky Mountain lee troughing intensifies, and coupled with the 
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Figure 3.12: As Fig. 3.7/3.8 but for Snow Pattern 1. Note that the top panel now 
displays categorical snowfall (20% coverage contour), with blue stippling for each 
constituent event, providing a measure of common location.  
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warmer and presumably lower static stability airmass (e.g., compare Fig. 3.7c, 3.13c), 

promotes cyclogenesis, occurring at T-24 over northern Mexico east of the base of the 

upper trough (b). By T0, the center of low pressure is located in the vicinity of eastern 

Texas and the Gulf coast. Behind the surface cyclone, much cooler air advects into the 

region via deep column northwesterly flow (c, d). Within the warm sector of the 

cyclone, moisture is accelerated northwards via strong southerly flow, producing PWV 

anomalies of +1.5 to +2σ (d). Snowfall occurs north and northwest of the cyclone 

center, north of the warm sector (top panel).  

Snow pattern 2 is one of two snow patterns that associated with a well-

developed surface cyclone as the focus for precipitation. According to Fig 3.13, 

snowfall can occur anywhere within the domain, with increased frequency 

northwestward. The location of snowfall is tied to the track of the surface low.  An 

example of an event in this category is a late season snowstorm on March 12 1999, 

which brought heavy snow (locally ~10 in) to southwestern Kansas, northwestern 

Oklahoma, and eventually lesser amounts to northern Oklahoma and Arkansas.  

The evolution of Snow Pattern 2 can be compared to that of Ice Pattern 1 (Fig. 

3.7). A notable distinction between them is the SLP field (b), where surface high 

pressure dominates the ice pattern, indicative of a shallow cold airmass over the domain 

prior to the arrival of the mid-level trough. Surface cyclone development in the latter 

case may be tempered by the higher static stability of the surface airmass and near 

surface cold air advection, which weakens amplification of the upper trough, and 

surface cyclogenesis through differential thermal advection in the lower levels that 

promotes descent (Bluestein, 1993, p169). The presence of an apparently stronger jet 
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Figure 3.13: As Fig. 3.7/3.8, 3.12 but for Snow Pattern 2.  
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streak at the base of the trough axis may imply faster system progression, but further 

work and a larger sample would be required to support this.  

 

Snow Pattern 3 (Fig. 3.14) is another pattern with largely zonal mid-level flow 

(e.g., compare with Snow Pattern 1, and Ice Pattern 5). A notable feature of the 

composite height field is a trough over the northwestern U.S that remains largely 

stationary over the 48-hour period. To the south, a shortwave ejects west of the domain 

by T-24 to reside over the domain at T0 (a). The strongest upper level flow is located just 

to the south (a). SLP and near surface winds (b) indicate a broad arctic airmass over the 

eastern half of the U.S, moving south and east with time. The wind field is variable, 

with predominantly domain-northeasterly flow. Low-level temperature anomalies (c) 

also do not reveal substantial departures from climatology until T+24, when reinforcing 

cooler air is transported to the rear of the mid-level trough and/or weak low. Moisture 

availability is adequate, with departures in PWV of near or above +1σ at T0, despite 

little evidence in the composite of sustained southerly flow (d).  The weak and variable 

low-level wind flow may be a factor in creating a less favorable environment for ice, 

despite the existence of an apparent shallow arctic airmass. It may well be that any low-

level inversion that exists is either not sufficiently warm to support freezing 

precipitation or is quickly eroded. An example of a pattern 3 event is January 9-10 1993 

where a wide swath of snowfall exceeding 6 inches was produced through northern 

Oklahoma and Kansas, accompanied by a brief nocturnal episode of freezing drizzle 

and ice pellets.   
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Figure 3.14: As Fig. 3.7/3.8, 3.12 but for Snow Pattern 3.  
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Snow Pattern 4 (Fig. 3.15) is the second example of snowfall associated with a 

surface cyclone. In this case, a positively tilted trough west of the domain at T-24 

amplifies by T0, aided by a 100 kt jet streak upstream of the axis. At T0 the meridional 

extent of the trough extends from Canada to Mexico (a). By T+24 the trough axis is east 

of the domain, and substantially colder air on its western side intensifies an upper level 

jet streak over the southeastern U.S. The evolution of low-level temperature and 

moisture is similar to Snow Pattern 2 (Fig. 3.15), however, due to the more developed 

circulation, moisture is advected further north over the Midwest (d). The 850 hPa, 975 

hPa vector winds and SLP are reflective of a stronger circulation, as is the notably cold, 

dry air on the western edge, suggesting strong subsidence (c, d). Additionally, the 

composite average minimum pressure of the cyclone is lower for Pattern 4 (b). If the air 

north of the developing cyclone is sufficiently cold, freezing precipitation could occur 

for a brief time, however, strong ascent and heavy precipitation might produce a faster 

erosion of any warm layer inversion present.  

The location of snowfall for this pattern appears to favor the eastern domain (top 

panel). The more intense surface cyclone, (b) and rapid cooling and drying west of its 

center (c, d) do not promote a wide snowfall shield on its western edge. In addition, the 

average duration of snowfall is likely to be less in any given location, but the rate of 

snowfall potentially greater than Snow Pattern 2 (not shown). A recent event in this 

category is the Oklahoma Christmas eve blizzard of 2009, which was notable for its 

high winds, leading to significant drifting of snow. Approximately one foot of snow 

accumulated in portions of Oklahoma, with the worst conditions occurring during the 

evening rush hour. 
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Figure 3.15: As Fig. 3.7/3.8, 3.12 but for Snow Pattern 4. Note that the NARR 
categorical snowfall was not well resolved for at least one event in this category 
(December 24-25 2009), despite the observation of heavy snowfall.  
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Snow Pattern 5 (Fig. 3.16) depicts a trough over the far southwest U.S, with a 

zone of northwesterly flow to the northeast at T-24 (a, b). By T0, a split flow pattern 

emerges, with a weaker shortwave over the northwestern U.S, while the main driver of 

winter storm development in the Plains is associated with the eastward progression of 

the southern trough. At the surface, a well-developed cyclone is centered over the Great 

Lakes at T-24, while higher pressure, and cooler northwesterly flow dominates the Great 

Plains (b). The airmass does not appear to be exceptional with respect to climatology (c, 

d), but cooler air advances almost to the Gulf of Mexico. Much like Snow Pattern 1, 

this results in cool domain 850 hPa low-level temperatures (c, d). As the upper trough 

approaches the composite does not show cyclogenesis (b). Cooler air to the west of the 

trough reinforces the cold airmass in place. As a result of strong southerly flow from the 

Gulf of Mexico, PWV anomalies exceed +1σ over most of the domain, while 850 hPa 

trajectories indicate WAA into the low levels at T0.  

Locations of snowfall for the constituent events extend throughout the northern 

region, and much of the remainder of the domain bar the far south and southeast (top 

panel). A notable event includes December 23-24 2002, which impacted northern 

Oklahoma, southern Kansas and northern Arkansas/southern Missouri. Accumulations 

ranged from 3-8 inches, locally 10 inches in Kansas.  

 

3.5 Summary of Key Differences 

Sections 3.3 and 3.4 detail the evolution of each composite winter storm for Ice 

and Snow categories respectively. Similarities were found for attendant height and 

pressure fields for within and between ice/snow patterns. Nonetheless, this work has  
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Figure 3.16: As Fig. 3.7/3.8, 3.12 but for Snow Pattern 5. 
 

revealed some important distinctions that could be of value to regional Forecasters, as 

well as providing specific composite evolutions aiding pattern recognition.  
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3.5.1: Sea level pressure 

Our results showed that all ice composites, and two snow were accompanied by 

high SLP over much of the central and northern U.S prior and during precipitation onset 

(T-24, T0). This is indicative of an arctic or ‘cold’ anticyclone. Such airmasses are 

typically shallow, especially at their southern periphery, as they undercut subtropical air 

to the south, creating conditions favorable a warm layer inversion. The southward 

movement of cold air was in conjunction with an inverted trough east of the Rocky 

Mountains. This topographically promoted ‘cold surge’ is highly ageostrophic 

(perpendicular to the isobars and down the gradient of pressure; e.g. Bell and Bosart, 

1988). Colle and Mass (1995) observed that cold surges over the Southern Plains are 

wider than their Appalachian counterparts. As cold air damming structures require a 

topographical barrier to inhibit geostrophic flow, cold surges are most effective 

immediately east of the barrier, with geostrophy resuming ~ 500 km from the boundary 

(the approximate Rossby radius of deformation). However, the gently sloping terrain of 

the high Plains may extend their effective radius by additional small scale damming of 

air parcels with a westerly component. The development of a warm layer associated 

with these conditions is displayed schematically in Figure 3.17.  

As cold air damming results from a pressure gradient, the magnitude of the 

pressure gradient over the Southern Plains may moderate speed and southward extent of 

the cold air. In addition, higher static stability airmasses are trapped against the barrier 

more effectively (Forbes et al., 1987). In the cases where these structures were observed 

prior to snowfall events there was evidence of cooler air south of the front, potentially 

producing weaker low-level WAA, and negating a substantial warm layer. We 
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investigated this quantitatively by first grouping pattern types by proximity and 

amplitude of the major trough axis, and presence of surface cyclone versus prominent 

baroclinic frontal boundary, yielding subgroups of (I1) Ice Pattern 1, 4 (n=11), (I2) Ice 

Pattern 2, 3, 5 (n=13), (S1) Snow Pattern 2, 4, 5 (n=18), (S2) Snow Pattern 1, 3 (n=15). 

Average 850 hPa temperatures above and below freezing were evaluated for a domain 

encompassing the SGP extended north (south) to 42o(28o) and east to 90oW. The mean 

was bootstrapped using 1000 replications in each case for T-24 and T0. I2 domain 

temperatures above freezing were significantly higher (95% CI) than all other sub-

groups for both times, while the 24-hour coverage of above freezing temperatures 

increased 4.5%. I1, S1 and S2 did not evidence significant differences. For below 

freezing domain temperatures, S2 was statistically lower than I1 and S1, but not against 

I2. S1 showed the largest 24-hr positive expansion of sub-freezing air (14.1%).    

A Student’s 2-tailed T-test was performed for SLP at T-24 for the ice and snow 

events from table A3.1, A3.2, using NCAR Command Language (NCL). Temporal 

means and variances were calculated, along with equivalent sample size (number of 

statistically independent samples). The difference variances for ice and snow were 

accounted for by using the Welch’s T-test. The result, shown in Fig. 3.18, suggested a 

significant difference between T-24 ice and snow throughout the Great Plains and 

Southeast/Gulf of Mexico, with the former yielding higher SLP. Averaging over each 

event for each grid point and evaluating regional SLP spread (boxplots, Fig. 3.18) for 

the Northern and Southern Plains also corroborated this finding. The higher pressure 

over the GOM associated with ice events may also indicate the prevalence of concurrent 

anticyclonic flow due to the westward extension of the Atlantic subtropical high.  
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3.5.2: Mid-level trough and surface cyclone  

Another distinction between ice and snow composites was the location of the 

trough axis with respect to the domain, particularly as precipitation was developing 

(T0). Caveats regarding onset time aside, ice events in this sample often were associated 

with a more western trough axis at T0 (~59%, versus 27% for snow with major trough 

axis base west of AZ/NM border). Such conditions potentially allow longer duration 

WAA over the domain, while stronger upper level forcing (e.g., via vorticity advection) 

remains west of the region initially. This set-up is not favorable for cyclone 

development, but can prolong precipitation associated with isentropic ascent and warm 

air advection. Ressler et al. (2012) note that freezing rain associated with trough axes 

well to the west of their study site produced longer duration precipitation, but on 

average weaker precipitation rates. To some extent this was also observed here (Ice 

Pattern 2), however, in cases of enhanced ascent from short-wave perturbations, or 

from potential instability aloft associated with a deep moist warm layer, conditions may 

favor more intense precipitation (Ice Pattern 3).  

 

 

Figure 3.17:  Schematic depicting the precipitation types accompanying ‘cold surge’ 
events in the SGP.  
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Figure 3.18: Student’s (2-tailed) t-test for ice events against snow events SLP at T-24 
(left).  Number of events per dataset shown by text in main figure. Only statistical 
significance ≤ 10% shown, with values < 5% more a more robust indication of 
significance. Temporally averaged grid point distributions of SLP for ice and snow 
shown by boxplots for the Northern and Southern Plains, defined 40-50oN, 90-105oW, 
and 30-40oN, 90-105oW respectively. Calculations using NCL ‘ttest’ function. Caution 
should be applied when interpreting t-test due to low sample, and the possibility of non-
normal distributions, albeit test is generally insensitive unless non-normality is large.  
 

When a trough axis was proximal to the domain (e.g, Ice Pattern 1, Snow 

Pattern 2, 4), snow events indicate enhanced cyclogenesis relative to ice. A proximal 

amplified trough enhances upper level support for a deep column of rising motion. 

However, the higher static stability surface airmass associated with ice events may act 

to inhibit low-level ascent and retard cyclone development. For ice, cyclogenesis 

appears to occur most favorably once the arctic airmass has migrated south to the Gulf 

coast, where the resulting temperature contrast enhances baroclinicity. Nonetheless, 
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these systems do not evidence rapid development. The deeper surface low for snow 

produces high precipitation rates north of the cyclone center, and possibly rapid 

transitions between phase types (i.e., rain, mix, snow). Figure 3.19 shows schematically 

approximate centers of low pressure (based on local minimum) for snow and ice events 

and their track T-24 to T+24. The figure confirms our assertions, demonstrating that ice 

events typically have a less well-defined center of low pressure, developing after the 

initiation of freezing precipitation over the domain, and generally not deepening during 

the analyzed time.  

 

Figure 3.19: Approximate paths surface cyclones between T-24 and T+24 for snow (left) 
and ice (right). These tracks were based on calculation of local minima, and manual 
removal of stationary pressure signals (e.g., lee troughing), and cyclones not present 
over the southern U.S. The tracks are color coded by pattern type, pattern 1 = blue, 2 = 
black, 3 = cyan, 4= red, 5=purple. The corresponding SLP time series is marked by a 
number for each track, and displayed in the time series plots snow (bottom left), ice 
(bottom right). The period within 6-hours of T0 is shaded in grey.  
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Chapter 4: Introduction to Case Studies, and Development of a WRF-

ARW Sea Surface Temperature (SST) Sensitivity Study  

 

4.1 Introduction 

In chapters 2 and 3, a regional preliminary climatology of winter storms, with an 

emphasis on freezing precipitation (FZPCP), was performed for the SGP domain.  

Chapter 2 demonstrated that the region can develop pronounced warm layers associated 

with temperature and moisture advection from the subtropics, including the Gulf of 

Mexico (GOM). The results of chapter 3 revealed a subset of synoptic flow patterns 

producing FZPCP, and that the structure of this flow strongly determined the warm 

layer magnitude and location/intensity of FZPCP.  In this chapter the physical basis for 

a sensitivity study is introduced that examines the role of SST in the GOM to the 

evolution of mixed-phase precipitation. The case studies used for this work are 

described and experimental methodology compiled.  

 

4.2 Physical Basis 

Chapter 1 introduced work by Gyakum and Roebber (2001), Fuhrmann and 

Konrad (2013). These studies indicated that moisture and temperature structure of the 

examined warm layer was influenced to some degree by the adjacent oceans (the 

Atlantic, in their case). Therefore, we may speculate that there could be a link between 

regional SST anomalies and the warm layer. Such a hypothesis had also been alluded to 

by Bernstein (2000), Robbins and Cortinas (2002) and Changnon and Karl (2003), but 

only examined in one peer-reviewed modeling study by Ramos De Silva et al. (2006). 
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This latter work was summarized in chapter 1, and suggested increased SST in the 

adjacent Atlantic did impact the magnitude of the warm layer for an ice storm over 

North Carolina, observing that is was both deeper, and earlier forming, leading to higher 

total precipitation in the form of freezing rain. The simulated locations of these 

precipitation phases (freezing rain, snow, ice pellets) was not found to change, neither 

did overall precipitation accumulation (all winter phases). This analysis, while 

insightful, only examined one case study. From the results of this dissertation work, 

different circulation fields resulting in freezing precipitation for the SGP have been 

identified that are likely primary drivers for the timing, duration, and magnitude of ice 

accumulation. An evaluation of more than one case study is desired to better 

characterize SST sensitivity for diverse winter storm systems.  

 For the SGP, the GOM basin is the region of investigation for reasons 

previously provided. However, in order to more fully identify to what extent SST 

variability in the basin is likely to be a factor in regional winter storms, a brief two-fold 

analysis is conducted that checks for a potential relationship, primarily between warm 

layer depth/temperature.  

 

4.2.1: Check 1: Air mass trajectories 

Trajectory modeling tracks the movement of air parcels or particles using a 

Lagrangian framework. Trajectories are typically calculated using gridded wind fields 

on pressure or height surfaces (e.g., Fuhrmann 2011). The basic equations used to 

evaluate air parcel trajectory are given in Stohl (1988), and Fuhrmann (2011), shown by 

Eqn. 4.1 and 4.2.   
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dX 
dt

= X '[X (t)]                                                                             (4.1) 

€ 

X 0(t = t0) = X 0(X ,t)                                                                     (4.2) 

 

Where t is time, is a position vector, and X’ a velocity vector. Equation 4.2 is a 

rearrangement of Eqn. 4.1 for time, t0, which gives the initial position of an air parcel. 

Trajectories may be evaluated both forward (t0 > 0) and backward (t0 < 0) in time. Back 

trajectories define a start time at the end-point location, and integrate backward to 

project the path of the air parcel into the region of interest. Applications have included 

dynamical processes and structure of extratropical cyclones (e.g., Uccellini et al. 1985, 

Mass and Schultz 1993), air quality (e.g., Hondoula et al. 2009), large-scale flow 

climatology (e.g., Strong et al. 2007), and source regions of water vapor during high 

impact precipitation events (e.g., Brimelow and Reuter 2005, Gustaffson et al. 2010).  

 In this brief investigation, the HYSPLIT (Hybrid Single Particle Lagrangian 

Integrated Trajectory) model (version 4.9, Draxler and Rolph 2011) was used to 

investigate air parcel trajectories incident to the warm layer (specifically, the level of 

maximum temperature, Tmax) during FZPCP. Four-day (96-hour) back trajectories were 

calculated for 73 station-sounding based reports of FZPCP during 36-winter storms at 

six locations, including Dallas Ft Worth Texas (DFW), Norman Oklahoma (OUN), 

Lamont Oklahoma (LMT), Springfield Missouri (SGF), Little Rock Arkansas (LZK), 

and Amarillo/Dodge City (AMA/DDC, computed as the halfway point). Use of several 

locations within the domain, rather than attempting to define a ‘representative’ point, 

allows for possible sub-domain variability in airmass sources. Due to the overlap of 
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winter storm events, trajectories were sometimes evaluated for the same storm at 

different sites. While this may bias the data toward long-duration events, it is assumed 

that regional and temporal differences in the mesoscale circulation mean that no two 

trajectories within the same storm system are necessarily identical.  

HYSPLIT computes the trajectory of a single air parcel using the 3D velocity 

field from gridded meteorological data. In this case, NARR was used as input at 6-hour 

intervals. The process by which trajectories are calculated was provided in more detail 

by Fuhrmann (2011). The model requires a wind field (u,v), interpolated to a terrain 

following (sigma) coordinate. Meteorological variables are linearly interpolated from 

the input data levels to the model levels. The model calculates layer heights (AGL) 

using the hypsometric equation based on layer average virtual temperature. Model 

vertical velocity can be evaluated using dataset vertical velocity, isobaric or isentropic 

coordinates. NARR data includes vertical velocity, which can be used directly by 

HYSPLIT. Due to improvements in model resolution and parameterization of physical 

processes, using the model vertical velocity field is considered as or more accurate now 

than storm relative isentropic techniques (e.g., Schultz 2001, Furhmann and Konrad 

2013).    

Like all numerical models, HYSPLIT suffers from inherent uncertainty related 

to both its architecture, and the user selected calculation methodologies. Fuhrmann 

(2011) provides examples some typical sources. Common computational uncertainties 

include integration errors, truncation (shortening of timesteps or number of grid cells 

used in the model), and resolution error. Resolution error impacts the interpolation of 

various parameters, and produces uncertainty in the trajectory position over time. Stohl 
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and Seibert (1997) use an earlier version of HYSPLIT to assess this, finding position 

errors of up to 20% for trajectories over 24 hours. The common way to test for and 

incorporate resolution uncertainty is to initiate multiple trajectories, offset by small 

increments in the horizontal and vertical, and monitor their divergence in time. 

Fuhrmann (2011) used this approach (based on Draxler 2003) to calculate ensemble 

trajectories for specific case studies. He found that the divergence of trajectory solutions 

is highly case-study dependant. Given that our experiment examines numerous events, 

it would be prohibitively time consuming to determine the ensemble spread for each of 

them. It is assumed that the calculated ‘instantaneous’ trajectories have inherent 

uncertainty, especially past 48-hours.  

Figure 4.1 displays altitude and equivalent potential temperature (θe) at Tmax for 

five source regions (defined as the area where the trajectory resides at t-96 hour) during 

FZPCP. The percentage contribution to the total dataset is also provided. Trajectories 

originating over the GOM are shown to be fairly frequent, accounting for just over 25% 

of the analyzed total. Furthermore, the air parcels also remain generally near or within 

the marine PBL, subsequently developing high values of θe (median ~320 K). Other 

source regions include the more remote Pacific, generally yielding less moisture to the 

domain (panels b and c). Air parcels originating in the southern or northern U.S 

typically remain near the surface, gradually accumulating heat and moisture as they 

modify through their local environment. In some cases, trajectories loop 

anticyclonically at low altitude over the GOM before entering the precipitation region. 

In these ‘recurving’ cases, it is anticipated that the diabatic heating mechanisms (e.g., 

Latent heat flux into the air parcel) may be particularly important. Twelve such 
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examples were included in the dataset (not shown), making the total number of 

trajectories with GOM influence nearly 42%.  

Figure 4.2 evaluates warm layer trajectories for the top 6 events by precipitation 

accumulation (based on liquid precipitation equivalent over storm duration), 

corresponding roughly to the dataset top 10%. Approximate accumulation was gathered 

from NCDC climatological summaries for the relevant station site, with metrics per 24-

hours. Total event accumulations ranged from 1.4-2.8 inches (35-70 mm) per day, 

however it was not possible to separate out relative contributions by phase type. The 

majority of cases exhibited air parcel trajectories at low altitude over the GOM basin at 

some point (a). A mixture of GOM and subtropical Pacific trajectories are shown for the 

same events near the top of the warm layer (b). We can therefore confirm from these 

results that the GOM is a common source of warm layer heat and moisture during 

FZPCP.  

 

4.2.2: Check 2: Trends  

Ramos De Silva et al. (2006), in addition to a sensitivity analysis, performed a 

linear regression of 68 winter storm events (28 ice storms), examining for a statistical 

relationship between warm layer depth (WLD) and SST anomaly (SSTA) in the 

subtropical Atlantic Ocean. The regression relationship was found to be statistically 

significant, (p-value< 0.04) despite concerns over ‘measurement noise’ (offsets between 

actual precipitation time/phase and sounding profile).   

Based on this work, a similar analysis was performed for the SGP domain. 

Using the FZPCP thermodynamic profiles from chapter 2 for all hydrometeor categories  
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Figure 4.1: Trajectory profiles for different source regions (a-e, right), including height 
(left), and equivalent potential temperature (right). The median of the total number of 
profiles for each (n) is shown by the red line, while the interquartile range is shown by 
the gray shaded area. Each trajectory is integrated over 96-hours, with t-96 representing 
the source region, and t-0 (0 on the x-axis) the warm layer zone. Dashed horizontal lines 
present to aid visual interpretation.  
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Figure 4.2: Multi-panel plot for (a) level of warm (melting) layer maximum 
temperature (b) top of warm layer. Back trajectories for the top 6 events by precipitation 
amount are displayed (top left), as is the average mixing ratio and air temperature for 
the 48-hours preceding trajectory end-point (top right). The bottom left and right time 
series show altitude and air temperature along the trajectory path respectively, with the 
median (inter-quartile range) shown by the solid line (shaded area). Gray thin line (273 
K) on temperature time series present to aid interpretation.  
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bar drizzle (~75 soundings), corresponding SST data was obtained for each. In this case, 

blended satellite (‘Advanced Very High resolution’ Radiometer, or AVHRR) and in-

situ (buoy, ship) data at a gridded horizontal resolution of 0.25 degree (~28 km) known 

as the ‘Optimum Interpolation Version 2’ (Reynolds et al. 2007, see section 4.4). SSTA 

were relative to 1971-2000 mean at daily time intervals. SSTA for three GOM sub-

domains (Figure 4.3) were calculated for the days that freezing precipitation occurred, 

and for the week prior, expressed as a ‘storm’ (daily) or ‘weekly’ average respectively. 

Values of WLD, temperature, and EMP (chapter 2, eqn. 2.1) were derived for each 

profile (entirely sub-freezing profiles ignored). A linear regression using ‘R’ software 

was performed for each GOM sub-domain against EMP. Figure 4.4 shows the results of 

this regression. For each sub-domain, the storm average (daily) SSTA indicated a 

positive association with EMP. Unfortunately, the datasets did not yield similar 

variance (unless the EMP values were transformed by dividing by a factor of 10,000), 

indicating heteroscedasticity. While the slope of the regression line was significant 

according to linear regression using R (p-value <5%, R2 values ~0.25-0.29, not shown), 

a heteroscedastic dataset means the degree of association may be overestimated. 

Nonetheless, based on these results we see a general trend for higher EMP during 

positive GOM SSTA. Furthermore, the categorization of profiles into IP, severe and 

light FZRA allowed for visual comparison of where these phases lie on the spectrum of 

SSTA/EMP. 
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Figure 4.3: The GOM domains used in a linear regression against warm layer EMP. 
The SGP domain and sounding sites are also shown (see also chapter 2, Fig. 2.1). The 
domains were selected to provide good coverage over the interior basin (away from the 
northern and western continental shelf), while examining possible key sub-regions. 
 
 

4.2.3 Research questions 

The brief investigations of subsections 4.2.1, 4.2.2 confirmed the physical basis 

of this work, supporting the hypothesis of a relationship between SST and SGP warm 

layer characteristics. We speculate that a fetch from the GOM leads to the advection of 

warmer, moister (cooler, lower moisture) air in the positive (negative) SSTA case. This 

work seeks to expand on that of Ramos De Silva et al. (2006), using an advanced 

mesoscale model and a carefully constructed sensitivity analysis. In particular, although 

Ramos De Silva et al. (2006) showed evidence of strong sensitivity to large SST 

perturbations, here we intend to examine how storm dynamics, thermodynamics and 

FZPCP respond to more modest SSTA. This work is primarily intended to provide an 

assessment of the magnitude of the response to both uniform and physically-constrained  



 120 

 

Figure 4.4: Results of linear regression of SST against EMP for basin average SST 
preceding each winter storm event (top left), storm averaged SST for region 1 (top 
right), region 2 (bottom left), and region 3 (bottom right). Heavy freezing rain (ice 
storm) profiles shown by the blue cross, ice pellets by the open red circles, and freezing 
rain by the green triangles.  
 

SST fields, connecting potential relationships between basin anomalies (whole domain, 

and sub-domain) through the use of back-trajectory analysis as a tool to infer extent and 

timing of airmass modification, and examining how historical events might have been 

altered under alternate SST regimes. This information may be useful for medium-term 

prediction and situational awareness for systems developing in the presence/absence of 

strong GOM basin anomalies. Importantly, this work may also be applied in the context 

of assessing potential changes to such systems under a warmer future climate, given the 
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observed increase in global SST (although we admit in a warmer climate the whole 

vertical profile is likely to change, not just the low-level thermodynamics). Key 

research questions to be investigated from this chapter, through to chapter 7 include:  

(i) How well can the WRF-ARW replicate the evolution of the selected winter 

storm case studies? (including evaluation of ‘best’ physics options for this 

application) – Chapter 5.  

(ii) What are appropriate SST perturbations to apply?  – Chapter 4, sec 4.4.  

(iii) How do the SSTA change the evolution of the winter storm event? Special 

consideration is given to the timing of precipitation, and the approximate 

locations and accumulation of each hydrometeor phase (SN, FZRA, mix 

IP/FZRA, and rain) based on thermal and dynamical changes. Does this 

confirm the assertions of our hypothesis? – Chapter 6 and 7. 

(iv) What regions of the GOM are important for the SGP, that is, what is the 

SSTA distribution in the GOM, and which locations potentially produce the 

largest impact on the winter storm? – Chapter 6 and 7.  

 

4.3 Introduction to Case Studies  

The case studies selected for this work are characteristic examples of two 

synoptic patterns common to the region; Ice Pattern 1 and 3 (e.g., chapter 3). The ice 

storm of December 9-11 2007, an Ice Pattern 3 event, was chosen because it produced 

significant regional impacts. The primary precipitation mode was elevated convection, a 

more unusual freezing rain event. The Ice Pattern 1 event occurred on January 28-30 

2010, and was associated with an arctic high to the north, and a deepening 850 hPa low 
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in association with a progressive mid-level trough. Multiple precipitation types occurred 

over the domain. This event was driven primarily by strong large scale forcing with 

both convective (in rain region) and stratiform precipitation. Details on the evolution of 

both case studies are described in the following subsections.  

 

4.3.1 Case 1: December 9-11 2007 

A long-duration freezing rain event occurred between December 9 and 11 2007. 

In the five days prior to the event, average low-level temperatures were anomalously 

warm over the southern/western states, with a collocated positive geopotential height 

anomaly (based on NARR data) shown in figure 4.5. Figure 4.6 is a surface synoptic 

analysis valid at 12 UTC on December 9. A surface arctic anticyclone extended over the 

north central U.S, with shallow subfreezing surface air filtering south over the Great 

Plains, associated with ageostropic down gradient flow, as described in chapter 3. A 

quasi-stationary front extended east-northeast from north-central Texas. To the south an 

unseasonably warm and moist airmass prevailed, with temperatures in excess of 290 K 

(18oC). At this time, convective precipitation was ongoing over the SGP, extending 

northeastward parallel and north of the surface front, in a region of isentropic ascent and 

warm air advection (WAA, not shown). Figure 4.7 shows a vertical sounding valid 12 

UTC 9 for Norman, Oklahoma, evidencing a deep layer of elevated convective 

instability. The Storm Prediction Center mesoscale discussion 193, valid near 16 UTC 

Dec 9 (http://http://www.spc.noaa.gov/products/md/2007/md2193.html) noted strong 

low- level WAA near 700-850 hPa, and MLCAPE values between 500 and 1000 JKg-1, 

promoting the convective mode.  
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Figure 4.5: Multi-panel plot depicting the average meteorological conditions between 
December 3-11 2007. (a) Shows the geopotential height anomaly (relative to a 1971-
2000 NARR climatology) in gpm, (b) shows 975 hPa temperature anomalies (shaded, 
K), vector wind anomalies (arrows), and mixing ratio anomalies (g kg-1, blue contours), 
(c) shows the 850-700 hpa layer average anomalies as in panel (b), (d) is a time-height 
plot from 00 UTC December 3-00 UTC December 11 showing air temperature (shaded, 
oC), and vector winds (barbs, intervals of 5 knot) from 0-5 km AGL valid at the ARCF-
SGP facility in Lamont, Oklahoma.  
 

The axis of freezing precipitation remained largely unchanged for over 24 hours, 

with training convection primarily over the central SGP, extending southwest to 

northeast. The 500 hPa height field, shown in Fig. 4.8, valid 12 UTC December 9, 

depicts a broad amplified western trough with a strong mid-level jet transporting 

moisture into the region from the sub-tropical Pacific. Figure 4.9 shows the composite 

anomaly fields in relevant thermal fields, SLP, and 500 hPa height (NARR 1979-2001 

mean), and anomaly correlations for these parameters between December 8-12. 

Anomaly correlations (AC) are a measure of the persistence of synoptic conditions,  
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Figure 4.6:  Synoptic chart valid 12 UTC December 9, depicting sea level pressure 
(blue solid contours, hPa), fronts, station weather and wind speed (intervals of 5 kt), 
infrared satellite, and composite radar reflectivity. Image courtesy of 
http://locust.mmm.ucar.edu and Unisys.  
 

calculated based on the equation given by Gyakum and Roebber (2001), shown in 

Equation 4.3.  

 

 

 

Where a(1) and a(2) are anomaly fields at each gridpoint in x and y (i,j). Anomalies 

were expressed relative to the composite anomaly field for the whole event, calculated 

at 6-hour intervals using NARR. The December 2007 ice storm conditions showed 

notable persistence, with high correlations (> 0.5) throughout the analyzed period. Slow 

eastward movement of the trough produced gradual decorrelation throughout the storm.  

4.3 
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Figure 4.7: Thermodynamic sounding profile at Norman, Oklahoma (OUN) valid at 12 
UTC December 9. Red (green) lines indicate air (dewpoint) temperature (oC). The 
shaded region shows the elevated unstable layer from ~850 hPa to near 500 hPa. 
Sounding profile image courtesy of http://locust.mmm.ucar.edu. 
 
 

Figure 4.10 shows accumulated precipitation for the SGP, and a precipitation 

time series valid for OUN, derived from NCEP Stage IV radar and rain gauge derived 

precipitation. A simple algorithm was used based on Bourgouin (2000) to separate 

constituent phases, described in chapter 6, sec 6.2. Primary domain phases were rain, 

and freezing precipitation (IP/FZRA). The particularly well-defined warm layer likely 

contributed to the largely freezing phase of precipitation, and compounded societal 

impacts. Accumulations exceeded 1 inch over a wide swath of the central SGP, with 

regions in excess of 2 inches also noted. Rain was located south of this zone over 

Arkansas through southern Illinois. The precipitation time series indicates heaviest   
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Figure 4.8: 500 hPa geopotential height field (gpm, black contours), and 250 hPa wind 
velocity (kts, barbs and shaded contours) valid at 12 UTC December 9.  
 
 

precipitation rates occurred overnight (Fig. 4.11, shaded). Based on these peaks, we 

define two convective episodes, one for an 18-hour period from 06 UTC December 9, 

and the other from 06 UTC December 10, which are used to analyze the model 

representation of this event in chapter 6. The end of the ice storm for much of the SGP 

(bar the panhandle of Texas and southern KS) occurred toward the evening of 

December 10, when surface temperatures rose above 0oC.  

Figure 4.11 depicts 96-hour backward ensemble air parcel trajectories (using 

HYSPLIT), ending at OUN at 12 UTC 9, 00 UTC 10 and 12 UTC 10 for 850 hPa.  The 

ensembles were generated by initiating trajectory calculations at small incremental 

offsets (0.01 km) in the horizontal and vertical plane. Red trajectories were members 

with mixing ratios into the freezing precipitation zone at/above 8 gKg-1. The majority of  
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Figure 4.9: Composite anomalies of NARR geopotential height (gpm,, top left), sea 
level pressure (SLP, hPa, top center), precipitable water (PWV, mm, top right), 850-700 
hPa thickness (m, bottom left), and 1000-925 hPa thickness (m, bottom center), valid 
from 12 UTC 9 – 00 UTC 11 December and relative to the NARR baseline 1979-2001 
climatology. The bottom right panel shows the anomaly correlations for each 6-hour 
period from 18 UTC December 8 to 06 UTC December 12, while the grey shading is 
the approximate duration of freezing precipitation at OUN.  
 

ensemble members move northward from the western GOM at 12 UTC 9, and 12 UTC 

10, with a smaller land-based cluster. As previously observed, most trajectories 

members descended to the near surface over the ocean (~t-40 to t-10), before rapid 

ascent into the freezing precipitation region. This places the majority of air parcel paths 

near the surface over the northwestern GOM. At 00 UTC 10, most members apparently 

circulated around the SGP and southern U.S. At this time, the mixing ratio within the 

precipitation zone had decreased, especially relative to 12 UTC 10 when the 

approaching trough, and increased WAA enhanced mixing ratios and began to warm the  
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Figure 4.10:  TOP: Accumulated 48-hour precipitation in liquid (rain), and freezing 
(IP/FZRA) phases ending at 00 UTC December 11. BOTTOM: Time-series of 
precipitation at 1-hour intervals for OUN. Dashed line is a running mean filter for every 
5-th hour. Red shaded regions denote the two nocturnal episodes of convective 
precipitation. Data from NCEP Stage IV.  
 

 

surface layer. It is interesting to note that GOM trajectories were prevalent during the 

overnight/early morning, while localized trajectories dominated mid-late afternoon. 

This may be related to the strengthening of the low-level flow overnight, possibly 

associated with a low level jet.  

According to NCDC Storm Data, impacts were primarily felt within the 

populated I-44 corridor, producing one of the most costly ice storms in recent memory. 

Whilst relatively warm temperatures preceding the event limited ground accumulation, 

overlying surfaces such as trees and power-lines were heavily damaged. At the height of  
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Figure 4.11: Four-day Ensemble HYSPLIT trajectories ending at OUN at 850 hPa for 
12 UTC December 9 (top left), 00 UTC December 10 (top center), 12 UTC December 
10 (top right). 48-hour average mixing ratios overlaid (g kg-1, filled contours). 
Trajectory members with mixing ratios > 8 g kg-1 at T0 shown in red. Bottom panels 
show time series the altitudes of each trajectory (AGL, m) for the corresponding end-
times.  
 

the storm, an estimated one-third of the state’s population lost power. A state of 

emergency was declared for all 77 OK counties. The economic cost exceeded $300 

million in Oklahoma alone. Missouri and far southern Illinois were also impacted by 

between 0.25 and 2 inches of mixed FZPCP.  

 

4.3.2 Case 2: January 28-30 2010 

A winter storm impacted a broad swath of the southern U.S January 28-30 2010. 

In the seven-day period January 23-30, the region evidenced broad negative 

geopotential height anomalies, shown in Figure 4.12. This may evidence an active 

regime with successive troughing. Furthermore, negative low-level temperature 
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anomalies were prevalent over and west of the domain, while a time series of 

temperature versus height at the ACRF SGP site implied warm layer development 

during January 26-27. Prior to this, strong northwesterly flow had depleted the lower-

levels of an inversion layer (panel d).  

Over portions of the SGP, a number of precipitation phases were experienced as 

the upper trough approached. This progressive trough is shown in Figure 4.13. An ill-

defined surface low-pressure over northeastern Mexico on January 28 moved eastward 

and became better defined along the Gulf Coast on the 29th. At the 850 hPa layer, a 

trough was evident on the 28, with a center passing over southern Oklahoma through 

eastern Texas. Cold air was present at the surface as freezing precipitation developed, 

associated with a broad arctic high over the central U.S.  

 

 

Figure 4.12: As Fig. 4.5 but for January 23-30 2010 
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Figure 4.13: As Fig. 4.8 but for 12 UTC January 28 2010 
 

Figure 4.14 shows the surface synoptic analysis valid 15:30 UTC on the 28th. 

South of the cold front temperatures over the southeastern U.S were relatively cool 

while over Texas temperatures between 283 and 288 K (10-15oC) were present. Over 

this latter region heavy convective precipitation was observed, which became vigorous 

enough to warrant a severe thunderstorm and tornado watch between San Antonio and 

Dallas (not shown). North of the surface front the refreezing layer developed around 12-

15 UTC, with a mixture of FZRA and IP from southwestern OK, northeastern Texas, 

through central Oklahoma. Snowfall occurred later over northern Oklahoma as cold air 

deepened in association with the mid-level trough. Precipitation ended over Oklahoma 

on the 29th, with freezing and frozen precipitation at this stage over Arkansas. Also of 

note was a possible gravity wave on the afternoon of the 28th, which brought rapid 

advection of dry midlevel air into Oklahoma, ending precipitation for a time (Fig. 4.16). 
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Figure 4.14:  Synoptic analysis, valid 15:30 UTC January 28. Similar to that described 
in Figure 4.6 but with the addition of phase discrimination for radar derived 
precipitation, where green-yellow-red indicates rain, purple ice and blue snow. Image 
courtesy of http://locust.mmm.ucar.edu and Unisys.  
  
Figure 4.15 reveals storm composite anomalies and anomaly correlations (see Eqn. 4.3). 

Notable de-correlation outside of the storm event evidences the progressive movement 

of the trough and associated temperature, SLP and moisture.  

Precipitation accumulation and time series for OUN, shown in Figure 4.16, 

show heavy rainfall over the southern SGP, the main belt of freezing precipitation over 

the center, orientated east-west, and snowfall over the northern and central domain. 

Freezing precipitation was heaviest over southwestern Oklahoma, supported by storm 

reports of 0.25-1 inch of ice accumulation on the 28th, leading to numerous road 

incidents, and nearly 180,000 facilities losing power (Storm Data, NCDC). On the 29th, 

the heaviest freezing rain accumulated over central/south central Arkansas, leading to a 

reported 30,000 power outages. At OUN (time series), precipitation began as rain  
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Figure 4.15:  As Fig. 4.9 but for the January 28-30 winter storm. Anomalies calculated 
between 00 UTC 28 and 12 UTC 29, based on storm timing over Oklahoma. The gray 
shaded times on the lower panel denote the approximate duration of the winter storm 
over western and central Oklahoma.  
 

early on the 28th, subsequently changing to FZRA near 15 UTC, and IP around 21 UTC. 

On the 29th, FZDR and light snowfall were the primary precipitation types as FZPCP 

moved east. Approximately 0.5 inch of FZRA accumulated at OUN.  

Air parcel trajectories were computed in a similar fashion as before, based on 

FZPCP in the vicinity of OUN between 15 UTC January 28 and 00 UTC January 29, 

shown in Figure 4.17. The ensembles indicate some uncertainty in trajectory path. Air 

parcels generally originated (t-96) over the northern or western U.S, descended over the 

southern U.S or northern GOM and re-curved into the domain. This movement was 

indicative of a possible return flow event, marked by an initial intrusion of cold air into 

the southeastern U.S, and its subsequent warming and moistening and northward 

advection into the SGP ahead of the upper low. The moistest ensemble members (red,  
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Figure 4.16:  As Fig. 4.10 for January 28-30 2010, with the addition of the snow-phase 
(top right panel).  
 

 

> 5.5 g kg-1) typically moved further south and at lower-altitude over the GOM.  

 

4.4 SST Sensitivity Study: Experiment Configuration  

4.4.1 Rationale for imposed SST Anomalies (SSTA)  

In order to apply a reasonable set of SST anomaly perturbations for our 

sensitivity analysis some understanding of the variability of GOM SST was desired. 

The prominent oceanic circulation within the GOM is the ‘loop current’ (LC). The LC 

transports warmer water from the Caribbean Sea into the basin via the Yucatan channel, 

supplying a significant fraction of source water to the Gulf Stream (Nowlin 1972). The 

current pushes northward into the GOM, sometimes into the north central basin before  
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Figure 4.17: HYSPLIT ensemble trajectories, members with mixing ratios at T0 > 5.5 g 
kg-1 shown in red valid for times during freezing precipitation at OUN on January 
28/29. Figure layout as in Fig. 4.11.  
 

turning southward and exiting through the Florida Strait. Eddies of warm well-mixed 

water shed from the current episodically and move slowly westwards (~2.5 ms-1, Elliott 

1979), shown schematically in Figure 4.18. The LC is highly variable in its behavior 

(Hurlburt and Thompson 1980), and appears to be forced by a complex interplay of 

internal dynamics, basin topography and the overlying atmospheric wind flow (Sturges 

and Evans 1983). It is not agreed as to whether there is a seasonal cycle in the 

circulation (e.g., Cochrane 1972, Molinari 1978).   

A recent study by Chang and Oey (2010) simulated the effects of persistent 

easterly flow over the basin (the dominant wind direction climatologically, especially in 

winter). Under these conditions they identified increased volume exchange between  



 136 

 

Figure 4.18:  A schematic diagram illustrating the loop current circulation, including its 
northward push into the GOM, the shedding of eddies and their westward translation. 
Image courtesy of: http://www.wunderground.com/hurricane/loopcurrent.gif. 
 

Caribbean and Gulf waters, leading to enhanced heat flux into the basin. Furthermore, 

wind induced currents along the northern and southern continental shelves promoted 

heat redistribution well into the western basin. The wind forcing allowed the LC to 

accumulate more mass, producing larger eddies once shed from the circulation. These 

effects ultimately resulted in greater oceanic heat content over the GOM basin 

(especially in the west, their Fig. 1). It is not clear how these results might translate into 

SST variability, however, ocean heat content is typically positively associated with 

SST. SST variability over the GOM basin is currently not well understood. It is known 

to be related to the LC, with anomaly structures potentially unconnected to any other 

basin (Anderson and Clark 2011). Cold air outbreaks over the continent during winter 

can produce negative SSTA along shallow continental shelf waters due to the loss of 

heat at the surface layer. Furthermore, the wintertime SST decrease is most marked in 
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these regions (e.g., Huh et al. 1978, Wang et al. 1998). Longer-term SSTA variability 

appears to be linked to the Atlantic Multidecadal Oscillation (AMO), while a historical 

signal for increasing average SST associated with global climate change is weak to 

absent for the wintertime basin (December-January-February), shown in Figure 4.19. 

Recent studies on ocean ecology have noted increased abundance of some types of 

subtropical herbivorous fish to the northern GOM, and 21st Century warming is 

expected to impact the basin (e.g., Vergés et al. 2014).   

 

 

Figure 4.19: Main Panel: SST anomaly time series for the GOM basin, expressed as an 
average for the whole basin, and relative to the default 1971-2000 climatology in the 
ERSST (extended reconstructed) SST analysis for 1900-2012 November-March (blue 
lines). The black solid line is a 10-year moving average, and the red dashed line 
demarks a zero anomaly. The top panel inset shows the phase of the Atlantic 
Multidecadal Oscillation, with the corresponding times to the right of the black dashed 
line. Inset courtesy of http://eoearth.org. 
 



 138 

Since there is limited literature on the subject of GOM SSTA, and a thorough 

statistical investigation into common modes of variability was beyond the scope of this 

work, a few options were available for the sensitivity study: (1) A uniform perturbation, 

which would shift the SST up or down by an integer value over the whole domain (e.g., 

Ramos de Silva et al. 2006, Ludwig et al. 2013); (2) a study that would take a portion of 

the SSTA field and perturb its gradient (e.g., Booth et al. 2012). Such a technique is 

often applied when evaluating the evolution of weather features directly over the SST 

region, e.g., tropical or extratropical cyclones; (3) A ‘patch’ method that would impose 

a single anomaly or series of anomalies in the background SST field that decay over a 

certain distance, typically using some Gaussian or cosine-squared function (e.g., 

Brayshaw 2006). This method is common for idealized studies, by imposing an artificial 

yet physically realistic anomaly distribution based on the SST variability of the basin in 

question.  

For this work, option (1) is a basic method, but provides an upper estimate of 

sensitivity and is linear about a control. Since the only former paper on this topic used 

this technique, a similar method was advisable in order to be directly comparable. The 

use of (2) was considered, but it was ultimately difficult to determine where to impose a 

gradient anomaly. One option might have been along the continental shelf, or the loop 

current flow north of the Yucatan Strait. In the end, we assumed here that the basin-

wide broad scale SST is more important to the evolution of inland precipitation through 

advection, so we do not pursue this option at this time. (3) Is a more rigorous technique, 

but with little knowledge of the GOM variability, SSTA blobs would essentially be 
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input at random without any particular justification for their physical realism. 

Consequently, only option (1) above was pursued for one set of perturbations.  

 An additional simple yet realistic perturbation option involves using known 

SSTA information to identify physically plausible maxima and minima. In this case, it 

was decided to concentrate on basin average anomalies, rather than any localized 

maxima/minima, though this could be the subject of future work. The procedure 

involved gathering SST information between 1981-2011, valid for the start date of the 

freezing precipitation event. This constrains the dataset to be an SST field observed at 

the same time of year as the case study in question. For this segment of the analysis, 

daily NCEP Optimum Interpolation (OI) version 2 (Reynolds et al. 2007) was employed 

and regridded from 0.25o to 0.5o horizontal grid spacing (see appendix, sec. 4 for 

assessment of interpolation uncertainty). The dataset was expressed as a SST anomaly 

field relative to a 1981-2011 mean for the day in question. This 31 years of SSTA data 

was then ranked based on the basin average anomaly, with the top and bottom year in 

question being retained and denoted ‘HI’ and “LO’ respectively. Figure 4.20 displays 

SST anomaly structures for HI and LO for the December 2007 (top) and January 2010 

(bottom) case studies. 

 

4.4.2 Final configuration of SSTA, and datasets used  

Based on aforementioned rationale a set of SST perturbations were generated for 

both case studies, described in Table 4.1. The control simulation, designated ‘REAL’ is 

the SST field observed during the event. A climatological field (1981-2010), or ‘CLIM’ 

was available at daily intervals at a high resolution of 1/12o, but interpolated (via a  
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Figure 4.20: SSTA fields (in Kelvin) derived from a 31-year dataset valid for the week 
preceding the winter storm case study. TOP: lowest and highest basin average for the 
December 2007 event (corresponding to the years 2010, and 2004 respectively). 
BOTTOM: as TOP but for January 2010, corresponding to the years 2011 and 2002. 
Anomalies expressed relative to 1981-2010.  
 
 

bilinear interpolation in NCL graphics software, appendix section 4) to 0.5o. We use this 

field to reflect the climatological distribution of SST for each case study. Two uniform 

perturbations to the REAL field were applied everywhere over the GOM, representing 

the ‘upper limits’ in our analysis, these perturbations are +2 K and -2 K, referred to as 

‘P2’ and ‘M2’ respectively. Finally, the aforementioned ‘HI’ and ‘LO’ SST fields were 

included as a physical assessment of upper and lower limits to basin-average SSTA. 

Perhaps as a caveat for interpretation, these latter perturbations were not equidistant in 

magnitude around either the control or climatology, but lay within the range of REAL 

to P2/M2. Advantageously however, the different spatial distribution of these anomalies 

allows later experimental work to examine the role of sub-basin SSTA. Pacific SSTs 
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were at all times fixed to the time of the event in question (i.e., REAL). The SST fields 

used for the WRF modeling study are shown for the December 2007 event in Fig. 4.21 

and January 2010 in Fig. 4.22. A principal assumption for this work is that the SST is 

independent of the overlying atmosphere. In other words, SST anomalies are primarily 

the product of ocean variability, and are unconnected to synoptic conditions over the 

time scales of the simulations (~1 week).  

SST used for the simulations was obtained from two datasets. The first was the 

‘Real Time Global’ or RTG analyses, developed by the NCEP Marine Modeling and 

Analysis Branch (MMAB) (http://polar.ncep.noaa.gov/sst/rtg_low_res/). RTG is 

available at two resolutions, an ultra-high resolution 1/12th degree, or a lower resolution 

0.5 degree and was available daily. REAL, P2, M2 and CLIM used data from RTG at 

0.5o resolution7. It was anticipated that this grid spacing was sufficient for the purposes 

of this study. Higher resolution SST fields can resolve fine-scale structure and are 

generally more faithful to reality in regions of strong horizontal gradient, such as the 

Gulf Stream. For applications including tropical cyclone modeling, coastal meteorology 

and ocean meteorology, such information has been advantageous. We assume here that 

while good representation of the SST field is desired, the sensitivity analysis will not be 

significantly altered by the use of high-resolution fields. The broad scale magnitude of 

SST is believed to be most important to the thermodynamic changes through advection 

of temperature and moisture by the synoptic flow. Nonetheless, it could be useful to 

investigate this assumption through the replication of one or both case studies using  

                                                
7 The RTG dataset had already been run in WRF simulations prior to the development of the ‘HI’ and 
‘LO’ perturbed fields. Ideally, a single dataset would have been used for all fields, but time factors 
prevented this. The 31-year analysis used to derive these fields was from OI V2 data. For consistencies 
sake, OI V2 was retained for HI/LO and interpolated to RTG grid spacing.  
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Table 4.1: Description of the SST anomalies used in the WRF-ARW sensitivity study. 
Columns 3 and 4 show the magnitude of each basin-average anomaly with respect to the 
1981-2010 climatology (real) field in Kelvin for December 9 and January 28 
respectively (based on OI V2). Each SST field has a daily temporal resolution, and 0.5o 
(~55 km) horizontal grid spacing.  

 

very high-resolution data.  

The RTG dataset has been used extensively in numerical modeling. It is similar 

to Optimal (or optimum) Interpolation (OI) in that it uses the same satellite retrievals 

(AVHRR), corrections, ship and buoy data. The processing of this information to 

develop the gridded dataset is also the same. A full description of the techniques used 

are beyond the scope of this work. In general, ship and buoy data is regarded as the in-

situ ‘truth’, and used as boundary conditions for a given domain. The satellite data are 

corrected relative to the in-situ information using a ‘Poisson’ technique described in 

Reynolds and Smith (1993). Firstly, preliminary in-situ and satellite data is calculated 

by using a spatial median filter to removes extremes at each gridpoint. Regions 

(gridpoints) where sufficient in-situ information is available do not require much further 

processing, while remaining SSTs are calculated from Poisson’s equation (Reynolds 

and Smith 1993, p.942). In this technique, any biases in the satellite are adjusted against 

Simulation Perturbation SSTA 
December 

2007 
CLIM (REAL) 

SSTA 
January 2010 

CLIM 
(REAL) 

Description 

REAL None +0.55 (0.0) -0.85 (0.0) Actual SST field, daily  
CLIM 1981-2010 

average (daily) 
0.0 (-0.55) 0.0 (+0.85) 1981-2010 long-term average, 

daily 
P2 Uniform +2 K +2.55 (+2.0) +1.16 (+2.0) REAL + 2 K, whole basin, daily 
M2 Uniform -2 K -1.45 (-2.0) -2.85 (-2.0) REAL  - 2 K, whole basin, daily 
HI Highest basin 

anomaly  
+0.84 (+0.19) +0.83 (+1.68) Highest basin ave SST from the 

1981-2011 period for week 
preceding/during event, daily.  

LO Lowest basin 
anomaly  

-1.14 (-1.69) -1.46 (-0.61) Lowest basin ave SST from the 
1981-2011 period for week 
preceding/during event, daily. 
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the boundary conditions defined by the in-situ information. The primary difference 

between the OI dataset used here to extract HI and LO is in the initial resolution (0.25o). 

Subsequent interpolation to RTG resolution (0.5o) yielded similarities in distribution but 

differences in magnitude (locally up to 0.75 K) between the two datasets (not shown), 

contributing uncertainty to our representation of the actual SST fields in the model. 

Nonetheless, for reasons given earlier, this type of idealized study is expected to be less 

sensitive to such uncertainties.  

The SST fields described in Table 4.1 and Fig. 4.21, 4.22 were converted to a 

format that can be read by WRF pre-processing software, and then run with this 

software to generate the initial and boundary conditions for the outermost model 

domain. The SST fields were initiated with the WRF, and updated in the model daily, 

allowing for the subtle changes in the field over the duration of the simulation. The 

perturbed SST fields, including anything other than REAL, were applied to the model in 

the same way. This meant that the model would have to adjust to the initial field as it 

integrated forward in time. In order to allow adjustment to the ‘shock’ of such 

perturbations, especially with regard to the low-level thermal and moisture profile, a 

seven day simulation length was chosen, initialized five days before the winter storm 

event. This duration was found to be of more than sufficient length for adjustment to 

occur (not shown). More discussion on WRF configuration is provided in chapter 5.  
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Figure 4.21: SST fields (in Kelvin) used as input to the WRF-ARW sensitivity study. 
These plots are valid for December 9.  
 

 

Figure 4.22: As Fig. 4.21 but for January 28. As a note to the reader, the unusual 
isolated positive SST anomaly and sharp gradient in the northeastern GOM in the ‘LO’ 
SST field for this case study was observed by multiple SST datasets, thus we do not 
have reason to suspect that this field is erroneous.  
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Chapter 5: Configuration and Validation of WRF Control Simulations  

 

5.1 Introduction   

Chapter 4 presented, background motivation and physical basis for a sensitivity 

study to examine the impact of Gulf of Mexico SST on the thermodynamic evolution of 

freezing precipitation for two case studies. The chosen events were described, and a set 

of six perturbed SST fields derived for each (see Table 4.1). This chapter details 

development of the WRF-ARW control (‘REAL’) configuration, including the choice 

of domains, resolution, and parameterization schemes. Simulations for both case studies 

are validated against a suite of observations in order to assess the model’s ability to 

reproduce the major features of each.  

 

5.2 WRF-ARW 

5.2.1 Model overview 

The WRF-ARW (Weather, Research and Forecasting Model – Advanced 

Research WRF, Skamarock et al. 2008, hereafter WRF) was the model utilized for this 

work. WRF is a mesoscale numerical weather prediction model designed for operational 

and research applications (http://wrf-model.org/index.php). Its creation was a 

collaborative effort between the National Center for Environmental Prediction (NCEP), 

National Center for Atmospheric Research (NCAR), the Forecast Systems Lab (FSL), 

Air Force Weather Agency (AFWA), and University of Oklahoma (OU), with 

contributions from many other University Scientists. WRF is updated roughly every 6 
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months, and is currently on version 3 of its architecture. Each update reflects growth in 

the state of knowledge of the physics, numerics, and data assimilation.   

 WRF has numerous functionalities, which make it a diverse and attractive model 

for research applications. Users may conduct idealized or real simulations of past or 

future weather events, evaluate forecast improvements through 3 or 4-dimensional 

variational data assimilation (VAR), conduct nested simulations (higher resolution sub-

domains utilizing the coarser outer domain information as input and boundary 

conditions), or even experiment with regional climate applications. It is estimated that 

over 20,000 researchers use WRF in 130 countries. 

 The WRF has been implemented in prior case study based research pertaining to 

winter weather, (e.g., Thompson et al. 2004, Bernadet et al. 2009, Shi et al. 2010, Hosek 

et al. 2010, Wang et al. 2011, Gao et al. 2013) and extra-tropical weather systems (e.g., 

Otkin and Greenwald 2008, Booth et al. 2012). Nonetheless, its application specifically 

in the context of freezing precipitation remains limited. Hosek et al. (2010) used WRF 

(version 3.2) to simulate a heavy freezing rain event over Newfoundland to ascertain 

whether the model could provide accurate forecasts of ice accretion. A high resolution, 

nested regional simulation revealed that the model was able to replicate the freezing 

rain event with respect to the thermal profile and duration, albeit underestimating total 

accumulation and ‘flattening’ the spatial precipitation distribution (i.e., over-predicting 

in some regions, whilst under-predicting in others). Another study by Gao et al. (2013) 

simulated long duration freezing precipitation episode in China, comparing modeled 

cloud microphysical information to CloudSat observations. Their results suggested a 

good reproduction of the location and amount of precipitation, but over-prediction of 
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ice phase in simulated cloud, and liquid water phase near the surface. Given the lack of 

literature on the subject, our work provides a different and additional analysis of 

modeling freezing precipitation and its attendant thermodynamic evolution on a variety 

of scales.  

 

5.2.2 Domain and Physics options  

When this work was initiated in 2009, WRF 3.1 was the latest model update, 

and this version was utilized for the majority of the simulation development and physics 

configuration over the subsequent three years. Nonetheless, in 2012, the architecture 

was upgraded to version 3.4 in order to remain up to date with then-current 

improvements and research.  

The first choice when configuring the model was the choice of domain and 

nesting options. Numerous exploratory experiments were conducted using ARW core 

3.1 for a combination of nested domains, resolutions, durations, and input and boundary 

datasets in order to evaluate the ‘best’ set of choices. In addition, two-way nested 

simulations were tested for winter storm case studies including December 9-11 2007, 

and January 26-28 2009, also employing analysis and spectral nudging, and 

observational nudging of the near surface environment in order to reduce uncertainty in 

event evolution. Due to space constraints, very little of this work is summarized here. 

The key result of these investigative studies was the fact that notable errors in the 

timing of precipitation and the development of a near-surface refreezing layer occurred. 

These errors were generally only weakly influenced by physics and even input 

condition options, but were endemic to the model’s representation of the synoptic scale 
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evolution. It was later identified that the culprit was the domain used for the outermost 

(parent) nest.  

Figure 5.1 illustrates the growth of errors associated with the western boundary 

of the original parent domain (panel a). Although it included the majority of CONUS, 

the longwave trough located over Baja California intersected the western boundary. 

Such strong forcing at this boundary can produce spurious and fast propagating 

numerical inertia-gravity waves due to insufficient treatment of large accelerations and 

gradients ‘cut off’ at domain-edge. One option was to reduce the size of the parent nest 

so-as not to resolve the longwave trough at all, however, simulation of the synoptic 

scale evolution within the model was desired. The domain was thus expanded westward 

by several hundred kilometers in order to fully capture the trough.  

Once the appropriate parent domain had been established, three nested domains 

(parent, and two additional) were chosen in order to yield a high-resolution simulation 

with explicit precipitation processes in the innermost nest, with horizontal grid spacing 

of 30 km, 10 km and 3.3 km respectively. Nesting is a useful and more computationally 

efficient alternative to one extensive high-resolution domain, allowing the user to ‘focus 

in’ on a region of interest. Figure. 5.2 shows the spatial extent of our nests. The initial 

choice of physics included RRTM (rapid-radiative transfer model) longwave, and 

Dudhia shortwave radiation, BMJ (Betts-Miller-Janjic) convective parameterization 

(applied to domains 1 and 2), Mellor-Yamada–Janjic (MYJ) planetary boundary layer 

(PBL) scheme and surface layer scheme, NOAH land surface model, and WSM6 (Hong 

et al. 2006) microphysics. This set-up is equivalent to the operational NSSL-WRF 

physics configuration minus the convective scheme. While the Kain-Fritsch (KF, Kain  
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Figure 5.1: WRF-ARW simulated 200 hPa geopotential height (intervals of 20 gpm, 
blue contours, negative dashed) and air temperature (oC, color fill), expressed as a 
difference field relative to the NCEP/GFS Final Analysis at the corresponding time (00 
UTC 8 December). Panel (a) shows the results for the original domain used, while (b) 
shows the final chosen domain.  
 
 

et al. 2004) may be advantageous in a number of contexts, it is also more 

computationally expensive and was therefore not pursued. Given that the vertical 

thermal profile is highly important in the accurate simulation of mixed phase 

precipitation, 59 levels in the vertical were employed, staggered with 20 levels below 

800 hPa to better resolve near-surface refreezing and warm inversions.  

An additional consideration was whether or not to apply procedures to constrain 

errors over time, especially with the 7-day simulation (chapter 4, sec 4.4). Methods to 

reduce model uncertainties include data assimilation, observational nudging or analysis 

nudging. Data assimilation has been proven as an effective technique to reduce forecast 

uncertainty but was not applicable in this context where the meteorological environment 

requires the freedom to vary from the observed event. Similar issues likely apply to 

observational nudging. Grid (analysis) nudging seeks to constrain error by relaxing  



 150 

 
Figure 5.2: Domains selected for the 1-way nested simulations for (left) December 
2007, and (right) January 2010.  
 

model representation of a given variable or set of variables toward those of the input 

analysis (e.g., Stauffer et al. 2007a,b). It is often utilized for longer duration simulations 

where model error can grow with time. The choice of variables to nudge, as well as the 

strength of nudging and the layers over which to apply it are non-trivial choices and 

relate, among others, to the accuracy of the initial conditions, and their ability to resolve 

fine-scale phenomena. In this work, analysis nudging, based on 1ox1o GFS-NCEP final 

analysis (FNL) as input and boundary data (http://rda.ucar.edu/datasets/ds083.2), was 

applied in the parent domain at 6-hour intervals throughout the simulation, and only 

above the PBL for temperature and moisture. Furthermore, the nudging coefficient was 

reduced for moisture from the WRF default of 0.0003 s-1 by a factor of 6. To allow the 

inner two domains a greater ability to vary, one way nesting was used. In this case, 

results from the coarser domain were used as boundary conditions to the higher 

resolution domain, with no feedback from the higher resolution domain into the coarser 

domain. Similar methodology was employed for a sensitivity study examining the role 
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of SST anomalies on the intensification of a cyclone over the Kuroshio extension (Bond 

et al. 2010).  

 

5.3 Configuration of Microphysics and Planetary Boundary Layer options  

The initial configuration of physics options was described above. It is evident 

from perusing the literature that the various options and their interactions can yield very 

different model simulations. In addition, there is no consistent ‘winner’ in terms of 

accuracy amongst the various schemes, their efficacy largely related to the investigated 

meteorological environment. Given the large set of options in WRF, including > 4 

convective schemes, over 10 microphysics options, several planetary boundary layer 

options, and so on, the set of potential combinations was far too great for complete 

treatment here. From earlier work (not shown), along with inferences from the literature 

(e.g., Hosek et al. 2010) it was determined that the physics options that potentially play 

the greatest role in the treatment of freezing precipitation include microphysics 

parameterization (MP) and planetary boundary layer (PBL)/surface layer schemes. We 

therefore performed a brief inter-comparison and evaluation of a subset of popular MP 

and PBL schemes available in WRF for a simulation of the December 2007 case study 

to identify the most suitable schemes for use in the sensitivity analysis. 

 

5.3.1 Microphysics  

Microphysical parameterization is necessary for representing important 

processes in cloud and precipitation development on the model grid scale (Straka 2009). 

MP schemes predicts the cloud and precipitation characteristics using equations that 
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calculate the drop size distributions and mixing ratios of a specified number of 

hydrometeor categories, which can include cloud water, ice, snow, graupel and hail. 

The MP representation ultimately affects the resultant precipitation accumulation, type, 

and atmospheric heat and moisture tendencies.  

MPs available in WRF are ‘bulk’ parameterizations, which assume a functional 

form of the particle size distribution, usually based on empirical information for a given 

hydrometeor species (e.g., exponential, gamma). The distributions can be integrated 

over a large range of hydrometeor size to predict mixing ratio or occasionally number 

concentration (but not both) in a ‘1-moment’ scheme, or both mixing ratio and number 

concentration in a ‘2-moment’ scheme (Lackmann 2011, p260). It is generally regarded 

that 2-moment formulations, whilst being more computationally expensive, are more 

realistic due to more accurate estimate of size distribution (and its change with time), 

fall velocity, collection efficiency, and sedimentation rates. Many complex processes 

must be accounted for by a given MP, especially those resolving cold rain (ice) 

processes, including diffusional growth, aggregation (autoconversion, accretion), 

collection of rainwater by ice (riming), nucleation, melting and freezing, and 

sedimentation, whilst also attempting to in some limited fashion account for the wide 

variety and strong temperature dependence of ice crystal habits.  

Since our research is focused on mixed phase precipitation, any choice of MP 

must necessarily include ice processes. Prediction of as many hydrometeor classes as 

possible was also desired, including graupel (for the representation of ice pellets), which 

yields at least a 6-class scheme. A further advantage would be if the scheme had been 

utilized or tested in winter precipitation conditions. Finally, two-moment microphysics 
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was preferred if it yielded discernable improvement over a single moment scheme. 

Based on these requirements, four MPs were chosen for evaluation:  

WRF Single Moment 6-Class (Hong et al. 2006): Is a highly utilized one-

moment scheme, which predicts the evolution of mixing ratio, and was initially based 

on the Lin et al (1983) and Rutledge and Hobbs (1983) equations, adding processes for 

cloud ice, such as number concentration, accretion and nucleation. The scheme uses an 

exponential size distribution for all hydrometeor classes.  

Thompson et al. (2004, 2008): This form is single-moment for cloud water, rain, 

snow and graupel (i.e., predicts only mixing ratio), while also predicting the number 

concentration (2-moment) for cloud ice. A gamma distribution is used for each 

hydrometeor type. In 2008 the parameterization was updated to improve upon numerous 

physical processes, especially for snow and ice, permitting this scheme to potentially 

produce accuracy similar to a double moment MP without the downside of increased 

computational time. One unique feature is the use of ‘lookup tables’; tables of measured 

distributions with respect to diameter that can be drawn from for the calculations. This 

method is used to reduce overhead computation and attempt to capture the accuracy of a 

bin MP model (Straka 2009). The Thompson et al. scheme was tested initially on 

idealized flow over a hill, and development of a shallow cloud layer. Thompson et al. 

(2008) tested the scheme on deeper and colder cloud. However the initial motivation 

was to better represent the formation of supercooled liquid water for aircraft icing 

forecasts, and much of the validation of the MP has been performed with respect to 

shallow winter precipitating layers.  
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Morrison 2-Moment (Morrison et al. 2005, Morrison and Pinto 2006, Morrison 

et al. 2009): This MP is a 6-class 2-moment formulation, using gamma size 

distributions for all hydrometeor types. More detailed discussion of specifics is 

provided in the above references. The scheme was tested on idealized WRF simulations 

of a squall line. The 2-moment scheme improved upon its single-moment counterpart 

especially in the convective to stratiform transition and the development of a well-

developed trailing statiform area. The rain intercept parameter was found to be critical, 

with a better representation of this parameter identified in the 2-moment form.  

Millbrandt-Yau (2005, 2006 MIllbrandt et al. 2010): This parameterization is a 

2-moment scheme with 7 hydrometeor classes (hail is treated as separate from graupel). 

Once again, the hydrometeor size distribution is a generalized gamma form. In this case 

however, special attention is paid to the shape parameter of the distribution, which 

typically is a fixed value in most schemes. In order to remain a 2-moment scheme, the 

shape parameter cannot vary independently, however, a diagnostic relationship may be 

developed between it, and another variable (e.g., diameter) based on physical insight. 

This MP therefore does not fix the shape parameter, instead diagnosing it from a 

monotonically increasing function of the mean-mass diameter. This formulation tends 

to control excessive size sorting, which can be important for ice-phase hydrometeors 

(snow, graupel, hail). It was mainly tested on convective precipitation.  

 

5.3.2 Planetary Boundary Layer (PBL)  

Accurate representation of the atmospheric PBL is important as the exchange of 

heat, moisture and momentum between the surface and overlying atmosphere typically 
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occur within this region (Lackmann 2011, p258). PBL schemes parameterize the 

complex processes that govern these exchanges (e.g., turbulent fluxes on model grid-

scale), as well as relate them to surface properties, such as vegetation, radiative balance 

and cloud cover. Given that the chaotic, fine-scale and isotropic nature of turbulence are 

hard to characterize, fluctuations of the quantities of interest are often estimated over a 

several minute period. Different schemes make different assumptions regarding 

‘closure’ – that is, fluxes must be represented by other dependant variables such that the 

number of unknown quantities equals known quantities (Lackmann 2011, p258). In a 

general sense, most schemes fall into either a ‘local’ or ‘non-local’ closure. In local 

closure, turbulent flux gradients are evaluated between adjacent model levels in the 

vertical, while a non-local technique evaluates fluxes from gradients over the depth of 

the PBL. Observational studies suggest that turbulence is contributed by eddies on a 

broad range of scales, and therefore a non-local scheme intuitively appears more 

reasonable.  

WRF contains several PBL and surface layer options, two of which are 

particularly popular in the literature. While alternative schemes have some merit, for 

example, for ARW version 3.1, the QNSE (Sukorianski et al. 2006) PBL scheme was 

superior in simulating the shallow arctic front associated with the December 2007 

freezing precipitation event in a 5-day un-nudged simulation (White et al. 2010, 

presentation), time considerations preclude a thorough analysis, and so only the most 

commonly used schemes are studied here:  

Yonsei University (YSU, Hong et al. 2006): The YSU is a non-local PBL scheme 

developed from observations, and large eddy modeling (e.g., in the representation of 
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entrainment at PBL top, Noh et al. 2003). Much of the testing and validation of this 

scheme has been with respect to well-mixed convective boundary layers. As a result, 

YSU typically performs well in simulating low-levels winds, temperature, moisture and 

PBL depth during the daytime and with a well-mixed PBL. Calculations of entrainment 

at PBL top in YSU are meant to mimic the action of shallow clouds. Recent updates to 

the YSU scheme in the ARW 3.4 have corrected some errors in the representation of the 

nocturnal PBL, and improved measurements of low-levels winds, and the low-level jet 

(Hu et al. 2013).  

Mellor-Yamada-Janjic (MYJ, Mellor and Yamada 1982): The MYJ is a popular 

local technique that determines eddy diffusion coefficients for the PBL from 

prognostically calculated turbulent kinetic energy (TKE) (Hu et al. 2010). This PBL 

form was primarily developed for stable PBL layers and therefore tends to produce 

large errors in near surface variables in highly unstable conditions. This scheme in 

particular tends to resolve the structure and wind fields of the nocturnal PBL with more 

accuracy. Furthermore, it typically outperforms non-local schemes for stable daytime 

PBL conditions (Shin and Hong 2011).  

 

5.3.3 ‘Test’ simulations 

A set of simulations were performed, shown in table 5.1, using the December 9-

11 2007 case study, where either the PBL or the MP scheme were varied with all other 

conditions fixed. In addition, since this portion of the study was conducted during the 

switch from WRF 3.1 to 3.4, two additional simulations with WRF 3.1 were evaluated 

against WRF 3.4. Each simulation used the nest configuration shown in Fig. 5.2, and 
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the setup described in section 5.2.2. The simulation was initialized at 00 UTC 

December 4 2007, and ran to 00 UTC 11 December 2007, with data output at 3, 2 and 

0.5 hours for nests 1, 2 and 3 respectively. For domain 3, only data after 12 UTC 8 

December 2007 was retained.  

Figure 5.3 shows domain 3 simulated 48-hour accumulated precipitation, valid 

00 UTC December 9-11 2007 for WRF 3.1 versus 3.4 for MYJ and YSU PBL. The 

larger panel on the right hand size shows the observed accumulation, based on Stage IV 

radar/gauge derived precipitation. Visual inspection indicates that in all cases WRF 

does not accurately reproduce the swath of greatest accumulation along an axis from 

southwest to northeast, although in all but WRF 3.4 YSU, evidence for such an axis 

exists. Typically in the WRF, the southern branch of precipitation (southeast domain) 

was amplified relative to the main axis, as were accumulations in the west. Furthermore, 

the simulation ‘spreads out’ precipitation and overestimated the spatial extent above 5 

mm. WRF 3.4 YSU simulation produced the worst result, while arguably the 3.1 MYJ 

had slightly better precipitation accumulation within the central axis. 

Figure 5.4 shows the results of changing the MP amongst the four options 

discussed above. The PBL scheme is fixed as MYJ. Visually, WSM6 and MY captured  

 

Table 5.1: Description of each simulation testing the performance of the MP and PBL 
schemes described in section 5.3.  

Simulation ARW Core PBL MP 
MYJ-3.1 3.1 MYJ WSM6 
YSU-3.1 3.1 YSU WSM6 
MYJ 3.4 3.4 MYJ WSM6 
YSU 3.4 3.4 YSU WSM6 
MP-8 3.4 MYJ Thompson 
MP-9 3.4 MYJ Millbradt-Yau (2 moment) 
MP-10 3.4 MYJ Morrison (2-moment) 
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Figure 5.3: 48-hour accumulated precipitation (mm) from 00 UTC 9 – 00 UTC 11 
December for domain 3 (x and y axis show grid point number). Top panels show YSU 
PBL 3.1 (left) and 3.4 (right) with WSM6 MP, while bottom panels show MYJ PBL 3.1 
(left) and 3.4 (right). Stage IV observations (interpolated to WRF grid, see appendix 
section 5 for details) shown in the rightmost panel.  
 

the observed morphology best, albeit WSM6 overestimated western domain 

precipitation, while the central axis was more diffuse in the Morrison scheme, and the 

western accumulation too great using Thompson MP. Figure 5.5 summarizes some key 

verification (skill scores) metrics for each simulation, calculated for three precipitation 

thresholds (0, 10, 25 mm) using a neighborhood method that evaluates a 5x5 gridpoint 

region (max radius 15 km). A neighborhood is often preferred for high-resolution 

simulations, where a single-station estimate could overly penalize the model, even if the 

variable in question was only slightly displaced. All scores were calculated using the 

Model Evaluation Toolkit (MET) version 3.1 (http://dtcenter.org/met/users). Multiple 

metrics were used, including standard contingency table, and skill scores such as critical 

success index (CSI), Gilbert score (GSS, ‘equitable threat’) and fractions (FSS) when 
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available. Brief descriptions of metrics used in this chapter are given in Appendix Sec. 

5. Multiple scores were preferred as individually they do not necessary provide a 

complete picture of model performance, CSI for example shows decreased skill for rare 

events (e.g., higher precipitation thresholds). Used together we get a more holistic sense 

of skill across a range of parameters and thresholds. More emphasis was given to the 

model’s ability to capture precipitation at the 10 and 25 mm thresholds. In general, 

WSM6 with WRF 3.1 gives a superior result, however, of the WRF 3.4 simulations, 

MY appeared to overall provide a slightly better simulation, with more discrimination 

of precipitation (higher hit rate, lower FAR, POFD, CSI at higher thresholds). These 

metrics, combined with the precipitation morphology, favored use of MY with WRF 

3.4.   

 

Figure 5.4: 48-hour accumulated precipitation (mm) as in Fig. 5.3 but for the four MP 
schemes evaluated, with PBL fixed as MYJ. Performance of WRF 3.1 and 3.4 using 
WSM6 are also shown, while observations from Stage IV (interpolated to WRF grid) 
are shown on the bottom right.  
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Figure 5.5: Selection of skill score metrics for each perturbed domain 3 simulation, 
using a neighborhood method of 25 gridpoints surrounding each gridpoint location. 
Scores are evaluated at three accumulation thresholds (based on 48-hour accum) of 0, 
10 and 25 mm in blue, light green and red respectively. Microphysics scheme 
designations are provided in Fig. 5.4.  
 

For temperature, root mean squared error (RMSE) was calculated at 35 locations 

over Oklahoma at 6-hour intervals, using Mesonet data interpolated to a 0.5x0.5o grid 

(see appendix, section 5) as ‘truth’, shown in Figure 5.6 (note that data for 18 UTC is 

missing for the Mesonet). It is apparent that WRF 3.1 produced a much larger (positive) 

error in temperature throughout the event, especially with YSU PBL. The error 

maximized late afternoon (~00 UTC), suggesting a relationship to diurnal PBL 

structure, and possibly the shortwave radiation scheme (Dudhia), though this was not 

investigated. In WRF 3.4, the YSU PBL appeared to have a positive temperature bias 

on December 9, however by the evening this reduced and actually was slightly more 

accurate than the WRF 3.4 MYJ (coupled with WSM6 MP) for the remainder of the 

event. The three additional MP-perturbed simulations showed little difference from one 

another.  
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Figure 5.7 summarizes the average spatial RMSE over Oklahoma for the 48-

hour duration. Of note were larger errors for the YSU scheme that orientate in the same 

fashion as the arctic airmass. This suggested failure of the scheme to simulate the 

correct southward movement of cold air. The non-local turbulent mixing, coupled with 

enhanced mixing at the PBL top may have erroneously weakened the shallow wedge of 

surface subfreezing air (which was only ~500 m deep), especially in conjunction with 

maximum daytime heating. Lackmann (2011) noted that use of the YSU PBL with the 

BMJ convective scheme (used for domain 1 and 2) tended to quickly eliminate cold air 

damming regimes, which he attributed to a duplication of processes representing 

shallow cloud layers at the PBL top, as both schemes represent this process in some 

fashion. The combined mixing in this layer ultimately becomes too strong.  

 

Figure 5.6: Root mean squared error (RMSE, K) for each perturbed simulation (domain 
3) at 6-hour intervals over storm duration. The values are the average of 35 grid points 
(bottom right inset), and are calculated relative to interpolated Mesonet data at the same 
locations. Missing data at 18 UTC due to power outage.  
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Figure 5.7: Spatial distribution of RMSE (K) relative to Mesonet data, interpolated to a 
0.5x0.5 grid over Oklahoma ending at 99oW and 36.5oN. The spatial average is a storm 
total average (00 UTC 9 – 00 UTC 11 December). The four PBL simulations (two 
WRF-3.1, and two WRF3.4) are shown, with the retained configuration displayed by 
the bottom right panel (*).  
 

Based on this subset of results, it was decided to continue with the use of WRF 

3.4, and to use the MYJ PBL and Millbrandt-Yau 2-moment MP for the SST sensitivity 

study. The next section further verifies the results of the control simulations for our two 

case studies, and provides some thoughts on the precipitation accumulation errors 

identified for the December 2007 event.  

  

5.4 Verification of Control Part I: December 2007 

Numerous observations were employed to verify the simulation with emphasis 

on four key variables: precipitation, thermal profile, winds/synoptic evolution, and 

cloud properties. The aim was to identify key uncertainties and to determine whether 

the simulation was sufficiently skillful. The same verification procedure was applied for 

the January 2010 case study simulation in section 5.5.  
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5.4.1: Precipitation  

 Precipitation was assessed in three ways; (1) use of the MET toolkit to evaluate 

skill scores similar to section 5.3. In this case threshold accumulations were assessed 

using thresholds based on the observed precipitation accumulation distribution, 

including approximate median, 75th and 90th percentiles; (2) the use of the MODE tool 

to evaluate object based skill metrics, where the ‘object’ was spatial morphology of 48-

hour accumulated precipitation ≥ ~75th percentile (see appendix section 5 for a brief 

summary of the tool); (3) the temporal evolution of precipitation and total domain 

accumulation. In each case, observed precipitation was derived from NCEP Stage IV. 

Verification was performed only for domain 3. Table 5.2 shows the results of the 

neighborhood verification, while Figure 5.8 and Table 5.3 show object based spatial 

domain (figure), and skill metrics (table). In general, neighborhood scores suggest a 

slight overestimate (bias > 1) of lower accumulations (e.g., 0 mm, 10 mm) consistent 

with the observed overproduction of precipitation ≤10 mm. Higher accumulations (20, 

25 mm) were generally under-forecast or misplaced southeast. While 0, 10 mm show 

less discrimination (high precipitation hit rates, but areas of no precipitation poorly 

forecast), the 20, 25 mm thresholds indicated reasonable forecast with respect to 

location, albeit the false alarm ratio also increased. For the 90th percentile (40 mm), the 

model poorly reproduces the spatial coverage, with notable reduction in skill. Use of 

3x3 verification neighborhood (9 gridpoints, ~20 km box, not shown) versus a 5x5 (25 

gridpoints, ~33 km) did not yield large changes in the magnitude of the skill (~0.01-

0.05), but it was common for the 5x5 method to produce slightly improved metrics 

(Table 5.2).   
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For the object-based method (20 mm, Fig. 5.8, Table 5.3), 48-hour accumulation 

spatial morphology indicates reasonable location and orientation of precipitation, albeit 

underestimated in width and southwestward extent (see appendix, sec 5). By ‘matching’ 

simulated and observed objects by overlaying them in space, object contingency and 

skill scores were evaluated. This approach yielded improvement in the majority of 

statistics, for example HSS, GSS (+0.06), FAR (-0.15), PODN (+0.08), POFD (-0.09). 

Nonetheless, the underestimate of precipitation accumulation along the central axis can 

clearly been seen (bias = 0.74). The temporal evolution of precipitation for the event 

was evaluated by obtaining precipitation timeseries at 6-hour intervals for 35 grid-point 

locations (see inset Fig. 5.6) over Oklahoma. Five sub-domains were then specified and 

the average precipitation accumulation (based on these sites) estimated for both Stage 

IV and WRF, shown in Fig. 5.9. A limitation of this method was the relatively coarse 

resolution of the sites chosen, nonetheless, general temporal consensus was indicated 

between the model and observations, especially over the central axis. WRF generally 

underestimated precipitation during the afternoon/evening of the 9th (18 UTC-06 UTC 

10th), especially in the north, while precipitation was overestimated on the 9th in 

southeast Oklahoma.  

Given that the event evolution (see chapter 4) indicated the prevalence of 

cellular elevated convection, the modeled mode of convection should also be assessed. 

Using the WRF post-processing software RIP4 

(http://www.mmm.ucar.edu/mm5/documents/ripug_V4.html), simulated radar 

reflectivity was assessed at 1-hour intervals between 00 UTC December 9-11 and 

visually compared against National Weather Service level III composite radar  
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Table 5.2: Skill scores for 48-hour accumulated precipitation (domain 3) at thresholds 
of 0, 10 (~median), 20 (~75th  percentile), 25 (~ 1 inch), and 40 mm (~90th percentile). 
Scores are calculated using a neighborhood of 5x5 grid points. This allows a 
precipitation ‘hit’ if precipitation falls within the grid box, which avoids unfairly 
penalizing a high-resolution model for a small displacement in location. Rightmost 
column shows perfect’ value of each skill score. Data to 2 decimal places. Definitions 
for each skill metric in Appendix Sec, 5 

 
 
 
 

Table 5.3: Precipitation object-based skill scores for 48-hour accumulations ≥ 20 mm 
(see also Fig. 5.8, appendix section 5).  
 

Skill Metric Score Perfect Value 
Accuracy 0.89 1 
Bias 0.74 1 
Prob. Detection –Yes 0.53 1 
Prob. Detection – No 0.96 1 
Prob. False Detection 
(POFD) 

0.04 0 

False Alarm Ratio (FAR) 0.29 0 
Critical Success Index (CSI) 0.44 1 
Gilbert Skill Score (GSS) 0.37 1 
Heidke Skill Score (HSS) 0.54 1 

 

 
Skill Metric 

Score 
Threshold:  
> 0 mm 

≥  10 mm ≥  20 mm ≥25 mm ≥  40 mm Perfect 
Value 

Accuracy 0.94  0.72  0.82 0.86 0.89 1 
Bias 1.07  1.29  1.10  0.82 0.18 1 
Prob. Detection –Yes 
(PODY) 

1.0  0.84  0.62  0.48 0.06 1 

Prob. Detection – No 
(PODN) 

0.0  0.62  0.88  0.93 0.99 1 

Prob. False Detection 
(POFD) 

1.0  0.38  0.13  0.07 0.01 0 

False Alarm Ratio 
(FAR) 

0.06  0.35  0.44 0.41 0.67 0 

Critical Success 
Index (CSI) 

0.94  0.58  0.42 0.36 0.05 1 

Gilbert Skill Score 
(GSS) 

0.0  0.29  0.31 0.29 0.04 1 

Heidke Skill Score 
(HSS) 

0.0  0.45  0.48 0.42 0.07 1 

Fractions Skill Score 
(FSS) 

0.97  0.79  0.67 0.61 0.15 1 
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Figure 5.8: MODE tool in MET to evaluate precipitation by spatially matching 
accumulation thresholds > 20 mm. Top two panels show the original precipitation field 
(mm), while middle and bottom left hand panels show the method by which MET 
define precipitation objects. The technique is sensitive to smoothing radius (here we 
used 10 km, see appendix, sec 5) and threshold. The larger panels on the right show the 
spatially matched forecast (simulation) and observed (Stage IV) objects. Other 
parameters are defined in the users guide to METv3.1, and appendix, sec 5.  
 
 

reflectivity (not shown). WRF produced convection in similar fashion to observed, but 

with generally lower peak reflectivities and reduced broad-scale mixed mode stratiform 

and convective elements. Apart from potential underestimates in intensity, lower 

accumulated precipitation and lateral spread may be due to differences in the placement 

of convective cells, with small displacements yielding much-reduced intensity along the   
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primary echo-training axis, and the reduction in stratiform transitions. Furthermore, 

fewer convective cells were simulated on the afternoon of December 9 (CST) compared 

with observations. A thorough analysis of the reasons for this discrepancy were outside 

of the scope of this work, however, the observed and simulated decrease in the 

magnitude of the low level jet may have reduced the strength of WAA and isentropic 

ascent into the domain. The model may have also more aggressively stabilized the 

lower atmosphere in response to the earlier convection. Additionally, the model’s over-

production of precipitation to the southeast may have had an impact on the axis of 

freezing precipitation. Further work would be needed to investigate these claims.    

As a final salient point it should be noted that the nature and intensity of 

precipitation for domain 1 in particular, and domain 2 showed distinct differences from 

domain 3. In domain 1 (30 km) there was negligible freezing precipitation recorded 

over the SGP. Figure 5.10 illustrates this by comparing the 48-hour totals valid 00 UTC 

11 December for the region in domains 1, 2 and 3. It appears that the horizontal 

resolution of domain 1 is not fine enough to resolve this type of elevated convection. 

Domain 2 initiates convection, but accumulations were lower and shifted to the north 

relative to domain 3. Persson and Warner (1993) suggested that models with coarser 

resolution were able to resolve convectively unstable (and/or convective symmetric 

instability) circulations, but with later onset and reduced intensity. They also suggested 

that in general the most unstable growth mode of convective instability can be resolved 

with maximum grid spacing 6-15 km horizontally, with 70-170 m vertically. The 30 km 

outer domain does not satisfy this (horizontal) criterion.  
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Figure 5.9: 6-hourly precipitation accumulation time series between 12 UTC 9 and 00 
UTC 11 December for four quadrants over Oklahoma, and the central axis of freezing 
precipitation over Oklahoma, based on 35 grid point locations. WRF (Stage IV) shown 
in red (blue).  
  

5.4.2 Thermal profile  

The WRF-ARW temperature simulation was validated at the surface using 

Mesonet data, and aloft using ACRF-SGP best estimate data (CMBE version 2, Xie et 

al. 2010). CMBE vertical thermal profiles are primarily derived from atmospheric 

soundings. For 6-hour intervals, the surface temperature (domain 3) indicates good 

agreement with the (interpolated) Mesonet (see Figure 5.7, 5.9, MP9 simulation), based 

on the average of 35 gridpoints over Oklahoma. However, WRF tended to be slightly 

warmer than observations (not shown), especially later on December 10, and near 12  
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Figure 5.10: 48 hour precipitation accumulation in mm, valid 00 UTC December 11, 
for WRF-ARW domain 1 (left), 2 (center) and 3 (right) for mixed phase precipitation 
(freezing rain, ice pellets). Location corresponding to domain 3 shown by the purple 
box. County and State boundaries overlaid.  
 

UTC December 9, when there was a slight northward bias in the location of the 0oC 

isotherm. Such a result was not unusual as the majority of numerical models have 

problems resolving the speed of the shallow cold airmass. Fortunately, this simulation 

indicated only small departures (not shown). 

The vertical profile of air temperature (Figure. 5.11) was evaluated at 6-hour 

intervals for domain 1, 2 and 3, using a gridpoint average surrounding the SGP 

coordinates (typically 0.50x0.5o). The figure indicates that the vertical profile of 

temperature was well simulated, especially with regard to warm layer depth and 

magnitude, albeit observed peak temperatures tend to be underestimated in the model. 

Domain 2 and 3 had similar temperature evolutions, with larger differences for domain 

1, probably due to the lack of simulated precipitation and its associated thermal effects 

on temperature. WRF remained warmer than observations through the majority of the 

event, particularly for domain 1.  
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Figure 5.11: WRF vertical temperature profile for domains 1-3 (color-coded, see 
legend), and observations based on radiosonde information via ACRF-SGP (Lamont, 
OK), at 6-hour intervals during the ice storm. Thin grey line denotes the 0oC isotherm.  
 

 

Figure 5.12: As Fig. 5.11 but for mixing ratio (g kg-1).  
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The vertical profile of mixing ratio, calculated from the air temperature, pressure 

and dewpoint temperature is shown for the ACRF central facility in Fig. 5.12. In 

general, the moisture profile is well simulated, however, differences in the timing of 

precipitation at this location may be responsible for some discrepancies, especially on 

the 10th. The model reproduced the high moisture content of the warm layer.  

 

5.4.3 Synoptic evolution  

The evaluation of the synoptic flow was conducted with domain 1. The 

movement and change in amplitude of the western trough was well simulated, shown in 

Figure 5.13, as were its associated jet features (location, magnitude, not shown). 

Vertical profiles of zonal and meridional wind components also agreed well to ACRF 

observations, with no secular departures, but some localized low-level differences 

possibly related to convection (not shown). The SLP evolution in figure 5.14 relative to 

NARR data showed similar southeastward movement of higher pressure (based on 1026 

hPa isobar), but a more rapid moderation and shrinking of this higher pressure in WRF. 

The lower SLP in the model corresponds well to the warm surface temperature bias, and 

the quicker northward retreat of the zero degree isotherm on the afternoon of December 

10 (not shown). It may be that this airmass was more rapidly moderated by weaker cold 

air advection in the surface layer, and/or by more pronounced daytime heating. The 

latter is also possible due to the lack of convective activity for domain 1, which should 

have greatly altered the cloud characteristics for the outer domain.  
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Figure 5.13: Evolution of the geopotential height field, as shown by a representative 
height contour of 5580 m, for NARR (top) and WRF domain 1 (bottom). Contours are 
plotted at 6-hour intervals between 00 UTC 9-11 December, with the color key legend 
on the right.  
 

 

Figure 5.14: As Fig. 5.13 but for the 1026 hPa sea level pressure contour for NARR 
(left) and WRF domain 1 (right). Color code legend shown in Fig. 5.13.   
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5.4.4 Cloud properties/radiation  

Due to the severity of this event, the ACRF instrumentation for cloud and 

radiation became iced over and unable to log data (e.g., Hartstock et al. 2008). A more 

complete assessment of cloud properties is provided in the validation of our second case 

study, which did have measurements available. Based on comparison of WRF solar 

radiation with that of available Oklahoma Mesonet for central Oklahoma (not shown), 

there were similarities in the (smoothed) magnitudes for December 8, and 9, with WRF 

actually indicating less solar radiation on the 9th. On December 10 WRF underestimated 

peak insolation, albeit on average generated a similar magnitude across the day. The 

peak in WRF was also shifted to the afternoon, while the Mesonet placed it in the 

morning. No longwave components were assessed in this brief comparison.  

 

5.4.5 Summary 

Table 5.4 provides a summary of the above information for the December 2007 

case study. It was concluded that the simulation was sufficient to be used in the 

sensitivity analysis. The SST-sensitivity study configuration was provided in chapter 4, 

with results described in chapter 6.  

 

5.5 Verification of Control Part II: January 2010 

The January 2010 case study used the same setup as the December 2007 

simulation, but with a larger domain 3 (Fig. 5.2) to better incorporate the mid-level and 

surface low, and associated precipitation structure. The simulation was initialized at 12 

UTC January 23 and run 7 days through 12 UTC January 30, with the winter storm  



 174 

Table 5.4: Summary table for the simulated December 2007 case study, and its 
verification against observations. Notable model biases are described for the variables 
considered.  

Parameter  Bias Description – December 2007 Single Site 
Data?  

Air 
Temperature 
(SFC) 

RMSE ≤ 2.5 K, WRF slight warm bias No 

Air 
Temperature 
(upper) 

Good agreement in warm layer, WRF warmer refreezing layer  Yes 

Mixing Ratio 
(r) 

Good agreement, no specific bias. WRF does not resolve warm layer 
decrease in r between 00 UTC -12 UTC 10th.  

Yes 

Winds (u,v) Good agreement, zonal wind ~3-5 ms-1 weaker through troposphere 
in WRF, no notable meridional wind bias.  

Yes 

Synoptic 
GHT 

Excellent agreement in timing, depth of GHT No 

Synoptic SLP Good agreement, WRF lower SLP bias during latter part of event.  No 

Cloud --- Yes 

Radiation --- Yes 

Precipitation 
(spatial) 

Domain 1 of WRF not of sufficient resolution to capture elevated 
convection. D3 is an improvement, but underestimates precipitation 
accumulation, intensity in the central domain, and ‘spreads out’ 
precipitation over the domain- see skill scores.  

No 

Precipitation 
(temporal) 

Timing of precipitation through D3 is generally well simulated, 
however some evidence of lack of precipitation in WRF during 00 
UTC 10-06 UTC 10 compared to Stage IV radar observations. 

No 

 

commencing around 12 UTC January 28.  

 

5.5.1 Precipitation  

 The same procedure described in Sec. 5.4.1 was used for validating precipitation 

for this event. Accumulations were 48-hour valid 00 UTC 28-00 UTC 30 January 2010. 
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At this time, precipitation was not phase-delineated. Neighborhood evaluation skill 

scores are shown in Table 5.5 for accumulation thresholds between 5 and 60 mm. The 

higher threshold of 60 mm represents approximately the 90th percentile of the observed 

precipitation distribution. Based on visual comparison of accumulated precipitation, 

good agreement was found between the model and Stage IV. At lower thresholds, 

especially 5 mm, there was virtually no discrimination as the entire domain 3 had non-

zero accumulation (min ~ 1 mm), and 90% of the distribution exceed 10 mm. Above 25 

mm, the model tended to overestimate precipitation, especially over western/northern 

Oklahoma and northwest Texas, leading to bias > 1 and lower accuracy (0.62). The 25 

mm threshold exhibited a higher hit rate (0.7), but also a reasonable probability of false 

detection (0.49). Above 40 mm (~75th percentile) positive bias was still evident (1.13), 

while PODY decreased (0.48), PODN (probability of detection of regions below the 

threshold) increased (0.79), and POFD decreased (0.21). Above 60 mm the model 

struggled to place accumulations in the correct locations (lower PODY, higher FAR), 

but the rare-event nature of this threshold slightly increased GSS and HSS, showing that 

the model had some (albeit low) skill. Skill at the 90th percentile was better for this 

event compared with December 2007 (e.g., Table 5.2, 40 mm), due to the model being 

 able to better capture the magnitude of precipitation. 

As before, the object-based method was applied to accumulations above the 75th 

percentile (40 mm here), shown in Fig. 5.15, Table 5.6. It was apparent that the model 

overestimates the spatial extent of heavy precipitation. The object method improved 

accuracy (+0.11), whilst increasing PODN (+0.09), HSS (+0.05), GSS (+0.03). 

However, PODY, POFD, FAR, CSI showed little or no improvement, and the positive 
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bias worsened (+0.11). The differing shapes of the precipitation regions likely lead to 

this lack of change in the metrics. Overall the skill scores indicated reasonable 

simulation, but too much heavy precipitation in different locations with respect to the 

observed distribution.  

   
Table 5.5: As Table 5.2 but for January 2010 using threshold values that correspond to 
near minimum (5 mm), median (25 mm), upper quartile (40 mm), and above 90th 
percentile (60 mm). Values to nearest 5 mm of distribution value. 

 
Skill Metric 

Score 
Threshold: 
> 5 mm 

 
 
> 25 mm 

 
 
> 40 mm 

 
 
> 60 mm 

 
Perfect 
Value 

Accuracy 0.94 0.62 0.71 0.90 1 
Bias 0.95 1.08 1.13 0.91 1 
Prob. Detection –Yes 
(PODY) 

0.95 0.70 0.48 0.35 1 

Prob. Detection – No 
(PODN) 

0.06 0.51 0.79 0.95 1 

Prob. False Detection 
(POFD) 

0.94 0.49 0.21 0.05 0 

False Alarm Ratio  
(FAR) 

0.004 0.35 0.57 0.62 0 

Critical Success Index 
(CSI) 

0.94 0.51 0.29 0.23 1 

Gilbert Skill Score  
(GSS) 

0 0.12 0.15 0.19 1 

Heidke Skill Score  
(HSS) 

0 0.21 0.27 0.31 1 

Fractions Skill Score  
(FSS) 

0.98 0.71 0.51 0.43 1 

 

 
Table 5.6: As Table 5.3, but for the Jan 2010 event at an accumulation threshold of  
40 mm (see Fig. 5.15 for precipitation objects).  

Skill Metric Score Perfect Value 
Accuracy 0.81 1 
Bias 1.24 1 
Prob. Detection –Yes 0.48 1 
Prob. Detection – No 0.87 1 
Prob. False Detection 
(POFD) 

0.13 0 

False Alarm Ratio (FAR) 0.61 0 
Critical Success Index (CSI) 0.27 1 
Gilbert Skill Score (GSS) 0.19 1 
Heidke Skill Score (HSS) 0.32 1 
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Figure 5.15: As Fig. 5.8 but for the January 2010 event, using 48-hour accumulations 
ending at 00 UTC January 30, and an accumulation threshold of 40 mm. Blue shaded 
area indicates a ‘missed’ object - observed but not simulated.  
 

Temporal precipitation accumulation was examined for four domain 3 quadrants 

based on 30 gridpoint locations. Figure 5.16 shows the results of this calculation. For all 

domain 3, the total accumulated was actually slightly less (by ~2.6%) for WRF 

compared with observations. The northwest domain (33-36N, 100-98W) indicated an 

overestimate in precipitation on January 28, supported visually, while further south 

WRF under-predicted relative to Stage IV, especially 00-12 UTC 29. Accumulations in 

the southwest quadrant (31-33N, 96-92W) were generally in agreement, while the 

northeast indicated overestimated WRF accumulations later on January 29.  
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Figure 5.16: In the style of Fig. 5.9 but for four ‘quadrants’ in domain 3 of the Jan 2010 
simulation at 6-hour intervals from 12 UTC 28-00 UTC 30. The extension and number 
of grid point locations used is described in the header of the plot.. Quadrants are: 
‘southwest’ 31 to 33N, 98 to 100W; ‘northwest’ 34 to 36N, 98 to 100W; ‘southeast’ 31 
to 33N, 92 to 96W; ‘northeast’ 34 to 36N, 92 to 96W.  
 

Comparison of domain 1, 2 and 3 are shown in Figure 5.17 for freezing and rain 

phases of precipitation (for observations, see chapter 4, Fig. 4.17). Unlike December 

2007, there was much less difference in total accumulation between the coarse and 

high-resolution domains. From chapter 4, the synoptic forcing associated with this event 

was a progressive trough and the development of a weak surface low. Based on quasi-

geostrophic (QG) reasoning, ascent is promoted to the east of the trough axis, 

maximizing in the region of positive cyclonic vorticity advection and temperature 

advection, coupled with lift promoted by upper level diffluence and divergence. This 

stronger forcing over the domain promotes widespread precipitation. The mechanisms  
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Figure 5.17: As Fig. 5.10 but for 48-hour WRF accumulated precipitation in mm, 
ending 00 UTC January 30 2010. Top (bottom) three panels display freezing 
precipitation (rainfall), 
 
 

for its generation in this case were captured well by the coarser resolution model. Note 

that simulated freezing precipitation agrees reasonably well with Stage IV (Fig. 4.17), 

especially for southwestern Oklahoma. Domain 2 actually produced higher freezing 

precipitation over Arkansas than domain 3, but the latter was in better agreement to 

observations.  

 

5.5.2 Thermal profile 

Figure 5.18 shows surface temperature and RMSE at 6-hour intervals for 

Oklahoma, based on a WRF to Mesonet surface data comparison. In this case, simulated 

surface temperatures were typically lower than observed, especially between 00 UTC 
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and 12 UTC January 28. During the morning hours on the 28 (CST), the WRF 

temporally had a positive difference near 1oC, but by 00 UTC 29, the model once again 

yielded a slightly lower temperature. In contrast to the December 2007 event, the 

initially larger RMSE indicates that the WRF may have overestimated cooling (at least 

over Oklahoma) from the southward moving arctic airmass, with potential further 

contributions from cloud cover/radiation (Sec. 5.5.4).  

 The vertical thermal profile, taken from the ACRF is shown in Figure 5.19. Due 

to missing data between 18 UTC 28 and 29, only four profiles were available. In 

general, modeled lower-tropospheric temperature (domain 1-3) agree well with 

observations, while the initial near surface cold bias in WRF was clearly shown at 00 

UTC 28. It should be noted that the ACRF experienced mainly ice pellets and snow, 

with the deeper warm layer located southwest. By 12 UTC, the WRF now showed a 

warmer surface layer compared with observations, while aloft just domain 2 and 3 

produced a shallow warm layer inversion. This trend was reversed by 18 UTC, with 

domain 2 and 3 being too cool aloft in the 800-900 hPa layer. By 18 UTC 29, model 

and observations show better agreement near the surface, while domain 2 and 3 were 

warmer (cooler) in the 800-900 (800-700) hPa layer than domain 1 and observations.  

 Mixing ratio profiles, shown in Fig. 5.20, were in good agreement in most cases, 

with differences typically resulting from the timing and intensity of precipitation at this 

location. The profile at 12 UTC 28 demonstrates that the model typically overestimated 

moisture aloft, while 18 UTC 28 shows moister lower levels than observed. None of the 

domains indicate significant improvement over each other, with their accuracy varying 

in time.  
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Figure 5.18:  6-hourly time series of surface air temperature (in Kelvin) for WRF (red) 
versus Mesonet (green), based on 30 grid point locations earlier described (Fig. 5.16), 
between January 28-30. Error bars denote one standard deviation about the mean 
temperature for the gridpoints. RMSE shown by the blue bars.  
 

 

Figure 5.19: As Fig. 5.11 but for the January 2010 case study.  
 

 

Figure 5.20: As Fig. 5.12 but for the January 2010 case study.  
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5.5.3 Synoptic evolution 

 Like the December 2007 case study, the evolution of the upper trough 

(amplitude, eastward movement) and associated jet circulation were well simulated. 

Figure 5.21 crudely illustrates this using geopotential height, compared with NARR. 

ACRF profiles of zonal and meridional wind (not shown) produce generally good 

agreement. The zonal wind maximum aloft (~60 ms-1) was underestimated in the model, 

and displaced further aloft. Sea level pressure, based on the 1026 hPa isobar, was 

similar for NARR and WRF, except the latter does not capture the southwestward 

extension of higher SLP over the southern high plains (shown in Figure 5.22), and 

generally underestimated spatial area of higher pressure. In this case, this result was in 

apparent contrast to the low temperature bias in WRF (that might have indicated a 

deepening or extension of the shallow surface anticyclone), especially during January 

29.  

 

5.5.4 Cloud properties/radiation   

 Fortunately for this event, in-situ cloud observations were available and derived 

principally from ACRF CMBE data, as were estimates of shortwave and longwave 

radiation. Figure 5.23 shows the temporal cloud distribution (time-height profile) over 

the ACRF based on (a) ACRF cloud fraction observations; (b) cloud fraction from the 

WRF-ARW; and (c) WRF-ARW total hydrometeor mixing ratios for five species (rain, 

cloud water, ice, snow, graupel). The best agreement between observations and WRF 

appear to be when the microphysics representation of cloud presence was employed. 

The cloud fraction from the model radiation scheme suggests a deeper high cloud layer  
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Figure 5.21: As Fig. 5.13 for the January 2010 case study, and displaying the 5640 m 
geopotential height contour. 
 

 

Figure 5.22: As Fig. 5.14 for the January 2010 event. The color legend is shown in Fig. 
5.21.  
 

 



 184 

throughout the event, but especially January 28 (0-24 on the x-axis). The vertical extent 

of the cloud layer at hour 20-25 (~21 UTC 28-03 UTC 29) also was not well 

represented by WRF cloud fraction, but evident using the model microphysics. The 

majority of the cloud phase at this time was ice (cloud ice, snow, not shown). It makes 

sense intuitively that the microphysics presentation of cloud should agree well with 

observations, as the cloud radar at the ACRF derives cloud fraction from the return of 

electromagnetic radiation from hydrometeors. The ACRF estimate of cloud would also 

likely incorporate precipitation due to the high frequency resolution, which leads to 

increased extinction of the radar beam.  

Examination of longwave (LW) and shortwave (SW) radiation components at 

the ACRF (not shown) suggests that the model underestimates downward SW, 

indicative of potentially deeper modeled cloud cover. This corresponds to overestimates  

 

Figure 5.23: (a) Observed ACRF (Lamont, OK) cloud fraction, versus WRF simulated 
cloud (from the radiation scheme, panel b), and cloud presence as derived from an 
accumulated hydrometeor mixing ratio (water, ice, snow, graupel, rain) in panel (c). 
The x-axis for each shows time since 00 UTC January 28 (hours), while the y-axis 
shows height in km.  
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of high cloud depth and duration with WRF (radiation scheme) derived cloud fraction. 

The downward LW component suggested an increase in WRF versus observations, 

especially in the first 10-15 hours (00 UTC 28-15 UTC 28). This increase compensates 

somewhat (especially overnight) for the decrease in SW, but was a curious result when 

compared with the WRF cold bias during this same time, suggesting the cooler surface 

temperature was not primarily a result of the radiative forcing. The low-level meridional 

wind component showed higher velocity in WRF relative to ACRF, supporting the 

possibility of enhanced CAA during this time (not shown). The lower top of atmosphere 

(TOA) LW in WRF further supported overproduction of high cloud, with WRF and 

observations only coming into general agreement after hour 30 (06 UTC 29).   

 

5.5.5 Summary 

Table 5.7 summarizes the validation results shown here. The January 2010 was 

generally superior to the December 2007 with regard to the location and intensity of 

freezing precipitation. The validation suggests that the WRF sufficiently captured the 

case study evolution to warrant inclusion to the sensitivity analysis.  

 

5.6 Final Note 

This chapter has provided a validation of the WRF-ARW control simulations for 

both case studies against a suite of observations. Several key variables were assessed, 

and a summary of uncertainties gathered. It is worth noting that sensitivity studies by 

their nature consider the secular changes from a control, and as such the control’s 

departure from the actual event is of secondary importance in subsequent chapters. 
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However, the reader may wish to refer back to this chapter, or at least bear in mind 

WRF biases relative to the observed events. As a summary to this chapter, Tables 5.8 

show model specifications of the simulations examined in chapters 6 and 7.   

 

Table 5.7: As Table 5.4, for the January 2010 case study.  

 
 

Parameter  Bias Description – January 2010 Single 
point 
ob? 

Air Temperature 
(SFC) 

RMSE ≤ 2.5 K, WRF slight cool bias, especially between 00 UC-12 
UTC 28, and after 00 UTC 29.  

No 

Air Temperature 
(upper) 

Some missing data 00-18 UTC 29th. Location of sounding used in 
predominantly snowfall region. WRF cooler within the 900-800 hPa 
layer, especially at 18 UTC 28.  

Yes 

Mixing Ratio Good agreement, WRF slightly moister on average.  
 

Yes 

Winds (u,v) Generally good agreement, WRF underestimates peak zonal winds in 
mid-upper troposphere, no secular bias in meridional winds.  

Yes 

Synoptic GHT Excellent agreement in timing, depth.  No 

Synoptic SLP Good agreement, WRF lower SLP bias during latter part of event. No 

Cloud WRF CLDFRA overestimates high cloud and cloud layer depth. WRF 
hydrometeor assumption better resolves the temporal ‘shape’ of the 
cloud. Microbase IWC/LWC metrics do not agree well with WRF, 
with a large overestimate in IWC for the latter.  

Yes 

Radiation Lower downwelling SW (possibly due to cloud cover bias), and lower 
upwelling LW at TOA through much of the event.  

Yes 

Precipitation 
(spatial) 

Shape and intensity of precipitation (+ accumulation) generally well 
simulated (esp. D2 and D3). Northward shift in heaviest precipitation 
(rain) in WRF. Slight positive bias in above 40 mm. Freezing 
precipitation location and intensity well simulated, esp. Oklahoma, 
albeit underestimated total coverage, especially east. Snowfall 
locations well simulated, intensities spatially very relative to 
observations, e.g., decreased in east relative to obs.  

No 

Precipitation 
(temporal) 

SW region shows underestimates 00-12 UTC 29th, also slight 
overestimate in precipitation during 29th in NE region of domain 3.  

No 
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Table 5.8: Basic model setup for December 2007 (Case 1) and January 2010 (Case  
2) sensitivity analysis 

Simulation Description 
Start/Length Case 1: 00 UTC December 4 2007/7 days 

Case 2: 12 UTC January 23 2010/7 days 
Temporal Resolution 3 hr (D1), 2 hr (D2), 0.5 hr (D3) 
Domain/Resolution See Fig. 5.2 

Case 1: 162x141 30 km (D1), 172x223 10 km (D2), 172x223 3.3 km (D3) 
Case 2: 162x141 30 km (D1), 172x223 10 km (D2), 322x223 3.3 km (D3) 
 

Num. Vertical Levels  59 (D1-3) 
Convection BMJ (D1, D2) Explicit (D3) 
Microphysics MY (D1-3) 
PBL MYJ (D1-3) 
Radiation RRTM (Longwave, D1-3), Dudhia (Shortwave, D1-3) 
Land Surface NOAH (D1-3) 
IP/BC GFS Final Analysis 1o, 6-hourly  
Analysis Nudging?  Yes (D1), No (D2, D3) 
SST See Table 4.2 for descriptions.   

0.5ox0.5o, daily updates, RTG (CLIM, P2, M2, REAL), OI V2 (LO, HI, 
GOM only). Part of IP/BC for D1.  
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Chapter 6: SST Sensitivity Study for the December 9-11 2007 Ice 

Storm 

6.1 Introduction  

In this chapter, the results from a suite of SST perturbations described in chapter 

4 (sec. 4.4) and applied to a set of high-resolution WRF simulations, described in 

chapter 5, are summarized in detail for the first of our two case studies. The evolution of 

this event was previously described in chapter 4. With respect to the patterns obtained 

in chapter 3, this is an Ice Pattern 3 case study, considered to be the ‘archetypal’ ice 

storm circulation for the central SGP due to notable moisture and temperature 

anomalies south of the subfreezing surface airmass, implicated in the formation of 

pronounced warm layers.  

Unusually, the primary precipitation mode was convective, with training 

convection parallel to the upper level jet axis, just north of the 0oC surface isotherm. 

The WRF simulation (domain 3, chapter 5) partially captured this orientation, but with 

greatly reduced intensity, while other locations had more precipitation than observations 

suggested (e.g., southeastern OK/AR, and much of west-central Oklahoma). This 

‘flattening’ of the precipitation distribution was suspected to be due to misplacement of 

the convective cells along with some mode discrepancies (lack of convective-statiform 

transition and decreased spatial coverage/intensity). Nonetheless, the model captured 

the timing (especially nocturnally), cellular mode and phase of precipitation. There was 

strong dependence of precipitation accumulation and location on model horizontal grid 

spacing, likely due to a coarser resolution grid being unable to resolve the most unstable 

growth modes associated with upright elevated convective instability. Given that the 
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precipitation intensity was not particularly in agreement to the observed event, we 

express changes associated with SST relative to the REAL simulation. Readers may 

refer back to chapter 5 to interpret the results in light of known model bias and 

uncertainty for this event.  

The variables analyzed in this chapter include: precipitation accumulation and 

intensity, thermal profile (warm and refreezing layers), synoptic and mesoscale features, 

such as fronts, forcing for ascent, locations and magnitude of low-level winds and 

moisture transport, and cloud and radiation. Finally we examine air parcel trajectories 

into the freezing precipitation region at two times during the ice storm. This lagrangian 

perspective on airflow is expected to aid interpretation of linkages between GOM SST 

and warm layer thermal/moisture profiles.  

 

6.2 Precipitation Accumulation and Phase Partitioning  

6.2.1 Total accumulation  

Figure 6.1 and 6.2 display 48-hour accumulated precipitation for each SST 

simulation, valid 00 UTC 9 - 00 UTC 11 December, for freezing precipitation and 

rainfall respectively. Negligible snowfall accumulated over domain 3. In this 

evaluation, we used the Bourgouin (2000) area method to extract precipitation phase 

type for freezing precipitation. For rain and snow, a simple calculation was applied 

based on the average 900-700 hPa temperature, 850 hPa temperature, and surface phase 

type derived from hydrometeor mixing ratio. Rain was assumed with a non-zero 

rainwater mixing ratio, and surface temperature above 0oC. Snow was assumed with 

900-700hPa layer average and 850 hPa temperatures < 0oC and snow mixing ratio > 
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0gkg-1 at the surface. The Bourgouin (2000) technique for identifying freezing 

precipitation is given in equation 6.1: 

€ 

cp Area = cpT ln
θ top

θbottom

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

                                 (6.1)
 

Where Area can refer to the refreezing or warm layer,  is the average temperature of 

the desired layer, cp the specific heat capacity (fixed at 1004 Jkg-1), and θtop, θbottom the 

potential temperature at the top and bottom of the desired layer respectively. When Area 

is computed for the warm layer (refreezing layer), it is termed the positive area 

(negative area). The evaluation of the presence of ice pellets and freezing rain was 

determined by Bourgouin empirically, and expressed as:  

€ 

IP = if (NA > 0.66 + 0.66PA)
FZRA = if (NA < 46 + 0.66PA)
IP& FZRA = if (46 + 0.66 ≤ NA ≤ 66 + 0.66PA)       (6.2)

 

Where PA and NA refer to positive and negative areas respectively. Both equation 6.1 

and 6.2 were calculated for all model gridpoints experiencing precipitation at 1-hour 

intervals. No distinction was made between ice pellets and freezing rain as determined 

from the algorithm in subsequent figures for this chapter. However, the algorithm 

determined the dominant precipitation type as freezing rain due to the substantial warm 

layer. For example, REAL produced 90% FZRA, 1.5% IP/FZRA and 8% IP. These 

proportions only changed by a fraction of a percent between P2 and M2 (not shown). 

 The results for freezing precipitation in Fig. 6.1 indicate that the band of 

precipitation along the central axis generally intensified with warmer SST, but with 

some variation in location, potentially from changes to location/movement and intensity 

of cellular convection. For M2 the reduction was visually pronounced, with a northward 
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shift in higher accumulations. Precipitation was also weakened in LO (REAL-1.69 K), 

especially over northeastern Oklahoma and southern Missouri. CLIM also lowered peak 

totals. For the warmer SST fields, HI (REAL+0.19 K), suggested a shift in the location 

of convection increasing accumulations in the northeast and southwest. P2 showed less 

spatial spread in higher precipitation (e.g., 20+ mm), while yielding greatest amounts in 

the southern branch of the central axis. There was no apparent shift in locations of 

freezing precipitation versus rainfall due to the depth of the warm layer (typically > 2 

km), its intensity (> 8oC), and its persistence.  

For rainfall, shown in Fig. 6.2, there was a general indication of increased 

precipitation in Arkansas as basin average SST rose. Nonetheless, this was not a linear 

result. LO for example, produced a band of heavy precipitation over west central 

Arkansas of reduced spatial extent with respect to CLIM, REAL and HI, but similar 

intensity. The differences between the two extreme uniform perturbations, M2 and P2, 

yielded strongest evidence of a trend, which was expected as they were uniformly 

perturbed about REAL, whereas the other SST fields have alternate gradients and 

anomalies.  

Additional quantitative information is summarized for domain 3 in Table 6.1, 

which, for each SST simulation, calculates the number of grid points experiencing a 

precipitation phase (48-hour accumulated), and the total summed accumulations above 

a given precipitation rate. Here, we used the 75th percentile of the precipitation 

distribution (by phase, and removing all zero values) as a base for assessing higher 

accumulations. These metrics provide a measure of spatial extent of phase types, and 

trends in their relative intensities. At the base of the table, results are expressed relative  
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Figure 6.1: 48-hour accumulated freezing precipitation (FZRA, IP), valid 00 UTC 
December 11 2007 for WRF-ARW domain 3 for each SST simulation, denoted by the 
textbox. REAL is highlighted by the red box. State and county boundaries are overlaid.  
 

 

Figure 6.2: As Figure 6.1 for rainfall, with reduced southward edge of domain.   
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to REAL for all precipitation types (‘Total’) and FZRA/IP in parenthesis (Fig. 6.1).

 The table quantitatively confirms earlier assertions. For example, the spatial 

extent (number of grid points) of non-zero precipitation changed little relative to REAL 

for each simulation (typically within 3%). However above the 75th percentile (~15 mm 

for ice, 20 mm for all phase) notable changes included increased spatial extent for all 

precipitation in HI and P2 (~+7-8%), while FZRA/IP above this threshold spatially 

contracted for all but HI (e.g., P2 -9.5%, CLIM -5%, LO -16% and M2 -30%). This 

contraction may relate to the more concentrated region of higher precipitation observed 

for P2, but conversely the weakening of precipitation in LO and M2. Due to fine-scale 

localized nature of the convective mode, percentage changes in total summer FZRA/IP 

accumulation were typically low, especially for warmer SST. For example, P2 actually 

decreased in accumulation by 7% and ~-3% at moderate or greater intensity (≥2.5 

mmhr-1, likely due to the aforementioned spatial contraction), HI indicated virtually no 

change at all thresholds, but a modest ~2.4% increase above 2.5 mm hr-1. The larger 

percentage change for this phase occurred as SST was reduced. M2 (LO) produced an 

8.5% (7.7%) decrease for all non-zero precipitation rates, and a 24% (15.3%) decrease 

above 2.5 mm hr-1. For all-phase precipitation rates percentage changes were more 

notable, especially for M2, produced by the strong reduction in rainfall over Arkansas 

(~48% decrease above 2.5 mm hr-1). Negative departures for CLIM and LO were more 

modest, with CLIM producing a larger decrease in moderate rainfall rates. P2 showed a 

~31% increase, primarily in the rainfall region.  

For all domain 3 (Fig. 6.3), radar reflectivity showed monotonic yet non-linear  
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Table 6.1: Precipitation characteristics and their change with SST, evaluated for 
freezing rain/ice pellets, snow and rain. For each, the total number of gridpoints with 
precipitation (and total number of total accumulation above the 75th percentile of non-
zero values; ice=15 mm, all phase=20 mm), the total summed accumulation, and total 
summed accumulation for precipitation > 2.5 mmhr-1 are estimated. Furthermore, the 
ratio of these summed accumulations are shown to provide intensity proportion. At the 
base of the table, these results are expressed as a percentage difference from REAL for 
the total domain, and FZRA/IP in parenthesis.  

 

Type # Grid Points 
(# > 75th percentile 

Accum.) 

Total Sum of 
hourly Accum. (1)  

x104 mm 

Total sum  
Accum. > 2.5 mm hr-1 

(2) x104 

Ratio 
(2)/(1) 

 
REAL Domain 3    
FZRA/IP 28650 (7182) 32.6 12.1 0.37 
RAIN 26510 (6343) 17.7 7.1 0.40 
SNOW 21 (0) 0.0076 0 0 
CLIM     
FZRA/IP 28110 (6806)  31.5 11.3 0.36 
RAIN 26759 (5319) 15.7 4.5 0.28 
SNOW 15 (0) 0.005 0 0 
P2     
FZRA/IP 28860 (6499) 30.2 11.8 0.39 
RAIN 26453 (7209) 24.0 13.5 0.56 
SNOW 0 (0) 0 0 0 
M2     
FZRA/IP 27884 (5036) 29.8 9.2 0.31 
RAIN 27339 (1490) 7.4 0.75 0.10 
SNOW 0 (0) 0 0 0 
HI     
FZRA/IP 28532 (7336) 32.6 12.4 0.38 
RAIN 26513 (7326) 20.2 8.8 0.44 
SNOW 0 (0) 0 0 0 
LO     
FZRA/IP 28336 (6204) 30.1 10.3 0.34 
RAIN 26716 (5009) 17.1 6.8 0.40 
SNOW 2 (0) 5.5x10-3 0 0 
Total  
(IP/FZRA)  

Departure from 
REAL (%) 

    

CLIM -0.54 (-1.89) 
 -19.23 (-5.24) 

-6.07 (-3.21) -18.0 (-6.67)  

P2 +0.24 (+0.73) 
+8.35 (-9.51) 

+8.00 (-7.13) +31.75 (-2.61)  

M2 +0.08 (-2.67) 
-58.34 (-29.88) 

-26.0 (-8.49) -48.34 (-24.15)  

HI -0.25 (-0.45) 
+7.11 (+2.14) 

+5.1 (+0.06) +10.27 (+2.35)  

LO -0.23 (-1.10) 
-16.93 (-15.76) 

-6.10 (-7.66) -11.07 (-15.30)  
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(in proportion to basin average SST, see chapter 4) increase in reflectivity with SST. 

Once again, a stronger response occurred for strongly negative SSTA, with a 33.9% 

decrease > 35 dbZ for M2, versus a 9.1% increase for P2. For the freezing precipitation 

region in Fig. 6.4, HI now produced the greatest positive change in reflectivity (+12%), 

albeit the precipitation accumulation response was more moderated (Table 6.1). M2 had 

the greatest decrease at -19.7%.  

What is the physical basis for the apparent increased sensitivity to reduced SST 

(especially M2)? It is suspected that the atmospheric stability profile was particularly 

important. Figure 6.5 shows maximum layer convective available potential energy 

(CAPE) during initiation of the first round of precipitation, valid 06 UTC (00 CST) 

December 9. The 850 hPa CAPE is also overlaid (black contours) in order to 

demonstrate that instability was elevated to the approximate level of maximum warm 

layer temperature for the freezing precipitation zone. It is readily apparent that CAPE 

was strongly related to the SST scenario, likely due to the impact on lower tropospheric 

moisture content. For warmer cases, CAPE increased over the freezing precipitation 

zone, consistent with the increase in the intensity of the convective cells (e.g., Fig. 6.3, 

6.4). Convection also initiated somewhat earlier, especially for P2 (not shown).   

Figure 6.6 displays the thermal profile as a model derived sounding at Norman, 

OK 09 UTC December 9, when freezing precipitation was developing in M2, LO, and 

REAL. Whereas REAL shows a deep warm layer bounded by convective instability 

aloft, LO and M2 indicate cooling near 875 hPa, with a more pronounced secondary 

maximum further aloft in the vicinity of 700-750 hPa. It is suspected that the reduction 

in temperature in the 800-875 hPa layer was associated with decreased GOM SST and  
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Figure 6.3: Simulated equivalent radar reflectivity histograms (> 20 dbZ) showing the 
change in frequency for each SST scenario with respect to REAL for all domain 3. The 
percentage value in parenthesis denotes the relative change in frequencies > 35 dbZ 
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Figure 6.4: As Figure 6.3, but for central Oklahoma (approximately 34.5-35.5N, 96-
98W). 
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Figure 6.5: Maximum layer CAPE (shaded in increments of 100 Jkg-1), and 850 hPa 
CAPE (contoured, every 100 Jkg-1, from 100 Jkg-1) for domain 3 of each SST 
simulation, valid at 06 UTC December 09 as convection was beginning to initiate. 
REAL is highlighted by the red box.  
 

 

Figure 6.6: Thermodynamic (skew-T) profile valid at 09 UTC December 9 near 
Norman, Oklahoma for M2, LO and REAL.  
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the advection of this cooler airmass into the freezing precipitation zone. The origins of 

the airmass ~700 hpa is investigated in section 6.5. Assuming that an air parcel was 

lifted to 850 hPa in M2 and LO, the isothermal layer further aloft would have increased 

stability by acting against the vertical motion of the buoyant air parcel. Figure 6.7 

displays simulated radar reflectivity over the domain at 09 UTC December 9, indicating 

that for this example M2 produced only weak updrafts and light precipitation, while LO 

indicated isolated regions of stronger convection but a general decrease in spatial extent 

relative to the remaining simulations.  

 

6.3 Thermal Profile  

The evolution of the lower tropospheric thermal profile is particularly important 

for freezing precipitation, as warm layer characteristics influence phase partitioning 

(chapter 2). In this case study, the low-levels were particularly deep and warm, forming 

well prior to the ice storm (chapter 4). The simulated evolution of the melting and 

refreezing layers across simulations was investigated by calculating the Environmental 

Melting and Refreezing potentials, EMP and EFP respectively (see chapter 2, equation 

2.1,2.2) over central Oklahoma 00 UTC 9-00 UTC 11 December, shown in Figure 6.8. 

The 850 hPa (surface) air temperature is provided in Fig. 6.9.   

Both figures confirm warm layer intensity, and indicate that the SST 

perturbations exert a relatively minor influence on its thermal properties. Warm layer 

formation was insensitive to the SST field, at least over the preceding several days, 

appearing to be more a consequence of anomalously warm surface temperatures over 

southern Texas/northern Mexico, and prolonged southerly-component flow over the  
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Figure 6.7: Simulated radar reflectivity (dbZ) valid 09 UTC 9 December for each SST 
simulation. REAL highlighted by the red box.  
 

southern and eastern U.S. Nonetheless, varying SST still promoted some alteration of 

peak warm layer intensity. Compared to REAL, the initial cooling of the M2 850 hPa 

layer before precipitation onset maximized at 1.5-2oC near t20, and near 1oC or less for 

LO and CLIM (Fig. 6.9). HI and P2 produced a warmer inversion on the order of 0.5-

1oC at the same time. The resultant changes in EMP (Fig. 6.8) reflect these temperature 

variations and show on average 1000-2000 oCm reduction for M2, little distinction 

between CLIM and REAL, and increased temporal persistence of higher EMP near 

18,000 oCm for HI and especially P2 during t12-t24. During convection (~t24 onwards), 

cooling due to melting and downdraft evaporation results in small decreases in 

EMP/temperature, but the warm layer intensity precluded phase change. The broader 

lowering of EMP t20 to t40 may be a combination of precipitation and dynamic changes 
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Figure 6.8: Timeseries of environmental melting potential (EMP, red), and freezing 
potential (EFP, blue) in oCm valid for 34.9-35.3 oN, and 97-98oW between 00 UTC 
December 9 (t12) and 00 UTC December 11 (t60). Horizontal gray line at 15,000 oCm 
to aid interpretation.  
 

 

Figure 6.9: As Fig. 6.8 for maximum warm layer air temperature (red) and minimum 
refreezing layer temperature (blue). Horizontal gray lines at 0 and 8oC shown to aid 
interpretation. .  
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(e.g., reduction in warm air advection, possible sensible and radiative heat transfers. 

More investigation required). The refreezing layer surface temperature showed 

negligible change between simulations, however, the refreezing layer actually eroded 

more rapidly (by about 3 hours) for M2, LO relative to REAL, being retained for a 

slightly longer period of time for HI and P2 (~2-4 hours).  

A transition to above freezing temperatures in central Oklahoma occurred late 

on December 10 as the upper trough approached the domain, eroding the surface 

refreezing layer by associated pressure falls, decrease in cold air advection and 

southerly component near-surface flow. Nonetheless, there was an apparent additional 

contribution from radiative forcing and cloud cover that explained the timing changes in 

each case. Figure 6.10 and 6.11 show downward shortwave component, and longwave 

radiation components respectively. For central Oklahoma (left), downward SW 

radiation was increased on December 10 for LO and M2, while outgoing LW was 

increased hours 40 and 50, particularly for M2. These results imply lower cloud cover 

shortly before the time surface temperatures rose above 0oC. While the domain average 

shortwave on December 10 was virtually indistinguishable for each scenario, the 

longwave components implied that lower SST simulations had reduced or thinner cloud 

cover.  

Figure 6.12 shows cloud cover in central Oklahoma, derived from a summation 

of all hydrometeor mixing ratios. It is apparent that convective activity in this region 

was reduced in M2 and LO, especially on December 9 (t12-36). Furthermore, during the 

same time, the summed mixing ratios indicate a more persistent low cloud layer. This is 

supported to some extent by a decrease in downward shortwave radiation for M2 and 
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LO (on average). Convection was apparent in the other scenarios, with a deep cloud 

layer near t40-45 (it appears that for HI, this convection was displaced westwards, not 

shown). This very deep precipitating cloud layer is likely responsible for reduced solar 

insolation and the maintenance of a shallow refreezing layer that was not observed for 

M2, as heavier precipitation for M2 had lifted north to an axis through north-central 

Oklahoma (Fig. 6.1).  

 

6.4 Moisture and Dynamics 

 In this section, the identified changes in precipitation response to SST are 

examined in light of the synoptic and mesoscale evolution of the event in each of these 

perturbed simulations. Given that the evolution of this ice storm (chapter 4) was 

associated with two primary episodes of precipitation (Fig. 4.11), this discussion 

considers both in turn.  

 

Figure 6.10: Timeseries of WRF downward shortwave (solar) radiation flux calculated 
over central Oklahoma (left), and all domain 3 (right) in Wm-2. Line color designations 
are: red = P2, orange = HI, black = REAL, green = CLIM, blue = LO, purple = M2.  
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Figure 6.11: Timeseries of WRF longwave radiation components for each SST 
simulation. Top is downward flux for (left) central Oklahoma and (right) domain, while 
bottom is the top of atmosphere outgoing longwave flux. See Fig. 6.10 caption for line 
color key.  

 
Figure 6.12: Sum of rain, snow, graupel, ice and cloud mixing ratios as a proxy for 
cloud cover valid over the ACRF Lamont site for all SST scenarios (REAL highlighted 
by a red box). The x-axis of each panel shows time (hour) from 12 UTC December 8, 
while the vertical axis shows height in km above ground.  
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6.4.1. First convective period: December 9  

Precipitation initiated between 05 UTC and 09 UTC on December 9. Convective 

precipitation continued to form along the central domain axis throughout the day, albeit 

the model tended toward less afternoon (CST) convection than observed (chapter 5, sec. 

5.4/5.5). Figure 6.5 demonstrated that elevated CAPE was present above the refreezing 

layer, and that the magnitude and northward extent of this instability was increased with 

warmer SST (HI, P2).  

Figure 6.13 shows 875 hPa frontogenesis 09 UTC December 9 as convection 

was developing. The displayed parameters are based on the equation of Miller (1948, 

here equation 6.3), considering the shearing and deformation (stretching) terms only 

(terms 1 and 2 on the right hand side) calculated using RIP4 (‘Read Interpolate Plot’ v 

4) software for WRF post-processing.  

 

€ 

F = [∂θ
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(∂u
∂y
)]+ [∂θ

∂y
(∂v
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)]+ [∂θ
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(∂ω
∂y
)] − [ ∂

∂y
(dθ
dt
)]            (6.3) 

 

Equation 6.3 is the form given by Lackmann (2011, p136). The shearing term (term 1) 

describes the change in front strength due to differential potential temperature advection 

by the front parallel wind, while the deformation term (term 2) examines the change in 

potential temperature in the front normal direction (i.e., across the front). The tilting and 

diabatic contributions (terms 3 and 4) are typically weaker, especially the tilting term, 

as vertical motion near the surface is much smaller in magnitude than the horizontal 

wind components. The diabatic contribution, accounting for processes such as 

differential surface heating, heat flux and solar insolation (Lackmann 2011, p138) was 
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evaluated briefly, and did not contribute much in the freezing precipitation zone, albeit 

localized diabatic frontogenesis was observed in the warm airmass to the south (not 

shown).  

Figure 6.13 indicates that frontogenetic forcing for ascent was present in the 

vicinity of convection, as was isentropic lift (not shown). This was indicative of these 

mechanisms being important in the lifting of air parcels to their level of free convection. 

Notably, frontogenesis over the central axis was weak or not present at this time for M2. 

Weak shearing frontogenesis appeared after 10 UTC for M2, corresponding with the 

formation of weak cellular convection. LO also indicated generally reduced low-level 

shearing term relative to REAL. CLIM, REAL and HI all produce frontogenesis over 

central Oklahoma, and convection developing shortly afterward. P2 showed a broader 

and earlier forming frontogenetic zone over the central axis, where convection initiated 

in this location 2-3 hours ahead of REAL (not shown). Based on the horizontal profile 

of potential temperature, it was observed that warmer air moves into the domain for 

higher SST, and this aids in strengthening frontogenetic shearing in particular through 

increased air temperatures on the warm side of the frontal boundary.  

Of particular importance to development of precipitation was the availability of 

deep moisture. Figure 6.14 shows the magnitude of the column integrated moisture 

transport for domain 2, based on the equation given by Ressler et al. (2012, eqn. 6), 

shown below: 

          
  

€ 

 
Q w =

1
g

q v dp
400hPa

900hPa

∫                                    (6.4) 

Where g is gravity (9.81 ms-1), q is mixing ratio (gkg-1), and v is the horizontal u and v  
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Figure 6.13: Domain 3 shearing (shaded) and deformation (blue contoured) 
frontogenesis in K (100 kmh-1) valid at 09 UTC December 9 for each SST scenario. 
REAL is highlighted by the red box. Potential temperature (θ) contours are overlaid at 1 
K intervals, with θ ≤ 294 K in black, and θ ≥ 294 K in red.  
 
 

winds. The equation is expressed as a vector, composed of a u and v component. From 

these a scalar magnitude (x102 kgm-1s-1) is created and displayed as an average between 

00 UTC – 18 UTC December 9. The moisture transport is primarily influenced by the 

magnitude of the mixing ratio, and the horizontal tropospheric wind. The moisture 

dependence on SST was immediately apparent, with a reduction in 850 hPa mixing 

ratio, especially over the far southern U.S and northern GOM with reduced SST. Note 

the similarity in moisture content between HI and REAL. Total basin average SST was 

only ~0.2 K warmer for HI, with much of this increased warmth in the western GOM. 

This difference produced only localized increases for HI. In all simulations 300 kgm-1s-1 
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moisture transport was present over the central SGP axis, while the axis of > 400 kgm-

1s-1 expanded as SST increased. This result was promoted by enhanced mixing ratios, 

coupled with changes to the wind fields.  

To examine the low-level wind field more closely, Figure 6.15 displays the 

average magnitude of the 850 hPa winds and geopotential height contours valid 00-18 

UTC December 9 for domain 2. The 850 hPa level showed an axis of 30 + kt flow 

extending from the northern GOM into the SGP. This flow was associated with the 

strong temperature gradient across the frontal zone, the geopotential height gradient 

across the GOM basin, and the topographic deflection of low-level flow against the 

mountains of eastern Mexico. The analyzed period encompassed the nocturnal 

strengthening of this low-level jet circulation. Although comparison between M2 and 

P2 yielded generally greater 850 hPa wind velocities for the latter, the remaining 

scenarios showed little secular trend. On average, the wind maximum was located over 

northeast Oklahoma, extending northeast. For HI and P2, another area of 35+ kt flow 

was observed further south over southwestern-central Oklahoma. Differences in 

magnitude were not particularly large (< 5 kt).  

Figure 6.16 concludes this discussion by displaying the total 24 hour 

accumulated precipitation from 00 UTC December 9. It is apparent that the increased 

thermal stability with decreasing SST, coupled with the reduction in moisture, and 

weakened forcing for ascent resulted in a strong decrease in precipitation in this first 

convective period for M2 (-31%). This was especially evident for accumulations 

exceeding 10 mm, where there was a 69% reduction (all phase types). LO (CLIM) also 

showed a decrease of 26% (23%) above this threshold. Conversely, HI, and P2 evidence 
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Figure 6.14: WRF domain 2 850 hPa mixing ratio (g kg-1), wind fields (barbs, ms-1) 
and 900-400 hPa integrated horizontal moisture transport (kgm-1s-1) contoured in red at 
intervals of 0.5 above 3 x 102 kgm-1s-1 for 00 UTC 18 UTC December 9. REAL 
highlighted by the red box.  
 

moderately greater accumulations(~28-33% increase > 10mm) over this interval for 

opposite reasons.  

 

6.4.3 Second convective period: December 10 

After a temporary decrease in precipitation on the evening of December 9, 

further convection began to develop by 06 UTC December 10 in southwestern 

Oklahoma/western north Texas. This precipitation continued over much of the central 

axis until 18 UTC December 10 before lifting northward. The upper level trough at 06 

UTC December 10 had moved southeast, and was beginning to assume a near-neutral 
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Figure 6.15: WRF 850 hPa vector winds (barbs, knots), magnitudes (shaded, knots), 
and 850 hPa geopotential height (m) for domain 2, averaged 00-18 UTC December 9. 
REAL highlighted by a black box.  
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Figure 6.16: WRF 24-hour accumulated precipitation (all phase types) for December 9 
2007 in mm. Only values above 10 mm are shaded. REAL highlighted by the red box. 
Values for each SST simulation panel (values in parenthesis) are the percentage 
departure from REAL for total accumulated precipitation (accumulations > 10 mm).  
 
 

tilt (not shown). A deep plume of moist air was present over the SGP in association 

with continued subtropical moisture advection from the GOM (and Pacific; 700-500 

hPa layer). Examination of model-derived soundings near Norman, Oklahoma (09 

UTC, not shown) confirmed this assertion, indicating deep cloud and saturated ascent 

along the moist adiabat. CAPE at 6 UTC December 10 (not shown) indicated lower 

values during this second convective period, especially over the central freezing 

precipitation axis (< 100 Jkg-1). This reduction was possibly associated with the mid-

level moistening and stabilizing associated with moisture advection and earlier 

precipitation.  
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Forcing for ascent during this convective period appears to have involved 

continued potential instability, low-level frontogenetic forcing, and isentropic ascent. A 

weak shortwave ejecting ahead of the long-wave trough (not shown) may have been 

responsible for enhanced lift and increased precipitation relative to December 9. Figure 

7.17 shows shearing and deformation frontogenesis at 875 hPa valid at 06 UTC 

December 10. In general, HI, and in particular P2 evidence southward displacement in 

maximum frontogenesis at this time relative to REAL. In contrast, LO and M2 showed 

a northward extension of frontogenetic forcing.  Furthermore the magnitude of the 

deformation and shearing components increased, particularly in northwestern Texas. 

Over the subsequent several hours, this pattern continued, and was borne out in a more 

rapid northward movement of convection in LO and especially M2 (not shown). 

Additionally, 850 hPa wind velocity was observed to have increased over western north 

Texas into central Oklahoma in M2. Figure 7.18 shows the average 850hPa wind 

velocity and geopotential height field for 00-18 UTC December 10. While the average 

changes were not particularly great, the intensified flow over Oklahoma into Missouri 

in M2, relative to REAL, was well collocated to the northward increase in 

frontogenesis, and northward maximum precipitation (Fig. 6.20). P2, in contrast, 

suggested a weakened jet over Oklahoma, and stronger flow and horizontal 

convergence over north Texas, corresponding to the southerly displacement in 

maximum ascent and convection. The remaining simulations fell between these 

extremes.  

One of the possible reasons for the change in flow strength was the apparent 

weakening of the longitudinal gradient in geopotential height with increased SST.  
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Figure 6.17: As Fig. 6.13 but for 06 UTC December 10.  
 

While differences between REAL, CLIM, LO and HI were not so discernable, M2 

versus P2 show an eastward shift in the 850hPa geopotential ridge over the GOM and 

southeastern U.S for the latter. It is possible that the increased temperatures in P2 

yielded a reduction in height akin to the formation of a ‘thermal’ low in regions of 

anomalous warmth, acting to decrease (increase) height at low (upper)-levels. Yongning 

(1996) suggested development of an anomalous low-level cyclonic circulation over the 

GOM associated with a uniform 5 K SST perturbation in a climate model sensitivity 

study.  

 The effect of the low-level jet circulation and moisture changes are shown in the 

integrated moisture transport shown in Figure 6.19. Higher mixing ratios continue to be 

supplied to the domain as SST was increased. The role of the low-level wind field 

perturbations shown in Fig. 6.18 was to generally increase the max magnitude and areal  
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Figure 6.18: As Fig. 6.15 but for 00 UTC -18 UTC December 10.  
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Figure 6.19: As Fig. 6.14 for 00 -18 UTC December 10.  

 

Figure 6.20: As Fig. 6.16 for December 10 2007.  
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extent of moisture transport as SST was reduced, while the higher mixing ratios for 

warmer SST act to increase moisture availability. These completing effects produced 

generally similar magnitudes of moisture transport with scenario for the SGP. Figure 

6.20 shows the domain 3 24-hour accumulation of precipitation on December 10. This 

second convective episode produced widespread precipitation, with evidence of 

moisture-strengthened updrafts with higher SST (especially P2, e.g., Lackmann 2013). 

In general, the difference in accumulations was reduced relative to the first convective 

period, with M2 producing the strongest departure of -37% (above 10 mm). LO, CLIM, 

REAL and HI had very similar accumulation (albeit the spatial distribution was altered), 

while P2 showed the largest positive departure.  

 

6.5 Air Mass Trajectories and Meteorological Characteristics  

An advantageous way of examining air mass characteristics within the thermal 

profile during freezing precipitation is a lagrangian method that can resolve the 

approximate path of incident air parcels, and the meteorological characteristics along 

this path. Such a technique was introduced in chapter 4, and based on the work of 

Gyakum and Roebber (2001), and Fuhrmann and Konrad (2013). In the context of this 

investigation, trajectory analysis may aid to identify the extent of, and processes by 

which air parcels are modified by their environment, including impacts of varying SST 

structures on warm layer properties. The discussion in much of this chapter has been 

from the perspective of evaluating SST impacts based on their basin average anomaly. 

However, regional SST anomalies may be as important in modifying the warm layer. 

Trajectory analysis allows further preliminary investigation of this question.   
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Here 4-day (96-hour) back trajectories were evaluated for central Oklahoma 

during freezing rain, at 12 UTC December 9 (first convective episode), and 12 UTC 

December 10 (second convective episode). The definition of a back trajectory was 

provided in chapter 4 (sec 4.2). Trajectories were calculated using RIP4 WRF post-

processing software. RIP4 computes trajectories using model u, v and w wind 

components based on user specified starting location, start and end times. Domain 1 

was used for the calculation, with model data available at 3-hr intervals. The program 

interpolates between these intervals and generates trajectory locations every 30 minutes, 

while meteorological information, including mixing ratio, humidity, potential 

temperature, air temperature, solar insolation were calculated every 3-hours. RIP4 did 

not include latent heat flux as a variable and thus WRF simulated latent heat flux was 

calculated for the GOM basin, using a 48-hour average prior to the trajectory end time, 

t0 (the time that the trajectory enters the freezing precipitation zone).  

Ideally, a set of ensemble trajectories in both altitude and location should be 

generated to account for local variability and/or model uncertainty in the wind field. 

The technique would potentially provide more accurate assessment of flow fields into 

the warm layer (e.g., Fuhrmann 2011). Given time constraints, this methodology was 

not used, but remains a potential avenue for future research. The reader may refer to the 

appendix to this chapter (and chapter 7) to compare the path of the calculated 

‘instantaneous’ trajectories to an example RIP4-generated ensemble. Trajectories were 

calculated at 975 hPa (near surface), 850 hPa (warm layer), 725 hPa (~top of warm 

layer) and 500 hPa.  
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6.5.1 Central Oklahoma: 12 UTC December 9 

Near-surface trajectories (975 hPa, not shown) indicated negligible influence of 

SST perturbations on path and altitude. All simulations produced southeastward 

advection of air parcels from South Dakota through Missouri between t-96 (96-hours 

before trajectory endpoint) and t-24, subsequently curving southwestwards before 

entering the precipitation region from the north-northeast. Trajectory altitudes suggested 

gradual descent over this time from near 1.2 km to 0.4 km (above sea level, AMSL). 

This movement aided gradual warming of the air parcel from near -10oC at t-96, to -2oC 

at t0. Furthermore, the air parcel generally remained within a humid environment.   

Air parcels terminating at 850 hPa level, shown in Fig. 6.21, generally indicated 

direct northward flow from the western GOM, with the exception of CLIM at this 

specific time. A brief examination of the CLIM trajectory in the subsequent 6 hours (not 

shown, but see appendix for ensemble spread) revealed that a direct GOM trajectory did 

eventually evolve. The continent-based CLIM trajectory circulated over a region of 

relatively warm and moist air, whilst remaining within the PBL throughout its duration 

before ascending into the precipitation domain (the magnitude of this change in height 

with time indicates strength of vertical motion). GOM air parcels remained generally 

near the surface over the open ocean, with the exception of HI, which moved aloft over 

the Yucatan Peninsula between t-96 and t-72 (it should be noted that the uncertainty in 

trajectory location increases with time from t0). The air parcels moved onshore between 

t-24 and t-30, with HI advecting slightly more rapidly (onshore at t-21).  

Meteorological characteristics of the 850 hPa layer were examined by evaluating 

temperature, humidity and precipitation following the air parcels in Figure 6.22. The air 
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temperature and θe timeseries (Fig. 6.22, top) show that GOM trajectories were 

associated with very warm temperatures and high moisture content (mixing ratios > 12 

gkg-1, not shown), with maximum θe (air temperature) values near or in excess of 340 K 

(20oC) over open water. Latent heat flux into the air parcel was generally weak (Fig. 

6.21), but did increase over the western basin with increased SST, maximizing near 100 

Wm-2. Strong latent heat flux (e.g., > 200-300 Wm-2) might occur in circumstances 

where a cold or dry airmass advects over the warm water, however neither is true for 

GOM trajectories shown here. Thus, the dominant mechanism by which these air 

parcels maintained heat and moisture appeared to be adiabatic (e.g., turbulent mixing), 

with localized diabatic modulations (e.g., solar heating, precipitation, and latent heat 

flux).  

Between t-48 and t0, the altitudes and location of all perturbed SST GOM 

trajectories were similar, isolating the role of the SST distribution. Fig. 6.22 (top) 

showed higher temperature/θe during this time for HI and P2, which both have > +1.5 K 

SST anomalies in the western GOM (Fig. 6.21). The higher θe near t-36 for HI was due 

to its more southerly location. LO and M2 exhibited similar temperatures at this stage 

(potentially due to the ~100 m higher altitude of LO, and its slightly northerly location 

with respect to M2), which decreased with time, rather than remaining quasi-steady as 

for HI and P2. The lower SSTs in these latter cases yielded a maximum difference of 

~20 K (~8oC) for θe (air temperature) relative to HI and P2 (Fig. 6.22, top). In the final 

12 hours, θe and mixing ratio (not shown) decreased at a greater rate for HI and P2, 

manifested as increased precipitation at this location (Fig. 6.1, 6.22, bottom). The 

warm/moist conditions over the southern U.S precluded a sharp decrease in moisture 
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content as the air parcel moved over land. For CLIM, its continent based path produced 

much lower initial temperature/θe, but as the air parcel moved southward, it gradually 

moderated to the regional environment. In the final 24-hours moisture and temperature 

rapidly increased as the trajectory looped anticyclonically over north central Texas. The 

sharp rise in θe implied a diabatic heating contribution, possibly enhanced sensible heat 

flux during peak solar insolation.  

The 725 hPa endpoint, shown in Figure 6.23, followed air parcels incident to the 

upper portion of the warm layer. While t-96 to t-48 trajectory locations showed 

variability between scenarios, the final 48-hours were generally consistent. The air 

parcels moved northeastward aloft from the subtropical eastern Pacific, descended to 

~2.5-3.5 km over the Mexican Plateau, and into southwestern Texas at altitudes near 1.5 

km, finally ascending northwards to the precipitation zone. The trajectories attained 

their maximum temperature in the warm air over southwestern Texas, while minimal 

changes in θe occurred over the 96-hours (not shown). In general, θe was ~3 K greater 

for P2 and HI, with this difference largely explained by altitude.  

The effect of GOM SST was only discernable as a modest increase in mixing 

ratio at this level (e.g., Fig. 6.23). By referring back to the thermal profile shown in Fig. 

6.6 (sec 6.2.2), it was apparent that the temperature profile of the upper warm layer was 

primarily associated with trajectory evolution shown here, that is, the northeastern 

advection of a warm, comparatively dry airmass from the Mexican Plateau. Since this 

airmass was not strongly affected by temperature, moisture or circulation changes 

promoted by SST, it was likely responsible for the layer of stability that developed in 

M2 and LO as the 800-850 hPa layer temperature was reduced.  
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Figure 6.21: Top: 850 hPa back trajectories, valid 12 UTC December 9 during the first 
convective episode. Each trajectory displays triangular markers at 3-hour intervals, with 
intersecting green line at T-24 and T-48. Overlaid on each panel is the SST anomaly 
field relative to climatology (CLIM displays full SST), with 48-hour average latent heat 
flux (Wm-2) ending at 12 UTC (black contoured lines), and 850 hPa mixing ratio (blue 
dashed lines) at intervals of 1 gkg-1 (>5 gkg-1).  Bottom: Time series of trajectory 
altitudes for each SST simulation.  
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Figure 6.22: Top: timeseries of air temperature (solid lines, oC), and θe following the 
trajectory for each SST simulation ending at 850 hPa in the warm layer. Bottom: 
relative humidity (solid lines, %), and precipitation (bars, mmhr-1). The color key is the 
same as that of Fig. 6.21 (bottom), that is: red = P2, maroon = HI, black = REAL, green 
= CLIM, light blue = LO, dark blue = M2.  
 
 

At the 500 hPa level (not shown), trajectory paths for each simulation were 

visually identical. The strength of the mid-level jet stream as evident, with the trajectory 

curving southeastward at t-48 over the eastern Pacific, southeast to Baja California at t- 
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Figure 6.23: Top: 725 hPa trajectory paths for each SST scenario. Trajectories 
displayed as in Fig. 6.22. Air temperatures (filled contours) averaged over 48-hours 
ending at 12 UTC 9 for the 650-850 hPa layer, while mixing ratio (blue dashed lines) 
estimated over the same time and layer. Bottom: timeseries of trajectory altitudes for 
each SST simulation.  
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24, and northeastward into the domain. The altitude of the air parcels remained within 

5-6 km AMSL. At this time, mid-level moisture was low along the direct path (RH < 

30%), which may have contributed to intensify instability through increased lapse rates.  

 

6.5.2 Central Oklahoma: 12 UTC December 10 

At this time, convective freezing precipitation had redeveloped over central 

Oklahoma. The 975 hPa trajectories (not shown) continued to remain consistent 

between SST simulations, and indicated stronger advection of cold air, based on the air 

parcel origination location of Canada at t-96. The altitude change was once again 

characterized by descent from initially ~1.5 km AMSL, while air temperature was 

gradually modified through adiabatic compression and modification, ultimately 

remaining similar in magnitude to that of the previous morning (Sec. 6.5.2).   

The 850 hPa layer trajectories, shown in Figure 6.24 now suggest little change 

between simulations with respect to path. Air parcels moved northwestwards from the 

Caribbean into the central GOM, subsequently northwards over central Texas to the 

freezing rain region. Trajectory altitudes identified that air parcels continued to spend 

extensive time within the marine PBL. Consequently, high maximum air temperature 

and θe persisted, and even slightly increased relative to December 9 (Fig. 6.25). The 

higher trajectory altitude of M2 and cooler SST field produced the lowest total 

moisture/temperature. By t0, these distinctions were reduced, possibly increased 

moisture content with higher SST being converted to higher vertical 

velocity/precipitation and warm layer cooling due to enhanced melting rates. 

Interestingly, HI did not show increased air parcel temperature over REAL etc, 
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especially in the final 36-hours, instead maximizing near t-48 associated with its 

movement over anomalously warm SST in the northwestern GOM. The slower 

northward movement of the air parcel lead to HI (and P2) spending more than 36 hours 

over the southern U.S, whereas accelerated flow for M2, LO, CLIM and to a lesser 

extent REAL moved air parcels onshore near t-27 to t-24, and thus more time over the 

open ocean, mitigating the differences due to SST distribution at this time. Once 

trajectories for LO, M2 and CLIM moved onshore they more rapidly decreased in θe 

and temperature. The humidity profile (Fig. 6.25, bottom) displayed high values 

throughout the trajectory path, along with frequent precipitation after t-24.  

At the 725 hPa layer, shown in Figure 6.26, trajectories shifted eastward with respect to 

the first convective period, likely in response to movement of the upper trough. Air 

parcels were located over the far western GOM, with t-96 to t-48 marked by track-

dependant altitude changes, while by t-48 (southwestern GOM), air parcels move 

northward near 1.5 km AGL, gradually ascending onshore and aloft of the frontal zone. 

This track increased layer θe relative to the first convective period, resulting from 

moistening and air parcel temperatures reaching 20oC over the basin (~t-36). This 

trajectory thus demonstrated the origins of increased layer tropospheric moisture 

observed for the second convective episode. Furthermore, increased mixing ratio was 

also indicated at the 500 hPa level (not shown), where the southeastward digging of the 

broad trough allowed for a deep plume of moist air (700-500 hPa average > 4 gkg-1) to 

extend at mid-levels from the subtropical Pacific. Trajectories were now orientated 

along this axis, air parcels moving from ~2 km above the subtropical Pacific over 
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Mexico into the domain, albeit ascent and precipitation over the windward side of the 

Mexican plateau slightly reduced available moisture to the SGP.   

 

 

Figure 6.24: As Fig. 6.21, for 12 UTC December 10.  
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Figure 6.25: As Fig. 6.22, for 12 UTC December 10.  
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Figure 6.26: As Fig. 6.23 for 12 UTC December 10.  
 

6.6 SST Impacts to Ice Storm Severity  

Based on these results, there was discernable influence of GOM SST 

perturbations on the evolution of the December 2007 ice storm. This chapter provided 

detailed physical interpretation of the processes that were key to translating the SST 
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anomalies into changes in precipitation and warm layer evolution. Given that simulated 

ice accumulations did not well represent the actual event (e.g., chapter 5, sec 5.3, 5.4), 

we refrain from a more detailed assessment of potential impacts. In the next chapter, the 

better spatial agreement for freezing precipitation allowed for firmer conclusions. 

Nonetheless, with reference to the ‘REAL’: 

• Lower SST gradually reduced convective activity, particularly on December 9. 

While LO weakened convection, M2 produced a substantial decrease. In fact, 

according to M2, the first round of freezing precipitation was very light (< 10 

mm over 24 hours), particularly against the moderate intensification of ice along 

the central axis for HI and P2. These differences in the timing of icing might 

have limited infrastructural and socioeconomic disruption on December 9 with 

strongly negative SSTA. Weak negative SSTA relative to control produced a 

more minor but still discernable decrease in central axis ice accumulations (e.g., 

CLIM).  

• December 10 produced a more northern zone of icing for very low SST, leading 

to a comparatively weak ice storm for central Oklahoma. LO, CLIM, REAL and 

HI generally had similar total accumulations, with changes in location. HI for 

example, had a more westward maxima in freezing precipitation during this 

time. P2 showed an intensified southern branch of the central axis, but in general 

the increase in total precipitation (ice) was small. We might suggest that only 

slight exacerbation of disruption would have been anticipated on this day for 

strongly positive basin-wide SSTA, especially within the physically constrained 

magnitudes of this present climate.  
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Chapter 7: SST Sensitivity Study for the January 28-30 2010 Winter 

Storm 

 

7.1 Introduction 

Chapter 6 presented the impact of SST modulation on the December 9-11 2007 

ice storm. The suite of simulations revealed that by increasing the average temperature 

of GOM SST, moisture potential and precipitation regionally increased, particularly for 

the first episode of convection on December 9. The SST perturbations also produced 

low-level circulation changes, including weakening with time of the low-level south-

southwesterly flow resulting from a reduced geopotential height gradient over the SGP 

for high basin-wide positive SSTA. Freezing rain was generally most sensitive to 

moisture content changes, and negative SSTA (e.g., M2), which stabilized the lower-

troposphere and produced a sharp decrease in convective updraft strength and spatial 

coverage.  

In this chapter, we present the results of the SST perturbation analysis for the 

January 28-30 2010 winter storm, an Ice Pattern 1 event. The synoptic-dynamic 

evolution of this event was notably different to the former case study. The goals and 

organization of this chapter are similar to chapter 6.  

 

7.2 Precipitation Accumulation and Phase Partitioning  

7.2.1 Total accumulation  

Figure 7.1, 7.2, and 7.3 display 48-hour accumulated precipitation, valid 00 

UTC 28 to 00 UTC 30 January for freezing precipitation, rainfall, and snowfall 
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respectively. The simple technique (Bourgouin 2000) used to obtain these phase 

delineations was discussed in chapter 6.  In this case, because the event cycled through 

multiple precipitation type, we estimated an ‘upper limit’ for the freezing rain (FZRA) 

component.  This was derived by assuming that when IP was detected by the algorithm, 

and the surface temperature was above -5oC, half of it fell as FZRA, while when a mix 

or FZRA was detected, all was in the form of FZRA. Simulated precipitation (REAL), 

including freezing precipitation accumulation, was found to be in reasonable agreement 

to observations, particularly for Oklahoma, using the above assumptions (e.g., chapter 

5, sec 5.5, chapter 4, Fig. 4.16). In addition to the figures, Table 7.1 (in the form of 

Table 6.1, chapter 6) quantitatively examined WRF simulation responses to varying 

SST.  

For freezing precipitation (FZRA/ IP, Fig. 7.1, Table 7.1 parenthesis), results 

suggested both magnitude and location changes between simulations. Cooler basin SST, 

particularly M2, reduced accumulations over southwestern Oklahoma and displaced a 

maxima southwest to Lubbock, TX. Icing over Arkansas especially was notably weaker 

than REAL and shifted 1-2 counties southward. Using the 75th percentile of the control 

FZRA/IP distribution as a threshold (~13 mm), the spatial retraction of affected grid 

points was near 12% (rapidly decreasing to -67% above 20 mm, not shown). 

Furthermore, decreases in freezing precipitation intensity were marked at 58% above 

2.5 mmhr-1. LO (REAL-0.61 K) and REAL were visually similar (within 4% for all 

accumulations above 5 mm, base of Table 7.1), but with reduction in peak 

accumulations (e.g., > 40 mm) for the former. Both cases produced the maximum in 

precipitation over southwestern Oklahoma on January 28, but with LO further 
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southwest. REAL indicated a narrow swath of higher freezing precipitation totals in 

southwestern Arkansas on the 29th, while LO weakened and shifted this zone westward. 

Interestingly the 75th percentile icing broadened spatially (+5.6%, Table 7.1), with weak 

(< 5%) positive response against REAL for total precipitation accumulation and 

moderate precipitation rates.  

For CLIM (REAL+0.85 K), precipitation over southwestern and west central 

Oklahoma appeared to intensify, evidenced by the broader area of above 50 mm totals. 

Meanwhile over Arkansas the south-central portion of the state showed peak 

accumulation, with eastward extension and northward shift. Compared to REAL there 

was an 11% increase in grid point extent above 75th percentile and an 18% increase > 

2.5 mmhr-1.  HI (REAL+1.69 K) and P2 showed a change in peak accumulation 

morphology with a longitudinal extension from southwest through central Oklahoma. 

The latitudinal breadth of this region also contracted relative to REAL, CLIM and LO. 

In the eastern domain, HI showed a similar location but greater total accumulation to 

REAL, while P2 displayed increased icing to east-central Arkansas. Quantitatively both 

P2 and HI increased spatial extent (75th percentile) by 16%, 11.5% respectively. Above 

20 mm P2 dropped to 5.5% while HI increased to 12.5% evidencing P2 grid point 

reduction in peak accumulation (supported visually, Fig. 7.1). Both also revealed 

increased precipitation intensity (~18 and 24% respectively).  

Storm total rainfall (Fig. 7.2, Table 7.1) showed that warmer scenarios, in 

particular HI and P2, increased the spatial extent of 50+ mm accumulation. Table 7.1 

provides further support. The number of grid points of accumulation above the 75th 

percentile for rainfall (~30 mm) and summed hourly totals were both increased, 
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especially for P2. Conversely, LO and M2 reduced spatial extent and total 

accumulations. The southwesterly contracted rainfall shield was visually apparent for 

M2. For snowfall (Fig. 7.3, Table 7.1) M2 produced greater amounts over much of 

central, southern and eastern Oklahoma, and through all but southeastern Arkansas. The 

northward shift of snowfall was apparent with the warmest SST simulations (HI, P2) 

yielding light snow or snow-free conditions central OK through central AR. Locations 

of relative maxima also changed. In a general sense, and over Arkansas in particular, an 

eastward shift in the heaviest snowfall was indicated for HI and P2. The values in Table 

7.1 implied weakened intensity but broader spatial coverage when SST was reduced 

(e.g., M2), while both overall intensity and extent decreased as SST increased 

(especially P2).  

Finally, Table 7.1 (bottom) also included percentage changes from control for 

all phase types (‘total’). While the spatial coverage of total precipitation was not 

markedly different between simulations, differences at the 75th percentile (~45 mm) 

were more distinct, especially for P2 (+32%) and M2 (-37%).  Accumulations for all 

phases increased between 3-9%, and 7-15% (> 2.5 mm hr-1) for CLIM, HI and P2, 

while LO and M2 indicated a -6 and -20% difference, and -13%, -38.6% for rates above 

2.5 mm hr-1 respectively. When referencing HI and LO to the climatology 

(HI=CLIM+0.84, LO=CLIM-1.46), negative changes in extent and accumulations for 

LO (-25, -10, -20% three left hand columns respectively) were greater than positive 

changes for HI (+17, +0.7, +0.8%), even after accounting for the proportional 

differences in SST (for all but grid point extent and assuming linear changes). Like the 

results of chapter 6, precipitation response to SST was seemingly greater as SST  
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Table 7.1: As Table 6.1 in chapter 6, but for the January 2010 case study, using the 
designation of FZRA/IP as discussed in the text (sec. 7.2). *The number of FZRA/IP 
gridpoints is accumulation > 5 mm, which was chosen since no portion of the domain 
had zero accumulation. Upper quartile of each phase type and all phase distributions 
used as measure of upper distribution change without compromising too much of the 
sample size: ice = 13 mm, rain = 30 mm, snow = 20 mm, and all phase (total) = 45 mm.  
 

 

Type # Grid Points* 
(# > 75th percentile 

Accum.) 

Total Sum of hourly 
Accum. (1)  x104 mm 

Total sum  
Accum. > 2.5 mm 

hr-1 (2) x104 

Ratio 
(2)/(1) 

 
REAL Domain 3    
FZRA/IP 25863 (12903) 31.4 14.1 0.45 
RAIN 33770 (13670) 49.9 37.4 0.75 
SNOW 22579 (8169) 17.6 6.1 0.35 
CLIM     
FZRA/IP 27150 (14336) 34.8 16.7 0.48 
RAIN 33948 (13634) 51.4 38.8 0.76 
SNOW 21304 (6592) 16.4 6.4 0.39 
P2     
FZRA/IP 24901 (15002) 32.7 16.6 0.51 
RAIN 35851 (17361) 60.7 45.3 0.75 
SNOW 21893 (4000) 14.0 4.6 0.33 
M2     
FZRA/IP 23947 (11373) 23.8 5.9 0.25 
RAIN 28696 (10896) 37.7 26.5 0.70 
SNOW 25928 (5307) 16.7 3.0 0.18 
HI     
FZRA/IP 26208 (14391) 34.4 17.5 0.51 
RAIN 34495 (14353) 52.8 38.8 0.73 
SNOW 21267 (6266) 16.1 6.0 0.38 
LO     
FZRA/IP 24982 (13627) 32.4 14.3 0.44 
RAIN 30850 (12161) 44.0 31.7 0.72 
SNOW 22577 (6481) 16.7 4.3 0.26 
Total  
(IP/FZRA)  

Departure from 
REAL (%) 

   

CLIM +0.23 (+5.00) 
+7.00 (+11.34) 

+3.75 (+10.81) +7.32 (+18.42)  

P2 +0.53 (-3.72) 
+32.18 (+16.27) 

+8.66 (+4.31) +15.27 (+17.87)  

M2 -4.43 (-7.41) 
-36.59 (-11.86) 

-20.90 (-24.25) -38.55 (-58.00)  

HI -0.29 (+1.34) 
+23.66 (+11.53) 

+4.41 (+9.51) +8.08 (+24.31)  

LO -4.63 (-3.41) 
-18.18 (+5.61) 

-5.85 (+3.18) -12.88 (+1.45)  
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Figure 7.1: 48-hour accumulated freezing precipitation (FZRA, IP) for 00 UTC 28 – 00 
UTC 30 January 2010 for WRF-ARW domain 3 for each SST simulation, denoted by 
the textbox. REAL is highlighted by the red box. State and county boundaries are 
overlaid.  
 

 

Figure 7.2: As Fig. 7.1 for 48-hour accumulated rainfall (mm). 
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Figure 7.3: As Fig. 7.1 for accumulated snowfall (mm)  
 

reduced from a control.   

 

7.2.2 Radar reflectivity, and changes in precipitation intensity.  

The methodology and rationale for the reflectivity distribution analysis was 

described in chapter 6 (Sec. 6.2.2). Here, the whole domain 3, and a zone over 

west/southwest Oklahoma were evaluated in Figures 7.4 and 7.5 respectively. The most 

interesting results are in the tails of the distribution. Radar reflectivities above 20 dbZ 

increased with increasing SST for the whole domain (Fig. 7.4), with very little 

difference between HI and P2, and a greater response to M2. For southwestern OK (Fig. 

7.5), the M2 case yielded a large negative change (-70%) in reflectivity, attributed to the 

southward displacement of the heaviest precipitation. CLIM, HI, P2 all produced 

increased frequency at or above 35 dbZ reflectivity by 25-29%, with the greatest 

increase for CLIM. From Fig. 7.1, it is evident that the bulk of the highest (mixed 
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phase) accumulation remains in the southwestern quarter of Oklahoma (approximate 

location of domain used) for CLIM, but extended northeastward with HI and P2. As an 

example of the simulated reflectivity values from the WRF-ARW, Figure 7.6 shows the 

location of precipitation at 18 UTC 28 (12 noon CST). The figure clearly displays the 

larger and more intense precipitation shield for CLIM, HI and P2.  

 

7.3 Thermal Profile 

The evolution of the warm layer for this case study was introduced in chapter 4. 

Observations showed warm layer inversion development in the 12-hours prior to the 

initiation of precipitation (00-12 UTC January 28), as subfreezing air filtering into the 

region at the surface. The effect of SST on the thermal profile was investigated in the 

same fashion as chapter 6, sec 6.3 for two locations: southwest Oklahoma (Figure 7.7 

7.8), and west-central Arkansas (Figure 7.9, 7.10).  

 

7.3.1 Southwestern Oklahoma 

Fig. 7.7 displays EMP and EFP for 12 UTC 28-12 UTC 30 January at 1-hour 

intervals. The non-zero EFP at 12 UTC (t12) indicated conditions suitable for mixed 

phase precipitation. According to results in chapter 2, and prior literature, greater EMP 

relative to EFP indicates an environment favorable for freezing rain over ice pellets. 

Such conditions were ongoing from t12-t20 for all SST scenarios, with the area between 

the EMP and EFP contours over this time typically greater for P2, HI and CLIM. 

Between t20 and t30 (20 UTC 28-06 UTC 29), REAL revealed a brief (< 2 hour) 

absence of a warm layer. This abrupt change in the thermal environment was well  
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Figure 7.4: Simulated equivalent radar reflectivity histograms (> 20 dbZ) showing the 
change in frequency for each SST scenario with respect to REAL for all domain 3. The 
percentage value in parenthesis denotes the relative change in frequencies > 35 dbZ.  
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Figure 7.5: As Fig. 7.4 but for central-western Oklahoma bounded by 34.2-35.7oN, -97 
to -99.5oW.  
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Figure 7.6: WRF-simulated equivalent radar reflectivity (dbZ) for each SST scenario 
valid at 18 UTC January 28. REAL highlighted by the red box. The observed composite 
reflectivity is shown on the right hand panel for the same domain. Note the difference in 
color-scheme for the observed case.  
 

timed to increased precipitation rates (> 4 mmhr-1), potentially cooling the inversion 

(not shown). The precipitation increase was on the northern edge of a developing linear 

convective line propagating east-southeast over Texas. The resulting mesoscale 

circulation (e.g., surface cold pool, low-level rear inflow jet) temporarily disrupted 

warm southerly flow into the freezing precipitation region.   

During t24 and t30 the warm layer reestablished but not to its initial magnitude, 

and was co-located with a gradual increase in EFP due to a deepening refreezing layer. 

After t30, REAL EMP declined with complete erosion by t40. This pattern was more of 

less replicated by LO and M2.  In the latter case, the warm layer was absent between 
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t24 and t28. Between t24-t30, EFP overtook or equaled EMP in magnitude, indicative 

of an environment potentially more conducive to ice pellets (e.g., REAL, LO, M2). 

CLIM and HI displayed the longest duration thermal profile for freezing rain between 

t12 and t30. The initially pronounced inversion for P2 (between t12 and t20) declined 

rapidly by t22, concurrent with heavy precipitation (not shown). An enhancement in 

EFP t20-t30 suggested a briefer window for purely freezing rain at this location.  

Figure 7.8 is analogous to Fig. 7.7, except maximum (minimum) air 

temperatures at the 850 hPa (surface) layer are displayed. Between t12-t20 warm layer 

temperature was generally consistent between scenarios. The negative SSTA LO and 

M2 showed only weak recovery of above 0oC temperatures after t30, while REAL 

showed greater temporal persistence. The warm layer of CLIM and HI was not 

interrupted during heavy precipitation, therefore yielding the greatest temporal duration, 

especially CLIM (28 hours, versus 18 REAL, 15 M2, 24 HI). HI also showed the most 

consistent warmth. P2 produced a warm layer as temporally persistent as HI but with 

reduced temperature t20-t36. The surface temperature evolution also showed faster 

decline after t20 for HI and P2 in particular (decreases below -5oC at t30, t26 

respectively), while M2, LO cooled more gradually (t50, t44 respectively). Apart from 

precipitation and mesoscale dynamics, these thermal responses are possibly tied to the 

progression of the 850 hPa low circulation and surface pressure field, explored in sec 

7.4. 



 242 

 

Figure 7.7: Timeseries of environmental melting potential (EMP, red), and freezing 
potential (EFP, blue) in oCm valid for 34.9-35.3 oN, and 97.4-98oW between 12 UTC 
January 28 (T12) and 12 UTC January 30 (T60).  
 

 

Figure 7.8: As Fig. 7.7 for maximum 850 hPa warm layer air temperature (red) and 
minimum surface temperature (blue). Area > 0oC shaded to aid interpretation.  
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7.3.2 Western Arkansas  

  Figures 7.9 and 7.10 display EMP/EFP and air temperature 

characteristics of the warm and refreezing layers respectively for west-central Arkansas. 

In this region, freezing precipitation primarily occurred on January 29 (t24-t48). From 

t12 to t20, EFP = 0, and therefore no refreezing layer was present. For REAL, EMP 

exceeded EFP between t30 and t42, with the timing of warm layer development 

differing for the simulations in a more pronounced manner than observed for Oklahoma 

(e.g., Fig. 7.1). For M2, a very weak inversion (EMP < 500 oCm) developed between 

t24 and t38, while the EFP ranged from 9000-3000 oCm over the same period. This 

would likely favor IP and snow over freezing rain. The evolution for LO and REAL was 

generally similar, showing the most prominent inversion t30-t40. CLIM, HI and P2 

revealed a deeper and earlier forming warm layer at t20. The period wherein EMP 

exceeded EFP ranges from t28-t42 (CLIM), to t20-t44 (HI, P2).  

Figure 7.10 further reinforced assertions made above, and demonstrated 

pronounced change in warm layer (850 hPa) temperature and temporal duration with 

SST, confirming the sensitivity of freezing rain potential to SST for this location. The 

specific warm layer qualities are not necessarily in linear relationship with basin 

average SST. For example, LO evidenced slightly higher warm layer temperature, while 

HI showed greater duration with temperature > 3oC compared with P2. These variations 

may be in part due to precipitation intensities in addition to dynamical differences, and 

possibly a greater contribution from regional SSTA within the fetch of this location (sec 

7.5).  
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Figure 7.9: Timeseries of environmental melting potential (EMP, red), and freezing 
potential (EFP, blue) in oCm valid for 34.7-35.0 oN, and 93.2-93.7oW between 12 UTC 
January 28 (t12) and 12 UTC January 30 (t60).  
 

 

Figure 7.10: As Fig. 7.9 for maximum 850 hPa warm layer air temperature (red) and 
surface temperature (blue). Area > 0oC shaded to aid interpretation.  
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7.3.3 Cloud and radiation  

Figure 7.11 shows the change in cloud cover with SST, valid for the ACRF-SGP 

(Lamont, OK) in order to be directly comparable to the observed cloud profile shown in 

chapter 5. The magnitude of total mixing ratio (proxy for cloud), and its vertical 

penetration increased with increasing SST during hours 15-30. Furthermore, after hour 

30, a more notable decrease in cloud cover was implied for HI and P2, especially for 

mid-high cloud. In contrast, M2, LO and REAL suggested precipitating cloud through 

hour 50. This provides further evidence of a dynamical change with SST resulting in 

more rapid eastward movement of precipitation. Consistent with Figure 7.11, longwave 

and shortwave radiation components (not shown) for the same location support 

increased (decreased) shortwave (downward longwave) radiation for lower SST 

(especially M2), while a domain 3 average evidenced reduced solar radiation for 

positive SSTA on January 28, and increased radiation on January 29.  

 

7.4 Moisture and Dynamics 

 So far in this chapter we have demonstrated a robust response of precipitation 

and warm layer characteristics to the six SST simulations described in chapter 4. For 

this case study, results show more similarity to Ramos De Silva et al. (2006) in the 

warmer and earlier-forming warm layer response to increased SST. However our work 

also revealed differences in location and intensity of precipitation that the 

aforementioned study did not specify. Here, dynamical evolution indicated precipitation 

primarily in response to strong warm air and moisture advection aloft and north of a 

near stationary surface cold front and in the northeastern quadrant of an 850 hPa low. 
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Figure 7.11: Sum of rain, snow, graupel, ice and cloud mixing ratios as a proxy for 
cloud cover valid over ACRF Lamont for all SST scenarios (REAL highlighted by a red 
box). The x-axis of each panel shows time (hour) from 00 UTC January 28, while the 
vertical axis shows height in km above ground.  
 

This circulation and attendant precipitation translated eastward and centered over 

northwestern Texas early on January 29. The approaching trough axis overtook the 

surface quasi-stationary front near the Gulf coast and intensified a weak low 

perturbation into a surface low-pressure system, however by this time the potential for 

mixed-phase precipitation had departed the SGP. The role of SST in producing 

dynamical changes to the movement and strength of this system is now considered. 

Figure 7.12 displays a hovmuller diagram of sea level pressure difference from 

REAL, calculated over 30-38oN in latitude. The diagram tracks the longitudinal 

movement and intensification of a weak open wave surface low with time (12 UTC Jan 

28-12 UTC Jan 30). When comparing the ‘extremes’, M2 and P2, it is apparent that P2 
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(M2) lowered (raised) mean sea level pressure by up to 4-6 hPa relative to REAL, with 

the other simulations generally falling monotonically within these evolutions. Although 

the location center of the developing low-pressure did not change, the central pressure 

changes were confirmed by plotting SLP every 2 hours over the domain for the duration 

of the event (not shown).  

Examination of model 500-850 hPa thickness and pressure falls shown in Fig. 

7.13 further confirmed the intensification of the low, especially in P2 and HI. The 

equation below for QG thickness tendency (Lackmann 2011, eqn. 5.6) can be used to 

provide insight into these findings:  

 

  

€ 

∂[T]
∂t

= −
 

V g1000∇[T]+ω(Γad −Γenv ) + [ Q
Cp

]                (7.1) 

 

Where thickness tendency (left hand side) is related to the advection of thickness by the 

geostrophic wind (first term on the right hand side), a term composed of the difference 

between observed and adiabatic lapse rates, multiplied by the vertical velocity (second 

RHS), and the net diabatic heating/cooling in the air column (third RHS).  

For each simulation, the mid-level trough did not vary discernibly in its location 

and amplitude (not shown). Therefore, the dominant changes resulting from the 

imposed SST fields were likely in response to lower tropospheric thermodynamic 

changes. The warmer surface environment over the far southern U.S and GOM 

promoted by a warmer GOM was linked to an increase in latent heat flux (see next 

section), and low-level warm air advection (Fig. 7.13). It is anticipated that this warmer 
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and moister near surface layer decreased low-level static stability. This assertion was 

investigated by plotting cross sections of static stability at 2-hour intervals from the 

northern GOM to the Oklahoma Panhandle using domain 2 (not shown). It was apparent 

that layer static stability was reduced above 850 hPa as SST increased (see also Fig. 

7.16). This promoted decreased resistance to pressure falls, primarily through 

weakening of RHS term 2 in Eqn. 7.1. Term 2 typically acts as a brake to development, 

as increased vertical velocity (ω) acts against thermal advection. For moister, warmer 

conditions, term 2 is reduced, as a saturated airmass yields use of the saturated adiabatic 

lapse rate, which is smaller than the comparable unsaturated magnitude.  

 

Figure 7.12: Longitude-time hovmuller diagram of sea level pressure (SLP) averaged 
over latitude band 31-38oN. Each scenario other than REAL is expressed as a difference 
from REAL in hPa, while full SLP for REAL is displayed. The y-axis shows the time 
from 12 UTC January 28, ending at hour 48 (12 UTC January 30).  
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Figure 7.13 highlights the increase (decrease) in low-level thickness and 

pressure falls ahead of the surface and 850 hPa low when SST was increased 

(decreased). The signal for the 850 hPa circulation may be more evident from this 

figure, which indicated a northeastward displacement in the warmer SST cases, toward 

the location of greatest positive thickness advection. Positive 500-850 hPa thickness 

implies a reduction in surface-850 hPa geopotential height, with a greater magnitude of 

this parameter suggestive of a deeper attendant circulation. This result is consistent with 

baroclinic energetics. We calculated a measure of baroclinic instability using the Eady 

parameter (growth rate, day-1, not shown) given by Graff and LaCasce (2014). Zonal 

and time averaged magnitudes plotted as a function of height, latitude evidenced 

northward (southward) displacement in the maximum for P2 (M2), and an 

intensification for the former, particularly ~850 hPa (+0.6-0.8 day-1 versus REAL, near 

3NoN, compared with +0.4-0.6 day-1 at ~750 hPa near 32oN for M2). The thermal 

gradient and associated baroclinic instability was indistinct between LO and REAl, 

while HI produced a northward displacement to 34oN, but of weaker magnitude, and 

lower vertical penetration. CLIM was similar to HI but further reduced on both counts. 

P2 evidenced a more substantial northward tilt in baroclinicity with altitude. This 

poleward orientation is likely reflective of strengthened positive temperature flux, 

which is necessary for growing disturbances but enhanced in this case. The added 

(reduced) warmth supplied with strongly positive (negative) SSTA implies increased 

(decreased) low-level thermal anomalies (Fig. 7.13), and by conservation of potential 

vorticity increases (decreases) low-level vorticity, and the strength of the circulation. 
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Graff and LaCasce (2014) among others note that stronger systems tend to self-advect 

more rapidly, consistent with our observation.  

Figure 7.14 and 7.15 show the magnitude of the column integrated moisture 

transport, based on equation 6.1, given by Ressler et al. (2012) averaged 12 UTC 28 – 

00 UTC 29 (Fig. 7.14), and 12 UTC 29 – 00 UTC 30 (Fig. 7.15). Also displayed are 850 

hPa winds (ms-1), and mixing ratio (gkg-1). The results suggest that the column 

integrated vertical moisture transport increased, generally monotonically, with 

increasing basin SST. For example, in Fig. 7.14, M2 showed a narrow plume of 5+ gkg-

1 mixing ratio at low-levels with a moisture transport of 3.5x102 kgm1s-1 in the warm 

sector, while REAL was associated with higher mixing ratio and moisture transport of 

4.5-5 x102 kgm-1s-1. P2 produced the broadest region of higher mixing ratio, and 5.5-6 

x102 kgm-1s-1 transport. This represents roughly a 40-50% increase between M2 and P2. 

Additionally, the spatial extent of 3x102+ kgm-1s-1 approximately doubled, and the 

location of the maxima shifted east-northeastward, resulting from the previously 

discussed greater height/pressure falls and baroclinicity promoted by the warmer lower 

boundary. Furthermore, average wind speed between approximately 900-200 hPa 

supported increased southwesterly steering flow (not shown). The increased moisture 

transport was at least partially in response to the intensification of a low-level jet east of 

the low, which exhibited a 5-7.5 kt increase (decrease) relative to REAL for P2 (M2), 

based on a 24-hour average of 850 hPa wind speed between 12 UTC 28-29 (not shown). 

The increase was attributed to the drop in SLP and increase in low-level geopotential 

height gradient over the Southern Plains.  
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Figure 7.13: Average 850-500 hPa thickness tendency per 2-hours between 12 UTC 
28-12 UTC 30 January (shaded, in m). 850 – 500 hPa used in place of 1000-500 hPa 
layer due to higher terrain in the west. Sea level pressure average tendencies are 
contoured (black lines), with dashed > 0, intervals of 0.2 hPa per 2 hours.  
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Figure 7.14: WRF domain 2 850 hPa mixing ratio (g kg-1), wind field (barbs, ms-1) and 
900-400 hPa integrated horizontal moisture transport (x102 kgm-1s-1) contoured in red at 
intervals of 0.5 above 3x102 for 12 UTC 28 – 00 UTC 29 January. REAL highlighted 
by the red box.  
 

In order to further examine the diabatic contribution to dynamical changes in the 

system we can use ‘PV thinking’ (e.g., Brennan et al. 2008). Potential vorticity (PV) is 

given by equation 7.2 below:  

 

PV is conserved for frictionless, adiabatic flow, and is a function of absolute vorticity 

and static stability. Lackmann (2011, p. 86-88) suggests that diabatic processes can be 

determined through the appearance of localized, non-conserved cyclonic maxima in the  

(7.2) 
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Figure 7.15: As Fig. 7.14 for 12 UTC 29 – 00 UTC 30 January.  
 

PV field (positive PV anomalies). Lower tropospheric maxima in particular indicate 

diabatic processes associated with layer heating (also indicated by the increased vertical 

separation of potential temperature, θ in the lower troposphere, and an increased low-

level static stability below the level of maximum heating). Commonly this is in 

response to condensational heating and latent heat release during heavy precipitation 

(e.g., Hoskins 1990, Lackmann, 2002, Ludwig et al. 2013). Piecewise inversions of the 

PV field have been calculated by numerous studies to recover wind and height fields 

associated with a given PV anomaly (e.g., Davis and Emanuel, 1991, Stoelinga 1996, 

Lackmann, 2002, Brennan and Lackmann, 2005). Among others, this work 
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demonstrated that low-level PV anomalies can profoundly impact the wind field in their 

vicinity, with implications for moisture transport.   

To determine whether such processes were operating here, we examined the 

spatial distribution of 850 hPa positive PV against radar reflectivity and the low-level 

wind field, shown in Fig. 7.16 for M2, REAL and P2. Furthermore, we evaluate a cross 

section of these variables along an axis roughly perpendicular to the temperature 

gradient over the SGP, valid at 20 UTC January 28 as heavy precipitation moved into 

west-central portions of the state. REAL (center) indicates a region of high low level 

PV (> 2.5 PVU) extending over northwestern Texas, in the vicinity of the center of the 

850 hPa cyclonic circulation and in the wake of heavy precipitation. Furthermore, low-

level cyclonic PV tended to show northward development in the vicinity of strong low-

level condensational heating promoted by precipitation (not shown), suggestive of 

production via latent heat release. Compared to REAL, M2 indicated a smaller spatial 

region of positive PV, potentially resulting from the weaker precipitation intensity north 

and east of the center of circulation. P2 in contrast showed a northerly and easterly 

expansion of high PV into south central Oklahoma. The effect of this anomaly was to 

perturb the low-level wind field, inducing an enhanced cyclonic circulation (Fig. 7.16, 

center, e.g., Ahmadi-Givi et al. 2004). The stronger 850 hPa flow for P2 may therefore 

have been promoted by the expansion of positive PV during heavy precipitation. This 

appears to enable a positive feedback mechanism where increased low-level WAA 

promoted by warmer SST contributed to lowering static stability (e.g., Fig. 7.16, 

bottom) and encouraging ascent, coupled with increased moisture potential enhancing 

precipitation. Increased precipitation promoted diabatic PV generation, which supported 
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the persistence of a low-level cyclonic circulation anomaly, the enhancement of low-

level wind speed, and subsequently moisture transport (e.g., Fig. 7.16 center, Lackmann 

2011, p113). These responses likely further promoted pressure/height falls east of the 

PV anomaly and low-level circulation, aiding in its intensity and eastward movement.  

Though not shown here, further examination of the evolution of the system 

through January 29 supported observations of the event in showing drier air advecting 

into the region late on the 28th, disrupting the precipitation shield. Concurrently to the 

south a convective line developed and moved southeastward. The early development of 

this line can be seen for P2, and to some extent REAL in Fig. 7.16 as positive PV is 

intensified in a north-south orientation. This PV anomaly separates from the region to 

the west associated with the low-level circulation and mid-level trough, and follows the 

convective line, aiding in the enhancement of northward temperature and moisture 

advection to its east and into the mixed-phase region over Arkansas, especially for P2 

(not shown).  

Notably, the reservoir of high stratospheric PV was largely separated from the 

cyclonic low-level PV during the mixed-phase portion of the SGP winter storm (not 

shown). During the passage of the system over the 48-hour period strong cyclogenesis 

was not evident. The aforementioned Eady parameter did not extend through the depth 

of the troposphere, implying no phase lock and strong growth potential with the 

approaching upper trough. Nonetheless, low-level baroclinic instability, height falls 

increased latent heat flux, and moisture transport promoted modest strengthening of the 

850 hPa low, and dynamically induced intensification of precipitation with greater SST 

that appeared to exceed what might have been anticipated from moisture effects alone.   
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Figure 7.16: Multi-panel plot depicting the spatial distribution of potential vorticity and 
associated circulation during heavy precipitation at 2000 UTC January 28 for M2 (left), 
REAL (center), and P2 (right). Top panels show PV in PVU (1 PVU = 10-6 K kg-1m-2s-

1), with black (red) contours below (above) 2.5 PVU at 0.5 PVU intervals. Simulated 
radar reflectivity (dbZ) is shaded, and 850 hPa geopotential height (blue contours) and 
wind vectors overlaid. Center panels show 850 hPa winds and wind speed, with values 
> 20 ms-1 shaded. Equivalent potential temperature (θe) overlaid in black contours 
(intervals of 5 K above 310 K), and potential temperature above (below) 284 K in red 
(blue) at 850 hPa. The 284 K isotherm when reduced to 100 hPa is approximately 273 
K. The bottom panels show a cross section SE-NW through A-B (top center) north of 
the center of circulation and roughly perpendicular to the low-level temperature 
gradient. PV is shaded in PVU, with condensational heating above 2 K hr-1 (red 
contours), and θe in K (black contours).  
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The converse was observed for M2, where the large negative departure in SST 

promoted a weaker circulation displaced to the south, and reduced northward extent of 

warm-moist air, subsequently weakening precipitation rates for Oklahoma/Arkansas, 

while still generally retaining high (yet spatially contracted) precipitation totals over 

Texas where moisture transport maximized.  

 

7.5 Air Mass Trajectories and Meteorological Characteristics  

Similar to chapter 6, 4-day (96 hour) back trajectories are evaluated for two 

times, and in this case, two locations during mixed phase precipitation, that is, west-

central Oklahoma at 2100 UTC 28 January, and southwestern Arkansas at 12 UTC 29 

January. Trajectories were calculated for the near surface (975 hPa), warm layer (near 

850 hPa), 725 hPa, and 500 hPa.  

 

7.5.1 West-central Oklahoma  

During heavy freezing precipitation at 21 UTC (15 CST), the 975 hPa near 

surface trajectory (not shown) supported southward advection of cold air from western 

Canada, with a southeastward movement until t-24 hours, when the trajectory 

decelerated and curved into the freezing precipitation zone from the northeast. Path 

changes with SST were negligible. Temperatures near the surface over the northern and 

central Plains were < -10oC and did not change with simulation, while warmer SSTA 

produced a very slight increase in near surface temperatures over the far southern states 

(< 1oC, not shown). The air parcel southward movement was also marked by gradual 

descent from ~1.5 km AGL (to ~400 AGL), and associated adiabatic warming.  
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At the 850 hPa (warm) layer, shown in Fig. 7.17, each scenario revealed a 

similar trajectory path and altitude change, depicting the gradual descent of 

southeastward moving cold air into the marine planetary boundary layer (PBL) over the 

north central GOM. Subsequent anticyclonic recurvature into the warm sector of the 

developing low, and rapid ascent into the freezing precipitation zone was observed 

(indicative of strong upward vertical motion). This movement is perhaps representative 

of a warm conveyor belt structure (WCB), linked to strong ascent, and poleward energy 

and moisture transport (Fuhrmann 2011, Eckhardt et al. 2004). On average, the air 

parcel spent nearly 28 hours in the GOM PBL, being subject to heat and moisture fluxes 

from the ocean surface. Each panel displays the 48-hour average (t-48-t0) SSTA field 

for the simulation used, 850 hPa mixing ratio, and latent heat flux in Wm-2. Mixing ratio 

in Fig. 7.17 indicates the earlier northward advection from the western GOM, while at 

this time the trajectory was offset to the east of the maxima, associated with the 

progression of the trough. The increase in mixing ratio reflects increased basin SST.  

Meteorological characteristics into the warm layer, including equivalent 

potential temperature (θe) and air temperature, humidity and precipitation, diabatic 

heating/cooling and mixing ratio are plotted in Figs. 7.18, 7.19 and 7.20 respectively. 

The method for estimating diabatic temperature change was provided in Fuhrmann and 

Konrad (2013), calculated as the difference between the adiabatic and observed 

temperature at 6-hour intervals. In Fig. 7.18, increases in θe correspond well to initial 

movement over the GOM from the continent (~t-42). It is expected that the influx of 

moisture associated with latent heating over the ocean produced the observed increase, 

being most notable for warmer SST (CLIM, HI, P2) (see also Fig. 7.19, 7.20). In these 



 259 

cases, the air parcel temperature also markedly increased as the trajectory descended 

over the GOM, while moisture was most rapidly accumulated between t-42 and t-24 as 

it reached its southernmost extent over the northern GOM. The greatest positive SST for 

this region of the Gulf were actually in HI, where the trajectory passed over a region of 

+1-2 K SSTA and 150-200 Wm-2 latent heating. Contrast to P2, where SSTA in the 

same region was closer to +0.5-1 K, producing only a small difference from CLIM, due 

to the generally weak positive anomalies over which the air parcel passed more directly 

(Fig. 7.17).  

For lower SST (REAL, LO and M2) moisture was accumulated at a later stage 

(See Fig. 7.17, 7.18), typically between t-36 and t-30. For M2, the greatest influx of 

moisture occurred at the air parcel’s southernmost point, and also possibly during a 

maximum in solar insolation (18 UTC, 12 CST), with (average) latent heating near 100 

Wm-2. REAL and LO were associated with similar latent heat and temperature profiles 

for the northern GOM, and the increase in moisture appeared to correspond with 

trajectory path over a region of maximum latent heat flux for the region (~150 Wm-2).  

Diabatic changes for the final 60 hours of the trajectory, shown in Fig. 7.20, 

indicate that the initial advection over the GOM was associated with strong diabatic 

heating into the air parcel for P2 and CLIM, weaker positive heating for HI, while 

REAL LO and M2 were only weakly positive or even weakly negative at the stage 

where mixing ratio was increased for these scenarios. This diabatic cooling under a 

regime of rapid moisture accumulation may be related to other effects, such as radiative 

cooling. In the final 6-12 hours, adiabatic and diabatic cooling occurred through ascent, 

switching to diabatic heating likely associated with precipitation condensation, for all 
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but M2. The rapid decrease in mixing ratio was associated with moisture removal via 

precipitation (Fuhrmann and Konrad 2013). End point (t0) mixing ratios remained 

slightly higher for HI, and lowest for M2.  

Trajectory locations and altitudes terminating at 725 hPa (approximate top of 

warm layer) are shown in Fig. 7.21, while 7.22 and 7.23 display select meteorology. In 

each simulation the majority of the back trajectory was over the GOM. Typically this 

was a direct northward movement from the southwestern Gulf, however P2 indicated a 

slow recurvature over the western and central basin. The trajectory altitudes were 

variable, with initially higher altitudes accompanying paths skirting mountainous 

eastern Mexico. Gradual descent occurred for most trajectories between t-24 and t-6 

over the southern U.S, prior to rapid ascent into the precipitation region. These differing 

paths, particularly between t-96 and t-48, also produced more distinct differences in the 

meteorological character of each trajectory (Fig. 7.22, 7.23). Between t-48 and t0, the 

lower altitude of P2 (after t-60), coupled with warm SST basin-wide, produced a 

notable increase in temperature/θe. After t-30, when all trajectories descend below 2 km 

over the ocean, the magnitudes of temperature fell in line with the basin average, that is, 

monotonic increase between M2 and P2, with ~4 K (8 K) difference between these two 

extremes at t0. Due to the extended residence time over the basin, most trajectories had 

relative humidities in excess of 70% through the final 48-hours, decreasing slightly over 

the southern Plains, before increasing as the air parcel ascends to saturation by t0. M2 

was notable for its low relative humidity t-96 to t-12, indicative of a drier air mass aloft 

over the GOM.  
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Figure 7.17: Top: 850 hPa back trajectories into west-central Oklahoma (~35oN, 
98oW), valid at 21 UTC January 28. Each trajectory displays triangular markers at 3-
hour intervals, with intersecting green line at t-24 and t-48. Overlaid is the SST anomaly 
field relative to climatology (CLIM displays full SST), with 48-hour average latent heat 
flux (Wm-2) ending at 21 UTC (black contoured lines), and 850 hPa mixing ratio (blue 
dashed lines) at intervals of 1 gkg-1 > 5 gkg-1.  Bottom: timeseries of trajectory altitudes 
for each SST simulation.  
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Figure 7.18: (TOP): Timeseries of air temperature (solid lines, oC), and θe (dashed 
lines, K) following the trajectory for each SST simulation ending at 850 hPa (21 UTC 
Jan 28). Figure 7.19 (MID): Relative humidity (solid lines, %), and precipitation 
(mmhr-1) along trajectory (color code as in Fig. 7.17, 7.18). Figure 7.20 (BOT): Mixing 
ratio (gkg-1 lines), and diabatic contribution to temperature (bars, 6-hour accumulated 
temperature change) for the final 60-trajectory hours into the 850 hPa layer. Diabatic 
component calculated as in Fuhrmann and Konrad (2013).  
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Figure 7.21: Top: 725 hPa trajectory paths. Trajectories displayed as in Fig. 7.18. Air 
temperatures (filled contours) averaged over 48-hours ending at 21 UTC 28 for the 650-
850 hPa layer, while mixing ratio (blue dashed lines) was estimated over the same time 
and layer. Bottom: Timeseries of trajectory altitudes for each simulation.  
 



 264 

 

Figure 7.22: (TOP) As Fig. 7.19 for the 725 hPa trajectories in Fig. 7.22. Figure 7.23 
(BOT): As Fig. 7.20 but for the 725 hPa trajectories.  
 

Trajectory and altitude profiles for the 500 hPa layer and its meteorological 

parameters were analyzed, but for the sake of space were not displayed. All trajectories 

were over or adjacent to the GOM basin, with the majority of scenarios indicating 
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anticyclonic flow. M2 was associated with flow northward from the Yucatan largely 

over coastal eastern Mexico. This trajectory also remained at high altitude, possibly 

associated with the regional terrain. These circulation differences may have been related 

to the progression of the low. Moisture and temperature characteristics at this level were 

strongly tied to the path and altitude of each trajectory, with M2 notably cooler and 

drier. The long path over the GOM allowed for the accumulation of moisture, which 

was again enhanced with warmer SST. The bulk of the moisture for HI and P2 was 

obtained t-66 - t-18, where θe increased from ~295 K to 330 K (not shown). The times 

where moisture was most rapidly increased by the air parcel also agreed well to the 

trajectory location over a relative maximum in SSTA and latent heat flux.  

 

7.5.2 West-central Arkansas 

Prior sections of this chapter indicated that Arkansas experienced freezing 

precipitation during 29 January, which was sensitive to SST. M2 produced little/no  

accumulation, while HI and P2 showed greater freezing precipitation intensity (Fig. 7.1, 

7.9). At 975 hPa (not shown) the northerly component near-surface flow increased in 

speed. Between t-48 and t-24, air parcels moved from the Canadian border to southern 

IL, thereafter decelerating and curving in a similar fashion as previously observed to 

approach the region from the northeast. The gradual descent of the air parcel was 

consistent with earlier observations, as was the increase in its temperature, albeit less 

modification of the airmass was indicated due to the stronger cold air advection. There 

was once again little change in evolution between simulations, confirming that airflow 

at this level was primarily influenced by the arctic continental airmass.  
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By 12 UTC 29, the maximum temperature within the warm layer was observed 

in REAL to have shifted aloft near 800 hPa, and it is therefore this layer that was 

evaluated instead of 850 hPa shown in Fig. 7.24. At this time and location, the duration 

of curvature of the air parcel trajectory over the GOM PBL had expanded to near 60 

hours. Once again, the movement of the initially cool airmass over the warm ocean 

basin generated abundant latent heating of the air parcel. Trajectory paths were 

predominantly over the northeast and north central basin.  

The lagrangian meteorological characteristics, shown in Figure 7.25, 7.26 and 

7.27 are displayed in the same fashion as Figs. 7.18-7.20 respectively. As before, the 

resulting moisture and temperature profile of the trajectory incident to the warm layer 

was sensitive to altitude, SSTA, and latent heat fluxes along its path. For example, in 

REAL, moisture increased most rapidly t-45 to t-30, shown by relative humidity 

increases of 60% (Fig. 7.26), and mixing ratio from 1 gkg-1 to 7gkg-1 (Fig. 7.27). At this 

time the air parcel was moving over a local SSTA maximum (Fig. 7.23). Latent heat 

flux in this region was 200-250 Wm-2.  The air parcel subsequently moved northward 

into a region of lower SST, and the near constant θe (Fig. 7.25) implied little further 

diabatic heat flux. In the precipitation zone, it was again apparent that the greatest 

moisture was associated with greater SST along the trajectory path, this moisture 

generally being realized in higher precipitation rates. The HI trajectory gained the 

majority of its moisture between t-33 and t-18, where θe increased by 25 K, humidity by 

50%, and mixing ratio by 8 gkg-1. Concurrently, the trajectory passed from a localized 

zone of neutral/weakly negative SSTA to a positive SSTA zone near +2 K, with 200-

250 Wm-2 average latent heat flux. This enhanced the heat and moisture content of the 
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air parcel, which continued to gradually increase as the air parcel remained over 

anomalously warm SSTA until t-12. For P2, the temporal evolution was similar, but the 

maximum SSTA over which the air parcel passed in its final 12-15 hours were lower 

than HI. This result further emphasizes that location of the SSTA maxima (or minima) 

may be important to the eventual warm layer temperature and moisture magnitude of a 

given region. In this case, the pronounced positive SSTA in HI over the northern basin. 

Diabatic contributions to temperature, shown in Fig. 7.27, supported the earlier heating 

maximum for M2, linked to trajectory passage over the warmest (often southernmost) 

portion of the basin. In contrast, CLIM, P2 and HI maximized diabatic contributions in 

the final 30 hours.  

At 725 hPa, shown in Fig. 7.28, the trajectory path and altitude evolution was 

similar to the 800 hPa layer, with the exception of a longer fetch over the GOM As 

such, the meteorological parameters also resemble those discussed, and are therefore 

not displayed. At this level the amount of moisture in the precipitation zone increased 

with higher SST, but with HI once again yielding the highest moisture into this region.  

At 500 hPa (not shown) all but M2 continued to derive thermal and moisture 

characteristics from the GOM. The air parcel trajectory for M2 was sourced from the 

Pacific Ocean (t-96). Large differences in altitude resulted from M2 passing over the 

intermountain west. LO, REAL and CLIM skirted higher terrain in eastern Mexico, 

while HI and P2 remaining purely oceanic. In the final 6-hours, the weaker ascent rate 

for M2 demonstrated reduced vertical motion, corroborated by low precipitation rates at 

this time (e.g., Fig. 7.26). The meteorological characteristics at this layer are not shown, 

however, the trajectory path was a strong factor in the temperature and moisture  
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Figure 7.24: As Fig. 7.17 but for trajectories incident to west central Arkansas during 
heavy freezing precipitation on 12 UTC January 29. The 800 hPa is used as the warm 
layer maximum temperature was observed to be closer to this altitude at this time (not 
shown).  
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Figure 7.25: (TOP), Figure 7.26 (MID) and 7.27 (BOT): As Figs 7.18-7.20 but for 
the 800 hPa layer, 12 UTC January 29 west-central Arkansas 
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Figure 7.28: As Fig. 7.21 for 12 UTC January 29 west-central Arkansas 
 

content. Nonetheless, the dramatic ascent and adiabatic cooling in the final 6-12 hours 

lead to only small temperature differences between SST simulations with additional 

moisture in HI and P2 likely transferred to heavier precipitation.  
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7.6 Ice Storm Impacts by SST Scenario 

This chapter has revealed another notable link between SST and the subsequent 

evolution of winter precipitation to the SGP domain, but for a different synoptic context 

compared to that of chapter 6. Based on the model verification from chapter 5, the 

spatial location and accumulation of freezing precipitation was reasonably simulated. 

This latter case study is therefore investigated briefly from a socioeconomic 

perspective. Recently a system to rank ice storm severity in terms of a dimensionless 0-

5 scale ‘SPIA©’ (Sperry-Piltz Ice Accumulation) index was developed by Sydney 

Sperry (Director of Public Relations, Communications and Research, Oklahoma 

Association of Electric Cooperatives), and Steven Piltz (Meteorologist in Charge, NWS 

Tulsa). This index uses a set of key parameters, such as surface temperature, wind speed 

and precipitation accumulation, deriving an estimate of the potential damage of an 

approaching event. The technique was developed principally with electrical 

infrastructure in mind. The SPIA© index rankings are available on the website 

http://www.spia-index.com/. Similar to the Fujita measure for tornados, ice storm 

severity increases with index, with ranks of 0-1 indicative of weak icing and 3+ major 

icing. Ice accumulations can be lower under conditions of high-wind to obtain a higher 

index, since strong winds increase the risk of damage to utilities.  

Using the set of criteria for wind and ice accumulation defined by SPIA©, 48-

hour precipitation accumulations (00 UTC 28-00 UTC 30 January) were expressed in 

index form. This required an assessment of the freezing rain component of total 

precipitation, which meant using a scheme to assess the relative proportion of 

precipitation falling as ice pellets (IP) versus freezing rain (FZRA). We use our upper 
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limit assumption described in sec. 7.2, with an additional estimate for ice accretion. 

Freezing rain accretion on a given surface is highly complex and dependent on 

numerous variables including precipitation rate, wind speed and direction, temperature, 

orientation of surface object, evaporative cooling and latent heat of freezing. In order to 

simplify these processes and maximize utility, ice accretion models use assumptions 

including uniform radial thickness, and typically concentrate on parameters such as 

wind speed, and precipitation rate (e.g., Pytlak et al. 2010). A full discussion on the 

processes used to estimate accretion is tangential to this work. Nonetheless, it is 

necessary to mention that total accumulated precipitation in the form of freezing rain is 

not at a 1-1 ratio with the total liquid equivalent precipitation on a given surface. An 

equation for radial ice accumulation from Pytlak et al. (2010) is given as:  

 

       

€ 

Req =
1
ρiπ

[(Pii
∑ ρw )

2 + (3.6Viwi)
2]1/ 2         (7.3) 

 

Where Req is the radial thickness, ρI and ρw the density of ice (~900 kgm-3) and water 

(~1000 kgm-3) respectively, P the precipitation rate at time i, V the vector wind 

perpendicular to the object of interest (ms-1), and w the liquid water content of the air 

during precipitation, calculated via: 

€ 

wi = 0.067Pi
0.846

                       (7.4) 

These equations were used to approximate the 48-hour total ice accretion for each 

simulation from hourly freezing precipitation accumulations. It was assumed that the 
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wind is everywhere perpendicular to the object (worst case scenario). An approximate 

SPIA©-like index was subsequently derived from this estimate.   

Figure 7.29 displays the spatial severity index for each SST scenario. Wind 

velocities did not change remarkably and were generally at or below 15 kt, thus the 

primary change was in ice accumulation. For REAL, the maximum index value was 3-4 

over southwestern Oklahoma, which qualitatively agreed with impacts experienced by 

that region. CLIM intensified potential ice storm impact in southwestern Oklahoma, 

with isolated 4-5 values, and a broader zone of 3-4 extending northeastward to central 

Oklahoma. The result was a ~54% increase in the spatial extent ≥ 3. For HI, the region 

of 3-4 was extended further northeast now impacting metropolitan central Oklahoma, 

with a ~62% increase in spatial extent over REAL. P2 actually showed a reduction in 

spatial extent, but a problematic location of the highest index with respect to major 

population centers. LO and M2 decreased in the higher index values, especially M2, 

where the highest index was now 2-3, and Arkansas experiences only minor icing 

potential relative to warmer SST. Based on this result, we may conclude that the 

increased SST generally produced a higher-impact icing event, with Arkansas having 

the greatest secular change in icing potential. CLIM produced a worse ice storm for 

southwestern and west-central Oklahoma, while the greatest impacts from HI and P2 

were across central Oklahoma. Possibly resulting from the faster eastward progression 

of precipitation in P2, total ice accumulations were reduced over southwestern 

Oklahoma, and central Arkansas.  
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Figure 7.29: Derived SPIA© index, based on upper limit FZRA assumption from Sec. 
7.2, and calculated accretion of the 48-hour precipitation accumulation (assessed based 
on conditions over 1-hour intervals). The text indicates the spatial extent (number of 
grid points) with an index greater than 2 and 3 relative to REAL.  
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Chapter 8: Conclusions and Future Work 

8.1 Overview  

This dissertation is a comprehensive assessment of freezing precipitation for the 

Southern Great Plains (SGP). Although the regional frequency of ice storms is low in 

comparison to northeast and Appalachian states, notable events have occurred, and will 

likely continue to occur. The lower frequency has potentially been a deterrent for 

climatological studies, given the low sample size. Here, we have attempted to extend 

the current state of knowledge through a multi-parameter study including deriving 

spatial statistics, thermodynamic and synoptic environments conductive to freezing rain, 

ice pellets and snow. In particular, this work identified regional environmental 

ingredients and precursors promoting mixed phase precipitation, including inter-

comparison of a subset of prominent synoptic evolutions and their distinguishing 

characteristics.  

Accompanying the derived climatology, a regional high-resolution WRF-ARW 

modeling study was configured and performed for two recent winter storms 

corresponding to common pattern types. Based on the preliminary climatology and past 

literature (e.g., Ramos De Silva et al. 2006, Fuhrmann 2011), this dissertation 

hypothesized that warmer SST in the Gulf of Mexico may influence the characteristics 

of the warm layer during freezing rain, including moderating the temperature and 

moisture - thereby impacting the timing and severity of icing. Furthermore, given the 

diversity of synoptic evolutions, we also wished to determine whether SST variability 

discernibly impacted warm layer development across systems, thus providing inter-

event context. The motivation for the SST study was primarily to determine the 
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magnitude of effects on both moisture and dynamics with an eye to possible impacts of 

warming SSTs, either as a result of natural variability (e.g., AMO) or anthropogenic 

climate change, and assuming no systematic changes in cold air outbreaks. 

Additionally, understanding the magnitude and interdependencies of system modulation 

to SST may be useful in medium-term forecasting, or in gaining appreciation of how 

these anomalies are physically linked to system evolution as a tool for forecast 

guidance. Climatologists may find interest in the detailed retrospective case study 

evaluations, and inter-pattern differences in sensitivity. This work also is unusual in that 

it considers the role of SST on an inland event on a meteorological timescale, as oppose 

to the broader climate studies that have delivered assessments over inter-annual-decadal 

periods, and remains one of the few to tackle mixed-phase winter precipitation. WRF 

was used with 6 perturbed SST inputs reflecting the climatological mean (1981-2010), a 

uniform increase and decrease in SST, and a physically based upper and lower limit and 

distribution from ~30 years of SST data.  

This chapter summarizes some of the pivotal findings of this work pertaining to 

both aspects of the research in turn (section 8.2, 8.3). Section 8.4 provides the reader 

with a set of potential future topics based on these outcomes.  

 

8.2 Climatology: Principal Results  

8.2.1 Thermodynamic Profile 

A database was created to examine spatial and thermodynamic properties of 

mixed-phase precipitation for the SGP (Fig. 2.1). Derivation of the spatial distribution 

required estimation of the observed frequency for freezing precipitation or snow within 
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a given climate division. This information was garnered primarily through the Storm 

Event/Storm Data archive, corroborated through sources such as local climate 

summaries (LCDs, NCDC, 3 hour interval for observations), synoptic analyses 

(NCDC), and NARR daily categorical precipitation. Due to the lack of a quantitative 

data source, precipitation of any duration was denoted as 1-day (24 hour UTC), thus 

expressing frequency as the number of days per year, normalized by the relative areas 

of each climate division (Appendix, Sec. 2). Data was also allocated into four sub-

region zones and expressed as a temporal average (1993-2011) November - March. This 

information indicated that freezing precipitation (‘ice’) was generally most frequent 

over the central domain, while snow maximized west and northwest. The ratio of 

freezing rain to snow and thus likelihood of mixed phase precipitation increased 

southeastwards (Fig. 2.3). The temporal plot suggested that ice was most common 

during December – February, with few events in November or March, whereas snowfall 

had broader seasonal range (Fig. 2.4). These results corroborated earlier findings 

including Grout et al. (2012), Kovacik et al. (2010), Changnon and Karl (2003).  

 Vertical profile information pertaining to temperature, moisture, winds and 

cloud cover were derived from 97 radiosonde profiles of freezing precipitation from 

eight station sites (Fig. 2.1), sub-divided into hydrometeor categories: freezing rain 

(FZRA, all) = 57, ice storm (HZR) = 25, ice pellets (IP) = 19, freezing drizzle (FZDR) = 

21, non-ice storm freezing rain (LZR) = 32. These profiles were contrasted with a small 

sample for snowfall (SN) (24).  This regional study produced results broadly consistent 

with prior literature (e.g., Zerr 1997, Rauber et al. 2000, 2001, Robbins and Cortinas 

2002). FZRA, FZDR and IP were predominantly associated with a warm layer in this 
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sample (though it was not determined whether freezing rain in no-warm layer cases was 

necessarily uncommon). LZR, FZDR exhibited shallow cloud layers, a cooler inversion, 

and evidence of weaker warm air advection. Dry air aloft and/or multiple cloud layers 

were present in 40% of cases. IP, SN and HZR showed deep cloud layers with active ice 

microphysics. Warm layers for HZR were typically pronounced, often well above 5oC 

(median 8.4oC), with abundant moisture. The small SN sample profiles were 

subfreezing, generally with cold air advection in the lower troposphere. IP had two 

profiles, one resembling the classic cool warm layer overlaying a deep cold refreezing 

layer, while the second evidenced a deep warm layer overlaying a deep refreezing layer. 

IP also tended to occur during a subsaturated lower troposphere, encouraging further 

cooling via evaporation (Table 2.1-2.3, Fig. 2.8,2.9).  

 When compared with other national and regional studies, SGP thermal profiles 

were evidence of the possibility of substantial warm layer inversions, with a range 

similar to the southeastern U.S (e.g., North Carolina). The proportion of freezing rain 

relative to freezing drizzle was also generally greater than regions further north and 

distant from large water bodies (Table 2.5).  

  

8.2.2 Synoptic circulation 

Another goal of the climatology was to ascertain common regional synoptic 

patterns associated with freezing precipitation and snowfall. Based on prior work, e.g., 

Rauber et al. (2001), general synoptic evolutions with respect to freezing precipitation 

are known, but less attention has been paid to the structure of the mid-tropospheric 

geopotential height (notable exceptions include Castellano 2012 and Ressler et al. 2012) 
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A mixture of principal component (PC) and composite analysis was employed to derive 

10 patterns, 5 each for snow and ice, using the geopotential height field as the initial and 

grouping variable at the approximate onset time for precipitation (T0). PC techniques 

were used to identify these groups from a sample of 33 ice (winter storms with a 

prominent mixed-phase transition region) and 42 snow (weak or absent transition 

region) events. This limited sample size yielded only preliminary conclusions. 

Composites for each pattern type for variables including temperature, winds, sea level 

pressure, and precipitable water were derived using NARR 1ox1o data and displayed 

before, during and after the evolution of winter precipitation in the domain.   

 The resolved patterns produced some differing characteristics. All were 

associated with a trough of varying amplitude, proximity and progression. While the 

aim was to derive specific synoptic features, the patterns resolved generally fell within 

two main groups – western trough of varying amplitude (similar to Ressler et al. 2012), 

and a proximal amplified shortwave. A distinct pattern for ice events evidenced a 

longwave trough with a center over Baja California accompanied by strong 

southwesterly mid-level flow (e.g., Ice Pattern 2, 3). This orientation allowed transport 

of mid-tropospheric moisture from the sub-tropical Pacific, while slow eastward 

progression facilitated persistence of thermodynamic conditions favorable for freezing 

rain. Lower tropospheric features included a southeastern anticyclone with strong GOM 

moisture transport via 25-30 kt flow, pronounced positive temperature anomalies 

throughout the U.S south/southeast, bounded to the north by a strong baroclinic gradient 

and quasi-stationary frontal zone, and significant positive moisture departures (> 2 

standard deviations). Similar circulation patterns were identified from a composite 
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analysis of major south central ice storms from Sanders et al. (2013), and the St 

Valentine’s day mid-western storm (Rauber et al. 1994). The distance of the major 

trough lead to differing evolutions amongst constituent events, some favoring prolonged 

weak precipitation, while mobile shortwave troughs and/or convective instability 

accompanied by strong warm air advection promoted heavy precipitation in other cases.  

For freezing precipitation with more progressive troughs (e.g., Ice Pattern 1, 4), 

synoptic vertical velocity was greater leading to generally higher precipitation rates, but 

a frequent reduction in temporal duration, supporting Ressler et al. (2012). Each pattern 

showed differing low-level thermal structure due to the southward extent of the 

subfreezing air, the trough location, and incumbent airmass. The greatest temperatures 

available to the warm layer were indicated where air south of the Arctic front was 

anomalously warm, often in conjunction with anticyclonic flow and ridging over the 

southeastern U.S. These conditions also showed a strong subtropical southwesterly jet 

aloft. The location of freezing precipitation for each constituent event showed 

variability, even amongst those within the same pattern type, due to differing near 

surface environments, orientation of the mid-level trough, and locations of greatest 

moisture availability. For each ice pattern, high pressure over the north central Plains 

was a ubiquitous feature at T-24 hours, and strong down-gradient flow and inverted 

troughing east of the Rockies suggested a highly stable airmass (Fig. 3.7-3.12). A 

conceptual model of these common evolutions is provided in Fig. 8.1.  

 For snowfall, two common pattern subsets encompassing the derived types were 

identified. Firstly, a high-amplitude progressive trough and associated surface cyclone 

development (e.g., Snow Pattern 2, 4). This cyclone typically initiated off the lee of the  
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Figure 8.1. Conceptual diagrams for ice patterns at T0 corresponding to the derived 
subgroups for the SGP. (a) Shows freezing rain in association with a slow moving broad 
amplified 500 hPa trough (‘L’) with anomalous warm (cold) air over the southern 
(northern states-shaded, color approximating strength of anomaly), moisture advection 
via strong low-level flow (green, arrows, length proportional to 850 hPa wind speed 
approximated from ch 3 patterns), and a broad upper southwesterly tropospheric jet 
(orange shaded, arrow); (b) Freezing rain during the passage of a amplified shortwave 
(‘L’) in the presence of an arctic high to the north (‘H’) and cold air advecting in behind 
the trough and weak surface low. Region bounded approximately in the left exit and 
right entrance region of two jet streaks (orange, blue arrows). In each case, the inset 
figure displays temperature advection in the freezing rain zone at 6-hour intervals T-24, 
T+24 for representative composites (a, ice pattern 3, b ice pattern 1) with units of K hr-1 
(100 km-1).  
 

southern Rockies and tracked east- northeast, with snowfall to its north-northwest. 

Surface cold air was typically absent prior to the cyclone, and accompanied it into the 

region. It is suspected that enhanced dynamic lift and faster transition to cold air 

advection tends to limit any warm layer that forms, precluding substantial freezing rain 

component for the SGP. For snowfall not associated with a surface cyclone (e.g., Snow 

Patterns 1, 3), the trough axis was generally located further west, with the region 

typically under an intense arctic airmass, and cold air extending into the far southern 

States. In such cases, the arctic high may be too deep and/or the warm air advection 

over a surface frontal zone sufficiently weak to limit the intensity of a warm layer. It 
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was apparent from our results that temperature anomalies south of the front were not as 

pronounced as those accompanying ice, suggesting that the antecedent environmental 

conditions were important to event evolution. Lift for precipitation may be similar to 

long duration ice cases, including the passage of multiple shortwaves or broad low-

amplitude trough. The locations of snowfall for most patterns were generally 

concentrated in the northern half of the domain (Fig. 3.13-3.17). Conceptual evolutions 

for these snow subgroups are shown in Fig. 8.2.  

 

 

Figure 8.2. As Fig. 8.1 but for derived snow subgroups. (a) Shows snow produced from 
broad zonal trough and/or weak amplitude shortwave (‘L’-diameter approximates 
amplitude) with a pronounced arctic airmass (‘H’) cold air advection (blue arrows) and 
cooler air over the subtropics (shaded); (b) depicts a well-developed surface cyclone 
with attendant high-amplitude mid-level trough (‘L’), with arctic air absent over the 
northern Plains, and cold surface air advecting into the region behind the low (shaded). 
Air east of the cyclone center is warm and moist, while favorable upper jet streak 
locations (brown arrows) promote ascent. Advection profiles as before but for (a) snow 
pattern 3, and (b) snow pattern 2.  
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8.3 Modeling: Principal Results 

8.3.1 Role of Microphysics and PBL 

The modeling component of this work required assessment of the WRF ability to 

reliably reproduce the major properties of both analyzed case studies. Without this 

component, it would not have been possible to determine whether the experiment was 

reliable to the evolution of the physical event(s). Complete inter-comparison of multiple 

model parameterizations was beyond this study. Instead, analysis of two PBL and four 

MP schemes (all standard, well-used options in the literature) performance for the 

December 9-11 case study temperature and precipitation was conducted. These 

experiments allowed identification of a ‘best fit’ configuration for the remainder of the 

experimental work. Results showed:  

• The older WRF version 3.1 had poorer near-surface temperature simulation for 

both MYJ and YSU. Reasons for this were not entirely clear but were related to 

the diurnal cycle, implying possible connection to the radiation scheme, and 

exacerbated for the non-local YSU where simulated surface temperature showed 

strong warm bias (Fig. 5.3-5.6). The particularly shallow depth of surface 

subfreezing air may have allowed mixing of higher inversion layer temperatures 

to the surface. Since WRF 3.1 various PBL improvements have been 

implemented, including fixes to the Prandtl number in YSU, MYJ fix to PBL 

height computation and upgrade to operational version (http://mmm.ucar.edu). 

In WRF 3.4, the MYJ produced a much-improved simulated surface temperature 

(e.g., RMSE ≤ 4 K). YSU errors were also reduced, but this scheme still 

overestimated temperatures, and also produced a less accurate precipitation 
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simulation. Lackmann (2011) suggested that the BMJ convective scheme used 

with YSU may not be advisable given the duplication of processes related to 

cumulus entrainment at PBL top. Of the two schemes, MYJ was more suitable 

for this application.  

• Domain 3 precipitation showed notable variation across the four different 

microphysics parameterizations. WSM6 produced highest accumulations, but 

with a shift to the southeast relative to observations. Thompson et al. MP 

overproduced precipitation over the west, and generally had the weakest 

representation of a central axis (other than YSU-WSM6). Morrison produced 

lower total precipitation for the central axis, but better simulated the western 

domain. Millbrant Yau showed a wider more diffuse central axis but generally 

yielded the best representation for WRF 3.4. Visually the WRF 3.1 MYJ WSM6 

configuration produced the most intense central precipitation axis, but with the 

aforementioned larger surface temperature errors. All schemes overproduced 

(under-produced) light (heavy) precipitation (Fig. 5.3-5.5).  

 

8.3.2 Verification of Case Study Simulations 

For the verification of the control (REAL) simulations for December 9-11 2007, 

and January 28-30 2010, key findings included:  

• Strong dependence for precipitation on horizontal resolution, prominently for 

the December 2007 event, which produced convection of small horizontal scale 

under a weaker dynamical forcing regime. Domain 1 (30 km) did not capture 

this precipitation at all, while domain 2 (10 km) produced precipitation, but of 
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lower accumulation and shifted northward with respect to domain 3. Domain 3 

convective mode was reasonably simulated, but suspected small displacements 

in location, weaker updrafts, and some mode discrepancies (e.g., reduced 

convective to straiform transition in WRF, underrepresentation of coverage) 

yielded broader, lower total precipitation along the central axis compared with 

observations (Fig. 5.10). Object-based skill score metrics identified that the 

model did capture a central precipitation axis with reduced intensity of up to 

50% (Fig. 5.8-5.9, Table 5.2-5.3). Total precipitation content was within 5% of 

observed, indicating good representation of observed precipitable water.  

• In contrast to December 2007, domain differences in precipitation accumulation 

for January 28-30 2010 were less pronounced. This event had a proximal trough 

axis and greater upper level dynamical support implying improved WRF 

intensity simulation with moderate-strongly forced systems in the absence of 

advanced methods to constrain errors, such as data assimilation. Precipitation 

errors in this event were generally to overestimate accumulations at moderate-

high thresholds, especially over western and central Oklahoma (Fig. 5.15, Table 

5.5-5.6). The spatial pattern of freezing precipitation (algorithm derived) was 

reasonably reproduced. Underestimated peak accumulations were possibly due 

to heavier precipitation eroding the warm inversion to below the range specified 

for FZPCP.  

• Temperatures at the surface were well simulated, with a slight warm (cool) bias 

for December 2007 (January 2010, e.g., Fig. 5.6-5.7, 5.18). Synoptic evolution 

was in good agreement for both events (Fig.5.13, 5.21). Cloud cover for the 
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January 10 event suggested overproduction of WRF high cloud, with subsequent 

impacts to longwave and shortwave radiation components and the surface 

temperature (Fig. 5.23).  

 

8.3.3 SST Impacts for Case Study 1 

The December 9-11 2007 ice storm was regarded as one of the worst in recent 

memory for Oklahoma. WRF captured the synoptic aspects of this event, and also the 

precipitation mode, timing and thermodynamic profile. Nonetheless, precipitation 

intensity and location had pronounced departures from observed. The six derived SST 

fields were input to the model and run in a seven-day simulation to allow the model 

thermal and moisture profile to come into balance with the perturbed SST. We 

examined responses in key variables including temperature, precipitation, moisture, and 

synoptic-dynamic evolution. This sensitivity experiment produced the following 

outcomes:  

• Increased (freezing) precipitation with higher SST, especially December 9. Total 

precipitation for domain 3 increased with basin average SST, primarily for the 

rainfall phase (Fig. 6.1, 6.2, Table 6.1). Percentage increases based on higher 

SST such as HI and P2 were generally weaker than the decreases in the LO and 

especially M2 cases. Phase partitioning and spatial extent of precipitation types 

was not found to discernibly change due to the pronounced warm layer 

inversion. On December 9, precipitation was forced primarily by convective 

instability aloft and north of a quasi-stationary front with low-level frontogenetic 

forcing and strong warm air advection. For HI and P2, convection was generally 
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more intense yielding greater freezing precipitation along the central axis (Fig. 

6.4, 6.16), while convection weakened for negative SSTA. Even a 

climatological field discernibly reduced accumulations for this convective 

period implying that the observed warm SSTs were a contributor to the 

magnitude of icing. On December 10 all scenarios produced more widespread 

convection, but shifted to the north (south) for M2 (P2) (Fig. 6.20). Precipitation 

percentage changes were smaller for this period. For the whole event, 

reflectivities above 35 dbZ showed a slight increase for HI, P2, and decrease for 

CLIM and LO. M2 produced the greatest decrease in intensity (Fig. 6.3, 6.4). 

The non-linear responses of precipitation may relate to the differing SST fields 

(e.g., different SSTA distribution, REAL, CLIM, HI, LO), and the convective 

instability profile. Thermal profile and trajectory data revealed that the lower 

warm layer (~850 hPa) was influenced by SST, while the upper warm layer 

(~725 hPa) derived temperature characteristics from southwest Texas and 

northern Mexico (Fig. 6.21, 6.23). Cooler SST stabilized the atmosphere above 

850 hPa and reduced convection, primarily on December 9 (Fig. 6.5, 6.6). The 

degree of stabilization of LO, M2 implied that unrealistically large basin-wide 

anomalies would be required to fully cut off convection. Positive SSTA changes 

were not as large and indicated primarily a moisture-induced intensification of 

convection, and slight expansion of coverage (Fig. 6.7).  

• Weak Warm layer thermal changes. Based on observations, the warm layer was 

established well in advance of the event, primarily associated with an 

anomalously warm sub-tropical airmass over the southern U.S (Fig. 4.6). As 
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such, the influence of SST for the 7-day simulation was generally weak, with 

typically a near +1oC (-2oC) temperature change over central Oklahoma for P2 

(M2) relative to REAL (Fig. 6.8, 6.9). The greatest influence of the thermal 

profile was in the modulation of low-level stability as discussed. Location and 

depth of cloud influenced the surface temperatures on December 10, with the 

northward displacement for M2 leading to greater solar insolation over the 

central domain, and faster erosion of the refreezing layer (Fig. 6.9, 6.11,6.12) 

• Time-varying dynamical response. On December 9, precipitation was slightly 

enhanced for HI and P2 due to aforementioned stability changes, the increase in 

moisture availability (mixing ratio, Fig. 6.14), and enhanced warm air advection. 

Shearing frontogenesis along the central axis was observed as spatially broader 

for these higher SST scenarios, and weakened considerably for M2 (Fig. 6.13). 

The 850 hPa winds slightly increased for HI, P2 overnight and during the 

morning of the 9th (Fig. 6.15). In contrast, on December 10, 850 hPa flow to the 

region weakened, especially for P2, linked to a reduction in geopotential height 

gradient over the southern U.S and Gulf of Mexico (Fig. 6.18). Nonetheless, 

mixing ratios were still enhanced for warmer SST, these two processes partially 

canceling one another to show similar moisture transports on December 10 

across simulations (Fig. 6.19). Ultimately this produced similar precipitation 

accumulations for REAL, CLIM, LO, HI and P2 on December 10 (Fig. 6.20), 

while M2 showed faster northward movement of convection, possibly due to 

stronger 850 hPa steering flow, and more northwesterly low-level shearing and 

deformation frontogenesis (Fig. 6.17).  
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Figure 8.3 shows schematically the observed response of this event to SST, while Fig. 

8.4 provides a diagrammatic descriptive summary.  

 

8.3.4 SST Impacts for Case Study 2 

The January 28-30 2010 sensitivity study was performed in the same manner as 

the previous. The dynamical evolution of this event was distinctly different. Key 

findings included:  

• Increased total precipitation with higher SST, and modulations in the location of 

phase types. Increases in basin-averaged SST produced higher precipitation 

accumulation for much of domain 3 (Fig. 7.1, 7.2, 7.3, Table 7.1). Relative to 

REAL, heavy rainfall (e.g., > 40 mm) was expanded eastward and northward for 

CLIM, HI, P2. Furthermore the southward extent of snowfall declined with 

warmer SST. Mixed phase (freezing) precipitation was increased over 

southwestern Oklahoma for CLIM (in this case study climatological SST was 

warmer than control), and markedly reduced for M2. HI and P2 showed a more 

longitudinally (latitudinally) expanded (contracted) freezing precipitation zone 

for Oklahoma, and increased icing for central Arkansas. As precipitation was 

ongoing, greater reflectivity returns for higher SST (Fig. 7.4, 7.5,7.6) suggest 

that precipitation rates were intensified. In similar fashion to case 1, domain 

average changes indicated greater percentage change for strongly negative 

SSTA. However for this event the positive percentage changes were also notable 

(Table 7.1), especially for the freezing precipitation zone in HI and CLIM.   
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Figure 8.3: Top: Schematic diagram depicting the airflow characteristics incident to the 
lower and upper warm layer (e.g., windspeed and direction, ‘jet’ shown by concentric 
rings). The impact of these trajectories is shown on the right hand side, displaying an 
idealized warm layer profile for positive and negative SSTA (crudely analogous to the 
differences between LO/HI, M2/P2). WAA denotes warm air advection. Bottom: 
Timing of precipitation and relative accumulations for REAL (CNTL), positive and 
negative SSTA for December 9 and 10. Y-axis shows start time relative to REAL 
(hour), while the length of the bar is proportional to precipitation accumulation.  
 

 



 291 

 

Figure 8.4: Flowchart describing some observed changes from control for positive and 
negative SSTA. Top row shows changes to the stability and thermal profile, while the 
bottom describes changes to low-level jet (especially December 10), and moisture 
transport. Here melting layer = warm layer.  
 

• Increase in northward extent, warm layer intensity with SST. In advance of this 

winter storm, a cooler airmass impacted much of the low-levels, depleting them 

of a warm layer (Fig. 4.13). Consequently, low-level warm air advection in 

advance of precipitation was more pivotal in eventual warm layer intensity and 

northward penetration. Based on trajectory analysis (Fig. 7.18, 7.25) low-level 

air parcels originated over the continental U.S, moved southward and curved 

anticyclonically over the GOM basin before entering the icing zone. This 

evolution was in contrast to case 1 where the air parcels moved directly 

northward from the tropical Caribbean (Fig. 6.24). As a result, diabatic 
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aggregation of heat and moisture was more critical for this case study. Cooler 

SSTs favored lower air parcel temperatures, which resulted in a weaker and/or 

southward shift in the warm layer, especially for Arkansas (Fig. 7.7-7.10). For 

southwestern Oklahoma the warmest and longest-duration inversion was 

observed for CLIM and HI. Warm layer temperature were generally also 

increased for P2, but freezing rain was possibly mitigated by low-level cooling 

from increased precipitation rates, and a decrease in refreezing layer 

temperatures resulting from faster eastward progression of the 850 hPa 

circulation.  

• Intensification of a geopotential low and dynamical strengthening of 

precipitation via moisture transport. For this event, strengthening of the 850 hPa 

geopotential low circulation over north Texas was clearly observed from the 

model as SST increased. Warmer SST produced stronger positive thickness 

advection east of the low, enhancing baroclinity and its northward extent, with 

accelerated eastward progression of precipitation (Fig. 7.6, 7.13). The 850 hPa 

geopotential height (and surface pressure) decreased, which increased the height 

gradient and 850 hPa southerly low-level jet. This, coupled with increased 

mixing ratio in the higher SST cases, yielded a notable increase in moisture 

transport on both January 28 and 29 (Fig. 7.14, 7.15). The spatial area of 

transport above 300 kg m-1s-1 was observed to approximately double between P2 

and M2. This dynamical contribution likely increased precipitation changes with 

SST above what might have been anticipated from mixing ratio alone.  
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• Sub-basin SST variability may in some cases be similarly as important as the 

basin-average in modulating precipitation. For case study 1, the western GOM 

was generally most important for the freezing precipitation zone, based on the 

analyzed low-level trajectory. Warmer SST in this region might be expected to 

have a greater effect on the region as this is the direct area experienced by the 

incident air parcels. For case study 2 the north central GOM was important. We 

observed for HI that a region of particularly warm SST was present for the 

central and northern basin (e.g., Fig. 7.18), which was diabatically and 

adiabatically transferred to increasing air parcel temperature and moisture 

content. It was found that the peak temperature sustained by the air parcel in HI 

was greater than P2 in some cases (Fig. 7.19), as was the mixing ratio (Fig. 

7.21). This result seemingly confirms the importance of sub-domain SSTA in 

warm layer and precipitation intensity, although further analysis is desired to 

fully separate this signal from the dynamical response. We noted that the 

freezing precipitation in HI was greater than that for P2 for central Oklahoma 

and west-central Arkansas, possibly aided by this favorably located strongly 

positive SSTA zone.  

Figures 8.5 and 8.6 schematically summarize the results of this section.  
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Figure 8.5: Top: Thermal and dynamical changes with positive and negative SSTA. 
Larger L850 denotes deeper circulation, while dashed curved lines denote northward 
extent of warmer air through advection. Arrows display wind direction, with size 
approximating relative speed. LHmax describes the latent heat flux contribution from the 
GOM. Bottom: Timing and approximate precipitation intensity with SST changes, and 
REAL (CNTL) for southwest Oklahoma (left), and south central Arkansas (right), 
indicating the higher (lower) precipitation and faster (slower) progression with warmer 
(cooler) SST.  
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Figure 8.6: Flowchart description of thermal (top) and dynamical (bottom) changes to 
winter storm evolution with SST. Here melting layer = warm layer.  
 

 8.3.5 Discussion   

With respect to the above results, and with regard to the inter-comparison between case 

studies, it was concluded that:  

• Warm layer characteristics are fundamentally determined by synoptic evolution. 

For case 1, the deep and intense warm layer was largely insensitive to SST, 

whereas in case 2 there was a more notable response that resulted in discernible 

changes to phase partitioning. Clearly the characteristics of atmospheric 

circulation in the days prior determine the available warm layer. For case 1 a 

particularly warm sub-tropical maritime airmass was firmly entrenched in the 
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southeastern U.S. For case 2, an active regime was evident with troughing in the 

eastern U.S and a generally cool airmass prevailing. Case 2 also evidenced a 

return flow-type event where low-level temperature and moisture derived from 

the northern GOM basin 24-48 hours before the storm. Based on this 

observation, one may conclude that the positive trend observed for melting 

potential (EMP) against SST (Fig 4.4) does not correspond well to the results of 

the modeling work where magnitude changes in warm layer were weaker (e.g., 

only ~0.25-0.5 K rise for every 1 K increase in basin average SST). It would 

however be difficult to argue against the evidence that our hypothesis was 

upheld. Results also revealed that changes in FZPCP were strongly sensitive to 

moisture perturbations.  

• Synoptic fields lead to dynamical differences in how SST anomalies are 

translated to influence circulation. For case 1, the long wave trough was not 

impacted by the modulation of GOM SST. Warm air advection increased with 

SST in the lower warm layer (~850 hPa), but the southwestern sourced air for 

the upper warm layer was largely unaltered. The two key dynamical responses 

to SST occurred with the stability response in the thermal profile (especially 

December 9), and the geopotential height gradient/wind field perturbation, 

particularly M2 and P2, on December 10. For case 2, the developing surface and 

850 hPa low was deepened by the enhanced availability of warm-moist air, 

which set into motion a response that intensified the low-level jet, moisture 

transport and precipitation. Coupled with the weaker and more transient warm 

layer, case 2 suggested more robust change in freezing precipitation.  
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• The extent to which SST influences ice storms is non linear. The diverse 

response for case 1 and case 2 show that increased SST within the fetch of a 

developing ice storm do not necessarily exert strong influence on resulting ice 

potential as the magnitude of SSTA, baroclinic, dynamic and moisture response 

can enhance or mitigate precipitation. In general higher SST promotes advection 

of warmer air into the region, and higher moisture content, which can increase 

precipitation rates. Strongly negative SSTA shows a larger weakening of mixed-

phase precipitation, but the reasons for this differ between case 1 and 2. Ice 

storm conditions may be affected more strongly in circumstances where the 

warm layer is weaker, later forming and associated with diabatic airmass 

modification over the GOM. Access to high-quality SST data for input to 

operational models, and incorporating observations of SST anomalies and their 

distribution, coupled with air parcel trajectories, may be a useful addition to a 

regional forecasters ‘toolbox’ for gaining situation awareness and facilitating 

critical decision-making in medium-term prediction. Nonetheless additional 

work is necessary to better understand the interactions and relative roles of the 

multiple processes and their feedbacks forced from SSTA.  

 

8.4 Future Work 

8.4.1 Database Extension and Alternate Climatology 

Expansion of the 1993-2011 database to at least 30 years is a vital task. Existing 

resources described in chapter 2 could be further utilized, especially Storm Data and 

NARR categorical precipitation type. Extension of the database back to 1979 would 

encompass the complete NARR dataset, and would allow some of the work from 
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chapter 2 and 3 to be repeated with a larger sample size. Additionally, given the 

limitations of extracting pattern types discussed in Chapter 3, particularly with 

maintaining good quality and accurate input data (e.g., constraining T0), another 

technique that could be applied is a station by station assessment of composite synoptic 

evolutions corresponding to ice and snow events partitioned into different groups and 

severity. The advantage of this method is that T0 is fully constrained, and more accurate 

assessment of the quantity of event liquid water equivalent/accumulation may be 

assessed from site meteorological data. A potential disadvantage is the potential to 

average over highly different synoptic patterns, which Chapter 3 of this work was 

attempting to avoid. Early work in this regard for Oklahoma City, 1979-2013, has 

shown that severe icing (> 0.75 in LWE, > 6 hours length) is largely associated with a 

synoptic flow type similar to Ice Pattern 3, while long duration weak icing (< 0.25 in 

LWE) tends to a western low-amplitude trough. The trough amplitude is important to 

promoting northward advection of deep moisture and warmer temperatures while trough 

location at T0 informs duration. Detailed Station-by-station climatologies: synoptic, 

thermal, and time-series, should be constructed and could be highly beneficial as a 

pattern recognition tool for forecasters. In addition to temporal expansion, it is advisable 

to spatially extend the dataset to include all of Arkansas, Kansas, Missouri, Texas, and 

possibly east into Tennessee and the southeast.  

 

8.4.2 Model Development  

Modeling studies have not comprehensively been performed for ice storms. 

High resolution WRF provides many opportunities for mesoscale and microphysical 
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studies. In our validation and configuration work for example, we could test additional 

microphysics, PBL and other parameterizations over multiple case studies to further 

examine whether a ‘best’ configuration exists. Unfortunately, in the case of 

microphysics development there are limitations on data quality during ice storms for 

much of the high-resolution in-situ facilities such as the SGP-ACRF and Oklahoma 

Mesonet. One possible avenue for future work might be to use dual-polarimetric radar 

facilities during freezing precipitation to gather information on hydrometeor types 

above the warm layer. It is often assumed that snowfall and aggregates are most 

common, but what about potential for graupel? How might this affect standard 

hydrometeor algorithms? For poorly simulated precipitation structure, and complex 

evolutions such as the December 2007 case study, it may be interesting to examine 

further avenues for precipitation improvement, including data assimilation.  

 

8.4.3 Synoptic and Climate Dynamics  

This work has identified that that models generally reproduce well the large-

scale evolution of winter storm events. Temperature and moisture content (e.g., 

precipitable water, mixing ratio) was also reasonably resolved here. It may be possible 

to further categorize synoptic structures by their common airflow trajectories, creating a 

trajectory climatology, as it were, for various synoptic types during freezing 

precipitation and snow, much like the work of Fuhrmann and Konrad (2008). This 

identification may help forecasters identify common regions of the GOM for example, 

and monitor SST conditions in that region, or for further identification of trajectories 

common to severe and weak icing to develop the climatological record. A useful 

extension to this dissertation work might be to evaluate warm layer trajectories at 
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multiple locations/times or an ensemble approach to provide stronger support for the 

trajectories analyzed (chapter 6, 7) and their relationship to temperature and 

precipitation.  

 On a longer time scale, it may be possible to determine seasonal and inter-

annual predictability of ice storm frequency based on large-scale teleconnections and/or 

SST variability. This work assumed that the SST field is independent of the overlying 

atmosphere. However, during this research it was observed that severe ice storms, 

typically of pattern 2 or 3 (chapter 3), tended to basin-average positive SSTA, whereas 

events associated with a surface low had neutral or negative SSTA. These conditions 

were generally present over the preceding month (not shown). Figure 8.7 shows the 

difference in geopotential height between 5 high and low SST events. Is there a link 

between seasonally warm SST and the evolution of certain synoptic circulations? 

Examination of the relationship between winter weather and atmospheric 

teleconnections or other large-scale circulation anomalies may provide vital planetary 

scale context. Figure 8.8 illustrates a composite of the highest and lowest three years in 

our database with respect to the number of SGP ice events, showing that circulation 

over the northern hemisphere tends toward a strong high over the north Pacific, coupled 

with anomalously warm SST in that region, and over the eastern Atlantic. The sea level 

pressure trend shows a weak increase over the Northern Plains. This circulation pattern 

may suggest more frequent blocking patterns over the Pacific Northwest, which have 

been linked to increased dislodging of arctic high pressure into the mid-latitude U.S. To 

the south, the Atlantic anticyclone and warm GOM provides extra moisture potential, 

and the two may possibly be interlinked (e.g., easterly or southerly flow over the GOM 
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driving warm water north from the Caribbean? solar warming of the ocean surface 

layer?).  

At this time, it is not certain how global climate change may impact the 

incidence of cold air outbreaks (CAO) to the south central U.S. Research into future 

trends of CAO frequency have shown mixed results (e.g., Vavrus et al. 2006, Cohen et 

al. 2012). However global sea surface temperatures have been increasing. Trends in 0-

700 m Atlantic basin temperature are prominent (IPCC AR5, WGI), and approximately 

+0.1-0.3oC per decade (1971-2010) over the central North Atlantic extending 

northeastward from Florida to Western Europe. The Gulf of Mexico shows a weaker 

positive trend. Over the 21st Century the super-position of climate variability and 

climate change will continue to promote high intra-seasonal variability of winter 

weather. The results of this study provide physical mechanisms by which freezing 

precipitation events may be thermodynamically enhanced by regional SST, and can be 

part of the conversation of winter weather events in a warming world.  

 

Figure 8.7: Composites of 5 bottom (a) and top (b) ice storm events by basin average 
SST anomaly (from 22 cases). Geopotential height (gpm, blue contours), 850 hPa wind 
vectors (barbs, intervals 5 kt), and precipitable water vapor (mm, shaded). Note the 
more meridional long-wave pattern for higher-SST cases, including an eastern ridge and 
GOM basin anticyclonic flow. 
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Figure 8.8: Composite Circulation anomalies (winter DJF) for three years of high ice 
frequency minus three years of low ice frequency (based on 1993-2011 database). Top 
left is geopotential height at 500 hPa (gpm anomaly), top right, sea level pressure (pa, 
anomaly) and bottom center is SST over much of the global tropics and mid-latitudes 
(K, anomaly).  
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Appendix 
 

Section 2: Additional Material from Regional Climatology (Chapter 2) 

Database Development  

 Chapter 2, section 2.2 introduces the methodology for establishing a winter 

storm database between 1993-2011. Fig. A2.1 below shows the format of the database, 

obtained primarily from Storm Event/Storm Data and companion sources discussed in 

the text.  

 

 

Figure A2.1. Screen-shot of winter storm database, which includes year and day, 
approximate durations, spatial location expressed as affected quadrant(s), and whether 
snow and/or ice occurred. Definitions of ‘weak’, ‘moderate’ and ‘heavy’ icing were 
quasi-subjective (especially in thresholds used) and based on event descriptions from 
Storm Data/Storm Event, included maximum reported accumulations (can be anywhere 
within the storm and not necessarily a widespread average). Weak is approximately < 
0.25 ice and < 5 in snow, moderate 0.25-0.5 in ice, 5-8 in snow, and heavy > 0.5 in ice, 
>8 in snow. 
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Table A2.1 summarizes some basic information from the database by quadrant.  

Quadrant Number 
of evens 
with Ice 

Number 
of events 
with Snow 

Overlap event 
rate* (ice & 
snow).  
(% of total ice) 

Number 
with weak 
ice (snow)+ 

Number 
above 
moderate 
ice (snow) 

Number 
impacting 
only stated 
quadrant 
(ice & snow) 

Northwest 58 102 79.3 31 (34) 27 (68) 34 
Southwest 33 48 75.6 17 (20) 16 (28) 10 
Northeast 55 75 78.1 26 (22) 29 (53) 9 
Southeast 24 26 79.2 7 (9) 17 (17) 2 
Total storms 156      
 

*Where a snow event was accompanied by ice and vice versa. The locations of each phase type did not 

necessarily have to interest. We did not consider relative intensities of each phase type for this table.  

+Definitions of ice severity described above (Fig. A2.1).  

 

Spatial Aggregation Methodology 

 Development of a spatial climatology (frequency by climate division) was 

discussed in section 2, and displayed in Fig. 2.3. Since the description in chapter 2 was 

brief, here we include the set of steps used to create this distribution:  

1. List names of each county residing in each climate division (CD) used (Fig. 2.1 

shows applicable CDs).  

2. Using data sources in chapter 2 (especially Storm Data/Storm Event), manually 

count the number of days (24 hr period 00 UTC-00 UTC) that a report of 

freezing precipitation/snow was given. Match the described locations (e.g., 

counties, town names, spatial information from NARR, analysis charts, radar) 

with CDs. This step was performed for each month of each year and then 

summed to create a total for the 18-years. Figure A2.2 shows a couple of 

examples of how spatial -> CD information was derived.  
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3. Each CD has an area (in square miles). By calculating the mean CD area we can 

create a weighting (or normalization) factor that adjusts the total ice/snow 

frequency by area. Large (small) CDs are adjusted down (up) reflecting the fact 

that a smaller CD was likely to have observed less total events in part due to its 

size. Table A2.2 shows the values of each weighting factor, based on departures 

from a mean CD area of 11203.2 square miles.   

 

 

Figure A2.2: Example of methods used to derive spatial estimates of ice and snow by 
climate division. Top: Use of NCDC weather charts (3-hour interval) to assess locations 
for various times during a 24-hour period, Bottom: Use of NARR categorical 
precipitation type (both FZRA and IP). Right hand side shows how the spatial 
information is translated to a number (1 = 1-day observation). Where possible, these 
techniques were used in combination.  
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Table A2.2. Normalization factors and adjusted 18-year average event frequency (days 
per year) for each CD. Applicable CDs are shown by state abbreviation and number. 
Fig. A2.3 shows these visually, that image courtesy of 
http://www.esrl.noaa.gov/psd/data/usclimdivs/data/map.html. Note that these factors to 
not have a summation of 1, as is typically preferred when weighting. Normalization by 
the CD mean area, rather than its sum, is necessary to preserve the correct frequency 
magnitudes.  

Climate Division  
(State and number) 

Weighting factor Ice Snow  

AR 1 1.57 3.06 5.42 
AR 2 1.51 2.09 3.68 
AR 4 1.40 2.10 3.03 
AR 5 1.53 1.87 2.30 
AR 7 1.55 1.37 1.72 
AR 8 1.40 1.25 1.01 
KS 4 1.29 0.14 7.00 
KS 5 1.20 1.13 7.00 
KS 6 1.22 2.03 7.31 
KS 7 0.94 0.94 5.38 
KS 8 1.00 1.77 5.49 
KS 9 1.08 1.55 2.93 
LA 1 1.65 1.92 0.46 
LA 2 1.45 1.78 0.25 
LA 4 1.65 1.46 0.64 
MO 3 1.08 2.05 3.85 
MO 4 0.97 1.62 1.57 
OK 1 1.28 2.06 8.18 
OK 2 1.27 2.54 4.90 
OK 3 1.24 2.07 3.18 
OK 4 1.46 2.03 4.39 
OK 5 1.08 2.95 3.85 
OK 6 1.36 2.42 3.03 
OK 7 1.38 2.46 2.84 
OK 8 1.25 2.36 1.73 
OK 9 1.42 2.93 2.37 
TX 1 0.40 0.80 3.33 
TX 2 0.78 2.26 4.08 
TX 3 0.40 1.21 1.03 
TX 4 0.51 0.91 0.71 

 

  Figure A2.3: See Table A2.2.  
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Sounding Climatology  

 Here we provide further context for the methodology and results in Chapter 2, 

sec 2.3. Table A2.3 below shows the total number of soundings used from each of the 

eight station sites (Fig 2.1).  

 
Table A2.3. Number of soundings used by station site for ice (snow). 51 profiles were 
from 12 UTC, 38 at 00 UTC, 5 at 18 UTC and 3 at 06 UTC.  

 

A caveat from the text was that the number of profiles used (97 ice) was greater than the 

number of events from which those profiles were drawn (36). Table A2.4 lists the 

winter storms associated with ≥ 4 sounding profiles through their duration. Table A2.4 

provides evidence supporting the statement on dissertation page 43 regarding the 

sounding bias toward long duration events and/or that producing significant icing. Co-

location of observations with soundings generally meant that brief events must be well 

timed to the radiosonde launch. Chances of obtaining a temporal and spatial match was 

increased when the event temporal duration increased. Based on this, complete 

independence of sounding profiles cannot be assumed, albeit localized modifications to 

the thermal profile (terrain, precipitation intensity, strength of warm or cold advection, 

system movement) do produce observable distinctions between sites and times within a 

single storm.  

Sounding Location (Site) Number 
Amarillo, TX 4 (5) 
Dodge City, KS 8 (4) 
Lamont, OK 11 (5) 
Norman, OK 30 (6) 
Little Rock, AR 10 (0) 
Shreveport, LA 4 (0)  
Springfield, MO 17 (4) 
Dallas-Fort Worth, TX 8 (0) 
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Table A2.4. Case studies with ≥ 4 sounding profiles in the dataset. Rightmost column 
lists the locations, time and precipitation type for each.  
 

Event Number of 
Profiles  

Locations, Time, Type 

December 9-11 2007 8 Lamont 06 UTC 9 (FZRA), Springfield 00 UTC 10 
(FZRA), 12 UTC 10 (FZRA), Lamont 18 UTC 10 
(FZRA), Dodge City 00 UTC 11 (FZRA), OUN 12 
UTC 9, 10 (FZDR), OUN 00 UTC 10 (IP).  

December 24-27 2000 7 Little Rock, 00, 12 UTC 26 00 UTC 27 (FZRA), 
OUN 00 UTC 12 UTC 26 (FZRA), Dallas 00 UTC 26 
(FZRA), Little Rock 12 UTC 27 (FZDR). 

February 25-27 2003 6 Springfield 12 UTC 26 (FZRA), Little Rock 12 UTC 
26, 00 UTC 27 (FZRA), OUN 12 UTC 26, 00 UTC 
27 (FZDR), Dallas 12 UTC 26 (FZDR).  

December 12-13 2000 6 Dallas 00 UTC 12 UTC 13 (FZRA), Shreveport 12 
UTC 13 (FZRA), OUN 00 UTC, 12 UTC 13 (IP), 
Little Rock 12 UTC 13 (IP).  

December 21-24 1998 5 Dallas 12 UTC 23 (FZRA), Shreveport 12 UTC 23, 
24 (FZRA), OUN 12 UTC 21 (FZDR), Little Rock 12 
UTC 23 (IP).  

January 26-28 2009 5 Springfield 00 UTC 27 (FZRA), Little Rock 12 UTC 
27 (FZRA), Lamont 18 UTC 26 (FZDR), OUN 00 
UTC 27 (FZDR), OUN 12 UTC 27 (IP).  

January 29-31 2002 4 OUN 12 UTC 30 (FZRA), Lamont 00 UTC 30 
(FZRA), Amarillo 00 UTC 31 (FZRA), Amarillo 12 
UTC 30 (IP). 

January 28-30 2010 4 Amarillo 12 UTC 28 (FZDR), OUN 12 UTC 29 
(FZDR), OUN 00 UTC 29 (IP), Little Rock 12 UTC 
29 (IP).  

 

Autocorrelations were calculated to check the degree of interdependence between 

profiles (for warm layer wetbulb maximum temperatures), shown in Fig. A2.4 overleaf. 

The values indicate reasonable independence of samples, although additional variables 

should also be tested. It may therefore be possible to examine the dataset using further 

statistical methods (e.g., bootstrapping), although such was outside of the scope of the 

dissertation.  
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Figure A2.4. Autocorrelations computed from ‘R’ for each hydrometeor subcategory of 
freezing precipitation. Observation lag on x-axis (not strictly time as the samples were 
generally discrete), with magnitude of autocorrelation (ACF) on the y-axis. Range of 
statistical significance shown by the blue dashed lines.  
 

Sounding Climatology: Linear Interpolation for MLD, FLD 

 When the 0oC level aloft bounding the warm layer and top of the refreezing 

layer do not fall on a measurement, level, the simple technique below is used to 

approximate these levels, for top of refreezing and warm layer respectively: 

€ 

Z fz = Z fz+1 −
|Tfz+1 |

(|Tfz−1 +Tfz+1 |)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ (Z fz+1 − Z fz−1)        (A2.1) 

 

Where Zfz is the height of the 0oC level, Zfz-1 and Zfz+1 the heights below and above this 

level respectively, and Tfz-1 and Tfz+1 their corresponding temperatures (oC).  
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Section 3: Additional Material from Synoptic Climatology (Chapter 3) 

TABLE A3.1: List of events forming dataset for ice used in the rotated principal 
component analysis (PREOF). Table highlights time T0, the patterns each case study 
was found to correspond with (where 0 indicates the event did not correlate with any of 
the resolved patterns from the PREOFs) and approximate locations impacted (state 
abbreviations). Using a combination of information, including Storm Data, and NCDC 
local climate summaries, durations and liquid precipitation equivalent (LPE) are 
estimated. LPE is evaluated from surface observations for several major stations over 
the impacted area, and the uppermost value is used, to provide an upper (recorded) 
threshold for each event. In cases where events are in two or more pattern groups, the 
highest correlated pattern is denoted by +.  
 

 
 
 

Event Date/Time (UTC) 
(T0 ± 3 hr) 

 
 

Type 
(Ice) 

 

 
 
 

Areas Impacted 

Approx. 
Duration of 

event (hours) 
from 

representative 
station 

 
Approx maximum 
liquid equivalent 
precipitation (in) 

from representative 
station  

2100 1 January 1993 4 S KS, W-C-E OK, N TX 24 0.25 
1200 18 January 1993 7 N/C AR, N TX 30 0.70 
1500 25 November 1993 0 E & S OK, N TX 15 0.22 
0000 9 February 1994 5 SE OK, SW AR, NE TX 30 0.55 
1200 6 January 1995 8 C AR 6 0.55 
0000 2 February 1996 6 NE TX, NW LA, S AR 12 0.39 
1800 24 November 1996 1 and 8+ N TX, S OK 6 0.60 
1500 8 January 1997 1 SE OK, N TX, S-C AR 24 0.45 
0600 15 January 1997 7 S-SE OK, NE TX, S-C AR 30 0.56 
1200 4 January 1998 4 S KS 12 1.10 
1200 16 March 1998 1 N Panhandle, S KS  12 0.46 
1800 20 December 1998 2 N OK, S KS, SW MO 38 0.35 
0000 8 January 1999 6+ and 8 NW TX, SW OK, C OK, C 

AR 
15 0.10 

0000 13 December 2000 5 NC TX, S OK, SW AR 24 0.65 
0000 26 December 2000 1+ and 7 N TX, S OK, SW/C AR 42 1.07 
1800 28 January 2001 4 SC-NC OK, NE OK,  24 1.00 
1200 27 February 2001 3+ and 7 C, SE KS 12 0.24 
1800 28 November 2001 4 and 5+ N TX 12 0.29 
0000 30 January 2002 3 S/SE KS, N/C, W/C OK 36 1.10 
0000 4 December 2002 7 C, NE OK, N AR 15 0.86 
1200 26 February 2003 6 C TX, E OK, S AR 10 0.30 
1800 4 January 2005 2+ and 4 N OK, S KS 18 1.82 
1800 19 February 2006 2 C OK-NE OK, W-C AR 12 0.36 
1200 19 December 2006 3+ and 7 SW KS, Panhandle 24 <0.5 
1200 30 December 2006 1 C/E Panhandle (TX)  24 0.25 
0000 13 January 2007 3 C, E/NE OK, SW MO 48 2.58 
1200 9 December 2007 3 SW/C/NE OK, SW MO, 

NW AR 
48 2.05 

0600 22 January 2008 2+ and 6 SW, C-NE OK, NW AR 6 0.25 
2100 15 February 2008 6 C & SE OK 24 <0.5 
1200 23 December 2008 5 SE OK, E KS,C AR 10 <0.25 
1800 26 January 2009 2 C/E OK, C/N AR 30 1.26 
1500 28 January 2010 1 SW/C OK, E Panhandle 

(TX) 
12 1.06 
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TABLE A3.2: As Table A1, but for snow events. Snow amounts are estimated in a 
similar fashion to the LPE estimates. When the estimate is uncertain (e.g. snowfall 
bands outside of measurement locations), measurement ranges from the Storm Data 
archive are used. As in Table A1, upper thresholds or ranges are shown below. Missing 
information is shown as a dash.    

 
 
 

Event Date/Time (UTC) 
(T0 ± 3 hr) 

 
 

Type 
(Snow) 

 

 
 
 

Locations Impacted  

 
Approx. Duration 
of event (hours) 

from 
representative 

station 

Approx maximum 
liquid equivalent 
precipitation (in) 

from representative 
station 

(max snowfall in 
inches) 

0000 9 January 1993 3 Panhandle (OK/TX), NW 
OK, NC & C OK, S KS.  

30 0.30 (6.3) 

0600 15 February 1993 1+ and 5 NW-NE OK, S/SW KS and 
S MO 

48 0.77 (11.2) 

1200 25 February 1993 3 N OK, SW-S KS, SW MO 24 0.69 (12.0) 
1800 8 March 1994 0 N & Panhandle OK, E & C 

OK, C & N AR 
24 1.75 (12.9) 

0000 19 January 1995 2 S MO, SE KS,  18 0.57 (8.0) 
1800 12 February 1995 1 and 3+ SW-E Panhandle (OK, 

TX), NW & C OK, SW/SC 
KS 

12 0.21 (5.1) 

1200 1 March 1995 3  SW KS, NC OK 30 0.50 (9.2) 
0600 7 March 1995 0 SW KS, N OK 24 0.22 (4-6) 
0900 18 December 1995 2+ and 5 NW OK, S KS, N 

Panhandle (OK, TX)  
21 0.40 (5.0) 

0900 2 January 1996 4 NE OK, N AR, SW MO 24 1.20 (8.2) 
1200 18 January 1996 6 NW OK, C KS 12 1.27 (4) 
0600 2 February 1996 1 C OK, C AR & N 18 0.15 (6-9) 
1500 8 January 1997 4 W, C & E OK, SE KS, N 

AR, S MO  
24 0.80 (9.0) 

1200 8 January 1998 0 S/SE KS, SW MO 18 0.47 (4.2) 
0000 8 March 1998 2 S KS/ SW KS, Panhandle 

(N TX) 
18 0.66 (9.3) 

1500 12 March 1999 2 Panhandle (OK/TX), NW 
OK, SW KS  

24 1.81 (13.0) 

2100 26 January 2000 0 W, C & E OK, S KS, N 
AR, N TX 

21 0.80 (8.9) 

0000 13 December 2000 1 N OK, N AR, SW MO 24 1.05 (7.3-14.2) 
0900 31 December 2000 0 E OK, NW AR 21 0.13 (4-6) 
0300 5 December 1999 2 S KS, N & C OK 9 0.63 (4.5) 
1200 16 January 2001 5 NW OK, Panhandle, S KS 27 0.24 (4-10) 
2100 28 November 2001 0 W & C OK, SW & C MO 15 -- (6.0-8.0) 
1800 5 February 2002 2 SE Panhandle (TX), NW 

TX & C OK, N AR 
18 0.24 (2-6) 

0000 2 March 2002 1 N OK, C OK, NE & E OK 21 0.70 (6.4) 
0000 4 December 2002 3    
0000 24 December 2002 5 N OK & S KS 24 0.80 (7.5) 
1200 9 February 2003 1 N/C N N/E OK, S KS 10 0.20 (4-10) 
1200 26 February 2003 3 and 5+    
2100 12 December 2003 0 N OK, SW KS, N AR 15 0.37 (7.3) 
1500 22 December 2004 1 C/S OK, C/N AR 12 0.15 (2-6) 
1800 28 January 2005 3 C/N OK, S KS, TX 

Panhandle 
18 0.35 (3.1) 

1200 17 December 2005 5 SW-SE KS 24 0.52 (5.6) 
1800 9 January 2006 0 TX panhandle W & C OK, 

SW-SE KS, NE OK 
14 --- (3.0-8.0) 

0000 30 November 2006 0 SW-SE KS, N & C OK, 21 1.14 (10.4) 
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SW MO 
1500 20 January 2007 5 S KS, N & C OK 18 0.40 (5.2) 
1800 31 January 2008 6 SE KS, N OK, N AR, S 

MO 
18 0.28 (4.0-6.0) 

1800 3 March 2008 4+ and 6 E OK, N & C AR, SW 
(Ozark) MO 

12 --- (4.0-8.0) 

1800 6 March 2008 4 E OK, C AR, N TX 12 0.93 (up to 12.0) 
0000 25 December 2009 4 C OK, N/E OK & N AR 12 0.95 (13.5) 
0300 1 February 2011 1+ and 4 C& N OK, NE OK & NW 

AR, SW MO 
12 1.00 (13.2) 

0000 9 February 2011 1 C & N OK, NE OK & NW 
AR, SW MO 

15 0.40 (6.0) 

 

 

Additional Figures  

The figures overleaf display meteorological features of the remaining pattern 

types (6-8 for Ice, and 6 for Snow, see Tables A3.1 and A3.2). For each figure, plots 

were generated directly from NCEP-NARR online plotting tools, for T-24, T0 and T+24. 

Fields include geopotential height at 500 hPa (gpm), sea level pressure (hPa), 250 hPa 

vector wind (and magnitude, ms-1), precipitable water vapor (mm) and temperature at 

850 hPa (oC). Based on the constituent events, Ice Pattern 6 has a similar impact 

location for freezing rain as Ice Pattern 5, while Ice Pattern 7 was similar to Ice Pattern 

1. Ice Pattern 8 only has three events, two of which also correspond with other pattern 

types, therefore this composite has too low of a sample size at this stage to be reliable, 

and is not shown. The same was true for Snow Pattern 6, also with three events (not 

shown). The evolution of this composite event was similar to Snow Pattern 4.  
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Figure A3.1: Ice Pattern 6 (n=5), variable descriptions shown above.  
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Figure A3.2: As Fig. A3.1 but for Ice Pattern 7 (n=6)  
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Section 4: SST Interpolation Uncertainty (Chapter 4) 

This dissertation included a number of examples of regridding procedures, both 

for interpolation to a different grid (see section 5), or a different resolution. Chapter 4, 

sec 4.4 introduced the SST perturbations forming the sensitivity study. Daily 

climatological SST was most readily available at high (1/12th degree) resolution from 

the MMAB and was interpolated to 0.5o for input to WRF. The interpolation was 

bilinear, using the NCL function ‘linint2’. Bilinear techniques linearly interpolate from 

known to unknown points in the x and y directions separately, and are commonly used 

when data is already gridded and varies reasonably smoothly across a domain. To test 

error associated with this procedure, the 1/12 o field was interpolated to 0.5o and then 

back to 1/12o. The difference between the original field and recovered field was then 

computed and halved to estimate error. Furthermore, the same technique was used to 

extract uncertainty for the interpolation of OIv2 0.25o data to 0.5o.  

 

 

Figure A4.1. Interpolation errors (in Kelvin) expressed as a histogram for (left) 1/12o to 
0.5o, and (right) 0.25o to 0.5o for the Gulf of Mexico region (100-78 oW, 14-30 oN). 
Total average domain error is the average over all grid points (top).  
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Interpolation uncertainty was generally between ±0.5 K, with a domain average 2-3 

orders of magnitude smaller. This implies that regional SST structure may have 

experienced some larger error, however negligible bias appears for the basin as a whole. 

Since our sensitivity study does not require SST variations to be exact to a specific 

field, and was more concerned with the broad-scale anomaly (e.g., basin average SST), 

these errors are well within the tolerance of this study.  

 

Section 5: Additional Interpretation of Methodology (Chapter 5) 

 
Interpolation Uncertainty for Stage IV Precipitation using MET (sec. 5.3, 5.4,5.5) 

  

 In order to directly compare and perform verification of WRF model output 

against a user-specified dataset (in this case NCEP Stage IV), the two datasets must be 

on the same grid. Here we used the grid specifications of the WRF (projection, 

resolution) to regrid Stage IV. This procedure was performed in MET using the 

‘copygb’ tool (see http://www.dtcenter.org/met/users/support/online_tutorial/ 

METv3.1/copygb/index.php). Here the default bilinear regridding technique was used. 

The procedure to estimate error was similar to appendix section 4. The 48-hour Stage 

IV accumulated precipitation was regridded to the WRF grid, and then back to its 

original format. Figure A5.1 shows the magnitude of the uncertainty (in mm) for (a) 

December 9-11 2007, and (b) January 28-30 2010. No other sources of error were 

evaluated (e.g., Stage IV algorithms, instrumentation).  

 The resulting regridding error was on the order of ± 2 mm, with the December 

2007 event (a) evidencing occasional larger negative departures (under-reproduced 
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precipitation). The morphology of precipitation was marked by a relatively narrow axis 

of heavy precipitation (e.g., Fig. 4.10), and therefore potentially sharp gradients in 

accumulation. The bilinear method can struggle in such cases due to the rapid rate of 

change underestimated from a linear slope formula. Alternate regridding/interpolation 

methods (e.g., bicubic, neighbor) were not considered.  

 

Figure A5.1. Histograms of regridding error (in mm) of 48-hour accumulated Stage IV 
precipitation using MET for (a) December 9-11 2007, (b) January 28-30 2010. Values 
calculated for WRF model domain 3.  
 

Mesonet Regridding Error (sec 5.3, 5.4, 5.5) 

Mesonet observations are ungridded and available at ~140 stations over 

Oklahoma. Validation of WRF surface air temperature used this data at 30-minute 

intervals, but for convenience the Mesonet information was gridded to a regular 

latitude/longitude 0.5x0.5o grid using the NCL function ‘cssgrid’, which uses tension 

splines. This regularly spaced dataset then allowed for selection of specific points for 

both WRF and Mesonet, in the former by finding the nearest gridpoint to a user 

specified lat/lon. Tension splines are based on cubic splines but introduce a ‘tension 
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factor’, which adjusts to approach a cubic spline when the tension factor is zero, and a 

linear interpolation when the factor is large. The aim is to minimize the curvature of a 

surface (mathematically), and provide a smooth, spatially continuous field. The tension 

factor allows values to be more closely constrained by input data and does not permit 

values outside of the sample (raw Mesonet stations) range.  Potential error was 

investigated by taking a raw station site in close proximity to an interpolated grid site 

and comparing the temperature time series. Figure A5.2 shows results from the January 

2010 case study, from a site ~36oN, 96.5oW (Oilton, OK). Results indicated excellent 

agreement for the 48-hour time series at this location, with slightly warmer values (≤|0.3 

K|) in the interpolated product.  

 

Figure A5.2. Air temperature time series for the January 2010 winter storm for the 
Mesonet station site at Oilton, OK (black), and a nearest interpolated grid (red). Inset 
histogram shows frequency of errors associated with this time series.  
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Verification Metrics (sec. 5.3, 5.4, 5.5) 

 When validating a forecast or simulation product against a corresponding 

observation, there is a suite of verification methods available. Forecasters commonly 

utilize ‘skill scores’, based on a 2x2 contingency matrix:  

 

Equations for the metrics evaluated in Chapter 5 (e.g., Fig. 5.5, Table 5.2-5.6) are 

shown below, along with brief descriptions and/or advantages and disadvantages of 

each method (based on Richman, 2014 descriptive statistics class notes). 
 

€ 

Accuracy =
(a + d)

(a + b + c + d)  

Accuracy is intuitive and simple (essentially, forecast ‘hits’ over all matrix categories), 

but can be heavily influenced by the most common category, which for rarer events is a 

‘no’ observation (e.g., d).  

€ 

Bias =
(a + b)
(a + c)  

Indicates whether an event is under (< 1) or over (>1) forecast, and measures only 

relative frequencies.  

€ 

POD =
a

(a + c)  

Probability of detection (POD) measures the fraction of correct forecasts (e.g., match 

between observation and forecast amount for a given spatial point/domain). POD is 

 OBSERVATION   
FORECAST Yes No 
Y Hit (a) False Alarm (b) 
N Miss (c)  Correct negative (d)  
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sensitive to ‘hits’, which for POD-yes (no) means events at or above (below) a given 

threshold.  

€ 

FAR =
b

(a + b)  

The False Alarm Ratio (FAR) measures the number of times a forecasted event did not 

occur in the observation. Con: Ignores missed values.  

€ 

POFD =
b

(b + d)  

Measure of inaccuracy of forecast compared with observations, especially focussed on 

false positive for an event.  

€ 

CSI =
a

(a + b + c)  

The Critical Success Index (CSI) or ‘threat score’ is sensitive to hits, but penalizes false 

alarms and misses. Con: For rare events in a distribution, such as heavy precipitation, 

the CSI tends to yield a worse score.  

 

 Where

€ 

aref =
[(a + b)(a + c)]

n  
 

n = number of events (e.g., number of domain 3 grid points).  

The Gilbert Skill score (GSS), also known as ‘equitable threat’ measures the number of 

events that were correctly predicted, adjusted for an expected hit rate that may occur 

simply due to chance. Con: GSS penalizes both misses and false alarms equally and so 

the reason for error may not be distinguishable simply from this metric. Pro: Good for 

rare events.  

€ 

GSS =
(a − aref )

(a − aref + b + c)
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€ 

HSS =
2(ad − bc)

(a + b)(b + d) + (a + c)(c + d)  

The Heidke Skill Score (HSS) uses all the measurements in the contingency table, and 

tends to work well for rare events.  

€ 

FSS =1−
1/n (Pfcst − Pobs)

2∑
1/n (Pfcst )

2 +1/n (Pobs)
2∑∑

   

Where Pfcst (Pobs) is the fractional event frequency for the model (observation) within a 

defined neighborhood (we considered 3x3 and 5x5 grids ~10 and 15 km respectively), 

and the summation is over the number of points in the domain. The fractions skill score 

(FSS) (e.g., Roberts and Lean 2008) compares fractional coverage of observations and 

simulated quantities within a spatial sub-region. The score is sensitive to rare events.  

 

Overview of the MET MODE tool  (Chapter 5, sec. 5.4, 5.5, e.g., Fig. 5.8, 5.15) 

MODE is an acronym for ‘Method for Objected-based Evaluation’ (Davis et al. 

2006a,b, Brown et al. 2007), which can be used to verify data with coherent spatial 

structures, such as precipitation. In this dissertation, objects are precipitation areas 

above a threshold accumulation. Details of the calculation of skill attributes from 

MODE are provided in the MET users guide (version 3.1, see 

http://www.dtcenter.org/met/users/), although a basic overview is provided here. Firstly 

MODE needs a procedure to resolve spatial objects, which is termed ‘convolution 

thresholding’.  
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In this equation, C is the convolved field (object), φ the spatial filter function, and f the 

raw precipitation data. The filter function is calculated from 

 

 

R (radius of influence), and H (height-or 3D depiction of precipitation intensity, where 

higher precipitation = higher height) are interdependent and thus the user only need 

specify R to solve. MODE appeared quite sensitive to the choice of R, with larger 

values tending to overly smooth the data and eliminate localized intense precipitation, 

shown for December 2007 in Fig. A5.3. The convolved field (C) is then thresholded, 

using value T, creating a mask (M) that eliminates values < T.  

 

Raw data is subsequently restored to object interiors (F) via 

 

Multiple attributes may be gathered from precipitation objects which help to later 

 determine similarity between forecast and observed. Examples include area,  

moments (e.g., geographic centroid), axis angle (tilt, curvature), and aspect ratio. The 

degree of match is evaluated from user-defined weights placed on these attributes (for 

this dissertation, default weights were applied). For example, the centroid of the 

forecasted and observed objects has a higher weighting than some other variables, as the 

user would ideally like to see precipitation objects in a similar spatial location. The 

better these objects match, the higher their ‘interest value’, where ~0 = low or no 
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interest, and 1=high interest. MODE uses a default of 0.7 to keep or discard variables 

based on their interest value. ‘Total interest’ (T) is then summed as 

 

 Where wi are weighting factors, Ci the convolved field, and Ii interest value. The total 

interest is then thresholded and object pairs above the threshold are matched.  

 

 

 

Figure A5.3. WRF simulated (‘Forecast’) and Stage IV (‘observation’) precipitation 
objects for 48-hour accumulations > 20 mm. Top panels show total precipitation (mm), 
center panels show precipitation objects for (left) radius R of 10 km, and (right) R=15 
km. Areas of precipitation generally captured by the MODE process circled in orange, 
while regions with maximum precipitation above the threshold that were not resolved 
circled in dark blue. Use of a smaller radius of influence aids to better characterize 
spatial distribution for both WRF and observations, which are too smoothed on the 
right. Other parameters were altered, but their influence on the objects was much 
weaker (not shown). These changes included reducing area (merge) threshold to 10 mm 
(5 mm) on the left plot from 20 mm and 10 mm respectively.  
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Section 6: RIP 4 Ensemble Trajectories (Chapter 6, sec 6.5) 

To briefly test the representativeness of the instantaneous trajectories analyzed 

in the text, an ensemble was generated from a grid of 10x10 points in x and y, each 

offset by half a grid cell, or 15 km, terminating over central Oklahoma at 850 hPa using 

REAL. Figure A6.1 demonstrates the results for (a) 12 UTC December 9, and (b) 12 

UTC December 10. For (a), the ensemble confirmed the two diverse paths indicated in 

Fig. 6.21 (e.g., contrast CLIM to other perturbations), with reasonably low spatial 

spread. For (b) the vast majority of members showed anticyclonic flow from the 

Caribbean over the western GOM, although spread increased with southward extent 

(and therefore time).  

 

 

Figure A6.1. Air parcel ensemble trajectories initiated over a grid and interval 
described in above text valid (a) 12 UTC December 9, and (b) 12 UTC December 10. 
Trajectory altitude is accounted for by the width of the arrows but is not necessarily 
easy to pick out in the ensemble. Changes in altitude were not investigated.  
 

Section 7: RIP 4 Ensemble Trajectories (Chapter 7, sec 7.5) 

A test analogous to section 6, and with the same ensemble parameters was  
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performed for 21 UTC January 28 (Oklahoma) and 12 UTC January 29 (Arkansas) 

based on endpoint locations specified in the dissertation, and the levels near maximum 

warm layer temperature (~850 hPa and 800 hPa respectively). Results are shown in Fig. 

A7.1. Ensemble members showed more divergence compared with those of Chapter 6, 

especially with time. For (a) the dominant region of the GOM over which the members 

passed was similar to that of the instantaneous trajectory. For (b) a larger swath of the 

central and northern GOM was involved, with trajectory source regions varying from 

the northern states, to eastern Mexico, and some even from tropical Central America. 

This implies less certainty with respect to the representativeness of the trajectories 

analyzed in chapter 7. It also may be a consequence of the faster system progression 

such that grid points separated by 15, 30, 60 km experience more variable flow fields. 

Further work would be required to analyse this. 

 

Figure A7.1. Air parcel ensemble trajectories as in Fig. A6.1, valid (a) 21 UTC January 
28 (850 hPa) for west-central OK, and (b) 12 UTC January 29 (800 hPa) for western 
AR.  
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