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Abstract 
 

This dissertation makes an exploratory comparison between two semantics models, 

Latent Semantic Analysis (LSA) and a newly introduced HiMean model based on the 

HyGene architecture, in a medical decision-making context. Emphasis is placed on 

using real-world, human decipherable input to produce rational diagnoses. Base rate 

information is manipulated as a proxy to expertise or learning in different information 

environments, and outcomes on decision measures are examined. Model performance in 

terms of correct probe or query identification, alternative hypothesis generation, probe 

degradation resilience, probability judgments, and diagnostic capability is evaluated.  

Multidimensional scaling is also employed to investigate two-dimensional projections 

of the models’ respective semantic spaces. Experimental outcomes reveal that both the 

LSA and HiMean models, as well as HiMean variants perform well in a variety of 

conditions. The models produce performance tradeoffs between each other in terms of 

accuracy, judgment calibration, and robustness to probe error, though not in diagnostic 

capability. The models are demonstrated to be capable of utilizing non-trained data and 

producing identification accuracies up to 80%. Generally, both LSA and HiMean prove 

to be capable decision architectures with a wide variety of potential applications. Some 

thought is given to future work dedicated to a multi-agent decision system which 

capitalizes on the strengths of both models.  
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Introduction 

 
Models, by their definitions, are simplified versions of more complex systems 

(Rodgers, 2010). By necessity, their creators must make decisions regarding what to 

include and exclude from the models while still retaining their important explanatory 

features. In models of human memory, a rather important area of consideration is often 

sacrificed in the name of simplicity or in the pursuit of a tightly-defined scope. That is, 

it is commonplace to represent the mental information in memory that actually maps to 

reality using an abstract grouping of features (usually numbers). For example, traces or 

images in memory might be represented as integers indicating varying memory 

strengths, as in the Search of Associative Memory (SAM—Raaijmakers & Shiffrin, 

1981), for particular items, or as vectors of concatenated feature values indicating the 

presence, absence, or lack of information about specific attributes for the memory item 

(MINERVA 2—Hintzman, 1984, 1986, 1988; MINERVA-DM—Dougherty, Gettys, & 

Ogden, 1999). In such instances it is presumed that items to be represented in memory 

can invariably be decomposed into signals which allow the various components of these 

cognitive models to operate. However, the act of explicitly employing these model 

representations in a real-world, everyday task is seldom accomplished. Thus, while it is 

possible, and perhaps even likely, that the assumptions of these models hold if real-

world information is appropriately translated and deployed in a task, they remain 

empirically untested and, further, the question as to whether such conversion is even 

possible remains. 

In opposition to the information abstract representation schemes often employed 

by cognitive memory models, computational semantic models have been touted for the 
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ability to reduce complex, multidimensional semantic spaces of real-world phenomena 

into representations manageable for various computational and analytical processes 

(Landauer & Dumais, 1997). It has even been proposed that the human memory system 

operates on a similar process of abstracting meaningful information networks, though 

not necessarily explicitly based on frequency of semantic associations (Landauer & 

Dumais, 1997). In theory, then, semantic models lend themselves to deployment within 

cognitive models purported to explain human memory processes. However, modelers 

concerned with computational semantics are not often interested in explicitly tying them 

to feasible memory models or the applications thereof. Thus, in one hand we have 

memory models which do not necessarily concern themselves with how their chosen 

representational systems reflect real-world information, and in the other we have 

semantic representation systems that are generally not concerned with their assimilation 

into models of cognitive processes. Additionally, even given the integration of semantic 

and cognitive psychological models within a memory-theoretic framework, little has 

been done in the way of demonstrating how they might contribute to decision-making 

processes in an applied setting.  

The workable integration of these ideas in a functional, “real-world” application 

is the subject of this dissertation. After a brief overview of the models involved and 

their underlying mechanics, I explicate the rationale and method for directly translating 

a domain which has been semantically decomposed using semantic analysis techniques 

into a feasible memory representation operationally governed by the HyGene 

(Hypothesis Generation—Dougherty, Thomas, & Lange, 2010; Thomas, Dougherty, 

Harbison, & Sprenger, 2008) cognitive model. I introduce the HiMean model, named 
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for both the fact that it investigates Higher order, latent relationships as well as operates 

on the semantic Meaning of associated concepts. This amalgamated HiMean model is 

investigated by deploying it during a diagnostic decision-making task operating over a 

realistic information ecosystem. The performance of this model as it compares to a 

“decision model” based on traditional Latent Semantic Analysis (LSA) is discussed 

along with the effects of various model manipulations and concomitant implementation 

considerations. 

HyGene Overview 

HyGene is a cognitive process model that explains the dynamics of memory 

activation, memory retrieval, hypothesis generation, and information search and 

judgment (Dougherty et al., 2010; Thomas et al., 2008). Under HyGene, information in 

the external or internal (i.e., physical or mental) environment serves as a cue to the 

memory retrieval processes which are then responsible for furnishing the working 

memory construct with information requisite in rendering judgments or further testing 

the environment for additional information. Figure 1 serves as a visual illustration of 

HyGene’s machinery, demonstrated as a series of iterated steps (though they are not 

considered to be necessarily serial in execution). 

1.  The experience of some information (Data observed, or Dobs) in the 

environment activates related traces in episodic memory. Episodic memory is defined as 

the long-term storage of an individual’s experiences. The episodic memory in HyGene, 

as in real life, contains imperfect traces (records) of those experiences. That is, 

individuals may fail to properly encode into memory some features of the observed 
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event. Importantly for this work, episodic memory is also presumed to contain the base 

rate information for those traces. That is, there is some implicit encoding of the 

frequency of co-occurrences between traces in memory and the data in the environment 

(Gigerenzer, Hoffrage, & Kleinbölting, 1991). This enables the architecture to respond 

to observed data with those traces most frequently associated with similar observations 

in the past. Thus, the probability of any trace activating as a response given the Dobs is a 

function of the strength of the frequency relationship between the trace and the data, 

where higher frequencies (associations) lead to higher activation strengths. 

2.  When the activation value of a trace exceeds a threshold of activation, a 

probe representing the strongest (most frequent) trace hypotheses is generated. This 

probe is referred to as unspecified because it has not yet been linked to semantic 

information and its location and membership within the semantic memory space cannot 

be explicitly determined.  

3. Semantic classification of the unspecified probe is accomplished by matching 

the probe to semantic memory. Semantic memory is also part of long-term memory and 

contains a record not only of the individual’s semantic associations to past directly 

experienced information, but also information that is more general and abstract. 

Semantic classification of the unspecified probe allows for the identification of the most 

representative hypotheses in memory according to their similarity to the probe. In short, 

a hypothesis generated in response to Dobs is comprised of meaning from semantic 

memory and, due to its encoding of frequency information, relevance (likelihood) from 

episodic memory. However, because traces in episodic memory are imperfect and 
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because semantic memory is dependent upon the probe created from those traces, it is 

possible for the model to generate incorrect inferences just as humans do. 

4. Hypotheses (whether correct or not) with activation strengths (As) that are 

sufficiently high (>ActMinH) are considered by the individual as explanations for Dobs by 

gaining access to a construct labelled the Set of leading Contenders (SOC). The SOC is 

HyGene’s working memory component in that it is a temporary activation of a subset of 

long-term memory, is capacity limited, and is the construct in which mental information 

can be manipulated and must be actively maintained in order for its contents to be 

considered. Here, candidates generated from semantic memory vie for limited cognitive 

resources and are retained according to their individual associative strengths. The 

minimum activation strength required for admittance to the SOC is set to be equal to the 

activation strength of the weakest contender currently in the SOC (ActMinH). If the SOC 

has reached capacity and a contender stronger than the weakest candidate arises, the 

weakest candidate is displaced by the contender. In this way, the SOC contains only the 

strongest (most likely) explanations for the observed data. However, it is important to 

note that task characteristics such as limited time or dividing the individual’s attention 

may prevent opportunities for the best possible hypotheses to enter the SOC by 

constraining the individual’s ability to consider all relevant information. Further, as 

working memory capacity is an individual difference, it also potentially moderates an 

individual’s ability to generate and consider ideal hypotheses. 

5. Competition for consideration continues until the conditions of a stopping rule 

are met. This stopping rule can be external (e.g., a time limit) or internal (e.g., 

encountering a certain number of retrieval failures where hopeful contenders had 
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activation strengths insufficient to surpass those of the candidates already in the SOC). 

In Figure 1, the parameter T can be thought of as the unit of measure used in a stopping 

rule, and TMAX as the condition satisfying the rule. Attempts are made to populate the 

SOC with better candidates until T = TMAX. 

6. The probability of any hypothesis in the SOC as the best explanation for Dobs 

is defined by its activation strength relative to the activation strengths of all the other 

SOC candidates. Once the SOC has been populated and the conditions of the stopping 

rule have been met, a posterior probability judgment conditional on the hypotheses in 

the SOC can be rendered, or a search for further external information that is contingent 

on the focal hypotheses (hypothesis-guided search) can be conducted. Thus, further 

information search is engaged in differentially based upon the contents of the SOC. 

For the present work, it is especially important to understand how the memory 

retrieval processes of HyGene give rise to subsequent judgments of the probability of 

any hypothesis as the best explanation for the observation. Specifically, the likelihood 

of any hypothesis being generated as a potential response is a function of its memory 

strength which, in turn, is derived from the base rate frequency of occurrences of those 

traces in the past. Ultimately, this means that the more frequently a hypothesis co-

occurs with a piece of data, the higher the probability that hypothesis will be generated 

in response to similar situations in the future. Bearing this principle of cohesive 

covariation in mind, I move to a discussion of semantic analysis. 
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Semantic Analysis Overview 

Semantic analysis is a method for extracting the meaningful relationships 

between various elements in often complex domains. When examining such 

relationships in language, semantic analysis is frequently applied to textual data 

sources. The basic premise is that the statistical properties of word co-occurrences 

convey something about the meaning of and relationship between those words. Words 

that frequently appear together within specified contexts are presumably concerned with 

some of the same subject matter. For example, due to the frequency with which they 

appear together, dog and cat would seem to share a relationship. Conversely, words that 

rarely appear together may also be highly semantically related. For example, while 

Great Dane and Rottweiler are both large breeds of dog, they may be unlikely to be 

discussed together, as a text describing either of them would most likely be focused on 

one or the other. However, when they are discussed, there is a great deal of overlap 

between their contexts which suggests that the two are, in fact, highly semantically 

related.  

While similarity between words of the first instance are perhaps easily assessed 

by comparing simple counts of their relative occurrences within the same contexts, 

recognizing the higher order relationships that exist between concepts, as in the second 

example, are a little less straightforward. Fortunately, a number of analytical models 

have been employed to accomplish this task (e.g., Vectorspace--Salton, Wong & Yang, 

1975; Latent Semantic Analysis--Kintsch, McNamara, Dennis, & Landauer, 2006; 

Sparse Independent Components Analysis--Bronstein, Bronstein, Zibulevsky, & Zeevi, 
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2005; Topics--Griffiths & Steyvers, 2002; Sparse Nonnegative Matrix Factorization--

Xu, Liu, & Gong, 2003; Constructed Semantics Model--Kwantes, 2005; and the Bound 

Encoding of the Aggregate Language Environment Model--Jones & Mewhort, 2007). 

Each of these models represents semantic spaces uniquely, with their varying qualities 

chosen according to different computational and theoretical motivations.  

Perhaps the quintessential approach to these types of analyses is LSA described 

by Landauer and Dumais (1997). These authors demonstrated that the higher order, 

latent, relationships between words could be captured by LSA using the properties of 

matrix mathematics. In LSA, a matrix record of the frequencies with which words 

appear in certain contexts is first created. Here a “context” is defined as an individual 

corpus of text. For example, a corpus could be comprised of a paragraph, the text of an 

entire book, the contents of a particular website, or an article on a specific topic within 

an encyclopedia where each article is considered a separate corpus. A collection of 

these corpora (multiple paragraphs, books, websites, articles, etc.) capture the entire 

semantic space of interest and a list of the words appearing in the corpora is made. 

Usually, this list is preprocessed in some way to exclude words that do not contain 

much semantic information (“stop words”) in order to reduce the statistical noise they 

would otherwise introduce to the analyses. For example, words that appear repeatedly in 

every context (a, and, the, etc.) do not tell us much about their meaning. Once the final 

word list is derived, the frequency of each word’s appearance within each corpus 

(document) is recorded in an M x N matrix where the rows are the words and the 

columns are the documents. Following the example set in Landauer and Dumais (1997), 
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an example matrix consisting of 1,000 documents and 30,000 words is shown in Figure 

2 where x represents the number of times a word appears in a document: 

Depending on the specific analysis method being deployed, the values in the 

cells of the matrix are then sometimes transformed according to various techniques. In 

LSA, each cell’s value is given by the formula 

  (   )

 ∑ (
  (    )
∑    (    )
 
 

)   (
  (    )
∑    (    )
 
 

) 
 

 

where d is the total number of documents in the corpora. The theoretical 

motivation for this transformation was that the log function models growth in simple 

learning and that by dividing this log-transformed term by its entropy over the entire 

corpora,  ∑ (
  (    )

∑    (    )
 
 

)   (
  (    )

∑    (    )
 
 

) 
   each cell is weighted by the amount of 

information the word conveys according to its context specificity (Landauer & Dumais, 

1997). Following the formula application, the matrix is linearly decomposed into its 

principal components by way of singular value decomposition (SVD). The result is 

three derived matrices which can be multiplied together in order to reconstruct the 

original matrix. One of these three matrices is a condensed diagonal matrix of singular 

values representing the scaled strengths of all the intercorrelations of the words and 

documents. With the original term x document matrix thus decomposed, it becomes 

possible to remove singular values accounting for the smallest contributions from the 

diagonal matrix by replacing them with zeroes and reconstruct an approximation of the 

original matrix where individual elements are mathematical composites of the singular 

vectors and the newly reduced singular values.  
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The reconstructed matrix is now comprised of word (row) vectors that have 

“lost” information associated with the removed dimensions, which serves to increase 

the similarity of related word vectors and reduce the similarity of unrelated word 

vectors. This method essentially exposes which contexts are the best (most informative) 

representations of the word relative to all the other words. The number of dimensions in 

which to represent the space determines the similarity of the vectors. If too many 

dimensions are retained, the surface information is not diluted and the abstract 

relationships between items remain obscured. Conversely, because reducing dimensions 

reduces variance in the matrix, discarding too many dimensions results in a collapse of 

the similarity structure and distinguishing between vectors becomes meaningless. The 

choice of dimensionality is therefore an important consideration. In properly 

constrained space, the greater the similarity between different row vectors, the more 

likely they are to share semantic properties and the more dominant those vector co-

relationships are relative to the other term vectors. Various methods for computing 

word vector similarity can be deployed. Cosine similarity is often chosen as a metric 

because of its suitability in determining the angular difference between vectors 

occupying high-dimensional spaces. 

While LSA is certainly a powerful tool with a simple yet effective representation 

for textual analysis, its ability and versatility to robustly model psychological processes 

in a variety of domains is rather limited without modification. For example, in the case 

of information retrieval (where LSA becomes LSI, or latent semantic indexing), 

querying the covariance matrix (database) results in an isomorphic and static return 

structure. This is a desirable quality in variety of circumstances especially where 
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reliability is crucial, but it would not account for the more variable and errorful human 

memory retrieval processes without perturbing the characteristics of either the probe or 

the database itself, or entrenching it within a different operational structure. This is a 

significant limitation despite LSA’s ability to otherwise rather elegantly uncover 

semantic relatedness. 

The HiMean Model 

Dimension reduction via SVD is not the only way to form meaningful 

representations of semantic word spaces, however. In 2005, Kwantes explicated a 

representational system called the (Constructed) Semantics Model that formed semantic 

spaces using some of the cognitive machinery behind the MINERVA-2 memory model. 

Here, MINERVA-2’s memory traces, which are normally comprised of feature vectors 

of 1s, 0s, and -1s representing the presence, lack of information about, or absence of 

specific features within that trace, were replaced with word vectors derived from their 

tabulated occurrences within specific contexts, as in LSA. Kwantes (2005) had to 

modify the way that MINERVA-2 trace activation (similarity to probe word) weights 

are derived and applied because of differences in representation (the Semantics model 

trace vectors were not constrained to 1s, 0s, and -1s). In LSA, while it is dimensionality 

reduction that dilutes the effects of less informative vector elements and creates a more 

coherent similarity matrix, the Semantics model accomplishes this by eliminating from 

a composite trace vector the contributions of those memory traces that fail to reach a 

requisite threshold of activation. Despite the Constructed Semantics model’s minor 

differences between both LSA’s dimensionality reduction and MINERVA-2’s  
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representation and activation calculations, it was nonetheless able to produce semantic 

memory composites that were useful in constructing a meaningful multidimensional 

space whose member vectors’ mathematical distances from each other conveyed their 

latent semantic associations.  

Given that HyGene’s memory representation is based on MINERVA-2, it 

should, as with the Constructed Semantics model, be amenable to utilizing semantic 

spaces derived from real-world contexts. Unlike MINERVA-2 and the constructed 

semantics model, however, HyGene has two memory systems in operation. One of the 

strengths of this aspect of HyGene that make it particularly suitable for probability 

judgment during decision-making is the potential to benefit from the base rate 

frequency information stored in its episodic memory component. Encoding base rate 

information regarding document prevalence into HyGene’s episodic memory can serve 

to change the activation strengths of the associated semantic traces rather than simply 

relying on word frequency counts across separate documents alone to convey the 

importance or relatedness of memory items as is done in the standard sematic models. 

From a scientific modeling perspective, this allows for memory trace (word or 

document vector) frequency manipulations to be carried out in a psychologically-

principled manner in order to determine whether there is an advantage to cognitive 

models within a decision framework when compared to standard computational 

semantics. Integrating semantics and HyGene allows for further testing of the model’s 

theoretical competence in decision tasks. It also becomes possible under these 

conditions to examine more closely the differential effects of more sophisticated 
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memory probes, the retrieval dynamics of specific pieces of information, and their 

potential impacts on hypothesis testing and diagnosis. 

Comparison models. Because the various model implementation considerations 

of LSA and HiMean may have a differential impact on their performance under varying 

conditions, I aimed to conduct an exploratory study designed to examine this potential. 

Specifically, I wanted to compare the performance of the HiMean model both to 

variations on the HiMean model itself (i.e., a psychologically unconstrained “ideal” 

version) and to LSA (which does not have components specified according to 

psychological principles) on various measures. I expect that the more human-like 

psychological aspects to the HiMean model can be both a boon and a hindrance to its 

performance with respect to the psychologically indifferent mechanisms of LSA. More 

specifically, the stochastic retrieval processes in the HiMean models may be beneficial 

or detrimental to diagnostic performance when compared to the static query dynamics 

of LSA. Additionally, even after controlling for the undercurrents of the response 

generation processes, model divergence in information representation itself may lead to 

differential outcomes despite equivalent inputs. 

Base rate information. I also manipulate the composition of the models’ 

semantic spaces by changing the frequency of the semantic vectors comprising the 

models’ memories. This does not seem to be a conventionally explored aspect of 

semantic analysis. By varying the base rate information associated with various 

diseases’ memory traces, I am able to generate memories tailored to reflect specific 

information environments or experience. For example, even given the same set of 

symptoms, we might expect different diagnoses from a doctor operating under 
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conditions where those symptoms are rarely occurring and highly diagnostic of 

associated diseases than from a doctor operating in an environment where those 

symptoms are ubiquitous. Similarly, an expert doctor with much more experience with a 

particular set of diseases is likely to respond differently to a set of symptoms than a 

novice. Base rates of categories of disease can be manipulated such that the prevalence 

of disease categories (e.g., psychological disorders versus digestive disorders) may lead 

to differential diagnostic performance or probe sensitivities.  

As previously mentioned, HiMean output is sensitive to changes in base rate 

information and this is expected to hold despite the specific contents of the memory 

traces that HiMean is operating over. Despite the importance of base rate information to 

psychologically-plausible cognitive models generally, and to HiMean in particular 

however, it has not been shown whether an LSA approach to semantic retrieval is 

influenced by base rate changes to the same degree, or even at all. Thus, the discovery 

of any differences in diagnostic performance yielded by the manipulation of base rate 

information would represent an important contribution to this area of research by 

providing an opportunity to examine the influences of base rate information on 

hypothesis generation and testing processes.  

Probe diagnosticity and error. Another domain for examination regards the 

influences of the characteristics of the probes/cues themselves on decision outcomes. 

The memory probe (“Dobs” to HiMean, “query” to LSA) can be varied according to its 

diagnosticity within the semantic space and the amount of error it contains. Probes with 

high diagnosticity should be expected to lead to better diagnostic performance, while 

more ambiguous probes are expected to lead to relatively degraded performance. It 
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therefore becomes possible to use the manipulation of probe diagnosticity to evaluate 

the robustness of the models subject to these differences and again we may see 

inconsistencies in performance between variants of the HiMean model and the more 

traditional LSA. Relatedly, increasing probe error may have similar deleterious effects 

on performance. Probe error refers to the quality (or fidelity) of a probe with respect to 

the pristine form of that probe and/or the corresponding traces in memory, with more 

errorful (noisy) probes potentially leading to more errorful retrieval (with respect to the 

retrievals elicited by the error-free version of the probe). This manipulation serves to 

evaluate the various models’ sensitivity to perturbations of probe information and their 

effect on outcome measures. It would be important to learn if psychologically derived 

semantic spaces demonstrate a lower sensitivity to such perturbations as compared to 

standard computational semantics (or vice versa) and where and why these differences 

might exist. Therefore I manipulate probe diagnosticity and error to allow for their 

influences in diagnostic decision-making to be explored in depth. 

Model Performance 

Relative choice. I evaluate the influence of these manipulations on model 

performance according to a number of measures. The first is relative choice in a 

diagnosis task. Given the input of a probe, how will a model respond? This measure 

assesses the models according to their ability to generate the correct hypotheses in 

response to a probe. By having knowledge of the actual disease from which a symptom 

probe is extracted, the ideally appropriate responses are known a priori, and the degree 

to which a model’s output concords with those responses is a metric for the optimality 
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of the model’s decision processes. Cosine distance serves as a convenient measure of 

model performance in terms of evaluating diagnostic choice. In LSA, the vector with 

the highest cosine distance with respect to a probe can be seen as having the greatest 

semantic similarity to the probe. In the HiMean model, the retrieved memory trace 

(subject to the constraints of the particular instantiation of HiMean which produced it) 

with the highest activation strength in response to the probe is the diagnosis. Trace-

probe cosine distance is also employed as a similarity measure in the HyGene models. 

Using this metric, it becomes possible to compare the performance of these models in 

terms of their diagnostic capabilities.  

Consideration set and probability judgments. I also measure model 

performance by the set of alternative considerations they generate. While there is 

certainly something to be learned from the models’ primary response to a probe, there is 

also important information to be gleaned from the entire set of likely responses, 

especially from a psychological perspective. By examining the top few responses to a 

probe, the models’ relative performances over a larger set of circumstances can be 

determined. For example, while the top choice generated by LSA may have a greater 

cosine similarity than the top choice generated by a HiMean model, it might be that 

LSA’s second and third options are relatively poor responses to a probe in comparison 

to HiMean’s second and third choices. This would demonstrate that LSA may actually 

be a poorer option from a decision support standpoint because having viable alternatives 

to the primary choice is important under this framework. Another possibility is that the 

constrained version of HiMean may fail to generate alternatives altogether and this 

cannot be appreciated without considering the full set of hypotheses. Finally, by taking 
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into account the entire consideration sets generated by the models, the posterior 

probability judgments for each of the items in the sets can be calculated. The judgment 

as to the probability of a given response to a probe is contingent upon the strength and 

availability of alternatives in the comparison set. Again, from a decision support 

standpoint, it is important to understand whether the primary hypothesis offered by a 

model is considered nearly as probable as the alternatives in its set or if the alternatives 

have extremely low probabilities with respect to the focal hypothesis. 

Semantic space evaluation. Beyond the properties of the model outputs, I also 

aim to investigate the qualities of the semantic spaces themselves. Using cosine 

similarities, it is possible to explore how semantic clusters are arranged in the different 

representations (e.g., dense vs sparse clusters, total number of clusters) and to make 

comparisons between distances associated with various words or semantic concepts. 

The process of removing all but the strongest dimensions during singular value 

decomposition in LSA intentionally decreases the distance between similar constructs 

while retaining the most informative features of the space, but in doing so may change 

the multidimensional structure and shape of the entire space differently than the pruning 

process used to cultivate the semantic memory in the HiMean model. Conversely, the 

multidimensional space of a global match memory model and LSA vector 

representation may share a great deal of features despite being constructed in dissimilar 

ways. 



18 

Method 

Materials 

In order to assess the respective decision-making capabilities of HiMean and 

LSA, I deployed them in a medical diagnosis task. An online medical information 

database consisting of 514 web documents was used as the source for both the LSA 

corpora and HiMean’s constructed semantic memory. Each web document 

corresponded to a different disease, condition, or ailment. The words (rows) in these 

contexts were largely comprised of disease definitions, symptoms, causes, affected 

biological systems and structures, treatments, and diagnoses associated with the 

different disease documents (columns). The average number of words in each document 

was 495.98 (SD = 77.98). All experiments were conducted on a PC utilizing an Intel 

Core i5-4670K 4.2 GHz (3.4 GHz overclocked) processor with 32 GB of RAM and 

running a 64-bit version of Windows 8.1 Pro. The models were programmed using 

Wolfram Mathematica 9.0.1 64-bit and analyses were conducted using a combination of 

Mathematica and R (version 3.0.3 x64). 

Design 

Three models were constructed for comparison. The first model was a standard 

implementation of LSA. The second was a basic version of HiMean that incorporated a 

customized semantic memory but which still adhered to human-like psychological 

capabilities. The third model was an “ideal observer” version of HiMean which, though 

based on the same semantic memory as in the second model, was not subject to the 
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same “psychological” constraints and processes as the common HiMean model. The 

construction of these models is detailed in the procedures section. Each of the models 

was compared on their performance of a diagnosis task under varying probe conditions 

across varying base rate and disease cluster conditions, with relative choice, 

consideration set, and probability judgment as the dependent measures. Semantic spaces 

are also examined. 

Procedure 

Preprocessing. Each document was pre-processed by removing all punctuation, 

special characters, and numbers, and by converting all text to lowercase characters. A 

list of all words appearing across all documents was compiled. From this word list, all 

words with less than two letters were also removed. This was done because the structure 

of the medical text included many roman numerals and abbreviations (e.g., cc, mm, iv, 

im, etc.) which do not contribute much information to the semantic space. This basic 

word list was then further processed by different techniques in order to make it suitable 

to the model representation it was deployed in. 

 In order to allow for base rate manipulations, each disease document was 

classified according to its location within the Medical Subject Headings (MeSH) 

information structure found on the National Library of Medicine, National Institutes of 

Health web site (http://www.nlm.nih.gov/mesh/). The MeSH index is a hierarchical 

description of medical vocabulary and can be used to illustrate the conceptual 

relationships between diseases. Classification according to this structure resulted in 

each of the diseases being categorized into a total of 619 concepts (some diseases 
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belong to multiple categories) subsumed under 27 major disease groups. The major 

disease groups largely corresponded to physiological systems (e.g., musculoskeletal 

diseases, respiratory tract diseases) and disease etiologies (e.g., chemically-induced 

diseases, parasitic diseases, virus diseases). These categories were further grouped 

together according to cluster analysis on the number of diseases in each category. A full 

listing of the major disease categories, the number of diseases in each category, and 

cluster assignment can be found in Appendix A. 

LSA processing. The basic word list of all words consisting of more than two 

letters as described above was used. The total number of words used in the LSA model 

analysis was 9,595 resulting in a 9,595 (term) x N (document) matrix, where N was 

dependent on the base rate manipulation of the disease document frequency. Once the 

word counts in each document were tabulated, the vector elements of the LSA term x 

document matrix were subjected to the same log transform function and entropy 

weighting technique as used in Landauer and Dumais (1999) (described previously). 

Singular value decomposition was then performed on the entropy weighted matrix. The 

number of dimensions to retain was chosen such that approximately 80% of the 

variance accounted for by the full dimensional matrix was intact. This method generally 

indicated an optimal dimensionality between 250 and 300. Figure 3 depicts the average 

within cluster similarity of the different disease groups for the unmodified base rate 

matrix (i.e., all disease documents appeared only once in the corpora) as a function of 

decreasing number of dimensions retained. 
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After the SVD, a new matrix corresponding to the retained dimensions was 

constructed and used for analysis. The cosine distance between vectors was calculated 

as the similarity metric used for judging model performance.  

HiMean processing. Constructing the episodic memory in HiMean, though 

similar in purpose to the term x document matrix used in LSA, required techniques that 

were different from those used in the LSA model. In order to create the memory traces, 

I followed the steps described by Kwantes (2005) in his discourse on the semantics 

model.  The same 9,595 word list as used for the LSA corpora was used as a starting 

point. This list was further trimmed to remove words appearing in more than 90% of the 

514 disease documents. Because they occur in almost every document (“Promiscuity”; 

Kwates, 2005), these words convey little meaning about the individual documents. 

Similarly, words that appeared multiple times but only in the same document, and 

words that appeared less than two times across all documents (“Monogamy” and 

“Celibacy”, respectively; Kwantes, 2005) were also removed because some overlap of 

contextual information is necessary to understand a word’s meaning. The final result 

was a word list containing 5,767 words.  

The number of times each word appeared in each document was calculated and 

used to form the environmental context vector for each disease document. Kwantes 

(2005) used the same logarithmic transform as in LSA to adjust the vector elements 

(though he did not use entropy weighting), however, for HiMean no transform or 

weighting was applied and the original word counts themselves were used as vector 

elements. These vectors represented the information structure of the external world (i.e., 

the information environment the model operated in). Each context vector was encoded 
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as an imperfect trace into the model’s memory according to a learning parameter L, 

where L ∈ [0,1]. Elements (word counts) in the context vector were randomly replaced 

with zeroes with a probability equal to 1-L before being recorded into episodic memory. 

Because the vectors were each 5,767 elements long, L was set to 0.99. This episodic 

memory served as the foundation for the retrieval dynamics in HiMean. In accordance 

with HiMean operating principles, probe/query (Dobs) items were matched against 

episodic memory and those traces responding with the highest activation to the probe 

were then compared to traces in semantic memory in order to identify the best traces. 

The activation calculations and model semantic memories differed between the ideal 

observer and common version of HiMean. 

Ideal Observer HiMean. In the constructed semantics model (Kwantes, 2005), 

the similarity (or resonance) between a probe item and a memory trace was calculated 

as the cosine between the two vectors, Similarity = 
∑                
 
   

√∑       
  

    √∑       
  

   

, where i 

represents the vector elements. As discussed briefly earlier, this departs from the 

MINERVA 2 similarity calculation (  ∑
               

 

 
   , where N is the number of 

element pairs not equal to zero; Hintzman, 1984) because the vector representations of 

MINERVA 2 and Kwantes’ (2005) semantics model are different. As HiMean’ trace 

structure is the same as that used by Kwantes (2005), I used a nearly identical angular 

similarity calculation,  

S =   
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)

 
 because the vector coefficients are 

always positive and this creates a normalized similarity metric bounded between [0,1].  
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Typically, this similarity is then used to compute a memory trace activation strength. In 

MINERVA 2, this is simply the cube of the similarity, A = S
3
, which serves to increase 

the separation between relatively good and relatively poor matching vectors, thereby 

allowing the better matching traces responding to the probe to dominate the system 

(Hintzman, 1984). Kwantes (2005), did not cube the similarity, instead setting the 

activation equal to the similarity (A = S) and opting to follow the example of 

MINERVA -DM (Dougherty, Gettys, & Ogden) by imposing a minimal threshold of 

activation which trace activation must exceed in order for those traces to contribute to 

the model output. IO HiMean uses a combination of these techniques by both cubing 

the calculated similarity to represent trace activation and utilizing a threshold of 

activation (Ac) which traces must exceed. Kwantes (2005) set the activation threshold to 

0.1 and chose to implement this threshold both due to computational considerations and 

because the large number of traces (>86,000) involved meant that even exponential 

weighting of the similarity was unlikely to remove enough noise from the output to 

ensure coherency. In IO HiMean, rather than selecting a convenient cutoff, the Ac for 

responses to each probe is computed dynamically over a parameter space [0,1] such that 

the chosen Ac minimizes the ratio of false responses to correct responses. Optimal Ac is 

given by    [
      

 

   
      

 

 
               

         
] where N is the total number of traces in 

memory, N¬Dobs is the number of traces that don’t correspond to the probe, N>Ac is the 

number of traces whose activation exceeds Ac, and NDobs>Ac is number of traces correctly 

corresponding to the probe whose activations exceed Ac (Thomas et al., 2008).  This 

parameter optimization is possible because the true identity of the probe item is known. 
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Note that humans do not have access to this pristine knowledge when searching 

memory under real-world circumstances. 

In both Kwantes (2005) and IO HiMean, elements of traces whose activations 

exceed Ac are then weighted by their activation strengths and summed to form a 

composite (unspecified) probe representative of their semantic meaning. In this way, a 

semantic trace vector can be comprised of both relevant and irrelevant episodic traces as 

long as the constituent traces have an activation level greater than Ac. The ideal observer 

HiMean model attempts to mitigate the influence of the irrelevant traces by using an 

adaptive threshold set to minimize the number of false alarms contributing to the 

makeup of the unspecified probe. In IO HiMean, this unspecified probe is then matched 

against semantic memory, returning the semantic traces most closely resembling the 

probe. In order to create a “perfect” semantic memory in IO HiMean, the unspecified 

probe that was a composite of only episodic traces actually belonging to Dobs was stored 

as the semantic memory trace for that Dobs. Despite the number of traces comprising 

episodic memory (which is dependent upon the base rate of the disease documents), 

only one composite trace for each possible disease was recorded into semantic memory. 

Therefore, while episodic memory may contain many thousands of traces, semantic 

memory only contained 514 (one for each unique context in this dataset). With the 

semantic memory thus constructed, the full machinery of IO HiMean could be queried 

using various probe items (Dobs). The cosine distance between unspecified probe vectors 

and semantic memory traces was calculated as the similarity metric used for judging 

model performance. Results were computed across the entire semantic memory space, 
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returning a cosine similarity for every probe-trace pair. The best matching pairs were 

considered to be the model’s best choice(s). 

Standard HiMean. The basic operation of the standard version of the HiMean 

model is the same as in the IO model with a few exceptions. The word list used was the 

same. Similarity and activation calculations were accomplished in the same manner as 

well. The activation threshold (Ac) was not set optimally as in the IO model, however. 

Instead, Ac was set to .04, the average threshold derived by the optimized approach. 

This enabled unspecified probes extracted from episodic memory to be comprised of 

more irrelevant memory traces than in the IO model. Similarly, semantic memory was 

not comprised only of pristine traces in the standard model. Semantic memory in the 

standard model consisted of L parameter (here L = .99) degraded versions of the 

original environmental (context) vectors corresponding to each disease document. This 

semantic memory base did not change according the base rate manipulations in episodic 

memory and was meant to represent the gist information extracted from the information 

environment (Reyna & Brainerd, 1991). Moreover, the standard HiMean model put the 

retrieval processes and working memory constraints of HyGene to work. While the IO 

model generated similarity responses over the entire semantic memory and chose the 

best possible candidate, the standard model sampled from memory stochastically, where 

retrieval attempt failures and capacity limitations could lead to suboptimal outcomes. In 

order for a memory trace to be initially considered as a likely candidate response to a 

probe, its activation must exceed the minimal activation threshold upon being sampled, 

subsequent attempts at generation must have activations that exceed the activation of 

the lowest threshold item in the SOC. Additionally, too many failed attempts at 
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retrieving a sufficiently activated memory item resulted in the model’s failure to 

generate responses to its full capability. For these simulations the working memory 

capacity of the model was set to four and the maximum number of retrieval failures 

(Tmax) was set to three. 

Base rate manipulations. Disease context base rate manipulations were 

accomplished by changing the number of documents in the corpora corresponding to 

those diseases. For example, to increase the base rate of skin diseases to five, each 

disease document classified as a skin disease would be written to the corpora five times. 

All diseases not classified as a skin disease would be represented by only one document 

in the corpora. Because some diseases could belong to multiple categories (e.g., 

Pneumonia can be a bacterial disease but is also a respiratory tract disease), sometimes 

a disjoint in the requested base rate arose. In cases where the base rate manipulation 

resulted in such a discrepancy (e.g., the base rate of bacterial diseases was set to five, 

but the base rate of respiratory diseases was set to one), the disease at issue was 

recorded into the corpora at the highest requested base rate. The additional documents 

were added according to their base rates to the LSA corpora before the log transform 

entropy weighting and SVD. In the HiMean models, additional memory traces 

corresponding to the disease documents were added to episodic memory before memory 

activation calculations took place. Note here that while the documents added to the LSA 

model corpora were perfect copies, in the HiMean models they underwent the same 

encoding degradation that all other episodic memory traces were subjected to. That is, 

the additional traces were imperfect copies of each other and only similar to each other 

within the degree of probability set by the encoding parameter (L). 
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Probe quality manipulations. Disease context vectors were used as the probe 

items for the LSA and HiMean models. In order to manipulate to the quality (amount of 

error) of these probes, each of the probe’s non-zero original vector elements had a 

chance to be replaced by a zero with a probability established by a probe noise 

parameter set between 0 and 1. For example, if the noise parameter was set to 0.1, each 

non-zero probe vector element had a one in ten chance of being replaced by a zero. 

Every disease vector was exposed to this degradation process and each was used as a 

probe to query the models. I originally considered assigning an equal probability of 

replacing each vector element with the same element from another randomly chosen 

disease vector, but opted for the current method for two reasons: 1) the sparseness of 

each vector made it so that simply replacing an element with some probability led 

almost inevitably to an already zero element being replaced with a zero from another 

vector and thereby failing to accomplish the goal of the manipulation (i.e., degrading 

the probe) and 2) the current approach allows for more conclusive findings vis-à-vis the 

robustness of the models to degradation because it is possible to state exactly which 

probe was used with more certainty than if its elements had been comprised of the 

elements of other vectors (which could result in a vector resembling the originally 

intended vector in name only). The degradation was applied to the unmodified context 

vectors (i.e., before activation and similarity had been calculated) in the IO HiMean and 

standard models. 

Because the LSA and HiMean models used a differing number of words, their 

respective disease context vectors were of different lengths. HiMean vectors contain 

only a subset of the context vector elements used in the LSA model. In order to make 
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the noisy probe items equivalent across models, a query translator was used to interpret 

the output from the HiMean noisy probe generator and convert it into an equivalent 

probe formatted for use in the LSA model. LSA vectors were first subjected to the same 

degradation process as in the HiMean models to ensure the extra elements in the longer 

LSA vectors were affected with the same probability. Then, the query translator worked 

by replacing the LSA context vector elements corresponding to the same words in the 

noisy HiMean probe context vector (since all words in the HiMean context vectors 

could also be found in the larger word set constituting the LSA context vectors) with the 

appropriate elements defined in the HiMean noisy probe.  

In the cases using the HiMean models, the resultant noisy probes were then 

directly used as queries because their representations were immediately amenable to the 

format necessary to operate within the models’ memory structures. In the case of LSA, 

the translated noisy probes had to be further translated into “concept space” before they 

could be used as queries (Rajaraman & Ullman, 2011). This process involved 

multiplying the noisy probe vector by the right singular vector matrix (i.e., the non-

transposed V matrix) that resulted from the SVD (Rajaraman & Ullman, 2011). This 

concept vector was then translated back into “disease space” by multiplying the vector 

by the conjugate transpose of V and used to query the LSA model. Note that this 

process mitigates to some extent the effectiveness of the probe degradation because the 

mathematics force some of the previously degraded vector elements (i.e., zeroes) to take 

on approximate values according to the particular vectorspace they’re operating within. 

This may be considered an advantage of LSA with respect to performance in this 
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particular domain. Normalized angular cosine distances between query vectors and 

reconstructed LSA vectors were again used as measures of similarity. 

Diagnostic capability evaluation. The diagnostic capability of each model was tested 

by constructing customized query vectors that contained information specifically 

pertaining to user-selected symptoms and features. When this portion of the evaluation 

was initiated, an open text box appeared which prompted the user to “Describe the 

symptoms”.  The user could type anything in this box and a query containing the 

elements of the input text was generated. For these experiments, portions of the “signs 

and symptoms” sections of Wikipedia articles dedicated to ten diseases in total were 

chosen from the corpora disease list and used as input to the text boxes. One disease 

was chosen at random from two different categories for each of the large disease 

clusters (clusters 1, 2, and 3), and one disease was chosen from each of the two 

remaining clusters (  
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Appendix C: Disease Clusters). Care was taken to make sure the input text did 

not contain the name of the disease itself, though input text may involve a portion of the 

disease name. For example, a query about Rheumatic fever, would not contain the word 

“rheumatic”, but may contain the word “fever” in its description of symptoms.  

A complete, full-length query vector was always generated. Unlike the probe 

quality manipulations, a translator was not used to convert HiMean probes into the 

longer LSA probes. Instead, the same text was entered in the text boxes for both model 

types. This allowed for the LSA model to capitalize on the involvement of additional 

words in the text box that might not be represented in the shorter HiMean vectors, 

though the text entered into the boxes was the same for both model types. Any elements 

of the query vector that corresponded to words the user did not input were left at zero. 

Any words the user input that were not part of the word lists used to generate the 

context vectors for each model were not used in the generation of the query vector. 

Words that the user did input and that were also a part of the word list had their 

corresponding vector elements set to one. The output of the query generators was thus a 

context vector of 1s and 0s corresponding to words that were either present or absent 

from the user’s input, respectively. The HiMean models used these query vectors as 

probes directly, while the LSA model used the VV
T

 matrix multiplication process 

described in the previous section to translate the query into LSA disease space first. The 

best cosine matches between the query vectors and the other context vectors or memory 

traces were used as a proxy to indicate the models’ disease diagnosing capabilities 

given the input text information. 
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Consideration set and probability judgments determination. In the LSA 

model, the five diseases with context vectors having the greatest cosine similarities to 

the probe (excluding the probe disease context vector itself) comprised the model’s 

consideration set. The probability of the selection of any alternative from among that set 

was computed as the cosine similarity of that alternative divided by the total sum of all 

the cosine similarities of all items in the consideration set. In the IO HiMean model, 

consideration set was defined as the five diseases with context vectors having the 

highest similarities to the probe item and the probability of selection for any given item 

was calculated as the activation of any item divided by the sum of the activations of all 

other memory items. In the standard HiMean model, the number of diseases in the 

consideration set was defined by the number of diseases generated into the SOC, and 

the probability of any of those alternatives as the best explanation for the Dobs was 

calculated as the activation of that item divided by the sum of the activations of the 

other items in memory. 

Semantic space construction. Non-metric multidimensional scaling was used 

to generate two-dimensional representations of the LSA and HiMean models semantic 

spaces under different manipulations of base rate information. The multidimensional 

scaling was performed using the isoMDS function as part of the MASS package in R 

for the HiMean models’ semantic memories and for LSA. The calculations were 

performed over the symmetric cosine distance matrices generated from all pairwise 

disease context vector comparisons in semantic memory or in the term-by-document 

matrix. 
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Results 
 

The results section is divided roughly into four sections. Each is dedicated to 

formally reporting the outcomes of the procedures set forth in the previous section. The 

reporting of outcomes and probability judgments is spread between the base rate, probe 

quality, and diagnostic capabilities information, however as it was not possible to talk 

about them removed from the context of the other investigations. 

Base rate results 

To fully explain the impact of the base rate manipulations in these experiments, 

it is necessary to first examine their impact on the model semantic spaces themselves 

before discussing how they come to bear on the model output. 

LSA base rate effect. The effect of manipulating the number of times the same 

document appeared throughout the corpus was examined. Using the LSA model, I 

found that increasing the number of documents belonging to particular disease 

categories resulted in a higher average cosine similarity between diseases belonging to 

those categories relative to the average similarity found in disease clusters 

corresponding to documents that appeared only once. Figure 3 depicts the average 

within disease cluster cosine dissimilarity of the disease groups as dimensionality was 

reduced in the LSA framework when all diseases had a base rate of one (i.e., each 

disease document appeared only once). Figure 4 shows the same graph but where 

diseases classified as being cardiovascular diseases had their base rate increased to five. 

That is, all cardiovascular diseases contexts appeared five times in the corpora. In this 
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graphic it is plain to see that cardiovascular diseases were much more similar to each 

other than other disease clusters were to themselves, even at the full dimensional space. 

Similarity between cardiovascular diseases also increased more rapidly as dimensions 

were discarded, eventually collapsing into near identicalness with a higher number of 

dimensions retained than did the other disease clusters. When the base rate for 

cardiovascular disease was increased to ten, the within cluster similarity again increased 

with respect to the unmodified disease cluster base rates, and the collapse in the 

similarity structure occurred at an even higher dimensional space (Figure 5). For clarity, 

Figure 6 and Figure 7 depict these same manipulations, but the plots only contain those 

disease groups from the same size cluster as the cardiovascular disease group (i.e., the 

cluster whose group members contained 37-50 diseases each).  

 In order to demonstrate that this effect was not singular to the diseases contained 

in the cardiovascular disease group or due to the number of diseases in the 

cardiovascular size cluster, the same base rate manipulations were performed for 

diseases classified as psychological diseases. Figure 8 and Figure 10 show a 

psychological disease base rate of five and Figure 9 and Figure 11 show a base rate 

manipulation of ten for psychological diseases. Although the effect of reducing the 

within group disease dissimilarity is not as pronounced for the psychological diseases in 

the base rate five condition (Figure 8) as it was for the same base rate in the 

cardiovascular disease condition (Figure 4), the effect is quite clear when the base rate 

for psychological diseases was increased to ten (Figure 9). Here again, the ability to 

distinguish between diseases in the psychological disease grouping becomes difficult 
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due to their increased similarity even with approximately 1/5
th

 (100) of the available 

dimensions retained (Figure 9, Figure 11). 

 The cosine distance between every possible disease context vector pair was 

calculated and then the distance between each disease of one group and each disease of 

every other group in the same size category was averaged to give the average between 

cluster distances for each disease group in the same size category. For example, the 

cardiovascular disease group belongs to the 37-50 size category (Cluster 3) along with 

the digestive, male urogenital, neoplasms, and respiratory disease groups. The cosine 

distance between each disease in each of those groups was calculated and averaged 

according to group membership. Figure 12 and Figure 13 show the average between 

cluster dissimilarities computed for the size categories containing the manipulated 

psychological and cardiovascular disease groups according to base rate manipulation 

and with 300 dimensions retained. 

 To investigate the effects of simultaneously changing the base rates of multiple 

disease categories, the base rates of cardiovascular and psychological diseases were 

both set to five and then ten. Figure 14 and Figure 15 show the impact of these 

manipulations on the cosine distance relationships across diseases as a function of 

dimensionality reduction. These figures demonstrate that the within cluster similarity of 

the manipulated disease groups increases relative to the un-manipulated groups and 

with increases in base rate.  

HiMean base rate effect. The IO HiMean model used a perfect semantic 

memory consisting of composite memory traces made of only and all memory traces 
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correctly associated with the probe. This feature of the model made the semantic 

memory relatively static despite episodic memory trace base rate manipulations. That is, 

the semantic memory was designed to feature memory traces that were the ideal 

prototype representing all relevant episodic trace exemplars and thus was essentially 

immune to fluctuations in the quantity of exemplars introduced by disease context 

vector base rate changes. Note that context vectors were encoded into episodic memory 

with the encoding parameter, L, set to .99. This made it so that the episodic memory 

traces comprising the semantic traces were 99% faithful with respect to the original 

context vectors and introduced little variability into the IO HiMean memory system. 

Furthermore, although there was little variation between semantic memories constructed 

from varying episodic memory trace base rates, the process of creating a composite 

trace from relevant activated traces does lend a slight advantage to those traces that 

were recorded into episodic memory more than once because the composite of multiple 

traces would result in a higher fidelity prototype with respect to the original disease 

context vector and make it more robust to changes introduced by L that singly recorded 

traces have no way of overcoming. 

Average between group cosine dissimilarity for semantic memory traces 

constructed from an episodic memory where all diseases documents were recorded with 

a base rate of five (L = .99) demonstrates that, while not quite as strongly associated 

with each other as occurred in the LSA model, similarity is greater for diseases 

belonging to the same category than for diseases belonging to different categories 

(Figure 16, Figure 17, Figure 18, Figure 19, Figure 20). Keep in mind that IO HiMean 

simulations compute a new semantic memory based on the individual characteristics of 
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the episodic memory for each run, so while each semantic memory is nearly the same, 

they are not identical. These figures therefore represent an approximation of the 

relationships between the IO HiMean semantic memory traces for any given simulation 

run. In the standard HiMean model, recall that the semantic memory is produced once 

using an L-degraded episodic memory with a base rate of one for all diseases and this 

same semantic memory is used for all simulations, rather than being computed 

differently for each episodic memory base rate configuration. The between and within 

cosine similarity measures generated by the two models were essentially identical (r 

(298) = .999, p < .0001) and thus the graphs are not duplicated for the standard HiMean 

model. 

Base rate manipulations on model output. Each model was probed with all 

514 of the possible context vectors and output the most likely candidates given the 

probe for each memory system (where applicable, the cosine similarity of each response 

to the probe, and the probabilities associated with each response. Under the control base 

rate condition (i.e., all diseases set to have a base rate of one), the IO HiMean model 

correctly identified the probe in semantic memory on every trial, the standard HiMean 

model without a working memory capacity limitation in place also correctly identified 

the probe in semantic memory on every trial, and the standard HiMean model 

employing the working memory construct correctly generated the probe as the most 

probable item in the SOC on 90% of trials (Table 1). The LSA model also returned the 

correct item vector as the highest match in every case. This is not surprising however, 

given that in the LSA model, the document vectors belonging to the correct return were 

always identical to the probe. The average normalized cosine matches of the LSA 
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model’s best predictions are also higher (M = .77, SD = .16) than in the other models 

(IO HiMean: M = .44, SD = .29, t(5138) = 51.19, p < .001, Standard HiMean: M = .44, 

SD = .28, t(5138) = 51.56, p < .001) though the disease category membership 

predictions of the LSA model (M = .56, SD = .26) are less accurate than the others (IO 

HiMean: M = .79, SD = .25, t(1026) = 14.73, p < .001, Standard HiMean: M = .79, SD = 

.25, t(1026) = 14.89, p < .001). 

 The base rates of diseases belonging to the cardiovascular and psychological 

categories were manipulated in order to examine base rate effects. Table 2 shows the 

same information as in Table 1, but for model output derived from memories where the 

base rate for cardiovascular diseases was set to five rather than all disease context 

vectors being written to memory only once. As can be seen from a comparison of these 

tables, the models performed in nearly the same way with regard to overall accuracy 

and average similarities. When examining the category membership of model selection 

however, LSA clearly demonstrates selection biased in favor of cardiovascular diseases. 

That is, the proportion of its highest ranked query vector responses belonging to the 

cardiovascular diseases category increased from .069 to .19 overall while, for instance, 

its selection of candidate vectors from the psychological category did not change (.014 

to .013). Conversely, within the HiMean models, the proportion of cardiovascular 

diseases selected remained relatively unchanged despite the increase in cardiovascular 

disease base rates contributing to the models’ memory systems. Table 3 shows a 

breakdown of proportionate disease selection for all the base rate manipulations across 

models. Under the conditions where the base rates of diseases categorized as 

psychological were manipulated, the same pattern of findings was revealed where LSA 
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displayed an increase in category congruent response selection relative to the 

manipulation while the other models did not demonstrate this same sensitivity (Table 

3). Where both cardiovascular and psychological disease category base rates were 

manipulated at the same time, LSA again demonstrated correlated selection, though the 

influence of cardiovascular disease manipulations seemed to have a larger impact on its 

behavior (reference also Figure 14 and Figure 15). 

Base rate manipulations on probability judgments. To assess the accuracy of 

the probability judgments rendered by the models, Brier scores were calculated for each 

model across base rate conditions. A Brier score demonstrates how well calibrated a 

prediction system is with respect to the probabilities assigned by the system to 

particular outcomes, as well as the actual outcomes of the predicted events (Brier, 

1950). The formula for this calculation is    
 

 
∑ ∑ (       )

  
   

 
   , where p 

represents the probability assigned to each of the forecasts for an inquiry/probe (here, 

usually the top five strongest associates to the probe, making R = 5, or the number of 

items in the SOC) and o is the outcome for each prediction (1 if the probe was correctly 

identified, 0 otherwise). N is the total number of events predicted by the system, here 

514, the total number of disease probes used to query the models. The higher a 

probability assigned to a correct prediction, the lower the mean squared difference 

between them, and the better the calibration of the system. Thus, a lower Brier score 

indicates a more accurate or better calibrated system. Table 4 shows the Brier scores 

and average probability of top choices for each model’s performance across all disease 

probes in the control base rate condition (i.e., base rate = 1 for all diseases).  
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Table 5 displays the average of the probabilities generated by each model for 

only those probes categorized as either a cardiovascular or psychological disease. While 

the average probabilities output by the first three models (LSA, IO HiMean, and 

Standard HiMean without a working memory limitation) are relatively constrained due 

to both their underlying retrieval mechanisms and by being required to generate no 

more or less than five candidates in response to each probe, the standard HiMean model 

does not share this restriction. The standard model demonstrated a slight increase in 

average rendered probability judgments for those hypotheses generated in response to 

probes that were congruent with the increased base rate manipulation (Table 5). In the 

cardiovascular base rate 10 condition, for example, the average probability judgment for 

diseases generated in response to cardiovascular probes was higher than the same 

average in the base rate 5 condition which was, in turn, higher than in in the control 

condition.  

 The Brier scores for the models across base rate conditions can be viewed in 

Table 6 and Table 7. The general pattern of findings indicates that, via a tendency 

toward lower Brier scores, HiMean models produce output that is better calibrated to 

the frequency distribution of the diseases within the corpora than LSA. With few 

exceptions, the IO HiMean model produced the best Brier scores. Indeed, the model 

seemed to be so well calibrated that its scores were practically invariant with respect to 

the base rate manipulations. It may therefore be exhibiting a floor effect given the 

nature of its operating characteristics. LSA produced Brier scores that actually increased 

(i.e., performed worse) with increases in base rate, while the other models generated 

mixed results with a tendency toward decreased (i.e., better calibrated) scores in 
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response to increased base rates. A further trend that can clearly be seen is an increase 

in the accuracy of probability judgments rendered by the semantic memory systems of 

models in comparison to the episodic probability judgments made by those same 

models. It should also be noted that the Standard HiMean model with the SOC in place 

demonstrated the most calibrated behavior under at least some of the conditions. 

Because this model is not forced to consider suboptimal alternatives (as the other 

models may), it is capable of extremely high performance under the right conditions. 

For example, it is the only model that can ever state with 100 percent certainty that it 

believes a single candidate hypothesis to be true. Unfortunately, the random aspect of 

its retrieval mechanisms can also lead to worse performance under some conditions. 

Taken together, these characteristics contributed to a mediocre performance overall, 

though one that still performed excellently, especially in comparison to LSA on this 

particular metric. 

Probe quality results 

 Only the models’ performances in response to perfect probes have been 

investigated to this point. Experiments were also conducted to investigate the impact of 

degraded probe information on model output. The proportion of trials in which the 

models’ top choice was correct is shown in Table 8. The HiMean models’ performance 

in the semantic choice category was basically immune to the degradation of the probes. 

This was only true to a point, however. Once probe quality was degraded sufficiently 

(~0.6 of the non-zero feature elements for each vector were replaced by zeroes), the 

models failed to perform at all. In contrast, LSA was able to continue to operate, 

displaying a graceful degradation in correct choice as probe quality decreased. Episodic 
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memory choices for IO HiMean demonstrated a similar degradation in performance to 

LSA that was not demonstrated in the semantic condition, but again was unable to 

perform once the fidelity of the probes had been sufficiently compromised. The 

standard implementations of HiMean produced more mixed results in episodic memory 

for this task. HiMean without working memory actually improved at correctly 

identifying the probe as probe quality decreased, and the basic model performed at the 

same level across probe quality changes (Table 8). 

 The model’s performance as determined by the presence of the correct choice 

among the each model’s top N alternatives is shown in Table 9. Unsurprisingly, LSA 

model performance improved, though it still declined in tandem with probe integrity. 

Considering a larger alternative set likewise increased HiMean model performance, but 

the models were still unable to produce output once probe fidelity reached a lower 

threshold of approximately 0.6. Table 10 contains the Brier scores for the models as a 

function of changing probe quality. Semantic memory probability judgments are 

seemingly stable for LSA across quality conditions and even with respect to the scores 

attained in the other experiments. This finding is an artefact of the similarly nearly 

invariant probability judgments rendered by LSA. In the case of IO HiMean semantic 

probability judgments, however and as was seen with its episodic choices, performance 

declines, albeit minutely, as probe reliability is reduced. The same behavior seems to be 

demonstrated by HiMean without working memory, but the random element to the 

standard model with WM intact makes the same conclusion difficult to reach. As 

concerns the episodic probability judgments, All HiMean models are more poorly 

calibrated than in semantic memory, but Standard HiMean without WM paradoxically 
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improves with probe feature decline, while IO HiMean demonstrates the expected trend. 

Overall, all models still perform very well, and the LSA model’s capabilities are edged 

out by HiMean. 

Diagnostic capability results 

 Each model’s responses to the ten selected Wikipedia disease signs and 

symptoms descriptions were recorded. Performance was assessed as the proportion of 

correctly diagnosed diseases and the probabilities associated with the top alternatives 

generated by each model were also documented and brier scores calculated. Note that 

the Standard HiMean model still had its threshold of activation set to be equal to the 

average of thresholds generated by the adaptive IO HiMean model. This resulted in the 

activation threshold for the Standard HiMean model being lowered from .04 by an order 

of magnitude to .003. Table 11 displays each model’s performance. The models 

compared were LSA, IO HiMean, and Standard HiMean without working memory. The 

working memory model was excluded from this analysis in the interest of clean data 

presentation and as the Standard model without working memory essentially represents 

the same output with the random sampling removed. 

The results reveal that the models performed at a relatively even level, bot with 

respect to each other and to their past performance, with the exception of a considerable 

reduction in their ability to choose the top choice correctly. The LSA and IO model both 

performed well in terms of at least generating the correct choice among the top five 

alternatives. Even the Standard model performed above chance and even when making 

episodic evaluations. LSA’s calibration is to be expected given the manner in which it 



43 

generates probability judgments. The IO HiMean model again demonstrated the best 

calibration, and the standard model, while not as high-performing, did not do worse 

than LSA. As can also be seen in Table 11, while the best models had the correct choice 

among the top alternatives on 80% of the trials, nearly half of their incorrect hypotheses 

were at least in the correct disease category. Even the standard model performed 

slightly above chance by this measure. The standalone diagnostic capabilities of these 

models do seem to be operating correctly, albeit at an understandably diminished 

capacity with respect to the corpora they were trained on. 

Semantic space results 

Two dimensional graphs of the cosine distance matrices generated from the 

SVD reconstructed LSA log transformed and entropy weighted context matrices at 

varying levels of dimension reduction are shown in Figure 21, Figure 22, and Figure 23. 

Multidimensional scaling was used to reduce the semantic spaces to two dimensions for 

the purpose of graphing. Because these diagrams involve such a large number of plot 

points and disease categories, the labels for most of the diseases have been removed and 

the points selectively colored to indicate category membership. Red text describes 

cardiovascular diseases and blue text labels psychological diseases. Green text 

represents virus diseases and brown text digestive diseases. The black dots are the 

locations of the remaining diseases.  

Again, these graphs demonstrate that while the diseases are relatively spread out 

in semantic space under full dimensionality, they become more similar to diseases 

within their category as dimensions are reduced, until too many dimensions are 
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removed and all categories essentially collapse to the center of graphs as they retain 

little of their uniqueness. Psychological diseases are again shown to be the most 

resilient to dimensional reduction as their relatively far starting distance from each other 

demonstrates the dissimilarity between these semantically disparate disease concepts. 

The IO HiMean and Standard HiMean semantic memory spaces for the control 

base rate condition are shown in Figure 24 and Figure 25, respectively. These two 

graphs demonstrate that starting semantic spaces are structured quite differently from 

the LSA model semantic space, but similar in many ways to each other. For example, 

within concept grouping is apparent in both the IO and Standard HiMean spaces. The 

psychological category diseases are also not as widely spread in the HiMean spaces as 

in the LSA spaces. 

Figure 26 and Figure 27 show the LSA and IO HiMean graphs for the semantic 

spaces based on a cardiovascular disease base rate of 10. Remember that the Semantic 

memory in the Standard HiMean model did not change with base rate manipulations 

and therefore is not graphed again. Also note that the base rates for virus and digestive 

disease categories (green and brown text) were not manipulated but are shown to 

illustrate how their relationships may change as a result of manipulations in other 

disease’s base rates. The next two figures (Figure 28 and Figure 29) show the same 

graphs but for the psychological disease base rate 10 condition, and Figure 30 and 

Figure 31 show the condition where the base rates of cardiovascular and psychological 

diseases were both set to 10. 
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The effects of the base rate manipulations on the LSA semantic spaces are quite 

clear from the figures. The same effects can be seen in the figures featuring the IO 

HiMean model, though in a less dramatic fashion. The cardiovascular disease grouping 

in Figure 27 is more condensed than in Figure 29, for example. It is also clear that the 

non-manipulated groups in the LSA model seem to retain their position irrespective of 

the manipulated groups. It is more difficult to see if the HiMean model exhibits this 

same characteristic.  

Discussion 
 

 The purpose of this dissertation was to examine the operating characteristics of 

tested (LSA) and novel (HiMean) semantic models in relation to their performance in a 

medical decision-making context using a real-world information environment. It is clear 

from these experiments that while closely related, LSA and HiMean have quite different 

capabilities in the realm of decision-making stemming from semantic processing. Both 

types of model demonstrate utility. LSA appears to be quite sensitive to base rate 

information in terms of inter-item vector similarity, requiring far fewer dimensions to 

be dropped in order to recognize semantic similarity between items. This was carried 

out in a larger context of additional stable (i.e., base rate controlled) corpus information, 

however, and the effects would not exist in an environment where all base rates of all 

contexts were changed to the same degree. The base rate sensitivity of LSA is therefore 

contingent upon an information environment which allows the model to learn the 

relationships of dynamic information relative to static (or at least differently 

accelerating) information. Further, because the semantic relationship between different 

items is contingent on their cohesive covariation rather than on any “real” semantic 
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similarity in LSA, this also makes the system susceptible to false conclusions. For 

example, the disease category assignment could have been conducted at random and 

LSA would learn to strongly associate completely unrelated diseases as long as there 

was at least some overlap in their vector elements. This is perhaps only a concern in 

artificial environments however, as it is likely that in real-world operation, covariance 

does tend to indicate some association between items even if the linking variables are 

not always uncovered. Additionally, the susceptibility to base rate manipulations may 

be seen as a negative attribute in situations where very high discriminability between 

items is desirable, as the increase frequency leads LSA to infer increased similarity. 

This may be counterproductive to the purpose of LSA, however, which is to find latent 

similarity between items rather than preserve distinction. Indeed, the very act of SVD 

and dimension reduction is intended to reduce dissimilarity.  

 Perhaps you have heard the adage that everything looks like a nail to a person 

holding a hammer. Increasing the base rate for a particular group of items is like giving 

LSA a hammer. As can clearly be seen in Table 3, LSA tends to much more frequently 

posit guesses that are category congruent with the groups featuring increased base rates. 

Its overall performance in terms of correctly identifying the (pristine) probe disease, 

however, is not degraded due to this manipulation (Table 1 and Table 2) nor is its 

ability to generate probe-category relevant alternatives. The latter outcome seems likely 

to be due to the information environment structure where single diseases can belong to 

multiple categories, however. This would account for both the increased number of base 

rate manipulation relevant hypotheses posited and the paradoxically stable average 

probe-category relevant hypotheses proposed (Table 1 and Table 2). Alternatively, this 
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outcome could be explained by LSA always finding the same strongest competitors for 

each probe regardless of base rate and only after having included these same items does 

it add in the less-similar-to-the-probe base rate relevant postulates in order to reach its 

quota of five.  

 The IO and Standard HiMean models were also influenced by base rate 

information, though this influence was demonstrated somewhat differently than in LSA. 

Similar to LSA, the performance of the HiMean models in terms of their ability to 

correctly identify the pristine probe was not affected by base rate manipulations (Table 

1 and Table 2). Contrary to LSA’s behavior of increasing selection related to base rate 

manipulations, however, the HiMean models’ selections seemed to operate 

independently of the base rates. In fact, essentially the only fluctuation in the 

performance of the models’ selection behavior is seen in the case of the Standard 

HiMean model. The resultant changes are most likely best explained by that model’s 

stochastic retrieval dynamics rather than attributing them to any changes in the 

information structure introduced by changing base rates. The performance of all the 

models in terms of selection was very good. Both LSA and the IO HiMean model 

performed perfectly in terms of correctly identifying the pristine probes, with the 

Standard HiMean model without working memory performing practically equivalently, 

and the working memory constrained Standard HiMean model lagging slightly behind 

(again most likely due to its retrieval characteristics).  

 It is also worth mentioning that the HiMean models were much better at offering 

alternatives that belonged to the same category as the probe across all probes and across 

base rate conditions (Table 1 and Table 2). This likely explains why these models’ 
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selection behavior was invariant with respect to the base rate manipulations: they were 

doing a better job than LSA, in general, in identifying relevant alternatives. A more 

important conclusion can be drawn based on this finding , however, and that is while all 

the models were good at selecting the most correct answer, the quality of the alternative 

selections differed between models. Using only the proportion of probe-category 

congruent alternatives selected as a measure, the alternatives suggested by the HiMean 

models would at first glance seem to be more rational than those proposed by LSA, at 

least insofar as within category similarity between diseases serves as an indicator of a 

quality choice. To the extent that the non-category congruent alternatives chosen by the 

models are rational, however, this could indicate a particular model’s bias toward 

diagnostic choices. In other words, if all the generated diseases were very similar, this 

could be viewed as a form of confirmatory (i.e., intracluster or exploitative) search, 

whereas the generation of highly semantically related, but category incongruent 

alternatives can be seen as a more diagnostic (intercluster or explorative) approach. In 

still other words, one might make a decision as to which model to use based on whether 

one was interested in identifying several closely related items or seeking a more broadly 

defined (or creative) set of alternatives. If tasked with identifying a flying object, for 

instance, the former might suggest the object is one among many missiles of a particular 

class, whereas the latter might suggest a set of possible missile classes it could belong 

to. Given that the models exhibit similarly correct selection overall, the preference for 

either approach is dependent on the specific demands of the task being performed.  

 Upon examining the probabilities assigned by the models to probe responses, 

some tradeoffs between the HiMean and LSA approaches again emerge. In base rate 
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control condition, the Brier scores indicate that the HiMean models have a clear 

advantage over LSA. The most confident of the four models (in aggregate) is the 

Standard HiMean model with working memory due to its propensity to terminate search 

for alternatives when the best (or an excellent) choice has been found and its four item 

capacity limitation (Table 4). Unfortunately, it’s also the second worst performing 

model in terms of calibration, though still markedly better than LSA. It is difficult to 

imagine an environment where a model with the characteristic performance of Standard 

HiMean evinced in Table 1 would be preferred, except to say that this captures human 

abilities to satisfice and perform non-exhaustive search. This could have benefits where 

search takes place over an extremely large decision space, computational or time 

limitations are present, or a satisfactory rather than perfect solution is acceptable. 

Additionally, the Standard HiMean model with working memory is the only model with 

human-like limitations and the only model which returns suboptimal alternatives. 

Table 5 shows LSA to be the only model sensitive to base rates in terms of 

average probability judgments rendered for affected diseases, and only for the 

psychological diseases, and even then the difference is small and in the opposite 

direction that might be expected. That is, in the conditions where the base rate for 

psychological diseases was increased, the average probability judgments associated 

with hypotheses belonging to the psychological disease category actually decreased 

relative to the control and cardiovascular only conditions. I speculate that this occurs 

because the increase in base rate reduces the discriminability of these items relative to 

each other, thereby making the probability judgments rendered about them regress 

toward the mean. The fact that LSA does not display this effect for cardiovascular 
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diseases might be explained by the idea that cardiovascular diseases are more inherently 

similar to each other relative to psychological disorders (which can have vastly different 

etiologies, symptoms, and treatments, for example). Thus, the increased base rate for 

cardiovascular diseases does little to reduce the already lowered discriminability 

between cardiovascular diseases and thereby does little to further lower their respective 

probabilities.  

When examining the Brier scores associated with each model’s hypothesized 

responses, a reverse pattern in base rate sensitivity is displayed. Where HiMean models 

take advantage of base rate information when rendering probability judgments, the LSA 

model does not, instead exhibiting a slight decrease in calibration (Table 6, Table 7). 

Again, this is likely due to the fact that base rate increases seem to have a weakening 

effect in terms of discriminability for LSA, whereas they strengthen discriminability in 

the HiMean memory architectures. Also of note is the increase in performance of 

semantic memory as compared to episodic memory in the HiMean models. This occurs 

because the probability judgments associated with episodic memory are based solely on 

the activations of individual traces in response to the probe, whereas the semantic 

probability judgments are based on the semantic memory’s response to an activation 

weighted composite of all relevant episodic traces. Standard HiMean is outperformed 

by Standard HiMean without working memory, which is outperformed by the IO 

HiMean model.  

Each of the four models demonstrate some degree of sensitivity to base rate 

manipulations with performance generally increasing for the HiMean models and 

decreasing for LSA. The floor effect has dampened the impact of the base rate 
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influences in the case of IO HiMean and to a lesser extent Standard HiMean without 

working memory, but they are still discernible (Table 6 and Table 7). The basic 

Standard HiMean model, however, greatly demonstrates the benefits to calibration 

brought on by changes in base rate (except, peculiarly, in the psych 5 condition, a 

phenomenon for which I cannot give an account), seen easily by comparing its 

performance in the base rate condition to that of its performances in manipulated and 

congruent conditions. If highly attuned probability judgment is being sought, the IO 

HiMean model seems to be the best performing of the models overall when the query 

information is completely intact. 

Although the probe quality manipulations did not seem to bear very dramatic 

results, the patterns displayed in the model output are still somewhat informative. The 

lack of fluctuations in outcome as a result of probe quality could be due to the relatively 

stable semantic spaces rendered by the corpora preprocessing or a good degree of 

semantic separation between concepts in the corpora itself. That is, probes (contexts) 

may have been dissimilar enough to begin with, that changing the features with even a 

moderate probability fails to make them look alike, until they looked so much alike that 

the models could not perform (as in the case of HiMean). LSA does not require a 

threshold of activation to be met in order to posit a hypothesis. Thus, its generation 

process is insensitive to probe quality, but its selection process is not. The only impact 

that decreasing probe quality can have on the choices made by the LSA model is to 

cause it to select the wrong alternative because of increased confusability (i.e., 

decreased dissimilarity between contexts). Given that the accuracy of LSA best choices 

did decline greatly with deficient probes (Table 8), it is plain that LSA is not simply 
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immune to such manipulations. Despite the HiMean models producing more calibrated 

judgments, however, the lack of a required threshold of activation for the LSA 

machinery to function does present a distinct advantage under the right circumstances, 

such as in this case.  

The fact that the models scored in a qualitatively similar manner regardless of 

probe quality can also be seen as a relative strength of the models. Moreover, even 

though the pattern of findings are generally in the direction of showing a decrease in 

performance with poorer quality probes, the decline is slow. This indicates that when 

these models are operating over complex spaces with large representations, model 

performance can still be excellent despite severely degraded input. 

In terms of the model’s diagnostic capabilities and their ability to function in a 

novel, but related domain, they performed well. Overall accuracy of around 30% is 

admirable considering the sheer number of feature values that could have been 

represented, but were not in the short descriptions used to query the models. 

Additionally, their well-calibrated probability judgments and capacity for at least 

suggesting the correct choice among the alternatives is testament to the power of these 

models to find semantic associations. It is a little surprising that LSA did not perform 

better as it did have the advantage of having its query probe “translated” into concept 

space which should have imparted additional information to it that may not have been 

present in the original query vector. This makes the finding that IO HiMean performed 

at least as well and, by some metrics, better than the LSA model even more impressive. 

Given that model accuracy was approximately equivalent, I would have to give the 

advantage to the IO HiMean model for its more informative probability judgments. 
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More importantly, however, is the demonstration of the HiMean model’s capability to 

operate in an untrained environment using real-world input. 

The plots of the multidimensional scaling of the models’ semantic spaces 

revealed that the 2D projections of LSA and HiMean are very different. LSA has a more 

ordered structure and demonstrates more space between clusters than do the HiMean 

models. The graphs also make the increase in similarity between concepts as their base 

rates increase easy to see and may provide a more intuitive understanding of how 

probability assessment for any particular concept may suffer under such conditions. On 

the other hand, while the changes in the space structure for HiMean are more subtle, the 

shift that the concepts do experience seem to be enough to benefit the model’s 

probability judgments to a good degree. Finally, the depictions of the semantic spaces 

seem to suggest that the semantic spaces that LSA forms are more insulated against 

perturbations that do not directly impact individual categories. In other words, changes 

in the semantic structure of one part of the space, do not seem to have a large impact on 

other parts of the space. In the IO HiMean model, the effects of tampering with one 

aspect of the space seem to have a more diffuse influence on the rest of it. Both 

characteristics can be advantageous depending on their application.  

Limitations 

There are a number of limitations to this work that should be considered. The 

first is that a number of implementation decisions had to be made in order to get the 

models to perform. These decisions obviously lead to inequalities that make it difficult 

to render unskewed comparisons between them. Perhaps of even greater concern is the 
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unintended consequences these decisions may have on model outcomes. Preprocessing 

text is, in itself, a way of pruning the information so that the leftover information is 

associated and meaningful. Here, pre-processing decisions were made according to 

previously established work, but in this domain, these decisions are key. Another 

limitation of this study was the amount of overlap between the disease categories. It is 

difficult to get a sense of the accuracy of a model when it proposes an answer that could 

simultaneously be classified in three or four different ways. Not being a medical expert, 

it would have been difficult for me to assign definite category membership without 

concern for unduly biasing the results. At the same time, working in an information 

environment where all borders between topics were clear cut would have defeated the 

purpose of the experimentation as correct classification would have been neatly defined. 

Perhaps future researchers will work on identifying optimal domains according to this 

characteristic. 

In contrast to the limitation just mentioned, it is also the case that corpora used 

as the subject matter for this work was conveniently demarcated. Model performance 

was exceedingly good on a number of experimental trials and much of this owes to the 

nature of the data used itself. It would be interesting to examine model performance in 

more complex environments to see if any semblance of model rationality or usefulness 

could be achieved. Another point to consider is that there were two models compared 

here, but there are certainly other models out there designed to operate in similar 

environments. It is difficult to draw objective conclusion about the overall performance 

of a model with such a small base for comparison. While these models performed 

similarly in many ways, for example, there is no telling whether their output is even 
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remarkable on a grander scale without further investigation. Even given these 

limitations, however, it was still valuable exercise to investigate base rate effects as they 

relate to semantic modeling, to compare two distinctly different architectures from a 

new perspective, and to put both models to work in a believable decision-making task 

using real-world and human-interpretable information. 

Future Work 

 Aside from the opportunities for improvement in future research alluded to in 

the previous section, there are other theoretically compelling areas of research opened 

by the discoveries of this dissertation. The present work focused on a single domain. It 

would be interesting in the future to provide models with overlapping and distinctly 

different domains of knowledge and gauge their performance on a more well-rounded 

battery of tasks. Additionally, in this dissertation base rates could be viewed as a type of 

expertise, but the way in which base rates were manipulate was rudimentary. Future 

work examining information tailored according to experience could be fruitful in 

examining learning as well as expertise in a variety of contexts. I would also like to 

further refine the present work to the point where concepts are not simply demonstrated 

but the models produce a reliable outcome that can actually be a tool. For example, 

while priapism and erectile dysfunction are certainly semantically related (and 

confusable by these models), I would suggest that anyone with a physician who 

confuses the two should consider a switching practitioners. One way of achieving a 

more practical performance could be through the use of a combined model. 
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Multi-agent modeling. Given the findings of this investigation of these models’ 

performances under the parameters described above, it would be extremely useful to 

develop a multi-agent framework which can capitalize on their strengths and avoid their 

weaknesses (Alanyali, Venkatesh, Savas, & Aeron, 2004; Ren, Beard, & Atkins, 2005; 

Yang, Wu, & Bonissone, 2013). The goal could be to create variations of simple 

consensus models constructed from both HiMean and LSA frameworks in order to 1) 

assess the feasibility of their integration, and 2) determine if performance can be 

increased over either of the constituent models alone according to the same measures of 

diagnostic choice, consideration set, and posterior probability judgment (Rauhut & 

Lorenz, 2011). For example, LSA demonstrates a great ability to accurate select the 

correct probe response, and is more robust to decreases in probe quality than the 

HiMean models as tested here. The HiMean models however, produce more well-

calibrated probability judgments as well as allow for both episodic and semantic 

assessments. Either model may have an advantage dependent upon the relatedness of 

alternatives desired. Thus finding a working amalgamation of these models may prove 

extremely useful. This represents a novel effort on a number of fronts. First, as 

discussed, models of semantic analysis are not generally constructed with performing 

ecologically-based diagnosis tasks in mind. Second, where their performances are 

compared, they are evaluated as standalone models and no effort is made to combine 

them. Third, this represents a new domain for decision-based multi-agent semantic 

models as, to my knowledge, no such effort has been academically pursued or published 

in research.  
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Using the information gleaned from the previously outlined work, it should be 

possible to construct a multi-agent decision support system that exploits the positive 

capabilities of the HiMean and LSA models while mitigating their weaknesses. By 

constructing multiple decision layers where the constituent agents operate according to 

individualized parameters (e.g., IO HiMean in tandem with LSA using adaptive 

dimensionality, etc.) optimized for particular circumstances (e.g., base rate information 

known important, probe error known, etc.) and by using a final decision-making 

component that has access to information allowing it to adaptively handle input from 

these layers (e.g., using a method of evidence evaluation such as Dempster-Shafer 

theory), it may be possible to improve performance (Klopotek & Wierzchoń, 2002). 

 The integration of these models could be carried out in a number of ways (e.g., 

using intersection regions, voting methods, top choice combinations, etc.) according to 

methods described in previous literature on multiple classifiers (Ho, Hull, & Srihari, 

1994; Xu, Krzyzak, & Suen, 1992). Can a multi-agent system lead to better 

performance? How does the composition (number/type of agents and layers) of this 

system affect performance? What are the optimized weights for each agent/layer’s 

inputs for producing best performance? It is possible to evaluate the optimality of 

systems resulting in identical decision outcomes despite those outcomes having arisen 

from systems with varying underlying processes, strategies, and complexity (Glöckner, 

2009). These experiments represent a novel integration of various lines of research and 

would provide the opportunity to answer questions in a new domain, gain new insights 

into the practical applications of real-world semantics-based cognitive models, and open 

the door to new directions in research. 
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Conclusion 

Although models of semantic analysis have been around for decades and 

alternative methods for accomplishing related work have been proposed, it seems their 

usefulness has not expired, nor has their domain been completely explored. This work 

represents an important first step toward applying a semantically-based HyGene 

framework in real-world decision support frameworks. Moreover, LSA has been 

comparatively explored in a novel light, assessing its suitability in a specific and highly 

constrained application relative to a never before tested memory-based semantics 

model. Base rate information is important in human decision-making and it has been 

demonstrated here to be important to cognitive models as well. Though there are 

tradeoffs involved in selecting any one of the models discussed here, each model has 

something important to offer in this domain. One must carefully consider the constraints 

of their operating environment as well as their desired outcomes if one hopes to 

maximize model selection. There are many interesting opportunities for future research 

stemming from this work, perhaps chief among them the potential to deploy a multi-

agent framework which powerfully combines the qualities of LSA and HiMean. 

Computationally-augmented decision making is already a vital part of our lives and will 

only continue to increase in necessity in the future. It will be essential to understand the 

dynamics involved in these complex systems in order to maximize our potential to 

benefit humankind. I hope this work and others like it will serve as at least a small step 

in that progressively important direction. 
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Appendix A: Tables 

Table 1 

Model Choices in Base Rate Control Condition 

Model 

Episodic  

Proportion 

of Trials 

with 

Correct 

Top Choice 

Semantic  

Proportion 

of Trials 

with 

Correct 

Top Choice 

Episodic 

Proportion 

of Trials 

with Correct 

Option 

Among Best 

Guesses 

Semantic 

Proportion 

of Trials 

with Correct 

Option 

Among Best 

Guesses 

Episodic 

Average 

Proportion 

of Best 

Guesses in 

Same 

Category 

as Probe 

Semantic 

Average 

Proportion 

of Best 

Guesses in 

Same 

Category 

as Probe 

Semantic 

Proportion of 

Top Guesses 

in 

Psychological 

Category 

Semantic 

Proportion of 

Top Guesses 

in 

Cardiovascular 

Category 

LSA  1.  1.  .56 .014 .069 

IO HiMean .97 1. 1. 1. .79 .79 .055 .095 

Standard 

HiMean 

No WMC 

.76 1. .99 1. .79 .79 .055 .093 

Standard 

HiMean 
.86 .88 .88 .88 .77 .77 .025 .045 
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Table 2 

 Model Choices in Cardiovascular Disease Base Rate Five Condition 

Model 

Episodic  

Proportion 

of Trials 

with 

Correct 

Top Choice 

Semantic  

Proportion 

of Trials 

with 

Correct 

Top Choice 

Episodic 

Proportion 

of Trials 

with Correct 

Option 

Among Best 

Guesses 

Semantic 

Proportion 

of Trials 

with Correct 

Option 

Among Best 

Guesses 

Episodic 

Average 

Proportion 

of Best 

Guesses in 

Same 

Category 

as Probe 

Semantic 

Average 

Proportion 

of Best 

Guesses in 

Same 

Category 

as Probe 

Semantic 

Proportion of 

Top Guesses 

in 

Psychological 

Category 

Semantic 

Proportion of 

Top Guesses 

in 

Cardiovascular 

Category 

LSA  1.  1.  .56 .013 .19 

IO HiMean 

 
.98 1. 1. 1. .79 .79 .054 .095 

Standard 

HiMean 

No WMC 

.75 1. .99 1. .79 .79 .054 .097 

Standard 

HiMean 
.88 .91 .91 .91 .77 .77 .022 .043 

6
4
 



 

Table 3 

Model Best Predictions Proportional Disease Category Membership by Base Rate Condition 

 
Base Rate  

1 
 

Base Rate 

Cardio 5 
 

Base Rate 

Cardio 10 
 

Base Rate  

Psych 5 
 

Base Rate  

Psych 10 
 

Base Rate 

 Cardio 5 Psych 

5 

 

Base Rate 

Cardio 10 Psych 

10 

 
Prop.  

Cardio 

Prop.  

Psych 
 

Prop.  

Cardio 

Prop.  

Psych 
 

Prop.  

Cardio 

Prop.  

Psych 
 

Prop.  

Cardio 

Prop.  

Psych 
 

Prop.  

Cardio 

Prop.  

Psych 
 

Prop.  

Cardio 

Prop.  

Psych 
 

Prop.  

Cardio 

Prop.  

Psych 

LSA .069 .014  .196 .013  .205 .013  .067 .034  .061 .088  .221 .027  .227 .063 

IO 

HiMean 
.095 .055  .095 .054  .096 .053  .095 .054  .095 .054  .094 .054  .095 .054 

HiMean 

no WM 
.093 .055  .097 .054  .096 .053  .094 .053  .093 .053  .095 .054  .095 .054 

Standard 

HiMean 
.045 .025  .043 .022  .042 .024  .040 .021  .044 .023  .039 .025  .046 .022 

Note. Numbers bolded for clarity.  

 

 

 

 

 

6
5
 

6
5
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Table 4 

Probabilities and Brier Scores for Base Rate Control Condition 

 

Avg. 

Episodic 

Probabilities 

Overall 

Episodic 

Brier 

Score 

 

Avg. 

Semantic 

Probabilities 

Overall 

Semantic 

Brier 

Score 

LSA    .20 .136 

IO 

HiMean 
.20 .008  .20 .004 

HiMean 

no WM 
.20 .053  .20 .008 

Standard 

HiMean 
.56 .068  .56 .054 

Note. Numbers bolded for clarity.  



 

Table 5 

Average Probabilities Associated with All Model Guesses across Base Rate Conditions 

 
Base Rate  

1 
 

Base Rate 

Cardio 5 
 

Base Rate 

Cardio 10 
 

Base Rate  

Psych 5 
 

Base Rate  

Psych 10 
 

Base Rate 

 Cardio 5 Psych 

5 

 

Base Rate 

Cardio 10 Psych 

10 

 

Avg. 

Prob. 

Psych 

Avg. 

Prob. 

Cardio 

 

Avg. 

Prob. 

Psych 

Avg. 

Prob. 

Cardio 

 

Avg. 

Prob. 

Psych 

Avg. 

Prob. 

Cardio 

 

Avg. 

Prob. 

Psych 

Avg. 

Prob. 

Cardio 

 

Avg. 

Prob. 

Psych 

Avg. 

Prob. 

Cardio 

 

Avg. 

Prob. 

Psych 

Avg. 

Prob. 

Cardio 

 

Avg. 

Prob. 

Psych 

Avg. 

Prob. 

Cardio 

LSA .28 .20  .29 .19  .29 .19  .21 .20  .20 .20  .22 .19  .20 .19 

IO 

HiMean 
.22 .16  .22 .16  .22 .16  .22 .16  .22 .16  .22 .16  .22 .16 

HiMean 

no WM 
.22 .16  .22 .16  .23 .17  .23 .16  .23 .16  .22 .17  .23 .17 

Standard 

HiMean 
.68 .48  .67 .46  .66 .52  .73 .57  .76 .50  .69 .54  .76 .50 

Note. Only semantic probabilities are shown because there were no differences found between episodic and semantic average probabilities.

6
7
 



 

Table 6 

Brier Scores for Predictions Responding to Cardiovascular and Psychological Probes across Base Rate Conditions 

 Base Rate 1  Base Rate Cardio 5  Base Rate Cardio 10  Base Rate Psych 5  Base Rate Psych 10 

 Psych Cardio  Psych Cardio  Psych Cardio  Psych Cardio  Psych Cardio 

 Ep Sem Ep Sem  Ep Sem Ep Sem  Ep Sem Ep Sem  Ep Sem Ep Sem  Ep Sem Ep Sem 

LSA  .123  .139   .122  .154   .122  .157   .141  .139   .151  .138 

 

IO  

HiMean 

.001 .001 .016 .008  .001 .001 .008 .006  .001 .001 .008 .006  .001 .001 .016 .008  .0015 .001 .021 .008 

 

HiMean 

no 

WMC 

.024 .002 .100 .017  .024 .002 .090 .017  .028 .002 .088 .017  .027 .002 .103 .018  .026 .002 .097 .017 

 

Standard 

HiMean 
.011 .011 .153 .117  .020 .020 .118 .087  .020 .020 .051 .027  .041 .041 .115 .079  .0001 .00003 .094 .054 

 

6
8
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Table 7 

Brier Scores for Predictions Responding to Cardiovascular and Psychological Probes 

across Base Rate Conditions 

 Base Rate Cardio 5 Psych 5 
 

Base Rate Cardio 10 Psych 10 

 
Psych 

 
Cardio  Psych 

 
Cardio 

 
Ep Sem 

 
Ep Sem  Ep Sem 

 
Ep Sem 

LSA  .139   .155   .151   .157 

IO HiMean .0015 .001  .008 .006  .0015 .001  .008 .006 

HiMean no WM .027 .002  .089 .017  .026 .002  .091 .017 

Standard HiMean .003 .0001  .117 .087  .050 .040  .096 .074 
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Table 8 

Proportion of trials with correct top choices rendered according to probe quality 

Semantic Memory 

Probe Integrity 1.0 0.9 0.8 0.7 […]  0.1 

LSA 1 .97 .97 .95 .63 

IO HiMean 1 1 1 1 * 

HiMean no WMC 1 1 1 1 * 

Standard HiMean .88 .87 .88 .88 * 

Episodic Memory 

LSA * * * * * 

IO HiMean .97 .93 .89 .85 

* 

 

HiMean no WMC .76 .81 .85 .89 * 

Standard HiMean .86 .85 .85 .86 * 

*No output could be produced by the model 
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Table 9 

Proportion of trials with correct option among top choices according to probe quality 

Semantic Memory 

Probe Integrity 1.0 0.9 0.8 0.7 […]  0.1 

LSA 1 .99 .99 .98 .76 

IO HiMean 1 1 1 1 * 

HiMean no WMC 1 1 1 1 * 

Standard HiMean .88 .87 .88 .88 * 

Episodic Memory 

LSA * * * * * 

IO HiMean 1 1 1 .998 

* 

 

HiMean no WMC .99 .99 .99 .99 * 

Standard HiMean .88 .87 .87 .88 * 

*No output could be produced by the model 
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Table 10 

Brier scores according to probe quality 

Semantic Memory 

Probe Integrity 1.0 0.9 0.8 0.7 […]  0.1 

LSA .136 .150 .150 .150 .125 

IO HiMean .004 .006 .008 .010 * 

HiMean no WMC .008 .009 .010 .010 * 

Standard HiMean .054 .058 .057 .054 * 

Episodic Memory 

LSA * * * * * 

IO HiMean .008 .016 .024 .033 

* 

 

HiMean no WMC .053 .042 .034 .027 * 

Standard HiMean .068 .066 .068 .063 * 

*No output could be produced by the model 



73 

 

Table 11  

Model performance on diagnosis task 

Semantic Memory 

 Brier Score 

Proportion 

Correct Top 

Choice 

Proportion 

Correct Choice 

Among 

Alternatives 

Proportion of 

Alternatives in 

Correct Category 

LSA .134 .3 .8 .58 

IO HiMean .010 .3 .8 .46 

HiMean no 

WMC 

.133 .3 .6 .34 

Episodic Memory 

LSA * * * * 

IO HiMean .095 .3 .8 .54 

HiMean no 

WMC 

.128 .1 .5 .34 

*No output could be produced by the model 
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Appendix B: Figures 
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Figure 1. HyGene Architecture. 
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Figure 2. Example term x document matrix. 
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Figure 3. Average within disease cluster dissimilarity as a function of dimension 

reduction with disease base rate of one. 
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Figure 4. Average within disease cluster dissimilarity as a function of dimension 

reduction with cardiovascular disease base rate of five and all other disease 

clusters with a base rate of one. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

514 450 400 350 300 250 200 150 100 50 25 10 5

A
ve

rg
ae

 W
it

h
in

 C
lu

st
er

 C
o

si
n

e 
D

is
si

m
ila

ri
ty

 

Number of Dimensions Retained 

Psych Immune Musculoskeletal Nutritional

Virus Injuries Bacterial F. Urogenital

Nervous Pathological Skin Cardio

Digestive M. Urogenital Neoplasms Respiratory

Chemical Congenital Parasitic Mouth

Endocrine Eye Hemic ENT



77 

 

Figure 5. Average within disease cluster dissimilarity as a function of dimension 

reduction with cardiovascular disease base rate of ten and all other disease clusters 

with a base rate of one. 
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Figure 6. Average within disease cluster dissimilarity as a function of dimension 

reduction with cardiovascular disease base rate of five and all other disease 

clusters with a base rate of one for all disease clusters in size cluster three. 

 

 

 

Figure 7. Average within disease cluster dissimilarity as a function of dimension 

reduction with cardiovascular disease base rate of ten and all other disease clusters 

with a base rate of one for all disease clusters in size cluster three. 
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Figure 8. Average within disease cluster dissimilarity as a function of dimension 

reduction with psychological disease base rate of five and all other disease clusters 

with a base rate of one. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

514 450 400 350 300 250 200 150 100 50 25 10 5

A
ve

ra
ge

 W
it

h
in

 C
lu

st
er

 C
o

si
n

e 
D

is
si

m
ila

ri
ty

 

Number of Dimensions Retained 

Psych Immune Musculoskeletal Nutritional

Virus Injuries Bacterial F. Urogenital

Nervous Pathological Skin Cardio

Digestive M. Urogenital Neoplasms Respiratory

Chemical Congenital Parasitic Mouth

Endocrine Eye Hemic ENT



80 

 

Figure 9. Average within disease cluster dissimilarity as a function of dimension 

reduction with psychological disease base rate of ten and all other disease clusters 

with a base rate of one. 
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Figure 10. Average within disease cluster dissimilarity as a function of dimension 

reduction with psychological disease base rate of five and all other disease clusters 

with a base rate of one for all disease clusters in size cluster one. 

 

 

 

Figure 11. Average within disease cluster dissimilarity as a function of dimension 

reduction with psychological disease base rate of ten and all other disease clusters 

with a base rate of one for all disease clusters in size cluster one. 
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Figure 12. Average between cluster dissimilarities for all disease clusters in size 

cluster three at 300 dimensions retained and according to cardiovascular disease 

base rate. 
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Figure 13. Average between cluster dissimilarities for all disease clusters in size 

cluster three at 300 dimensions retained and according to psychological disease 

base rate. 
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Figure 14. Average within disease cluster dissimilarity as a function of dimension 

reduction with psychological and cardiovascular disease base rates of five and all 

other disease clusters with a base rate of one. 
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Figure 15. Average within disease cluster dissimilarity as a function of dimension 

reduction with psychological and cardiovascular disease base rates of ten and all 

other disease clusters with a base rate of one. 
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Figure 16. Ideal Observer HiMean model semantic memory between group cosine 

dissimilarity for diseases in cluster one. 

 

Figure 17. Ideal Observer HiMean model semantic memory between group cosine 

dissimilarity for diseases in cluster two. 
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Figure 18. Ideal Observer HiMean model semantic memory between group cosine 

dissimilarity for diseases in cluster three. 

 

 

Figure 19. Ideal Observer HiMean model semantic memory between group cosine 

dissimilarity for diseases in cluster four. 
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Figure 20. Ideal Observer HiMean model semantic memory between group cosine 

dissimilarity for diseases in cluster five. 
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Figure 21. 2D multidimensionally scaled graph of LSA semantic space at full 514 

dimensions in base rate control condition. 
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Figure 22. 2D multidimensionally scaled graph of LSA semantic space at 350 

dimensions in base rate control condition. 
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Figure 23. 2D multidimensionally scaled graph of LSA semantic space at 25 

dimensions in base rate control condition. 
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Figure 24. 2D multidimensionally scaled graph of Ideal Observer HiMean 

semantic space in base rate control condition. 
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Figure 25. 2D multidimensionally scaled graph of Standard HiMean semantic 

space in base rate control condition. 
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Figure 26. 2D multidimensionally scaled graph of LSA semantic space in 

cardiovascular base rate 10 condition. 

 



95 

 

Figure 27. 2D multidimensionally scaled graph of the Ideal Observer HiMean 

semantic space in cardiovascular base rate 10 condition. 
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Figure 28. 2D multidimensionally scaled graph of LSA semantic space in 

psychological base rate 10 condition. 



97 

 

Figure 29. 2D multidimensionally scaled graph of the Ideal Observer HiMean 

semantic space in psychological base rate 10 condition. 
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Figure 30. 2D multidimensionally scaled graph of LSA semantic space in 

cardiovascular and psychological base rate 10 condition. 
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Figure 31. 2D multidimensionally scaled graph of the Ideal Observer HiMean 

semantic space in cardiovascular and psychological base rate 10 condition. 
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Appendix C: Disease Clusters 
 

Disease categories used and number of disease per cluster. 

Category Name     # Diseases in Cluster         Cluster 

Psychiatry and Psychology     31   1 

Immune System Diseases     29   1 

Musculoskeletal Diseases     32   1 

Nutritional and Metabolic Diseases    29   1 

Virus Diseases       28   1 

Wounds and Injuries      29   1 

Bacterial Infections and Mycoses    68   2 

Female Urogenital and Pregnancy Diseases   62   2 

Nervous System Diseases     59   2 

Pathological Conditions, Signs, and Symptoms   73   2 

Skin and Connective Tissue Diseases    78   2 

Cardiovascular Diseases      38   3 

Digestive System Diseases     40   3 

Male Urogenital Diseases     37   3 

Neoplasms       50   3 

Respiratory Tract Diseases     40   3 

Chemically Induced Disorders     10   4 

Congenital Hereditary & Neonatal Diseases & Abnormalities 16   4 

Parasitic Diseases      11   4 

Stomatognathic Diseases     15   4 

Endocrine System Diseases     22   5 

Eye Diseases       20   5 

Hemic and Lymphatic Diseases     23   5 

Otorhinolaryngologic Diseases      22   5 


