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Abstract 

A wireless sensor network is a network of a number of distributed nodes, each equipped 

with sensors, computational elements, and transceivers. These networks are able to sense 

desired phenomenon over a large geographic region and communicate this information 

back to the user or to a sink. Most of these networks are designed as stand alone networks 

comprising of thousands of low cost nodes for rapid deployment and are being used in a 

variety of applications from remote monitoring of habitats to military applications. While 

the use of these networks has been demonstrated, their full capabilities have not been 

realized, primarily due to the lack of efficient algorithms for self organization and fault 

tolerant operation.  

 A fundamental issue in the deployment of a large scale Wireless Sensor Network 

(WSN) is the ability of the network to cover the region of interest. While it is important 

to know if the region is covered by the deployed sensor nodes, it is of even greater 

importance to determine the minimum number of these deployed sensors that will still 

guarantee coverage of the region. This issue takes on added importance as the sensor 

nodes have limited battery power. Redundant sensors affect the communications between 

nodes and cause increased energy expenditure due to packet collisions. While scheduling 

the activity of the nodes and designing efficient communication protocols help alleviate 

this problem, the key to energy efficiency and longevity of the wireless sensor network is 
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the design of efficient techniques to determine the minimum set of sensor nodes for 

coverage. 

 Currently available techniques in the literature address the problem of 

determining coverage by modeling the region of interest as a planar surface. Algorithms 

are then developed for determining point coverage, area coverage, and barrier coverage. 

The analysis in this thesis shows that modeling the region as a two dimensional surface is 

inadequate as most applications in the real world are in a three dimensional space. The 

extension of existing results to three dimensional regions is not a trivial task and results 

in inefficient deployments of the sensor networks. Further, the type of coverage desired is 

specific to the application and the algorithms developed must be able to address the 

selection of sensor nodes not only for the coverage, but also for covering the border of a 

region, detecting intrusion, patrolling a given border, or tracking a phenomenon in a 

given three dimensional space. These are very important issues facing the research 

community and the solution to these problems is of paramount importance to the future of 

wireless sensor networks. 

 In this thesis, the coverage problem in a three dimensional space is rigorously 

analyzed and the minimum number of sensor nodes and their placement for complete 

coverage is determined. Also, given a random distribution of sensor nodes, the problem 

of selecting a minimum subset of sensor nodes for complete coverage is addressed. A 

computationally efficient algorithm is developed and implemented in a distributed 

fashion. Numerical simulations show that the optimized sensor network has better energy 
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efficiency compared to the standard random deployment of sensor nodes. It is 

demonstrated that the optimized WSN continues to offer better coverage of the region 

even when the sensor nodes start to fail over time. A localized ‘self healing’ algorithm is 

implemented that wakes up the inactive neighbors of a failing sensor node. Using the 

“flooding algorithm” for querying the network, it is shown that the optimized WSN with 

integrated self healing far outweighs the performance that is obtained by standard random 

deployment. For the first time, a ‘measure of optimality’ is defined that will enable the 

comparison of different implementations of a WSN from an energy efficiency stand 

point. 

The analytical methods developed in this dissertation are flexible and are shown 

to easily accommodate the requirements of different types of coverage encountered in the 

practical deployment of a wireless sensor network. First, given a region of interest, 

distributed algorithms are developed to select an optimal set of sensor nodes that cover 

the boundary of a region (Boundary Coverage Problem). Then, a distributed algorithm is 

also developed that enables the determination of the extent of coverage obtained by a 

WSN (Coverage Boundary Problem). In practice, several anomalies can occur in wireless 

sensor networks that impair their desired functionalities resulting in the formation of 

different kinds of holes such as coverage holes, routing holes, jamming holes, and worm 

holes. Determining the location and extent of the holes in the coverage is the first step in 

the augmentation of the network for improved performance. These issues are rigorously 
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analyzed, and an algorithm that identifies the sensor nodes on the boundary of the 

coverage holes in the region is also developed.  

 Finally, a novel approach for tracking a dynamic phenomenon is presented. One 

of the central issues in sensor networks is energy efficient target tracking, where the goal 

is to monitor the path of a moving target using a minimum subset of sensor nodes while 

meeting the specified quality of service (QoS). Unlike other tracking methods that are 

based on computationally complex clustering techniques, the strategy adopted in this 

dissertation is based on a computationally simple but elegant technique of finding a 

reduced cover of the whole region and then subdividing the reduced cover into sub-

covers based on the target’s location. The tradeoffs involved in target tracking are 

analyzed and the performance of the tracking algorithm is compared with other popular 

strategies from the literature. The behavior of the proposed tracking algorithm is analyzed 

through simulation and the improved performance is demonstrated. The gain in energy 

savings come at the expense of reduced quality of tracking. The algorithm presented 

guarantees the robustness and accuracy of tracking, as well as the extension of the overall 

system lifetime. The algorithms developed in this dissertation are based on a number of 

reasonable assumptions that are easily verified in densely distributed sensor networks and 

require only a limited number of simple local computations. 

 The coverage algorithms developed in this dissertation are a significant addition 

to the scientific knowledge in the area of wireless sensor networks. The proposed 

techniques help realize the practical deployment of wireless sensor networks in three 
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dimensional regions. For the first time, the ‘self healing’ property along with the 

optimization techniques proposed herein make possible the implementation of highly 

efficient, robust sensor networks whose performance is optimized with respect to the 

needs of the application. 
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Chapter 1 

Introduction 

A sensor network is a network of a number of distributed nodes, each equipped with 

sensors, computational elements, and transceivers. Sensor nodes form a sensing, 

computing, and communication infrastructure that allows us to instrument, observe, and 

respond to phenomena in the physical and cyber world. As sensor nodes are typically 

battery operated, it is important to efficiently use the limited energy of the nodes to 

extend the lifetime of the sensor network. Wireless Sensor Networks (WSNs) as they 

exist today, suffer from major disadvantages in their deployment and organization 

resulting in wastage of energy and thus reducing the overall system lifetime. Given an 

existing distribution of sensor nodes, it is often necessary to minimize the number of 

nodes that remain active while still achieving complete coverage of the entire region. If 

all the nodes are active simultaneously, an excessive amount of energy would be wasted 

due to packet collisions. Further, the data collected will also be highly correlated and 

redundant. The self organizing capacity of sensor networks for coverage of a three 

dimensional region and algorithms for energy efficient deployment of wireless sensor 

networks are fundamental issues facing the research community today and will be the 

focus of this dissertation. This is a very challenging task as it involves several 

technological issues such as, coverage in three dimensional spaces, design of efficient 
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networking protocols, power management, fault tolerance and accommodation, boundary 

coverage, intrusion detection, and distributed tracking algorithms. Successful solution to 

these research issues will promote the development of pervasive computing systems built 

using a network of tiny, wireless sensing nodes. 

Aggregating sensor nodes into sophisticated sensing, computational and 

communication infrastructures to form wireless sensor networks will have a significant 

impact on a wide array of applications ranging from military, to scientific, to industrial, 

to health-care, to domestic, establishing ubiquitous computing that will pervade society 

redefining the way in which we live and work. Mark Weiser envisioned his view of 

ubiquitous computing, now also called pervasive computing, in his pioneer paper “The 

Computer for the 21st Century" [1] in the early 1990s. The essence of his vision was the 

creation of an environment saturated with computing and communication capability, yet 

gracefully integrated with human users [2]. In his paper, Mark Weiser wrote: “The most 

profound technologies are those that disappear. They weave themselves into the fabric of 

everyday life until they are indistinguishable from it.”  
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Advances in hardware, software, and networking over the past decade have 

brought the vision of pervasive computing close to technical and economic viability [3]. 

The interest in distributed wireless sensor networks in academia and industry from the 

late 1990s is one of the most exciting and specific instance of ubiquitous computing 

effort. The advances in wireless communications and Micro-Electro Mechanical Systems 

(MEMS) technologies have enabled the construction of a wide variety of wireless 

sensor/actuator devices that are small in size. These devices consist of one or more 

integrated sensing units, embedded microprocessors, low-power communication 

transceivers, and a small on-board power source. These devices also have location 

awareness and can be organized in an ad hoc multi-hop network. Besides sensor 

networks, the proliferation of inexpensive, widely available wireless devices and the 

network community's interest in mobile computing have fostered the rapid expansion of 

wireless ad hoc networks. Many future applications will increasingly depend on 

embedded wireless sensor and ad hoc networks, such as environmental monitoring, 

infrastructure maintenance, traffic management, energy management, disaster mitigation, 

personal medical monitoring, smart building, as well as military and defense. These 

broad application areas for wireless sensor and ad hoc networks will create a huge market 

in the foreseeable future. According to Business Communications Company, Inc., a 

market research firm, the U.S. market for industrial sensors will reach $7.6 billion by the 

year 2009 [4]. For this vision to become a reality, significant technological advances have 
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to be made in the ability of these WSNs to self organize themselves to form intelligent 

networks capable of bridging the gap between the physical and the cyber world. 

In this chapter, the motivations for the research presented in this dissertation are 

first discussed.  Then, a brief review of wireless networks, wireless ad hoc networks, and 

wireless sensor networks is presented in Section 1.2. The research challenges and the 

open issues in sensor and ad hoc networks is the focus of Section 1.3. The scope of this 

dissertation is presented in Section 1.4 and finally, the contributions of this dissertation 

are summarized in Section 1.5. 

 

1.1 Motivation 

Advances in wireless communication and low-cost sensors have made possible the 

design and deployment of large-scale wireless sensor systems. Such networks are 

increasingly deployed in buildings, underwater, on roads or bridges, and in planetary 

exploration. Most existing results focus on planar networks [4]-[32]; however, three-

dimensional modeling of the sensor network would more accurately reflect the real-life 

situations. 2D modeling of WSNs has been the focus of attention of most research works 

in the field of sensor networks due to its simplicity. However, modeling the coverage 

region as a planar surface results in inefficient implementations and therefore limits the 

use of WSN to a few applications. The potential application categories of sensor 

networks include: 
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1- Military and Defense: battlefield surveillance, reconnaissance of enemy forces 

and terrain, nuclear, biological and chemical attack detection and recon- 

naissance, etc. 

2- Environment: bush fire monitoring, food detection, disaster mitigation, 

precision agriculture, etc. 

3- Health: telemonitoring of human physiological data, tracking and monitoring 

doctors and patients inside a hospital, drug administration in hospital. 

4- Home: home automation and networking, smart environment, etc. 

5- Other Commercial Areas: environmental control in buildings, interactive 

museums, detecting and monitoring car thefts, managing inventory control, 

vehicle tracking and detection, etc. 

 

Specifically, the following applications require the modeling of the coverage region 

of the WSN in the three dimensional space. The results presented in this thesis facilitate 

the efficient implementation of WSN to tackle these and similar problems.   

1- Disaster Recovery: Natural disasters (floods, hurricanes, and fires) require 

sensing in different planes and thus 3-dimesnsional coverage techniques are 

required. Three-dimensional networks also arise in building networks where 

nodes are located on different floors. 

2- Mapping Topographical Properties: Random dense sensor deployment on 

irregular terrains like mountains and hills leaves three dimensional coverage 
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holes that indicate the topographical properties of the terrain. Understanding 

the topography of an area enables the understanding of watershed boundaries, 

drainage characteristics, water movement, impacts on water quality, and soil 

conservation.  

3- Space Exploration [5], [6]: Wireless sensor networks will play an important 

role in planetary explorations. A rover functioning as a base station can collect 

measurement data from a number of mobile sensing units and relay the 

aggregated results to an orbiter. 

4- Undersea Monitoring [7, 8 and 9]: Deployment of sensor nodes underwater 

enables the real time monitoring of selected ocean areas. Under Water 

Acoustic Sensor Networks (UW-ASN) can consist of a number of sensors and 

submersible vehicles that are deployed to perform collaborative monitoring 

tasks over a given area.  

 

The applications mentioned above do not afford the flexibility in placing sensor nodes 

at desired locations for optimum coverage. As a practical matter, the sensor nodes are 

randomly distributed, for example dropped from an airplane, onto the region to be 

monitored. The sensing needs in each of these applications are fundamentally different 

and require the use of different types of sensors, each with a different sensing range and 

sensitivity. A sensor node typically has numerous sensors and can be configured to 

monitor the region and transmit the information back to a sink. The number of sensor 
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nodes required depends on the size of the region to be covered, the sensing radius of the 

node, and the type of coverage desired. The information is transmitted to a sink typically 

through multi-hop communications in the WSN.  The impact of the number of nodes on 

the capacity of multi-hop wireless networks was analyzed for deployments in two 

dimensions [10] and three dimensions [11].  Under a protocol model of non-interference, 

if n nodes, each with a transmission rate of W bits/second, are randomly distributed in a 

disc of area A sq. meters ( ), then the throughput obtained by each node for 

transmission to a randomly chosen sink is given by 

2m

/ sec
log
W bits

n n

 
Θ  
 

( )

[10]. Similarly in 

the three dimensional deployment of wireless nodes, the throughput achieved when n 

nodes are located in a sphere of volume V is given by 1/32log

W b
n n

 
Θ
 
 

/ secits
 [11]. Since 

the number of active nodes depends on the type of sensing required and the region of 

coverage, the overall communication and energy efficiency of the WSN can be 

significantly improved by optimizing the number of nodes while guaranteeing coverage 

of a region. 

The above discussion shows that as a practical matter, the analysis of both the 

coverage of the WSN and the inter-node communications require modeling the network 

in a three dimensional space. The coverage problem is one of the fundamental issues in 

wireless sensor networks and due to the large number of deployed nodes and the high 

density of deployment, only a subset of the deployed nodes needs to be active in order to 
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achieve the necessary quality of service. The 3D coverage problem in WSNs has not yet 

been addressed. Also, one of the important applications of WSNs is intrusion detection 

and tracking. Most of the work done in this area uses high computational clustering 

techniques in order to predict the target’s next location and activate a subset of sensor 

nodes accordingly. On the other hand, simple and energy efficient distributed algorithms 

that will allow a minimum subset of sensor nodes to be active in order to detect and track 

the intruder are provided in this dissertation. The coverage problem was addressed in 

three dimensional space and distributed algorithms were provided in order to increase the 

system life time while achieving full coverage. The boundary coverage problem was also 

addressed where a reduced subset of sensor nodes were activated in order to detect an 

intruder to a region of interest at all times. Both results (full coverage, boundary 

coverage) were used to develop a novel approach to the energy efficient tracking problem 

using wireless sensor networks. 

In the following sections, we will introduce wireless networks and discuss the 

challenges in wireless sensor networks. 

 

1.2 Wireless Networks 

Wireless networks can be broadly classified into two categories: infrastructure-based and 

infrastructure-less as shown in Figure 1.1 [12]. Infrastructure-based networks include 

traditional cellular networks and wireless LANs (with centralized control module). 
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Infrastructure-less networks include ad hoc networks and sensor networks. Depending on 

the mobility of nodes, ad hoc networks can be further classified into mobile ad hoc 

networks (MANET) and static ad hoc networks.  

 

 

Figure 1.1: Classification of Wireless Networks. 

 

1.2.1 Wireless Ad Hoc Networks 

An ad hoc network is a collection of communication devices (nodes) that form a peer-to-

peer network (no centralized server) temporarily, and in an ad hoc manner without any 

backbone infrastructure or base stations to meet immediate application needs. In ad hoc 
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networks, individual nodes are responsible for dynamically discovering and selecting 

suitable communication neighbors to form a connected multi-hop network topology. A 

key assumption in ad hoc networks is that not all nodes can directly communicate with 

each other, so nodes are required to relay packets on behalf of other nodes in order to 

deliver data across the network [13]. Each node in an ad hoc network can operate as a 

client or server as well as a router. In a mobile ad hoc network, the network topology, 

connectivity, and node locations are variable and can be changed dynamically.  

 Ad hoc networks are one of the most vibrant and active research fields today. 

Significant research in this area has been ongoing for nearly 30 years. The history of ad 

hoc networks can be traced back to 1972 and the Department of Defense (DoD) 

sponsored Packet Radio Networks (PRNET), which evolved into the Survivable Adaptive 

Radio Networks (SURAN) program in the early 1980s [14]. The goal of these programs 

was to provide packet switched networking to mobile battlefield elements in an 

infrastructure-less, hostile environment (soldiers, tanks, aircrafts, etc., forming the nodes 

in the network) [15]. The interest in ad hoc networking was significant during the mid 

1990s because of the advances of technologies, proliferation of laptop computers, and 

widespread use of wireless devices. The enabling technologies of ad hoc networks 

include the emergence of self-organizing systems, software defined radios (SDR), 

miniaturization of wireless devices, smart antenna, and battery technologies. The release 

of new frequency bands also provides the possibility of design and implementation of 

high speed data communication systems. Ad hoc networks are suitable for use in 

 11 
                                                                                   
 



situations where infrastructure is either not available, not trusted, or is unavailable in 

times of emergency [13]. Some application examples include: battlefield 

communications; biological detection, environmental monitoring,  target tracking; an 

infrastructure-less network of notebook computers in a conference or campus setting; 

space explorations; undersea operations; etc. Although ad hoc networking research has a 

long history, significant challenges still exist. These challenges are summarized as 

follows. 

 

1- Scalability: The dependence of the performance factors in an ad hoc network 

on the network size is addressed through scalability studies. Important among 

these is whether the ad hoc network can provide acceptable level of services 

(such as packet latency and network throughput) even when the number of 

nodes is large in the network. Scalability is especially important in sensor 

networks as sensors are normally deployed with large numbers to achieve 

large area coverage. 

2- Energy Efficiency: Since ad hoc networks assume no fixed infrastructure, 

individual nodes have to rely on limited battery power. Energy efficiency 

therefore becomes an important issue in ad hoc networks. Low power 

operation is especially critical in sensor networks, as sensor networks are 

normally required to operate with a long lifetime. Recharging or replacement 
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of batteries is either impractical or impossible for sensor networks after 

deployment. 

3- Quality-of-Service (QoS): QoS is an active research area even in wired packet 

switching networks. Ad hoc networks further complicated the QoS challenges 

because of the error-prone and time-varying characteristics of wireless 

channels. Furthermore, individual nodes in ad hoc networks must share the 

media with many neighbors, each with its own set of QoS requirements. 

4- Security: Security is another open issue for ad hoc networks since nodes 

normally use shared wireless media in a potential insecure environment. 

Nodes are susceptible to denial of service (DoS) attacks that are harder to 

track down than in wired networks. 

5- Lack of Well Defined System Models: Finally, lack of well defined and widely 

accepted models for RF path attenuation, mobility, and traffic is another big 

issue. These tightly integrated models are required for a fair comparison and 

quantifying the system performance on a common baseline. Although the 

mechanisms behind electromagnetic wave propagation are well understood, it 

is difficult to quantify in detail in an environment including large number of 

complex objects (such as foliage, cars, and buildings). 
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1.2.2 Wireless Sensor Networks 

Wireless sensor networks (WSNs) have become among the most vibrant and active 

research areas and have garnered much academia and industry attention. A simple sensor 

network is depicted in Figure 1.2. 

R 
     Base Station 

  WSN 

 

Figure 1.2: A Wireless Sensor Network (WSN) monitoring a region R. By intelligently 
combining the data from the sensor nodes, the end user (base station) can remotely 
monitor events in the region of interest. 

 

A sensor node is any device that maps a physical quantity from the environment 

to a quantitative measurement. Advances in sensor technology, low power analog and 

digital electronics, and low power radio frequency RF design have enabled the 

development of small, relatively inexpensive, low power sensors called micro sensors. 

Micro sensors are equipped with a sensor module e.g. acoustic, seismic, image sensor 

capable of sensing some quantity about the environment, a digital processor for 

processing the signals from the sensor and performing network protocol functions a radio 

module for communication and a battery to provide energy for operation. Each sensor 
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node obtains a certain view of the environment as shown in Figure 1.2. A given sensors’ 

view of the environment is limited both in range and in accuracy! It can only cover a 

limited physical area of the environment and depending on the quality of the hardware 

may produce noisy data. Combining or aggregating the views of the individual nodes 

allows users to accurately and reliably monitor an environment. 

 

 

Figure 1.3: Modern-day oil prospectors use sound waves to locate oil. In one technique, 
(1) a signal is sent into the rock by a vibrator truck, (2) the reflected waves are received 
by geophones, and (3) the data is transmitted to a laboratory truck. 
 

Wireless micro sensor networks represent a new paradigm for extracting data 

from the environment. Conventional systems use large, expensive macro sensors that are 

often wired directly to an end user and need to be accurately placed to obtain the data. 

For example, the oil industry uses large arrays of geophone sensors attached to huge 

cables to perform seismic exploration for oil as shown in Figure 1.3. These sensor nodes 

are very expensive and require large amounts of energy for operation. The sensors must 

be placed in exact locations since there are a limited number of nodes extracting 
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information from the environment. Furthermore, deployment of these nodes and cables is 

costly and awkward requiring helicopters to transport the system and bulldozers to ensure 

the sensors can be placed in exact positions. There would be large economic and 

environmental gains if these large bulky expensive macro sensor nodes could be replaced 

with hundreds of cheap microsensor nodes that can be easily deployed. This would save 

significant costs in the nodes themselves, as well as in the deployment of these nodes. 

These sensor networks could be fault tolerant as the sheer number of nodes can ensure 

that there is enough redundancy in data acquisition even if all the nodes are not 

functional. Using wireless communication between the nodes would help eliminate the 

need for a fixed infrastructure. 

A sensor network normally consists of a large number of sensor/actuator devices. 

Sensors nodes are normally powered by batteries and communicate untethered with short 

distances. Sensor networks represent a significant improvement over the traditional 

sensors, which are deployed in the following two ways [16]: 

 

• Large, complex sensors can be positioned far from the phenomenon to be 

sensed. In this approach, complex signal processing algorithms and techniques 

may be employed to separate the target data from the environmental noise. 

• Sensor nodes that perform only sensing tasks can be deployed. The positions of 

the sensors and network topology are carefully engineered. Individual sensors 

do not possess computational capabilities. They transmit the sensed 
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phenomenon to one or more central nodes where data reduction and filtering 

can be performed. 

Unlike traditional sensor deployment, future wireless sensor networks may be 

densely deployed either inside the phenomenon or in close proximity to it. The position 

of individual nodes need not be engineered or pre-determined. This allows random 

deployment of sensor networks in hostile or inaccessible terrains. On the other hand, 

random deployment requires that algorithms and protocols designed for sensor networks 

must possess self-organizing capabilities. 

The structure of a sensor node can be seen from Figure 1.4. A sensor node is 

normally made up of four basic components: a sensing unit, a processing unit, a 

transceiver unit, and a power unit. A sensor node may also be equipped with a location 

finding system, a mobilizer, and a power generator dependent on applications. The 

hardware components are summarized as follows: 

a) Processing Unit: Associates with small storage unit (tens of kilo bytes order) 

and manages the procedures to collaborate with other nodes to carry out the 

assigned sensing task. 

b) Transceiver Unit: Connects the node to the network via various possible 

transmission media such as infrared, optical, radio and so on. 

c) Power Unit: Supplies power to the system by small size batteries. This makes 

the onboard energy a scarce resource. 
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d) Sensing Units: It is usually composed of two subunits: sensors and analog-to-

digital Converters (ADCs). The analog signal produced by the sensors are 

converted to digital signals by the ADC, and fed into the processing unit. 

e) Other Application Dependent Components: Location finding system is needed 

to determine the location of sensor nodes with high accuracy; mobilizer may 

be needed to move sensor nodes when it is required to carry out the task. 

 

On the other hand, the software platform of a sensor node consists of: 

a) Embedded Operating System (EOS): Manages the hardware capability 

efficiently as well as supports concurrency-intense operations. Apart from 

traditional OS tasks such as processor, memory and I/O management, it must 

be able to rapidly respond to the hardware triggered events in real-time. 

b) Application Programming Interface (API): A series of functions provided by 

OS and other system-level components for assisting developers to build 

applications. 

c) Device Drivers: A series of routines that determine how the upper layer 

entities communicate with the peripheral devices. 

d) Hardware Abstract Layer (HAL): Intermediate layer between the hardware 

and the OS. Provides uniform interfaces to the upper layer while its 

implementation is highly dependent on the lower layer hardware. With the use 
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of HAL, the OS and the applications easily transplant from one hardware 

platform to another 

 

The software platform of a typical sensor node is also shown in Figure 1.4(b). 

 

 

Figure 1.4 (a): A sensor node’s hardware platform. 

 

 
 
Figure 1.4 (b): A sensor node’s software platform. 
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Sensor networks can be seen as a special case of ad hoc networks. Therefore, 

sensor networks suffer from the same drawbacks and challenges faced by ad hoc 

networks as discussed in the previous section. Sensor networks share some common 

features with ad hoc networks, such as infrastructure-less architecture and normally 

random network topology. However, sensor networks also have some different 

characteristics and more rigorous constraints compared to the broadly defined ad hoc 

networks. For instance, unlike nodes in an ad hoc network, sensors nodes are equipped 

with sensing units. Nodes in sensor networks are normally static while nodes in mobile 

ad hoc networks may change their locations rapidly. Also, the ability to interface with a 

wide variety of sensors makes sensor networks different from traditional ad-hoc 

networks. 

 In addition to these differences, sensor networks also possess the following 

characteristics which distinguish them from ad hoc networks and traditional wired and 

wireless networks. 

 

a) Resource Limitation: Sensors are normally tiny devices and have stringent 

limitations for on-board energy, computational capability, and memory space. 

Energy consumption is the most important criterion to achieve long-life in sensor 

networks. 
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b) Location Awareness: Sensing data without knowing the location of the sensor is 

meaningless. Therefore, localization should be considered as an implicit feature of 

sensor networks. 

c) Data Centric: Sensor networks are information driven and organized around the 

name of data instead of nodes. Applications express a need for a particular data 

element or type of data by naming it directly. For example, data query in sensor 

networks are typically in the style of "What is the temperature at location XYZ?" 

rather than "Connect node A to node B". 

d) Scalability: The number of nodes in sensor networks may be several orders of 

magnitude higher than in ad hoc networks. Therefore, scalability is an important 

performance measurement for the protocols and algorithms designed for sensor 

networks. 

e) Dense Deployment: Sensors are normally densely deployed with certain level of 

redundancy to achieve high sensing accuracy and collaborative data processing. 

f) Prone to Failures: Sensors are prone to failure due to depletion of energy or 

physical damage. 

 

These features of sensor networks introduce significant challenges that are different 

from traditional wired and wireless networks. The performance matrix for sensor 

networks can be classified as follows: 
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1- Energy Efficiency/System Lifetime: As sensors are normally battery powered 

and recharging or replacing the battery is impractical if not impossible, the 

protocol design must be energy efficient so as to maximize not only the 

lifetime of the individual nodes but also the lifetime of the entire network. 

2- Low Latency: The observer is interested in knowing about the phenomena 

within a given delay and out-of-date information is of no use. Real-time 

guarantee is a pre-requisite for most sensor network applications. 

3- Sensing Accuracy: Obtaining accurate sensing data is the primary objective of 

the observer, where sensing accuracy is an application dependent factor. The 

system efficiency can be further improved if network organization is based on 

sensing needs. 

4- Fault Tolerance: Since sensors are prone to failures, sensor networks must be 

fault-tolerant so that non-catastrophic failures are hidden from the 

applications. 

5- Scalability: Sensor network applications often feature a large number of 

sensor nodes. Therefore, the protocol design must be scalable. 

 

Thus, it can be seen that while sensor networks are similar to ad hoc networks, the 

successful implementation of this technology should first address key issues in their 

deployment and performance. The open research issues will now be discussed in the next 

section.  
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1.3 Research Issues in Wireless Sensor Networks 

In the last section, I briefly reviewed the wireless sensor networks and ad hoc networks. 

We also reviewed the research challenges and open issues. In this section, the goals of the 

research presented in this dissertation will be identified. We will use the term sensor and 

sensor node inter-changeably in the rest of this dissertation. 

The main contribution of this dissertation is the design and evaluation of a novel 

three dimensional coverage protocol for wireless sensor networks. In this thesis, contrary 

to existing techniques, the coverage problem in a three dimensional space is rigorously 

analyzed. The problem of determining the minimum number of sensors that guarantee 

complete coverage is first studied and an algorithm to choose a subset of working nodes 

for full coverage is derived. The cases of static and dynamic phenomena are also 

analyzed. The analysis is extended to handle the case of sensing and tracking a dynamic 

phenomenon in 3D.  

The research issues related to wireless sensor networks are identified in Figure 1.5 

and the contributions of this thesis are highlighted. 
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Figure 1.5: Wireless Sensor Network Research issues categorized. 
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1.4 Scope of the Dissertation 

As was presented in Figure 1.5, the following issues are addressed in  this thesis: 

• Problem 1(Optimal 3D Deployment Problem): Given a region R, what is the 

minimum number of sensor nodes that are needed to completely cover R? 

• Problem 2(3D Coverage Problem): Given a dense deployment of sensor nodes, find a 

minimum subset of active nodes that guarantee full coverage of the required region R. 

• Problem 3(Boundary Coverage): Given a dense deployment of sensor nodes, find a 

subset of active nodes that will guarantee the coverage of the boundary of a region of 

interest. 

• Problem 4(Coverage Boundary): Given a dense deployment of sensor nodes, find a 

subset of active nodes that lie on the boundary of the sensing coverage. 

• Problem 5(Tracking Problem): Given a dense deployment of sensor nodes, find a 

minimum subset of sensor nodes needed in order to track a dynamic phenomenon. 

 

Algorithms for 3D coverage and connectivity will be derived when the phenomenon to be 

monitored is static. On the other hand, when the phenomenon is dynamic, algorithms for 

3D tracking and connectivity will also be analyzed and studied. 
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1.5 Contributions 

Energy efficient coverage of a region using Wireless Sensor Networks (WSNs) was 

addressed in this dissertation. The main contribution of this dissertation is a technique for 

obtaining a 3D reduced cover of a wireless sensor network. The technique is shown to be 

computationally simple and suitable for distributed implementation. Numerical 

simulations show that the reduced sensor network has better energy efficiency compared 

to the random deployment of sensor nodes. It was demonstrated that the reduced WSN 

continues to offer better coverage of the region even when the sensor nodes start to fail 

over time. A localized ’self healing’ algorithm is implemented that wakes up the inactive 

neighbors of a failing sensor node. Using the “flooding algorithm” for querying the 

network, it is shown that the reduced cover of the WSN with integrated self healing offers 

superior performance over time. For the first time, a ‘measure of optimality’ has been 

defined that enables the comparison of different implementations of a WSN from an 

energy efficiency stand point. 

The proposed algorithm is computationally simple and will result in lower 

communication overhead. The 3D coverage algorithm can be easily extended to obtain 

application specific reduced cover, border coverage for intrusion detection, to determine 

the mobility of sensor nodes to cover sensing holes, and to incorporate self-healing in 

sensor networks. Practical ways of 3D deployment for tracking applications is also one of 

the significant results of this dissertation.  
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The theoretical and experimental contributions of this dissertation will put the 

vision of deployment and self organization of WSNs closer to reality. The assumptions in 

this dissertation are logical simplifications of the complex problem and result in 

algorithms that are elegant, efficient, and easy to implement in a distributed framework. 

Also, for the first time, an optimality measure is provided that compares one deployment 

strategy to another. In practice, sensor networks also introduce new challenges for fault-

tolerance. Sensor networks are inherently fault-prone due to the shared wireless 

communication medium: message losses and corruptions (due to fading, collision, and 

hidden-node effect) are the norm rather than the exception. Moreover, node failures (due 

to crash and energy depletion) are commonplace. Since on-site maintenance is not 

feasible, sensor network applications should be self-healing. All the algorithms presented 

include self healing extensions, thereby increasing the robustness of the sensor network. 

 

1.6 Dissertation Structure 

This dissertation is organized into five parts. The first part introduces the problem and the 

motivation behind the research work presented in this dissertation. The second part 

describes the 3D coverage problem, the first important problem of this dissertation, and 

provides theoretical as well as experimental results. The third part deals with the 

boundary coverage problem and distributed algorithms for tracking using WSNs. The last 

part concludes the dissertation. 
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Part I includes this chapter and Chapter 2. In Chapter 2, background and related 

work is surveyed.  

Part II includes two chapters (Chapter 3 and Chapter 4) which provide detailed 

description and simulation results of the proposed coverage protocols for sensor 

networks. In Chapter 3, the motivations behind the design are first identified and the 3D 

coverage problem is formulated. We then propose a self healing algorithm as an 

extension to the coverage algorithm proposed in Chapter 4. 

Part III includes two chapters (Chapters 5 and 6). Chapter 5 introduces the border 

coverage problem in wireless sensor networks and provides energy efficient algorithms. 

It also describes the coverage boundary problem and provides algorithms to select the 

optimal set of sensor nodes that lie on the boundary of coverage. Chapter 6 provides 

energy efficient target tracking algorithms using WSNs and compares the algorithm to 

other popular tracking algorithms and shows the results through simulations.  

Part IV includes one chapter (Chapter 7). Chapter 7 concludes this dissertation 

and identifies a number of remaining challenges and future research directions. 
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Chapter 2 

Background and Related Work 

In the previous chapter, wireless sensor networks were introduced and the motivations for 

the research presented in this dissertation were highlighted. In this chapter, the 

background and literature relevant to this dissertation is discussed. Topics covered 

include: coverage, connectivity issues and routing protocols and tracking using WSNs. 

The rest of the chapter is organized as follows. In Section 2.1, related research 

works in coverage are summarized. The most discussed coverage problems from the 

literature can be classified in the following types: area coverage (Section 2.1.1), point 

coverage (Section 2.1.2), and barrier coverage (Section 2.1.3).  The application of other 

types of coverage strategies is discussed in Section 2.1.4. The related research work in 

routing is then summarized in Section 2.2. Related work in routing in WSNs can be 

divided into flat-based routing (Section 2.2.1), hierarchical-based routing (Section 2.2.2), 

and adaptive based routing (Section 2.2.3) depending on the network structure. The 

chapter concludes with a discussion on related research work in tracking in Section 2.3. 

 

 

 

 29 
                                                                                   
 



2.1 Related Work in Coverage 

An important problem addressed in literature is the sensor coverage problem. This 

problem is centered on a fundamental question: “How well do the sensors observe the 

physical space?” The research work related to the coverage problem are identified and 

summarized next.  

As pointed out in [17], the coverage concept is a measure of the quality of service 

(QoS) of the sensing function and is subject to a wide range of interpretations due to a 

large variety of sensors and applications. The goal is to have each location in the physical 

space of interest within the sensing range of at least one sensor. The coverage algorithms 

proposed are either centralized, or distributed. In distributed algorithms, the decision 

process is decentralized. By distributed and localized algorithms, we refer to a distributed 

decision process that at each node that makes use of only neighborhood information 

(within a constant number of hops). Because the WSN has a dynamic topology and needs 

to accommodate a large number of sensors, the algorithms and protocols designed should 

be distributed and localized, in order to better accommodate a scalable architecture. 

We survey recent contributions addressing coverage problems in the context of 

static WSNs, that is, the sensor nodes do not move once they are deployed. We present 

various coverage formulations, their assumptions, as well as an overview of the solutions 

proposed. The most discussed problems from the literature can be classified in the 

following types: area coverage, point coverage, and barrier coverage. 
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2.1.1 Area Coverage  

The most studied coverage problem is the area coverage problem, where the main 

objective of the sensor network is to cover (monitor) an area (also referred sometimes as 

region). The area coverage could be divided into the following: 

 

2.1.1.1 Random Area Coverage 

Mechanisms that conserve energy resources are highly desirable, as they have a direct 

impact on network lifetime. Network lifetime is in general defined as the time interval 

that the network can perform the sensing functions and transmit data to the sink. During 

the network lifetime, some nodes may become unavailable (e.g. physical damage, lack of 

power resources) or additional nodes might be deployed. An efficient, frequently used 

mechanism is scheduling the sensor node activity and allowing redundant nodes to enter 

the sleep mode as often and for as long as possible. To design such a mechanism, the 

following questions should be addressed: 

1. What is the rule that each node should follow to determine whether to enter sleep 

mode? 

2. When should nodes make such a decision? 

3.  How long should a sensor remain in the sleep mode? 

 

The scheduling of ‘sleep/wake’ activity in sensor nodes in a large distribution of 

randomly deployed nodes was first considered by [18] and [19] where they consider a 
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large population of sensors, deployed randomly for area monitoring. Here, the goal is to 

achieve an energy-efficient design that maintains area coverage. This was achieved by 

first dividing the sensor nodes into disjoint sets where each set was capable of 

individually performing the area monitoring tasks. These sets are then activated 

successively, and while the current sensor set is active, the nodes in the remaining sets 

are in a low-energy sleep mode. For a given deployment, minimizing the number of 

active sensors is equivalent to finding the maximum number of disjoint sets. Minimizing 

the number of active sensors reduces the overall energy consumption and has a direct 

impact on the network lifetime. S. Slijepcevic and M. Potkonjak [18] have proved that 

the SET K-COVER which basically asks whether a set of sensors contain k disjoint sets 

to cover an area of interest is NP-complete problem using polynomial time 

transformation from the minimum cover problem. They developed the most-constrained 

least-constraining heuristic and demonstrated the effectiveness on variety of simulated 

scenarios. The theoretical analysis of the heuristic algorithm indicates that the worst 

runtime is O(N2), where N is the number of deployed sensor nodes. The basic idea of the 

approach is to minimize the coverage of sparsely covered areas within one cover. Such 

areas are identified using the notion of the critical element. The solutions proposed are 

centralized which is a major draw back and thus can not be used efficiently in a 

distributed sensor network. 

 Another energy-efficient node-scheduling-based coverage mechanism is 

discussed in [20]. D. Tian and N. D. Georganas [20] propose a node-scheduling scheme, 
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which can reduce system overall energy consumption, therefore increasing system 

lifetime, by turning off some redundant nodes. Their coverage-based ‘off duty eligibility 

rule’ and ‘backoff-based node-scheduling scheme’ guarantees that the original sensing 

coverage is maintained after turning off redundant nodes. Their approach ensures that 

investigating whether the neighbors can cover the current node’s sensing area is 

equivalent to checking whether the union of sponsored sectors (called sponsored 

coverage) contains the current node’s sensing area, which in turn, is equivalent to 

calculating whether the union of central angles can cover the whole 360o. A probing-

based, node-scheduling solution for the energy-efficient coverage problem is proposed in 

[21]. Here, all sensors are characterized by the same sensing range and coverage is seen 

as the ratio between the area under monitoring and total size of the network field. The 

off-duty eligibility rule is based on a probing mechanism. This protocol is distributed, 

localized, and has low complexity but still does not preserve the original coverage area.  

Another work that is significant in the field of area coverage is [22]. Kumar et al. 

adopt the Randomized Independent Scheduling (RIS) mechanism in [22]. RIS assumes 

that time is divided into cycles based on a time synchronization method. At the beginning 

of each cycle, each sensor independently decides whether to become active with 

probability ‘p’ or go to sleep with probability ‘1 − p’. Thus, the network lifetime is 

increased by a factor close to 1/p (i.e. p determines the network lifetime). Kumar et al. 

derived the conditions for asymptotic K-coverage when RIS is used with three different 

deployment strategies – grid, random uniform and 2-dimensional Poisson. Assuming that 
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active sensors are self-elected with a probability p using the Random Independent 

Scheduling (RIS) mechanism, Kumar et al. derived the sufficient conditions for achieving 

asymptotic k-coverage. Three deployment strategies were studied: grid ( n n×

p )

), 

random uniform (n points), and 2-dimensional Poisson (with rate n). They proved that for 

‘n’ sensors deployed uniformly over a unit square region and assuming that active 

sensors are self-elected with a probability p using the Random Independent Scheduling 

(RIS) mechanism and some slowly growing function ( nφ , if 

1 ( np ) k log log( np )c( n )
log( np )

φ +
= +  then the unit square region is almost always k-covered. 

Their results are significant; however, they do not study the system lifetime and the 

resulting overhead in the communication. 

In [23], C. Liu et al. deal with a challenging task which is determining how to 

schedule sensor nodes to save energy and meet both constraints of sensing coverage and 

network connectivity without accurate location information. Their approach utilizes an 

integrated method that provides statistical sensing coverage and guaranteed network 

connectivity. They use random scheduling for sensing coverage and then turn on extra 

sensor nodes, if necessary, for network connectivity. For a given point p in the field, they 

define the coverage intensity for this point as c
p

a

T
T

=

n

C  whereT is any given long time 

period and T is the total time during when point p is covered by at least one active 

sensor and the network coverage intensity, , was defined as the expectation of

a

c aT

C pC . 
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nC E[ C= p ] . They showed that without considering network connectivity, 

1 1n
qC (
k

= − − n)  , where   is the probability that each sensor node covers a given point. 

It is very useful to dynamically adjust the coverage of a sensor network after it is 

deployed. When the total number of sensor nodes is fixed, the network coverage intensity 

can be adjusted by changing the number of disjoint subsets ‘k’. The authors provided 

upper and lower bounds on the number of disjoint subsets D to provide a network 

coverage intensity of at least t: 

q

1
1

1 1
tq ln( )

n
k

ln( t ) qD
ln( ) e

−

 
 −

≤ ≤
 − − 

  . Their work is very useful, 

as it provided bounds on the number of disjoint sets to achieve specific coverage 

intensity; however, their work does not indicate which sensor nodes and their locations 

are needed to be active after a random deployment. Also, they do no consider the system 

overhead and the resulting coverage lifetime. 

All the works in the area coverage limit their modeling to two dimensional 

regions and an optimality measure was not established in order to compare one sensor 

deployment strategy to another. 

 

2.1.1.2 Connected Area Coverage 

An important issue in WSNs is connectivity. A network is connected if any active node 

can communicate with any other active node, possibly using intermediate nodes as relays. 
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Once the sensors are deployed, they organize into a network that must be connected so 

that the information collected by sensor nodes can be relayed back to data sinks or 

controllers. An important, frequently addressed objective is to determine a minimal 

number of working sensors required to maintain the initial coverage area as well as 

connectivity. Selecting a minimal set of working nodes reduces power consumption and 

prolongs network lifetime. Next, several connected coverage mechanisms from the 

literature are reviewed. 

An important but intuitive result, proved by Zhang and Hou [24], states that 

complete coverage of a convex area implies connectivity of the working nodes if the 

communication range is at least twice the sensing range. If the communication range is 

set up too large, radio communication may be subject to excessive interference. 

Therefore, if the communication range can be adjusted, a good approach to assure 

connectivity is to set transmission range as twice the sensing range. Wang et al., [25] 

generalized the result in [24] by showing that, when the communication range is at least 

twice the sensing range, a k-covered network will result in a k-connected network. A k-

connected network has the property that removing any k-1 nodes will still maintain the 

network connectivity. The work in [25] introduces coverage configuration protocol 

(CCP) that can dynamically configure the network to provide different coverage degrees 

requested by applications. 
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2.1.1.3 Deterministic Area Coverage 

In the last two sections, the sensor nodes are randomly deployed and 2D distributed 

algorithms are established for complete coverage. In this section, the deterministic 

placement of the sensor nodes is studied for coverage. 

Kar and Banerjee [26] and references thereafter consider the problem of 

deterministically placing a minimum number of sensor nodes to cover a given region. K. 

Kar and S. Banerjee [26] address the problem of optimal node placement for ensuring 

connected coverage in sensor networks. They consider two different practical scenarios. 

In the first scenario, a certain region (or a set of regions) are to be provided connected 

coverage, while in the second case, a given set of n points are to be covered and 

connected. They first study the case in which the region to be covered is the entire two-

dimensional plane. The solution for this simple special case provides some valuable 

insights for approaching the more complex region-coverage problems. They then discuss 

how regions of finite sizes can be provided connected coverage. Modeling each sensor 

node’s sensing region as a disk or radius r, the authors proved that: 

1

3
3 2 1 026

31
2

p

opt

d
.

d

π +
≤

+
;  where 

1pd  denotes the density of the disk placement pattern , 

and denote the optimal density. They also consider the problem of providing 

connected coverage to a set of n given points in a two-dimensional Euclidean plane and 

1P

optd
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show that 3 4
3

p

opt

n
n

π
≤  where n  denotes the number of disks used by the algorithm to 

provide connected coverage to the n given points and  is the optimal solution. Their 

results are useful if we had the luxury in placing each sensor node in its particular 

location however that is not the case in most sensor networks. Also, all their results are 

for two dimensional sensor networks which are not too practical in real life. 

3p

optn

 

2.1.1.4 Node Coverage as Approximation 

When a large and dense sensor network is randomly deployed for area monitoring, the 

area coverage can be approximated by the coverage of the sensor locations. One method 

to assure coverage and connectivity is to design the set of active sensors as a connected 

dominating set (CDS). A distributed and localized protocol for constructing the CDS was 

proposed by Wu and Li, using the marking process in [27]. A node is a coverage node if 

there are two neighbors that are not connected (i.e., not within the transmission range of 

each other). Coverage nodes (also called gateway nodes) form a CDS. 

In [28], Wu et al. studied the probabilistic conditions for complete redundancy, 

i.e. when a sensor’s sensing area is completely covered by its neighbors’ sensing areas. 

Then they studied the conditions for partial redundancy. They proved that given C, the 

sensing area of sensor S and its neighboring sensing areas Ci’s (1 ), if A is the 

event then C is fully covered by Ci’s, then 1

i n≤ ≤

1A } n1 10 609 0 609n nn . Pr{ . ε− −− ≤ ≤ − +  
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where 11 0 276
2

nn( n )( . )ε −−
= . They also showed that the average percentage of a 

sensor’s sensing area that is covered by its n random neighbors is not smaller 

than 10 109.1 0 609 0 109
6

n nn . ( . ) n−− − − . Their results are important as it shows that it is 

much more expensive to turn off nodes based on complete redundancy than partial 

redundancy and based on these results, they proposed the Lightweight Deployment-

Aware Scheduling Mechanism (LDAS) to maintain statistical partial coverage. 

 

2.1.2 Point Coverage 

In the point coverage problem, the objective is to cover a set of points. Point coverage 

research work is also divided into random point coverage and deterministic point 

coverage each of which has different applications and approaches. 

 

2.1.2.1 Random Point Coverage 

The point coverage scenario addressed in [29] has military applicability. It considers a 

limited number of points (targets) with known location that need to be monitored. A large 

number of sensors are dispersed randomly in close proximity to the targets; the sensors 

send the monitored information to a central processing node. The requirement is that 

every target must be monitored at all times by at least one sensor, assuming that every 

sensor is able to monitor all targets within its sensing range. One method for extending 
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the sensor network lifetime through energy resource preservation is the division of the set 

of sensors into disjoint sets such that every set completely covers all targets. These 

disjoint sets are activated successively, such that at any moment in time only one set is 

active. As all targets are monitored by every sensor set, the goal of this approach is to 

determine a maximum number of disjoint sets, so that the time interval between two 

activations for any given sensor is the longest possible. 

 

2.1.2.2 Deterministic Point Coverage 

In [26], Kar and Banerjee consider the scenario where it is possible to explicitly place a 

set of sensor nodes. This is feasible in friendly and accessible environments. Given a set 

of n points, the objective is to determine a minimum number of sensor nodes and their 

location such that the given points are covered and all the deployed sensors are 

connected. For the case when all sensors have the same sensing range and the sensing 

range equals the communication range, the authors propose an approximation algorithm. 

The algorithm begins by constructing the minimum spanning tree over the targeted 

points, and then successively selects sensor node locations on the tree (vertices or along 

the edges) such that the coverage and connectivity is maintained at every step. The 

disadvantage of their approach is that constructing minimum spanning trees in a 

distributed fashion where each sensor node has only information about its communication 

neighbor is very difficult. Also, the computational complexity of forming such a spanning 

tree is another drawback. 
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2.1.3 Barrier Coverage 

Inspired by Gage’s classification [38], the barrier coverage can be considered as the 

coverage that minimizes the probability of undetected penetration through the barrier 

(sensor network). There are two types of barrier coverage models proposed in literature. 

The first model is proposed by Meguerdichian et al. [30], where the following 

problem is addressed: given a field instrumented with sensors and the initial and final 

locations of an agent that needs to move through the field, determine a maximal breach 

path (MBP) and the maximal support path (MSP) of the agent. The MBP (MSP) 

corresponds to the worst (best) case coverage and has the property that for any point on 

the path, the distance to the closest sensor is maximized (minimized). The model assumes 

homogeneous sensor nodes, known sensor locations (e.g. through GPS), with sensing 

effectiveness decreasing as the distance increases. The authors proposed a centralized 

solution, based on the observation that MBP lies on the Voronoi diagram lines and MSP 

lies on Delaunay triangulation lines.  The best coverage problem is further explored and 

formalized in [31], where Li et al. proposed a distributed algorithm for MSP computation 

using the relative neighborhood graph. Another important is the determination of the 

number of sensor nodes to be randomly deployed in the field such that the probability of 

a penetration path is close to zero. Liu and Towsley [32] address this coverage and 

detectability problem in the context of grid-based sensor networks and random sensor 

networks. 
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The second barrier coverage problem is the exposure-based model, introduced by 

Meguerdichian et al. in [33]. Exposure is directly related to coverage in that it is a 

measure of how well an object, moving on an arbitrary path, can be observed by the 

sensor network over a period of time. In addition to the informal definition, the authors 

formally define exposure and study its properties. They developed an efficient and 

effective algorithm for exposure calculation in sensor networks, specifically for finding 

minimal exposure paths. The minimal exposure path provides valuable information about 

the worst case exposure-based coverage in sensor networks. They express the general 

sensing model S at an arbitrary point p as kS( s, p )
[ d( s, p )]

λ
=  where d(s,p) is the 

Euclidean distance between the sensor s and the point p, and positive constants λ  and K 

are sensor technology-dependent parameters. Using this sensing model they define the 

exposure for an object O in the sensor filed during interval time [ t , ] along the path p(t) 

as: 

1 t2

2

1

1 2

t

t

d( p( t )E( p( t ),t ,t ) I( F , p( t ) dt
dt

= ∫  where 
1

n
iI( F , p( t ) s , p )= S(∑ is the sensor 

field intensity. The proved that the minimum exposure path from point p(1,0) to point 

q(0,1) is: 
2 2

s t ,sin t )(co π π  and the exposure along this path is 
2

E π
= . Their results are 

useful since they provided minimum exposure path for a given region however, their 

work limited the region of interest into a small 2D grid and they did not indicate the 

optimal location of the sensor nodes to maximize the exposure. 
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Another aspect of the exposure-based model is pointed out in [34]. To estimate 

the sensor node deployment density, one should consider both the sensor characteristics 

as well as target specifications. For example, detection of an enemy tank requires less 

nodes due to the strong the acoustic signal, compared with soldier detection that might 

require more sensors. 

In the following section, some general coverage problems in other fields are 

introduced and this section is concluded. 

 

2.1.4 Coverage Problem in Other Fields 

Coverage problems have been formulated in other fields, such as the Art Gallery Problem 

and coverage in robotic systems. The Art Gallery Problem [35] is to determine the 

number of observers and their placement, necessary to cover an art gallery room such that 

every point is seen by at least one observer. This problem has a linear time solution for 

the 2D case. The 3D version is NP-hard and an approximation algorithm is presented in 

[36]. This problem has many real world applications, such as placement of antennas for 

cellular telephone companies, and placement of cameras for security purposes in banks 

and supermarkets. The work in [37] addresses the ocean area coverage problem. Here, the 

authors are interested in satellite based monitoring of the ocean phytoplankton 

abundance. Given the orbit and sensor characteristics of each mission, numerical analysis 

results show that merging data from three satellites can increase ocean coverage. The 

coverage concept with regard to the many-robot systems was introduced by Gage [38]. 
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He defined three types of coverage: blanket coverage, barrier coverage, and sweep 

coverage. In the blanket coverage, the goal is to achieve a static arrangement of sensors 

that maximizes the total detection area. In barrier coverage the goal is to achieve a static 

arrangement of nodes that minimizes the probability of undetected penetration through 

the barrier, whereas the sweep coverage is more or less equivalent to a moving barrier. 

Coverage is an important element for QoS in applications with WSNs. Coverage 

is in general associated with energy-efficiency and network connectivity, two important 

properties of a WSN. To accommodate a large WSN with limited resources and a 

dynamic topology, coverage control algorithms and protocols perform best if they are 

distributed and localized. Various interesting formulations for sensor coverage have been 

proposed recently in literature. None of which dealt with 3D sensor deployment. To meet 

the intended objective of the specific application, these problems aim at either 

deterministically placing sensor nodes, determining the sensor deployment density, or 

more generally, at designing mechanisms that efficiently organize or schedule the sensors 

after deployment. The coverage approaches and characteristics are summarized in Figure 

2.1 and Table 2.1. 
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Figure 2.1: Coverage problems in WSNs divided into four different categories.  
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       Table 2.1: Coverage Approaches in WSNs 

Coverage 

Approach 

Coverage Type Problem Objectives Deployment  Approach 

Most / Minimal 

constrained  

2D Area Coverage Energy efficiency. Reduce # of 

working nodes. 

Random Centralized 

Disjoint 

dominating sets  

2D Area Coverage Energy efficiency. Reduce # of 

working nodes. 

Random Centralized 

Self Scheduling  

Algorithm  

2D Area Coverage Energy efficiency. Reduce # of 

working nodes. 

Random Distributed, 

Localized 

Probing Based 

Density control  

2D Area Coverage Energy efficiency. Control 

working nodes density. 

Random Distributed, 

Localized 

OGDC  2D Area Coverage Energy efficiency. 

Connectivity.  Reduce # of 

working nodes. 

Random Distributed, 

Localized 

Coverage 

Configuration 

Protocol CCP  

2D Area Coverage Energy efficiency. 

Connectivity.  Reduce # of 

working nodes. 

Random Distributed, 

Localized 

Node 

placement 

Algorithms  

2D Area Coverage 

Point Coverage 

Energy efficiency. 

Connectivity.  Deployment of 

minimum # of sensors 

Deterministic Distributed, 

Localized 

Maximum 

Breach / 

Support Path  

2D Barrier 

Coverage 

Worst and best case coverage 

path 

Random Centralized 

Minimum 

exposure path 

2D Barrier 

Coverage 

Find path of minimum 

exposure 

Random Centralized 
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In this thesis, contrary to existing techniques, the coverage and connectivity 

problem in 3D is rigorously analyzed. A distributed algorithm for establishing 3D 

coverage of a region of interest will be provided.  We will also present an optimality 

measure that will allow you to compare one sensor deployment to another.  

After we determined the coverage of the region of interest, the next step is to 

deliver sensed information from the sensor nodes, i.e., the sources, to the appropriate 

sinks. To do so, we need to design optimal routing algorithms. Works related to routing 

in WSNs are presented next. Any of the following routing algorithms could be used with 

the coverage algorithms presented in this thesis in order to deliver the necessary 

information to the sink. 

 

2.2 Related Work in Routing 

 There may be several sinks in a sensor network. The sinks are gateways between 

the sensor network and the backbone network, e.g. Internet.  Note that the sink may be in 

a ground-based site possibly set up by a rapid response team, in an unmanned airborne 

vehicle or plane, or a low earth orbit satellite.  Depending on the required mission, the 

sinks and sensor nodes may be mobile.  The objective of the routing protocol is to deliver 

sensed information from the sensor nodes, i.e., the sources, to the appropriate sinks.  

Sensed information will be represented by descriptors, which will be fused, i.e. if local 
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neighbors have same descriptors, the descriptors will be combined, before they are routed 

to the sinks.  

 

The routing protocol must meet the following design targets:  

• They must be power efficient.  Sensor nodes have low power capacity thus; power 

is a very important issue.  The lifetime of a sensor node ends with the battery.  As 

a result, redundant transmissions must be as low as possible.  

• They must be reliable.  Sensor nodes will deal with critical data in unreliable 

wireless environment.  

• Delays must be low.  The sensor network may also be used for real-time sensing.  

Thus, delay is an important issue.  

• Power emanation must be low.  In many missions the sensor network must be 

undetectable.  Thus, the power emanation must be kept low. 

In sensor networks, conservation of energy, which is directly related to network 

lifetime, is considered relatively more important than quality of data sent. As the energy 

gets depleted, the network may be required to reduce the quality of the results in order to 

reduce the energy dissipation in the nodes and hence lengthen the total network lifetime. 

Hence, energy-aware routing protocols are required to capture this requirement.  

In general, routing in WSNs can be divided into flat-based routing, hierarchical-

based routing, and adaptive based routing depending on the network structure. In flat-
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based routing, all nodes are assigned equal roles. In hierarchical-based routing, however, 

nodes will play different roles in the network. In adaptive routing, certain system 

parameters are controlled in order to adapt to the network current conditions and 

available energy levels. Furthermore, these protocols can be classified into multipath-

based, query-based, negotiation-based, or location-based routing techniques depending 

on the protocol operation. 

 

2.2.1 Flat Routing 

Sequential Assignment Routing (SAR) 

Routing decision in SAR [39] is dependent on three factors: energy resources, QoS on 

each path, and the priority level of each packet. To avoid single route failure, a multi-path 

approach is used and localized path restoration schemes are used. 

 

 Directed Diffusion:  

Directed Diffusion [40] is a data-centric (DC) and application-aware paradigm in the 

sense that all data generated by sensor nodes is named by attribute-value pairs. The main 

idea of the DC paradigm is to combine the data coming from different sources in-network 

aggregation by eliminating redundancy, minimizing the number of transmissions; thus 

saving network energy and prolonging its lifetime.  
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Minimum Cost Forwarding Algorithm: 

The minimum cost forwarding algorithm (MCFA) [41] exploits the fact that the direction 

of routing is always known, that is, towards the fixed external base-station. Each node 

maintains the least cost estimate from itself to the base-station.  

 

Energy Aware Routing: 

In [42], a destination initiated reactive protocol is proposed to increase the lifetime of the 

network. This protocol is similar to Directed Diffusion [42]. However, this protocol 

maintains a set of paths instead of maintaining or enforcing one optimal path.  

 

2.2.2 Hierarchical Routing 

LEACH protocol 

Heinzelman, et al. [43] introduced a hierarchical clustering algorithm for sensor 

networks, called Low Energy Adaptive Clustering Hierarchy (LEACH). LEACH is a 

cluster-based protocol, which includes distributed cluster formation. LEACH randomly 

selects a few sensor nodes as cluster heads (CHs) and rotates this role to evenly distribute 

the energy load among the sensors in the network. 
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Threshold-sensitive Energy Efficient Protocols (TEEN and APTEEN): 

Two hierarchical routing protocols called TEEN (Threshold-sensitive Energy Efficient 

sensor Network protocol), and APTEEN (Adaptive Periodic Threshold-sensitive Energy 

Efficient sensor Network protocol) are proposed in [45] and [46] respectively. These 

protocols were proposed for time-critical applications. In TEEN, sensor nodes sense the 

medium continuously, but the data transmission is done less frequently. A cluster head 

sensor sends its members a hard threshold, which is the threshold value of the sensed 

attribute and a soft threshold, which is a small 

 

Virtual Grid Architecture routing 

An energy-efficient routing paradigm is proposed in [47] that is based on the concept of 

data aggregation and in-network processing. The data aggregation is performed at two 

levels: local and then global. 

 

Hierarchical Power-aware Routing 

In [48], a hierarchical power-aware routing was proposed. The protocol divides the 

network into groups of sensors. Each group of sensors in geographic proximity is 

clustered together as a zone and each zone is treated as an entity. To perform routing, 

each zone is allowed to decide how it will route a message hierarchically across the other 

zones such that the battery lives of the nodes in the system are maximized. 
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2.2.3 Adaptive Routing 

Heinzelman et al. in [49] and [50] proposed a family of adaptive protocols called Sensor 

Protocols for Information via Negotiation (SPIN) that disseminate all the information at 

each node to every node in the network assuming that all nodes in the network are 

potential base-stations. These protocols make use of the property that nodes in close 

proximity have similar data and thus distribute only the data that the other nodes do not 

have. All the routing techniques are summarized in Figure 2.2. 

 

Figure 2.2: Routing Techniques in WSNs 
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Implementing optimal routing protocols is part of the future work. The routing 

scenario will be in a three-dimensional space and will also cover the case of routing to 

different sinks depending on the location of the phenomenon. Coverage problems related 

to static phenomenon have been surveyed. However, there is also the case where the 

phenomenon is dynamic. Works related to tracking a dynamic phenomenon is presented 

next. 

 

2.3 Related Work in Tracking  

In the previous two sections, related works in coverage and routing were summarized. In 

this section, one of the significant applications of sensor networks is highlighted and the 

research work in this area is discussed. One of the most important areas where the 

advantages of sensor networks can be exploited is for tracking mobile targets. Scenarios 

where such network may be deployed can be both military (tracking enemy vehicles, 

detecting illegal border crossings) and civilian (tracking the movement of wild animals in 

wildlife preserves). Typically, for accuracy, two or more sensors are simultaneously 

required for tracking a single target, leading to coordination issues. Additionally, given 

the requirements to minimize the power consumption due to communication or other 

factors, we would like to select the bare essential number of sensors dedicated for the task 

while all other sensors should preferably be in the hibernation or off state. In order to 

simultaneously satisfy the requirements like power saving and improving overall 

 53 
                                                                                   
 



efficiency, we need large scale coordination and other management operations. These 

tasks become even more challenging when one considers the random mobility of the 

targets and the resulting need to coordinate the assignment of the sensors best suited for 

tracking the target as a function of time. 

Target tracking is considered a canonical application for wireless sensor 

networks, and work in this area has been motivated in large part by DARPA programs 

such as SensIT. Zhao et al. present the information driven sensor querying (IDSQ) 

mechanism in [51], [52]. IDSQ is a sensor-to-sensor leader handoff based scheme in 

which at any given time there is a leader sensor node which makes the decisions about 

which sensors should be selectively turned on in order to obtain the best information 

about the target. A combined cost function which gives weight to both energy 

expenditure and information gain is considered. Liu et al. develop a dual-space approach 

to tracking targets which also enables selective activation of sensors based on which 

nodes the target is likely to approach next. Along these lines, Brooks et al. advocate a 

location-centric approach to performing collaborative sensing and target tracking in [53], 

[54]. The idea is to develop programming abstractions that provide addressing and 

communication between localized geographic regions within the network rather than 

individual nodes. This makes localized selective-activation strategies simpler to 

implement. They present self-organized distributed target tracking techniques with 

prediction based on Pheromones, Bayesian, and Extended Kalman Filter techniques [55], 

[56]. The implementation and testing of a real distributed sensor network collaborative 
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tracking algorithm in a military context is described in [57]. Important contributions by 

other groups on which we build include [58], [59] and [60]. K. Chakrabarty and S. 

Iyengar [59] present novel grid coverage strategies for effective surveillance and target 

location in distributed sensor networks. They represent the sensor field as a grid (two or 

three-dimensional) of points (coordinates) and use the term target location to refer to the 

problem of locating a target at a grid point at any instant in time. They first present an 

integer linear programming (ILP) solution for minimizing the cost of sensors for 

complete coverage of the sensor field. They solve the ILP model using a representative 

public-domain solver and present a divide-and conquer approach for solving large 

problem instances. They then use the framework of identifying codes to determine sensor 

placement for unique target location and provide coding-theoretic bounds on the number 

of sensors and present methods for determining their placement in the sensor field. They 

provided lower and upper bounds on , the number of sensors required for uniquely 

identifying targets in an n-dimensional (n

p
nS

≤ 3) sensor field with p grid points in each 

dimension and is given as: 
1

n n
p
n

p p
n n

≤ ≤S
+

. Their work is important since it bounds the 

number of sensor nodes required to identify intruders; however they assumed that the 

sensors could be manually placed and they didn’t provide a selection algorithm where a 

subset of already deployed sensor nodes can be selected to be active for target detection. 

Massively distributed sensor networks are becoming a reality, largely due to the 

availability of the Mote hardware [61]. In [62], Cerpa and Estrin propose an adaptive 
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self-configuring sensor network topology in which sensors can choose to join the network 

based on the network condition, the loss rate, the connectivity, etc. The sensors do not 

move, but the overall structure of the network adapts to the situation by having the 

sensors activate and deactivate. The addition of motion capability to the Mote sensors, 

creating Robomotes, was described in [63]. Algorithmic work has included even 

dispersal of sensors from a source point and redeployment for network rebuilding [64], 

[65]. Related recent work by Bullo et al. [66] uses Voronoi methods to arrange mobile 

sensors. Related research also includes mobile robotics work focused on distributed 

formation control [67-71]. Voronoi diagrams have been used in a variety of mobile robot 

research, but almost always it is the Voronoi diagram of the environment that is 

considered.  

In this research, an architecture for managing and coordinating a sensor network 

for tracking 3D moving phenomena is proposed. We will deal with the case when the 

target to be tracked is big requiring a large number of sensors. We will also require the 

network to be connected at all time so that necessary information could be routed to the 

sink when needed. The tracking algorithm is specifically aimed at addressing the various 

challenges outlined while accurately tracking moving targets. The tracking algorithm 

should not require any central control point, eliminating the possibility of a single point 

of failure and making it robust against random node failures. The tracking task is carried 

out in a distributive manner by sequentially involving the sensors located along the track 

of the moving target. 
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In this chapter, the research work in the areas of coverage, routing and tracking 

were outlined and the pros and cons were highlighted. The gaps in the research work 

were discussed and the motivation behind the work was emphasized. In the next chapter, 

the first important problem addressed in this dissertation is formulated, and distributed 

algorithms for its solution are presented. The performance of the algorithms is 

investigated through numerical examples.  
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Chapter 3 

Three Dimensional Coverage 
 

In the last chapter, related research work was surveyed and general approaches to the 

coverage problem were summarized. In this chapter, the 3D coverage problem is 

rigorously analyzed and energy efficient distributed algorithms are provided.  

The energy efficiency of a WSN is studied in the context of the coverage of a region 

using wireless sensor nodes. First, the minimum number of sensor nodes required to 

cover a three-dimensional region is determined and an algorithm for testing the coverage 

of a sensor network is proposed. A computationally simple method for selecting a 

minimum subset of a random distribution of sensor nodes for coverage is then developed. 

This method is implemented in a distributed fashion across the WSN and the saving 

obtained is analyzed. Using the standard flooding algorithm [72]-[74], the performance of 

the optimized network is shown to be superior to the performance of the original 

deployment. A simple localized ‘self healing’ algorithm is also implemented that wakes 

up the inactive neighbors of a failing sensor node. It is shown that the performance of the 

optimized WSN with integrated self healing far outweighs the performance that is 

obtained by standard random deployment. For the first time, a ‘measure of optimality’ is 

defined that will enable the comparison of different implementations of a WSN from an 

energy efficiency stand point. 
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The rest of the chapter is organized as follows. The coverage problem in WSNs is 

formulated in Section 3.1. In Section 3.2, an algorithm for testing the coverage of a 

known deployment is presented. An optimal 3D deployment strategy is presented in 

Section 3.3. In Section 3.4, an algorithm for the selection of a minimum set of sensor 

nodes to guarantee coverage is developed. Another coverage selection algorithm is 

presented in Section 3.5. The connectivity and power efficiency issues are addressed in 

Section 3.6. Numerical simulation results that validate the proposed algorithms are 

presented in Section 3.7 and the chapter is concluded in Section 3.8. 

 

3.1 The Coverage Problem Formulation 

One of the fundamental problems in wireless sensor networks is determining how many 

sensor nodes are required to cover a specific area. For the purpose of the work in this 

thesis, each sensor node is assumed to be equipped with a radio interface and has the 

ability to communicate directly with other nodes in its vicinity. Since a sensor network 

consists of a large number of sensor nodes either placed at specific locations or 

distributed randomly in a region, it is advantageous to know ahead of time the 

dependence of the coverage on the deployment of the sensor nodes. Towards this end, the 

notion of sensing region and coverage are first defined and the coverage and optimization 

problems are then formulated. Since in practice, a large number of sensor nodes are 

distributed randomly in the region to be monitored, the sensing regions of all nodes are 
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assumed to be identical. It is also assumed that the region to be monitored is large in 

comparison to the sensing region of an individual node and that the locations of all the 

nodes are known. The discussion in this chapter assumes the ability of each node to 

detect the quantity of interest. The actual sensed value, sensor fusion, and routing of the 

information to a sink, while of enormous importance, are beyond the scope of the present 

work.  

 

3.1.1 Sensing Region 

Let  be the output of a sensor node  that is capable of sensing a phenomenon . Let 

 have a sensing radius

O S P

S sR  and a communication radius . cR

 

Definition 3.1: The phenomenon  located at Y  is said to be detectable by sensor  

located at 

P 3R∈ S

3X R∈ if and only if there exists a constant threshold 0δ > such that 

( ) if enon  is ent.PO Y  the phenom presδ>  The quantity ‘δ ’ is the signal threshold and is 

specific to the type of sensor used.                                                                                      

     

The sensing region of sensor node  located at S ( )X x, y,z  is the collection of all 

points where the phenomenon is detectable by the sensor node , i.e. P S

{ }3 is detectable by A y R | P S= ∈ . While the sensing region of an individual node can 

depend on the sensor and the environment it is deployed in, it is necessary to have a 
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simplified representation of the sensing region to reduce the computational complexity in 

determining the coverage of a WSN. In this chapter, we will restrict the sensing region of 

S  to be an open ball centered at 3X R∈ . 

| O( y ) δ>

X { y X− ≤

 

Definition 3.2: Let Y y{ 3R= ∈ . The sensing region of sensor node  located at S

3R∈  is defined as sA y Y | R= ∈  where ||.|| is the Euclidean distance between y 

and X . 
| ( )

min
O y

s Y
R

δ>


= Y X 

− 
 

 in this definition is the radius of the open ball representing the 

sensing region and is called the sensing radius of S.                                                                                  

}

} ,

 

Most of the research works thus far assume simplified Boolean sensing model 

(Circular disc) for coverage for protocol design and evaluation. In this model all events 

within the circular disc are assumed to be detected with probability 1. This simplified 

model is clearly not applicable to all types of sensing measurements however since the 

sensor nodes will be deployed in large numbers and there is a need for simulation and 

theoretical analysis, lead researchers in the areas of wireless sensor networks use this 

model in their research [14-26]. 
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3.1.2 Problem Analysis 

Consider a network comprising of sensor nodes , each with a sensing radius equal 

to

1 nS ,...,S

sR . Let  be the sensing region of node  and  the region to be monitored.  Then, 

given the collection of nodes

iA iS ' 'R

{ }1,...,nC S S= n , the sensing region of this collection can be 

expressed as
1

n
Ain i=

= UC . 

 

Definition 3.3: A collection of sensor nodes { 1 ,..., }n S= nC S is said to cover the region if 

and only if

R

R nC⊆ .                                                                                                                                     

          

If covers R, then nC .i i np p A for some S C∈ ⇒ ∈ ∈R  This is commonly referred to in 

literature as the 1-cover of the region R. A natural extension of 1-cover is k-cover where 

any point in the region belongs to the sensing regions of at-least k nodes. In this chapter, 

cover is interpreted as the 1-cover of the region.  

 The coverage and deployment problem in WSNs can be addressed by studying the 

following three sub-problems: 

 

• Problem 1(Coverage): Given a collection of sensor nodes { 1 ,..., }n S= nC S in a region R, 

determine if R is covered. 
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• Problem 2(Optimal Deployment): Find the minimum number of sensor nodes and their 

locations to cover a given region R. 

• Problem 3(Reduced Coverage): Given a dense deployment of sensor nodes, find a 

reduced subset of active nodes that guarantee coverage of R. 

 

3.2 Testing for Coverage 

The objective of the coverage problem is to check if every point in the region of interest 

is covered by at least one sensor node in the network. In addition to determining the 

coverage, it is also advantageous to determine the degree of the cover and, in the case of 

incomplete coverage, the ‘size’ of the holes. The degree of the cover is the least number 

of sensor nodes that cover any point in the region and is a measure of redundancy in the 

WSN.  Redundant active nodes are indicative of the excess energy expended in a WSN. 

The information on the size and location of the holes in the coverage helps determine the 

number of additional nodes required and their placement to guarantee complete coverage. 

The algorithm presented in this section tests for coverage by generating an occupancy 

grid and checking if each cell in this grid is covered by at least one node. If all the cells in 

the grid are occupied, then the entire region is covered. The procedure to generate this 

grid and the computational complexity are now discussed.  

 The coverage problem in this chapter is first posed as a problem of covering a 2D 

region with equal, overlapping disks. The region to be covered is divided into squares of 
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side equaling half the radius of the disks representing the sensing region of a sensor node.  

The algorithm presented verifies if each cell in this grid is covered by at least one node.  

Since the region to be covered is divided into a grid with cell size equal to
2

sR , any cell in 

this grid is completely covered if its center is within a distance of 
2
sR from the sensor 

node. The factor ‘2’ is chosen because it is the smallest integer that will satisfy this 

criterion. This criterion converts the problem of checking the coverage of a cell by a 

sensor node into the simpler problem of checking the distance between the center of the 

grid and the sensor node. As can be seen from Figure 3.1(a), at most 25 cells need to be 

checked to verify the coverage of a sensor node and a maximum of 25n cells need to be 

checked for the coverage region of ‘n’ nodes.  

 The coverage of a region is determined by first partitioning the region into a grid 

of spacing
2

sR . An origin is arbitrarily assigned and successive cells are numbered (Figure 

3.1(b)). An occupancy matrix is then formed and initialized to zero. Every cell in the 

region is referenced by one entry in the occupancy matrix. For example, if the region is 

divided into ‘p’ rows and ‘q’ columns, then the ij-th cell is referenced by the i*q+j entry 

in the occupancy matrix. Since each node can only cover a region of 5x5 cells, the cells 

covered are easily determined from the location of a given node. Thus for each node in 

the network, the covered cells, and thereby the entries in the occupancy matrix, are 

determined. The cells in the occupancy matrix corresponding to the covered cells are then 
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indexed by ‘1’. A zero entry in the occupancy matrix indicates an uncovered cell in the 

region. The number of uncovered cells and their locations can then be used to determine 

the size and locations of the uncovered regions. Further, since the cell entries in the 

occupancy matrix are indexed, an entry ‘k’ indicates that the cell is covered by ‘k’ sensor 

nodes. Thus, the smallest entry in the occupancy matrix gives the degree of the cover.  

... ... ... 

                                           
                        (a)                                                                              (b) 
Figure 3.1: (a) The coverage region of a sensor (b) Coverage grid for ‘n’ sensors 

  

The grid generated is the smallest grid entirely covering the region R. If R is 

smaller than the grid, then only relevant cells in the grid can be chosen for testing the 

coverage. This is done by assigning ‘X’, i.e. don’t care, to cells that are outside the 

desired region of coverage. In the three dimensional case, the region is divided into cubes 

of side 
2
sR  and coverage of each cell is verified by checking the distance between the 

node and the center of the cell. 

5n-1 ... ... ... 1 0 

   25n2-1

     

     

    

    

     
2
sR

2
sR

2 sR

(0,0) 
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 It can be seen that this algorithm requires ( )O n  steps to verify if a region is 

completely covered. The algorithm presented is simple and easy to implement. It not only 

determines the extent of coverage but also identifies the size and location of the holes in 

the coverage. 

 

3.3 3D Deployment Strategy for the Sensor Nodes  

The concepts of an optimum cover and reduced cover are introduced in this section. In a 

deployment of sensor nodes, if the number of the sensor nodes and their locations can be 

specified, then it is possible to find the exact location for each sensor node in order to 

cover the region using the smallest number of nodes. Such a deployment is optimal. On 

the other hand, given a random distribution of the sensor nodes, it is possible to activate 

only a subset of the nodes and still maintain cover of the region. A reduced cover is that 

set of sensor nodes that completely cover the region and removal of any node in this set 

leads to loss of cover. In this section, the problem of determining the optimum cover is 

addressed by solving the related problem of packing a volume with equal overlapping 

spheres. In order to achieve this, the notion of “thickness” of a cover is first defined along 

the lines in Conway [79]. 

 

Definition 3.3.1: The thickness ‘θ’ of a sensor cover is defined as the average number of 

sensor nodes that cover a point in the space. 
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 θ = volume of one sensing region / volume of the fundamental region, i.e. 

1

1

1

n

i
i

total
total

V
nVn

VV
n

θ == =
∑

, where ‘n’ is the number of active nodes; V  is the volume of sensing 

region of node ; and V  is the total volume of the sensed region 

R.

i

iS total

1 2 , .n
tal

But  since V V V V= = = =...
to

nV  
V

θ =                                                                                 

           

Definition 3.3.2: The covering radius, of spheres centered at ,coverR 1 2, ,..., nX X X  is the 

minimum sensing radius that will cover the region R.                          

                  

 Intuitively, it can be seen that the thickness of a cover does not imply local 

efficiency of the deployment. For example, 1-cover of a region R implies that there are 

points in the region that are covered by only one sensor node. However, there can be 

sensor nodes that can be removed without impacting the overall coverage. Thus, to 

determine the minimal deployment of the WSNs for coverage of a region, it is necessary 

to introduce the concept of a reduced cover. 

 

Definition 3.3.3: A cover  of R with sensor nodes  each with sensing 

radius

nC 1 2, ,..., nS S S

sR and sensing regions 1 2 ,..., n,A A A is reduced if no proper subset of C  is a cover of 

R.                                                                                                                                            

n
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Then, the following statements are equivalent: 

• A cover C  of R is reduced. n

• If a finite number of nodes of a cover C are removed, then  is no longer a 

cover of R.  

n nC

 

Lemma 3.3.1: An optimum deployment of the nodes { }1 2, ,...,nC S S S= n with sensing 

radius sR  is reduced.                                                                                                                                  

 

Definition 3.3.3 and Lemma 3.3.1 together imply that an optimum deployment is reduced 

while the converse need not necessarily be true. 

 

Theorem 3.3.1: Let D be the deployment of the sensor nodes  at the vertices ‘L’ 

of a body centered cubic (bcc) lattice spanning a region . Let be the distance 

between adjacent vertices of L and 

1 2, ,..., nS S S

3R⊂R Λ

sR be the sensing radius of each sensor node. Then the 

deployment D is optimal if the lattice spacing
1.118

sR
Λ = . 

Proof:  In the three-dimensional space, the thinnest cover of a region by spheres is 

obtained when the centers of the spheres are at the vertices of a body centered cubic (bcc) 

lattice [75, 76]. If the distance between adjacent vertices in this case is one unit, then the 

entire region can be covered by copies of a sphere whose covering radius is 
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5 1.1180.
2coverR = =  Such a lattice is periodic and is completely reduced. Moreover, the 

thickness of such a cover is 5 5 1.4635.
24
πθ = =   

 Conversely, given a bcc lattice that spans a region of interest, this region can be 

completely covered by spheres of radius sR  if the lattice spacing is
1.118

s s

cover

R R
R

=Λ = . 

Thus, the deployment D will be optimal if the spacing between the centers of adjacent 

nodes equals
1.118

sR .                                                                                                                                      

     

Theorem 3.3.1 implies that the arrangement of the sensor nodes with their centers 

coincided with the vertices of a bcc lattice will guarantee an optimal covering of the 

region spanned by this lattice. The spacing Λ  of the lattice is a function of the sensing 

radius of the sensor node. The vertices of the lattice that lie within the sensing region R 

are the minimum number of nodes needed to cover the whole region R.  

In a two-dimensional space, the thinnest covering of a region with circles is 

obtained when the centers of the circles lie at the vertices of a hexagonal lattice. If the 

distance between adjacent vertices in this case is one unit, then the entire region can be 

covered by copies of a disc whose covering radius is 1 0.5773
3coverR = = . Such a lattice is 

also periodic and completely reduced. Moreover, the thickness of the cover 
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is 2 1.2092
3 3
πθ = = . Thus, the deployment D will be optimal if the spacing between the 

centers of adjacent discs equal
0.5773

sR .       

 

3.4 Efficient Sensor Selection for Complete Coverage in 3D 
 

The algorithm in Section 3.3 enables the optimum placement of sensor nodes for 

complete coverage of a given region. In practice, however, given an existing distribution 

of sensor nodes, it is often necessary to minimize the number of nodes that remain active 

while still achieving complete coverage of the entire region. If all the nodes are active 

simultaneously, an excessive amount of energy would be wasted due to packet collisions. 

Further, the data collected will also be highly correlated and redundant. In this section, an 

algorithm is developed where the sensor nodes make local decisions on whether to sleep, 

or join the set of active nodes. If the sensing region of a node is completely covered by its 

neighbors, then the node can be disabled without affecting the overall coverage. Thus, by 

iteratively disabling nodes that are covered by other nodes, one can arrive at a reduced set 

of sensor nodes that guarantee a 1-cover of the desired region. Since the initial 

distribution of the sensor nodes is random in nature, the nodes are not located at the 

vertices of a bcc lattice and therefore, the reduced set of nodes is not optimal. Thus, for 

the algorithm to be truly useful, it is necessary to also have a method to compare it to the 

optimal solution to ascertain the effectiveness of the proposed algorithm. In this section, a 
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rigorous mathematical proof of the proposed technique is provided along with a metric to 

compare the performance of the reduced network with the optimum coverage obtained in 

Section 3.3. 

 Let C S be the set of all the nodes that cover the region R. Also, let 

node  have overlapping regions of coverage with sensors . Node  can be 

deactivated if it is entirely covered by the nodes . Since it is impossible to 

verify if each and every point in the sensing region of  is covered by some other node, 

a simplified technique is now proposed.  

{ 0 1 2, , ,...,n S S S= }n

0S 1 2, , ... , nS S S

, nS

0S

1 2, , ...S S

0S

Let  be the boundary of the sensing region of node , i.e.  is the surface of 

the ball representing the sensing region of . Denote the portion of  inside 

iB iS iB

iBiS 0A  as isur

jsur

 

(See Figure 3.2(a)) and the intersection of two such surfaces as an arc, i.e.  

(See Figure 3.2(b)) 

ij iarc = ∩sur
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isur

0A
iA

iB

0A

iA
iB

ijarc

jB

(a) 

(b) 

 

Figure 3.2: (a) 0i isur B A− ∩   (b) ij i jarc sur sur− ∩  
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Theorem 3.4.1: 0A  is covered if and only if the intersection points of all the arcs in 0A  are 

covered. 

Proof: Suppose has overlapping regions of coverage with nodes . This 

means that there exist non-empty surfaces 

0S 1 2, , ... , nS S S

1.... nsur sur  that partition 0A . Also, since all the 

arcs lie in 0A , the intersection of  and  will also lie insideijarc klarc 0A . Now, if  is 

covered, then every point in 

0S

0A  is covered. Therefore, the intersection points of all the 

arcs in 0A  are covered. 

 To show the “only if” part of the proof, suppose that all the intersection points are 

covered but there exists a point P in 0A  that is not covered. Since has overlapping 

coverage with adjacent nodes, every  will partition 

0S

iB 0A  into a region covered by node  

 and a region external toiS iA . Any point P in 0A  that is not covered must be external to 

every iA  and is hence bounded by a polyhedron whose sides belong to either isur  i=1..n or 

. Since the sides of the polyhedron belong to the surfaces of the sensing regions, by 

definition 2.2 all the points on the surface of this polyhedron are also not covered. This 

implies that the vertices of the polyhedron, which also lie on the surface of the 

polyhedron bounding the point P, are also not covered. But, these vertices represent the 

intersection of arcs  and arc for 

0B

ijarc kl , , , ,..,i j k n1l∈ and are covered according to the 

assumption. This contradiction implies that if all the intersection points are covered, then 

there are no uncovered points in 0A , i.e., 0A  is completely covered by the sensor 

nodes S S .                                                                                                                                 1 2 , ... , nS,
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Algorithm for obtaining reduced deployment 

Theorem 3.4.1 can be used to develop an algorithm for determining if the sensing region 

of any node is covered by one or more of its neighbors. If true, then the node can be 

deactivated without affecting the coverage of the network. This process can be 

implemented iteratively to deactivate all the nodes that are covered by one or more of 

their neighbors thereby resulting in a reduced network. In order to develop the algorithm, 

it is first necessary to determine the neighbors of each node. The following definitions aid 

in this process.  

 

Definition 3.4.1: Sensor node  is a neighbor of a sensor node  if and only if 

 where  is the communication radius of sensor nodes  and S .                                    

iS jS

iS( , ) 2i j cd X X R≤ , cR j

                                             

Definition 3.4.2: The neighbor set  of sensor node  is the set of all the neighbors of 

node  and is defined as

( )N i

( ) {N i

iS

) 2iS | ( , ; 1,.., , }j i j cS C d X X R j n j i= ∈ ≤ = ≠ . ( )N i  is the 

cardinality of set  i.e. the number of neighbors of the node .                          

                                  

( )N i iS

 

Reduced Coverage Algorithm:  

Step 1: For each sensor node , form the set of neighbors . For each element ‘ S ’ in 

 compute the volume of overlap,V , between node  and . If the total overlap 

iS ( )N i

iS

k

( )N i ik kS
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between  and its neighbors is less than the volume of , then is not completely 

covered by its neighbors and must remain active. That is, 

iS iS iS

1

n

k ;k= ≠
∑

overl

s

1,∈

34
3overlap ik s i

i
V V R S remains active.π= ≤ ⇒  

Step 2: 34
3ap sV π≥  does not necessarily mean that  is covered. To check if  is 

covered, for every pair 

iS iS

( )in j kS ,S N i do the following: 

R

a) Find the arc  obtained by the intersection of the coverage surfaces of S , , 

i.e. 

' jkarc

j k

' i jS

ur sur∩  

b) Find all the intersection points of arc   , , , , , .., ( ).jk lmarc j k l m N i

c) If all the intersection points obtained in (b) are covered then deactivate .  iS

 

The main advantage of this algorithm is that it is low in computational complexity 

and is executed in a distributed manner. The algorithm requires that each sensor node 

knows the locations of all its neighbors. The neighbor list can be easily compiled by the 

nodes based on the ‘HELLO’ messages exchanged at start up. When a network is 

deployed, all nodes are initially active. As the algorithm progresses, redundant nodes will 

switch to the inactive mode until no more nodes can be turned off without causing a hole 

in the coverage. To avoid neighbor nodes running the algorithm simultaneously and 

causing a ‘blind spot’, each node announces to its neighbors that it is currently running 

the coverage algorithm. If the node is redundant and is eligible for turning off without 
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affecting the overall coverage, it will broadcast a ‘GOODBYE’ message to its 

neighboring nodes. Neighboring nodes receiving such a message will delete the sender’s 

information from their neighbor lists. 

 The complexity of the algorithm proposed can be calculated as follows. Let ‘N’ be 

the maximum number of neighbors for any node in the network, i.e. 
1

n

ii
N max N

=
=

2
NC

.  Then for 

any sensor node in the network, an arc is obtained by considering the intersection of the 

boundaries of any two neighbors of the node. Thus, a maximum of  arcs must be 

calculated. Since intersection points require the consideration of pairs of arcs, in the 

worst case, ( )2
2

NC
C  intersection points must be checked for coverage. Therefore for a 

network of ‘n´ nodes, the algorithm requires a maximum of ( )2
NC

n 2C , i.e. 

( )( )2

8

N N N
n

1 2N− − −
 steps in order to determine the reduced coverage. It is well known 

that the coverage problem is NP-hard [77]. For large networks, the number of neighbors 

of any node is small compared to the size the network ( )N n= . The computational 

complexity of the algorithm for such large networks is of order ‘n’ (Ο ) where n is the 

total number of nodes in the network. 

( )n

 While the results presented in this section make possible the selection of a subset 

of sensor nodes in a WSN to cover a region, the result is a reduced cover but not 

necessarily an optimum cover for the region. Further, since the algorithm does not 
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produce a unique result, it is advantageous to have a performance measure for comparing 

two different collections of sensor nodes that cover a region. 

 

Definition 3.4.3: The measure of optimality of a WSN is the ratio of the number of 

active nodes in the network to the minimum number of nodes that can completely cover 

the same region.                                                                                                                         

                                        

 The previous results show that the optimum deployment of sensor nodes in 3D 

would result in nodes located at the vertices of a bcc lattice. Therefore, given the region 

to be monitored, one could easily find the minimum number of nodes required and their 

location for complete coverage. However, if the nodes are already deployed and a subset 

of these nodes selected to keep active, then the measure of optimality is a measure of 

excess energy spent in monitoring the region as compared to an optimum deployment of 

the sensor nodes. A network with a lower ‘measure of optimality’ would result in lesser 

expenditure of energy in monitoring the region. 

 

3.5 Another Coverage Algorithm 

In this section, another coverage algorithm that will serve as performance measure for the 

proposed coverage algorithm in Section 3.4 is proposed.  
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Algorithm 2: 

Let be the set of all the sensor nodes that cover the region R. 

Let the intersection of sphere  and sphere  be given by the circle C , i.e. 

. (see figure 4). The interior of the circle  is said to be the disc bounded by 

the circle , i.e. A circle  is completely covered if the disc bounded by 

the circle is completely covered, i.e. ∀ ∈                                                  

{ 0 1 2, , ,...,nC S S S S=

iA

i (iD interior C=

}n

.

0S

i

iS

iC

jA

i

0iC A= ∩

C ). iC

p Di ,
1

n
p

j
∈

=
U  

 

Theorem 3.5.1: Let the sensor node  be adjacent to sensor nodes  and 

 be the circles of intersection.  is completely covered if and only if 

all C s are covered. 

0S 1 2, , ... , nS S S

0 , 1..k kC A A k= ∩ =

' , 1..k k n=

n 0S

Proof: If S  is completely covered, then every disc  in  is covered. Definition of 

complete coverage of a disk ensures that the “if” part of the theorem holds. 

0 kD 0S

To show the “only if” part, consider the following proof: If a circle is completely covered 

then each spherical segment adjacent to it is also covered. Each spherical segment must 

be bounded by some circle segment, and since each circle Ci is completely covered then 

all spherical segments are also completely covered.                                                           
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The utility of Theorem 3.5.1 is in reducing the coverage of sensor node  to a 

simpler problem of checking if all the circles of intersection between  and the adjacent 

nodes are covered. This still is a complex task that is difficult to achieve in real time. The 

following theorem demonstrates a technique where such coverage can be determined by a 

few straightforward computations. 

0S

0S

 

Theorem 3.5.2: A circle  is completely covered by spheres if all the intersection points 

are covered by one or more adjacent spheres. 

0C

, , 1...0C C D i ji j∩ ∈ ∀ = n

Proof: Consider an uncovered point ‘p’ in . Since some parts of  are covered by 

adjacent sensor nodes, these spheres are going to partition  into regions bounded by 

arcs from the boundary of  and/or arcs from circles .

0D 0D

0D

1k0C kC ' s, ,..,n=  Suppose ‘p’ belongs 

to a region  in . Since ‘p’ is not covered, is easy to see that  has to be bounded 

only by the exterior arcs of the circles. Also, the entire boundary of , including the 

intersection points of the arcs, must have the same coverage status as ‘p’, i.e. all the 

intersection points on the boundary of  in  must not be covered. This contradicts the 

assumption that all the intersection points  are covered. Therefore, 

if all the intersection points are covered by one or more adjacent spheres, 

then is covered. Consequently,  is covered.                                                                                      

xR 0D xR

, , ..i n∀

xR

xR

0D

0D

C Ci 1.j =0Dj∩ ∈

C Ci j∩ ∈

0C0D
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Coverage Algorithm 2 

Theorem 3.5.1 and 3.5.2 indicate that a sensor node is completely covered if all the 

intersection points C C  are covered by some sensori j D∩ ∈ k 1lS ,l i, j ,k ..n≠ =

kC

. Therefore, to 

check if  is completely covered; one has to first find all the circles obtained by the 

intersection of . For each , find all the intersection points that lie 

within . If all these intersection points are covered, then the circles  are covered. 

Then, by the theorems 3.5.1-3.5.2, is covered and can be deactivated.  The following 

definitions aid in this process.  

0S

0 , 1..kS S k n∩ = kC

kD

0S

 

Steps in the distributed coverage algorithm: 

Step 1: For each node S , form the set of neighbors i

( )N i

iS

. For each element ‘ ’ in  compute the volume of overlap,V , between sensor 

node  and . If the total overlap between  and its neighbors is less than the volume 

of , then is not completely covered by its neighbors and must remain active. That is 

kS ( )N i ik

iS kS

i

iS

S

3

1

n

s
k

R main e.π
=
∑

4
3

= ≤overlaV p ikV iS re⇒ s activ  

Step 2: 34
3overlap sV π≥ R  does not necessarily mean that  is covered. To check if is 

covered, for every pair of nodes 

iS iS

( )in j kS ,S N i do the following: 

d) Find C  the circle got by the intersection of the coverage surface of , . ij iS jS

e) Find C  the intersection circle of  ik i kS , S .
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f) Find the intersection points C .  ij ikC∩

g) If the intersection points are all covered, i.e. C C , then 

deactivate .  

( )ij ik l lA , S N i , l i, j ,∩ ∈ ∈ ≠ k

)

iS

 

The computational complexity of the algorithm developed in this section is  where 3(NΟ

1

n

i
N max N( i )

=


= 
 


  is the maximum number of nodes in the neighbor set of any sensor in the 

network. 

 

3.6 Connectivity in 3D Wireless Sensor Networks 

Consider a WSN comprising of sensor nodes with sensing radius1 nS ,...,S sR , and 

communication radius , respectively. Let R be the region to be monitored. Denote the 

sensing and communication regions of a sensor node S

cR

i as andis icA A  respectively. 

Let 1
i mC Aisi
== =U and 1

i mC ici
== =U

... }mS

A be the sensing space and communication space of a set 

of nodes respectively. { 1 2, ,C S S=

 

Definition 3.6.1: A set of nodes { 1 ,.., }a a amC S S=  is said to be connected if for 

every aa,b C∈ , there exists a continuous function  [ ]0 1 a, C→f :  such that, ( ) ( )0 1f a; f= = b , 
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and ∀ ∈ , ( )0 1t ,  ( ) if t C∈ .                                                                                                    

  

Connectivity implies that the location of any active sensor node is within the 

communication range of one or more active nodes such that all the active nodes form a 

connected communication backbone, while coverage requires all locations in the 

coverage region to be within the sensing range of at least one active node. Obviously, the 

relationship between coverage and connectivity depends on the ratio of sensing radius to 

communication radius. In the two dimensional case, it was shown that coverage implies 

connectivity whenever the radius of communication is twice the radius of coverage [18]. 

This result can be trivially extended for coverage and connectivity in three dimensions.  

 

Lemma 3.6.1: A necessary and sufficient condition to ensure that coverage implies 

connectivity in 3D is that the radius of communication be at least twice the sensing 

radius.                                                                                                                                                

             

If the condition of Lemma 3.6.1 holds, then complete coverage automatically 

implies connectivity. Therefore, the connectivity problem is not explicitly addressed in 

this formulation.  
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3.7 Simulation Results 

The theoretical developments in Sections 3.3-3.6 are validated through numerical 

examples in this section. First the case of random deployment of sensor nodes is studied 

and compared to the optimum deployment. Both 2D and 3D cases are considered and the 

number of nodes required for coverage studied. In the second case, given a deployment of 

sensor nodes, a reduced cover is obtained.  

 

Example 1: In this example, the number of sensor nodes required to cover a 2D region of 

size 10 units by 10 units is studied. Random deployment, as well as deployment using 

square and hexagonal lattices is studied for different values of the sensing radius. Table 1 

shows the results for values of sensing radius ranging from 2 to 0.3 units. It can be seen 

that the Hexagonal Lattice Deployment always results in the least number of sensor 

nodes. It can also be seen that the number of nodes required increases as the sensing 

radius decreases. In the case of random deployment, the number of nodes required for 

coverage increases exponentially as the sensing radius decreases. Figure 3.3 shows the 

number of nodes required for coverage on the sensing radius. Since low cost, low power 

sensor nodes typically have small sensing radius, random deployment of such nodes 

requires the use of a very large number of nodes. Therefore, efficient deployment of such 

sensor nodes requires a technique for determining a reduced subset of sensor nodes from 

a randomly deployed set of nodes.  
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Table 3.1:  Number of sensor nodes required for coverage of a 10x10 region under 
different deployment strategies. 
 

Sensing 

Radius 

Random 

Deployment 

Square Lattice 

Deployment 

Hexagonal Lattice 

Deployment 

2 37 16 12 

1.5 72 25 20 

1 150 64 42 

0.6 367 144 120 

0.3 1355 576 449 

 
 
 
Table 3.2:  Number of sensor nodes required for coverage of a 10x10x10 region under 
different deployment strategies. 
 

Sensing Radius Random Deployment bcc lattice Deployment 

2 182 54 

1.5 325 128 

1 773 396 

0.6 2228 1421 

0.3 24551 10952 
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Figure 3.3: Number of sensor nodes (with different sensing radii) required for coverage 
of a 10x10 region under different deployment strategies: Random Deployment, Square 
Lattice Deployment (SLD)  and Hexagonal Lattice Deployment (HLD) 
 

Example 2: In this example, the number of sensor nodes required to cover a 3D region of 

size 10x10x10 units is considered. Table 3.2 shows the comparison of the number of 

nodes required for coverage using random deployment and deployment using a bcc 

lattice. In Figure 3.4, the required number of nodes with different sensing radii using 

random deployment and bcc lattice deployment are compared. 
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Figure 3.4: Number of sensor nodes required (with different sensing radii) for coverage 
of a 10x10x10 region under different deployment strategies: Random Deployment and 
bcc lattice deployment with different sensing radii. 
 

 

In Examples 1 and 2, the sensor nodes were distributed randomly using a uniform 

distribution over the entire region of interest. While square lattice deployment has been 

widely used in the literature, it can be seen that hexagonal distribution in 2D and the bcc 

lattice in 3D, result in the optimum number of nodes for coverage. The structures 

obtained under hexagonal lattice deployment and bcc lattice deployment are shown in 

Figure 3.5(a) and Figure 3.5(b) respectively. The results in Table 3.1 show that in order 

 87 
                                                                                   
 



to cover a planar region, fewer sensor nodes are required using hexagonal lattice 

deployment as compared to the popular square lattice deployment. Figure 3.5(b) gives 

some insight into the placement of sensor nodes in three dimensional deployment of 

WSN especially in buildings and in underwater applications [7], [8]. 
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Figure 3.5(a):  Deployment strategy in 2D using hexagonal lattice arrangement of 247 
nodes. The coverage region is 10 units x 10 units and the sensing radius is 0.4 units. 
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Figure 3.5(b): Deployment strategy in 3D using bcc Lattice arrangement of 128 nodes. 
The coverage region is 10 units x 10 units x 10 units and the sensing radius is 1.5 units. 
 

Example 3: In this example, the optimum coverage algorithm described in Section 3.4 is 

used to find the reduced cover of region 10x10x10 units when sensor nodes are randomly 

deployed. The nodes have a sensing radius of 1 unit and initially 2000 nodes are 

randomly deployed in this region using a uniform distribution. Figure 3.6(a) shows the 

initial deployment of the nodes and Figure 3.6(b) shows the reduced cover obtained by 

the algorithm in Section 5. It can be seen that 422 nodes were active in the reduced cover 

resulting in savings of 78.9%. If a bcc lattice deployment was used, then the minimum 

number of sensor nodes required would be 396. Therefore, the reduced cover has a 

measure of optimality equal to 1.06, which indicates that the algorithm has resulted in a 

solution very close to the optimum cover that is obtained by bcc lattice deployment.  
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To show that the simulation experiment wasn’t simply a lucky situation, we compare the 

size of the reduced cover with different numbers of deployed sensor nodes which resulted 

in almost the same number of active sensors as shown in Figure 3.6(c). 
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Figure 3.6(a): Random distribution of 2000 sensor nodes over a region 10x10x10 units.  
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Figure 3.6(b):  Reduced cover of the region 10x10x10 units. Initial Deployment = 2000; 
Number of active nodes = 422. 
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Figure 3.6(c): Different number of deployed sensor nodes resulting in different sizes of 
the reduced cover close to the optimal size from the optimal deployment strategy. 
 

Example 4: The goal of this example is to compare the occupancy matrix before and 

after running the coverage algorithm. In this example, the optimum coverage algorithm 

described in Section 3.4 is used to find the reduced cover of region 10x10x10 units when 

sensor nodes are randomly deployed. The nodes have a sensing radius of 2 units and 

initially 2000 nodes are randomly deployed in this region using a uniform distribution. A 

3D grid (grid size = one unit) is generated and 1000 grid points are tested for coverage. 

Figure 6 shows the occupancy matrix of each grid point in the initial deployment of the 

sensor nodes compared to that after running the coverage algorithm. Table 3.3 displays 

the minimum and maximum number of sensor nodes covering a cell in the grid before 
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and after running the coverage algorithm. It can be seen that after running the algorithm a 

maximum of 5 sensor nodes cover any cell in the grid. The degree of cover after running 

the algorithm is 1, which guarantees that the region is completely covered. 
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Figure 3.7:  1000 Grid points were tested, Sensor Radius=2, Grid Size =1, Occupancy 
Matrix - Initial Deployment (top) and after running the algorithm (bottom). 
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Table 3.3:  Comparing the minimum and maximum cover before and after running the 
algorithm 
 

 Min. Cover Max. Cover 

Before 8 89 

After 1 5 

 

 

Example 5: In this example, the minimum number of nodes that are required for random 

deployment is studied. In Example 3, 2000 nodes each with a sensing radius of 1 unit, 

were randomly deployed to cover a region of 10x10x10 units. The optimum cover of this 

region required 396 nodes resulting in 1,604 inactive nodes. In order to determine the 

number of sensor nodes required to cover the region, a number of trials were conducted 

and the resulting coverage was analyzed. The number of holes in the coverage for 10 

trials is shown in Figure 3.8. It is seen that at least 800 nodes are required to adequately 

cover the region when random deployment is used. The reduced cover algorithm 

therefore results in a saving of 48%.  
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Figure 3.8: 10 different trials of a random 3D deployment of sensor nodes on a 10x10x10 
region and the resulting holes in the coverage. 
 

Example 6: The reduced cover of a deployment is obtained by first establishing 

communications between nodes to establish the list of neighbors and then iteratively 

executing the algorithm at each node. Therefore, the communication overhead increases 

as the number of deployed nodes increase. Figure 3.9 shows the average number of 

messages over 10 trials for different number of deployed nodes. From this figure, it can 

be seen that the communications overhead for the initialization of the network increases 

exponentially with the increase in deployed nodes.  The advantage of using a reduced 

cover is further demonstrated by comparison of the performance of the flooding 
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algorithm both in the original deployment, as well as in the reduced WSN. The number of 

messages for different queries is shown in Figure 3.10. It can be seen that the flooding 

algorithm results in a fewer number of messages in the reduced network.  

 
Figure 3.9: Effect of the number of deployed nodes on the number of messages between 
the nodes. 
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Figure 3.10: Number of queries vs. number of messages in a WSN. (i) Initial deployment 
(Flooding Algorithm); (ii) Reduced deployment (Coverage Algorithm). 
  

The performance of the over time was also studied to determine the benefits of using a 

reduced cover. This is done by assuming that each sensor node has a limited energy 

supply of 300 Joules and is deactivated when the available energy is used up. The 

performance is evaluated in terms of coverage lifetime. The coverage lifetime is the 

continuous operational time of the system before the coverage drops below a specified 

threshold (for example 0.8). The nodes are assumed to consume 1400mW for each 

transmission and 1000mW for each reception. Further, the nodes are assumed to consume 

830mW, 130mW in the idle and sleep states respectively. Figures 3.11(a) and 3.11(b) 
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show the overall coverage obtained over time as the WSN processes a series of queries. 

In these figures, two different initial deployments of 800 and 1600 nodes are considered. 

It can be seen in both the cases that the overall coverage drops over time as the available 

energy is used in processing the queries. Using the reduced network, it is seen that the 

resultant cover over time is significantly better. This is because each node in the reduced 

network has fewer neighbors and as a result has more efficient communications and less 

energy expenditure per query. This improvement in the coverage lifetime comes at a cost. 

The algorithm for obtaining the reduced network requires the communication between a 

node and its neighbors and as a result a portion of energy is used up during the 

initialization stage of the network. This causes early onset of degradation and loss of 

cover. This, however, can be addressed by incorporating self healing in the WSN. 

 

Figure 3.11(a): The effect of number of queries on the coverage lifetime of the WSN 
with 800 nodes.  
(i) Initial deployment (Original); (ii) Reduced deployment (Algorithm).  
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Figure 3.11(b): The effect of number of queries on the coverage lifetime of the WSN 
with 1600 nodes. (i) Initial deployment (Original); (ii) Reduced deployment (Algorithm).  

 

To demonstrate the effect of self healing, a simple mechanism is implemented 

where a failing node in a reduced network alerts its neighbors about the impending 

failure. Inactive nodes in the neighborhood of the failing node are then activated. Since 

the inactive nodes and the failing node have overlapping cover, activating all the 

neighbors improves the coverage and results in better lifetime coverage for the WSN. The 

performance of the WSN for initial deployments of 800 and 1600 nodes with self healing 

is shown in Figures 3.12(a) and 3.12(b). Two different simulations are depicted in these 

figures, and in both the experiments the reduced network with self-healing can be seen to 

outperform the original network.  
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Figure 3.12(a): The effect of number of queries on the coverage lifetime of a self healing WSN 
with 800 nodes. (i) Initial deployment (Original); (ii) Reduced deployment (Algorithm).  
 

 

Figure 3.12(b): The effect of number of queries on the coverage lifetime of a self healing WSN 
with 1600 nodes. (i) Initial deployment (Original); (ii) Reduced deployment (Algorithm).  
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3.8 Chapter Conclusions 

The main contribution of this chapter is a technique for obtaining a reduced cover of a 

wireless sensor network. The technique is shown to be computationally simple and 

suitable for distributed implementation. Numerical simulations show that the reduced 

sensor network has better energy efficiency compared to the random deployment of 

sensor nodes. It was demonstrated that the reduced WSN continues to offer better 

coverage of the region even when the sensor nodes start to fail over time. A localized 

’self healing’ algorithm is implemented that wakes up the inactive neighbors of a failing 

sensor node. Using the “flooding algorithm” for querying the network, it is shown that 

the reduced cover of the WSN with integrated self healing offers superior performance 

over time. For the first time, a ‘measure of optimality’ has been defined that enables the 

comparison of different implementations of a WSN from an energy efficiency stand 

point. 

The proposed algorithm is simple computationally simple and will result in lower 

communication overhead. The 3D coverage algorithm can be easily extended to obtain 

application specific reduced cover, border coverage for intrusion detection, to determine 

the mobility of sensor nodes to cover sensing holes, and to incorporate self-healing in 

sensor networks.  

In the next chapter, a more efficient self healing algorithm is developed and the 

notion of a ‘substitute set’ is introduced. 
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Chapter 4 

Self Healing Coverage 

In the previous chapter, the three dimensional coverage problem was studied and a 

distributed algorithm for complete coverage was provided. The simulation results show 

that the system lifetime could be extended if the coverage algorithms were used. 

However, sensor networks also introduce new challenges for fault-tolerance. Sensor 

networks are inherently fault-prone due to the shared wireless communication medium: 

message losses and corruptions (due to fading, collision, and hidden-node effect) are the 

norm rather than the exception. Moreover, node failures (due to crash and energy 

depletion) are commonplace. Since on-site maintenance is not feasible, sensor network 

applications should be self-healing. Another challenge for fault-tolerance is the energy-

constraint in the sensor nodes. Applications that impose an excessive communication 

burden on nodes are not acceptable since they drain the battery power quickly. Thus, self-

healing in sensor networks should be local and communication-efficient. This chapter 

proposes a solution for the design of a self-healing sensor network. We enumerate below 

the design goals for self-healing sensor network architecture.  

 

1. Complete Coverage: The region should be completely covered at all time and the self 

healing algorithm should retain maximum coverage in the event of node failures. 
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2. Optimality and Efficiency: The algorithm should result in a reduced cover that keeps 

active the least number of sensors required for coverage. The reduced WSN should be as 

close to an optimal deployment as feasible in order to minimize the energy consumption 

of the nodes. The coverage algorithm must be independent of the topology of the WSN 

and implemented in a distributed manner. Further, the algorithm must be scalable for 

large sensor networks. The number of messages exchanged between adjacent sensor 

nodes must be kept to a minimum irrespective of the network size in order to guarantee 

efficient deployment of the WSN. 

 

3. Autonomy: In remotely deployed sensor networks, a large degree of operational 

independence is essential. The network should be capable of self-organization to optimize 

energy usage by selecting a topology involving a minimum number of sensor nodes. 

Failure of an individual component, node or communication link should have minimal 

impact on the entire sensor network operation. The network must be able to detect local 

failures of a node and reorganize locally to guarantee maximal coverage of the region. 

This self healing should be accomplished with minimum computational complexity. 

 

Self-healing at the hardware level is fairly common in both wired and wireless 

networks. Typically, if a piece of hardware absolutely cannot fail, a redundant, back-up 

system is installed and activated immediately in the event of an error. However, this 

redundancy is difficult to achieve in a low cost sensor node with limited on board energy. 
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Koushanfar et al. [78] solve this problem by adding redundant sensors. In the proposed 

system, they add an extra sensor to a system with N sensors in a way that any 

combination of N-1 sensors provides the desired result. Y. Zhang and K. Chakrabarty [79 

and 80] describe a check pointing system for embedded systems in which sanity checks 

are performed at constant intervals. If a check fails, the node rolls the program back to the 

last successful checkpoint rather than having to rerun it from scratch.  

In this chapter, we are more interested in self healing the network as a whole and not 

each sensor mote separately. The ultimate goal of this work is to improve the overall 

performance of the wireless sensor network comprised of sensor node. In the early 90s, 

Marzullo [81] was the first to address the problem of adapting to faulty sensor readings. 

The key idea is that if two sensors sample the same physical value, then their intervals 

must intersect. Marzullo’s algorithms are centralized and not applicable to very large 

scale systems.  The authors develop a multi-modal sensing approach to fault-tolerance. If 

one type of sensor fails in the environment, the application can dynamically activate the 

other sensor. Krishnamachari and Iyengar [82] have proposed a solution to the 

recognition of faulty sensor readings, and introduced algorithms for self-organization 

which combine shortest-path routing, and the construction of a spanning tree as a 

clustering mechanism for nodes in a feature region. 

 The rest of the chapter is organized as follows. A self healing sensor cover is 

introduced is Section 4.1 and three approaches to the self healing coverage problem are 
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introduced. Simulation results that validate out theoretical contributions are provided in 

Section 4.2. The chapter is concluded is Section 4.3. 

 

4.1 Self Healing Sensor Cover 

The algorithms developed in Chapter 3 can easily be extended to incorporate self healing 

features necessary for the robust operation of the network. The self healing coverage 

problem can therefore be addressed in the following manner. 

 

Problem (Self-Healing): Give a reduced cover with some holes due to some node failures 

and deaths; modify the cover by activating some sleeping nodes in order to cover the 

coverage holes in the region of interest. 

 

Fault-tolerance is the ability of a system to deliver a desired level of functionality 

in the presence of faults. Fault-tolerance is crucial for many systems and is becoming 

vitally important for computing- and communication- based systems as they become 

intimately connected to the world around them, using sensors and actuators to monitor 

and shape their physical surroundings. 

    For dealing with arbitrary corruptions, we need self-healing systems: A self-healing 

system ensures eventual satisfaction of system specifications upon recovering from a 

fault. However, since faults can temporarily violate the program specifications in a self-
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healing system, extra care should be taken for containing the effects of faults: Faults in 

one part of the system may contaminate the entire system and hence may lead to a high-

cost, system-wide correction.  

It is assumed that the region of interest is initially covered and the holes in coverage 

overlap as a result of node failures or migrations. Then, self-healing involves the 

determination of the set of nodes in the vicinity of the coverage hole. Activating these set 

of nodes can result in the covering of the hole and there by retain the overall coverage of 

the region. There are three ways to approach the problem of self healing coverage: 

 

1) In order to cover the holes in the region, the reduced coverage algorithm is applied on 

the entire region with the remaining set of nodes in order to get a new reduced set 

cover. 

2) We have some holes in the cover, so the reduced coverage algorithm is applied on the 

holes, and we wake up some sleeping nodes to cover the uncovered holes in the 

region. 

3) Initially when the reduced coverage algorithm is applied, each node selected in the 

reduced cover is assigned a substitute set SUB. The function of the substitute set is to 

cover the sensing region of the selected node in case of a failure. That is for every 

node  with sensing region  in the reduced cover, the substitute set is constituted 

as follows:

xS xA

( ) ,... (11

m
| )A SUB S S SUB SA Sx m xx i

⊆ = ∈
=
U i . 

 105 
                                                                                   
 



 In case the faulty sensor belongs to a region that was originally a 1-cover, then the 

SUB set only guarantees maximum coverage of the affected region . xA

 

The first approach is not cost efficient and will consume a great amount of energy. The 

second and third approaches are motivated by the same principle. However, the reduced 

cover obtained using approaches 2 and 3 are definitely not the optimal reduced cover but 

are reasonably close to it as will be show later in the simulation studies. The SUB 

algorithm (Approach 3) is as follows: 

• Apply the reduced cover algorithm on the required region.  

• If a node  is selected as part of the reduced cover, apply the reduced algorithm on 

the sensing region of  and the SUB reduced cover of that region is the SUB set of 

. 

xS

xS

xS

• Each SUB set periodically sends a message to its designated sensor node to see if it is 

still alive or is about to die. If a reply is not received successfully, the SUB set is 

activated and complete coverage of the region is established. 

 

An example of the self healing algorithm is presented in Figure 4.1. The idea of the 

algorithm is to select a substitute set for each sensor node in the reduced cover that will 

cover its sensing region in case of death or failure. To select a substitute set of a sensor 

node, the coverage algorithm introduced in Chapter 3 is applied on the sensing region of 
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each sensor node in the cover i.e. the region of interest R is now replaced by the sensing 

region Ai of sensor node Si. Let ‘N’ be the maximum number of neighbors for any sensor 

in the reduced cover network, i.e. 
1

n

ii
N max N

=
=

( )mN

.The computational complexity of the 

substitute selection algorithm is simply Ο where ‘m’ is the size of the reduced cover.  

 

S0 
 S2 

 

S1 

Sleeping node 
       Sleeping Substitute nodes 

Active node  

(a) 
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  HOLE 

Sleeping node 
     Active Substitute nodes 

Active node  

(b) 
Figure 4.1: Illustration of the substitute plan algorithm for covering the holes (Approach 
3). S0, S1, and S2 were part of the sensor cover and after a period of time run out of 
energy. A hole in the region of interest is created. To cover the hole, S0, S1 and S2’s 
substitute nodes are activated. 
 

4.2 Simulation Results 

In this experiment, the optimum coverage algorithm described in Chapter 3 is used to 

find the reduced cover of region 10x10x10 units when sensor nodes are randomly 

deployed. The nodes have a sensing radius of 2 units and initially 1000 nodes are 

randomly deployed in this region using a uniform distribution. Some nodes are randomly 

disabled resulting in holes in the region (see Figure 4.2 (c)).The occupancy matrix of the 

region with holes is shown in Figure 4.3(a). The SUB algorithm described is Section 4.1 

is used in order to obtain a new close to optimal reduced cover of the region (see Figure 

4.2(d)). The occupancy matrix of the region after the new reduced cover is shown in 
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Figure 4.3(b). Comparing the SUB algorithm to the first approach which is simply 

recalculating the reduced cover of the entire region, it could be seen that the number of 

nodes in each reduced cover are very close and the energy wasting due to the 

computational complexity of the reduced algorithm is avoided by using the SUB 

algorithm (see Figure 4.4). 

 

 
Figure 4.2(a): Random distribution of 1000 sensors over a region 10x10x10 units.  
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Figure 4.2(b): Reduced cover of the region 10x10x10 units. Initial Deployment = 1000; 
Number of active sensors = 79. 

 
Figure 4.2(c): Reduced Cover with some disabled nodes. 
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Figure 4.2(d): New Reduced Cover using SUB algorithm; Number of active 
sensors=111. 
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Figure 4.3(a): Occupancy matrix of the original reduced cover and after disabling some 
nodes.  
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Figure 4.3(b): Occupancy matrix of the new reduced cover using SUB algorithm. 
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Figure 4.4: Reduced cover using SUB algorithm compared to the reduced cover using 
original algorithm with different number of deployed nodes. 
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4.3 Chapter Conclusions 
 

In this chapter, unlike the previous work in this area, the coverage problem in 3-

dimesnional wireless sensor networks (WSNs) was formulated and analyzed. A Self-

healing algorithm was also established (which is an extension to the self healing 

algorithm introduced in Chapter 3). It was shown that this algorithm guarantees coverage 

at all time even if some nodes in the sensor cover run out of energy. The substitution plan 

results in great energy savings. For widespread adoption of the wireless sensor 

technology, robustness in the event of abnormal behavior such as a network intrusion, or 

failures of nodes is critical.  

In the next chapter, the intrusion detection problem using wireless sensor 

networks is studied. Energy efficient approaches to the border coverage problem are 

proposed and simulations results are presented. 
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Chapter 5 
 
Energy Efficient Approaches to the Border 
Coverage Problem in WSNs 
 

In the previous 2 chapters (Chapter 3 and Chapter 4), the three dimensional full 

coverage problem in WSNs was studied and a self healing sensor cover was also 

provided. The focus of this chapter on the other hand, is the Boundary Coverage Problem 

which basically asks for the minimum subset of sensor nodes to guarantee the coverage 

of the boundary of a region of interest so that an intruder is detected at all times.   

Networking together hundreds or thousands of cheap sensor nodes allows users to 

accurately monitor a remote environment by intelligently combining the data from the 

individual nodes. In this chapter, the border coverage problem in WSNs is rigorously 

analyzed. Most existing results related to the coverage problem in wireless sensor 

networks focused on planar networks; however, three-dimensional modeling of the 

sensor network would reflect more accurately real-life situations. Unlike previous works 

in this area, distributed algorithms that allow the selection and activation of an optimal 

border cover for both two dimensional and three dimensional regions of interest are 

provided. We also provide self healing algorithms as an optimization to the border 

coverage algorithms which allow the sensor network to adaptively reconfigure and repair 
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itself in order to improve its own performance.  Border coverage is crucial for optimizing 

sensor placement for intrusion detection and a number of other practical applications.  

Numerical simulations show that the optimized border cover has better energy 

efficiency compared to the standard random deployment of sensor nodes interms of the 

overall system lifetime (Boundary Coverage). It is demonstrated that the optimized WSN 

with self healing enhancments continues to offer better border coverage of the region 

even when the sensor nodes start to fail over time. 

The rest of the chapter is organized as follows. The motivation is introduced in 

Section 5.1. The boundary coverage and coverage boundary problems are formulated in 

Section 5.2. In Section 5.3, optimal 2D and 3D deployment strategies for border coverage 

are presented. In Section 5.4, distributed algorithms for identifying a minimal subset of 

sensor nodes that are on the exterior boundary of a given region are presented. In Section 

5.5, algorithms for detecting sensor nodes that are on the exterior coverage boundaries as 

well as on the interior boundaries (coverage holes) are presented. In Section 5.6, a virtual 

borer patrol strategy is analyzed. Numerical simulation results that validate the proposed 

algorithms are presented in Section 5.7 and the chapter is concluded in Section 5.8. 

 

5.1 Introduction and Motivation 

Unsupervised intrusion detection, which involves detecting and identifying the 

encroachment of a monitored region by an object, is one of the applications of wireless 
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sensor networks. Algorithms for wireless sensor networks must have low communication 

overhead, rely as much as possible on local information, adapt to failures and changes in 

network conditions, and produce results in a timely fashion. Given the requirements to 

minimize the power, it is desirable to select the bare essential number of sensor nodes 

dedicated for the task while all other sensor nodes should preferably be in the hibernation 

or off state. Even though target tracking has been widely studied for sensor networks with 

large nodes and distributed tracking algorithms are available [50-60], intrusion detection 

in ad hoc networks with micro sensor nodes poses different challenges due to 

communication, processing and energy constraints. 

Border surveillance is one of the major applications of sensor networks. The 

border represents the physical extent of the region to be monitored and depending on the 

application, it is required to sense the intrusion into the monitored region or exit from the 

monitored region of the object being monitored. In a typical deployment of sensor nodes, 

sensor nodes are distributed across the entire region of interest and it is necessary to 

determine a minimal set of sensor nodes that can adequately monitor the border. Thus, it 

is necessary to find a scalable and energy efficient solution to the border coverage 

problem. Such a solution would extend the scalability of wireless sensor networks and 

enable the monitoring of one of the largest international borders [83].  

In this chapter, the problem of determining the minimum number of sensor nodes 

for covering the boundaries of a target region is addressed. Unlike the full coverage 

problem, here the primary interest is in the detection of movement of an object across the 
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boundary.  The problem of selecting the minimum subset of sensor nodes for covering 

the boundaries of a known target region with no coverage holes is first addressed 

(Boundary Coverage Problem (BCP)). However, the deployed sensor node density might 

not be dense enough to cover the boundary and the emergence of coverage holes in the 

target area is unavoidable due to the following reasons: 

1- Random Deployment: Random deployment of sensor nodes is always desired; 

however it doesn’t guarantee full coverage of the region of interest. 

2-  Sensor Failures: Nodes are subject to failures due to depleted batteries or, 

more generally, due to environmental influences. Sensors may fail from the 

impact of deployment or simply from extended use.  

3- Position Changing: A lot of environmental factors (wind or storms) may 

change the sensor nodes’ positions over time and possibly resulting in some 

coverage holes in the network. In addition to that, sensor nodes equipped with 

mobile capabilities might also result in some holes due to the sensor nodes 

frequent change in position. 

4- Presence of Obstruction: Some obstacles in the region of interest might 

impair the nodes sensing/communication functionality and thus result in some 

coverage holes. 

 

The second problem addressed in this chapter is the Coverage Boundary Problem 

(CBP) which is identifying the boundary of the wireless network’s coverage region. At 
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first glance, boundary detection is similar to edge detection in image processing. 

However, a major difference is that due to energy constraints, processing the entire image 

of the network at a single point is impractical and infeasible and hence a single node 

doesn’t have all other sensor nodes’ information. In this case, we differentiate between 

two kinds of coverage boundaries: exterior boundary (outer periphery of the network) and 

interior boundary (sensor nodes that define the coverage holes in the network). A wireless 

sensor network for detecting large scale phenomena may be called upon to provide a 

description of the boundary of the phenomena. Several phenomena (containment flows) 

can span large geographic areas. Sensing and detecting the boundary of the phenomena 

can help scientists understand what factors affect the spread of theses phenomena. A 

representation of the boundary of the coverage has the potential to be more concise and 

therefore more energy efficient that an enumeration of all the sensor nodes in the network 

for a specific query. We also argue that identifying coverage holes in the network, is not 

only used to detect regions with low sensor density due to depletion of node power 

(places where adding new nodes will significantly improve the coverage and connectivity 

of the network), but could also be used to identify the regions of interest for the end user. 

Identifying sensors nodes that are on the coverage boundary is motivated by a number of 

functionalities at both the network and application layers: 

1- Tracking: A sensor network is used to track a moving intruder within a region 

of interest. Information about coverage holes can be used to help path 
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establishment, where a communication path is to be kept between the moving 

objects and the sink. 

2- Routing: Identifying the boundary of the both exterior and interior coverage is 

very helpful for routing algorithms where the data need to be sent to a specific 

region instead of a specific sensor node. 

3- Disaster Boundary: In the case of a natural disaster (flood, hurricane, or fire) 

may lead to the destruction of all the sensors in the effected region and leave a 

coverage hole in the network. Detection of the boundary for this hole indicates 

the region of interest and the necessary response from the user. 

4- Monitoring Network Lifetime: The sensor network is associated with its 

lifetime and therefore initiate any other necessary network management 

activities. 

5- Topographical Properties: The detecting of the coverage holes is also a 

critical militarily application because it determines the ability of armed forces 

to take and hold areas, and to move troops and material into and through 

areas. Topographical properties can also be useful in determining weather 

patterns.  

6- Network Traffic: Each sensor can be designed to keep a critical value which 

can be defined as the number of packets it has to send, or how busy its local 

wireless medium is. Real time traffic conditions can easily be used for routing 

or any kind of other applications. 
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The goal in this chapter is quite different from the ones mentioned above. We are 

more concerned with detecting the sensor nodes that are on the boundary of the region of 

interest (no coverage holes) or on the boundary of the coverage. Assuming the boundary 

of the region of interest is known; a distributed algorithm that selects a minimum subset 

of active nodes that will guarantee boundary coverage of the region is then developed. 

Since the emergence of coverage holes is unavoidable, distributed as well as centralized 

algorithms are provided to detect coverage holes in the region and also find the nodes that 

are on the boundary of the coverage area. The algorithms presented are distributed and 

are very low in computational complexity. A recent work related to the work presented in 

this dissertation considered the hole coverage problems in a sensor network comprising 

of stationary nodes with minimal geometric data [84]. Here, the authors do not consider 

the location of the sensor nodes but use the concept of homology for detecting holes in 

the cover The computational complexity of the proposed algorithms and the execution of 

the algorithm in a distributed manner were not analyzed. In [85], Carbunar, et. al. study 

the problem of detecting and eliminating redundancy in a sensor network with a view to 

improving energy efficiency, while preserving the network’s coverage. The detection of 

the coverage boundary was also attempted by reducing it to the computation of Voronoi 

diagrams. To our knowledge, no work has considered distributed coverage boundary 

detection in sensor networks. Nowak and Mitra [86] describe a scheme for estimating the 

boundary of a large scale phenomenon by aggregating readings along a predefined 

hierarchical structure within the network. The work in this dissertation is complimentary 
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to the results in [86] and the distributed algorithms can be used in a number of different 

boundary estimation applications (including those considered in [86]).  

 

5.2 Border Coverage Problem Formulation 

An emerging application area for sensor networks is intelligent surveillance and 

intrusion detection. Sensor nodes are randomly distributed in an area to be monitored. 

The ultimate goal is to detect an intruder target and alert the sensor nodes which are close 

to the predicted path of the target. However, minimizing the power consumed should be 

the most important design goal. The lifetime of the sensor network can be significantly 

extended by optimizing the energy consumption of each sensor node. The emergence of 

coverage holes in the target area is unavoidable and depending on the application, the 

coverage hole problem could be used in different ways. 

We assume that any two nodes  and iS jS can directly communicate with each other if 

their Euclidean distance is less that the communication range cR . Although a network can 

be rendered useless if it looses its connectivity, we characterize the system lifetime by 

just observing the resulting boundary coverage. Zhang and Hou [24] showed that if the 

communication range is at least twice the sensing range, then complete coverage of a 

convex area implies connectivity among the nodes. Assuming the communication range 

is twice the sensing range ( 2c sR R≥ ), the theorems in [24] could be easily extended to 

handle boundary coverage of the region as well.  
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Definition 5.2.1: An intruder is any object that is subject to detection by the sensor 

network as it crosses the border.                                                                                                                 

A reasonable assumption is made that no intruder is aware of the location of the deployed 

sensor nodes.                                                                        

 

The following will give precise definitions to what a border of a region is. 

 

Definition 5.2.2: Let R be a subset of the (2D or 3D) space. The point ‘p’ is said to be 

near R if every neighborhood of ‘p’ contains a point from R. i.e. 

0, ( , )  .x Ball p and x Rε ε∀ > ∃ ∈ ∈                                                                                               

                                                                

In the definition above, ( ,Ball p )ε  means the set of all points whose Euclidian distance 

from p is less than ε . 

 

Definition 5.2.3: The set of all points in R and near R is called the closure of R and is 

denoted by cl  i.e.    R( ) { }R R    Rcl( ) ( ) All points near= ∪ .                                                                      
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Definition 5.2.4: The border of a region R denoted by  is defined as the set of all 

points that are common to R and its complement i.e. 

RB( )

R RB( l( ) cl( )= ∩ R) c  where R  is the 

complement of the region R i.e. all the points that don’t belong to R.                                                       

 

According to definitions 5.2.1-5.2.4, a region is said to be boundary covered if and only if 

an intruder is always detected as it crosses the boundary of the region. A sensor is called 

a boundary sensor if its sensing region intersects the boundary of the region of interest.                            

 

Definition 5.2.5: A set of sensor nodes C is said to be a boundary cover of a region 

R if every point on the boundary of R belongs to the sensing region of at least one sensor 

in C i.e. ∀ p ∈   , p 

Border

Border RB( ) ∈  Si for some Si ∈  C .                                                                           Border

 

Definition 5.2.6: A set of sensor nodes Border,ReducedC is said to be a reduced boundary 

cover of a region R if p ∈  , p ∀ RB( ) ∈  Si for some Si ∈  Border,ReducedC  and no proper 

subset of C  is a boundary cover of R. i.e.  

is not a boundary cover of R .                                        

Border,Reduced

educed lS , for ,ReducedBorder,R Border,C l C− ∈ any S

 

Definition 5.2.7: A sensor node is called a redundant sensor node if its sensing region is 

completely covered by its neighboring sensor nodes. Deactivating a redundant sensor 

won’t affect the overall full coverage of the region of interest. (Figure 5.1(a))                                         

 124 
                                                                                   
 



Definition 5.2.8: A sensor node is called a redundant boundary sensor node if the 

portion of the boundary covered by it is completely covered by its neighboring sensor 

nodes. (Figure 5.1(b))                                                                                                                                 

                                                                              

                          
 

Figure 5.1(a): Example of a redundant sensor node (dashed circle). 
                                

  
 

Figure 5.1(b): Example of a border redundant sensor (dashed circle) and a non-border 70 
sensor (black shaded circle). 
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Definition 5.2.9: A sensor node is called a non-boundary sensor node if its sensing 

region does not intersect the boundary of the region of interest.                                                          

 

In the first case, it is assumed that each sensor node is aware of its own location, the 

location of the boundaries of the region to be monitored and the location of its neighbors. 

This assumption is not too stringent and it can be satisfied by communications between 

adjacent nodes in the network on startup. From definitions 5.2.8 and 5.2.9, it can be 

easily seen that the deactivation of a boundary redundant sensor node or a non-boundary 

sensor node will not affect the overall boundary coverage of the region of interest. Using 

definitions 5.2.1 – 5.2.9, the boundary coverage problem is analyzed in this chapter in the 

following way: 

 

I. Optimal Deployment for Border Coverage: Find the minimum number of sensor 

nodes and their placements for border coverage of a given region R. 

II. Optimal Selection for Boundary Coverage: Given a dense deployment of sensor 

nodes in a region R with known boundary, find a minimum subset of active nodes that 

guarantee boundary coverage of R.                                                                                                            

 

In the second case, we are concerned with identifying the nodes on the boundary of the 

coverage as well as coverage holes in the region as depicted in Figure 5.7(b). A sensor  

is not on the boundary of coverage (or coverage hole H) if and only if its sensing 

iS
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boundary circle Ci  is completely covered by its neighboring sensors i.e. 

. Now, the boundary of coverage (or coverage 

hole H) can be defined in terms of a set of sensor nodes as: 

ir

i iir , p   jS B( H ) p C A , for some S S∉ ⇔ ∀ ∈ ∈ ∈

i jp∉ jp Cir | A , S S∀ ∈

 Region of interestR − Set of sensors in the r

Sensing region of or i i

S −

 sensA S− Boundary−

Set of sensors f overing the regionfullC − ully c

j

 

Definition 5.2.10: The coverage boundary is defined as the set of all sensor nodes S  

such that:∃ ∈ .                                                                                                                

i

The coverage boundary problem can now be addressed in the following way:  

 

III. Identifying Coverage Boundary: Given a dense deployment of sensor nodes, find the 

subset of active nodes that lie on the boundary of the coverage area (or holes). 

 

The discussion in the following sections assumes that the region to be monitored is large 

in comparison to the sensing region of an individual sensor node and that the location of 

all sensor nodes is known. All through the chapter, the following notations will be used: 

 

, , , egion Sensing radius of each sensorsR −

, Cir ,

, and C  

 of the 2D sensing region of sensor i iS

Set of sensors border coborder − vering the region
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5.3 Optimal Deployment for Border Coverage 

When flexibility in deployment exists, it is advantageous to find an optimum border 

deployment of the sensor nodes so that border coverage can be achieved using a 

minimum number of nodes. In this section, theorems for optimal deployment of the 

sensor nodes are developed. These theorems provide lower bounds on the number of 

nodes needed to border cover both 2-dimesnional and 3-dimensional regions of interest. 

 

5.3.1 Optimal 2D Deployment for Border Coverage  

In the 2D deployment problem, the minimum number of sensor nodes modeled as disks 

and their locations for border coverage of a given rectangular region R are to be 

determined. While the region to be border covered is assumed to be a rectangular region, 

the algorithms could be easily extended to border cover any arbitrary shape of a region 

with minor modifications.  

 

Lemma 5.3.1: Consider a rectangular region R of length ‘L’ and width ‘W’. The lower 

bound on the number of sensor nodes needed to achieve border coverage of R is 

2( ) 3
2 2s s

L W
R R

   
+   

   
− where  represents the operation of finding the least upper bound 

integer.                                                                                               

  

Proof: The optimal way to deploy the sensor nodes to achieve border coverage of the 

region is to deploy the sensor nodes across the perimeter of the entire region such that 
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any 2 adjacent sensor nodes that are on the same row or column are tangent to each other. 

2
L
Rs



 


  is the least number of sensor nodes to cover a line of length ‘L’. For a rectangular 

region of length ‘L’ and width ‘W’, the perimeter can be optimally covered by 

2( )
2 2s s

L W
R R

   
+   

   
 sensor nodes. However such a cover will have overlapping sensing 

coverage at the vertices of the rectangle as shown in Figure 2. The number of sensor 

nodes doesn’t exactly cover each edge then the last sensor would partly cover the 

adjacent edge, so a better way would be to select the next position of the center such that 

its circle intersects the last circle in its boundary intersection. Since the sensor nodes have 

equal sensing radii and their centers lie on the boundary of the rectangle then in the best 

case scenario,
2

sR  of the boundary line will be covered. The best enhancement on the first 

placement of sensor nodes would be minimizing the number of sensors by one on three 

boundary edges (Figure 5.2).  So the lower bound on the number of sensor nodes to cover 

a 2D rectangular region each with sensing radius sR  is 2( ) 3
2 2s s

L W
R R

   
+ −   

   
.                                              
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Figure 5.2(a): The optimal deployment of 10 sensor nodes modeled as circles in 2D to 
border cover a rectangular region.  
 
 

    
 
Figure 5.2(b): Illustration of the best possible way to minimize the number of sensor 
nodes covering the border. The deployment strategy is further enhanced to take 
advantage of a row sensor covering part of the column resulting in 7 deployed sensor 
nodes. 
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Figure 5.3: The border cover of a rectangular boundary. 
 

If we assumed that the region to be monitored is large in comparison to the 

sensing region of an individual sensor node, then the necessary and sufficient number of 

nodes to cover a rectangular region would simply be 2( )
2 2s s

L W
R R

   
+   

   
. 

 

5.3.2 Optimal 3D Deployment for Border Coverage 

The three dimensional optimal sensor deployment for border coverage is far more 

complex that the two dimensional case. It is addressed by determining the minimum 

number of sensor nodes required to cover the surface of a cubical region of interest. Since 
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the coverage region of a sensor node is modeled as a closed ball, the border coverage 

problem requires the determination of all the points on the surface of the cube that are 

covered by the sensor nodes. To address this issue, the intersection of the sensing regions 

and a boundary plane is first defined. This definition will then be used to determine the 

least number of sensor nodes required for border coverage.   

 

Definition 5.3.1: A great circle on a sphere is the intersection of that sphere with a plane 

passing through the center of the sphere.                                                                       

                                                                                                                

Lemma 5.3.2: The centers of all the optimal deployed spheres must lie on a face of the 

cube.                                                                                                                                      

Proof: It is clear that each sensor covers a maximum area when the coverage region lies 

in the plane passing through the center of the sphere representing the sensing region. 

Thus, minimizing the number of sensor required to cover the surfaces of the region to be 

monitored is equivalent to maximizing the coverage area of each sensor. This is possible 

only when the centers of all the sensor nodes lie on the surface of the region to be 

monitored.                                                                                                                             

Lemma 5.3.1: The optimal deployment locations of sensor nodes to border cover a 3D 

cubical region is the locations of the spheres whose centers form a lattice of spacing 

1.7322 sRΛ =  on each face of the cube.                                                                                                         
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Theorem 5.3.2: Consider a cubical region R of side ‘a’ (‘a’ is sufficiently large in 

comparison to sR ). An approximation on the lower bound on the number of sensor nodes 

of sensing radius sR  to achieve border coverage of R is 
22.309 3.845

min
s

aN
R

a −
=  
  

  .                                     

Proof: The proof is based on the problem of covering a square by circles which has been 

studied by Kershner [28] and Verblunsky [29] where , the least number of circles of 

unit radius which can cover a square was determined. They proved that there is a constant 

cN

1
2

c ≥ such that for all sufficiently large ‘a’, 2 3 3
2

2 8 16ca ca N a a+ < < + + . According to 

Theorems 3.1-3.3, the 3D border coverage problem was simplified to the problem of 

completely covering the faces of a cube with circles. Since there are 6 faces of a cube to 

be covered and we are interested in finding the lower bound of the number of sensor 

nodes needed, then 1
2

=c . Let sR  be the sensing radius of each sensor therefore a basic 

lower bound is
222(

3min
s

aN
R

+
= )a . But since spheres can cover 2 or even 3 faces of the cube 

at the same time, the optimal way would be if the 2 faces intersect the sphere in semi 

great circles resulting in minimizing number of nodes by approximately 5

s

a
R

 .Since we are 

concerned with a lower bound, 
22.309 3.845

min
s

aN
R

a −
=  
  

 is a valid lower bound on the 

three dimensional border cover.                                                                                                          
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5.4 Optimal Selection for Border Coverage 

The results in section 5.3 enable the optimum placement of sensor nodes for border 

coverage of a given region (2D and 3D regions). In practice, however, given an existing 

distribution of sensor nodes, it is often necessary to minimize the number of nodes that 

remain active while still achieving border coverage of the entire region. In this section, an 

algorithm is developed where the nodes make local decisions on whether to sleep or join 

the set of active nodes. The two-dimensional and three-dimensional cases for selecting an 

optimum border cover of a given region are studied. A measure of optimality is also 

proposed to compare the performance of the border coverage of a given sensor network 

with the optimum coverage obtained in Section 5.3. The border coverage algorithm 

presented in this section has the following key features: 

 

1. It is a decentralized algorithm that depends only on the local states of the sensing 

neighbors. 

2. It provides guaranteed degrees of border coverage. 

3. It handles the case where the nodes have unequal sensing radii. 

 

5.4.1 A 2D Distributed Border Cover Selection Algorithm 

In order to solve the border coverage problem for a two-dimensional region of interest, it 

is assumed that the region to be monitored is a rectangle specified by its vertices 
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1 2 3 4, , ,V V V and V .

B

 It is also assumed that all the sensor nodes are aware of the location of 

the vertices, i.e. the sensor nodes are aware of the extent of coverage that is required. The 

border coverage algorithm can be applied to any shape of boundary but the region of 

interest is assumed to be a rectangular region for the sake of ease of presentation. The 

algorithm depends on the fact that individual sensor nodes can verify if they have 

overlapping border coverage with their neighbors. If the border covered by a sensor node 

is covered by other sensor nodes in the neighborhood, then deactivating this sensor will 

not affect the overall border coverage. In this section, we will first derive conditions that 

indicate overlapping border cover for a given sensor.  We will start by giving some 

definitions and assumptions that will aid us in developing an algorithm to select a border 

cover. 

Let B(R) represent the boundary of the region R to be covered. Then B(R) can be 

represented  where  is the segment connecting vertices . 

Without loss of generality, suppose the boundary edges are ordered as 

as shown in Figure 5.4(b). 

4
( ) ,

, 1
B i j

i j
i j

=
=

≠

R U

41and B 

,i jB i jV and V

12 23 34, , ,B B B

 

Definition 5.4.1: An intersection segment is the portion of the boundary covered by the 

sensing region of a sensor node and is represented by the closed interval [x, y] such that: 

[ ],x y is an intersection segment [ ], ,z x y⇒∀ ∈ 1,..,i n∃ ∈  such that                                  ,iz A and x y Cir∈ i∈
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A segment [ ],i iSeg x y= i  is represented by its start point ix  and end point . Examples of 

intersection segments are shown in Figure 5.4(a). 

iy

 
 
Figure 5.4(a): Intersection segments [A, B] and [C, D]. 
 

   
 
Figure 5.4(b): The ordering based on the mapping function. 
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Since the algorithms depend on the concept of ordering, a mapping: B [0,1]:ϕ →  is 

defined based on the distance metric from the nearest origin 

i.e. 1i
ij

d( x,V ) d(V ,V )
x B , ( x )

| P |
ϕ

+
∀ ∈ =

i jd(V ,V )

i  where |P| is the total length of the perimeter of the 

rectangular boundary and is the distance along the boundary of the region i.e. for 

example (see Figure 5.5) 1 3d(V ,V ) 12 23B B= + . A special case should be taken for the 

sensing region covering the origin vertex v1, where the resulting intersection segment is 

divided into 2 sub-segments each of which is mapped separately. 

 

 
 
Figure 5.5: Example of a segment and its successor,[ , ] [ , ].A B C Df  
 

Definition 5.4.2: We call [ , ]j j jSeg x y=  the successor of  denoted by Se  

if the following conditions are satisfied: 

[ , ]i i iSeg x y= i jg Segf

  Seg Seg Segj i ji∩ = ≠∅

 &j i j ix x y y> >  

 .there is no other starting point in jiSeg  i.e. ,    p Seg p x for some k i jji k ,∀ ∈ ≠ ≠                                                

 

 137 
                                                                                   
 



Theorem 5.4.1:  Consider the set of segments 

{ } [ ]1 2, , ...., , [0,1]m i i iSeg Seg Seg where Seg x y=S

, ,i jSeg Seg S S

= ⊂ . Assume that no two segments are 

contained in each other i.e. ,i jeg Seg i j∀ ∈ ⊄ ≠ . A segment [ ]( ),seg x y=  is 

covered by  if and only if the following hold:  
1

m

i
i

Seg
=
U

a. there exist integers 1 , ,..., such that a b k m≤ ≤ ,a bx Seg and y Seg∈ ∈   

b.                                                                                                                        ..... .a bSeg Seg Segf f f k

Proof: [ ],a b a b aSeg Seg Seg Seg x y⇒ ∪ =f b ].. Therefore,  Further from (a), [ ,
k

i a b
i a

Seg x y
=

=U

,ax x<  and .  y yk > [ ] [ ], ,
k

a k
i a 1

m

i
i

ix y x y Se⊂ = U

aSeg

g Se
= =

⊂ U

Seg

g . On the other hand, suppose that the 

segment [x, y] is covered by the segments  Since the segment is covered, 

there exists some segment  such that .

1,..., S

a

.meg

x Seg∈  Similarly, there exists at least one 

segment ‘k’ such that [ ], .k ky x y∈  Thus, condition (a) is easily satisfied. Now, if , 

then 

ay y>

[ ], ax y Seg⊂

bSeg .aSeg Segf

1 .for k m≥ ≤ ≤

y

.....a bg Segf f

 and condition (b) is trivially satisfied. Otherwise, there exists a 

segment  such that  If this was false, then it means that 

This would then imply that there exist points in the interval  that 

are not covered, thereby contradicting the assumption that the segment [x, y] is covered. 

If , then condition (b) is proved. Otherwise, repeating the process, we obtain 

integers a…k such that Se  and .

b

kSegf

a ky y

by >

( ,ay ]y

k >y y  
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Therefore, conditions (a) and (b) together imply that the segment [x, y] is covered by the 

collection of segments                                                                                                   1 2, , ...., .mSeg Seg Seg

Theorem 5.4.1 indicates that a sensor node is completely border redundant if each 

segment in the partitioning of its intersection segment by its neighbors’ intersection 

segments has a successor and the end points are also covered. Therefore, to check if a 

sensor  is a border redundant sensor and therefore could be deactivated without 

affecting the overall border coverage, one has to first find all the adjacent sensor nodes 

that lie on the border of the region of interest. For each sensor, find the resulting 

intersection segment (or segments) with the boundary lines and check if ’s portion of 

border coverage is completely covered by its neighboring sensor nodes. That can be done 

by using Theorem 5.4.1. An algorithm is presented that illustrates the steps in this 

process. 

0S

0S

 

2D Distributed Border Coverage Algorithm 

For each node , form the set of neighbors, .Do the following: iS ( )N i

 

Step 1: Find the intersection segments  iSeg

Find ‘ ’ the intersection segment of  with the boundary of the region of interest 

and map it to [0, 1]. 

iSeg iS

    If =∅ or a point then is declared as a non border node. iSeg iS
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   Else go to step 2. 

 

Step 2: Non containment property 

Let igSe  be the set of segments covering Se  and is initially set to∅ . ig

For every pair of nodes ,  in  jS kS ( )N i

• Find the common intersection segments and  resp. [ , ]j jSeg x y= j [ , ]k k kSeg x y=

• If the end points appear in increasing order as , , ,j k k jx x y y  i.e.  and can 

be ignored. 

kSeg Seg⊆ j

• Update iSeg  to include  i.e. jSeg { }i ig Seg Seg= ∪ jSe  

 

Step 3: Check for endpoints coverage 

Check that,  ( , )  ( , )f f f l l lSeg x y and Seg x y∃ = = in iSeg |   f i f l i lx x y and x y y≤ ≤≤ ≤ . 

If true go to step 4. 

 

Step 4: Check for successor 

Check that, for each element  in( , )m m mSeg x y= i lSeg Seg− , | 

nd . 

 ( , )n n nSeg x y∃ =

m nSeg Segf a m n≠
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If this condition is satisfied, the boundary intersecting segment Seg of the given 

sensor is completely covered and is declared as a border redundant sensor and can be 

deactivated without affecting the overall border coverage. The algorithm guarantees that 

every point on the boundary of the target region is covered by at least one sensor. The 

optimal set of sensor nodes is also selected. The computational complexity of the 

redundancy selection algorithm developed in this section depends on 

i

iS

1

n

i
N m

=
= ax N( i )
 
 
 

 ,the 

maximum number of nodes in the neighbor set of any sensor in the network and n , the 

total number of sensor nodes in the network. The computational complexity of the border 

redundancy checking algorithm is . Since ‘n’ sensor nodes need to be checked, then 

the complexity is . For large networks, the number of neighbors of any sensor is 

small compared to the size the network 

2(N )Ο

2( . )n NΟ

( )N n= so the computational complexity of the 

algorithm for such large networks is of order ‘n’ ( ( )nΟ ) where n is the total number of 

sensor nodes in the network. 

 

5.4.2 A 3D Distributed Border Cover Selection Algorithm 

The three dimensional optimal sensor border coverage problem is far more complex than 

the two dimensional case. We will approach it from a different angle and try to transform 

it to optimal complete coverage of the sensor nodes in a 2D plane. We will start by 

proving some theorems and then provide a 3D distributed algorithm. 
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                                                              (a) 

 

                                                               (b) 

Figure 5.6: A 3D cube with some spheres. (a) One of its faces. (b)The corresponding 
intersection circles with the boundary. 
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Lemma 5.4.1: The problem of 3D border coverage of a cube by sensor nodes modeled as 

3D balls is equivalent to the problem of complete coverage of a 2D plane by sensor nodes 

modeled as circles.                                                                                                                                         

Proof: According to the definition of border coverage, each point on the border should be 

covered by at least one sensor. The border B(R) of the cubical region R is represented by 

6 faces (2D planes). First, if each face of the cube aB B(R) ,a=1,2,3,4,5 and 6∈  is completely 

covered by a set of circles Cir 1{ ,..a a aCir Cir }n=  and if is the disc bounded by the circle 

then . The 3D border coverage is now transformed 

to finding the spheres whose border intersections are these circles. 

. Now, if we have a set of sensor nodes that border 

cover a 3D cubical region, taking the intersection of the spherical sensing regions of the 

sensor nodes with each face of the cube will result in the formation of circles which 

completely cover the 2D plane. So, the 3D border coverage problem is transformed to the 

2D full coverage problem.                                                                                                   

iD  

iCir  

p B∀ ∈

,a aip B p D  for  ∀ ∈ ∈

, i iR p A  for  some Cir∈

ai asome Cir Cir∈

( )iA B R= ∩( )

 

Let the intersection of any boundary plane B and sphere  be circle , i.e. iS iCir .i iCir B A= ∩

ir

 

The interior of the circle Ci  is said to be the disc bounded by the circle Ci , i.e. 

  

ir

( ).i iD interior Cir=
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Definition 5.4.1: A circle Ci  is completely covered if the disc bounded by the circle is 

completely covered, i.e. .                                                                                                

ir

p D∀ ∈ ,
1 j

n
p Ai j
∈

=
U

Definition 5.4.2: A sensor  is a border-redundant sensor if Cir  is completely 

covered by neighboring spheres.                                                                                                                 

iS i B A= ∩ i

 

Lemma 5.4.2: A sensor  is border redundant if all the intersection points 

 are covered by one or more adjacent sensor nodes.                                            

0S

, , 1...0Cir Cir D i j ni j∩ ∈ ∀ =

Lemma 5.4.2 indicates that a sensor node  is border redundant if all the intersection 

points  are covered by some sensor

0S

0i jCir Cir D∩ ∈ 1lS ,l i, j ..n≠ =

k

. Therefore, to check if S  

is border redundant; one has to first find all the circles obtained by the intersection 

of . For each Cir , find all the intersection points that lie within . If all 

these intersection points are covered, then the circles Cir  are covered. Then, by the 

theorem 4.2.2, is border redundant and can be deactivated without affecting the overall 

cubical border coverage.                        

0

0 , 1..6mS B m∩ =

0S

k kD

 

3D Distributed Border Coverage Algorithm 

For each node , form the set of neighbors . iS ( )N i

Step 1: Find the intersection circles Ci  ir
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Find the intersection circle Ci  resulting from the intersection of ’s sensing region with 

the boundary of the region of interest. Note:  might intersect 2 or 3 boundary planes of 

the region in semi circles. The same procedure will still apply. 

ir iS

iS

Step 2:  

For every pair of nodes S  in  ,k lS ( )N i

• Find the intersection circle Ci ,k m k mr A B= ∩  and Ci ,l m l mr A B= ∩   

 ( )mwhere B  is the boundary plane being  tested

• Find the intersection points Cir , ,k m l mCir∩  

• If the intersection points are all covered, i.e. , 

then deactivate  since it is a border redundant node. 

( )k ,m l ,m n nCir Cir A , S N i , n i,k ,l∩ ∈ ∈ ≠

iS

 

The algorithm guarantees that every point on the boundary of the target region is covered 

by at least one sensor. The minimal set of sensor nodes is also selected. The 

computational complexity of the algorithm developed in this section is Ο  where n 

is the total number of sensor nodes in the network and

3( . )n N

1

n

i
N max N( i )

=

 
=  
 

. 

The key to both 2D and 3D border coverage algorithms is that they are performed 

in distributed manner. The 3D distributed coverage algorithm requires that each sensor 

node knows the information about locations of all sensing neighbors. The algorithm 

maintains a table of known sensing neighbors based on the beacons (HELLO messages) 
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that it receives from its communication neighbors. Assuming that Rc>2Rs, the sensor 

nodes need to include only their locations in the HELLO messages. When a network is 

deployed, all nodes are initially active. Redundant nodes will switch to the inactive mode 

until no more nodes can be turned off without causing coverage holes in the region. The 

distributed algorithm consists of two steps. First, each node advertises its position and 

listens to HELLO messages from other nodes to obtain neighboring nodes’ position 

information. Secondly, each node runs the border coverage algorithm (2D or 3D) 

discussed earlier and decides whether to deactivate or not. The details of these two steps 

are introduced as follows. To obtain neighbor node information, a simple approach is that 

each node broadcasts a HELLO message, which contains node ID and its current 

location, at the beginning of each round. Note: If nodes have different sensing ranges 

(due to depletion of power), the message should also include the current sensing range of 

the transmitter as well. After finishing the collection of neighbor information, each node 

evaluates its eligibility for turning off by running the 3D coverage algorithm. However, if 

all nodes make decisions simultaneously, blind points may appear. To avoid such a 

problem, each node announces to its neighbors that it is currently running the coverage 

algorithm. If the node is redundant and is eligible for turning off without affecting the 

overall coverage, it will broadcast a GOODBYE message to its neighboring nodes. 

Neighboring nodes receiving a GOODBYE message will delete the sender’s information 

from their neighbor lists.  
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Since the algorithm does not produce a unique result, it is advantageous to have a 

performance measure for comparing two different collections of sensor nodes that border 

cover a region. The measure of optimality of a border cover of a WSN is the ratio of the 

number of active border sensor nodes in the network to the minimum number of sensor 

nodes that can border cover the same region. The results in section 5.3 found the 

locations of sensor nodes to achieve optimum deployment for border coverage a region 

R. Therefore, given the region to be monitored for border coverage, one could easily find 

the number of sensor nodes required and their location for border coverage.  

 

5.4.3 Optimizations of the Distributed Algorithm 

In this section, an optimization to the border coverage selection algorithm is provided in 

order to improve the border coverage life time of the region. Sensor networks introduce 

new challenges for fault-tolerance. The algorithms presented in section 5.4.1 allow us to 

select a minimum subset of the sensor nodes already deployed that will guarantee border 

coverage of a given region. However, the emergence of border coverage holes in the 

target area is unavoidable  

A proactive method of utilizing the total energy is to assign tasks for each sensor 

nodes so that a hole is never formed. Though this solution might give optimal solutions, it 

is impractical in real time applications. In this section, we provide a reactive and practical 

approach to minimizing border coverage holes as they (or before) are formed. We 

provide this self healing algorithm as an enhancement to the border coverage algorithm 
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developed in the previous section. We call it “self heal” as the actuation is not governed 

by a user command or application but initiated by the WSN to salvage its own 

performance. 

We assume that the nodes know their initial energy content and can keep track of 

their energy expenditure and therefore can predict their own death. Sensor nodes are 

randomly deployed in a region of interest to be border covered. Every node acquires 

information about its location and communication neighbors. The border coverage 

selection algorithm developed in section 5.4.1 is run in a distributed fashion on each node 

and an optimal border cover of the region of interest is selected. However, while running 

the border coverage selection algorithm, each sensor node keeps track of the border 

neighbors i.e. the neighboring nodes who are also border sensor nodes. If a node is about 

to run out of energy (before the energy level goes below a specific threshold), it runs the 

selection algorithm on its border neighbors to select an optimal set of sensor nodes to be 

its substitute border cover i.e. to cover its border intersection in case of its death. It then 

broadcasts a HELP message in order to activate the sleeping nodes that will minimize the 

border coverage hole.  

Sensor nodes can be also misplaced or destroyed accidentally or deliberately. 

Since each node knows its own location and whether it is a part of the border cover set or 

not, upon realizing the malfunctioning of its sensor, a node broadcasts a HELP message 

in order to cover the border coverage hole. This simple extension of the border coverage 
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algorithm results in better energy utilization and extends the border coverage life time of 

the region. 

 

5.5 Identifying Coverage Boundary 

Several things can occur in the wireless sensor network that can impair their 

functionality. The target field that is supposed to be completely covered by the densely 

deployed nodes may have coverage holes, i.e. there might be areas that are not covered 

by any node (coverage hole problem). The network fails to achieve its objectives if some 

of the nodes cannot sense or report the sensed data. Some of these anomalies may be 

deliberately created by adversaries that are trying to avoid the sensor network.  

 

 

Figure 5.7(a): A region with some coverage holes and the sensor nodes that lie on the 
boundary of the coverage and coverage holes. 
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Figure 5.7(b): Exterior Boundary (Line surrounding the yellow interior) and Interior 
Boundary (Line surrounding the gray interior) illustration. 
 

In this section, a distributed algorithm to solve the “coverage boundary  problem” is 

devised i.e. detect the find those sensor nodes that are on the boundary of coverage (or 

coverage  holes) in the region. Assuming that the boundary of the region is known, we 

can easily discard those nodes that are on the boundary of the region (if required).  The 

task of identifying the sensor nodes that lie on the exterior or interior boundary would be 

much easier if it was done in a centralized way. A single node (with no energy 

constrains) is aware of the exact location of all the sensor nodes in the region i.e. it can 

form an image of the sensor distribution. Edge detection techniques in image processing 

provide an automatic way of finding boundaries of one or more objects in an image.  For 

each pixel in the image we measure the color intensity of the pixel and subtract the color 

intensity of nearby pixels. If the pixel lies in a region with sharp changes in intensity then 
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the intensity difference will be large thus indicating a boundary edge and the 

corresponding sensor node on the boundary could be easily identified. However, in real 

time, distributed and localized algorithms need to be adapted due to the energy constrains 

of a single sensor node and centralized algorithms are considered impractical. 

Let the set of all sensors that lie either on the boundary of coverage or on the 

boundary of some coverage hole H in R be denoted by C . A boundary sensor is 

therefore any sensor that is in  i.e. 

boundary

ip Cir |
boundary

C i boundary j jS C p A , S S∈ ⇔ ∃ ∉ ∀ ∈∈ . 

The work in this chapter is a continuation of our previous work where we developed 

algorithms to deactivate redundant sensors in the region and end up with a minimal set of 

sensors that fully covers the region of interest. Let the final reduced set be denoted 

by
full

C . We will start by first proving that if we had already found 
full

C ,  the reduced cover 

of a region, then C , the set of sensors that lie on the boundary of the region or holes 

in the region would be the same had we started with the original set of sensors. This 

theorem is very useful since the whole goal is to minimize the energy consumption by 

reducing the number of active nodes and depending on the application, we could either 

activate the reduced cover set or a subset of it ( C ) which will further minimize the 

energy consumption.   

boundary

boundary
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Figure 5.8: Sx (dashed circle) is a redundant sensor. Deactivating it won’t transform its 
intersecting non boundary sensor Sy (double line circle) to a boundary sensor node. 
 

Theorem 5.5.1: The set of sensors that lie on the coverage boundary is always a proper 

subset of the reduced cover set i.e. C .                                                                                Cboundary full⊂

Proof:  Suppose we have a redundant sensor 
x

S  (Figure 5.8) which will be deactivated by 

using any reduced cover algorithm. If we can prove that by deactivating
x

S , none of the 

remaining non-boundary sensors will be transformed to a boundary node, then the final 

reduced cover set of the given region will always include  . Suppose 
boundary

C
x

S  intersects 

sensors  Let  be non-boundary nodes before , ,  ..y z wS S S . ., ,  ..y z wS S S
x

S  is deactivated. Since 

x
S  is redundant, then the intersecting regions of 

x
S  and  are clearly covered by 

other sensors. In Figure 5.8, consider the intersecting Arc AB inside 

, ,  y z wS S S ...

x
S  (covered by

x
S ). 
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By deactivating
x

S , the interior arc AB is still covered by
x

S ’s neighboring nodes. 

According to the definition of a non-boundary sensor, all the points that are on the 

boundary circle are covered and by deactivating
x

S , all the points on the boundary circle 

are still covered. So, none of the non-boundary sensor nodes will be transformed to 

boundary nodes which implies that .                                                                
boundary full

C ⊂

1 2,c{ ,c Arc A=
1

Arc⇔

1 1( , 1)y

1 2R=

C

 

Definition 5.5.1: An arc is any portion of a circle of any given angle. It is represented by 

2 points, start point and end point (in degrees) going counter clock wise.                                                 

 

Definition 5.5.2: A sensor S of circumcircle (sensor boundary)   is said to be 

boundary covered by a set of arcs S

Cir

..., }r Arcn

n

i
i

Cir=
=

U .                                               

 

Based on the definition of a boundary sensor the selection algorithm will look at the 

boundary (circumference) of each sensing circle and determine whether it is completely 

covered or not. If the circumference of the sensor’s circle is completely covered by its 

neighbors then it is not a boundary sensor and therefore could be deactivated without 

affecting the overall boundary coverage. 

Consider 2 sensor nodes:  of center O x  and  of center O x  with equal 

sensing radii

1S 2S 2 2 2( , )y

R R= . We want to inspect what part of  is boundary covered by . 2S 1S
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The distance d between the 2 sensors is easily calculated as 2 2
1 2 1 2( ) (x y y= − + − )d x . In 

Figure 5.9, the portion of circle C  that is covered by  is arc 1 2C AB  which can be 

calculated from angle 2AO B∠ . In triangle 1 2AO O
∆

, 2 2 2 2. . . cos( )R R d= + R d x− arccos( )
2

d
x

r
⇒ =

,180 ]

. So 

the portion of C  that is boundary covered by  is the arc[2 1 1C 80 x x− +

S

1C

. 

jS

r i jO
Λ

1 C

A 1

2 80 ]ww + 2Axis

1Axis [1 ,1w x 80 ]w x= − − + − 1 2x O OO= ∠ 1

,360]

Arc iArc ( )ijArc Arcζ=

j iArc jic ≠

Given a sensor  being tested for boundary coverage, any neighboring sensor  is 

set as the reference neighbor and the portions covered but the other neighboring nodes 

(for example ) is calculated in terms of the reference axis by a simple rotation 

clockwise by angle O O . In Figure 5.10, the portion of C  that is covered by  is arc 

iS r

[180 , ]180AB z= − + z  referring to .  is set as a reference center and the corresponding 

reference axis 

Axis 1

1xis

C

 (line containing O O  , line perpendicular to O O ). The potion of  

covered by  is therefore CD

1

,1

C

[180= −  on a different axis ( ). Referring to the 

same reference axis ( ), 80CD where . For C  to be 

boundary covered, the total covered portion should be[0 . 

 

Definition 5.5.3: We call j  the successor of  denoted by:  if all the 

following conditions are satisfied: 

  Arc Ar∩ = ∅

 j ix x>  
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 .                                                                                                                        starting point jino A∃ ∈

 

(C1) (C2)

Figure 5.9: Two sensors S1 and S2 intersecting. The portion of C2 that is covered by C1 is 
arc AB. 
 

 

     
Axis2 

   
Axis1=Reference

    
 (C) (C1) 

     (C2) 

Figure 5.10: Sensor S of circum circle C is partly boundary covered by sensors S1 and S2. 
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In Figure 5.10, Arc CD is the successor of Arc AB i.e. ( ) ( ( ))Arc CD Arc ABζ= . Note that 

the ending point of  may coincide with the starting point of . iArc jArc

 

Definition 5.5.4:  is said to be contained in iArc jArc  ( i jArc Arc⊂ ) if the endpoints 

appear in counter clockwise order as jx , ix , , and (Figure 5.10)                                                         iy jy

 

  C 

   A

   B

D

Figure 5.11: Example of arc containment. . ( ) (Arc AB Arc CDi j= ⊂ = )

 

The first step in the algorithm is to remove those arcs that are contained in another arc 

and thus end up with a set of arcs with no arc contained inside another. Using definitions 
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5.5.1-5.5.4, the following theorem will be proven and would be the key to the distributed 

algorithm. 

 

Theorem 5.5.2:  A set  of n circular arcs (with no arc contained 

in another arc) do not completely cover (the circumference) C if and only if an 

arc  , has no successor i.e. 

1 2{ , ,..., }cS Arc Arc Arc=

Ar

n

   i cArc S for some i∈ | ( )  i c ic S Arcζ∃ ∈ =∅ .                                                       

                                                                                                                                                                        

Proof: We prove the “if” part by contradiction. Suppose 1 2{ , ,..., }c nS Arc Arc Arc=  does not 

cover C completely and there is an arc xArc C∈  that is not covered by . Suppose all the 

arcs in  have successors i.e. 

cS

 cS , (i cc S )iAr Arcζ∀ ∈

1 2, , ...,

≠∅ . Without loss of generality, 

suppose that the arcs are ordered as |nArc c ArcArc Ar 2 1( ), ... (n nArc Arc Arcζ ζ −= = 1 )

)

 

Since all the arcs have successors then 1 ( nArc Arcζ= which implies that the arcs 

made a complete ( ) cover on C. Therefore  should be covered by 

.Thus, we reached a contradiction and therefore all the arcs in  

 can’t have a successor i.e.

0360

}

xArc

)  ic

1 2{ , ,...,cS Arc Arc Arc=

cS

n

| (i cArc S Arζ∃ ∈ =∅ . 

To show the “only if” part, suppose | ( )  a c aArc S Arcζ∃ ∈ = ∅ . Let us study the three conditions 

that might result in aArc  having no successor. 

1.  ,Arc S Arc Arcc ab b∀ ∈ ∩ =∅

2. x xab <  
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3. .  starting point Aba∃ ∈

Suppose condition 1 is true leading to aArc having no successor. It means that aArc

a

 is 

independent. Since there are no arcs contained in another arc that means that Arc  will 

result in uncovered part of C. Suppose condition 1 is not true i.e. 

 and that condition 2 is true for all arcs |b c b a baArc S Arc Arc Arc∃ ∈ ∩ = ≠ ∅ bArc  intersecting aArc . 

Since there are no starting point of an intersecting arc that goes beyond aArc ’s starting 

point, then we can’t make a whole rotation on C and thus C is not completely covered. 

Suppose conditions 1 and 2 are invalid i.e. |b c b a baArc S Arc Arc Arc∃ ∈ ∩ = ≠ ∅  and b ax x>  

but condition 3 is true. Since there is a starting point on the intersection arc and 

conditions 1 and 2 are true then aArc  must have a successor but this is a contradiction to 

the given. 

 

After analyzing all the possible cases, we conclude that if | ( )  i c iArc S Arcζ∃ ∈ = ∅ then C is 

not completely boundary covered by .                                                                                                     cS

Using theorem 5.5.2, a computational efficient distributed algorithm that will 

select the sensor nodes that lie on the boundary of the coverage or coverage holes in the 

region can now be developed. The algorithm starts with an initialization phase where 

each node forms its neighbor set and then evaluates whether or not it lies on the boundary 

of a coverage hole depending on its boundary coverage by its neighbors. 
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Distributed Coverage Boundary Algorithm 

For each node , form the set of neighbors . iS ( )N i

The covered set of arcs in , , is initially set toiCir iSA ∅  

 

Step 1: Containment Elimination and Arc set Formation 

For every pair of nodes ( )in j kS N iS ,  

• Find the portion of Ci , =[ir jArc jx , ], and =[jy kArc kx , ], which are arcs covered by 

and  using the procedure discussed earlier. 

ky

jS kS

• Check if the endpoints appear in clockwise order as jx , kx , , and . ky jy

 If this condition is satisfied then k kArc Cir Ciri= ∩   is contained in j j iArc Cir Cir= ∩  and 

can be ignored. 

• Update the neighbor set of  to ignore the sensors with redundant arcs 

i.e. . 

iS

( ) kN i N( i ) S= −

• . { }i iSA SA Arc= ∪ j

Go to step 2. 

 

Step 2:  Successor Testing 

Successor set ζ  is initially set to . iSA
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For each element  in SA do the following: ( , )m m mArc x y= i

For each element in ( , )n n nArc x y=  in iSA Arcm−  check if m n m nx x y y≤ ≤ ≤ . If the 

condition is true then for each element ( ,k kArc x )ky=  in i m nArc ArcSA − −  check if 

n k mx x y≤ ≤ . If that condition is False for each element then (nArc Arc )mζ=  and 

mArcζ ζ= − . 

If after performing steps 1 and 2, if ζ =∅  then every arc has a successor and therefore 

the circumcircle of the given sensor node is completely covered and is declared as a non-

boundary sensor node. 

The computational complexity of the redundancy algorithm developed in this section is 

 where 3( . )n NΟ
1

n

i
N max N( i )

=
=


 

( ) |n n >


  is the maximum number of nodes in the neighbor set of any 

sensor in the network. Assuming we have a large network of size n, the computational 

complexity will beΟ . N>

 

5.6 Border Patrol Strategy 

Surveillance has been a typical application of wireless sensor networks. To conduct 

surveillance of a given area in real life, one can use stationary watch towers, or can also 

use patrolling sentinels. Comparing them to solutions in sensor network surveillance, all 

current coverage based methods fall into the first category. In the previous sections, we 

minimized the number of active sensor nodes in order to detect a target intrusion at all 
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time. In this section, we consider sleep scheduling of the border sensor nodes. A 

surveillance sensor network is desired to operate unattended for a long time, usually 

much longer than the battery life-time of a single node. Thus, power conservation is 

critical and over deployment of sensor nodes is necessary. Each border node can swap 

between working and sleeping modes and the network only maintains a subset of 

working nodes. Moreover, sleep scheduling plays an important role in sensor placement 

planning. It is very important for the network to let each node have longer sleep time, 

however, still maintain certain level of ability in detection.  

 We propose a Border Perambulation model for surveillance operations in sensor 

networks. The goal is to put the sensor nodes into deeper sleep mode and still detect any 

interesting even at all times. In the region of interest, at each point of time, only a very 

small subset of the border nodes are active (possible one border node) for intruder 

detection. As the time progresses, the active nodes move along the border, so that it will 

sweep the entire border of the region. This procedure of sweeping coverage can be 

repeated with a given period. Under this Border Perambulation model, the network’s 

power consumption rate is much lower than the conventional surveillance operations. 

However, this method has to provide ensured target intrusion detection of the region at all 

time. We will present the required conditions to guarantee target detection while using 

the border patrol technique. The Border Perambulation problem is studied as two 

separate cases: 
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Case1: In the first case (Figure 5.12), we suppose that the time for one whole loop on 

the sensors on the border cover is variable and depends on the maximum speed of the 

intruder. Let V  be the maximum speed of intruder and max sR  be the sensing radius of 

each sensor node. The time of one whole loop should be 2

max

Rst  in order to guarantee 

the detection of an intruder at all times. Knowing the total time of one whole loop on 

the border sensor nodes, the sleeping schedule of each border node can be calculated. 

Suppose we have n border nodes then the wake up time of each border sensor node 

would be

V
=

2

. max

RsT . Since each node is aware of its location and the location of 

its neighbors, we could select any border node as an origin border node S

wak nVeup =

Border0 and 

move clockwise to label the border nodes SBorder1, SBorder2... The border patrol then will 

start with the dissemination of the patrol setup containing the wake up time of each 

sensor. 

 

Figure 5.12:  (a) Example of a border patrol (case 1) and its corresponding wake-sleep 
schedule. 
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Case 2: Another case to be considered is when the optimal border deployment of the 

sensor nodes is established as shown in Figure 5.13(a). The nodes are deployed 

optimally one level at a time. The first set of border nodes (level 1) are deployed using 

an optimal deployment procedure discussed earlier. The center of each sensing region is 

on the border edges. The borders nodes of level 2 are obtained by optimal border 

deployment of the nodes on an “Imaginary Rectangular region” of 

dimensions ,s sL R W R− −  where L and W are the dimensions of the region of interest 

(see Figure 5.13(a)). 

In this case the border patrol algorithm assumes that the maximum speed of the target is 

known and the time of the iteration is constant. We want to determine the number of 

levels of border coverage needed to guarantee detection of the target. Let t be the time 

for one cycle of the patrol. Let V  be the maximum speed of intruder and max δ  be the 

level of border coverage needed for detection of an intruder at all time then max.

s

V t
R

δ =  is 

the required level of border coverage. So, we could know exactly how many levels of 

border coverage need to be activated in order to detect an intruder at all times. 
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Figure 5.13(a): Example of an optimal deployment with multiple levels. 
 

Case 3: In the third case (Figure 5.13(b)), a constant iteration time ‘t’ is assumed and the 

thickness of the border cover and the corresponding optimal wake up time of each sensor 

node to guarantee detection of the target at all time is required. The thickness of the 

border cover is the size of the active patrol zone which is a square region of sideθ . Let 

 be the maximum speed of intruder and maxV θ  be the thickness of the border cover. Then, 

the maximum distance traveled by the target would beV . So, the minimum thickness 

of the cover in order for the target to be detected at all time is

max.t

max.V tθ = . Since the size of 

the active zone in order to guarantee target detection is known, algorithms developed in 

previous sections could be used to find a reduce cover of the active zone and the sleep 

schedule of each active zone is determined (unlike the first case, where the sleep schedule 

of each individual border node was to be determined). Suppose that the region to be 
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monitored is a rectangular plane of length L and width W. Then the wake up time of each 

border sensor is the total time divided by the number of active zones i.e. 

max

2( ) 2( )

.

wakeup
t

T
L W L W

V tθ

= =
+ +   

      

t  where a    is the smallest integer greater or equal to a. 

 

 

Figure 5.13(b): Example of a border patrol (Case 3). 

 

5.7 Simulation Results 

The theoretical developments in Sections 5.2-5.6 are validated through numerical 

examples in this section. The case of random deployment of sensor nodes is studied and 

compared to the optimum deployment for border coverage. Both 2D and 3D cases are 

considered and the number of sensor nodes required for border coverage is studied. The 
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number of sensor nodes required to cover a 2D region of size 10 units by 10 units (or a 

3D region of size 10x10x10) is considered. Random deployment, optimal deployment 

and optimal selection of the nodes for border coverage are studied for different values of 

the sensing radius. The optimization to the border algorithm is also tested and resulting 

border coverage lifetime of the network is analyzed. 

To test for border coverage, the region of interest is divided to a 2D or 3D grid 

and a centralized algorithm is developed to test for border coverage by generating an 

occupancy grid and checking if the first and last row and the first and last column in this 

grid are covered. If all the cells in the first and last row and the first and last column are 

occupied, then the entire region is border covered. The region to be covered is divided 

into squares of side equaling half the sensing radius of each sensor nodes. Since the 

region to be covered is divided into a grid with cell size equal to
2
sR , any cell in this grid 

is completely covered only if its center is within a distance of 
2

sR from the sensor. Since 

we are only concerned with the border coverage, as can be seen from Figure 5.14, at most 

12 cells need be checked to verify the border coverage of a sensor and a maximum of 12n 

cells need to be checked for the border coverage region of ‘n’ sensor nodes.  
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Figure 5.14: The coverage region of a sensor node (in2D) and the occupancy grid of n 
sensor nodes with highlighted border. 

 

In the 1st experiment, the optimum 2D coverage algorithm is used to find the 

optimum border cover of region 10x10 units when sensor nodes are randomly deployed. 

The nodes have a sensing radius of 1 unit and initially different numbers of nodes are 

randomly deployed in this region using a uniform distribution. It can be seen that the 

average optimality measure of the border selection algorithm is 1.228 and the nodes that 

were active in the optimum border cover resulted in average savings of 98.4% (when the 

number of deployed nodes 500,1000,1500,2000,2500, and 3000) (Figure 5.15(a)). In 

Figure 5.15(b), the required number of sensor nodes with different radii using random 

deployment, optimal 2D Border deployment and 2D Border selection algorithm are 

compared.  
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Figure 5.15(a): The optimality measure of the border selection algorithm for different 
number of deployed nodes in 2D.  
 

 
Figure 5.15(b): Comparison between RD (Random Deployment), OD (Optimal 
Deployment), and BSCA (Border Selection Cover Algorithm) in 2D. 
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In the 2nd experiment, the same comparison (Figure 5.16(a)) is done for the 3D 

case and the resulting average optimality measure is 1.123 and when the 1500, 2000, 

2500, 3000, 3500, and 4000 nodes were randomly deployed, the border selection 

algorithm resulted in average savings of 93.71%. In Figure 5.16(b) the required number 

of sensor nodes with different radii using random deployment, optimal 3D Border 

deployment and 3D Border selection algorithm are compared.  

 
 
Figure 5.16(a): The optimality measure of the border selection algorithm for different 
number of deployed nodes in 3D.  
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Figure 5.16(b): Comparison between RD (Random Deployment), OD (Optimal 
Deployment), and BSCA (Border Selection Cover Algorithm) in 3D. 
 

In the 3rd experiment, we evaluate the border coverage percentage of the region 

when the sensor nodes are randomly deployed and the border coverage selection 

algorithm is applied. As we vary the number of deployed nodes, the border coverage of 

the region using the border cover obtained (Figures 5.17(a) and 5.17(b)) is evaluated. It is 

noticed that after a specific threshold value for 2D and 3D cases, the border coverage 

percentage is always one. The reason is that random deployment of the sensor nodes does 

not guarantee border coverage of the region below that threshold.  
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                                                                        (a) 

 
                                                                          (b) 
 
Figure 5.17: (a), (b) Varying the number of deployed nodes will result in different border 
coverage percentage for both 2D and 3D regions of interest. 
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In the 4th experiment, the system life time is tested. The metrics used in evaluating 

system lifetime is the border coverage lifetime. The overall border coverage lifetime is 

the continuous operational time of the system before the border coverage drops below its 

specified threshold (for example 0.9). In the Figures 5.18(a) and 5.18(b), the system 

lifetime is evaluated assuming that each sensor node has a limited energy supply (300 

Joules) and when it runs out of energy it is deactivated. The node deployment densities 

are 300 and 600 respectively. We started with 300 nodes deployed since that is the 

minimum number of nodes that will guarantee border coverage of the region using 

random deployment. With each density, the nodes are randomly distributed in a 10×10 

region network field and each of them starts with an initial energy of 300 J.  The power 

consumption of Tx (transmit), Rx (receive), Idle and Sleeping modes are 1400mW, 

1000mW, 830mW, 130mW respectively. As time passes, sensor nodes will be 

deactivated due to lack of energy and will leave some coverage holes in the border of the 

region. If 300 sensor nodes were deployed, after approximately 1600 seconds, the border 

coverage percentage using the original network will drop below 0.9. However, using the 

border selection algorithm it needs about 2300 seconds to drop below the threshold. If we 

increase the number of deployed nodes to 600, the cost for calculating the border cover 

will increase and thus after approximately 1690 seconds the border coverage percentage 

will go below 0.9. In both experiments, the border coverage life time of the network 

using the border selection algorithm is much better that that using the original network. In 

Figure 5.18(c), we divide the border of the region into 1000 grid points and test how 
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many sensor nodes cover each grid point before and after running the algorithm. When 

the number of deployed nodes is 600 , we could see that before starting the algorithm, the 

degree of border coverage is much higher that that after running the algorithm which 

implies that the random deployment is not optimum and therefore a lot of energy is 

wasted due to multiple active nodes in a given border region. After running the algorithm, 

most of the redundant border nodes are deactivated resulting in a much energy efficient 

deployment of the nodes. 

 
                                                                                                              (a) 
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                                                                                                                   (b) 

 
                                                                                                                         (c) 
 
Figure 5.18: (a), (b) The coverage life time of the network with different number of 
deployed sensor nodes. (c) The degree of border coverage before and after running the 
border selection algorithm. 
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In the 5th experiment, we do the same comparison that was done in the 4th 

experiment however with the optimizations mentioned in section 5.4.3 added. We notice 

that the system life time (border coverage life time) is much better than the case if we had 

started with the original set of deployed nodes. The strength of the developed algorithm is 

that it allows the sensor network to adaptively reconfigure and repair itself in order to 

improve its own performance. In Figure 5.19, as we increase the number of deployed 

nodes (from 300 to 600 nodes), the self healing border coverage algorithm performs 

better since activating a substitute set will result in better percentage of border coverage 

and therefore the border coverage lifetime of the network is increased. 

 
Figure 5.19: The coverage life time of the network with different number of deployed 
sensor nodes when using self healing enhancement of the algorithm. 
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In Figure 5.20, an example of the active nodes before and after running the 

algorithm is presented. 2000 nodes were deployed, and after running the border selection 

algorithm, 1974 nodes were deactivated resulting in savings of 98.7%.  

 

 
Figure 5.20: An example of the border selection algorithm. Active nodes, before and 
after running the algorithm are shown. 
 

Minimizing the number of sensor nodes active to border cover a region of interest 

will result in minimizing the energy consumed by the whole sensor network and thus 

increasing the life time of the network as demonstrated in the simulation results. The 

theoretical developments in sections 5.5 and 5.6 are validated through the following 

experiments. Given a random deployment of sensor nodes, the distributed hole coverage 

algorithm is applied and the sensor nodes that lie on the boundary of the coverage holes 

will broadcast a message (or will stay active while all other nodes deactivate themselves). 

The distributed hole coverage algorithm described in section 5.5 is used to find the hole 
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boundary covers in a region of 10x10 units when sensor nodes are randomly deployed. 

The nodes have a sensing radius of 0.75 unit and initially 250 nodes are randomly 

deployed in this region using a uniform distribution. Figure 5.21(a) shows the initial 

deployment of the sensors and Figure 5.21(b) selects the sensor nodes that are on the 

boundary of some coverage holes in the region using the distributed algorithm. It can be 

seen that 31 nodes were on the boundary of 6 coverage holes in the region. Figures 5.22 

and 5.23 show that as the number of deployed nodes increase (or sensing radius increase), 

the number of sensors on the boundary of the holes decrease until it reaches zero when 

there are enough sensor nodes to completely cover the region of interest. Note that we 

only consider “bounded” coverage holes i.e. holes that are surrounded by active sensor 

nodes (not by sensor nodes and the boundary of the region). We also discard nodes that 

are on the boundary of the region since the algorithm will detect both nodes on the 

boundary of the coverage and nodes on the boundary of the coverage holes.  

In the last experiment, we compare the distributed hole coverage boundary algorithm 

to the centralized algorithm. Note that the centralized algorithm identifies the holes in the 

region and the size of the hole. However, it doesn’t identify the nodes that are on the 

boundary of the holes. To do that, we adjusted the centralized implementation algorithm 

to first select the boundary grid points that lie on the boundary of each coverage hole (0 

entries) and then estimate the sensor nodes that lie on the boundary of the hole by 

minimizing the perpendicular distance from the boundary grid points to the sensing 

region of each close sensor. Figure 5.24 depicts excellent performance of the distributed 

 177 
                                                                                   
 



algorithm relative to the centralized version. The ratio of the number of holes calculated 

using the distributed algorithm to that using the centralized version always remains close 

to the ideal value of 1. It is not always equal to 1 since the algorithm considers only 

bounded holes. However, the centralized hole detection algorithm considers all holes in 

the region of interest. The simulation results show that the distributed algorithm performs 

very well compared to the centralized algorithm. 

 
                                                             (a) 
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                                                               (b) 
Figure 5.21: (a) 250 sensor nodes with sensing radius 0.75 units are randomly deployed 
in a 10x10 region. (b) 31 sensor nodes are on the boundary cover of the 6 bounded 
coverage hole. 

  
Figure 5.22: Different sensing radii of sensor nodes in a 10x10 region compared to the 
number of sensor nodes on the boundary of the bounded coverage holes. 
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Figure 5.23:  The number of deployed nodes of sensing radius 0.75 compared with the 
number of sensor nodes on the boundary of the coverage holes in a 10x10 region.  

 
 
Figure 5.24: The ratio of the number of sensor nodes calculated by the distributed 
algorithm to that calculated by the centralized algorithm. 
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In the next experiment, we evaluate the system life time. We compare between 4 

techniques. The border coverage life time using the original network, a border cover, a 

border patrol cover with minimum speed for detection, and a border cover patrol with 

double the minimum speed. As shown in Figure 5.25, we could see that the border patrol 

with minimum speed outperforms all the others. The border coverage life time is 

maximized. When doubling the speed of the virtual patrol, the border coverage life time 

decreases, since nodes will wake up twice as much had we used the minimum speed for 

target detection. However, as shown in Figure 5.26, the delay of detection will decrease 

linearly as we increase the speed of the patrol. So, it is trade off between the coverage 

lifetime and the delay of detection depending on the application under investigation.  

 
Figure 5.25:   The system lifetime as time passes. 
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Figure 5.26:  Varying the speed of the border patrol will result in smaller delay of 
detection. 
 

5.8 Chapter Conclusions 

In this chapter, two different problems: the boundary coverage and the coverage 

boundary problems were analyzed. Algorithms were proposed to compute the minimum 

number of sensors required for boundary coverage of a given region. We also provided 

algorithms which not only find the exterior coverage boundary of a network but also 

identify the boundary of the coverage holes in the network. The coverage problem (Full 

Coverage, Boundary Coverage) is one of the fundamental problems in sensor networks 

and can be used to provide energy efficient utilization of the sensors. A sensor network 

for detecting large scale phenomena such as containment flow or seismic disturbance 

may be used to describe the boundary of the phenomenon. In such cases, it is crucial to 

identify the sensor nodes that lie on the boundary of the coverage region. Part of the 
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future work is to use the algorithms developed in this chapter for tracking applications. 

The algorithms presented can be easily extended to handle different shapes of region to 

be monitored. If the region of interest is of an irregular shape, we can always use polygon 

approximation and simplification techniques to find the polygon that bounds the region of 

interest. In addition to that, the sensing radius of each sensor node need not be equal and 

the distributed algorithm could be applied to sensor networks with different sensing radii. 

In the next chapter, algorithms developed in chapter 3-5 will be used to provide and 

energy efficient tracking algorithm using WSNs. 
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Chapter 6 

Tracking using WSNs 

Distributed algorithms for boundary coverage were provided in the previous chapter. In 

this chapter, a novel approach for tracking a dynamic phenomenon is presented. 

Algorithms from Chapters 3, 4, and 5 will be used in order to implement an energy 

efficient distributed tracking algorithm using WSNs. One of the central issues in sensor 

networks is energy efficient target tracking, where the goal is to monitor the path of a 

moving target using a minimum subset of sensor nodes while meeting the specified 

quality of service (QoS). Unlike other tracking methods that are based on 

computationally complex clustering techniques, the strategy is based on finding a reduced 

cover of the whole region and then subdividing the reduced cover into sub covers based 

on the target’s location. The behavior of the proposed tracking algorithm is analyzed 

through simulation and the excellent performance is illustrated. We study the tradeoff 

involved in the energy efficient tracking of the target and compare the performance of the 

distributed tracking algorithms with other popular strategies. The gain in energy savings 

come at the expense of reduced quality of tracking. The algorithms guarantee the 

robustness and accuracy of tracking as well as the extension of the overall system 

lifetime.  
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The rest of the chapter is organized as follows. The motivation is discussed in 

Section 6.1. Tracking applications are discussed in Section 6.2. The challenges associated 

with tracking using wireless sensor networks are presented in Section 6.3. In Section 6.4, 

an algorithm for tracking a dynamic phenomenon is addressed. In Section 6.5, general 

approaches to the tracking problem are presented. Numerical simulation results that 

validate the proposed algorithms are presented in Section 6.6 and the conclusions are 

summarized in Section 6.7. 

 

6.1 Introduction and Motivation 

Tracking, which involves identifying an object by its particular sensor signature and 

determining its path over a period of time, is one of the applications that can benefit from 

exploiting the characteristics of wireless sensor networks. The inherent parallelism of 

distributed sensors makes it possible to track multiple objects simultaneously, while the 

relatively low cost and ease of deployment enable the use of sensor network based 

tracking systems in remote or inaccessible locations, and when they need to be deployed 

on short notice. Algorithms for wireless sensor networks must have low communication 

overhead, rely as much as possible on local information, adapt to failures and changes in 

network conditions, and produce results in a timely fashion. Given the requirements to 

minimize the power, it is desirable to select the bare essential number of sensors 

dedicated for the task while all other sensors should preferably be in the hibernation or 
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off state. Tracking mobile targets is an important application of sensor networks for both 

military and defense systems. Even though target tracking has been widely studied for 

sensor networks with large nodes and distributed tracking algorithms are available [50-

61], tracking in ad hoc networks with micro sensors poses different challenges due to 

communication, processing and energy constraints. In particular, the sensors should 

collaborate and share data to exploit the benefits of sensor data fusion, but this should be 

done without sending data requests to and collecting data from all sensors, thus 

overloading the network and using up the energy supply. Target tracking is considered a 

canonical application for wireless sensor networks, and work in this area has been 

motivated in large part by DARPA programs. 

In this chapter, results from the previous chapters are used to develop a distributed 

tracking algorithm using wireless sensor networks. As shown in the simulation results, 

the algorithm outperforms the other tracking algorithms in terms of tracking error and 

energy efficiency.  

 

6.2 Tracking Applications 

Research about object tracking in sensor networks varies from abstract models to projects 

designed to solve real life problems. Some papers studied object tracking in an abstract 

form and developed abstract models that either have been tested only by simulation, or 

tested on a specific application to serve as a proof of concept. Research in object tracking 
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using sensor networks designed for a specific application spans a diverse variety of 

applications. One of the main applications for tracking using sensor networks is military 

surveillance and intruder detection. The Line in the Sand project [87] is a design of a 

sensor network used for military surveillance to track intruders and identify the intruder 

as being a vehicle, soldier or civilian. Simon et al. [88] presents a wireless sensor network 

design used to detect snipers and the trajectory of bullets. Another interesting application 

of object tracking using sensor networks is animal tracking and monitoring. 

A wireless sensor network is being used to observe and track the behavior of 

zebras within a spacious habitat at the Mpala Research Center in Kenya [89]. Of 

particular interest is the behavior of individual animals (e.g., activity patterns of grazing, 

graze-walking, and fast moving, group behavior and group structure). The observation 

period is scheduled to last a year or more. The observation area may be as large as 

hundreds or even thousands of square kilometers. Butler et al. [90] presented a design of 

a sensor network to track a herd of cows and provide a virtual fence for the cows through 

collars holding sensor hardware that are attached to the cows’ necks. In this case, the 

network did not only have to track cows but also take action to guide the cows to a 

certain point using acoustic microphones. Michahelles et al. [91] presents a design of a 

sensor used to assist rescue teams in saving people buried in avalanches. The goal of their 

work is to better locate buried people and to limit overall damage by giving the rescue 

team additional indications of the state of the victims and to automate the prioritization of 

victims (e.g., based on heart rate, respiration activity, and level of consciousness). The 
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GPS system is used in the avalanche rescue system to locate victims. The Smart Floor 

[92] presents a different application for tracking in sensor networks. The project aims at 

identifying people and tracking them around a room by using pressure sensors installed in 

a carpet. The Active Bat [93] system is an indoor tracking system that uses a matrix of 

ceiling mounted receivers used to track an object with a transmitter attached to it. 

 

6.3 Performance Analysis and Challenges 

Though certain types of energy harvesting are conceivable, energy efficiency will be a 

key goal for the foreseeable future. This requirement pervades all aspects of the system's 

design, and drives most of the other requirements. 

 In target tracking using wireless sensor networks, an important requirement of the 

sensor network is that the required data be disseminated to the proper end users. In some 

cases, there are fairly strict time requirements on this communication.  For example, the 

detection of a poisonous gas intrusion in a surveillance network should be immediately 

communicated to the authority so that action can be taken. We describe the various issues 

associated with sensor networks that need to be addressed by any protocol being 

developed for application in sensor networks. We will outline some key design 

challenges for any proposed tracking algorithm in the domain of wireless sensor 

networks: 

 

 188 
                                                                                   
 



1- Large number of sensors: Networks of 10,000 or even 100,000 nodes are 

envisioned, so scalability is a major issue. Nodes may fail and new nodes may 

join the network. In the light of target tracking, the coordination function 

should scale with the size of the network, the number of targets to be tracked. 

2- Low energy use:  Since in many applications the sensor nodes will be placed 

in a remote area, service of a node may not be possible.  In this case, the 

lifetime of a node may be determined by the battery life, thereby requiring the 

minimization of energy expenditure. 

3- Network self-organization:  Given the large number of nodes and their 

potential placement in hostile locations, it is essential that the network be able 

to self-organize; manual configuration is not feasible. Individual nodes may 

become disconnected from the rest of the network, but a high degree of 

connectivity must be maintained. Sensor nodes should be capable of 

organizing themselves into a network and achieving the desired objective in 

the absence of any human intervention or fixed patterns in the deployment. 

4- Collaborative signal processing:  The end goal is detection/estimation of 

some events of interest, and not just communications.  To improve the 

detection/estimation performance, it is often quite useful to fuse data from 

multiple sensors.  

5- Distributed processing: While a centralized architecture is theoretically 

optimal and also conceptually simple, it is not suitable in a large scale area 
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because of the limited communication bandwidth of the wireless sensors. 

Moreover, failure of the fixed superior node may imply failure of the whole 

system. 

6- Tracking accuracy: To be effective, the tracking system should be accurate 

and the likelihood of missing a target should be low.  

7- Computation and communication costs: Any protocol being developed for 

sensor networks should keep in mind the costs associated with computations 

and communication. With current technology, the cost of computation locally 

is lower than that of communication in a power constrained scenario. As a 

consequence, emphasis should be put on minimizing the communication 

requirements.  

8- Uncertainty: The exact positions of the nodes can not be known, so any 

position estimate of the target being tracked will be affected.  

9- Multi-modality sensor network: The sensor have the abilities to sense the 

environment in various modalities , process the information , and forward it to 

a certain node for further processing. Compared to the single-modality sensor 

network that can only provide partial information of the environment, a multi-

modality network can obtain more complete descriptions of the monitored 

environment through combining the fused data from various sensors with 

different capabilities and strengths. 
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10- Time synchronization: Time synchronization is a critical piece of 

infrastructure for any distributed system. Distributed, wireless sensor 

networks make particularly extensive use of synchronized time: for example, 

to integrate a time-series of proximity detections into a velocity estimate; to 

measure the time-of-flight of sound for localizing its source; to distribute a 

beamforming array; or to suppress redundant messages by recognizing that 

they describe duplicate detections of the same event by different sensors. 

 

The impact of theses performance issues on the design of a tracking algorithm is 

addressed in the next sections. A distributed energy efficient tracking algorithm is 

presented. The algorithm specifically aims at minimizing the number of active nodes 

necessary to track a dynamic phenomenon while achieving a high level of tracking 

accuracy.  

 

6.4 Distributed Tracking Algorithm 

In real world, a sensor network is completely asleep for a long time. When some 

interesting event happens, only a limited zone of the network that is close to the event is 

kept in its fully active state. The active zone should be centered at the current location of 

a target phenomenon that is being tracked; and, of course, the zone should move through 

the network along with the target. Nodes that are not within sensing range of the event 
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are outside of the zone, and therefore do not waste energy. Optimally, the zone should 

move such that a phenomenon of interest is always kept inside of the zone. The zone is a 

circular region where the center of this zone is the border sensor node which had detected 

the target. The radius of the zone depends on two factors: the maximum speed of the 

intruder and the maximum time needed to calculate a reduced cover. The key to the 

algorithm is that there is no central controller i.e. each node will decide autonomously to 

be active or not in order to track the target. 

The sensor nodes in the network can be in three different modes: 

1- Full Active Mode: A node is capable of both sensing and communicating with 

neighboring nodes. 

2- Light Active Mode: A node can only communicate with neighbors. 

3- Sleep Mode: A node is inactive. 

 

The algorithms depend on the idea of “Divide and Conquer” which is basically 

selecting a reduced sensor cover for the region of interest, and if the phenomenon is 

moving, a new reduced sensor cover is established for the moving zone and so on. Every 

time the target is about to leave a zone, a border sensor node detects it and a new zone is 

created with the border sensor node as its center. A set of new sensor nodes within the 

circular zone and that belong to the reduced cover are activated. In order to save more 

energy, an enhancement to the algorithm would be adding prediction techniques where 

only a subset of the reduced cover nodes within the zone is activated depending on the 
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predicted location of the target. Both approaches are discussed in details in the following 

sections. 

Next, a number of algorithms that will aid us in developing a distributed tracking 

algorithm are provided.  

 

Algorithm 1 (Reduced Cover Algorithm) 

PROBLEM 

Given a dense deployment of sensor nodes, find a minimum subset of active nodes that 

guarantee full coverage of R. 

SOLUTION  

The algorithm in chapter 3 indicate that a sensor node  is completely covered if all the 

intersection points  are covered by some sensor 

0S

lS ,iC C∩ j 1l i, j ..n≠ =  where  and  are 

neighboring sensor nodes of  and C A

iS jS

0S 0i Ai= ∩

kC

. Therefore, to check if  is completely 

covered; one has to first find all the circles obtained by the intersection of . 

For each C , find all the intersection points. If all these intersection points are covered by 

some sensor node, then the circles  are covered which implies that is covered and 

can be deactivated.  

0S

0S

0 , k 1..kS S∩ = n

)

k

It is well known that the coverage problem in WSNs is NP-hard. The computational 

complexity of the algorithm developed in this section is Ο  where 3(N
1

n

i
N max N( i )

=

 
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 

 is 

the maximum number of nodes in the neighbor set of any sensor in the network. 
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Algorithm 2 (Sub Reduced Cover Algorithm) 

PROBLEM 

Given a reduced cover set of a region R, deduce the reduced cover of a sub region Rsub of 

R. 

SOLUTION 

Each node   that is part of the reduced cover set will receive an ALLERT 

message that contains the coordinates of the center of the sub region  and the 

maximum speed of the intruder. will check if it lies within the sub region i.e. it will 

check if and decides to be part of the reduced Sub Cover. 

( , , )j j j jS x y z

max m( , ) .i jS V t≤

( , , )i i i iS x y z

jS

axd S

 

Algorithm 3 (Boundary Cover Algorithm) 

PROBLEM 

Given a reduced cover set of a region R, deduce the border cover. 

SOLUTION 

Each node   that is part of the reduced cover set will receive an ALLERT 

message that contains the coordinates of the center of the sub region  and the 

maximum speed of the intruder. will check if its sensing region intersects the boundary 

( , , )j j j jS x y z

( , , )i i i iS x y z

jS
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lines of the sub region i.e. it will check if ( , )sub s i j sub sd S S r Rr R− ≤ ≤

1
( )

k

i
i

+ and decides to be part 

of the reduced Sub Cover. 

X n a
=

= ∑

1 ( ) ( )cos
( ( ), ( ))
x t x t a

d X t X t a
θ − − −
=

−

cost θ ( ) ( )y t a y t vt+ = +

 

Algorithm 4 (Prediction Algorithm) 

In the linear prediction (LP) model, also known as the autoregressive (AR) model, the 

next location X(n) is approximated by a linear combination of k past  locations. We are 

then looking for a vector ‘a’ of k coefficients, k being the order of the LP model. 

Provided that the ‘a’ is estimated, the predicted value is computed simply by FIR filtering 

of the k past samples with the coefficients using ( )X n − . To keep the 

calculation simple and the communication overhead low, the prediction model we use is 

only based on the target’s moving speed and its direction of movement using the previous 

and current position of the target to predict the next location. The previous position of the 

target ( ) ( ( ), ( ))X t a x t a y t a− = − − and the current position of the target ( ) ( ( ), ( ))X t x t y t=  are 

used to estimate the velocity and the direction of the movement. The velocity is given by 

( ( ), ( ))t X t a
a

−d Xv =  while the direction is . The next position of the 

target can be predicted by ( ) ( )a x tx t v+ = +  and sinθ . 

i
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Tracking Algorithm 

Energy efficient tracking of a target involves different steps: 

Phase 1: 

• Find a reduced cover of the region of interest. 

• Deduce the border cover of the region of interest. 

Phase 2: 

• Detect the presence of the target. 

• Broadcast the coordinates of the border sensor node and activate the necessary Sub 

reduced cover (Deduce the Sub border Cover). 

• Move the sub region accordingly. 

 

Figure 6.1: A snapshot of the distributed tracking algorithm in action. 
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The distributed tracking algorithm works by assigning a role for each sensor node. 

The initialization phase basically activates a border cover of the region of interest i.e. all 

the sensor nodes on the border of the region of interest are active. When a target is 

detected by a particular border sensor node Si, then Si is selected as the center node and 

broadcasts its coordinates to the reduced cover nodes in order to activate a subset of the 

reduced cover that will cover the sub circular zone of center Si. The new sub border cover 

is deduced and as soon as a border sensor node detects the intruder, the same steps are 

repeated. This procedure guarantees the tracking of the target at all times since the radius 

of the circular zone depends on the maximum speed of the target and on the maximum 

time it takes to form the reduced cover of the sub region. A snapshot of the tracking 

algorithm is depicted in Figure 6.1. The flowchart of the processing performed at any 

given node Si located at Xi to allow distributed target tracking is provided in Figure 6.2: 
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Figure 6.2: Flowchart of the processing performed at any given node using the tracking 
algorithm. 
 

 

Figure 6.3:

 
                      
 

θ

 C

    
θ  
 

ircular sector of central angle 2θ . 

198 
                                                         



A. Tracking Algorithm with prediction 

Using the prediction algorithm, a sensor node estimates the targets next location moving 

with a velocity V and directionθ . Since the ultimate goal is conserve energy while 

achieving the necessary tracking performance, only a subset of the sensor nodes within a 

circle of radius R=V.T and center X is activated. Since the direction of motion is known, 

any sensor node that belongs to the reduced cover and is within a circular sector of 

central angel α =2θ  is activated. So, instead of activating all the sensor nodes that lie 

within a circle of radius R and center X, we only activate a subset of theses sensor nodes 

that are with a circular sector of central angle 2θ  where θ  is the direction of the 

movement of the target (see Figure 6.3). The distributed tracking algorithm could be 

further optimized by encapsulating prediction techniques (Algorithm 4) and is performed 

using the following steps: 

 

Step 1: Border Sensor node   detects target. iS

Step 2: Si broadcasts an ALERT message containing its location( x , the maximum 

velocity V   , and the predicted direction of the moving target

i i, y )

max θ . 

Step 3: Any sensor node  that receives the ALERT message, checks if it belongs to the 

reduced cover of the circular zone of center . If so, it checks if the Euclidean distance 

between  and  is less than the radius of the tracking circular zone R. If that is the 

case, it checks if its within the circular sector of central angel 2

jS

iS

iS jS

θ . To do so, it checks if 
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φ , the angle between the straight line connecting - and the predicted direction of the 

target, is less than 

iS jS

θ . If that is true, it decides to be active. 

The flow chart of the processing at each sensor node using the predictive tracking 

algorithm is presented in Figure 6.4: 

 

 

Figure 6.4: The flowchart of the processing at a sensor node using predictive reduced 
cover based tracking. 
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C. Performance Measures 

We consider a sensor network consisting of n nodes deployed in some operational area, 

operating for a total time duration t. There is a single target moving through the area. We 

assume that all sensors in the network are binary detectors with a fixed sensing range Rs. 

In other words, at each instant, each sensor returns a ’1’ if the target is present within a 

distance S of that sensor, and a ’0’ otherwise. Given this simple sensor model, we take 

the centroid of the locations of all detecting sensors as an estimate of the target’s location 

at any given time ti. There are k sensors at locations 0 0i i i 0X ( t ) ( x ( t ), y ( t ))= detecting the 

target at time t . Then, the estimated location of the target is: 0

0 0T arg et T arg et T arg et 0X ( t ) ( x ( t ), y ( t ))= where 0 0
1

k

T arg et i
i

x ( t ) x ( t )
=

= ∑ , .  0 0
1

k

T arg et i
i

y ( t ) y ( t
=

= ∑ )

The two performance measures of interest to us in evaluating different tracking 

strategies are the coverage life time of the whole system (energy expenditure), and a 

measure of the tracking quality (accuracy), which reflects the uncertainty in the target’s 

location. The two metrics are presented next. 

 

Performance Measure 1 (System Lifetime) 

We evaluate the system life time. The metrics used in evaluating system lifetime is the 

coverage lifetime of the region to be monitored. The overall coverage lifetime is the 

continuous operational time of the system before the coverage drops below its specified 

threshold (for example 0.9). Assuming that each sensor node has a limited energy supply 
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(300 Joules) and when it runs out of energy it is deactivated. The power consumption of 

Tx (transmit), Rx (receive), Idle and Sleeping modes are 1400mW, 1000mW, 830mW, 

130mW respectively. As time passes, sensor nodes will be deactivated due to lack of 

energy and will leave some coverage holes in the border of the region. 

 

Performance Measure 2 (Tracking Error) 

We use the Euclidean distance between the estimated and actual locations of the target to 

measure the tracking error.  

The tracking error at any given time ti   is: 

i i T arg ete( t ) d( X( t ),X ( t ))= i  where iX ( t )  is the actual position of the target at time it  

and T arg et iX ( t )  is the estimated position of target using the distributed tracking algorithm. 

We denote the time average error over the total time t as 
0

1 t

E e( t )
t

= ∫ dt . 

 

6.5 General Approaches to the Tracking Problem 

Vlaam et al. [94] presents the design of an outdoor untagged sensor network system to 

detect multiple intruder location and velocity. Their system uses a centralized technique 

for communication and computation. However, their system suffers from serious 

limitations that make it highly impractical to use in a real application. First, the system 

requires that the nodes are distributed in such a way that the distance between the nodes 

 202 
                                                                                   
 



is always the same. This assumption makes deployment less flexible. Second, the system 

uses passive infrared sensors which require line of sight and are not direction 

independent. Third, if an object is detected by a node and after a certain time period 

another object is detected by another node, it is assumed to be the same object because 

the passive infrared sensors cannot distinguish between two objects. 

Some researchers have proposed distributed methods to overcome the problems of 

scalability and centralization in sensor networks by proposing distributed collaborative 

management techniques. The main motivation behind the idea of distributed management 

of object tracking sensor networks is that by limiting the collaboration to a small number 

of nodes in a limited geographical area, communication and computation load can be 

made independent of the size or area of the sensor network. Brooks et al. [54] propose a 

location-centric approach by dynamically dividing the sensor network into geographic 

cells run by a manager. Within each cell the manger node coordinates collaborative signal 

processing tasks. In the case of multiple measurements, they compare data fusion 

(combining data and then making a single decision) verses decision fusion (taking many 

local decisions and then combining them). Their approach can be summarized in five 

basic steps: 

1- Nodes that have wireless cells near potential target trajectories are put on 

alert. Nodes within cells collaborate to determine if a target is present. 

2- When a target is detected, the cell becomes active. If classification finds a 

target of the desired type, tracking is initiated. 
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3- Tracking includes estimating target location, direction, and speed for 

predicting future target positions. The target’s next location is predicted using 

the last two actual locations of the target. 

4- Based on the predictions, data from the active cell is sent to other cells; 

alerting them and facilitating Collaborative Signal Processing. 

5- When the target is detected in an alerted cell, that cell becomes active and the 

process repeats. 

Liu et al. [95] present a distributed method where collaborative sensor groups are 

formed, each responsible for tracking a single target. Their approach uses the same 

principles as [54]. However, they solve the problem of overlapping regions (or collision 

of tracks) when tracking multiple tracks by assigning a unique id to each track. The Line 

in the Sand project [87] exploits the fact that different metallic objects have different 

magnetic field signatures. The project defines the magnetic disturbance signature of a 

ferrous object to earth’s magnetic field as the influence field. The project models the 

soldier or vehicle as a magnetic dipole, and then measures the minimum and maximum 

area in which it disrupts earth’s ambient magnetic field. Their approach for tracking and 

identification can be summarized in the following steps: 

 

1- A classifier passes a set or sets of nodes constituting each classified intruder 

and intruder type to the tracking module. 

2- For the first time, the tracking module tags it as a new intruder. 
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3- It estimates the most likely intruder location as the centroid of the convex 

region enveloping all nodes detecting it. 

4- It predicts an expected region for the intruder based on the velocity of the 

intruder type. 

5- It correlates the tracked objects from successive windows in order to construct 

a continuous track per intruder. 

6- If the expected and the estimated intruder region do not match, a new intruder 

is created. 

 Aslam et al. [96] proposes a method of using only one bit encoding to determine 

the direction information of the tracked object. The bits are broadcasted from the sensor 

nodes to a center station. This approach has a considerable impact on lowering the 

message size exchanged between the nodes. However, it requires extra sensors to provide 

proximity information if the location of the object, and not only the direction of the 

object, is to be determined. In their approach, the accuracy of the trajectory depends on 

the number of data points. Since their model has been only tested by simulation, it is not 

guaranteed that their model will work for a practical sensor network tracking application. 

The issue of energy management in an object tracking sensor network has been 

gaining more interest recently. The work in [97 and 98] proposes an energy efficient 

technique using a sleep schedule where the nodes go to sleep when there is no need for 

sensing. Their algorithm makes use of the fact that the sensor network energy 

consumption is inversely proportional to the node density. Therefore, by reducing the 
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coverage of non-critical areas we can save more energy switching those nodes in the non-

critical areas to sleep mode. Gui et al. [99] uses the same principles for the algorithm in 

[97] but further divides the state of the sensor nodes into two states, surveillance state and 

tracking state. 

The work in this dissertation successfully combines all the strengths of other 

algorithm and at the same time eliminates their weaknesses. The algorithms are 

distributed, and minimize the number of sensor nodes active at one time while 

guaranteeing the quality of service needed. The system life time is extended and the delay 

of detection is minimized. In the next section, the distributed algorithm is compared to 

other popular distributed tracking algorithms and the advantages behind the work are 

highlighted. 

 

6.6 Simulation Results 

In this section, the theoretical results are validated through experimental simulations. The 

metrics developed in Section 6.4 are compared on different tracking strategies. The 

strategies that will be compared are: 

1- Basic Strategy (BS): In this strategy, all the sensor nodes are in full active 

mode. Obviously this strategy offers the worst in terms of total coverage life 

time. However, it offers the best results in terms of tracking accuracy and thus 

serves as a baseline for comparison with other developed strategies. 
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2- Reduced Cover Strategy (RCS): In this strategy, the cover redundant sensor 

nodes are deactivated using algorithm 1 and all the remaining sensor nodes 

that are in the reduced cover track the object. 

3- Basic Selective Predictive Strategy (BSPS: In this strategy, only a small 

subset of all the nodes is in tracking mode at any given point of time. They 

also predict the “next” position of the target and hand over tracking to nodes 

best placed to track the target in the “next” position. The rest of the nodes are 

in communication mode and can switch to tracking mode on being alerted by 

signals from tracking nodes. All the sensor nodes within a circle of specified 

radius centered on the predicted target location are in full active mode. 

4- Reduced Cover Selective Tracking Strategy (RCSTS): In this strategy, only a 

subset of the reduced cover is activated to guarantee that the target is detected 

at all time. 

5- Reduced Cover Selective Predictive Strategy (RCSPS): This strategy is an 

enhancement to RCSTS where only a subset of those activated using RCSTS 

are activated depending on the targets next predicted location. 

 

We simulated a virtual large network of sensor nodes deployed on a 10x10 region of 

interest. A total of 1000 nodes were deployed. Different trajectories of the target were 

considered. First, the optimum coverage algorithm described in section 3 is used to find 

the reduced cover of region 10x10x10 units when sensor nodes are randomly deployed. 
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The nodes have a sensing radius of 1 unit and different numbers of nodes are randomly 

deployed in this region using a random distribution. It can be seen that the size of the 

reduced cover is almost the same as the number of deployed sensor nodes is increased, 

which indicates that the algorithms are scalable. Starting with 1000 deployed sensor 

nodes, the necessary number of nodes to be active in order to fully cover the region of 

interest is about 82 sensor nodes , resulting in a great deal of energy savings. 

The performance of the network over time was also studied to determine the benefits 

of using a reduced cover tracking algorithm. This is done by assuming that each sensor 

node has a limited energy supply of 300 Joules and is deactivated when the available 

energy is used up. The performance is evaluated in terms of coverage lifetime. It can be 

seen in both the cases that the overall coverage drops over time as the available energy is 

used in processing the queries. Using the reduced network, it is seen that the resultant 

cover over time is significantly better. This is because each node in the reduced network 

has fewer neighbors and as a result has more efficient communications and less energy 

expenditure per query. This improvement in the coverage lifetime comes at a cost. The 

algorithm for obtaining the reduced network requires the communication between a node 

and its neighbors and as a result a portion of energy is used up during the initialization 

stage of the network. This causes early onset of degradation and loss of cover. This, 

however, can be addressed by incorporating self healing in the WSN.  

Using the basic predictive strategy BSPS, there is significant improvement on the 

amount of energy consumed since only a subset of the nodes are active depending on the 

 208 
                                                                                   
 



next location of the target. Comparison between the 3 algorithms is presented in Figure 

6.5(a). Using the two proposed tracking algorithms (RCSTS and RCSPS), we notice that 

we can further improve on the energy savings and thus increasing the overall cover life 

time of the system as depicted in Figure 6.5(b). As we increase the number of deployed 

sensor nodes, the results are very similar however, we note the using BSPS decreases its 

performance since all the sensor nodes within a specified radius are activated while using 

the reduced cover approach, the number of sensor nodes to be activated would almost be 

the same since we first calculate the reduced cover of the region and then activate the 

necessary subset in order to track the target. The results are shown in Figure 6.5(c) and 

Figure 6.5(d). 

 

Figure 6.5(a): The coverage life time of the network as time passes using 3 different 
algorithms BS, RCS, BSPS when the number of deployed nodes is 800. 
 

 209 
                                                                                   
 



 

Figure 6.5(b): The coverage life time of the network as time passes using 3 different 
algorithms BSPS, RCSTS, RCSPS when the number of deployed nodes is 800. 

 
 
Figure 6.5(c): The coverage life time of the network as time passes using 3 different 
algorithms BS, RCS, BSPS when the number of deployed nodes is 1600. 
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Figure 6.5(d): The coverage life time of the network as time passes using 3 different 
algorithms BSPS, RCSTS, RCSPS when the number of deployed nodes is 800. 

 

The next experiment is more concerned with the accuracy of the tracking algorithm 

and compares the tracking error metric discussed in section 6.3 for the different tracking 

algorithms. We notice that in terms of tracking error, with no surprise, BS outperforms all 

the others. However, as the sensing radius of each sensor node is increased, all the other 

algorithms converge to a negligible tracking error. The results are shown in Figure 6.6.  
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Figure 6.6:  The resulting tracking error as we increase the sensing radius of each sensor 
node using 4 different algorithms: BS, BSPS, RCSTS, and RCSPS.  
 

The simulation results show us the energy-quality trade offs between the different 

tracking algorithms. The algorithms minimize the number of active nodes while 

guaranteeing the moving target is detected at all times. 
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6.7 Chapter Conclusions 

In this chapter, distributed tracking algorithms using wireless sensor networks were 

proposed. Theoretical as well as experimental results were developed. Unlike previous 

work in this area, the algorithms presented in this chapter make use of a minimal subset 

of sensor nodes in order to track a target. This minimizes the overall energy consumption 

and therefore, extends the lifetime of the network. 
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Chapter 7 

Dissertation Conclusions 

In this dissertation, the problems associated with the coverage of a wireless sensor 

network (WSN) and their impacts on the energy consumption were addressed. The 

limitations of existing techniques in the literature in determining the extent of coverage of 

the WSN when deployed in three dimensional spaces were studied. Computationally 

simple but elegant techniques were then developed for guaranteeing the coverage of the 

WSN using a minimal number of sensor nodes. The flexibility of the proposed 

approaches was also demonstrated for a range of applications requiring different types of 

coverage. The energy savings obtained using the proposed techniques was demonstrated 

through numerical simulations of the proposed techniques, as well as established 

techniques from the literature. The following sections highlight the contributions of the 

research presented in this thesis and the scope of the future work. 

 

A. Technical Contributions 

1. Optimal Placement of Sensors. The coverage problem in a three dimensional 

space was rigorously analyzed and the minimum number of sensor nodes and 

their placement for complete coverage was determined. This is a very important 
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result that will aid in the planning of wireless sensor networks. The numerical 

results in the thesis show that the total energy dissipation is a function of the 

number of active nodes and the ability to precisely place a minimum number of 

nodes will result in the most efficient deployment of a WSN.  

 The knowledge of the minimum number of nodes required for coverage is also 

a useful quantity in comparing different deployments of WSNs for coverage. The 

ratio of the total number of deployed nodes to the optimum number of sensor 

nodes defines a ‘measure of optimality’ that will enable the comparison of 

different implementations of a WSN from an energy efficiency stand point. 

 

2. Optimal Cover for Random Deployments of WSNs. Many practical 

applications of WSNs do not allow the flexibility of placing the sensor nodes at 

optimum locations. The sensor nodes in these applications are randomly 

distributed, for example dropped from an airplane. In such cases, the problem of 

determining the coverage and selecting a minimum subset of sensor nodes for 

complete coverage is of paramount importance for the proper functioning of the 

network. In this thesis, a computationally efficient algorithm was developed that 

enables the deactivation of nodes that have overlapping coverage with 

neighboring nodes. This algorithm can be implemented in a distributed fashion 

and results in a measure of optimality close to ‘1’. 
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3. Extent of Coverage and Border Coverage. Practical deployments of WSNs do 

not always guarantee complete coverage of a specific region of interest. 

Therefore, it is necessary to determine the extent of the sensing cover and if any 

‘holes’ exist in the coverage. The algorithms presented in Chapter 5, for the first 

time, provide algorithms that help determine the size and number of ‘holes’ in the 

coverage of deployments in the two and three dimensional regions. 

4. Efficient Border Cover and Border Perambulation. Existing coverage 

algorithms do not provide the flexibility in choosing the sensor nodes depending 

on the needs of the application. The algorithms presented in Chapter 5 not only 

help  determine the subset of nodes for covering the boundary of a given region, 

but also schedule the activation of nodes on the boundary for border 

perambulation. Application specific cover ensures that only the absolutely 

minimum number of sensor nodes is active at any given time, thereby ensuring 

minimum expenditure of energy and maximum lifetime of the WSN. 

5. Tracking of Dynamic Phenomenon. One of the central issues in sensor networks 

is energy efficient target tracking, where the goal is to monitor the path of a 

moving target using a minimum subset of sensor nodes while meeting the 

specified quality of service (QoS). Unlike other tracking methods that are based 

on computationally complex clustering techniques, the strategy adopted in this 

dissertation is based on a computationally simple but elegant technique of finding 

a reduced cover of the whole region and then subdividing the reduced cover into 
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sub-covers based on the target’s location. The tradeoffs involved in target tracking 

are analyzed and the performance of the tracking algorithm is compared with 

other popular strategies from the literature. The behavior of the proposed tracking 

algorithm is analyzed through simulation and the improved performance is 

demonstrated. It is shown that there is a trade-off between the accuracy in 

tracking and the energy expended in the WSN. The gain in energy savings come 

at the expense of reduced quality of tracking. 

6. Self Healing for Fault Tolerant Operation. The ‘self healing’ algorithms 

developed in this dissertation ensure that the functionality of the WSN remains 

close to optimum even when the network is affected by faults or node outages. 

This property along with the optimization techniques proposed herein make 

possible the implementation of highly efficient, robust sensor networks whose 

performance is optimized with respect to the needs of the application. 

 

 The coverage algorithms developed in this dissertation are a significant addition 

to the scientific knowledge in the area of wireless sensor networks. The proposed 

techniques help realize the practical deployment of wireless sensor networks in three 

dimensional regions. The algorithms presented can be easily extended to handle different 

shapes of region to be monitored. If we have region of an irregular shape, we can always 

use polygon approximation and simplification techniques to find the polygon that bounds 

the region of interest. In addition to that, the sensing radius of each sensor node need not 
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be equal and the distributed algorithm could be applied to sensor networks with different 

sensing radii.  

In this thesis, the sensing region of each sensor node was assumed to be a disk 

(2D) or an open ball (3D). This model is a simplification motivated by the need for 

analysis. This model, while useful, is still simplistic and does not address the realities in 

practical implementations. Signal to Noise ratio (SNR) in sensing, multi-path and fading 

issues in communications between the nodes, and data fusion are all important aspects 

that affect the functioning of a WSN and will be investigated in our future work. Our 

future work also evaluates the performance of our algorithms based on different sensing 

models and the design of hybrid coverage protocols capable of delivering accurate spatio-

temporal profile of different kinds of sensing measurements. 

We summarize the open research problems and point out the possible research 

directions in the area of sensor networks. The current research trends in object tracking 

using sensor networks as evident from recent published research papers are focusing on 

collaborative signal processing, distributed management of the network, energy efficient 

object tracking, and designing a sensor network to solve a specific tracking application. 

Some of the open research problems are summarized below. 
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B. Scope of the Future Work 

1- Localization and Topology Control in Sensor Networks: The locations of 

sensor nodes are important for the meaning of collected data and for routing. 

The localization problem is to determine the node positions based only on the 

information obtained through the nodes’ interactions, such as connectivity, edge 

lengths and angles. Topology control is the process of controlling the topology 

of a wireless network by adjusting the coverage ranges of its wireless nodes. 

Using rigorous combinatorial and probabilistic analysis, a future goal is to study 

various topological properties (e.g., connectivity, routing path, degree, local 

minimum for geographical routing, etc.), and present several variations of the 

topology control method. The findings should show balance between the 

various aspects of network performance. 

2- Power-aware System Design: In recent years, there have been active 

developments of mechanisms that try to minimize power consumption while 

still providing some level of functionality in sensor networks. Many of these 

mechanisms operate at different levels. For example, new MAC layers try to 

optimize the link layer scheduling of multiple nodes to minimize power 

consumption. Topology control mechanisms try to exploit the redundancy in the 

communication networks to maximize network lifetime. Multiple routing 

mechanisms have been developed to minimize energy consumption. 

Investigating the feasibility of integration of several of these mechanisms 
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into one unique framework is crucial. Analytical studies and experimental 

evaluation to quantify the performance gains obtained by each particular 

scheme, and the energy effect of all the mechanisms operating at the same time 

should be preformed. 

3- Security in Wireless Sensor Networks: Today, many networking and 

distributed systems are very vulnerable to faults or attacks, which can 

compromise the system performance, corrupt important data, or expose private 

information. Research on security has gained more and more attention and its 

major goal is to make systems more sustainable, secure and trustworthy. Future 

research will investigate security issues in networks and distributed systems, 

such as the resilience of peer-to-peer systems, the defense to distributed denial-

of-service attacks, and privacy-preserving data mining. In contrast to traditional 

networks, wireless sensor networks encounter unique security problems due to 

their close interaction with physical environment.  

4- Object Tracking with Dynamic Sensor nodes: All of the research that has 

been done assumes that the sensor nodes are static and are not mobile. The 

problem of tracking an object while the sensor themselves are mobile has not 

been researched yet. The idea of a mobile sensor network for tracking has not 

matured yet but applications such as ZebraNet indicate that such a network 

might exist or be needed in the future. A mobile sensor network for tracking 

 221 
                                                                                   
 



will require different (or extended versions) of current algorithms for 

communication, collaborative signal processing, and tracking. 

5- 3D Tracking: Applying the tracking problem to track systems in three 

dimensions, where the sensor network is three-dimensional and tracking needs 

to be in a three-dimensional matter. To the best of my knowledge, no one has 

researched the problem specifically or has indicated how to extend the two 

dimensional tracking problem to three dimensions.  

6- Data Mining in Smart Sensor Networks: Sensors streaming their data online 

are turning the Internet into a global sensor network. Software platforms that 

integrate and mine these data streams may create a world in which sensors 

become pixels and we browse reality as easily as we browse Web pages today. 

The evolution of low cost, networked sensors, often directly Internet-enabled, is 

bringing sensors out of their traditional closed-loop realms into the rest of our 

reality. As sensor and communications technology continues to develop, we can 

envision a very different Internet than the one we use today. Rather than 

sending messages and browsing Web pages, we may experience new 

interactions such as experience sharing and browsing reality. Data mining, 

defined broadly as extracting useful information and insights from data, may be 

the untold half of the sensor networks story. Given the potentially huge amount 

of data streamed by live sensors, algorithms to fuse, interpret, augment, and 
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present information will become an increasingly important part of networked 

sensor applications.  

7- Generalized Geographical Routing: Geographical routing is a very important 

routing method, especially for ad hoc networks, mainly due to its high 

scalability. It is widely used for wireless networks, where it guides routing by 

using nodes’ coordinates. Currently, the performance of geographical routing is 

limited by the hardness of the embedding process, the metric distortion caused 

by embedding, and its sensitivity to particular network models (such as the 

UDG model for wireless networks). A future goal would focus on studying new 

routing methods that generalize geographical routing, which use new backbone 

structures to guarantee message delivery and new shortcut links to guarantee 

efficiency.  

8- Time Synchronization in Wireless Sensor Networks: Time synchronization is 

a critical piece of infrastructure in any distributed system. In sensor networks, a 

number of factors make flexible and robust time synchronization particularly 

important, while simultaneously making it more difficult to achieve than in 

traditional networks. Collaboration among nodes is often required for the data 

reduction that is critical to the energy efficiency of a sensor network. A future 

research goal would be to describe a spectrum of general design principles for 

sensor network time synchronization, and propose and implement a number of 

specific techniques. 
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