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Abstract

The efficiency of a multi-core architecture is directly related to the mechanisms that

map the threads (processes in execution) to the cores. Determining the resource

availability (CPU and main memory) of the multi-core architecture based on the

characteristics of the threads that are in execution is the art of system performance

prediction. In this dissertation we develop several prediction models for multi-core

architectures and perform empirical evaluations to demonstrate the accuracy of these

models.

Prediction of resource availability is important in the context of making process

assignment, load balancing, and scheduling decisions. In distributed infrastructure,

resources are allocated on demand on a chosen set of compute nodes. The nodes

chosen to perform the computations dictate the efficiency by which the jobs assigned

to them will be executed. The prediction models allows us to estimate the resource

availability without explicitly querying the individual nodes. With the model in hand

and knowledge of the jobs (such as peak memory requirement and CPU execution

profile), we can determine the appropriate compute nodes for each of the jobs in

such a way that it will improve resource utilization and speed job execution.

More specifically, we have accomplished the following as part of this dissertation:

(a) Develop mathematical models to estimate the upper- and lower-limits of CPU

and memory availability for single- and multi-core architectures.

(b) Perform empirical evaluation in a heterogeneous environment to validate the

accuracy of the models.

xvii



(c) Introduce two task assignment policies that are capable of dispatching tasks to

distributed compute nodes intelligently by utilizing composite prediction and

CPU usage models.

(d) Propose a technique and introduce models to identify combinations of parame-

ters for efficient usage of GPU devices to obtain optimal performance.
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Chapter 1

Introduction

The success of approaches for assigning threads (or processes) to multi-core and

many-core systems relies on the existence of reasonably accurate models for esti-

mating resource availability. This is because there is a strong relationship between

a thread’s total execution time and the availability of CPU and memory resources

used for its execution [1]. Therefore, predicting the resource availability that results

when threads are assigned to a processor is a basic problem that arises in many

important contexts. Accurate resource availability prediction model is important

because there exists a wide range of applications and scientific models (e.g., geologi-

cal, meteorological, economical and others) that requires extensive use of both CPU

and memory resources, repeatedly. These models fall into this category, where the

program remains the same and the data on which it operates changes over time. The

distributed task assignment problem in general is NP-Hard and it is further compli-

cated by the changing dynamics (changes to CPU and main memory availability) of

the compute nodes [1].

1.1 Overview

In time-shared systems, the utilization of the CPU and the speed of the computer’s

response to its users have improved as a result of CPU scheduling [2]. To realize
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this increase in performance, it is often customary to keep several processes running

in the system [3]. For a process to execute, it is necessary for the system to swap

in the required portion of code and data of the process in the physical memory

(i.e., necessary pages containing executable codes and data are placed into primary

memory). Additional pages can be loaded when they are demanded during program

execution.

As the degree of multi-programming has increased significantly, over-allocating

memory may result in severe performance degradation. Demand paging saves the

I/O necessary to load pages that are never used but increases the probability of

memory overrun. This situation requires added attention and is considered as a

matter of concern in this dissertation because the memory overrun triggers page

swapping from primary memory to backing store (victim pages are selected from

existing processes) which can escalate the process execution time immensely. If one

access out of 1, 000 causes a page fault, the system can be slowed down by a factor

as high as 40 because of the page fault service time. Thus, the effective access time

is directly proportional to the page-fault rate [13,14].

In this dissertation, an approach for predicting the efficiency of multi-core pro-

cessing associated with a set of concurrent tasks (or processes) with varied CPU re-

quirements is introduced. Prediction of CPU availability is important in the context

of making process assignment, load balancing, and scheduling decisions in distributed

systems. Theoretically derived upper- and lower-bound formulas for estimating CPU

availability are introduced. Input parameters to the formulas include: number of

cores; number of threads; core hyper-threading; and the unloaded CPU usage factor

for each thread. From the empirical results, a model for average CPU availability is

introduced for the set of applications that require a single predicted value (instead

of bounds).

In addition to CPU availability, memory performance model for estimating the

execution efficiency of tasks due to primary memory availability is introduced. A
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memory performance model is derived to predict the execution efficiency of con-

current tasks when the available memory is less than required amount of memory.

Parameters used in this model are: required memory by processes; available memory

frames; memory access time; and backing store overhead. The CPU and Memory

availability models are then used as building blocks to derive the Composite resource

availability prediction model. Through empirical studies, it is shown that the pro-

posed bounds processing efficiency are consistently tight. The proposed composite

prediction model provides a basis of an empirical model for estimating execution

efficiency of processes while CPU and memory resources are uncertain.

By utilizing the introduced composite prediction model, two policies for efficiently

schedule heterogeneous tasks in a distributed environment are introduced and exten-

sively evaluated empirically. Given a set of tasks each with varied CPU and main

memory requirements, and a cluster of compute nodes (which are significantly less

than the number of tasks), our goal is to find an assignment of tasks to compute

nodes such that the total time taken to execute all the tasks is minimized. The key

challenge is to determine the CPU availability prior to placement of tasks into the

run queue. A new model is presented in this dissertation to predict the CPU avail-

ability for a new task (instead of a group of tasks) before placing the task into the

run-queue. For all empirical evaluations on UNIX systems, benchmark programs

are deployed that are both synthetic (allowing us to control the CPU and mem-

ory requirements) and real-worlds tasks including prime number generator, merge

sort, image rendering, and others for validating introduced resource availability and

task assignment models. The empirical results are then compared with Terascale

Open-source Resource and QUEue Manager (TORQUE) and it’s observed that both

introduced model outperforms the popular TORQUE scheduler.

Using Graphics Processing Units (GPUs) to solve general purpose problems has

received significant attention both in academia and industry. Harnessing the power

of these devices however requires knowledge of the underlying architecture and the
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programming model. Because of the increasing usability of GPUs, an analytical

model to predict the performance of GPUs for computationally intensive tasks is

also introduced. The proposed model for GPUs provides alternative possible com-

binations of the parameters for efficient usage of the device and obtaining optimal

performance. The study can also be used in the context of heterogeneous envi-

ronments where multiple GPU devices with different hardware configurations are

employed.

1.2 Motivation and Problem Statement

Multi-threading is a common technique used for exploiting performance from multi-

core processors. When the number of threads assigned to a multi-core processor is

less than or equal to the number of CPU cores associated with the processor, then

the performance of the CPU is predictable, and is often nearly ideal. When the

number of assigned threads is more than the number of CPU cores, the resulting

CPU performance can be more difficult to predict [1]. For example, assigning two

CPU-bound threads to a single core results in CPU availability of about 50%, mean-

ing that roughly 50% of the CPU resource is available for executing either thread.

Alternatively, if two I/O-bound threads are assigned to a single core, it is possible

that the resulting CPU availability is nearly 100%, provided that the usage of the

CPU resource by each thread is fortuitously interleaved. However, if the points in

time where both I/O-bound threads do require the CPU resource overlap (i.e., they

are not interleaved), then it is possible (although perhaps not likely) that the CPU

availability of the two I/O bond threads could be as low as 50% [7]. Therefore,

considering the number of processes in the run queue itself as a load index is not

generally sufficient.

Existing prediction models typically assume CPU resources are equally distributed

among all processes in the run queue by following a Round Robin (RR) scheduling

technique [1, 13]. These models use the number of processes in the run queue as
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the system load index. As a result, the CPU availability prediction for a newly

arriving process when there are currently N processes in the run queue is simply

1/(N + 1). This predictor is only accurate for CPU-bound processes, which share

CPU resources in a balanced manner; consistent with the RR model assumption.

But, when the processes also require I/O resources, this approach fails to provide

accurate predictions. Thus, when there are processes in the run queue that require

CPU and I/O resources, a more complex model is necessary to describe (and predict)

how the CPU is shared.

For any prediction approach, it can be useful to know a priori certain charac-

teristics of tasks that are planned to be assigned to the system. As an example,

it is useful to know the maximum amount of main memory a task will consume

during its execution (memory requirement). This information is useful to forecast

the amount of time that may be consumed for memory paging activities. It is also

useful to know the CPU requirement of the task, which is the fraction of time a task

requires the CPU. While a priori information such as memory and CPU require-

ments of tasks are useful, it is easier to obtain in some cases and more difficult in

others. For example, in the case of Merge sort we can approximately determine the

memory requirement based on the number of elements to be sorted [17]. For tasks

such as generating prime numbers, computing Fast Fourier Transforms, and related

others require significant use of the CPU. One can also know the CPU and memory

requirements of a task based on the information gathered from its earlier executions.

The execution of many scientific models (economic, meteorological, and others) fall

into this category, where the program remains the same and the data on which it

operates changes over time.

Next to focus on massive parallel programming domain, GPUs have established

their usefulness for solving general purpose large problems that requires massive par-

allel execution. The availability of GPUs as commodity hardware and co-processors

to CPUs, and the relative low cost-to-performance ratio has propelled these devices
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to the forefront or research in both academia and industry. However, in reality, to

exploit the full potential of these devices, understanding the underlying architecture

and the basics of the programming model are required. Because of this paradigm

shift which has left developers striving for better performance from the available

hardware has provided us a scope to analyze and develop analytical models to pre-

dict the performance of GPUs for computationally intensive tasks.

1.3 Objectives of this Research

The objectives of this research are as follows:

• The first objective of this research is to theoretically derive a CPU availability

prediction model that can estimate the available CPU for a batch of tasks for

single- and multi-core systems. The idea is to investigate the actual CPU usage

for a set of benchmark threads and check whether they fall inside the intro-

duced upper- and lower-bounds. Moreover, accuracy of the CPU availability

model is performed in Windows systems with Java programming language and

Linux systems with C programming language.

• The second objective of this research is to predict the execution efficiency of

running threads when the required amount of memory by running threads are

more than available primary memory. To achieve this goal, we propose a Mem-

ory performance model and perform extensive empirical studies for validating

the model.

• The third objective of this research is to combine the effects of two primary

resources of compute systems (CPU and Memory) non-trivially and derive a

Composite resource prediction model by utilizing the CPU availability and

memory models. We verify the accuracy of the composite model by deploying

real-world benchmark programs, thereby ensuring the reliability and usefulness

for real-world applications.
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• The fourth objective of this research is to use the composite prediction model

as a building block to introduce distributed task assignment policies. The

idea is to intelligently distribute jobs from the queue to distributed multi-core

compute nodes so that the overall execution time is reduced. Here, the key

challenge is to dynamically estimate available resource of nodes to make correct

task assignment decision. To achieve this goal, the new CPU usage prediction

model is derived to dynamically estimate resource availability whenever a new

task arrives or an old task terminates.

• Finally, using Graphics Processing Units (GPUs) to solve general purpose

problems has received significant attention both in academia and industry.

Harnessing the power of these devices, however, requires knowledge of the un-

derlying architecture and the programming model. Our fifth objective is to

provide guidelines to programmers to tailor their code to achieve maximum

GPU performance. We develop analytical models to predict the performance

of GPUs for computationally intensive tasks. We verify the proposed models

using benchmark programs from the Nvidia CUDA GPU Computing SDK and

also on multiple platforms including both Tesla and the latest Kepler GPUs.

1.4 Contributions of the Dissertation

The contributions of this dissertation are summarized as follows:

• Develop a mathematical model to estimate upper- and lower-bounds of CPU

availability for single- and multi-core architectures.

• Perform empirical evaluation in both Windows systems with Java language

and Linux systems with C language to validate the accuracy. An average CPU

availability model is introduced as a result of the empirical studies.
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• Develop a theoretical model to measure the execution efficiency of concurrent

threads while the memory availability is uncertain.

• Combine the CPU and memory model non-trivially to derive a new composite

prediction model and evaluate empirically.

• Introduce two task assignment policies that are capable of dispatching tasks

to distributed multi-core compute nodes intelligently by utilizing composite

prediction and CPU usage models.

• Propose a technique and introduce a model to identify candidate combina-

tions of parameters for efficient usage of the GPU device to obtain optimal

performance (for heterogeneous GPU devices).

1.5 Organization of the Dissertation

The rest of the dissertation is organized as follows. Chapter 2 discusses the basics

and relevant work in CPU, memory, task assignment, and GPU areas. Chapter 3

presents the theoretical CPU availability prediction model and conducts empirical

work in JVM running under Windows to observe the accuracy. In Chapter 4, we

perform empirical work in Linux environment for validating the CPU model utility

for a different platform. This chapter also introduces a compact lower-bound model

(useful for the Linux systems running C programming language) and an average

CPU availability model. Chapter 5 presents the memory model with empirical work

followed by the composite CPU/Memory model. Two task assignment policies,

Task Assignment using Status Measurements (TASM) and Task Assignment using

Status Estimates (TASE), are introduced in Chapter 6 and empirically verified with

real-world benchmark programs. The empirical results are then compared with the

popular TORQUE system. In Chapter 7, we present a mathematical model to

measure the performance of compute intensive tasks for GPUs. The empirical work
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is conducted for two different GPU architectures keeping heterogeneity in mind.

Finally, Chapter 8 incorporates concluding remarks and future research directions.

9



Chapter 2

Literature Review

It is necessary to have accurate models for estimating resources of compute nodes in

parallel and distributed systems because of the dynamic nature of computer systems

and their workload. In this chapter, a review of different Linux schedulers (versions

2.4 and 2.6+), resource availability prediction approaches, and Graphical Processing

Unit (GPU) basics and programming model are provided to help the reader better

understand context and prior research relevant to this dissertation.

2.1 Linux Scheduling at a Glance

The Linux scheduler makes it possible to execute multiple programs at the same

time, thus sharing the CPU with users of varying needs. An important goal of

a scheduler is to allocate CPU time slices efficiently while providing a responsive

user experience. The scheduler can also be faced with such conflicting goals as

minimizing response times for critical real-time tasks while maximizing overall CPU

utilization [39]. An understanding of the basic ideas of Linux 2.4 and 2.6 and newer

schedulers is necessary to clearly view the proposed models capable of predicting the

CPU availability on a Linux workstation.

Processes are created by a parent process during execution. Usually the child

processes are created to execute a binary from an existing process, with the system
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Figure 2.1: Various states of Unix Processes [34].

call fork(). Processes are usually created to run through a shell or terminal. In this

case the shell is the parent process that execute child processes. In Unix / Linux

type systems each process has a parent process except the parent called init [34].

Figure 2.1 shows various states of new processes in the Unix environment. Almost

all the activities make use of a system of processes to carry out their tasks. Active

processes are placed in an array called a run-queue. The run queue may contain

priority values for each process, which will be used by the scheduler to determine

which process to run next. To ensure each program has a fair share of resources,

each one is run for some time period (quantum) before it is paused and placed back

into the run queue. When a program is stopped to let another run, the program with

the highest priority in the run queue is then allowed to execute. Processes are also

removed from the run queue when they are put to sleep, are waiting on a resource

to become available, or have been terminated. When a processes is preempted, it
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enters in the state p. The preempted process is also runnable and shown by a dotted

line between the states.

2.1.1 Linux Scheduler 2.4

The 2.4 scheduler divides the processor time into epochs or rounds, periods of time

in which each process in the system is allowed to use its scheduling time slice. The

length of these time slices is always computed at the beginning of the epochs so that

it can consider how much CPU was utilized by each process in the last epoch. To

compute the time slice length for a process, the base time slice is modified, taking

into account its CPU requirements. Each process has a counter to count the clock

ticks remaining in its current time slice. If the process is CPU-bound and uses its

whole time slice, the counter value is 0 at the end of this slice and the next time

slice will be the base time slice. But, if the process does not use its whole time slice

because it is I/O-bound, the next time slice for this process will be longer; exactly

the counter divided by two is added to the base time slice [1]. This scheduler is

based on relatively easy ideas, works well, and has been widely used. However, it is

an O(n) algorithm (the length of each process time slice has to be computed at the

beginning of each epoch) with scalability limitations [13]. Furthermore, it has been

observed that the average time slice assigned to processes is about 210 ms, which is

too high for many environments and associated domain [1].

2.1.2 Linux Scheduler 2.6+

The 2.6 and newer schedulers are based on the same basic ideas found in version

2.4, but it uses the run queue structure and the priority arrays to achieve an O(1)

complexity. The new O(1) scheduler of the Linux kernel can schedule processes

within a constant amount of time, regardless of how many processes are running on

the operating system. All processes have a default static priority. Each CPU has

a run-queue made up of 140 priority lists that are serviced in First In First Out
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Figure 2.2: Typical run-queue of Unix systems containing 140 priority lists served
in FIFO order.

(FIFO) order. Each task has a time slice (length depends on the priority level) that

determines how much time it’s permitted to execute. The first 100 priority lists

of the run-queue are reserved for real-time tasks, and the last 40 are used for user

tasks [36].

Figure 2.2 shows the logical run-queue of Unix systems. Depending on the process

variation (CPU versus I/O bound), the scheduler dynamically modifies this measured

value to assign a priority penalty to CPU-bound processes and boost I/O-bound

processes. This dynamic priority scheme is controlled with the sleep avg variable

for each process. When an I/O-bound process is awakened from a sleep interval, its

total sleep time is added to this variable. In addition, when a process leaves the

processor, the time it has been executing (on it) is subtracted from this variable.

The higher the sleep avg value, the higher the dynamic priority will be. A process

with higher priority will get larger time slices compared with a lower priority process.

In addition, the time slice of a process is computed with its priority value, always

maintaining its length between pre-defined minimum and maximum values [1], [14].
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The Completely Fair Scheduler (CFS) was merged into the 2.6.23 release of the

Linux kernel and is the default scheduler. It handles CPU resource allocation for

executing processes, and aims to maximize overall CPU utilization while also maxi-

mizing interactive performance [20]. In contrast to the previous O(1) scheduler used

in older Linux 2.6 kernels, the CFS scheduler implementation is not based on run

queues. Instead, a red-black tree implements a timeline of future task execution.

Additionally, the scheduler uses nanosecond granularity accounting, the atomic units

by which an individual process’ share of the CPU was allocated (thus making re-

dundant the previous notion of time-slices). This precise knowledge also means that

no specific heuristics are required to determine the interactivity of a process [20].

Like the old O(1) scheduler, CFS uses a concept called sleeper fairness, which

considers sleeping or waiting tasks equivalent to those on the run-queue. This means

that interactive tasks which spend most of their time waiting for user input or other

events get a comparable share of CPU time when they need it [20].

2.2 CPU Availability Predictions

Research that is closely related to this dissertation falls under two different predic-

tion models: those based on static CPU availability prediction and those based on

dynamic CPU assignment prediction models. These two approaches have a signifi-

cant effect in areas such as dynamic load balancing, scalability analysis or parallel

systems modeling.

Two new response time prediction models were introduced by Beltrán et al. [46].

Both of these models are static prediction models. The first one is a mixed model

based on two widely used models, CPU availability and Round Robin models. The

second one, called Response Time Prediction (RTP) model, is a new model based

on a detailed study of different kinds of tasks and their CPU resource requirements.

A large set of tests shows the predictive power of these models. The RTP model

exhibits an error of less than 2% in all the empirical cases considered [46].
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In a highly influential paper, Kunz [28] showed the influence of workload de-

scriptors on the load balancing performance and concluded that the best workload

descriptors is the number of tasks in the run queue. In the paper by Zohu [54], the

CPU queue length is used as an indication of processor load. The number of tasks

in the run queue is presented as the basis of a good load indicator, but an improve-

ment is proposed by averaging this length over a period of one to four seconds [46].

Because of the dynamic nature of current computer systems and their workloads,

making such predictions is not simple as workload in a system can vary drastically

in a short interval of time. These simple models can incur large errors in particularly

when there are heterogeneous tasks and resource requirements.

Almost all of the prediction models are focused on availability or workload pre-

dictions (inversely related) or on process response time predictions in mono processor

systems [31]. In general, there are four major approaches to obtain performance pre-

dictions in a computer system: code analysis, benchmarking, statistical prediction,

and analytical modeling. Low level tools for counting and studying program in-

structions and their dependencies has been proposed and implemented in papers by

Chandra [70] and Park [71] using code analysis to predict response times. These ap-

proaches are often architecture dependent (therefore, they generally are not portable)

and applicable only to a specific class of tasks. Benchmarking techniques use exhaus-

tive code profiling, as in [70], and they are usually complemented with statistical

approaches, based on predicting the future from past observations. One example

of statistical prediction illustrated by Wolski in [31] focused on making short and

medium-term predictions of CPU availability on time-shared Unix systems. Mehra

and Wah [41] presented an analytical method based on neural networks for auto-

matically learning to predict CPU load, directly related to task response times.

Federova et. al [12] also worked on operating system scheduling on heterogeneous

core systems. They proposed thread-to-core assignment algorithms that optimize

performance and demonstrate the need for balanced core assignment. The paper
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makes the case that thread schedulers for multi-core systems in a heterogeneous

environment should target the following objectives: optimal performance, core as-

signment balance, response time, and fairness. In addition, Federova [6] introduced

a practical new method for estimating performance degradation on multi-core pro-

cessors, and it’s application to workloads of clusters nodes.

Finally, Dinda [30] has evaluated linear models for processor load prediction and

implemented a system that could predict the running time of a compute-bound task

on a host. Analytical modeling tries to give a high-level explanation of the effects of

different parameters, such as the scheduling policy, the number of tasks in the run

queue, the task arrival rate, and the service time, on the process response times.

Most of these methodologies are based on queuing models, due to their simplicity,

and almost all conclude that the best workload descriptor, often used to make the

performance predictions, is the number of tasks in the run queue.

2.2.1 Short and Medium term Availability Predictions

Next relevant work on CPU availability of time-shared Unix systems by Wolski [31]

and Jones [36] have focused on the problem of making short and medium term pre-

dictions. The accuracy with which availability can be measured has been evaluated

using Unix load average, the Unix utility vmstat, and the Network Weather Service

CPU sensor that uses both. The problem of predicting available CPU performance

on Unix time-shared systems has been examined for the purpose of building dynamic

schedulers. In this regard, the contributions it makes are:

• An exposition of the measurement error associated with popular Unix load

measurement facilities with respect to estimating the available CPU time a

process can obtain.
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• A study of one-step-ahead forecasting performance obtained by the Network

Weather Service (a distributed, on-line performance forecasting system) when

applied to CPU availability measurements.

• An analysis of this forecasting performance in terms of the autocorrelation

present between consecutive measurements of CPU availability.

• Verification of this analysis through its application to longer-term forecasting

of CPU availability.

The results presented by Wolski in [31] are somewhat surprising in that they

demonstrate the possibility of making short and medium term predictions of avail-

able CPU performance despite the presence of long-range autocorrelation and po-

tential self-similarity. The obtained predictions exhibited a mean absolute error of

less than 10%, typically making them accurate enough for use in dynamic process

scheduling.

From the data presented by Wolsk in [31], it shows short-term (10 seconds) and

medium-term (5 minute) predictions of CPU availability (including all forms of error)

can be obtained that are, on the average, between 5% and 12%. These results are

encouraging in the context of process scheduling as researchers assume that CPU

load vary to such a degree that it is difficult to make dynamic scheduling. The paper

shows dynamic measurement and forecast error combined are small enough so that

effective scheduling is possible.

2.2.2 Static Process Assignment Prediction Model (SPAP)

The SPAP model introduced by Beltrán et al. [1] assumes prior knowledge about

the tasks in the run queue and the unloaded CPU usage for these processes. Tasks

in the run queue can be CPU bound or I/O bound, or a mix of both, resulting in

different processor requirement to complete all tasks. The paper by Beltrán et al. [1]

carried out an empirical average-case study in two different extreme situations to
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Figure 2.3: Two CPU bound (n = 2) and two I/O bound (m = 2) processes execu-
tion diagram with very low unloaded CPU usage values for I/O-bound processes [1]

propose the desired new model because the Linux scheduler behavior is different in

these two situations. Consider a scenario where there are two CPU bound and two

I/O bound processes in the run queue with very low CPU usage. The CPU usage,

denoted by Û , is defined as the CPU time consumed by a process divided by it’s

overall execution time, both with the processor is unloaded (e.g., Û = 0.2). In this

scenario, the scheduler behavior leads, on average, to the execution diagram shown in

Figure 2.2. This diagram shows a complete scheduling round or epoch: a scheduling

interval that is periodically repeated in the processor. The different blocks indicate

the beginning and the end of the processor time slices or quantums, C1 and C2 are

the CPU-bound processes, and I1 and I2 are the I/O-bound processes.

In Figure 2.2, observe that the scheduler assigns one time slice or quantum to

every CPU bound process and these processes take advantage of all of the CPU

time that is allocated to them. Quantum 1 is for the process C1 and quantum 4

is for the process C2. Similarly, the Linux scheduler allocates time slice to an I/O

bound process for every CPU bound process in the run queue. For the process I1,

quantums 2 and 5 have been assigned and for the process I2, quantums 3 and 6

have been assigned. Also from the figure, note that the I/O bound processes cannot

take advantage of all their time slices. For example, the I1 process is assigned to

the processor during quantum 2, but this process only uses a certain fraction of
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the CPU time available during this quantum time, illustrated by its unloaded CPU

usage. The rest of this quantum is used by the rest of the processes in the run queue.

The I2 process can take advantage of the processor during a fraction of the quantum

time, again given by its unloaded CPU usage. In addition, the rest of the quantum

is equally shared by the CPU-bound processes that are always ready to run in the

CPU and are capable of taking advantage of all of the available processor time.

The same phenomenon can be observed in quantums 3, 5, and 6, in which I/O

bound processes are assigned to the processor. On average, this behavior is coherent

with the Linux scheduler mechanisms, without considering the context switching

overhead, because it always rewards I/O-bound processes and punishes CPU-bound

processes. It can also be observed from Figure 2.3 that the I/O bound processes

are given higher priority for processing than CPU bound processes. As I/O bound

processes cannot use the CPU all of this time, the CPU-bound processes steal from

them for some fraction of their quantums. Figure 2.3 has helped summarize this

behavior to derive the desired analytical model. Here, the total number of CPU-

bound processes is defined by n. From Figure 2.2, one I/O-bound process Pi with

i = 1, 2, ...,m, on average, is actually using the processor at a fraction of the total

time:

n× Ûi
n+ n×

∑m
j=1 Ûi

=
Ûi

1 +
∑m

j=1 Ûj
(2.1)

However, this process assigned more time to the processor, which is actually a

fraction of the total time given by 1/(m + 1). The prediction model proposed in

the papers ( [1], [8] ) are based on the concept they have termed robbery. As an

I/O-bound process does not take advantage of all its correspondent quantums, the

rest of the processes in the run queue can steal part of this time from this I/O-bound

process. In the same way, it will steal time from the rest of the I/O-bound processes

when it is possible. In addition, the CPU-bound processes will take advantage of all

of their quantums and of all of the time they can steal from the rest of the I/O-bound
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processes. Therefore, the process Pj (with j = 1, ...,m and j 6= i) can steal time

from the fraction of this slice in which the CPU is idle. Therefore, the total CPU

time that Pi can steal from other non-CPU bound processes are:

Û2
i

m+ 1
×

m∑
j=1,j 6=i

(1− Ûj) (2.2)

The CPU time of an I/O-bound process is computed, taking into consideration

the contributions of Eqs. 2.2 and 2.3, its own time slice, and the time stolen from

other slices, respectively given by the two previous equations. The CPU-bound

processes in the run queue get the equal amount of the remaining CPU time.

Ui =


Ûi

1+
∑m
j=1 Ûj

+
Û2
i

m+1
×
∑m

j=1,j 6=i(1− Ûj) for all i ∈ [1,m]

1−
∑m
j=1 Ûj

n
if i = m+ 1, ...,m+ n otherwise

(2.3)

In Eq. 2.3, the first part of the equation computes the shared CPU usage of the

I/O bound process in the run queue. The second part of the equation computes the

usage of the CPU bound process in the run queue. Next, when I/O bound processes

are very close to being CPU bound processes, i.e., Û value is very close to 1, it leads

to scheduling of I/O bound process only once in the scheduling round similarly as

CPU bound processes [1]. The sharing of the processor time in the quantums of the

I/O-bound processes is the same as in the previous case. Thus, it can be explained

with the robbery concept (in quantum 2 for the I1 process and in quantum 3 for the

I2 process).

This expression gives the general equation to obtain the fraction of CPU time

that will correspond to any process in a time-shared environment. According to

experimental results, some modifications can be made in order to improve the model

performance. All of the I/O bound processes that have unloaded CPU usage values

below 0.15 and the cases where all of the processes are CPU bound or near CPU

bound have been separated to reduce the prediction error of the model. In the first

case, it has been noted that the prediction error improves, considering Û = U for all
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of the I/O-bound processes. For example, a process with an unloaded CPU usage

of 0.05 will have a very similar value of CPU usage when sharing the processor with

other processes because its decrease is practically negligible. In the second case,

the RR model can be used because, when all of the processes in the run queue

are CPU-bound or near CPU bound, this model obtains good prediction errors and

guarantees a minimum CPU assignment of n = 1 for each process. Therefore, the

definitive expressions for the static prediction model SPAP, denoted using α, is:

α = max

(
1−

∑m
i=1 Ui

n+ 1
,

1

n+m+ 1

)
(2.4)

with the expression of shared CPU usage is the following:

Ui =

 Ûi if Ûi < 0.15for all i

Ûi
1+Ûi×(n−1)+

∑m
j=1 Ûj

+
Û2
i

m+1+Ûi×(n−1)
×
∑m

j=1,j 6=i(1− Ûj) otherwise
(2.5)

All of the processes in the run queue can take advantage of their processor quan-

tums. Various experiments ( [1], [8] ) have been conducted to demonstrate the

limitations of RR scheduling when there are I/O bound processes in the run queue.

When all the processes in the run queue are CPU bound (t100) or near CPU bound,

the RR model achieves very low prediction errors but when there are processes with

very low unloaded CPU usage, or I/O bound processes, the prediction error increases

sharply. When there are I/O bound processes in the run queue the RR model is not

capable of predicting what happens with the spare (unused) processing time which

might increase the prediction error to around 30% which is unacceptable [1].

Also their experimental results shows that the prediction errors obtained with

the SPAP model are nearly constant and always less than 4 percent. This new static

model has very accurate behavior that is independent of the processor state and the

run queue process CPU requirements. In some cases, the error obtained with the two

models is exactly the same because, in certain situations, the SPAP model becomes

the same expression that the RR model uses.
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2.3 Memory Access Facts

When the required memory of processes is more than the amount of available mem-

ory, the resulting process execution performance can degrade sharply. As more

processes are placed into the primary memory, due to demand paging, the chance

of memory overrun increases. This situation (requiring additional memory for code

and data) can trigger page swapping from primary memory to backing store (swap-

out pages are selected from the existing processes) which can increase the process

execution time immensely. Even if a new process gets 99% of required pages in

primary memory, the pager still needs to swap out memory frames from existing

processes to make room for the remaining 1% of pages.

To demonstrate the effect, let p be the probability of the page fault (0 ≤

p < 1.0). It is desired to keep p to be close to zero. The effective access time,

denoted by ea, is expressed in terms of memory access time, Ap, and page fault

service time as [13]:

ea = (1− p)× Ap + p× page fault time

With an average page-fault service time of 8.0 milliseconds and memory access

time of 200 nanoseconds, the effective access time,

ea = (1− p)× 200 nanoseconds+ p× 8 milliseconds

ea = 200 + 7, 999, 800× p nanoseconds

That is, effective access time is directly proportional to the page-fault rate, p. If

one page out of 1000 causes a page fault, the effective access time is 8.2 microseconds

[13]. The system will be slowed down by a factor of 40 due to page fault service

time. Predicting the process execution performance when the available memory is

less than required memory is important in making process assignment and scheduling

decisions. When the required memory by the processes is more than the amount of

available memory, the resulting process execution performance can degrade sharply.
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Figure 2.4: Memory stall situation [13] due to cache miss results in up to 50% stall
time overhead.

Figure 2.5: Multithreaded execution to hide the effect of memory stalls [13] to reduce
access time.

When a processor accesses memory, it spends a significant amount of time waiting

for the data to become available because of cache misses which may result in up to

50% of stall time shown in Figure 2.4. This situation generates huge overhead

when the frequency of memory access increases. To overcome this situation, most

of the recent hardware designs have implemented multi-threaded processor cores

in which two or more hardware threads are assigned to each core [13]. Figure 2.5

shows that way, if one thread stalls while waiting for memory, the core can switch

to another thread [13]. To maintain its own architectural state, each core has its

independent register set and thus appears to the operating system to be a separate

physical processor. From an operating system perspective, each hardware thread

(when hyper-threading is enabled) appears as a logical processor that is available

to run a software thread. Thus, on a dual-threaded, dual-core system, four logical

processors are presented to the operating system. We have incorporated the effect

of hyper-threading in our new CPU availability and memory models for accuracy.
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2.4 Distributed Task Assignment Frameworks

A wide variety of approaches have been made for scheduling tasks in a distributed

environment, many of these are application specific. A general (application inde-

pendent) approach for arbitrary applications has been proposed in the paper by H.

Dail [76] which focuses on a decoupling of the scheduling decisions from the ap-

plication specific information by encapsulating the application characteristics in an

analytical performance model and a data mapper.

Besides application independent approaches, there are several Grid scheduling

techniques that have been developed for a specific class of applications and it is

not necessarily straight forward to extend them to other applications or classes [10].

There are multiple resource managers for scheduling tasks in grid environments that

are available. Most of the major production systems like TORQUE, Condor, PBS

Pro, Sun Grid Engine (SGE), GridWay, gLite, and others uses a queuing system. In

a queuing system the currently free resources are matched with the tasks with their

resource requests. The systems mentioned above use various matching schemes and

differ from the ones introduced in this dissertation in the sense that our matching

scheme is based on the availability models presented in that paper.

A complex data structure is deployed in job schedule that maps jobs onto avail-

able compute nodes in time [21]. The TORQUE is a distributed resource manager

providing control over batch jobs and distributed compute nodes. An extension of

TORQUE scheduler allowing the use of planning (scheduling for the future) and

optimization in grid environment has been proposed by Chlumský but yet to imple-

ment [21].

2.5 GPU Environment

A graphics processing unit (GPU) is a specialized graphics card designed to rapidly

manipulate display and is often used in embedded systems, mobile phones, personal
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Figure 2.6: An Nvidia Tesla Kepler 20 GPU card. [60]

computers, workstations, and game consoles [79]. Modern GPUs are very efficient

at manipulating computer graphics, and their highly parallel structure makes them

more effective than general-purpose CPUs for algorithms where processing of large

blocks of data is done in parallel. It is becoming increasingly common to use a general

purpose GPU as a modified form of stream processor. Furthermore, GPU-based high

performance computers are starting to play a significant role in large-scale modeling.

Three of the 10 most powerful supercomputers in the world take advantage of GPU

acceleration [79].

Figure 2.6 shows the Nvidia Kepler 20 GPU card. Kepler is Nvidia’s first micro-

architecture to focus on energy efficiency, programmability, and performance. Kepler

micro-architecture provides dynamic parallelism, an ability that provides kernels

(functions are called kernels in GPU) the advantage to be able to dispatch other

kernels. With the previous micro-architecture Fermi, only the CPU could dispatch

a kernel, which incurs a certain amount of overhead by having to communicate

back to the CPU. By giving kernels the ability to dispatch their own child kernels,

Kepler20 can both save time by not having to go back to the CPU, and in the process

free up the CPU to work on other tasks [80].
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Figure 2.7: Typical processing flow on CUDA [81].

CUDA (Compute Unified Device Architecture) is a parallel computing platform

and programming model created by Nvidia and implemented for their GPUs [81].

Nvidia cards support API extensions to the C programming language such as Com-

pute Unified Device Architecture (CUDA) and OpenCL. CUDA is specifically for

Nvidia GPUs where as OpenCL is designed to work across a multitude of architec-

tures. These technologies allow specified functions (known as kernels) from a normal

C program to run on the GPU’s stream processors. This makes C programs capable

of taking advantage of a GPU’s ability to operate on large matrices in parallel, while

still making use of the CPU when appropriate. CUDA is also the first API to allow

CPU-based applications to directly access the resources of a GPU for more general

purpose computing without the limitations of using a graphics API [79].

Figure 2.7 shows the major steps of data copy from primary memory to GPU

memory, parallel execution of kernels, and copying result back from GPU to primary

memory. CUDA processing flow is given below:
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Figure 2.8: CUDA kernel execution: (a) thread arrangement in a grid of 2D blocks
(b) serial execution of CPU portion and parallel execution of GPU kernel [87].

1. Copy data from main memory (Host) to GPU memory (Device)

2. CPU instructs the process to GPU

3. GPU execute parallel in each core

4. Copy the result from GPU memory (Device) to main memory (Host)

CUDA gives program developers direct access to the virtual instruction set and

memory of the parallel computational elements in CUDA GPUs. Using CUDA, the

GPUs can be used for general purpose processing (i.e., not exclusively graphics);

this approach is known as GPGPU. Unlike CPUs, however, GPUs have a parallel

throughput architecture that emphasizes executing many concurrent threads slowly,

rather than executing a single thread very quickly [81].
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The GPU is ideally used as a compute device to execute a portion of an appli-

cation that

• has to be executed many times;

• can be isolated as a function; and

• works independently on different data.

Such a function can be compiled to run on the device. The resulting program is

called a Kernel. A CUDA kernel is executed by an array of threads. All threads run

the same code using Single Program, Multiple Data (SPMD) policy. Figure 2.8 (a)

shows arrange of CUDA threads in a grid containing 2D blocks. Threads within the

same block execute in SIMD fashion, whereas threads of different blocks can execute

different portions of the code (SPMD: Single Program Multiple Data). Each thread

has an ID that it uses to compute memory addresses and make control decisions. The

batch of threads that executes a kernel is organized as a grid of thread blocks. Block

can be one-, two- or three-dimensional arrays. Threads in different blocks cannot

cooperate. Figure 2.8 (b) illustrates the parallel execution of kernel (function) that

enables dramatic increases in computing performance by extracting the power of the

GPU.

2.6 Summary

In this chapter, we have reviewed the basics of Linux scheduler (2.4 and 2.6+),

relevant work in predicting CPU availability, various distributed task assignment

approaches, and GPU architecture and programming model. This review of prior

related work serves as a foundation upon which the work of this dissertation is built.

Specifically, in Chapter 3 and 4 we have presented the theoretical CPU availabil-

ity prediction model and conducted empirical work in both Windows and Linux

multi-core systems. In Chapter 5, we have introduced a memory model and derived
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composite CPU/Memory model non-trivially followed by extensive empirical work.

Two task assignment policies, Task Assignment using Status Measurement (TASM)

and Task Assignment using Status Estimates (TASE), are introduced in Chapter 6

and empirically verified with real-world benchmark programs. Finally, in Chapter 7,

we have presented a mathematical model to measure the performance of compute

intensive tasks for GPUs.
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Chapter 3

CPU Availability Model in JVM

Techniques for predicting the availability of CPU resources associated with the ex-

ecution of multiple concurrent Java threads on a multi-core architecture are intro-

duced. Prediction of CPU availability is important in the context of making thread

assignment and scheduling decisions. Theoretically derived upper and lower bound

formulas for estimating CPU availability are introduced. The bounds are neces-

sary because the actual CPU availability changes based on the order of execution

of threads in the batch. Relevant experimental studies and statistical analysis are

performed to validate the theoretical bounds and provide a basis for an empirical

model for predicting CPU availability. To facilitate scientific and controlled empiri-

cal evaluation, synthetically generated threads are employed that are parameterized

by their unloaded CPU usage factor, defined as the fraction of time a thread spends

utilizing CPU resources on an unloaded system.

3.1 Introduction

Predicting the availability of CPU resources when the number of threads assigned to

the processor exceeds the number of cores is important in making thread assignment

and scheduling decisions [1]. Precise values of CPU availability are difficult to predict

because of a dependence on many factors, including context switching overhead,
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CPU usage requirements of the threads, the degree of interleaving of the timing of

the CPU requirements of the threads, and the characteristics of the thread scheduler

of the underlying operating system (or Java Virtual Machine). Due to the complex

nature of the execution environment, an empirical approach is employed to evaluate

proposed CPU availability prediction models and formulas.

In this chapter, an extensive collection of empirical measurements taken from

both single- and multi-core processors provide a basis for validating proposed analyt-

ical models for estimating CPU availability. The proposed models are theoretically

derived upper and lower bound formulas for CPU availability. Confidence interval

and moving average statistics from measured CPU availability (from different em-

pirical case studies) validate the utility of these theoretical models. Case studies for

a single core machine involve spawning 2, 3 and 4 concurrent threads with randomly

selected CPU usage factors. Each case study includes a collection of about 2, 000

sample executions. For a quad core machine, similar case studies are conducted

involving 8, 12 and 16 concurrent threads, again with randomly selected CPU usage

factors for the threads.

An interesting outcome of the empirical case studies is that the variation in mea-

sured CPU availability is very low whenever the sum of the threads’ CPU usage

factors is either relatively low, or relatively high. Thus, prediction of CPU avail-

ability is quite accurate when the CPU is either lightly or heavily loaded. When

the total CPU loading (i.e., sum of all threads’ CPU usage factors) is moderate, the

realized availability of CPU resources has more variation and thus is less predictable.

However, even the largest variation in CPU availability measured was typically no

more than 20%, with a 90% confidence. The empirical studies also show that, as the

number of concurrent threads increases, the context switching overhead degrades

the performance of thread execution; resulting in a slightly wider gap between the

theoretically derived upper bound and measured availability values. In both single-

and multi-core cases, when the number of threads is above the number of CPU cores,
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the performance of thread execution is predicted reasonably well by the theoretical

upper bound formula for CPU availability.

The rest of the chapter is organized in the following manner. Section 3.2 dis-

cusses relevant background related to the execution of Java threads, and motivates

the importance of predicting CPU availability. Section 3.3 introduces the thread

execution framework assumed in this section and verifies the assumed model. Sec-

tion 3.5 provides the theoretical derivations of upper- and lower-bound formulas for

CPU availability model. Section 3.6 presents the empirical studies including bench-

marking, case study measurements for single- and multi-core CPUs, and statistical

analysis of the results. Finally, Section 3.7 provides the summary of contributions

and achievements of this chapter.

3.2 Execution of Concurrent Java Threads

The primary focus of this section is to estimate the CPU resource availability of a

Java Virtual Machine (JVM) executing concurrent Java threads. The concept of

a Java monitor [4] is useful for describing how threads are executed by a JVM. A

graphical depiction of such a monitor is shown in Figure 3.1 (derived from [4]), which

contains three major sections. In the center, the large circular area represents the

owner, which contains two active threads, represented by the small shaded circles.

The number of threads the owner can contain (concurrently) is bounded by the

number of CPU cores. At the upper left, the rectangular area represents the entry

set. At the lower right, the other rectangular area represents the wait set. Waiting

or suspended threads are illustrated as striped circles.

Figure 3.1 also shows several labeled doors that threads must pass through to

interact with the monitor. In the figure, one thread is suspended in the entry set

and one thread is suspended in the wait set. These threads will remain where they

are until one of the active threads releases its position in the monitor. An active

thread can release the monitor in either of two ways: it can complete the monitor
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Figure 3.1: A typical Java Monitor executing concurrent threads.

region it is executing or it can execute a wait command. If it completes the monitor

region, it exits the monitor via the door labeled E. If it executes a wait command, it

releases the monitor and passes through door labeled C, the door into the wait set.

To illustrate issues associated with predicting CPU availability, assume the mon-

itor of Figure 3.1 is associated with a dual-core JVM. From the figure, there are

a total of four threads assigned to the JVM; two are currently in a waiting state

and two are currently active. If all four threads are CPU-bound, meaning that their

unloaded CPU usage factor is 100%, then it is clear that the availability of the CPU

resources (i.e., both CPU cores) will be about 50%. If, on the other hand, some

threads are I/O-bound (e.g., having CPU usage factors less than say 25%) then

predicting CPU availability is not as straightforward. In general, the realized CPU

availability depends upon the scheduling scheme employed by the JVM (and/or the

underlying OS) for transitioning threads between the active and waiting states.
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Figure 3.2: Multiple work and idle phases of a thread.

In the next section, an analytical framework is developed for estimating CPU

availability associated with executing concurrent threads on a multi-core JVM. The

primary contribution of the section is the derivation of upper and lower bound

formulas for CPU availability.

3.3 Analytical Framework for CPU Availability

Model

In this section, an analytical framework is developed for estimating the CPU avail-

ability associated with executing concurrent threads on a multi-core processor. A

thread is modeled by a series of alternating work and sleep phases. For the pur-

poses of this study, the work portion of a phase is CPU-bound and requires a fixed

amount of computational work (i.e., CPU cycles). The sleep portion of a phase does

not consume CPU cycles, and its length relative to that of the work portion is used

to define the CPU load usage factor for a thread. A thread may be in idle/sleep

phase because of I/O or any other types of interruption [7]. Figure 3.2 shows three

work-sleep phases of a thread.

In the framework described here, a thread in the work portion of a phase will

remain in the work portion until it has consumed enough CPU cycles to complete

the allotted work of that portion of computation. After completing the work phase,

the thread then enters in the idle/sleep portion where it stays (does not consume

CPU cycles) for a specific amount of time defined by the CPU usage factor. Each
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Figure 3.3: Three concurrent threads in a single-core machine with identical work-
sleep phases and CPU usage factors with contending work portions.

thread is parameterized by a CPU usage factor. The CPU usage factor is defined as

the time required to complete the work portion of a work-sleep phase on an unloaded

CPU, divided by the total time of a work-sleep phase. A thread having zero sleep

length has a CPU usage factor of 100%, which is also called a CPU-bound thread.

Sleep phase length and the total amount of computational work to accomplish is

computed based on the CPU usage factor. Sleep phase length of a thread is relative

to that of the work portion based on CPU load factor.

When multiple threads are spawned concurrently, the JVM runs those threads

employing a time sharing technique (refer to the discussion of the Java Monitor

in Section 3.2). The CPU availability (and performance) will be degraded when

the work phase of all threads overlap each other in time. Figure 3.3 depicts a

scenario where 3 threads with identical work-sleep phases are executed in a single-

core execution environment.

Each thread gets a maximum of 1/3 of the available CPU resource during the

work portions of their phases, resulting in 3-times wider work portion execution

time than would be the case for a single thread scenario. Alternatively, if the work

portions of these three threads are staggered to where there is no overlap, then
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Figure 3.4: Three concurrent threads in a single-core machine with identical work-
sleep phases and CPU usage factors with interleaved work portions.

there is no contention for the CPU resource and the CPU availability is essentially

100%, as shown in Figure 3.4. That is, all the work phases of concurrent threads are

separated in time so that each thread can get the full usage of the CPU the moment

it is first needed by each thread. The ideal phasing illustrated in Figure 3.4 requires

that the work of any two threads can be accomplished within the time of one sleep

portion of a phase.

In the proposed framework, each thread is parameterized by a CPU usage factor

and a total amount of computational work to accomplish. The CPU usage factor is

defined as the time required to complete the work portion of a work-sleep phase on

an unloaded CPU, divided by the total time of a work-sleep phase. A thread having

zero sleep length has a CPU usage factor of 100%, which is also called a CPU-bound

thread.

3.4 Run-time Verification for Concurrent Threads

The purpose of this section is to empirically verify the correctness of the assumed

thread execution framework of Section 3.3. This verification is necessary because the
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Figure 3.5: Two concurrent threads in a single-core machine (a) With contending
(identical work-sleep phases and CPU usage factors) work portions. (b) With inter-
leaved work portions.

assumed thread execution model plays a vital role in the CPU availability predic-

tion model for designing and implementing synthetic benchmark program. Besides,

this section discusses the surroundings of the problem associated with executing

concurrent threads with the same CPU load on JVM.

A rapid programming approach is taken to verify the execution time when two or

more concurrent threads are spawned in JVM with the same CPU load. The system

that is used for handling the test cases is an Intel Xeon CPU E5540 with 2.53GHz

clock speed, 1, 333 MHz bus speed and 4 GB of RAM. Experimental programs are

implemented in Java and executed using JDK 1.6. Threads are given 2.0 × 108

units of synthetic work load which needs to be accomplished in 50 work-sleep cycles.

Threads need to accomplish 4.0 × 106 units of synthetic work in each work phase.

Ideal execution time (no CPU contention) for a thread to complete total synthetic

work is measures as 58, 661 ms.

Two concurrent threads are spawned in a single core machine, running JVM, with

the same amount of synthetic work (2.0×108 units) and CPU load (0.1). Figure 3.5

(a) shows the running time of 5 independent test runs. In this figure, the horizontal

axis represents test run number and vertical axis represents total run-time. It can be
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Figure 3.6: Two concurrent threads in a single-core machine (a) A major increase
in run-time of thread-2 can be observed when both threads have same CPU load of
0.1 (10%). (b) Similar effect for thread-2 with CPU load of 0.2 (20%).

observed from Figure 3.5 (a) that the average run-time for both concurrent threads

have sharply increased to 99, 842 ms for thread-1 and 100, 824 ms for thread-2. It

has been experimentally observed that if those two threads have exact same CPU

load, the thread run-time increased sharply. As the work phases of both threads

staggered on top of each other, each thread gets a maximum of 1/2 CPU attention

which eventually doubles the work time. Moreover, both threads are working at the

same time and idle at the same time which minimizes the CPU utilization as well.

To overcome this situation, phase shifting concept introduced in Section 3.3 is

used to empirically verify the usefulness of the technique. In this experiment, two

synthetic threads are spawned in the same single-core machine with same work load

but a slight CPU load (ε = 0.005) gap to introduce phase shifting. Here, thread-1

is assigned 0.095 CPU load and thread-2 is assigned 0.1 CPU load. That is, the

CPU load gap between these two threads is 0.005 or 0.5%. It can be observed from

Figure 3.5 (b) that the the run-time for thread-1 has dropped from 99, 842 ms to

64, 850 ms (appox.) and for thread-2 it’s 100, 824 ms down to 61, 250 ms (appox.).

The CPU load difference of 0.005 between threads has helped to shift work phases

and sharply reduce total run-time.
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A Second set of test cases are carried out to further analyze the above findings

involving two concurrent threads in a single-core machine. In these test cases, the

CPU load (utilization) of thread-1 is varied from 0.05 to 0.5 (5% to 50%) where

as the CPU load of thread-2 remains constant 0.1 for all cases. These test case

results should provide a clear visualization of CPU resource contension between two

threads. In Figure 3.6 (a), the horizontal axis represents CPU load of thread-1 and

the vertical axis represents thread execution time in milliseconds. The test results

show that the execution time of thread-2 is generally closer to the benchmark run-

time except the case where thread-1 and thread-2 has the same CPU load of 0.1.

That is, when the CPU load of thread-1 reaches the same 0.1 like thread-2, the

run-time of thread-2 increases sharply from average measured run-time of 64, 500

ms to 100, 824 ms. For all other cases, work times of thread-2 are acceptably closer

to the average run-time.

In next test cases, CPU load of the first thread is varied from 0.05 to 0.5 units

(like previous one) but the CPU load of the second thread is changed to 0.2 unit

(remains constant). Figure 3.6 (b) also shows a similar finding where the run-time

of the second thread is very close to average run-time of thread-2 except the case

where CPU load of both threads are 0.2. Average run-time for thread-2 with CPU

load of 0.2 is 33, 750 ms. When thread-1 and thread-2 has same 0.2 CPU load, the

run-time of thread-1 increases to 50, 154 ms and thread-2 reaches to 49, 757 ms. It

can also be observed from Figure 3.6 (a) that when the CPU load of thread-1 was

0.2, the run-time was 35, 569 ms but in Figure 3.6 (b), it has increased to 50, 154 ms

which is approximately 70.91% increase in run-time. Similar case studies have been

conducted considering all possibilities by employing different CPU load for thread-2.

It is found for all the cases that when both threads have the same CPU load, the

run-time increases noticeably. These observations suggests that when work phases

of threads are in contention, the performance of both threads degrades significantly.
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Figure 3.7: Variable amount of work accomplished by concurrent threads (a) When
threads have contending work portions (b) When threads have interleaved work
portions.

Figure 3.7 (a) shows the variable amount of work accomplishment when work

phases of threads overlap. The amount of synthetic work that has been accomplished

is approximately 81K units. Here, two threads are spawned concurrently with the

same amount of CPU load and synthetic work. As these threads are CPU bound

and starts with the work phase, the available CPU is shared among the concurrent

threads. The work accomplishment varies based on the degree of work phase overlap

among threads. If threads are fully overlapped, then the work accomplishment can

drop as low as 18K units. When threads are interleaved, the work accomplishment

can be as high as 162K units.

Figure 3.7 (b) illustrates the work accomplishment of the concurrent threads

when phase shifting is utilized. The work accomplishment by a thread in each work

phase is 158.5K units on average compared with the previous scenario where the

average work accomplishment per phase was only 81K units (shown in Figure 3.7

(a)). Due to this improved approach through phase shifting, it took only 63 work

phases to accomplish the total synthetic work instead of 110 phases (shown in Fig-

ure 3.7 (a)). Additionally, the context switching overhead has resulted in poor work

accomplishment shown in the previous scenario. Figure 3.7 (b) also depicts that as
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Figure 3.8: Run-time comparison of multiple concurrent threads in a single-core
machine running JVM.

the work phase overlaps in cycle 1 and 2, 21 and 22, 40 and 41, and 59 to 61, the

work accomplishment drops to around 98K units. For all other cases, work phases

are mostly interleaved which enables them to get full attention of the CPU to achieve

maximum amount of work.

Finally, Figure 3.8 shows a complete run-time scenarios for concurrent threads

with contending and without contending work phases along with ideal execution

time. These independent test cases includes 1, 2, 3, 4, and 5 concurrent threads

spawned in a single-core machine. All test cases are conducted independently and

run-time are measured for relative comparison. It can be observed from Figure 3.8

that the utilization of phase shifting through slight variation (only 0.5%) in CPU load

has allowed threads to complete more work in each phase and complete the assigned

work in a shorter period of time. This finding clearly suggests that the phase shifting

is very efictive when concurent threads are spawned in the same machine to avoid

CPU contention among threads.
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3.5 CPU Availability Model Bounds

CPU availability model consists of upper- and lower-bounds. Most of the existing

model provides one predicted availability value which might be useful for very short

period of time. Making such predictions is complicated due to the dynamic nature of

the system and its workload, which can vary drastically in a short span of time [1].

Besides, the actual CPU availability changes based on the order of execution of

threads in the batch as well. Thus, the bound technique is necessary for distributed

task scheduler. The bounds also provides best case and worst case scenario (deadline

can be derived) which might be useful for many real-world applications. For example,

when a task has a hard deadline, the model can be utilized to determine whether it

is even possible to meet the deadline. Knowing the best and worst case will help to

schedule tasks depending on deadlines as well.

The primary contribution of this section is the derivation of upper-and lower-

bound formulas for CPU availability. The results presented in Section 3.3 shows

that n running threads having similar work-sleep phases often result in 1/n CPU

availability in a single-core machine. In such cases, the work phases get n times

longer due to CPU contention among running threads, depicted in Figure 3.3. Al-

ternatively, if the work portions of these three threads are staggered (interleaved)

to where there is no overlap, by phase shifting, then there is no contention for the

CPU resource and the CPU availability is essentially 100%, as shown in Figure 3.4.

That is, all the work phases of concurrent threads are separated in time, by shifting

the work phases, so that each thread can get the full usage of the CPU the moment

it is first needed by each thread. The ideal phasing illustrated in Figure 3.4 requires

that the work of any two threads can be accomplished within the time of one sleep

portion of a phase.
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3.5.1 Assumptions

The following are the assumptions for the CPU availability model:

• A batch of threads are spawned concurrently in a single- or multi-core system.

• The single- and multi-core systems in which threads will be spawned are ded-

icated, meaning they are not loaded with other threads.

• There are no inter-thread communication or message passing among threads.

• Overhead related to the operating system’s real-time process execution is neg-

ligible.

• The CPU requirement of each thread is known, which is used to estimate the

aggregate CPU load for the batch of threads.

• The CPU utilization is statistically “stationary” over time.

The model depends on the above specified assumptions. If these assumptions

are not specified, then the model may produce prediction errors or may not be

completely viable.

3.5.2 Bounds for Single-core Machines

For a single core machine, the following formulas define upper and lower bounds

for CPU availability. Here, n is the number of threads assigned to the single core

machine and L is the aggregate loading factor, defined as the sum of CPU usage

factors of all n threads. The upper bound formula for CPU availability is:

c =
1

max(1, L)
=

 1, if L ≤ 1

1/L, if L > 1
(3.1)

and the lower-bound CPU availability model is:

c =
1

1 + (n−1
n

)× L
. (3.2)
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The upper-bound model represents the best case CPU availability, which is real-

ized by the example of Figure 3.4 in which none of the threads use the CPU resource

concurrently. Provided that the sum of the usage factors of the threads is less than

unity, then it is possible that the CPU availability could be as high as unity (i.e.,

100%). When the sum of the CPU usage factors is greater than unity, then the best

possible value for CPU availability is 1/L. The lower-bound model is associated

with a situation in which the threads’ usage of the CPU resource has maximum

overlap, as depicted in Figure 3.3 in which all threads always use the CPU resource

concurrently.

3.5.3 Bounds for Multi-core Machines

For a multi-core machine with r cores, the following models define upper- and lower-

bounds for CPU availability. The upper-bound model is:

c =
1

max(1, L
r
)

=

 1, if L/r ≤ 1

r/L, if L/r > 1
(3.3)

and the lower bound is:

c =
1

1 + (n−1
n

)× (L
r
)
. (3.4)

Note that Eqs. 3.3 and 3.4 are generalizations of Eqs. 3.1 and 3.2, i.e., for the

case r = 1, Eqs. 3.3 and 3.4 are identical to Eqs. 3.1 and 3.2.

Figure 3.9 shows plots of the upper and lower bound formulas for the case r = 4

and n = 16. The difference between upper- and lower-bounds can be significant for

moderate values of aggregate loading. The difference for multi-core machine can be

as high as 0.446 for 8-threads with aggregate CPU loading of 0.50. In the following

section, experimental studies are performed to determine actual measured values of

CPU availability in relation to these bounds.
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Figure 3.9: Upper- and lower-bounds for CPU availability prediction for r = 4 and
n = 16.

3.6 Empirical Studies

3.6.1 Overview

The purpose of the experimental studies is to empirically measure CPU availability as

a function of aggregate loading for collections of threads with randomly selected CPU

usage factors. For the study, threads are generated synthetically so that their CPU

usage factors can be set accurately. The measured CPU availability associated with

a collection of threads executing on a processor is defined by the ratio between the

ideal time required to execute one of the threads on an unloaded processor divided

by that thread’s execution time on a loaded processor. About 2, 000 randomly

selected collections of threads are generated for each study; each randomly generated

collection of threads provides one measurement of CPU availability. Independent test

cases are conducted using this compute-intensive benchmark program to satisfy all

possible situations of the CPU model. The major part of the experimental system’s

flow control is shown in Figure 3.10.
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Figure 3.10: Flow chart for load distribution and execution process of threads.

46



Algorithm 1 presents major parts of the experimental system. The algorithm

takes the number of concurrent threads and test runs as input and outputs the

measured execution efficiency for the batch. Uniform sampling of data across the

values of possible aggregate CPU loading has been ensured. A test run of each

batch of threads provide one measurement (the minimum efficiency is considered for

accuracy) of CPU availability.

Algorithm 1 Aggregate load distribution and measurement of execution efficiency
for benchmark threads.
Input: Number of threads (n), and number of test runs (Γ)
for count ← 1 ... Γ do

Select a random aggregate CPU load, L ∈ [(ε× n) ... n]
for i ← 1 ... (n− 1) do

αl = Max
(
L−

∑i−1
j=1 Tj − (n− i)), ε

)
αu = Min

(
L−

∑i−1
j=1 Tj − (n− i)× ε), 1.0

)
Select Ti randomly so that Ti ∈ [αl, αu]
Ti ← (αu − αl)× Ti + αl

end for
Tn ← L−

∑n−1
i=1 Ti

Compute sleep phase length for each thread using (Eq. 3.5)
Compute total work amount for each thread depending on CPU loading value

using (Eq. 3.6)
Create pipes to communicate between parent and child threads
Spawn benchmark threads concurrently into single- and multi-core systems
Wait for threads to complete assigned work and terminates
Take end time snapshots for each thread after they terminates
Collect and Persist thread execution data in respective CSV files

end for
Close all files, pipes, and connections
Output: Measured thread execution data

To ensure a uniform sampling of data across the values of possible aggregate

loadings, a random value of aggregate loading between (ε× n) and n is chosen first.

The value of ε = 0.05, denoting a 5% CPU-load, is used to represent the extreme

lower CPU load value for a thread. A thread can not have CPU load value of 0.0, else

it would never complete its assigned work. The selected aggregate load (sum-total)
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is then distributed among threads using expressions inside the inner for loop. For

example, if a thread batch contains 8-threads then the min-limit is 0.4 (0.05×8) and

the max-limit is 8.0 (i.e., all CPU-bound threads). Then a random CPU load value

between 0.4 and 8.0 is chosen and distributed among 8 threads using Algorithm 1.

The expressions of αu and αl is introduced to provide an upper- and lower-limit

of available CPU load for the ith thread. A random CPU load value is selected from

the range (αl, αu) and assigned to the ith thread. The CPU load for the thread is

then scaled and placed into Ti. For example, for a scenario having two threads, a

value of aggregate loading is chosen between a small value (ε × 2) and 2.0; denote

this value as L. Then a random value is chosen between max{ε, (L − 1.0)} and

min{1.0, L}, which defines the CPU usage factor of the first thread, say T1; the

CPU usage factor of the second thread is then defined as T1 = L − T2. In general,

for n threads, Algorithm 1 is used to randomly assign the CPU usage factors for a

given value of aggregate loading L.

Based on CPU load of each thread, total amount of work (upper range) and sleep

phase length values are derived. During each work phase, threads accomplish a fixed

amount of work. Threads need to run several phases to complete the total amount

of work. As described in Algorithm 1, a phase shift measured value is also assigned

to each thread ranging from 0 to length of the phase which provides a degree of

staggering of phases among the threads. Figure 3.4 is an example of the best-case

staggering; whereas Figure 3.3 is an example of worst-case staggering in terms of

CPU availability.

3.6.2 Empirical Environment

The system used for evaluating the single core test cases is an Intel Xeon CPU E5540

with 2.53 GHz clock speed, 1, 333 MHz bus speed and 4 GB of RAM. The system

used for evaluating the multi-core test cases is an Intel Core 2 Quad (quad-core

processor), 2.83 GHz clock speed, 1, 333 MHz bus speed with 4 GB of RAM. Due to
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the different configurations of the single- and quad-core systems, benchmarking for

the single-core and quad-core machines were determined separately. The JVM used

for these experiments is JDK 1.6. Threads deployed here are independent tasks,

meaning there are no interdependencies among threads such as message passing.

Threads are spawned concurrently with workloads and phase shifts as described in

the previous section. When a collection of threads completes, a report of the threads’

execution is produced, which contains start time, work time, sleep time, number of

phases, and end time.

3.6.3 Benchmarking

Benchmarking a thread on an unloaded system enables the calibration of parameters

associated with the work and sleep portions of the phases to synthesize a particular

CPU usage factor. For setting up the benchmarks, each thread is assigned a total

work and sleep phase duration depending on the assigned CPU load value discussed

in Algorithm 1. In the work portion of each phase, threads accomplish a fixed amount

of CPU intensive work for generating prime numbers (based on the benchmark

program). Depending on the work phase completion time (which is mostly constant

for a machine) and CPU load, the sleep phase length of the thread is calculated

using the following equation:

Sleep =

(
WorkPhaseT ime× (1.0− CPUload)

CPUload

)
(3.5)

According to Eq. 3.5, the sleep time increases as the CPU usage decreases. Thus,

a thread with low CPU usage will sleep longer than other threads having higher CPU

usage factors. Though the work portion length of threads are same, due to sleep

phase length variation due to CPU load, the total phase length (work+sleep) is

different for threads.

For setting up the benchmarks, the thread with minimum CPU requirement is

assigned 2.0×108 units of synthetic CPU work. The thread with minimum CPU load
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needs to accomplish this total work in 50 work-sleep phases. In the work component

of each phase, this thread accomplish 4.0 × 106 units of work. In a time frame,

say 10 sec., the amount of work a thread with higher CPU load can accomplish is

more than the amount of work a thread with lower CPU load. Thus, it is needed

to calculate the variable amount of work required to accomplish by threads to finish

assigned work and terminate at the same time. Thus, the total amount of work that

needs to be accomplished by other threads can be defined as follows:

Work load =

(
MaxPhaseT ime

PhaseT ime of Ti
× (StageCount× StageWork)

)
(3.6)

Parameters of Eq. 3.6 are the maximum phase time (work + sleep phase time)

among all threads, phase time of the thread, number of stages to complete the

total ideal work, and amount of accomplished work in each phase. Measured total

workloads are then assigned to respective benchmark threads so that the batch

terminates at the same time for accuracy.

3.6.4 Empirical CPU Availability Case Studies

3.6.4.1 Case Studies for Single-core Machine

For measuring the CPU availability of the single-core processor, three case studies

were conducted in which multiple (2, 3, and 4) threads were spawned concurrently.

An aggregate CPU load L was selected randomly, and distributed among the threads

as described in Section 3.6.1.

Figures 3.11 and 3.12 show measured CPU availability scatter graphs for 2 and

4 concurrent threads executing on the single-core processor, superimposed with the

plots of the upper and lower bound formulas derived in Section 3.5. In these figures,

the horizontal axis represents aggregated CPU load and the vertical axis represents

CPU availability. Each small dot in these graphs is an independent test case mea-

surement of CPU availability. There are 2, 000 dots in each figure representing
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Figure 3.11: CPU availability of 2 threads in a single-core machine. Results of 2, 000
test cases with upper- and lower-bounds and 90% confidence interval bars.

Figure 3.12: CPU availability of 4 threads in a single-core machine. Results of 2, 000
independent test cases, bounds, and 90% confidence interval bars.
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measured CPU availability value among the concurrent threads. A moving average

line is also drawn through the data on the graphs for helping to visualize the average

measured performance. A window size of 0.10 aggregate CPU load and incremental

value of 0.01 was used to calculate the moving average values. A similar sliding

window approach was employed to calculate the 90% confidence interval upper and

lower limits.

It is apparent from Figures 3.11 and 3.12 that the variation in CPU availability

is low when the aggregate CPU loading is either relatively low or relatively high.

Thus, CPU availability prediction is quite accurate when the CPU is either lightly

or heavily loaded. When the total CPU loading is moderate, the measured CPU

availability has more variation and thus it is less predictable. One of the intuitive

reasons for low variation when threads have small CPU loading factors is their sleep

phase lengths are wider, which decreases the probability of work portion overlap

among the threads. On the other hand, when the aggregate CPU load is large,

threads have smaller sleep phase and longer work phase lengths which almost always

forces work phase to overlap and decrease performance, but in a predictable way.

In further reporting the results of the studies, it is convenient to define the

normalized aggregate load, L/n, which is the aggregate load L normalized by the

number of threads n. For sample values of normalized aggregate load, Table 3.1

shows the average measured CPU availability (Avg.), the difference in the upper-

and lower-bound models (BD) and the difference in the 90% confidence interval

limits (CI Diff) for 2, 3, and 4 concurrent threads on the single-core processor.

Table 3.1 shows that the difference between the upper- and lower-bounds can

reach as high as 0.375, for 4 threads and a normalized aggregate loading of 0.20.

However, the measured 90% confidence interval difference for the same case is much

smaller, around 0.104. The difference of the formula-based bound is more precise

when the CPU is lightly or heavily loaded.
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Table 3.1: CPU availability data for 2, 3, and 4 threads in a single-core machine
consists of average measured CPU availability (Avg), differences of bound models
(BD), and 90% confidence interval limits (CI Diff).

L/n
2 Thread CPU
Availability

3 Thread CPU
Availability

4 Thread CPU
Availability

Avg BD CI
Diff

Avg BD CI
Diff

Avg BD CI
Diff

0.05 0.985 0.048 0.019 0.973 0.094 0.023 0.971 0.133 0.050
0.10 0.980 0.091 0.033 0.946 0.167 0.051 0.935 0.232 0.042
0.20 0.953 0.167 0.076 0.873 0.287 0.087 0.828 0.375 0.104
0.30 0.892 0.231 0.121 0.790 0.376 0.149 0.685 0.306 0.117
0.40 0.862 0.286 0.168 0.707 0.277 0.128 0.575 0.170 0.070
0.50 0.796 0.333 0.175 0.610 0.167 0.059 0.484 0.099 0.027
0.60 0.739 0.208 0.112 0.524 0.101 0.034 0.412 0.059 0.020
0.70 0.662 0.126 0.067 0.461 0.059 0.024 0.353 0.035 0.017
0.80 0.600 0.069 0.042 0.403 0.032 0.021 0.311 0.018 0.011
0.90 0.543 0.029 0.033 0.363 0.013 0.014 0.275 0.008 0.007
1.00 0.495 0.000 0.004 0.331 0.000 0.005 0.249 0.000 0.008

3.6.4.2 Case Studies for Multi-core Machine

For measuring the CPU availability of the quad-core processor, three case studies

were conducted in which multiple (8, 12, and 16) threads were spawned concurrently

to relatively compare the performance between single- and quad-core processors.

A similar approach has been employed to calculate the moving average and 90%

confidence interval values. CPU availability graphs for 8 and 16 threads are shown

in Figures 3.13 and 3.14 respectively. Figure 3.13 shows a higher variation of CPU

availability compared with Figure 3.11, which shows CPU availability of 2 threads

in a single-core machine. This decrease in variation may be explained as follows:

During the thread execution life cycle, depending on CPU availability, threads might

be allocated in different cores for load balancing which could decrease the probability

of work phase overlap.

The empirical results for the quad-core processor also show that the CPU avail-

ability prediction is quite accurate when the CPU is either lightly or heavily loaded.

When the total CPU loading is moderate, the measured CPU availability has more
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Figure 3.13: CPU availability of 8 threads in a quad-core machine. Results for 2, 000
independent test cases and 90% confidence intervals.

Figure 3.14: CPU availability of 16 threads in a quad-core machine. Results of 2, 000
independent test cases and 90% confidence intervals.
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Table 3.2: CPU availability data for 8, 12, and 16 threads in a quad-core machine
(running Windows) consists of average measured CPU availability (Avg), differences
of bound models (BD), and 90% confidence interval limits (CI Diff).

L/n
8 Thread CPU
Availability

12 Thread
CPU Availabil-
ity

16 Thread
CPU Availabil-
ity

Avg BD CI
Diff

Avg BD CI
Diff

Avg BD CI
Diff

0.05 0.973 0.080 0.015 0.971 0.121 0.017 0.969 0.158 0.013
0.10 0.971 0.150 0.019 0.974 0.216 0.022 0.948 0.273 0.058
0.20 0.973 0.260 0.064 0.959 0.355 0.064 0.862 0.429 0.128
0.30 0.956 0.345 0.153 0.904 0.452 0.121 0.690 0.363 0.149
0.40 0.903 0.413 0.322 0.752 0.357 0.085 0.543 0.225 0.116
0.50 0.768 0.466 0.304 0.604 0.246 0.102 0.411 0.152 0.107
0.60 0.595 0.345 0.299 0.490 0.178 0.081 0.344 0.109 0.079
0.70 0.554 0.264 0.222 0.429 0.134 0.073 0.321 0.081 0.057
0.80 0.493 0.208 0.217 0.358 0.104 0.069 0.268 0.062 0.028
0.90 0.446 0.167 0.146 0.328 0.083 0.079 0.240 0.049 0.029
1.00 0.419 0.136 0.114 0.291 0.067 0.058 0.222 0.040 0.023

variation and thus it is less predictable. The empirical results of the quad-core pro-

cessor also shows that when the numbers of concurrent threads are exact multiples

of the number of cores, it provides much better performance than when they are

not. That measured variation can be as large as 10% of the overall CPU availability.

From the empirical results of single- and multi-core processors, and measured CPU

availability scatter graphs, it is apparent that theoretically derived upper and lower

limits introduced in this chapter bound actual measured values of CPU availability

reasonably well.

For a quad core processor, Table 3.2 shows that the difference between the upper

and lower limits formula bounds can reach as high as 0.429, for 16 threads and a

normalized aggregate loading of 0.20. However, the measured CPU availability is

for this same case is much smaller, around 0.128. The difference of the formula-

based bound is more precise when the CPU is lightly or heavily loaded for quad-core

processor as well.
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3.7 Summary

This chapter has developed analytical models for predicting (and measuring) CPU

availability of JVMs supported by single- and multi-core architectures. An extensive

set of empirical studies have been conducted in single- and multi-core architecture

for verifying the accuracy of the CPU availability prediction models under Windows

environment using Java language. Thread availability scatter plots provide clear

visualization of measured performance based on the density of the dots in the plots.

These empirically measured availability values are showed to generally fall within

theoretically derived upper- and lower-bound models. A 90% confidence interval

for measured availability is shown to provide tighter upper- and lower-limits than

the theoretically derived models for upper- and lower-bounds. Additionally, the

prediction model for upper- and lower-bound is consistent with the dynamic nature

of system and its workload, which can vary drastically in a short amount of time.

As would be expected, degradation in CPU availability occurs when total CPU

loading is greater than the total capacity of all CPU cores. In addition to total

CPU loading, the total number of concurrent threads is a factor in predicting CPU

efficiency; more threads generally incur more context switching overhead, which

results in degraded availability. When the total load is less than the total capacity

of all cores, the relative alignment of the working and sleeping phases of the threads

can have a significant impact on CPU availability. Specifically, increased overlap of

the work phases implies lower availability.

It was demonstrated that shifting the relative phasing of the threads to reduce

possible work phase overlap can improve the performance (i.e., CPU efficiency).

Random aggregate load and phase shift values for concurrent threads were assigned

for each for an extensive number of experimental measurements. A thread avail-

ability scatter plot provides a clear visualization of measured performance based

on the density of the dots in the plot. These empirically measured availability val-

ues are showed to generally fall within theoretically derived upper and lower bound
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formulas. A 90% confidence interval for measured availability is shown to provide

significantly tighter upper and lower limits than the theoretically derived formulas

for upper and lower bounds.
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Chapter 4

CPU Availability Model in Linux Environment

Linux is one of the productive and most popular operating systems in the world.

Its acceptance is product of the high and potential capacity that Linux offers to

many different fields of work. Linux provides the freedom to run your program (for

any purpose), study how the program works, and adapt it to your needs [3]. Linux

can be used for high performance server applications, desktop applications, and

embedded systems. Because of these positive factors, the CPU availability model is

tested under the popular and growing Linux environment to verify the accuracy and

usefulness.

There are three major contributions of this chapter which are:

• CPU availability model’s prediction accuracy under Linux environment.

• Introduction of a compact lower-bound CPU availability model.

• Introduction of an average CPU availability model.

4.1 Introduction

In a multi-processor system, the most widely used approach known as symmetric

multi-processing (SMP), where each processor is self scheduling. Each processor has

its own private ready queue of ready processes. The scheduling proceeds by having
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the scheduler for each processor examine the ready queue and select a process to

execute. Virtually all modern operating systems support SMP, including Windows

8, Solaris, Linux, and Mac OS X. On SMP systems, it is important to keep the

workload balanced among all processors to fully utilize the benefits of having more

than one processor.

In Linux scheduler 2.6 and newer, all processes have a default static priority.

Each CPU has a run-queue made up of 140 priority lists that are serviced in First In

First Out (FIFO) order. Tasks that are scheduled to execute are added to the end of

their respective run-queue’s priority list. Each task has a time slice that determines

how much time it’s permitted to execute. The first 100 priority lists of the run-queue

are reserved for real-time tasks, and the last 40 are used for user tasks [36].

4.2 Empirical Studies in Linux System

4.2.1 Overview

Depending on the process variation (CPU versus I/O bound), the Linux scheduler

2.6 and above dynamically modifies this measured value to assign priority penalty

to CPU-bound processes and boost I/O-bound processes. This Dynamic Priority

Scheme is controlled with the sleep avg variable for each process. When an I/O-

bound process is awakened from a sleep interval, its total sleep time is added to

this variable. In addition, when a process leaves the processor, the time it has

been executing on it is subtracted from this variable. The higher the sleep avg

value is, the higher the dynamic priority will be. In addition, the time slice of a

process is computed with its priority value, always maintaining its length between

the minimum and maximum values [16].
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4.2.2 Empirical Environment

The system used for evaluating the multi-core test cases is equipped with Intel(R)

Xeon(R) Quad-core W3520 processor, 2.67GHz clock speed, 1, 333 MHz bus speed,

and 6.0 GB of RAM. This machine also has Linux kernel version 3.2.0 − 36. The

average CPU load (represents the average system load over a period of time) was

0.0161302 per core in a scale of 1.0 (in a fifteen minute period) before running

test cases which indicates that the machines were lightly loaded (essentially un-

loaded). The C programming language in Linux environment is used to implement

the analytical model framework and benchmark programs. The gcc compiler version

used is 4.6.3. Threads deployed here are independent tasks, meaning there are no

interdependencies among threads such as message passing. Threads are spawned

concurrently in a single- and multi-core machine with measured work load. When

the batch of threads complete assigned work and terminates, an execution report

is produced, which contains start time, work time, idle time, end time, number of

phases, and others for statistical analysis.

4.2.3 Benchmarking

The benchmark programs used for conducting empirical study in Linux environment

consists of real-world CPU-intensive programs like Super prime number generator,

Monte-Carlo estimation of π along with a similar synthetic benchmark program (the

program used in Chapter 3 as benchmark program but implemented using C lan-

guage instead of Java) used for verifying the CPU availability model. Table 4.1

consists of a complete list of programs used as benchmark program for this Chapter.

The Algorithm 1 presented in Chapter 3 is used to distribute the aggregate load and

measurement of execution efficiency for benchmark threads.
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Table 4.1: Benchmark programs used for validating introduced CPU, Memory, and
Composite prediction models.

Name Description Applied

piEstimation Uses Monte Carlo method to estimate the
value of π

CPU Availability Model

supPrime Generates High Order Prime Numbers CPU Availability Model

linSearch Linear search program reads from a large
data file to search a key

Memory Model

margeSort Merge sort program to arrange unordered
numbers from a large text file

Memory and Composite
Model

iRender Image Rendering of Large BMP files using
Image Smoothing Algorithm

Memory Model

smvm Sparse Matrix Vector Multiplication Composite Prediction
Model

swk Benchmark program with synthetic work
load.

Composite Prediction
Model

4.2.4 CPU Availability Case Studies

4.2.5 Empirical Results

In this section we have measured the CPU availability of of concurrent threads in

Linux environment and compare the outcome with the results obtained in Chapter 3.

The obtained results should provide us a clear visualization of efficiency achievement

in both paradigms. For measuring the CPU availability of the multi-core processor

in Linux, three case studies were conducted in which 8, 12, and 16 threads were

spawned concurrently. An aggregate CPU load of L is selected randomly between

(ε×n) and n, and further distributed among n threads as described in Algorithm 1.

Both Figures 4.1 and 4.2 show measured CPU availability scatter graphs for

8 and 16 concurrent threads executing on the quad-core processor, superimposed

with the plots of the upper- and lower-bound models derived in Section 3.5.3. The

Figure 4.1 (a) show the empirical results under Linux environment using C pro-

gramming language. On the other hand, the Figure 4.1 (b) show the empirical
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(a) (b)

Figure 4.1: CPU availability of 8 threads in a quad-core machine. (a) Test cases
are conducted in Linux systems developed using C language. (b) Test cases are
conducted in Windows systems developed using Java language.

results under Windows environment using Java language. Like the test cases of Sec-

tion 3.6.4.2, each small dot in these figures is an independent test case measurement

of CPU availability. There are 2, 000 dots in each figure representing measured CPU

availability value among the concurrent threads. A similar moving average line and

90% confidence interval upper- and lower-limits are drawn through the data on the

graphs for helping to visualize the average measured performance and confidence

limits.

One of the major focus of these empirical work is to verify whether the new em-

pirical results obtained in Linux systems fall within the proposed CPU availability

upper- and lower-bounds. It can be seen in both Figures 4.1 (a) and 4.2 (a) that the

introduced upper- and lower-bounds can bind the new empirical results very well.

Second objective of these empirical study is to compare the empirical results where

benchmark programs are developed using C language and executed in Linux environ-

ment (shown in Figure 4.1 (a) and 4.2 (a)) with the empirical results of Chapter 3

(shown in Figure 4.1 (b) and 4.2 (b)). A relative comparison between two figures

illustrates that the CPU availability dots under C language running in Linux en-

vironment has less variation compared with the dots of Java language running in
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(a) (b)

Figure 4.2: CPU availability of 16 threads in a quad-core machine. (a) Test cases
are conducted in Linux systems developed using C language. (b) Test cases are
conducted in Windows systems developed using Java language.

Windows environment. The average CPU availability of Figure 4.1 (a) is better com-

pared with the Figure 4.1 (b) average line. The less variation of dots in Figure 4.1 (a)

results in tighter confidence interval bounds compared with the Figure 4.1 (b). The

same effect can be observed in Figures 4.2 (a and b) as well. In Linux environment,

the measured 90% confidence interval maximum difference is much smaller, around

0.113 compared with 0.304 in Windows environment using JVM. The difference of

the formula-based bound is more precise when the CPU is lightly or heavily loaded

for quad-core processor as well. Additionally, the empirically-based values for CI

Diff (which is tighter than formula based model) can be used as a basis for creating

sharper estimates of CPU availability.

The empirical results for the quad-core processor under Linux environment show

that the CPU availability prediction is fairly accurate when the CPU is lightly,

heavily, or even moderately loaded. When the total CPU loading is moderate, the

measured CPU availability has less variation compared with the Windows environ-

ment as well. It can be observed from Figure 4.1 (a) and 4.2 (a) that due to

efficient thread execution in Linux environment, the gap between average measured

CPU availability and lower-bound becomes huge. Thus, it is possible to further
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tighten the lower-bound so that the bound difference between upper and lower is

less and the CPU availability model is more useful (lower prediction range) and

attractive even when the CPU loading is moderate. The next section introduces a

new lower-bound to reduce the bound gap.

4.3 Sharpened Lower-bound Model

The difference between upper- and lower-bounds can be significant for moderate

values of aggregate loading. The difference for multi-core machine can be as high

as 0.446 for 8-threads with aggregate CPU loading of 0.50. To address this chal-

lenge, based on the possibility of having a tighter lower-bound, a sharpened CPU

availability lower-bound model for multi-core systems is introduced in this section.

4.3.1 The Model

The sharpened lower-bound model is derived from the lower-bound model introduced

in Section 3.5.3. As described earlier, the lower-bound model is based on the worst

case staggering of threads which leads to severe performance degradation due to

contention among all running threads. But the probability of worst case staggering

increases when the value of aggregate CPU loading increases. That is, 3 threads

in a batch with aggregate CPU load of 0.3 has a lower probability of worst case

staggering compared with 3 threads with aggregate CPU load of 0.9.

The new model consists of two scenarios. In the first scenario, the aggregate

CPU load value (L) is less than the number of CPU cores (r). Threads are lightly

loaded in this scenario and the probability of worst case staggering is small. The

following estimated value is subtracted from the denominator of the Eq. 3.4 to

provide less efficiency penalty. The additional parameter to this model is the core

hyper-threading, defined as ξ (cores can have two or more hardware threads).
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(
L

n× ξ

)
if L ≤ r (4.1)

In the second scenario, the value of L > r. The CPU requirement of the batch in-

creases as the value of L increases. More CPU load increases more contention among

running threads and results in degraded performance. As threads’ CPU requirement

increases, the probability of worst case staggering increases. The following equation

is subtracted from the denominator of the eq. 3.4 to provide less penalty based on

the value of L.

(
n− L

n+ r × ξ

)
if L > r (4.2)

Based on eq. 4.2, when the value of L = n, the worst case staggering possibility

is certain and nothing will be subtracted from the denominator. By subtracting

the above equations from the introduced lower-bound model, we get the following

sharpened lower-bound model.

c =


1

1+(n−1
n )×(Lr )−( L

n×ξ)
if L ≤ r

1

1+(n−1
n )×(Lr )−( n−L

n+r×ξ)
if L > r

(4.3)

Figure 4.3 plots the upper- and both lower-bound models for the case r = 4

and n = 16. In this figure, the horizontal axis represents aggregate CPU load of

the running threads (in a scale of 0 to n) and the vertical axis represents CPU

availability (in a scale of 0.0 to 1.0). In an unloaded system, when the aggregate

CPU load for running threads are below or equal to the number of CPU cores,

the availability is 1.0 (representing 100%) because every thread gets sufficient CPU

resources. When the aggregate CPU load reaches above the number of CPU cores,

CPU availability to threads decreases resulting in efficiency degradation. Note that

the difference in upper- and lower-bounds becomes significantly tight for moderate

values of aggregate loading for the new lower-bound model. In the following section,
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Figure 4.3: Upper- and lower-bounds for CPU availability prediction for r = 4 and
n = 16.

the sparpened lower-bound model is superimposed with old and new empirical data

to validate the model.

4.3.2 Sharpened Lower-bound Model Verification

In this section, two sets of empirical data are used to validate the introduced sharp-

ened lower-bound model. For the first set, the empirical test data generated in

Section 4.2.5 is superimposed with the sharpened lower-bound model for both 8 and

16 concurrent threads in a batch. For the second set, new data are generated for

both 8 and 16 concurrent threads and the sharpened lower-bound model is super-

imposed on top of the new data. This approach is necessary because our model is

based on the observation of the first set of data. The model can be claimed accurate

only when it can be validated on new, independent set of data.

CPU availability scatter plots for 8 and 16 threads are shown in Figures 4.4 and

and 4.5 respectively utilizing the first set of data. For verifying the accuracy of new

lower-bound for multi-core processor, the measured data is superimposed with the

upper and sharpened lower-bound. Note, the previous lower-bound is replaced with
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Figure 4.4: CPU availability of 8 threads (for the first set) in a quad-core machine
superimposed with tighter lower-bound model. Results for 2, 000 independent test
cases and 90% confidence intervals.

Figure 4.5: CPU availability of 16 threads (for the first set) in a quad-core machine
superimposed with tighter lower-bound model. Results for 2, 000 independent test
cases and 90% confidence intervals.
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Figure 4.6: CPU availability of 8 threads (for the second set) in a quad-core machine
superimposed with tighter lower-bound model. Results for 2, 000 independent test
cases and 90% confidence intervals.

the new lower-bound for 8, 12, and 16 threads efficiency data. It can be observed

from Figures 4.4 and 4.5 that the new lower-bound can bind the efficiency data very

well for both 8 and 16 concurrent threads’ measured efficiency dots. The introduced

lower-bound model reduces the gap between measured average efficiency line and

the lower-bound.

For the second set of data, 2000 independent test runs are conducted for both 8

and 16 concurrent threads to validate the model with new set of data for accuracy.

A similar approach explained in Section 4.2.5 has been employed to calculate the

moving average and 90% confidence interval values.

CPU availability scatter plots for 8 and 16 threads are shown in Figures 4.6 and

and 4.7, respectively, utilizing the second set of data. For verifying the accuracy

of the new lower-bound for multi-core processor, the new CPU availability data is

superimposed with the upper and sharpened lower-bound. It can also be observed

from Figures 4.4 and 4.5 that the introduced lower-bound model along with the

upper-bound model binds the efficiency data very well for both 8 and 16 concurrent
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Figure 4.7: CPU availability of 16 threads (for the second set) in a quad-core machine
superimposed with tighter lower-bound model. Results for 2, 000 independent test
cases and 90% confidence intervals.

threads’ measured efficiency dots. Thus, it can be stated with confidence that the

sharpened lower-bound model is accurate for multi-core systems.

Table 4.2 shows the average measured CPU availability (Avg.), the difference in

the upper- and new lower-bound models (BD) and the difference in the 90% confi-

dence interval limits (CI Diff) for 8, 12, and 16 concurrent threads on the quad-core

processor. It can be observed from the Table 4.2 that the maximum difference be-

tween the upper- and lower-bounds is 0.273, for 8-threads when normalized aggregate

loading is 0.50. With the previous lower-bound (Eq. 3.4), the bound difference is

0.466 for the same case. The bound difference is reduced as high as 19.3%. Thus, the

introduce tighter lower-bound reduces the bound gap when the CPU is moderately

loaded and the availability is uncertain.
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Table 4.2: CPU availability data for 8, 12, and 16 threads in a quad-core machine
(Linux system using C programming language) consists of average CPU availability
(Avg), bound differences (BD), and 90% confidence interval limits (CI Diff).

L/n
8 Thread CPU
Availability

12 Thread CPU
Availability

16 Thread CPU
Availability

Avg BD CI
Diff

Avg BD CI
Diff

Avg BD CI
Diff

0.05 0.977 0.036 0.023 0.973 0.059 0.019 0.971 0.080 0.014
0.10 0.972 0.070 0.021 0.963 0.111 0.022 0.963 0.149 0.021
0.20 0.965 0.130 0.046 0.946 0.200 0.054 0.943 0.259 0.046
0.30 0.946 0.184 0.034 0.887 0.272 0.062 0.781 0.230 0.054
0.40 0.917 0.231 0.102 0.762 0.259 0.079 0.587 0.149 0.052
0.50 0.879 0.273 0.113 0.621 0.185 0.096 0.469 0.107 0.047
0.60 0.754 0.224 0.079 0.493 0.141 0.085 0.395 0.081 0.066
0.70 0.681 0.168 0.063 0.433 0.112 0.073 0.326 0.065 0.057
0.80 0.587 0.130 0.056 0.361 0.092 0.054 0.289 0.054 0.026
0.90 0.526 0.103 0.037 0.329 0.078 0.039 0.254 0.046 0.028
1.00 0.471 0.083 0.028 0.301 0.067 0.027 0.228 0.039 0.024

4.4 Average CPU Availability Prediction Model

This section introduces a model for predicting the expected (on average) availabil-

ity of CPU (instead of calculating the upper- and lower-bounds). As illustrated in

previous subsection, exact values of CPU availability are difficult to predict because

of dependencies on many factors, including context switching overhead, memory

speed, CPU usage requirements of the threads, core hyper-threading, the degree of

interleaving of the timing of the CPU requirements of the threads, and the char-

acteristics of the thread scheduler of the underlying operating system. Due to the

complex nature of the execution environment, an empirical approach is employed

here to estimate expected CPU availability.

4.4.1 The Model

Based on the observed shape and values of measured average CPU availability in

Figures 4.4, 4.5, and Table 4.2 of Section 4.3, the mathematical model for average

CPU availability is derived. It can be observed from Figures 4.4 and 4.5 that the
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shape of measured average CPU availability has similarities with the upper bound

model (derived in Eq. 3.3).

Because of the similarities with the upper-bound model, the average CPU avail-

ability model is also derived based on two scenarios. In the first scenario, when

the value of aggregate CPU load (L) is less than or equal to the number of CPU

cores (r), that is, running threads has low CPU utilization, the likelihood of work

phase contention is minimal. This results in less contending work phases among

running threads but still some context switching overhead. The CPU availability

upper-bound model is based on the situation in which all work portions of threads

are phased out (interleaved) but context switching overhead is ignored. The follow-

ing model represents the context switching overhead when L ≤ r. This estimated

context switching overhead is subtracted from the first scenario of the upper-bound

model to reflect the observed behavior.

(
n− 1

n+ r

)
×
(

L

(n+ r)× ξ

)
if L ≤ r (4.4)

In the second scenario, when the value of L > r, the best available CPU for

running threads is considered as r/L by the upper-bound model. This scenario is

based on interleaved work phase of running threads. Though this model provides

a good estimation but when the value of L increases, threads become more CPU

hungry and the contention is more likely due to relatively wider work portions than

idle portions. That is, more CPU load increases more CPU contention and more

context switching overhead. The following estimated context switching overhead is

subtracted from the second scenario of the upper-bound model to reflect the observed

behavior.

(
1

1 +
(
n−1
n

)
×
(
L
r

)
× (r × ξ + ξ)

)
if L > r. (4.5)

Eq. 4.6, provides a model/explanation of what has been observed for thread

assignment in processor on the average in Section 4.2.4 (and in [7]). The model of
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Eq. 4.6 depends on the aggregate CPU load (sum total) of the set of tasks, number of

threads, number of processor cores, and number of hyper-threading in cores, denoted

by ξ. For a multi-core machine, the following prediction model estimates the average

CPU availability for a set of tasks:

cavg =


1−

(
n−1
n+r

)
×
(

L
(n+r)×ξ

)
, if L ≤ r

r
L
−
(

1

1+(n−1
n )×(Lr )×(r×ξ+ξ)

)
, if L > r.

(4.6)

The model of Eq. 4.6 is derived from Eqs. 4.4 and 4.5 that depends on whether

the aggregate CPU load is less than the number of cores or more than the number

of cores. In the first situation, CPU resources are lightly loaded resulting in less

context switching overhead and better efficiency. In the second situation, threads

are moderate to highly loaded (i.e., aggregate CPU load is more than the number

of cores), resulting in more context switching overhead and reduced efficiency. The

usage of CPU resource for threads has maximum overlap as depicted in Figure 3.3.

In general, thread with more CPU load incurs more contention for resources and

context switching overhead. Therefore, an estimated context switching overhead is

subtracted from the efficiency value in both cases (i.e., when for L ≤ r or L > r) to

best-fit the average efficiency plot.

4.4.2 Average CPU Availability Model Verification

In this section, two sets of test data are used to validate the introduced average CPU

availability model. For the first set, the empirical test data generated in Section 4.2.5

is utilized for 8, 12, and 16 concurrent threads. The measured average values are

taken from Table 4.2 and superimposed with the model data to verify the accuracy.

For the second set, new data are generated for 8, 12, and 16 concurrent threads and

the average-bound model is superimposed on top of the new average data. This

approach is necessary because our model is based on the observation of the first set
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of data. The model can be claimed accurate only when it can be validated on a new,

independent set of data.

Figure 4.8 (a, b, c) corresponds to the first set of experiment data for 8, 12, and

16 batches of threads in a quad-core machine. In this figure, the horizontal axis

represents the normalized aggregate load, L/n, and the vertical axis represents the

CPU availability for running threads. The average CPU availability line is plotted

from the Table 4.2 containing multi-core test data presented in Section 4.3.2. It can

be observed that the CPU availability model lines are smooth and follow similar

pattern compared with the average lines obtained empirically. As the number of

threads in a batch increases, the shape and pattern of the line of prediction model

become almost identical to average measured line.

To validate the accuracy of the model, a new set of data is generated for 8, 12,

and 16 concurrent threads. Each empirical study consists of 2, 000 independent test

runs. A similar approach explained in Section 4.2.5 is also applied here to measure

the running average value from the data set. A window size of 0.10 aggregate CPU

load and incremental value of 0.01 was used to calculate the moving average values

to plot the line. Figure 4.9 (a, b, c) corresponds to the second set of experiment

data for 8, 12, and 16 concurrent threads in a quad-core machine. It can be observed

that the introduced model’s predicted line and the new average line is again similar

and well predicted.

Table 4.3 depicts normalized aggregate load, L/n, average measured CPU avail-

ability (Avg.), prediction model value (Model), and prediction error in percentage

(Error). Table 4.3 shows that the values obtained from the introduced models are

similar to the average measured CPU availability values. For a set of 8-threads,

the maximum prediction error is 3.06% when normalized aggregate loading is 0.6.

For 12-threads, the maximum prediction error is 3.57% when normalized aggregate

loading is 0.3. Finally, for 16-threads, the maximum error is 1.40% when normalized
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Figure 4.8: The measured average CPU availability data (first set) and predicted
average data associated with Eq. 4.6 for (a) Multi-core systems with r = 4 and
n = 8. (b) Multi-core systems with r = 4 and n = 12. (c) Multi-core systems with
r = 4 and n = 16.
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Figure 4.9: The average CPU availability new data (second set) and predicted av-
erage data associated with Eq. 4.6 for (a) Multi-core systems with r = 4 and n = 8.
(b) Multi-core systems with r = 4 and n = 12. (c) Multi-core systems with r = 4
and n = 16.
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Table 4.3: Measured prediction error for the first set of data for 8, 12 and 16 threads
in a quad-core machine.

L/n
8 Thread CPU
Availability

12 Thread CPU
Availability

16 Thread CPU
Availability

Avg Model
(cavg)

Error
(%)

Avg Model
(cavg)

Error
(%)

Avg Model
(cavg)

Error
(%)

0.05 0.977 0.990 1.33 0.973 0.987 1.41 0.971 0.985 1.40
0.10 0.962 0.981 1.86 0.959 0.974 1.52 0.963 0.970 0.70
0.20 0.951 0.961 1.01 0.946 0.948 0.24 0.943 0.940 0.30
0.30 0.946 0.942 0.43 0.887 0.923 3.57 0.781 0.786 0.53
0.40 0.917 0.922 0.52 0.762 0.774 1.18 0.587 0.585 0.20
0.50 0.879 0.903 2.38 0.621 0.614 0.70 0.469 0.465 0.38
0.60 0.754 0.785 3.06 0.493 0.508 1.54 0.395 0.386 0.91
0.70 0.681 0.669 1.17 0.433 0.433 0.05 0.326 0.330 0.36
0.80 0.587 0.583 0.37 0.361 0.378 1.66 0.289 0.288 0.15
0.90 0.526 0.517 0.93 0.329 0.334 0.54 0.254 0.255 0.09
1.00 0.471 0.464 0.74 0.301 0.300 0.10 0.228 0.229 0.59

aggregate loading is 0.05. The new model has very accurate behavior; the prediction

error is always below 4.0 percent.

Table 4.4 contains the new empirical data to validate the model. It can be

observed from the table that for a set of 8-threads, the maximum prediction error

is 3.24% when normalized aggregate loading is 0.5. For 12-threads, the maximum

prediction error is 3.63% when normalized aggregate loading is 0.4. Finally, for

16-threads, the maximum error is 1.92% when normalized aggregate loading is 0.5.

This analysis shows that the introduced average CPU availability model is consistent

with the second set of data as well. Though the model is created from one set of

data, it can accurately predict the average CPU availability for a new set of data as

well. The maximum predicted error is only 3.63%. Thus, the model dipicts accuracy

and reliability and can be deployed in real-world applications for scheduling.

4.4.3 Comparison With Existing Model

A model similar to the average CPU availability model is the Static Process Assign-

ment Prediction Model (SPAP) introduced by Beltran et al. in [1]. The model they
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Table 4.4: Measured prediction error for the second set of data for 8, 12 and 16
threads in a quad-core machine.

L/n
8 Thread CPU
Availability

12 Thread CPU
Availability

16 Thread CPU
Availability

Avg Model
(cavg)

Error
(%)

Avg Model
(cavg)

Error
(%)

Avg Model
(cavg)

Error
(%)

0.05 0.979 0.990 1.08 0.9714 0.987 1.56 0.9716 0.985 1.34
0.10 0.965 0.981 1.64 0.9653 0.974 0.87 0.9607 0.970 0.93
0.20 0.943 0.961 1.82 0.9408 0.948 0.72 0.9364 0.940 0.36
0.30 0.933 0.942 0.89 0.8942 0.923 2.88 0.7741 0.786 1.19
0.40 0.898 0.922 2.36 0.7377 0.774 3.63 0.5939 0.585 0.89
0.50 0.871 0.903 3.24 0.6288 0.614 1.48 0.4458 0.465 1.92
0.60 0.760 0.785 2.53 0.5054 0.508 0.26 0.3753 0.386 1.07
0.70 0.679 0.669 0.96 0.4137 0.433 1.93 0.3358 0.330 0.58
0.80 0.571 0.583 1.19 0.3857 0.378 0.77 0.2767 0.288 1.13
0.90 0.510 0.517 0.72 0.3235 0.334 1.05 0.2627 0.255 0.77
1.00 0.473 0.464 0.85 0.3038 0.300 0.38 0.2242 0.229 0.48

have introduced can predict the CPU availability for a batch of threads but only in

a single-core machine. Their model fails to provide any estimated value when the

batch of threads are spawned in a multi-core machine. Moreover, the model did not

consider the effect of core hyper-threading which is common. They have validated

their model with only small number of tasks (4) in the run-queue (namely Merge

sort, FFT, Network Sniff, and Simulator). Their result shows a maximum prediction

error is 3.45% [1].

The average CPU availability model introduced in this section is suitable for

multi-core systems with hyper-threading enabled. The introduced model is validated

using 8, 12, and 16 threads in a batch. From the Table 4.4, it can be observed that the

maximum prediction error is 3.63% for 12 threads running concurrently in a quad-

core system. Both models provide high accuracy but our model provides additional

advantage because it has the capability to work in multi-core environment (newer

systems) and designed (also validated) to work with large sets of tasks in the queue.
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4.5 Summary

In this chapter, two prediction models are introduced; (a) given a set of tasks,

aggregate CPU load of the set of tasks, and number of CPU cores of a machine, we

can predict the lower-bounds of CPU availability for the set of tasks; (b) given a

set of tasks, aggregate CPU load, number of CPU cores, and hyper-threading of a

machine, we can predict the average CPU availability for the set of tasks.

A wide range of test cases have been conducted in Linux systems using real-

world benchmark programs along with synthetic benchmark program for verifying

the accuracy of the CPU availability prediction models. All benchmark programs

are implemented using C language. Thread availability scatter plots provide clear

visualization of measured performance based on the density of the dots in the plots.

These empirically measured availability values are showed to generally fall within

theoretically derived upper- and lower-bound models and contains less variation

compared with test cases under JVM when the CPU loading is moderate. Because

of the less variation of measured efficiency data, a tighter lower-bound is introduced

which reduces the gap between upper- and lower-bound as high as 19.3%.

Based on the empirical results for validating the CPU availability model, an av-

erage CPU availability model is introduced. The empirical studies performed for

validating the average CPU availability model shows that the model values follow

the same shape and pattern of the experimentally measured average CPU availabil-

ity lines. This model is suitable for applications that require a single prediction value

instead of upper- and lower bounds for dispatching tasks. Using this reliable infor-

mation one might be able to determine the order in which tasks should be assigned

to the system so that the completion time of all the tasks is minimized.
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Chapter 5

Memory and Composite Availability Model

5.1 Memory Performance Model

In addition to CPU availability, the success of approaches for assigning threads (or

processes) to multi-core systems relies on the existence of a reasonably accurate mem-

ory model for estimating the execution efficiency of tasks due to memory availability.

This is because there is a strong relationship between a thread’s total execution time

and the availability of memory resources used for its execution. Predicting the ex-

ecution efficiency of tasks when the available memory is less than required memory

is critical in making task assignment and scheduling decisions [1, 14].

5.1.1 Basics of Memory Performance Model

It is customary to keep several processes running in time-shared systems. For a

process to execute, it is necessary for the system to swap in the required portion

of code and data of the process into the primary memory. Additional pages are

loaded only when they are demanded during program execution. As the degree of

parallelism increases among processor, over-allocating memory may result in severe

performance degradation. Demand paging saves the I/O necessary to load pages

that are never used but increases the probability of memory overrun. If one access

out of 1, 000 causes a page fault, the system can be slowed down by a factor as high
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as 40 because of the page fault service time. The effective access time is directly

proportional to the page-fault rate [13, 14].

In this section, an extensive collection of empirical measurements taken from

systems with multi-core processors and adequate primary memory to provide a ba-

sis for validating proposed memory models for estimating the efficiency of process

execution for various memory availability. The proposed models are theoretically

derived upper and lower bound models for memory availability. Moving average and

theoretically derived bound difference statistics from measured memory availability

validate the utility of these theoretical models. Case studies for a multi-core machine

involve spawning 1, 2, 3 and 4 concurrent threads with fixed amount of memory re-

quirements by the threads. As the purpose of these empirical studies is to measure

the effect of memory availability in thread execution efficiency, the number of threads

spawned concurrently are always less than or equal to the number of available cores

to avoid context switching (and other relevant CPU related) overhead. Each case

study includes a collection of about 2,000 sample executions for statistical analysis.

The rest of the chapter is organized in the following manner. Section 5.1.2

discusses the thread execution model used in this chapter; from this model, the-

oretical derivations of upper and lower bound models for memory availability are

provided. Section 5.1.5 presents the empirical studies including benchmarking, case

study measurements for systems with multi-core CPUs and adequate primary mem-

ory, and statistical analysis of the results. Section 5.3 summarizes the outcome of

empirical studies of this chapter associated with observed execution efficiency due

to memory availability during thread execution.

5.1.2 Memory Performance Model Bounds

An analytical framework is developed here based on the availability of primary

memory for predicting the efficiency associated with concurrent thread execution

in multi-core machines. The primary contribution of this section is the derivation of
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Table 5.1: Terms and definitions of the memory model parameters.

Terms Definition

Ri > 0 Ri is the required number of memory frames by the process i where i =
(1, 2, ...,m).

R > 0 R is the total required number of memory frames by all processes (R =
R1 +R2 + ..+Rn).

Ma ≥ 0 Ma is the total number of free memory frames available in the system.

Ac Ac is the access time of translation look-aside buffer in the cache memory.

Ap Ap is the access time of the primary memory.

Av Av is the access time of the virtual memory (backing store).

ρ > 0 ρ is the data process time for the thread.

Bl Bl is the backing store latency.

Bs Bs is the backing store seek time.

κ Command queue delay of the system.

upper- and lower-bound formulas for the memory model. Table 5.1 summarizes the

notation and definitions of required parameters of memory model bounds.

5.1.3 Assumptions

The following are the assumptions for the Memory performance model:

• A batch of threads are spawned concurrently in a single- or multi-core system.

• The single- and multi-core systems in which threads will be spawned are ded-

icated, meaning they are not loaded with other threads.

• Memory requirement of each thread is known.

• There are no inter-thread communication or message passing among threads.

• Overhead related to the operating system’s real-time process execution is neg-

ligible.
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The model depends on the above specified assumptions. If these assumptions

are not specified, then the model may produce prediction errors or may not be

completely viable.

5.1.4 The Model

The memory upper-bound model consists of two scenarios. When Ma is greater than

or equal to R and cache memory hit ratio is 100% (all page entries are in translation

look-aside buffer), there will be a single look-up in the page table and no additional

virtual memory access overhead due to page fault service time. In this ideal case,

the efficiency will be 1.0.

In the second scenario, when Ma is less than R; due to shortage of required

number of memory frames, pages will be swap out from primary memory to the

virtual memory. The operating system swaps out pages of inactive process(es) to

free sufficient amount of primary memory for the active process so that it can swap

in required program code and data for running. The following equation incorporates

the overhead related to the number pages that needs to be swapped out to the virtual

memory. The equation also considers the initial virtual memory latency and seek

overhead.

(Ac + Av)× ((
n∑
i=1

Ri)−Ma) + (Bl +Bs) (5.1)

For deriving the upper-bound efficiency model, the ideal thread execution time,

denoted by τ (derived in Eq. 5.2), is divided by an expression that represents the

execution time, which incorporates the virtual memory access time and backing

store overhead for the swapped pages. Here, the ideal thread execution time (τ)

represents the best possible execution environment in which threads receive the

required amount of primary memory in all situations and the cache memory hit

ratio is 100%. That is, for each page, there is only one look-up in page table and

a single access in primary memory and data are available in the primary memory.
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Figure 5.1: Upper-bound efficiency curves associated with Eq. 5.2 for various ideal
thread execution time τ in sec.

Thus, the ideal memory access time and the data process time, ρ, represents the

ideal thread execution time.

τ =

{
(Ap + Ac)×

n∑
i=1

Ri

}
+ ρ if Ma ≥ R (5.2)

The upper-bound of the memory performance model, denoted by m, incorporates

both Eqs. 5.1 and 5.2 and can be derived as:

m =

 1 if Ma ≥ R, else,

τ
τ+(Ac+Av)×((

∑n
i=1Ri)−Ma)+(Bl+Bs)

.
(5.3)

Figure 5.1 illustrates a collection of plots for the theoretically derived upper-

bound model (m) for different ideal thread execution times (τ). In this figure,

the horizontal axis represents the memory availability percentage (the percentage

of available primary memory with respect to the required amount of memory by

threads) and the vertical axis represents the efficiency of thread execution associated

with Eq. 5.3. It can be observed from Figure 5.1 that when the memory availability
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of the machine decreases, efficiency of the machine for process execution decreases

due to increased activity by pager (handling page faults). It can also be observed

that when the value of τ is small (i.e., process runs for a short period of time), the

efficiency decrease is more dramatic compared with large values of τ . For example,

if two processes require the same amount of memory but process one (P1) runs

for a shorter period of time compared to process two (P2), due to same page fault

service time overhead, P1 has relatively more efficiency degradation compared with

P2, which runs for a longer period of time.

The lower-bound model represents the worst-case execution time and based on

two scenarios. In the first scenario, when Ma ≥ R, and the page entries are not

available in the cache memory (cache “miss hit”). In this scenario, there will be

an additional lookup of page entries into the primary memory. Thus, the primary

memory access overhead is added with the value of τ . The scenario can be expressed

by the following equation.

τ +

(
Ap ×

n∑
i=1

Ri

)
if Ma ≥ R (5.4)

In the second scenario, when Ma < R and page entries are not available in

cache memory, this situation additionally includes a primary memory access time

because of cache“miss hit”, the backing store seek time for individual pages (virtual

memory access by multiple concurrent threads will result in storage of pages in non-

consecutive order), and the I/O queuing delay. The scenario can be expresses by

the following equation.

τ + (Ap ×Ma) +

{
(Av + Ap + Ac)× ((

n∑
i=1

Ri)−Ma)

}
+ η (5.5)

The lower bound model, denoted by m, additionally includes the backing store

overhead expressed in Eq. 5.7 and cache “miss hit” overhead, can be derived by

utilizing Eqs. 5.4 and 5.5 as:
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Figure 5.2: Upper and lower bounds for theoretically derived memory availability
prediction model for n = 3, r = 4, and τ = 0.5.

m =

 τ
τ+Ap×

∑n
i=1Ri

, if Ma ≥ R, else,

τ
τ+(Ap×Ma)+(Av+Ap+Ac)×((

∑n
i=1Ri)−Ma)+η

.
(5.6)

and the backing store overhead, denoted by η, considers virtual memory access

time for each page and associated command queue delay (κ), can be expressed as:

η =

(
Bl +

R∑
Ma+1

(Bs) + κ

)
. (5.7)

Figure 5.2 shows plots of the upper and lower bound models for n = 3, r = 4,

and τ = 0.5 while the memory availability varies from 120% to 0% with respect to

the memory requirement by all threads. The backing store overhead (η) increases

based on the number of page swap (in/out) and page seek time. The difference

in upper- and lower-bound might be significant, when the initial page fault starts,

due to the uncertainty of the backing store seek time, latency, and command queue

delay, and others. The number of disk commands waiting in the queue is normally

the factor that slows down the disk performance by increasing the average disk queue

time [7, 44].
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Figure 5.2 illustrates the severe efficiency degradation as soon as the pager starts

page swap out due to memory shortage. Besides thread, I/O buffers and other

associated modules also consume primary memory. For this reason, the page swap

out starts a bit early when the memory availability is around 105% (i.e., there is a

threshold value after which the pager starts).

5.1.5 Empirical Studies

5.1.5.1 Overview

The purpose of these experimental studies is to measure the efficiency of thread exe-

cution as a function of memory availability for collections of threads in an actual dy-

namic environment. For the study, two sets of programs are developed. Algorithm 2

presents the high-level pseudo-code for the first set of programs. The primary role

of the first set of programs is to generate threads to allocate and initialize primary

memory depending on the memory available percentage and hold the memory until

all spawned benchmark threads terminates.

The second set of programs are the memory benchmark programs presented in

Table 4.1. The linear search, image rendering, and merge sort programs are used

along with a synthetic benchmark program for having a precise memory consumption

control to cover various scenarios. These benchmark programs are suitable for the

empirical studies because they include memory intensive expressions and require

reasonable amount of free memory for processing data. Algorithm 3 presents a

high-level pseudo-code for creating and spawning the memory benchmark programs.

For the synthetic benchmark program, pages are replaced on demand while the

process is running to simulate real-world applications behavior. A page replacement

overhead, based on page replacement rate, is integrated in this empirical study. The

input parameter of this page replacement overhead model, denoted by ϕ, includes

the memory requirement of ith thread, denoted by tmi in KB, page replacement rate,

denoted by ω, and individual page replacement time. Thus, ϕ can be defined as:
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Algorithm 2 Setting up the memory framework for the benchmark programs by
allocating and holding memory.

Input: Number of threads (n), Number of test runs (Γ), Memory requirements of
each thread (ts) in KB, and memory availability percentage (MAP).
for count ← 1 ... Γ do

Select a random memory availability percentage between 0 ... 120

R←
∑n
i=1 tsi

page size
, sizes are in KB

Available free memory frames, Ma ← total memory−used memory
page size

of the system.

Consumememory ←Ma − (R×MAP )× 0.01
Create child threads to carryout the following tasks:
for k ← 1 ... cm do

Allocate memory, m = (void ∗) malloc(page size)
Initialize pages, memset(m, 0, page size) to avoid fake memory allocation
Hold primary memory until all benchmark threads complete execution

end for
Generate and spawn threads concurrently for measuring execution efficiency

(using Algorithm 3).
end for
Output: R, Ma, and allocated memory.

ϕ =

(∑n
i=1 tmi

page size
× σ

)
× ω. (5.8)

Pages are replaced at a rate of ω after completion of each work phase.

In the context of memory management, the Linux kernel creates a new virtual

address space for each child thread because threads are created by using the fork()

system call. The kernel creates a complete copy of the existing process’s virtual

address space; then it will copies the parent process’s vm area struct descriptors

and will create a new set of page tables for the child [13,14]. The parent’s page table

and references will be directly copied; thus the parent and child shares the same

physical pages in their address space for all test cases.

5.1.5.2 Empirical Environment

The same empirical environment described in Section 4.2.2 is used for the memory

studies. As the purpose of these tests is to precisely measure the effect of memory
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Algorithm 3 Creating and spawning child threads for measuring thread execution
efficiency of memory benchmark programs.

Input: Number of threads (n), 2D array size (s), pipe descriptor (fd), and data
key.
Wait for the response of consume memory operation
Generate a child process to govern next set of child threads via pipe communication
for i ← 1 ... n do

Create the child thread Ti
Create communication link (pipe) between parent and child threads
Take the start time snapshot for the thread Ti
Compute si with respect to memory requirement of the benchmark thread
Allocate memory for the 2D array size of si and initialize with random

numbers ∈ [1..10k]
Perform measured work based on spawned benchmark program
Take the end time snapshot for the thread Ti while terminates
Execution time← (start time− end time)
Efficiency ← benchmark time

execution time

Transfer Efficiency, Execution time, utilized memory size, and
thread number to its parent via pipe descriptor

end for
Wait for all child threads to terminate and release memory occupied by the service

thread
Store execution data into respective CSV files for analysis
Output: Complete execution report for the set of threads along with measured

efficiency.
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availability on thread execution, the number of concurrent threads generated using

benchmark programs spawned were always less than or equal to the number of CPU

cores to prevent any possible CPU related overhead due to context switching or

other CPU-related inefficiencies.

5.1.5.3 Benchmarking

Table 4.1 consists of benchmark programs used for the memory model test cases.

Each linear search, image rendering, and merge sort benchmark thread consists of a

set of operations that are mix of CPU and memory related expressions that are ideal

for the empirical environment of the memory model. For setting up the benchmark,

threads are assigned an independent two dimensional array size of 250MB. For an

array, memory allocation of rows have been completed first followed by the memory

allocation of columns of each row. After memory allocation, each memory frame was

initialized with a random value ranging from 1 to 10, 000 to be searched. This ini-

tialization also helps to avoid fake memory allocation (due to demand paging). The

system function, meminfo, is invoked to validate the accuracy of memory allocation

for respective threads. For the iRender benchmark program, several large bitmap

files are rendered using the image smoothing algorithm and the output file is stored

in secondary disk. For benchmark runs, available primary memory of the system

were above the required memory of threads to ensure 100% availability of primary

memory to complete assigned work. This approach ensures no additional overhead

due to page fault service. Constants and literals in expressions (for generating work

load) are avoided to eliminate caching effects. Machine’s efficiency data is stored in

multiple CSV files for benchmarking and statistical analysis.
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Figure 5.3: Increase in thread execution time while the memory availability was
varied from 120% down to 0% for 4 threads.

5.1.6 Empirical Memory Model Case Studies

A wide range of empirical studies were conducted to validate the proposed memory

availability model of Eqs. 5.3 and 5.6. For estimating the effect of memory avail-

ability in concurrent thread execution, four major independent case studies were

conducted in which 1, 2, 3, and 4 threads were spawned concurrently in a quad-core

machine. Each case study is incorporated with 2, 000 independent test runs for mea-

suring the thread execution time where memory availability was varied from 120%

down to 0% with respect to the memory requirement of threads.

Figure 5.3 illustrates the increase in total execution time when the availability of

free primary memory reduces. In this figure, the horizontal axis represents the mem-

ory availability percentage for the running threads and the vertical axis represents

the thread execution time. In this case, 4 concurrent threads are spawned and the

available memory of the system is reduced from 120% (with respect to total memory

requirements of running threads) down to 0% (no available primary memory). It
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Figure 5.4: A relative comparison of average thread execution time among 1, 2, 3,
and 4 concurrent thread(s).

can be observed from the Figure 5.3 that when the available memory falls below

100%, the execution time increases sharply due to page swap-out from the primary

memory to backing store.

Figure 5.4 shows measured average thread execution time line graph for 1, 2,

3, and 4 threads spawned concurrently in a quad-core machine. In this figure, the

horizontal axis represents the memory availability percentage for the running threads

and the vertical axis represents the average thread execution time to complete the

assigned job. Average thread execution time were calculated using a sliding window

size of 1.0% memory availability and incremental value of 0.1. It is apparent from

the figure is that the thread execution times are similar (for thread 1, 2, 3, and 4)

when the memory available is 100% or above (in respect to memory requirement of all

threads). As the memory availability falls below 100%, the average thread execution

time increases sharply for all cases because of the page fault service overhead.
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Figure 5.5: Efficiency of thread execution for 1 thread in a quad-core machine.
Results of 2, 000 independent test cases along with derived upper- and lower-bounds.

Figures 5.5, 5.6, 5.7 and 5.8 show measured thread execution efficiency scatter

graphs for 1, 2, 3, and 4 concurrent threads, superimposed with plots of the theo-

retically derived upper- and lower-bound models associated with Eqs. 5.3 and 5.6.

In these figures, the horizontal axis represents the memory availability percentage

(system’s memory availability with respect to running threads) and the vertical axis

represents efficiency of thread execution (the ideal thread execution time divided by

the test run execution time) on a scale of 0.0 to 1.0. Each small dot in these graphs

are an independent test case measurement of thread execution efficiency. This em-

pirical study on a quad-core machine shows that as page swap out starts due to lack

of primary memory availability, the thread execution efficiency falls sharply because

of the page fault service time. The variation in thread execution efficiency is the

most, thus less predictable, when the availability is in the range of 100% to 80%.

Reasons for wide variation are the initial backing store latency, command queue
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Figure 5.6: Efficiency of thread execution for a set of 2 threads in a quad-core
machine. Results of 2, 000 independent test cases along with derived upper- and
lower-bounds.

delay, and serial I/O processing. From the figures, it is apparent that the theoreti-

cal upper- and lower-bounds introduced in this chapter accurately bind the actual

measured values of thread execution efficiency.

Figure 5.8 shows smaller bound difference compared with 1 and 2 thread cases.

The variation in execution efficiency reduces when the number of threads in a batch

increases. It can also be observed that when the memory availability is above 100%,

bound difference increases as the number of thread increases. As the number of

thread increases, the probability of page swap out and queuing delay increases. The

difference of the model-based bound is more precise when the memory availability

for threads is either high or low.

In further reporting the results of the studies of 1, 2, 3, and 4 concurrent threads

in a quad-core machine, Table 5.2 and 5.3 presents the value of theoretically derived

upper-bound model (UB), lower-bound model (LB), the difference between upper-

and lower-bounds (BD), and the average measures thread execution efficiency (AVG)

while the memory availability was varied from 0% to 120%. From the table, it
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Figure 5.7: Efficiency of thread execution for 3 threads in a quad-core machine.
Results of 2, 000 independent test cases along with derived upper and lower bounds.

Figure 5.8: Efficiency of thread execution for a set of 4 threads in a quad-core
machine. Results of 2, 000 independent test cases along with derived upper- and
lower-bounds.
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Table 5.2: Average measured thread execution efficiency (AVG), Upper-bound (UB),
Lower-bound (LB), and Differences between upper- and lower-bounds (BD) for 1 and
2 concurrent threads.

MAP
1 Thread Mem-
ory Availability

2 Thread Mem-
ory Availability

AVG UB LB BD AVG UB LB BD

0% 0.134 0.163 0.030 0.130 0.067 0.092 0.028 0.063
10% 0.139 0.177 0.035 0.142 0.071 0.101 0.031 0.070
20% 0.147 0.177 0.039 0.156 0.080 0.112 0.035 0.077
30% 0.161 0.217 0.044 0.173 0.093 0.126 0.039 0.087
40% 0.179 0.244 0.051 0.194 0.115 0.144 0.045 0.099
50% 0.207 0.279 0.059 0.220 0.131 0.168 0.052 0.116
60% 0.247 0.326 0.071 0.255 0.142 0.201 0.063 0.138
70% 0.261 0.392 0.089 0.303 0.167 0.251 0.079 0.173
80% 0.296 0.491 0.118 0.373 0.218 0.335 0.105 0.229
90% 0.382 0.657 0.178 0.479 0.276 0.500 0.160 0.341
100% 0.439 0.991 0.358 0.633 0.401 0.991 0.328 0.663
110% 1.000 1.000 0.978 0.022 1.000 1.000 0.957 0.042
120% 1.000 1.000 0.978 0.022 1.000 1.000 0.957 0.042

Table 5.3: Average measured thread execution efficiency (AVG), Upper-bound (UB),
Lower-bound (LB), and Differences between upper- and lower-bounds (BD) for 3 and
4 concurrent threads.

MAP
3 Thread Mem-
ory Availability

4 Thread Mem-
ory Availability

AVG UB LB BD AVG UB LB BD

0% 0.041 0.061 0.024 0.037 0.031 0.046 0.022 0.025
10% 0.044 0.067 0.026 0.041 0.038 0.051 0.024 0.027
20% 0.047 0.075 0.029 0.045 0.041 0.057 0.027 0.031
30% 0.051 0.085 0.033 0.051 0.044 0.065 0.030 0.035
40% 0.061 0.097 0.038 0.059 0.050 0.075 0.034 0.040
50% 0.084 0.115 0.045 0.070 0.061 0.089 0.040 0.048
60% 0.103 0.139 0.054 0.085 0.083 0.108 0.049 0.059
70% 0.139 0.177 0.068 0.109 0.102 0.139 0.062 0.077
80% 0.182 0.244 0.093 0.151 0.146 0.195 0.084 0.111
90% 0.245 0.391 0.145 0.247 0.214 0.326 0.132 0.194
100% 0.381 0.988 0.327 0.662 0.379 0.992 0.303 0.688
110% 1.000 1.000 0.933 0.067 1.000 1.000 0.920 0.081
120% 1.000 1.000 0.933 0.067 1.000 1.000 0.920 0.081
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can be observed that the difference between upper- and lower-bounds can reach as

high as 0.688 when n = 4 and MAP = 98 (i.e., when the page fault just starts).

However, the measured average thread execution efficiency is for this same case is

much smaller, around 0.379. Bound difference are low for the 4 thread case when

the memory availability is relatively high or low.

5.2 Composite Prediction Model

The CPU availability and memory models from Chapters 3 and 5, respectively, are

used as building blocks in this section to derive a composite CPU/Memory predic-

tion model for estimating the efficiency of thread execution in multi-core systems.

As new processes are assigned or existing processes complete execution, the CPU

and memory availability of a given machine can change significantly in a short span

of time. Existence of the composite prediction model is important because there

exists a wide range of applications and scientific models (e.g., geological, meteoro-

logical, economical and others) that requires extensive use of both CPU and memory

resources, repeatedly. Assigning a set of batch tasks in a distributed environment

(distributed schedulers) can utilize the composite model to determine the order (or

find subsets) in which the tasks should be assigned to compute nodes so that the

completion time for all tasks is minimized prior to its placement in the run queue.

5.2.1 Basics of Composite Prediction Model

As shown in Chapter 4 and Section 5.1, there is a strong relationship between a

thread’s total execution time and the availability of CPU and memory resources

used for execution. It is necessary to have accurate models for estimating CPU and

memory resources because of the dynamic nature of computer systems and their

workload. As new processes are assigned or existing processes complete execution,

the CPU and memory availability of a given machine can change significantly in a
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short span of time. An extensive collection of empirical measurements are taken

from systems with multi-core processors and adequate primary memory to provide

a basis for validating proposed analytical model for estimating process execution

performance with variable CPU and memory availability.

5.2.2 Bounds of Composite Prediction Model

A composite analytical framework consisting of upper- and lower-bounds are derived

for estimating the overall efficiency for a batch of tasks in multi-core systems. In-

put parameters for the composite upper- and lower-bound models include the CPU

availability upper- and lower-bound models derived in Eqs. 3.3 and 4.3, and memory

availability upper- and lower-bound models derived in Eqs. 5.3 and 5.6, respectively.

The composite CPU and memory availability upper-bound model, denoted by cm,

represents the best case efficiency value of a machine for concurrent thread execution

can be derived by the product of two models because CPU and memory are the two

primary factors used to characterize machines.

cm =


1

max(1,L
r
)

if Ma ≥ R, else

1
max(1,L

r
)
× τ

τ+(Ac+Av)×((
∑n
i=1Ri)−Ma)+(Bl+Bs)

(5.9)

The values of c and m represents the relative impact of a machine’s overall

efficiency due to loading of machine’s CPU and memory resources, respectively.

The composite model upper-bound model consists of two scenarios. When Ma is

greater than or equal to R, the execution efficiency value depends on the value

of aggregate CPU loading. In the second scenario, when Ma is less than R, the

execution efficiency value depends on the composite effect of CPU and memory.

The composite CPU and memory availability lower bound model, denoted by

cm, represents the worst case efficiency value of the machine for thread execution is

defined by the product of CPU and memory lower bound.
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cm =


1

1+(n−1
n

)×(L
r
)−µ ×

τ
τ+Ap×

∑n
i=1Ri

, if Ma ≥ R, else

1
1+(n−1

n
)×(L

r
)−µ ×

τ
τ+(Ap×Ma)+(Av+Ap+Ac)×((

∑n
i=1Ri)−Ma)+η

(5.10)

A new parameter, µ, is incorporated to represent the probability of worst-case

staggering of work-phases. When the value of L is less than or equal to r, the value

of µ is L/(n × ξ) because of the less probability of worst-case staggering. When

the value of L is greater than r, the value of µ becomes L/(n + r × ξ) because of

increased work-phase probability.

The lower-bound of composite prediction model consists of two scenarios. When

the value of Ma is greater than or equal to R, the execution efficiency value is derived

from the product of CPU availability lower-bound and memory models’ first lower-

bound expression. In the second scenario, when Ma is less than R, the execution

efficiency value is derived from the product of CPU availability lower-bound model

and the memory lower-bound models’ second expression to reflect the composite

effect accurately.

Figure 5.9 (a, b) shows surfaces of the theoretically derived upper- and lower-

bound model in which horizontal axes represents aggregate CPU loading (of the set

of tasks) and memory availability percentage (with respect to memory requirements

of the set of tasks), and the vertical axis represents the overall efficiency of the ma-

chine. It can be observed that for CPU loading values greater than the number of

cores (here, r = 4), the idealized function for c decreases according to the ratio of the

number of cores to the total CPU loading. The significant degradation of efficiency

value can also be observed when the memory availability for threads decreases ac-

cordingly from 120% down to 0%. Ideally, if a machine’s CPU and memory resources

are both lightly loaded, then the efficiency of the machine is at or near its maximum

value.

Figure 5.10 (a, b, and c) shows the effect of large value of τ in upper-bound

model. The purpose of this figure is to show the effect of ideal thread execution
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Figure 5.9: (a) Upper- and lower-bound surfaces of the composite prediction model
associated with Eqs. 5.9 and 5.10 respectively for multi-core systems with r = 4
and n = 16. (b) Same surface diagram of the composite upper- and lower-bound
model in an alternative perspective.
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Figure 5.10: Upper-bound surface diagram for the composite prediction model as-
sociated with Eqs. 5.9 with r = 4 and n = 16 (a) when τ = 1 sec (b) when τ = 10
sec, and (c) when τ = 100 sec.
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time (τ) when the value changes from 1 to 100 sec. It can be observed among

surfaces that when the value of τ increases from 1 to 100, the overall efficiency of

the node increases considering the memory requirement is same in all three cases.

The efficiency value increases because when the program runs for longer period of

time, the page fault overhead (which is same for all the three cases) has less impact

compared to a program which runs for a shorter period of time. A similar effect is

illustrated in Figure 5.1 of Section 5.1.2.

In the following section, experimental studies are performed to measure pro-

cessor efficiency while executing threads to verify that the introduced upper- and

lower-bound composite models can estimate the actual empirical measured efficiency

surface.

5.2.3 Experimental Studies

5.2.3.1 Overview

The benchmark programs used for measuring the overall efficiency of a machine are:

Bitonic Sorting Network, Sparse matrix vector multiplication, and Tridiagonal Solver

(using Gaussian elimination). These benchmark programs consists of expressions

that are mix of CPU and memory related operations and which makes them ideal for

the composite model empirical studies. Similar approaches are taken for modeling

threads by a series of alternating work and sleep phases as described in Section 3.3.

The purpose of the experimental study is to empirically measure the efficiency of the

machine as a function of aggregate CPU loading and memory availability factors.

Aggregate CPU loading and memory requirement values are selected randomly and

distributed among threads by using Algorithm 1, 2, and 3, respectively. Uniform

sampling of data across the values of possible aggregate CPU loading and memory

availability has been carried-out. For implementing the benchmark programs and

composite model framework programs, most of the modules of the CPU and memory

availability programs are reused.
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Algorithm 4 Estimating thread execution performance spawned in a multi-core
system.

Input: Number of threads (n), and test run (tr)
for count ← 1 ... tr do

Select a random aggregate CPU load value between [ε ... n]
while i ≤ (n− 1) do

UR = Min
(
L−

∑i−1
j=1 Tj − (n− i)× ε), 1

)
LR = Max

(
L−

∑i−1
j=1 Tj − (n− i)), ε

)
Ti ∈ [LR,UR]
Ti ← (UR− LR)× Ti + LR

end while
Tn ← L−

∑n−1
i=1 Ti

Compute aggregate work for each thread using Eq. 3.6
Compute sleep phase length for each thread:

Sleep =
(
StageWorkT ime×(1−CPUusage)

CPUusage

)
Use fork() to generate a thread to do the followings:

Select a random MAP ranging from 1...120%
Compute R, Ma, and cm for selected MAP
Allocated and initialize memory based on MAP
Occupy and hold memory until all child threads finishes assigned tasks

and terminate
Create a new thread to control next level of child threads
for i← 1 ... n do

Create thread ti, and pipe link with its parent
Generate a large 2D array of computed size, depending on memory requirements
Allocate and Initialize memory (to avoid fake allocation) for the array
Replace page and compute the overhead, ϕ, as:

ϕ =
(∑n

i=1 tmi
page size

× σ
)
× ω

Release the memory (i.e., demalloc) occupied by the array
Take the end time snapshot for the thread ti
Compute the backing store (secondary memory) overhead,η, as:

η =
(
Bl +

∑R
Ma+1(Bs) + κ

)
Compute efficiency, upper, and lower bound
Transfer test case values to its parent via pipe

end for
Wait for all child threads signal to terminate
Persist the measured efficiency data in respective CSV files

end for
Close all files and connections
Output: Thread execution data for statistical analysis
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About 18, 000 test runs are conducted for three independent sets of test cases in

which 8, 12, and 16 threads are spawned concurrently in a quad-core machine. This

vast number of test runs are conducted to sufficiently cover the possible scenarios of

thread executions. A similar experimental environment as described in Section 4.2.2

has also been deployed here for conducting the case studies.

5.2.3.2 Benchmarking

A similar but combined approach has been performed (described in Sections 3.6.3

and 5.1.5.3) for setting up the empirical framework programs of the composite model.

For the memory portion, each thread was assigned an array size of 50MB and the

data is generated randomly for initialize the array. For the CPU portion, sleep

phase length and total work load values are calculated by utilizing Eqs. 3.5 and 3.6,

respectively. The thread with the minimum CPU load was assigned 1.0× 108 units

of work load, which should be accomplished in 25 work-sleep phases. In the work

component of each phase, threads accomplish 4.0× 106 units of fixed computational

work. Thus, when the memory requirements of threads is less than the available

memory of the system, Eq. 5.11 can be used to determine the ideal thread execution

time, denoted by ν. Input parameters for computing ideal execution time (ν) are

work phase time in the quantum (Qw), number of work phases to complete the total

work (Nw), and CPU usage factor of the thread (Li).

ν =
(

(Qw ×Nw) + (Nw − 1.0)×
(
Qw×(1.0−Li)

Li

))
(5.11)

According to Eq. 5.11, the value of ν can be measured dynamically using the

work phase length (measured by multiple test runs), number of work phases (total

work/work accomplished in a single phase), and the CPU usage factor of the thread.

All parameter values of Eq. 5.11 are available while the program is running. As

the total amount of work depends on the CPU load of threads, the variable ideal
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Figure 5.11: Measured efficiency surface of 8-threads in a quad core machine (a)
when τ = 30 and number of test runs are 4, 000. (b) The same surfaces in an
alternative perspective for clear visualization of the effect of efficiency degradation
due to memory availability.

thread execution time for threads (because of variable work load) can be measured

accurately by utilizing the Eq. 5.11.

5.2.4 Case Study Results

For measuring the overall efficiency value of thread execution, three independent case

studies were conducted on a quad-core machine for 8, 12, and 16 threads. Aggregate

CPU load and memory availability values were selected randomly and distributed

among the threads as described in Sections 3.6.1 and 5.1.5, respectively. As the

focus of this empirical study is to measure the effect in overall efficiency of machines

when both CPU and memory usage are varied, the number of threads deployed is

always above the number of CPU cores of the machine and the memory availability

is varied from 120% down to 0%.
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Figure 5.12 (a) shows measured efficiency surface for the execution of 8 threads

in a quad-core machine. About 4, 000 independent test cases are carried out to cap-

ture all possible execution efficiency scenarios due to CPU and memory availability

variation. A moving average is taken from these test results with a sliding window

size of 0.10 aggregate CPU loading and 0.5% of memory availability, and incremental

value of 0.01 CPU loading and 0.5% memory availability. The data is then converted

to a two dimensional matrix format for plotting a 3D surface diagram.

It can be observed from Figure 5.11 (a) is that the efficiency value decreases

significantly when the aggregate CPU load reaches beyond the CPU cores (here, r =

4) because of the increased CPU contention among running threads. Figure 5.12 (b)

illustrates the decrease of machine efficiency because of the decrease of memory

availability. The efficiency decrease due to memory availability is moderate because

the τ value of test runs are large (refer to Figure 5.1; here, τ = 30 sec).

Figure 5.12 (a) shows the same surface diagram illustrated in Figure 5.11 (a). The

same figure is converted in a relatively light color to differentiate from upper- and

lower-bound surfaces to avoid any confusion while superimposing. In Figures 5.12 (b)

and (c), the efficiency surface is superimposed with upper- and lower-bound surfaces

associated with Eqs. 5.9 and 5.10, respectively. The purpose of Figures 5.12 (b) and

(c) is to verify that the efficiency surface shown in Figures 5.12 (a) is bound using the

composite upper- and lower-bound models. From the empirical results and measured

efficiency surface plot in Figure 5.12 (b), it is apparent that theoretically derived

upper- and lower-limits introduced in this section do bound the actual measured

efficiency surface very well (Note: the efficiency surface diagram is given a different

and light color so that any crossings can be detected immediately). It can also be

seen from Figure 5.12 (b) that bounds are tighter when the aggregate CPU and

memory loading is either relatively low or relatively high. Figure 5.12 (c) shows

the same surface diagrams in a different perspective to illustrate that there are no
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Figure 5.12: (a) Measured efficiency surface of 8-threads in a quad core machine for
τ = 30 and number of test runs are 4, 000. (b) The measured efficiency surface is
superimposed with composite upper- and lower-bound surfaces. (c) Same surfaces
in an alternative perspective for clear visualization of the binding of the efficiency
surface by upper- and lower-model surfaces.
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crossings among measured efficiency, upper-, and lower-bound surfaces. This figure

also illustrates the degradation in efficiency when the memory availability decreases.

In the next set of test cases, 16-threads were spawned concurrently for mea-

suring the overall machine efficiency of thread execution. A similar approach has

been taken, like 8-threads, for conducting the empirical case studies. About 8,000

independent test cases were conducted in which CPU and memory availability were

selected randomly and distributed among threads to cover all possible scenarios.

Moving averages are taken from these empirical studies resulting data with a sim-

ilar sliding window approach for generating efficiency surface data. Upper- and

lower-bound surface data are generated from the same model Eqs. 5.9 and 5.10

respectively.

Figure 5.13 (a) shows the average measured efficiency surface for 16-threads in

a batch. A similar decrease in efficiency has also been observed when CPU loading

increases and memory availability decreases. Figures 5.13 (b) and (c) illustrates

the efficiency surface superimposed with theoretically derived upper- and lower-

bound surfaces. From Figures 5.13 (b) and (c), it is apparent that the upper- and

lower-bound prediction models introduced here can also bound the actual measured

efficiency surface very well.

5.3 Summary

Analytical models (and empirical studies) were developed for predicting (and mea-

suring) execution efficiency of concurrent threads in Linux environment as a function

of memory availability. As would be expected, degradation in thread execution ef-

ficiency occurs when primary memory availability is less than the total required

memory by threads. In addition to memory availability, the total amount of mem-

ory required by concurrent threads is a factor in predicting the thread execution

efficiency. When the total memory requirement is higher than the total available

memory, the relative performance can have a significant impact on execution time.
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Figure 5.13: (a) Measured efficiency surface of 16-threads in a quad-core machine
for τ = 30 and number of test runs are 8, 000. (b) The measured efficiency surface is
superimposed with composite upper- and lower-bound surfaces. (c) Same surfaces
in an alternative perspective for clear visualization of upper- and lower-limit binding
of the efficiency surface.
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Specifically, increased page swap out by concurrent threads and long queue delay

due to serial I/O degrades thread execution efficiency. A memory availability scat-

ter plot provides a clear visualization of measured efficiency based on the density of

the dots in the plot. These empirically measured availability values are showed to

generally fall within theoretically derived upper- and lower-bound models.

The composite prediction model proposed in this chapter is derived from the

CPU availability and memory models. It is necessary to have accurate model for

estimating the overall machines’ efficiency for concurrent thread execution on a time-

shared system. The prediction models were validated empirically by an extensive set

of case studies involving real-world benchmark programs having dynamic behaviors.

The results of empirical studies are presented in this chapter in the form of scatter

plots, surfaces, and tables. For the composite prediction model, surface plots for

measured thread execution efficiency along with upper- and lower-bound surfaces

provides a clear visualization of all possible cases of combined CPU and memory

availability variation in thread execution. These empirically measured availability

values are shown to generally fall within theoretically derived upper- and lower-

bound models.

The proposed new prediction models can be highly useful for determining the

order in which tasks should be assigned to the system so that the completion time

of all the tasks is minimized. The composite prediction model can be used as a

building block for distributed task scheduler (or for allocating real-time resources in

cloud environment) to determine the order (or find sub sets) in which tasks should

be assigned to compute nodes for minimizing the total execution time prior to the

placement of tasks into the run queue.
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Chapter 6

Task Assignment Policies

In this chapter, two new task assignment policies are introduced by utilizing the

composite prediction model presented in Chapter 5. The goal of this chapter is

to find an assignment of tasks to compute nodes such that the total time taken

to execute all the tasks is minimized. The composite prediction model provides

required intelligence along with a new CPU availability prediction model to make

proper task assignment decisions. The new CPU usage prediction model is capable

of estimating available CPU resources for a new task before placing it into the

run-queue. This new model provides task scheduler the benefit to look-ahead and

find the best arrangement for a set of tasks to minimize total execution time. The

introduced task assignment policies are then compared empirically with the popular

Terascale Open-source Resource and QUEue Manager (TORQUE) for the purpose

of measuring the task assignment performance difference.

6.1 Introduction

System performance prediction involves estimating the system’s behavior for the set

of tasks to be executed on it. The prediction of resource availability in a system is

important in the context of making task assignment, load balancing, and scheduling

decisions in distributed systems. Making such predictions is complicated by the
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dynamic nature of the system and its workload, which can vary drastically in a

short span of time [1]. For any prediction approach, it can be useful to know a

priori certain characteristics of tasks that are planned to be assigned to the system.

As an example, it is useful to know the maximum amount of main memory a task

will consume during its execution (memory requirement). This information is useful

to forecast the amount of time that may be consumed for memory paging activities.

It is also useful to know the CPU requirement of the task, which is the fraction of

time a task requires the CPU.

For tasks such as generating prime numbers, computing Fast Fourier Transforms,

and related others require significant use of the CPU. One can also know the CPU

and memory requirements of a task based on the information gathered from its earlier

executions. The execution of many scientific models (economic, meteorological, and

others) fall into this category, where the program remains the same and the data on

which it operates changes over time.

Given the CPU requirements of tasks in a run queue, Beltrán et al. [1] provide

an analytical model to estimate the CPU availability (which is the percentage of

CPU time that will be allocated) for the new task prior to its placement in the run

queue. It is shown that in certain cases this information can be used to schedule

the execution of tasks in such a way that the completion time of all the tasks is

minimized [1]. Khondker et al. [7] extended the work of Beltrán et al. [1] as follows.

Beltrán considered a batch of tasks (each with its own CPU requirements) and

their analytical model determined the CPU availability using the sum total of the

CPU requirement of each of the tasks in the batch. Using this sum total posed a

challenge in that the CPU availability prediction is precise only when the order of

task execution is known a priori. To address this challenge, the analytical model in

Khondker provides tight upper- and lower-bounds on CPU availability. The bounds

are necessary because the actual CPU availability depends on the order of execution
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of tasks in the batch. Thus the analytical model in Chapter 3 is oblivious of the

CPU scheduler.

In this chapter, we have further improved the analytical model in [7] in several

ways. First, we utilize the memory model that determines the execution efficiency,

which is the amount of CPU time that a task requires to complete its execution when

adequate free memory frames are available in main memory divided by the total time

it takes when only part of the necessary memory frames are available in the main

memory. Second, we have utilized the composite model which is derived from the

CPU availability model in Section 3 and the memory model developed in Chapter 5

to derive a composite model. This prediction model consists of analytically derived

upper and lower efficiency bounds helps to determine the best efficient node in the

system. Third, we have introduced a new CPU usage prediction model for measuring

CPU usage before assigning a task in to the machine. In this empirical model, we

calculated the new CPU usage of the machine based on the CPU availability of each

core and the CPU requirements of the task. Moreover, the proposed model considers

multi-core CPUs and hyper-threading for accurate prediction. Additionally, this

new model is able to predict the CPU availability for a new task without explicit

knowledge of the mapping between available cores and tasks. Fourth, two new task

assignment policies are proposed by utilizing the composite and new CPU usage

models for dispatching tasks intelligently in distributed multi-core compute nodes.

Finally, a task look-ahead approach is proposed for a set of incoming tasks from the

run-queue by utilizing the new CPU usage model.

Using the availability models developed in Chapter 3, 4, and Chapter 5, we have

designed algorithms for task assignment in distributed multi-core compute nodes.

Given a set of tasks (with known CPU and memory requirements) and set of com-

pute nodes, we use the composite model to determine the best node (in terms of

thread execution efficiency) and assign the task to that node. We have provided two

approaches for task assignment to a compute node using the composite prediction
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model. In the first approach named Task Assignment using Status Measurement

(TASM), we query all of the nodes each time a task is to be assigned to gather the

nodes’ status information and use the composite model for decision making. While

such current information give us precise input to the models, it can incur high over-

head when we consider a large number of compute nodes. To overcome this challenge,

we have implemented a second approach, wherein we only know the initial state of

the compute nodes and the status of the compute nodes is dynamically updated as

we assign tasks to them using the prediction models developed in this paper. We

call this second approach Task Assignment using Status Estimates (TASE). Our ex-

tensive empirical evaluations have shown that TASE performs equally well (in terms

of total completion time) in comparison with TASM model, thereby avoiding the

overhead of querying the nodes for their status each time a task is to be assigned.

A number of scenarios using real benchmark test loads with dynamic behavior are

carried out to measure the accuracy of task scheduling models. We have compared

our introduced task models with the widely used Terascale Open-source Resource

and QUEue Manager (TORQUE) for performance comparison. In addition, exten-

sive empirical work is conducted to measure the accuracy of the proposed composite

prediction model, and the new CPU usage prediction model as well which are the

building blocks of the task models.

The rest of the chapter is organized in the following manner. Section 6.2 presents

the Terascale Open-source Resource and QUEue Manager (TORQUE) and it’s job

scheduling policies. Two task assignment models along with the task dispatch algo-

rithm are presented in Section 6.3. Section 6.4 provides information of the empirical

environment, benchmark programs along with case study results for both task assign-

ment models and compares the achieved performance with the popular TORQUE

system. Section 6.5 illustrates task look-ahead strategy for the TASE model along
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Figure 6.1: A high-level task scheduling diagram for the TORQUE system which
uses Round Robin policy to assign batch job for distributed compute nodes.

with empirical results to demonstrate the importance of task execution order and ac-

curacy of the model. Finally, Section 6.6 summarized contributions and application

areas for the introduced models.

6.2 TORQUE Distributed Resource Manager

The Terascale Open-source Resource and QUEue Manager (TORQUE) is a dis-

tributed resource manager that provides control over batch jobs and distributed

compute nodes. TORQUE is an open-source distributed resource manager software

and freely used, modified, and distributed [55]. It incorporates significant advances

in the areas of scalability, reliability, and functionality and is currently in use at many

leading government, academic, and commercial sites throughout the world [56].

Because of the availability of TORQUE scheduler protocol and wide spread use of

the product, TORQUE scheduler is considered as a benchmark to evaluate new task

assignment models. In the TORQUE task assignment model, all incoming tasks are
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placed in a task queue. The task queue operates in FCFS order. Figure 6.1 shows the

basic high-level diagram of the TORQUE system. Incoming jobs are placed at the

end of the task queue and removed from the head. That is, it uses First Come First

Serve (FCFS) queuing approach when scheduling jobs on the distributed computing

resources. Jobs are then dispatched to distributed compute node using Round Robin

(RR) scheduling technique [21].

6.3 Task Assignment Models

In this section, two new task assignment models in distributed environment have

been introduced by utilizing the composite prediction model. The goal is to find

an assignment of tasks to compute nodes such that the total time taken to execute

a batch of tasks is minimized. For updating the CPU resource availability in real-

time while tasks are assigned to distributed compute nodes, a new CPU availability

prediction model is introduced which can predict the resource after each task dis-

patch. Note, the CPU availability model introduced in Chapter 3 is different form

the model introduced in this chapter which provides an estimated CPU availability

before each task assignment instead of an upper- and lower-bound CPU availability

estimate for a batch of tasks.

6.3.1 Task Assignment using Status Measurement (TASM)

Model

In this task assignment model, all incoming tasks are placed into a task queue.

The task queue operates in FCFS order like TORQUE. Figure 6.2 shows the task

distribution system for the TASM model. A client-server methodology has been

adapted to design and implement the analytical framework for the task assignment

model. In this distributed model, a client program initially retrieves IP addresses

and port numbers of all servers and sends resource status request. For assigning tasks
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Figure 6.2: Task assignment to distributed compute nodes using the status data of
compute nodes.

to compute nodes, a task is popped out from the head of the queue. Properties of

the task and state information of each compute node are collected. Properties of

a task includes CPU and memory requirements of the task. State information of

a node includes resource information including current CPU usage/load, available

free main memory, page size, number of cores, and maximum speed of cores. Then

the composite prediction model is deployed to measure the execution efficiency of

the task for all compute nodes. The task is then assigned to the most efficient node.

State information of all nodes in the grid are collected each time a task is to be

assigned. This method provides most current and precise state information to the

models but expensive, in terms of overhead, when we consider a large number of

compute nodes.

6.3.2 Task Assignment using Status Estimates (TASE) Model

In this model, a dynamic prediction table is maintained for holding the predicted

CPU and memory availability data of each node of the distributed system. The
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Figure 6.3: Task assignment to distributed compute nodes using a dynamic predic-
tion table consists of real-time prediction of status data of compute nodes.

same composite prediction model of TASM is used but the resource state parameter

values are taken from the prediction table instead of fetching it from nodes each time

before task assignment. The prediction table of this model is initially populated by

queuing resource status information from each computing nodes. After that, the

resource status in the table is updated dynamically using CPU usage prediction

model. The CPU usage model updates the table each time a new task is assigned

to a node or an old task terminates and release resources.

Figure 6.3 shows the task distribution system for the TASE model. A client-

server methodology has been adapted to design and implement the analytical frame-

work for both task scheduling models. In this distributed model, a client program

initially retrieves IP addresses and port numbers of all servers and sends resource

status request. Upon arrival of status, it’s then used to populate the prediction

table in TASE model. The client program waits for service request like show task

queue, show grid state, dispatch tasks to nodes, show task processing status, show

task execution statistics, etc. When a task dispatch request is received, the client
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program generates a thread using the function fork() to handle the task dispatch

service based on introduced task assignment models. After assigning the task dis-

patch job to the newly created thread, the client program goes back and waits for

another service request.

6.3.2.1 CPU Usage Prediction Model for a New Task

In this section, two prediction models are introduced to measure the CPU usage of a

compute node and CPU availability for a new task prior to the placement of the task

into the run queue. Parameters to these models are the CPU requirements of a new

task, number of cores, current CPU usage of cores, degree of hyper-threading, and

others. By utilizing these parameters, the CPU usage prediction model facilitates

users to measure new CPU usage of a compute node before assigning a task into

it. From the predicted new CPU usage and current CPU usage, a new model is

derived to estimate CPU availability for a new task. Additionally, this new model is

able to predict CPU availability without explicit knowledge of the mapping between

available cores and tasks.

Existence of the new CPU usage prediction model is important because there

exists many cases in which an average CPU load value (can be extracted from the

kernel) will not be able to reflect the actual CPU availability for a new incoming task.

For example, consider two dual-core machines M1 and M2 with same configuration.

Further consider, the M1 is running 2 I/O bound-tasks containing CPU requirement

of 0.4 and 0.5 respectively. The M2 is running only 1 CPU bound task with 0.9 CPU

requirement. In both cases, the average CPU load will be 0.45 (equally loaded).

Now, for a new incoming task with CPU requirement of 0.8, the M2 has better

capability of providing faster run-time compared with the M1 because one core of

M2 is unoccupied. The new task can get full attention of a core compared with the

M1 in which each core is preoccupied with a task.
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As illustrated in previous subsection (and in [7]), exact values of CPU availability

are difficult to predict because of dependencies on many factors, including context

switching overhead, memory speed, CPU usage requirements of the threads, core

hyper-threading, the degree of interleaving of the timing of the CPU requirements

of the threads, and the characteristics of the thread scheduler of the underlying

operating system. Due to the complex nature of the execution environment, an

approach is employed here to estimate expected CPU availability.

The proposed new CPU usage prediction model considers the CPU load of each

core of a machine instead of one CPU load value (aggregate) for the whole system to

accurately predict the new CPU usage for an incoming task. From several empirical

studies, it has been observed that a new task is placed in the core which has the

minimum CPU usage (i.e., maximum CPU availability). Here, r is the number of

physical cores, ξ represents the number of hyper threads in a core, and ϑ represents

the CPU requirement of the thread. Additionally, Cl represents the logical core

which has the minimum CPU load where l ∈ {0, 1, .., (r × ξ) − 1} and and Cl =

min(C1, C2, ..., C((r×ξ)−1)). The new measured CPU load of the machine, denoted by

αp, can be represented as follows:

αp =


(1.0−Cl)×ϑ
r×(ξ−ϑ) , if Cl = 0

Cl
(r×ξ) + (1.0−Cl)×ϑ

r×(ξ−ϑ) , else if 0.0 < Cl < 1.0

Cl
(r×ξ) , else if Cl = 1.0.

(6.1)

Eq. 6.1 is based on the concept of utilizing the benefits of hyper-threading. For

pure CPU bound tasks, hyper-threading technique brings slim benefit compared to

I/O-bound tasks. Hyper-threading can facilitate the overlap of I/O and computa-

tion. If multiple processors are available, I/O-bound threaded applications may see

substantial speedup. Therefore, the model provides more available CPU to I/O-

bound tasks by dividing the predicted core load using r × (ξ − ϑ) and CPU-bound

thread using (r × ξ).
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The CPU usage of the compute node, denoted by Pc, represents the new measured

CPU load of the machine and expressed as:

Pc =

∑n−1
i=0,i 6=l Ci + αp

(r × ξ)
. (6.2)

In this empirical model, we calculate the new CPU usage of the machine based on

the CPU availability of each core and the CPU requirements of the task. Moreover,

the proposed model considers multi-core CPUs and hyper-threading for accurate

prediction. The CPU availability prediction for a new task, denoted by Pt, can be

measures by the following expression.

Pt =

{(∑n−1
i=0 Ci

(r × ξ)

)
− Pc

}
× (ξ − ϑ). (6.3)

Eq. 6.3 provides a model/explanation of what has been observed for thread as-

signment in processor in [7]. Empirical studies for verifying the accuracy of predic-

tion models presented in this section are presented in Section 6.4.3. The new CPU

usage prediction model, expressed in Eq. 6.2, is implemented and used in TASE

model to re-calculate the CPU usage in prediction table for the most efficient node

in which the task was dispatched.

6.4 Empirical Studies

Two sets of empirical studies are carried out for validating the CPU usage prediction

model, and task scheduling model. As both composite prediction and CPU usage

models are the building block of the two task scheduling models, we have conducted

an extensive set of empirical studies to validate the accuracy of proposed prediction

models. Thereafter, we have conduct a second set of empirical studies to depict the

effectiveness of both TASM and TASE task scheduling models by comparing task

completion times with standard Round Robin (RR) scheduling using FCFS queue

(used by TORQUE system [21]).
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6.4.1 Overview

The execution environment we have utilized is a computer grid in which clients can

accept/generate and request tasks for execution. The environment consists of a set

of servers {S1, S2, .., Sn} where each server controls a local execution resource that

allows execution of one or more tasks. The server controls execution resources with

different number of cores. The servers are connected by a grid network such that

each server has a connection to a set of neighboring servers. Task requests (generated

by clients) are placed in a FCFS queue for dispatch. Introduced prediction based

task scheduling models are deployed to select the best server node for tasks in the

queue. A server receiving task execution request is responsible for the execution.

After completion of execution, task run statistics along with a feedback message is

sent back to the client.

Algorithm 5 shows the high-level pseudo code of the client model which includes

three studied task assignment models. The composite prediction model takes task

and node properties as input and provides the IP address of the most efficient node

for the task. After task completion, the server side program send the task execution

statistics back to client program. The client program stores the results in various

files and updates the task processing status. The next task is chosen from the head

of the task queue and the above method is again followed.

The server side program is responsible for sending the resource status and task

execution statistical information. As soon as the server program receives a message,

it checks the type of the message. There are two major types of messages, namely

resource status and task execution. If the message is a resource status request then

Unix script files and system functions like /sys/devices/, /proc/stat/, and sysinfo()

are utilized to retrieve utime, stime, nicetime, idletime, pagesize, free memory, and

number of running processes information. This information is then converted to a

usable format and sent back to the client program.
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Figure 6.4: A high-level flow diagram showing the task assignment steps for the
TASM model.
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If a server receives a task execution request, in both models, a child thread is

created to carry out the operation so that the server can handle resource status and

multiple task execution request in parallel. A task can be either synthetic or real

benchmark programs. If the child thread received a synthetic task request, then a

thread is created using fork() function and task properties are passed into it. To

validate the the CPU availability prediction and memory model, synthetic threads

are used because they provide precise and parameterized control over test runs. If

the child thread receives real benchmark task request, then System() function is

used to execute the task. Task execution statistics are then transfered to the server

program via pipe communication. The server program sends back the execution

statistics to client program via network socket.

6.4.2 Empirical Environment

The systems used for evaluating the task assignment models are three Intel(R)

Xeon(R) Quad-core CPU W3520 @ 2.67GHz clock speed, 1, 333 MHz bus speed

and 6.0 GB of RAM and one Intel dual core @ 3.06GHz clock speed, 1, 333 MHZ

bus speed and 4.0 GB of RAM. These nodes are equipped with Linux kernel version

2.6.32−22. The average CPU load (represents the average system load over a period

of time) was 0.018136 per core in a scale of 1.0 (in a fifteen minute period) before

running test cases which indicates that the nodes were lightly loaded (essentially

unloaded). The C programming language was used to implement the prediction

based resource management framework (analytical prediction and task assignment

models) with the gcc compiler version 4.6.3.

Threads deployed for composite prediction model validation are independent

tasks, meaning there are no interdependencies among threads such as message pass-

ing. Threads deployed for TASM and TASE models are real-world benchmark pro-

grams like prime number generation, polynomial modular arithmetic, merge sort,

image rendering etc. Descriptions of benchmark tasks are provided in Table 6.1.
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Algorithm 5 Task assignment using composite prediction model with FCFS queue.

Input: FCFS task queue (Φ)
for i ← 1 ... nodeCount do

Obtain the IP and Port number of Node i.
Send resource status req. to Node i.
Collect resource status and place into the prediction table.

end for
while true do

Wait for service request input.
if (request == taskDispatch) then

Create a thread using fork() to handle task dispatch.
if (dispatchmethod == TASM) then
for t ← 1 ... taskCount do

Pop a task from the head of the FCFS queue.
Collect resource status for all nodes of the Grid.
Evaluate the Composite prediction model Eqs. 3.1, 3.5.
Select the node with maximum efficiency for the task.

end for
if (dispatchmethod == TASE) then
for t ← 1 ... taskCount do

Pop a task from the head of the FCFS queue.
Collect resource status info. from the Prediction table.
Evaluate the Composite prediction model Eqs. 5.9, 5.10.
Select the node with maximum efficiency for the task.
Re-calculate resource state of the node using Eq. 6.3.

end for
if (dispatchmethod == RR) then
for t ← 1 ... taskCount do

Pop a task from the head of the FCFS queue.
Assign task using Round Robin scheduling.

end for
Spawn tasks concurrently to selected nodes using models.
Update the task status to Processing.
end if
for t ← 1 ... taskCount do

Read task completion time, utime, CPU, and
memory usage.

Update the prediction table after task completion.
Update the task status to Complete.

end while
Output: utime, total time, and CPU availability
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Figure 6.5: A flow chart showing the connection between source and compute node
for task assignment models.
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Table 6.1: Benchmark test programs along with associated loads for the Task
scheduling model.

Name Description Load
Type

CPU
Util.

Memory

primeGen Prime Number generator. CPU-
bound

1.0 Very Low

polyMod Polynomial Modular Arith-
metic.

Near CPU-
bound

0.89 Low

mSort Merge Sort Ordering Pro-
gram.

IO-bound 0.63 Very High

linSer Linear Search Program. IO-bound 0.42 High
iRender Image Rendering of Large

BMP files using Image
Smoothing Algorithm.

IO-bound 0.26 Moderate

swk Synthetic work load. IO-bound 0.13 Moderate

Threads are spawned concurrently in selected nodes based on the model’s efficiency

prediction. Additionally, CPU usage prediction model is required in TASE model

for maintaining the prediction table dynamically after each task dispatch. When a

task finishes its work, a task execution report is produced, which contains task start

time, task execution CPU time, idle time, end time, CPU availability for the task,

and others.

6.4.3 New CPU Usage Prediction Model Case Studies

The prime objective of this section is to measure the accuracy of the new CPU us-

age prediction model for a compute node. A CPU usage analytical framework has

been developed to for estimating (and measuring) the new CPU usage of a multi-

core machine before and after assigning new tasks. Different real world benchmark

test programs shown in Table 6.1 with various CPU and memory requirements are

selected as a group and used for the empirical study. These test loads are repre-

sentative CPU-bound and I/O-bound tasks and their features are summarized in

Table 6.1.
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Algorithm 6 provides a high-level pseudo code for the CPU usage empirical frame-

work. A batch set of tasks are placed into the run-queue with known CPU usage

of each task. Model parameters are then initialized by the CPU availability of each

core fetched from UNIX /proc/stat. A child process is created to run each task

and the task properties are send via pipe communication. Main program iterates

back and creates a new child thread to handle the second task. Before running the

second task, current CPU usage and model prediction (using Eqs. 6.1, and 6.2) are

measured and sent back to parent thread. Parent thread then spawns second thread,

and so on. Parent thread calculates the prediction error for all cases and stores the

results in a CSV file for post-mortem analysis.

Algorithm 6 Prediction of CPU usage for a batch of tasks in the queue.

Input: Set of tasks (N) in the queue.
Measure the current CPU usage of each cores using CPU

data from /proc/stat.
Initialize the model parameters (e.g., numberofcores,
coreload, totalload, andothers)

for i ← 1 ... N do
Create a child thread using fork() for running a task.
if(childThread == true) then

Send task parameters via pipe
Spawn the task i into the machine

end if
Measure the CPU usage using model Eqs. 6.1 and 6.2.
Measure the actual CPU usage.

end for
Collect the model and actual CPU usage using pipe.
Wait for all child threads to terminate.
Calculate the prediction error |Actual − Pc| × 100.
Store measured data to respective files.
Output: Actual CPU Usage, Model Prediction Usage, and Prediction Error.

Figures 6.6, 6.7, and 6.8 correspond to experiments for a set of 12, 16, and 20

tasks in a run-queue for a quad-core machine. In the figures, the horizontal axis

represents the number of tasks (N), and the vertical axis represents the CPU usage
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Figure 6.6: Comparison between actual measured CPU usage and the prediction
model after dispatching 12 tasks concurrently.

of the machine. The actual CPU usage line is an average of multiple run. It can be

observed from Figure 6.6 that the CPU usage prediction model line and the actual

CPU usage line follows same basic shape and pattern. The variation between actual

and predicted lines are very low. Figure 6.7, and 6.8 also depicts similar shape and

patters between actual and predicted measures with low variation. The CPU usage

prediction model lines are smooth compared to the actual CPU usage lines.

Table 6.2 shows results of spawning 20 tasks from task queue to a quad-core

machine. For each of the cases, task name (Scenario), measure of actual CPU

usage (U), measure of CPU usage prediction model (Pc), and the prediction error

(δPc = |Pc − U | × 100) are measured and provided in Table 6.2. The real-world

benchmark programs listed in Table 6.1 are placed into the task queue and spawned

concurrently. After dispatching each task, real CPU usage and predicted usage

are measured. These two magnitudes are then used to compute prediction error

percentage. it can be observed from the table that our CPU usage prediction model

achieves very low prediction error. The minimum prediction error is 0.3% for the

cases in which 1 and 15 tasks spawnned in the system. The maximum prediction

error is 5.4% in which 13 tasks were dispatched. Regardless of CPU- or I/O-bound
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Figure 6.7: Comparison between actual measured CPU usage and the prediction
model after dispatching 16 tasks concurrently.

Figure 6.8: Comparison between actual measured CPU usage and the prediction
model after dispatching 20 tasks concurrently.
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Table 6.2: Comparison between actual CPU usage and the Prediction model.

N Scenario Actual Pc δPc
1 mSort 0.086 0.083 0.30
2 mSort + iRender 0.115 0.101 1.50
3 mSort + iRender + primeGen 0.227 0.225 0.20
4 mSort + iRender + primeGen + linSer 0.288 0.277 1.10
5 mSort + iRender + primeGen + linSer +

polyMod
0.374 0.388 1.40

6 mSort + iRender + primeGen + linSer +
polyMod + swk

0.411 0.421 1.00

7 2mSort + iRender + primeGen + linSer +
polyMod + swk

0.495 0.5 0.50

8 2mSort + 2iRender + primeGen + linSer +
polyMod + swk

0.542 0.515 2.70

9 2mSort + 2iRender + 2primeGen + linSer +
polyMod + swk

0.616 0.625 0.90

10 2mSort + 2iRender + 2primeGen + 2linSer
+ polyMod + swk

0.648 0.668 2.00

11 2mSort + 2iRender + 2primeGen + 2linSer
+ 2polyMod + swk

0.713 0.759 4.60

12 2mSort + 2iRender + 2primeGen + 2linSer
+ 2polyMod + 2swk

0.766 0.788 2.20

13 3mSort + 2iRender + 2primeGen + 2linSer
+ 2polyMod + 2swk

0.890 0.835 5.53

14 3mSort + 3iRender + 2primeGen + 2linSer
+ 2polyMod + 2swk

0.872 0.860 1.20

15 3mSort + 3iRender + 3primeGen + 2linSer
+ 2polyMod + 2swk

0.919 0.916 0.30

16 3mSort + 3iRender + 3primeGen + 3linSer
+ 2polyMod + 2swk

0.987 0.933 5.40

17 3mSort + 3iRender + 3primeGen + 3linSer
+ 3polyMod + 2swk

0.988 0.983 0.50

18 3mSort + 3iRender + 3primeGen + 3linSer
+ 3polyMod + 3swk

0.982 0.99 0.80

19 4mSort + 3iRender + 3primeGen + 3linSer
+ 3polyMod + 3swk

0.956 1.0 4.70

20 4mSort + 4iRender + 3primeGen + 3linSer
+ 3polyMod + 3swk

0.991 1.0 0.90
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Figure 6.9: Task response time comparison among RR, TASM, and TASE models
while the aggregate CPU load, L, was varied from 2.0− 16.0.

tasks, the prediction error incurd by the model is always below 6.0% in the dynamic

changing environment.

6.4.4 Task Distribution Model Case Studies

The purpose of this section is to empirically measure the accuracy of the prediction

based task assignment model in distributed systems with multi-core processors. A

complete task assignment framework for RR scheduling with FCFS queue, TASM,

and TASE have been implemented for measuring the task assignment efficiency.

Real-world benchmark test programs shown in Table 6.1 with various CPU and

memory requirements are selected as a group and used for the empirical study.

Tasks features are also summarized in the Table 6.1.

Three sets of empirical studies have been conducted with these benchmark pro-

grams to compare the task assignment and execution time among the three studied

models. Different scenarios with different sets of benchmark test loads have been
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Table 6.3: Measured execution time, dispatch time, and total execution time of tasks
with CPU load (L) ranging from 2.0 to 16.0 using RR with FCFS queue, TASM,
and TASE models.

L
TORQUE Model TASM Model TASE Model

Exe.
Time

Disp.
Time

Total
Time

Exe.
Time

Disp.
Time

Total
Time

Exe.
Time

Disp.
Time

Total
Time

2.0 83.99 0.32 84.31 82.76 1.02 83.78 83.57 0.34 83.91
4.0 176.30 0.56 176.86 168.76 1.79 170.55 171.62 0.60 172.22
6.0 369.89 0.88 370.77 310.72 2.81 313.53 322.17 0.94 323.11
8.0 563.68 1.20 564.88 467.92 3.83 471.75 479.48 1.28 480.76
10.0 731.76 1.44 733.20 536.23 4.59 540.82 562.31 1.53 563.84
12.0 792.31 1.76 794.07 586.76 5.61 592.37 623.79 1.87 625.66
14.0 951.63 2.08 953.71 632.21 6.63 638.84 668.23 2.21 670.44
16.0 1187.1 2.32 1189.45 689.24 7.40 696.64 713.47 2.47 715.94

prepared and carried out. The task assignment and execution statistics are stored

in various files for statistical analysis. These obtained results are used for plotting

graphs and deriving concluding remarks. Use of these benchmark programs enabled

us to capture the behavior of real world applications for measuring the reliability

and accuracy of task assignment models.

Figure 6.9 shows measured task execution time (time elapsed between dispatch

to the time when execution is complete) bar graph for three studied models namely

RR, TASM, and TASE. In this figure, the horizontal axis represents CPU load for

the deployed benchmark tasks and the vertical axis represents task execution time

in millisecond. Eight sets of empirical studies have been conducted in which CPU

load, L, has been varied from 2.0 to 16.0. Tasks are selected from the table based on

CPU requirements to match the required aggregate CPU load. The same group of

benchmark programs containing identical CPU loads are considered for all 3 studied

models to compare the task execution time among the models.

It can be observed from Figure 6.9 that when the aggregate CPU load for tasks

are relatively small (i.e., 2.0− 4.0), the variation in task execution time is relatively
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Figure 6.10: Total task execution time surface for RR, TASM, and TASE models
while the task queue size, Φ, was varied from 4− 40 with benchmark tasks.

low. The RR model and prediction models perform about the same. As the aggre-

gate CPU load increases for the group of tasks, both introduced prediction models

clearly out performs the standard RR model. The composite prediction model intel-

ligently assigns tasks to the most efficient node for execution based on task and node

properties which has resulted in improved task execution time compared with the

standard RR model. It can be further observed that between two prediction mod-

els, TASM model does marginally better than TASE model. Recall that the TASE

model uses the new CPU availability model, Eq. 6.1, to predict available CPU for

the assigned node where as the TASM model fetches the current status information.

The TASM approach provides precise input to the models but it is expensive for

clusters having a large number of compute nodes. The approach of TASE helps to

save network bandwidth by transmitting fewer data packets for resource status col-

lection (only once in the beginning) but a little slower because of the prediction error

by the CPU usage prediction model while dynamically measuring and maintaining

the status information table.
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In further reporting the results of the studies, summary data are placed in Ta-

ble 6.3 which shows the task execution time, task dispatch time, and total execution

time in seconds for all 3 studied methods. To compare dispatch times among all 3

models, it can be observed that the task dispatch time of RR and TASE are very

similar. The maximum difference between these two models is 150 msec when the

value of n = 40 and L = 16.0. Task dispatch time for TASM model is the most

because for assigning n tasks from the task queue, this model requires to fetch nodes’

status n times from the grid. Though, TASM model inures the most task dispatch

time among other models, it requires the minimum total task execution time for all

set of empirical studies compared to other models. The execution time for TASM

model is the best because the model always queries to have the most current and

precise status data of nodes which helps the model to accurately pick the best suited

node for the task.

As an end note, Figure 6.10 shows a comparison of total task execution time

among three studied models, RR, TASM, and TASE, in various scenarios. In this

figure, two horizontal axes represents the total number of tasks in the task queue, and

the 3 studied models. The vertical axis represents the execution time in millisecond.

This surface plot incorporates the scenarios in which various number of tasks in the

task queue, (4 ≤ Φ ≤ 40), to depict the effect of total task execution time. It can

be observed for the empirical results that both TASM and TASE models perform

better than the standard RR scheduling model for task assignment. The RR model

degrades even more when there are I/O bound tasks in the queue. As the number

of tasks increases in the queue, the RR scheduling fails to select proper nodes for

assigning tasks which results in increased total task execution time.

6.5 Task Look-ahead using TASE Model

The new CPU availability model enables the TASE model to look-ahead a set of

K tasks and find the best possible arrangement which can provide the minimum
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run-time for the batch. It is illustrated in the Figure 6.3 that the TASE model can

look-ahead a set of incoming tasks from the run-queue. The model requires task

properties and initial resource availability of nodes which can be extracted from the

dynamic table. The model is then used for measuring the new CPU availability

for each arrangement before actually placing the tasks into the run-queue. The

measured resource availability are then compared to select the best arrangement for

the set of tasks and dispatched for execution.

Algorithm 7 Exeter permutation algorithm which provides close to sorted order
permutation of tasks based on task id.

Input: Task queue (Φ), tid, start, size of K.
Subroutine PermuteTasks with arguments Φ, start, K

If start == K − 1 then
Get task permutation combination.
Measure the CPU usage with model Eqs. 6.1, 6.2, and 6.3.
Assign the measured CPU in collections for task dispatcher.

else
for i ← start ... K do

Assign the ith task to temp container.
Swap ith task with the start task.
Recursively call the PermuteTasks with Φ, start+1, and K
Assign the ith task to start position
Assign the task in temp container to ith position.

end for
Measure the actual CPU usage.

end if
Collect the model and actual CPU usage data.
Store measured data to respective files.
Output: Model’s Predicted Usage for the best permutation.

The Algorithm 7 provides the steps required for permuting K number of tasks

from the task-queue. For example, if K = 4, then those 4 tasks can be arranged

in 4! = 24 different ways. Tasks are identified using their id number. For each

arrangement, tasks are dispatched into the distributed nodes using RR policy and

total task execution time is measured. The total execution time for each arrangement

is then stored into a file for comparing with the TASE model.
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6.5.1 Case Study Results

The major objective of this empirical work is to verify whether the task permuta-

tion has any effect to the task execution time. Five sets of test cases are conducted

to empirically verify the task arrangement effect towards the run-time of tasks. In

each case, 4 tasks are popped-out from the task queue and for each 24 arrangements

(Algorithm 7 is used for task permutation), tasks are spawned into the compute

node. Figure 6.11 shows the run-time of all 24 arrangements of the first 4 tasks

superimposed with the run-time using TASE model. In this figure, the horizontal

axis represents the run number (24 runs for 4 tasks) and the vertical column rep-

resents the total execution time in second. It can be observed from the figure that

the total-run time is variable for different arrangements of tasks. The minimum

and maximum run-times achieved are 521.18 sec and 767.35 sec respectively. Differ-

ence between the run-times is 246.17 sec which is 47.23% more than the minimum

run-time.

The time difference is expected to increase even further when the compute nodes

gets more tasks in their run-queue to process. The reason for time variation among

different arrangements are because of the RR scheduling policy which fails to assign

task to compute node depending on the resource availability. On the other hand, it

can be observed from the Figure 6.11 that the total-time required by TASE model

is 526.31sec which is very close to the best possible arrangement. The resource

availability predictor of TASE model considers each core and hyper-threading instead

of considering CPU as a whole for accurate prediction.

Table 6.4 consists of total execution time (ET) and percentage of additional

time (δo) required by each arrangement for all test cases where k = 4. It can

be observed from the table that the total run-time is variable based on different

arrangements. The time taken by best possible arrangement among all test cases is

521.18sec which is around 1% better than the TASE model and the worst timing

is 793.98sec which is 50.95% more than the TASE model. This extensive empirical
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Figure 6.11: First k (here k = 4) tasks are taken from the task queue and dispatched
for all 4! = 24 permutations. For each permutation, tasks are dispatched using RR
scheduling policy.

work and results validates the use of new CPU availability prediction model in TASE

model to look-ahead tasks from the queue to minimize the run-time for a batch of

tasks. Our extensive empirical evaluations have shown that TASE performs equally

well (in terms of total completion time) in comparison with the best arrangement

and TASM model as well, thereby avoiding the overhead of querying the nodes for

their status each time a task is to be assigned.

6.6 Summary

This chapter has introduced two task assignment models for real-time scheduling

of tasks in heterogeneous distributed nodes using composite prediction model. The

composite prediction model proposed in Chapter 5 is derived from the CPU avail-

ability and memory models. Additionally, a new CPU usage prediction model is

introduced to measure the usage of CPU prior to assignment of a task in to the run-

queue. This introduce model is validated using wide variety of real-world benchmark
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Table 6.4: Case study results for 24 permutations of 4 tasks in the run-queue.
Measured execution time (ET) and Percentage of additional time, (δo), required
compared with the TASE model.

Runs
Case Study 1 Case Study 2 Case Study 3 Case Study 4 Case Study 5

ET δo ET δo ET δo ET δo ET δo

1 631.14 19.99 677.54 28.81 618.59 17.60 731.23 39.02 701.43 33.35
2 689.49 31.08 783.40 48.94 663.87 26.21 527.42 -0.57 702.30 33.52
3 711.97 35.36 764.05 45.26 599.57 13.99 679.07 29.10 693.13 31.77
4 655.70 24.66 729.00 38.59 652.73 24.09 789.75 50.14 593.87 12.90
5 521.72 -0.81 781.39 48.55 640.76 21.82 776.27 47.58 526.16 0.03
6 767.35 45.85 571.08 8.57 620.29 17.93 627.48 19.29 561.05 6.66
7 643.21 22.28 793.98 50.95 768.27 46.06 637.25 21.15 743.13 41.28
8 668.20 27.03 669.88 27.35 605.41 15.10 612.80 16.50 523.05 1.15
9 596.21 13.35 710.82 35.14 559.41 6.35 538.11 2.30 700.33 33.14
10 684.21 30.08 536.22 1.94 793.76 50.90 537.43 2.17 527.22 0.23
11 671.52 27.67 521.20 -0.91 589.53 12.08 555.41 5.59 594.29 12.98
12 755.22 43.58 690.46 31.27 680.58 29.39 722.72 37.40 768.29 46.06
13 681.43 29.55 583.70 10.97 760.50 44.58 534.85 1.68 572.58 8.86
14 742.82 41.22 774.80 47.30 736.83 40.08 694.02 31.94 546.51 3.90
15 611.14 16.19 679.52 29.19 583.20 10.87 784.28 49.10 651.77 23.91
16 759.37 44.37 567.03 7.80 763.84 45.22 676.88 28.68 728.04 38.41
17 521.18 -0.92 600.90 14.24 598.05 13.70 631.17 20.00 717.28 36.36
18 792.47 50.66 529.31 0.63 716.41 36.20 650.66 23.70 590.79 12.32
19 683.91 30.02 775.09 47.36 704.02 33.84 612.54 16.45 781.81 48.63
20 667.13 26.83 678.08 28.91 582.52 10.74 718.06 36.51 525.52 -0.19
21 536.07 1.91 730.37 38.85 660.30 25.53 708.72 34.74 698.83 32.86
22 684.37 30.11 649.81 23.54 764.54 45.35 707.29 34.47 621.92 18.24
23 746.46 41.91 528.42 0.46 557.71 6.03 576.94 9.68 532.67 1.27
24 703.57 33.76 531.44 1.03 686.07 30.43 666.66 26.74 746.40 41.90
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programs and used in proposed TASE model. The model recalculates the CPU us-

age data for compute nodes in the prediction table after each task dispatch. Instead

of a single CPU load value for the whole machine, the model considers CPU load of

each core along with hyper-threading to accurately measure the available CPU for

a new task.

A relative comparison among TORQUE resource manager, which uses Round

Robin scheduling with FCFS queue, TASM, and TASE have been carried out in this

chapter to demonstrate the prediction accuracy of the proposed models. An exten-

sive set of empirical studies have been conducted in a distributed environment with

heterogeneous compute nodes with real-world benchmark programs. The bar graphs

and surface plots provides a clear visualization of measured execution efficiency and

task completion time. It can be observed from the surface plots and bar graphs

that the introduced TASM and TASE models clearly outperforms the TORQUE

scheduler. The new CPU availability model used in TASE model provides accu-

rate predicted CPU availability for incoming tasks to make intelligent task dispatch

decision to distributed nodes.
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Chapter 7

GPU Prediction Model for Compute-intensive

Tasks

Using Graphics Processing Units (GPUs) to solve general purpose problems has re-

ceived significant attention both in academia and industry. The readily available

commodity hardware with an enormous computational potential has expanded the

GPUs from only graphics rendering tool to powerful multi-core devices for broader

applications. Efficiently utilizing the power of these devices, however, requires signif-

icant knowledge of the underlying architecture and the programming model. Hence,

using the relevant features of the GPUs and selecting the proper parameters to

extract the maximum performance is significant from the developers perspective.

Predicting the performance of programs to be executed on GPU devices is therefore

of utmost importance; also providing guidelines to programmers to tailor the code

to achieve optimal results is equivalently important. In this chapter, we develop

analytical model to predict the performance of GPUs for computationally intensive

tasks. Our model is based on varying the relevant parameters - including the total

number of threads, number of blocks, and number of streaming multi-processors -

and predicting the performance of a program for a specified instance of these pa-

rameters. The model is tested using benchmark programs from the Nvidia CUDA

GPU Computing SDK and also on multiple platforms including both Tesla and the

latest Kepler GPUs; the performance prediction analysis is within an error bound of
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0.13-5.69%. In addition, our model provide alternative feasible combinations of the

parameters for efficient usage of the device and obtaining optimal performance. The

approach can be used in the context of heterogeneous environments where distinct

types of GPU devices with different hardware configurations are employed.

7.1 Introduction

GPU have establish their usefulness for solving general purpose large problems that

requires massive parallel execution. The availability of GPUs as commodity hard-

ware and co-processors to CPUs, and the relative low cost-to-performance ratio has

propelled these devices to the forefront or research in both academia and industry.

Compute Unified Device Architecture (CUDA), an extension to the C programming

language, allows general-purpose problems to be solved using Nvidia GPUs. How-

ever, this paradigm shift has left developers striving for better performance from the

available hardware. The general trend has been focusing on transferring compute in-

tensive portions of tasks to the GPUs and exploiting parallelism in the existing code.

Therefore, most of the research and studies relevant to GPUs focus on transferring

the data from the CPU to the GPU and back, designing efficient data structures

for the GPU, and utilizing available primitives to decrease memory latency [58] [66].

However, in reality, to exploit the full potential of these devices, understanding the

underlying architecture and the basics of the programming model are required.

To illustrate, assume the total number of threads for a specific program is fixed

at 512 threads. Let’s further assume that the kernel has no divergence 1 and each

thread executes 10 instructions. A developer has several arrangement options for the

number and size of blocks to run the those 512 threads. Consider two arrangement

cases: (a) 8 blocks with 64 threads in each block or (b) 64 blocks with 8 threads

1Thread Divergence: if a kernel contains divergence (multiple execution paths), different set of
threads within the same warp will follow different control paths. In that situation, executing a
warp requires several passes; one for each control path leading to variable execution time.
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in each block. There is a significant difference between choice (a) and (b) though

in both cases GPU will execute 512 threads. For the first case, the GPU needs to

execute 8 blocks with 64 threads = 16 warps × 10 instructions = 160 instructions2.

For the second case, 64 blocks with 8 threads = 64 warps × 10 instructions = 640

instructions which is four times higher compare to the first case. Thus, although the

apparent the expected performance of both choices might be expected to be similar;

in reality due to architectural considerations, execution times are widely different.

To be able to harness full potential of GPUs, extensive knowledge of the working

environment is necessary, which makes utilizing the device to its maximum capacity

a steep learning curve. Therefore, in this chapter, we focus our work on optimally

using the device at hand. We concentrate on deriving analytical model that can

predict the execution efficiency of GPU programs, i.e., GPU kernels based on certain

parameters like the total number of resident blocks, number of threads in each block,

the total number of blocks spawned in the device, the total number of streaming

multi-processors available in the device, and others. The importance of our model

is in the fact that it will help developers to unleash the full potential of the available

hardware by predicting execution efficiency of thread blocks before placing them in

the GPU run queue and also by providing suggestions to improve the efficiency by

making arrangements for optimal execution time.

The benchmark programs used for empirical analysis to demonstrate the reli-

ability and accuracy of the proposed model are professionally developed programs

from the Nvidia CUDA GPU Computing SDK [73] . We validated the model us-

ing six different benchmark programs as follows: a) Monte Carlo Estimation of π

b) Sobol Quasirandom Generator c) Super prime generator d) Sum of k Binomial

Series e) Stirling’s approximation of factorial, and f) CUDA Fast Fourier Transfor-

mation (FFT). The proposed analytical model is for GPU architectures in general.

2The block of threads is actually divided into sub-blocks called warps. Each SM splits its own
blocks into warps and executes in single instruction multiple threads (SIMT) method. Currently,
the size of each warp is 32 threads.
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The benchmark programs are tested in both Tesla C1060 and Kepler 20 devices.

The introduced model achieves very low prediction error with an error bound of

0.13-5.69%.

The rest of the chapter is organized in the following manner. In Section 7.2, we

present a brief discussion of GPUs along with previous work related to performance

prediction and analysis of GPUs. Section 7.3 incorporates the description of our

analytical model and different parameters that are taken into consideration. Section

7.4 discusses the different benchmark programs that are used to evaluate the predic-

tion model. Brief overview of the GPU architecture and the nuances of the CUDA

programming model are studied in Section 7.4.2. Results of the prediction perfor-

mance are shown in Section 7.4.5. This covers the case studies for all six different

benchmark programs and their actual run time statistics on both Tesla C1060 and

Kepler 20 devices. Finally, the summary of outcome of this chapter is discussed in

Section 7.5.

7.2 Related Work

The CUDA environment allows programmers to create highly parallel applications

by harnessing the power of GPUs [61]. These parallel applications can perform

significantly faster than an equivalent program that is written to run on a standard

CPU alone. The Nvidia CUDA Toolkit [73] provides several APIs for integrating

a CUDA program into C and C++ applications. CUDA supports a heterogeneous

programming environment where parts of the application code is written for the CPU

and other parts of the application are written to execute on the GPU. The application

is compiled into a single executable that can run on both devices simultaneously.

A variety of work has been conducted to analyze and optimize GPU programs

for improving the performance of program execution compared to the amount of

work for analyzing GPU architectures and provide reliable efficiency model. An

analytical performance prediction for evaluating GPGPU (Genral Purspose GPU)

143



applications [62] has been conducted to provide performance information to an auto-

tuning compiler. Their predicted information assists the compiler to possible choices

to more promising implementations. In this work, CUDA kernels have been analyzed

and generated the corresponding string model. Their introduced string model is a

concise representation of the operations of the kernel and summarizes how the kernel

exercise major GPU micro-architecture features.

A quantitative analysis model for GPU architectures [65] has been carried out by

developing a micro-benchmark based performance model for Nvidia GeForce 200-

series GPUs. The model proposed by [65] identifies GPU programs bottlenecks

and quantitatively analyzes performances which may allow programmers to predict

the benefits of potential program optimizations. They have also conducted empirical

studies to improve the performance of the GPU based on performance analysis mod-

els focusing on the instruction pipeline and utilizing the shared and global memory

efficiently.

Another quantitative analysis of performance predictions for general purpose

computation on GPUs [64] has been conducted and factors that determine GPU per-

formance has been identified. The factors were then classified into three categories:

data-linear, data-constant, and computation-dependent. Based on the characteris-

tics of these factors, a performance model has been proposed for each factor. For

predicting the performance of bio-sequence, these models were utilized and verified3.

A CPU availability and memory model has been introduced in [17] for predicting

(and measuring) the overall nodes’ efficiency for concurrent thread execution on

a time-shared system. A composite prediction has been derived using the CPU

availability and memory model. Introduced models are empirically derived upper-

and lower efficiency bounds. Experiments have shown that the introduced models

can bind the thread execution efficiency values very well and bounds are significantly

tight. The execution efficiency of a batch of tasks can be predicted before placing the

3But, most of the research and studies relevant to GPUs paradigm focus on feeding the data
and programs on the device and gain some performance in terms of through-put.
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tasks into the run-queue. Two intelligent task assignment models are introduced for

dynamic scheduling of tasks in heterogeneous cluster using the composite prediction

model. The chapter has predicted an assignment of tasks to compute nodes such

that the total time taken to execute all the tasks is minimized.

Research has also been performed by creating performance models based on the

data transfer between the CPU and a GPU [67]. Although this can be significant,

for many compute intensive tasks, there is a minimal amount of data actually being

transferred between the CPU and the device. Thus, other models for analysis and

performance benefits are required. There has been work done on improving the

performance of CUDA kernels by restructuring loops using loop tiling and coalesced

memory access. However, this approach requires significant changes to the programs

themselves and would incur added complexity to the code. There has also been

research focusing on using all available cores with high degree of multi-threading and

also taking advantage of various available primitives like memory coalescing [57,59].

Previous study on framework for performance analysis have determined bottlenecks

present in the code and methods to remove them [53], and provides improvement

suggestions for various optimization techniques.

7.3 Analytical Model

The primary focus of this section is to derive a prediction model for estimating the

efficiency of thread execution independent of GPU architectures. It is necessary to

have accurate model for estimating the execution efficiency because of the dynamic

nature of GPU systems and their workload. As new thread blocks are assigned

or existing blocks complete execution, the efficiency of a given GPU system can

change in a short interval of time. Therefore, existence of prediction models are

important because there exists a wide range of applications and scientific models

(e.g., graphical, meteorological, economical, and others) that requires extensive use

of both GPU and CPU resources, repeatedly. Assigning a set of thread blocks can
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Table 7.1: Terms and definitions of GPU efficiency prediction model parameters.

Terms Definition

ρsm Number of Streaming Multi-core processors (SM) in the device. The
number of multi-processors varies from architecture to architecture.

ρw Maximum number of resident warps in a streaming multi-core processor.
ρb Maximum number of resident blocks in a streaming multi-core proces-

sor. It is the number of blocks that a SM can process simultaneously.
ρt Maximum number of resident threads in a streaming multi-core proces-

sor. That is, the maximum number of threads that an SM can track
and schedule simultaneously.

σw Size of warp. Size for both Tesla C1060 and Kepler K20 is 32.
σb Maximum size of a block. That is, the maximum number of threads in

a block. For Tesla C1060, σb = 512 and for Tesla K20, σb = 1024.
β Number of blocks spawned in the GPU device. The value of β will be

same for different ϑ while running different benchmark programs.
ϑ Number of threads per block (block size). The value of ϑ will be different

for same β while running different test cases.
τ Ideal thread execution time. The value will be different for different

benchmark programs.

utilize the prediction model to determine the best arrangement of blocks and threads

in each block that can minimize the total execution time prior to the placement of

kernel in the GPU run queue.

An analytical framework for estimating the overall execution efficiency for batches

of thread blocks is derived for GPU systems. Table 7.1 contains the notation and

definitions of required parameters of the model. The introduced prediction model in-

corporates the following three major observed categories while GPU executes several

blocks of threads.

• When the number of blocks to be executed is more than the aggregate number

of resident blocks for the GPU.

• When the number of warps to be executed is more than the aggregate number

of resident warps for the GPU.
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• When the total number of threads to be executed is more than the aggregate

number of resident threads for the GPU.

Effects specified above can change the kernel execution time significantly and needs

to be incorporated to derive an accurate prediction model. The execution time is

ideal, denoted by τ , when the number of blocks and threads in each block is less than

the aggregate resident blocks and threads for the GPU (this number varies by GPU

architecture). The following model incorporates the effect for the case when the

number of thread blocks spawned for execution is more than the aggregate resident

blocks for all multi-core processors of the GPU. Input parameters to the following

model includes: the number of thread blocks spawned in the GPU (β), maximum

number of resident blocks per streaming multi-core processor (ρb), and the number

of streaming multi-core processor in the device (ρsm) for measuring the execution

time (ξrb).

ξrb =

 τ if β ≤ (ρb × ρsm),

Max
(

1,
⌈

β
ρb×ρsm

⌉)
× τ else

(7.1)

When the number of thread blocks spawned is more than the number of aggregate

resident blocks (i.e., β > (ρb×ρsm)) that can be scheduled in one cycle, the execution

time increases by τ for the next cycle execution. The execution time increases by

a factor of τ if a new cycle is required. Figure 7.1 shows a graph for the model

in which the horizontal axis represents the number of thread blocks spawned for

execution in the GPU and the vertical axis represents the total kernel execution

time in milliseconds. The model is executed with ρsm = 13, ρb = 16, τ = 14.5, and

the β is increased from 16 to 1440. It can be observed from the figure that for the

first 13 cases when β ≤ (ρb × ρsm), the execution time is same as the value of τ .

When the value of β is more than (ρb × ρsm), the execution time increases by the

value of τ for the next scheduling cycle. Similarly, for each new cycle, the value of

τ is added to reflect the observed scheduling behavior.
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Figure 7.1: Execution time is proportional to the number of blocks (β). The number
of threads in a block (ϑ) is fixed at 32 while β is increased from 16 to 1440.

As described earlier, the block of threads assigned to a SM are actually divided

into sub-blocks called warps. Each SM splits its own blocks into warps (currently

with a maximum size of 32 threads) [91]. Instructions are issued per warp and

execute in a Single Instruction Multiple Thread (SIMT) fashion by a CUDA mul-

tiprocessor. The first warp (0) within a resident block contains threads with id

0, ..., 31; the second warp (1) contains threads 32, ..., 63; the third warp (2) contains

threads 64, ..., 95; etc. The relation between the thread index and warp index for

one-dimensional blocks is 32× i, ..., 32× (i+ 1)− 1 where i is the warp index. The

size of warps can be less than 32 active threads for one of the following reasons.

1. The number of threads per block is not divisible by 32,

2. The active kernel contains one or many divergent blocks and threads that did

not take the current path are marked idle, or
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Figure 7.2: Execution time is proportional to the number of resident warps (ρw).
The number of blocks (β) is fixed at 16 while the number of threads in a block (ϑ)
is increased from 16 to 1024.

3. A thread in the warp has finished it’s work and terminated. Even if a warp

holds less than 32 threads, in most situations, it will be executed similarly as

if it contains 32 threads.

The number of resident warps varies depending on the specific GPU architecture.

When more resident thread blocks are placed into a SM, the warp occupancy in-

creases which leads to higher kernel execution time. The warp occupancy is defined

as the number of active warps divided by the maximum active warps in a SM [88].

For harnessing the power of GPU, increased warp occupancy is desired that nearly

eliminates the latency due to context switching. Most of the GPU device has built

in hardware scheduler that makes context switching fast among warps. A higher

occupancy reduces processor idle time (SM may stall due to unavailability of data

or busy functional units) and improves overall performance [90]. Input parameters

to the model for deriving the estimated execution time when the number of threads

increases in a block, denoted by ξrw, includes: the number of thread blocks spawned
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in the GPU (β), number of threads in each block (ϑ), maximum number of resident

warp in each SM (ρw), and the size of each warp (σw).

ξrw =

{
β × ϑ

(ρw × σw × ρsm)

}
× τ (7.2)

Eq. 7.2 holds when (β × ϑ) ≤ (ρw × σw × ρsm). When the number of warps

to be executed is more than the aggregate number of resident warps for the GPU,

additional warp scheduling overhead is added with the ideal thread execution time.

Figure 7.2 depicts the effect of resident warp in which the horizontal axis represents

the number of threads per block and the vertical axis represents the total execution

time in milliseconds. The model is executed with β = 16, ρsm = 13, ρw = 64,

σw = 32, τ = 14.5, and the ϑ is increased from 16 to 1024. The curve provides

a clear visualization of the effect of concurrent warp execution in a single SM. As

the number of warps in a SM increases to ρw, the execution time can increase up

to (2× τ) when it reaches the occupancy. Eq. 7.2 explains the situation only when

(β × ϑ) ≤ (ρw × σw × ρsm).

When the total number of threads (β×ϑ) to be executed is more than the aggre-

gate number of resident threads for the GPU, the execution time can be explained

by the following series:

τ ... 2τ 3τ ... 4τ 5τ ... 6τ ... ξrw ... (ξrw + 1).

When both the number of blocks and threads in a block increases, the situation

gets complex and requires both Eqs. 7.1 and 7.2 to explain the situation. Because of

the increased number of threads in a block, a SM cannot accommodate the maximum

number of resident blocks. For example, though Nvidia K20 can have maximum 16

resident blocks, when ϑ = 1024 (maximum number of threads in a block), it can

place only 2 blocks in a SM because the maximum number of resident threads

in a SM is 2048. Figure 7.3 shows the composite effect of increased blocks and

threads in a block on total execution time of the GPU kernel. In this figure, two
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horizontal axes represents ϑ and β and the vertical axis represents the total execution

time in milliseconds. With careful observation, it can be seen that for each case

when β > (ρb × ρsm), the execution time jumps by the value of τ . Similarly, when

(β × ϑ) > (ρw × σw × ρsm), for each (ρw × σw × ρsm), the execution time increases

utilizing Eq. 7.2. The total execution time increases sharply for large number of

blocks and its sizes.

The composite prediction model which incorporates all major specified effects

includes the input parameters: ideal thread execution time, execution efficiency

when β > (ρb × ρsm), and execution efficiency when threads in a SM > (ρw × σw).

The model equation is derived from Eqs. 7.1 and 7.2 to reflect the observed effect in

total thread execution time (κ).

κ =

 τ
(τ+ξrw)

, when (β × ϑ) ≤ (ρw × σw × ρsm)

τ
(ξrb+ξrw)

, when (β × ϑ) > (ρw × σw × ρsm)
(7.3)

When the value of (β × ϑ) ≤ (ρw × σw × ρsm), the τ is divided by an expression

which incorporates the overhead of warp occupancy that is explained in the Fig-

ure 7.2. Next, when (β × ϑ) > (ρw × σw × ρsm), the τ is divided by an expression

which contains the overhead of both β > ρb and ϑ > ρt expressed in Eqs. 7.1 and

7.2.

Figure 7.4 depicts the execution efficiency surface measured by Eq. 7.3. In this

figure, two horizontal axes represents ϑ and β and the vertical axis represents ex-

ecution efficiency on a scale of 0.0 to 1.0. The efficiency surface diagram clearly

visualizes the composite effect of increased number of β and ϑ. The model depicts

a sharp performance degradation as soon as the β > ρb. The efficiency degrades

sharply when the value of τ is added because of the requirement of a new scheduling

cycle. Similar degradation of efficiency can also be observed when SM occupancy

gets full and requires next execution cycle (shown in Figure 7.2).
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Figure 7.3: Estimated total execution time surface diagram using the introduced
prediction model. Here, ϑ is increased from 32 to 1024, β is increased from 16 to
1248, and τ = 14.5.

7.4 Empirical Studies

7.4.1 Overview

The major contribution of this study is to empirically measure the execution effi-

ciency of kernels in GPUs as a function of aggregate blocks and threads in each block.

Six separate test cases have been conducted and are presented here to validate and

show the accuracy of the introduced prediction model. Table 7.2 shows the set of

benchmark programs used for measuring the overall efficiency of GPU devices. The

Monte carlo estimation of π, Sobol Quasirandom Generator, Super prime number

generator, Sum of binomial series, Stirling’s Approximation of Factorial, and CUDA

FFT are professionally developed programs by Nvidia. These programs are avail-

able in Nvidia CUDA SDK and used as benchmark programs so that the prediction

model can be verified with real-world applications in a highly dynamic environment.
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Figure 7.4: Estimated efficiency surface diagram using the introduced predicted
model (associated with Eq. 7.3). Here, ϑ is increased from 32 to 1024, and β is
increased from 16 to 1248, and τ = 14.5.

Algorithm 8 provides the high-level pseudo-code for the empirical framework used

to measure the execution time by deploying benchmark programs. The algorithm

takes maximum number of blocks, maximum number of threads in a block, number

of threads to increment in a block after each iteration, number of blocks to increment

after each iteration, and the value of τ as input. Initially, 16 blocks are spawned

in the GPU each with 32 threads (1 warp). The Nvidia CUDA clock [73] toolkit

is used for accurately measuring the kernel execution time. The measured time is

stored in a file and the value of blocks and threads are incremented using the input

value. The program continues until it finishes sampling up to maximum number of

blocks and threads in a block, as provided in the input.

Algorithm 8 is used for measuring execution times for all benchmark programs

listed in Table 7.2. The user is also required to specify the target benchmark program

along with the other parameters mentioned above. The value of current β and ϑ are
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Algorithm 8 Spawning Nvidia benchmark kernels for measuring the execution
efficiency.

Input: Benchmark program ID (BID), Maximum number of blocks (bMax), Max-
imum number of threads in a block (tMax), Block increment size (incBlk), Thread
increment size (incTrd), and the ideal execution time for the benchmark program
(τ)
Output: Kernel execution report (execution time, launch time, total time) for
variable block size and number of threads in a block.
Initialize required program variables with associated values
for bCount ← incBlk ... bMax do

for tCount ← incTrd ... tMax do
numThreads ← bCount × tCount
Cuda memory copy numThreads from Host to Device
Start CUDA clock toolkit for measuring event start time
Invoke CUDA benchmark kernel using BID, bCount, tCount, and other

necessary parameters
Synchronize benchmark threads (based on BID)
Wait for threads to complete assigned work
Stop CUDA clock toolkit for measuring the event end time
Read the execution result and verify for accuracy
Store the kernel execution report for bCount and tCount in a CSV file
if (β × ϑ) ≤ (ρw × σw × ρsm)) then
κ = τ

(τ+ξrw)

else if (β × ϑ) > (ρw × σw × ρsm)) then
κ = τ

(ξrb+ξrw)

end if
Store the κ for associated bCount and tCount
tCount ← incTrd+ tCount
Deallocate host and device memory used for collections

end for
bCount ← incBlk + bCount

end for
Close all input and output streams, pipes, files, and connections
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used to calculate the number of threads spawned in the GPU. The value of execution

efficiency (κ) is then measured using Eq. 7.3 and stored in CSV files along with other

measured run-time value for later statistical analysis.

7.4.2 Environment

Two different GPU devices are used for evaluating the proposed efficiency prediction

model for parallel thread execution. We have used Tesla Kepler 20 and Tesla C1060

GPU cards for these empirical studies. Two independent case studies are conducted

using the same real-world benchmark programs for validating the accuracy of the

model.

The first set of empirical studies are conducted using Tesla Kepler 20 device.

The Tesla K20 card contains a large set of processor cores with the ability to di-

rectly address global memory. The Tesla K20 GPU card contains 13 streaming

multi-processors, 192 cores in each streaming multi-processor (SMs) giving a total

of 2496 cores with core clock 0.71 GHz. Tesla K20 uses CUDA API, Compute Ca-

pability 3.5, Global Memory 5 GB, Shared memory 48 KB, Memory bandwidth 208

GB/Sec, Number of 32-bit registers per streaming multi-processor 64K. This model

can accommodate per streaming multi-processor maximum of 16 resident blocks,

1024 threads per block, 2048 resident threads, and 64 resident warps. The size of

warp is 32 threads. The Tesla K20 card is hosted by an Intel(R) Xeon(R) quad-core

machine with 2.60 GHz clock and 32GB of RAM.

The second set of empirical case studies are done in Tesla C1060 GPU device

which is a previous generation card and contains fewer processor cores. The Tesla

C1060 GPU card contains 30 streaming multi-processor, 8 cores in each stream-

ing multi-processor, core clock 1.3 GHz, uses CUDA API, Compute Capability 1.3,

Global Memory 4 GB, Shared memory 16 KB, Memory bandwidth 102 GB/Sec,

Number of 32-bit registers per streaming multi-processor 16K. This model can ac-

commodate per streaming multi-processor a maximum of 8 resident blocks, 512
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threads per block, 1024 resident threads, 32 resident warps, and the size of warp

is 32 threads. The Tesla C1060 card is hosted by an identical Intel(R) Xeon(R)

quad-core machine with 2.60 GHz clock and 32GB of RAM.

7.4.3 Programming Model

CUDA provides a general-purpose parallel programming model. The programming

language for CUDA extends C and defines C-like functions, called kernels, which

are executed in parallel by different threads on the GPU. Threads are grouped

together in blocks, which can be either one, two or three dimensional, and each

thread within a block is identified by its unique threadID. All the blocks of threads,

identified by blockID, form a one or two dimensional grid. Threads within a block

can co-operate among themselves through the shared memory and synchronize their

execution to coordinate memory accesses. Blocks of threads are assigned to the

streaming multiprocessors by the CUDA scheduler. Data is transferred from the

CPU to the GPU and back using memory copy functions.

Computation heavy tasks are transferred from the CPU to the GPU, and by using

all the available processor cores and multi-threading options, problems with a large

number of computations can be solved efficiently. Data required for computations

is transferred to the GPU from the CPU using the global or device memory on the

GPU; similarly computed results are transferred back from the GPU to the CPU

using the same.

7.4.4 Benchmark Programs

Table 7.2 shows the benchmark programs used for validating the proposed predic-

tion model. The benchmark programs are taken from Nvidia CUDA GPU SDK

and re-framed to fit our empirical test environment. The reason for using these

professionally developed programs by Nvidia as benchmark program in this chapter
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Table 7.2: Benchmark programs used from Nvidia CUDA GPU SDK for validating
the introduced prediction model.

Name Description Genre

Monte Carlo Estima-
tion of π

This sample uses Monte Carlo simula-
tion for Estimation of π and uses the
Nvidia CURAND library.

Compute Inten-
sive

Sobol Quasirandom
Generator

This sample implements Sobol Quasir-
andom Sequence Generator.

Computational
Finance

Prime Number Gener-
ator

Generates High Order Prime Numbers Compute Inten-
sive

Sum of Binomial Se-
ries

This program generates and adds first
N binomial series and produces the ag-
gregate sum.

Computational
Finance

Stirling’s Approxima-
tion Error

This sample API measures the approx-
imate value of a large factorial number
using Stirling’s model and finds the ap-
proximation error.

Compute Inten-
sive

Simple CUFFT CUFFT is used to compute the 1D-
convolution of some signal with some
filter by transforming both into fre-
quency domain, multiplying them to-
gether, and transforming the signal
back to time domain.

Compute Inten-
sive

is to demonstrate the accuracy and reliability of introduced prediction model while

executing real-world applications.

The benchmark programs listed in Table 7.2 consists of expressions that are

highly compute intensive and thus ideal for utilizing them in our empirical case

studies. Nvidia CUDA provides a clock API to measure the performance of kernel

accurately. We have utilized the CUDA clock toolkit in our empirical framework to

measure the precise execution time of the benchmark programs.

7.4.5 Case Study Results

The major objective of this section is to measure the accuracy of the introduced

prediction model for estimating the execution efficiency of compute intensive GPU

kernels. The model is verified using both Tesla C1060 and Kepler 20 devices. All
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Table 7.3: Empirical results using Tesla Kepler 20 GPU device for the Sum of
Binomial Series benchmark program.

β Number of Threads per Block (ϑ)

32 64 96 128 160 192 224 256 288 320

16 14.60 14.61 14.62 14.63 14.62 14.62 14.62 14.62 14.63 14.64
64 14.61 14.60 14.63 14.62 15.42 15.91 16.90 17.73 21.34 22.57
112 14.60 14.53 15.20 16.69 21.38 24.35 27.93 42.31 42.74 41.72
160 14.54 15.19 17.84 22.47 40.29 40.58 44.35 45.28 52.16 65.71
208 14.55 15.83 20.80 27.64 43.00 45.12 52.69 55.23 70.21 77.90
224 29.02 30.36 35.30 42.16 42.97 46.65 56.08 69.69 75.50 78.63
272 29.05 30.37 35.47 43.40 50.60 66.41 70.39 79.28 84.12 95.45
320 29.07 30.54 36.56 45.43 67.23 71.02 80.39 98.46 102.9 117.3
368 29.08 31.60 39.95 51.77 69.03 78.60 96.55 103.4 123.5 127.1
416 29.02 31.63 41.58 55.38 75.08 93.54 102.2 110.4 129.7 147.5
432 43.45 46.13 56.03 69.73 78.60 94.69 105.3 124.9 134.9 147.9
480 43.50 46.15 56.19 70.99 93.14 99.24 124.6 134.3 153.7 170.8
528 43.51 46.32 58.16 74.42 94.91 117.8 132.6 152.3 164.8 178.4
576 43.50 46.75 60.69 79.36 101.6 120.7 139.1 161.9 181.4 199.4
624 43.51 47.41 62.39 83.10 105.8 130.2 152.4 165.5 192.9 209.2
640 57.87 61.91 76.75 97.30 118.9 131.1 156.4 180.1 203.4 222.6

benchmark programs listed in Table 7.2 are deployed in both C1060 and K20 devices

and the efficiency are measured separately. For the Tesla C1060 device, the number

of blocks are varied from 8 (ρb = 8 for C1060 device) to 1248 and threads in each

block are increased from 16 to 512 (σb = 512 for C1060 device). For the Tesla K20

device, the number of blocks are varied from 16 (ρb = 16 for K20 device) to 1248

and threads in each block are increased from 32 to 1024 (σb = 1024 for K20 device).

Measured run-time in Table 7.3 is in millisecond. The ideal run-time for the sum of

binomial series in Kepler 20 GPU is 14.6 ms and in Tesla C1060 is 54.9 ms.

For collecting empirical data of every possible case, all benchmark programs are

independently deployed 2496 times in which number of blocks and threads in a

block are selected in increasing order (specified above). A snapshot of the empirical

results is presented in Table 7.3 for the Sum of Binomial Series benchmark program.

Table 7.3 contains partial data in which β is increased from 16 to 640 and ϑ is

increased from 32 to 320 (i.e., from 1 warp to 10 warps per block). For the Tesla
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Table 7.4: Empirical results using Tesla C1060 GPU device for the Sobol Quasir-
andom Generator benchmark program.

β Number of Threads per Block (ϑ)

32 64 96 128 160 192 224 256 288 320

16 54.9 56.8 57.5 59.9 61.8 65.7 71.7 79.6 88.4 97.1
64 56.5 65.6 88.5 114.9 143.6 172.0 201.0 229.5 258.4 286.9
112 58.2 79.6 115.3 152.9 191.6 229.5 268.0 306.0 346.7 383.9
160 61.0 114.9 172.6 229.5 287.3 352.5 401.9 458.8 516.7 573.7
240 68.8 152.9 230.3 306.0 384.4 458.8 535.9 611.9 688.9 764.8
256 123.7 210.3 288.8 366.1 430.9 516.3 607.7 691.5 775.0 860.4
304 125.4 218.5 318.7 420.8 526.7 639.2 736.8 841.3 947.0 1052
352 126.7 232.5 345.5 458.8 574.6 688.6 803.9 917.8 1033 1147
400 129.9 267.8 402.9 535.4 671.6 803.0 937.8 1071 1205 1338
480 137.7 305.8 460.5 611.9 766.1 926.1 1072 1224 1380 1531
496 192.5 363.1 519.2 671.7 813.9 975.3 1143 1303 1464 1625
544 194.2 371.3 548.9 726.8 923.6 1090 1273 1453 1638 1818
592 195.3 385.3 575.7 764.8 958.9 1147 1340 1530 1722 1912
640 198.7 420.6 633.2 841.3 1053 1262 1474 1683 1896 2105
720 206.4 458.6 690.7 917.8 1149 1377 1608 1836 2066 2294
736 261.3 516.1 749.6 978.0 1211 1434 1679 1915 2155 2392

K20, there are 13 SMs; it can be observed from the table that for ϑ = 32, when β ≤

(ρb× ρsm), in this case β ≤ (16× 13 = 208), the execution time is close to the value

of τ . As soon as the value of β > (ρb × ρsm), the execution time increases by the

value of τ for the additional execution cycle. The same effect can be observed when

β = 432, and 640. This behavior is modeled according to previously derived Eq. 7.1.

It can be further observed from Table 7.3 that for β = 64 and ϑ ranging from 32

to 320, as the (β×ϑ) > ρt, the execution time increases around (2×τ) depending on

the number of warps. This behavior is modeled using Eq. 7.2. Next, when the total

number of threads spawned (β × ϑ) is more than the occupancy, (ρw × σw × ρsm =

64× 32× 13 = 26, 624 for the Tesla K20 device), the specified series in Section 7.3

can be observed in the Table 7.3. For β = 208 and ϑ = 128, the number of threads

spawned in the device is 208 × 128 = 26, 624 (i.e., maximum occupancy reached)4.

4The maximum number of resident threads in a Kepler 20 SM is 2048 though a thread block
can contain a maximum of 1024 threads.
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Figure 7.5: Surface diagrams for the Sum of Binomial Series benchmark program
(a) Surface diagram shows increasing run-time while ϑ increased from 32 to 1248
and β increased from 16 to 1024 (b) The measured efficiency surface diagram with
respect to the ideal execution time (τ).
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As soon as the ϑ or β increases, the execution time increases depending on the

number of execution cycle. This observed behavior is modeled using Eq. 7.3.

Table 7.4 contains a snapshot of the empirical data from Tesla C1060 GPU for

the Sobol Quasirandom Generator benchmark program. The value of β is increased

from 16 to 736 and ϑ is increased from 32 to 320 (i.e., from 1 warp to 10 warps per

block). In Tesla C1060 GPU device, there are 30 SM; it can be observed from the

table that for ϑ = 32, when β > (ρb×ρsm), in this case (8×30 = 240), the execution

time increases to (68.8 + 54.9 = 123.7 ms) by the value of τ (τ = 54.9 ms) for the

additional execution cycle. The same effect can be observed when β = 496, and

720. Similar scheduling effects can be observed in Table 7.3 for β = 240 when the

total number of threads spawned (β × ϑ) is more than the occupancy of the device,

(ρw × σw × ρsm = 32× 32× 30 = 30, 720 for the Tesla C1060 device).

Figure 7.5 (a) shows the complete measured run time surface for the Sum of

binomial series benchmark program. In this figure, the two horizontal axes represents

β and ϑ and the vertical axis represents the total run time in milliseconds. The

surface depicts the complete 2496 independent test run results to capture all possible

scenarios by varying the values of β and ϑ. It can be observed that each time when

β×ϑ crosses (ρw×σw×ρsm), the execution time increases for new scheduling cycles.

Similarly, when β crosses (ρb × ρsm), the execution time increases by τ . The run-

time surface of sum of binomial series shown in Figure 7.5 (a) and the model surface

shown in Figure 7.3 depicts similar shape and pattern.

Figure 7.5 (b) shows the measured efficiency surface (using Eq. 7.3) for the same

test run data of sum of Binomial Series benchmark program. It can be observed from

Figure 7.5 (b) that the efficiency value decreases significantly when β and ϑ increases

beyond the capacity of scheduling cycle. The cumulative effect of Figure 7.1 and

Figure 7.2 can be observed in the diagram. This surface diagram clearly visualizes

the effect of increased β and ϑ by including 2496 test case results. The efficiency
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Table 7.5: Prediction Error for first three benchmark programs executed in Nvidia
Kepler 20 GPU device.

β
Monte Carlo π
Estimation

Sobol Quasiran-
dom Generator

Prime Number
Generator

EE PEE δP EE PEE δP EE PEE δP

32 1.000 1.000 0.00 1.000 1.000 0.00 1.000 1.000 0.00
64 0.997 0.992 0.51 0.995 0.984 1.07 0.997 0.974 2.32
96 0.964 0.928 3.54 0.991 0.981 1.03 0.969 0.942 2.72
128 0.832 0.790 4.23 0.962 0.933 2.94 0.863 0.862 0.13
160 0.633 0.590 4.31 0.950 0.945 0.51 0.691 0.734 4.29
192 0.576 0.567 0.92 0.956 0.927 2.94 0.602 0.632 3.03
224 0.352 0.343 0.82 0.470 0.459 1.14 0.420 0.439 1.90
256 0.350 0.343 0.70 0.470 0.458 1.18 0.428 0.417 1.10
288 0.354 0.338 1.62 0.470 0.426 4.38 0.361 0.374 1.33
320 0.332 0.338 0.59 0.455 0.424 3.16 0.332 0.345 1.26
352 0.309 0.315 0.57 0.455 0.404 5.10 0.311 0.337 2.58
384 0.279 0.277 0.27 0.438 0.403 3.45 0.283 0.302 1.90
416 0.271 0.263 0.81 0.422 0.390 3.19 0.283 0.296 1.32
448 0.210 0.212 0.25 0.319 0.329 0.97 0.243 0.254 1.08
480 0.207 0.203 0.36 0.319 0.314 0.55 0.220 0.238 1.76
512 0.201 0.202 0.09 0.306 0.296 0.99 0.201 0.215 1.41

surface of Figure 7.5 (b) shows same behavior and shape as compared to the models’

efficiency surface in Figure 7.4.

In this empirical work to validate the model, all six benchmark programs are

executed and efficiency values are measured. Figure 7.6 (a, b, c) shows the efficiency

surfaces of the Monte Carlo Estimation of π, Sobol Quasirandom Generator, and

Stirling’s approximation error benchmark programs. Along with the surfaces, empir-

ical results of all benchmark programs are placed in Tables 7.5 and 7.6 for analysis.

It can be observed from Figure 7.6 (a, b, c) that these surfaces depicts similar be-

havior when the value of β and ϑ increases. As expected, significant degradation in

efficiency occurs when total spawned threads are greater than the total occupancy of

each scheduling cycle. It is apparent that the theoretically derived model introduced

in this chapter do estimate (predict) the actual measured efficiency surface very well.

For further reporting, Tables 7.5 and 7.6 show measured execution efficiency

(EE) values for all six benchmark programs along with estimated model efficiency
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Figure 7.6: The efficiency surface diagram for (a) Monte Carlo Estimation of π. (b)
Sobol Quasirandom Generator. (c) Stirling’s Factorial Approximation Error. The
number of blocks are varied from 16 to 1248 and the number of threads in a block
are varied from 32 to 1024. A total of 2496 test run have been conducted for each
case to measure actual efficiency of the benchmark program.
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Table 7.6: Prediction Error for next three benchmark programs executed in Nvidia
Kepler 20 GPU device.

β
Sum of Binomial
Series

Stirling’s Factorial
Appox. Error

CUDA FFT

EE PEE δP EE PEE δP EE PEE δP

32 1.000 1.000 0.00 1.000 1.000 0.00 1.000 1.000 0.00
64 0.997 0.992 0.51 0.953 0.942 1.11 0.993 0.982 1.10
96 0.922 0.901 2.19 0.726 0.746 1.98 0.996 0.976 1.99
128 0.823 0.784 4.15 0.560 0.582 2.24 0.968 0.973 0.54
160 0.657 0.639 2.32 0.521 0.518 0.34 0.863 0.882 1.95
192 0.561 0.552 1.27 0.462 0.486 2.39 0.745 0.768 2.28
224 0.353 0.361 1.36 0.391 0.425 3.40 0.370 0.389 1.91
256 0.348 0.346 0.35 0.351 0.381 3.04 0.370 0.427 5.69
288 0.349 0.318 2.61 0.302 0.327 2.50 0.426 0.454 2.76
320 0.322 0.304 1.91 0.288 0.291 0.33 0.421 0.446 2.46
352 0.306 0.293 1.44 0.269 0.261 0.77 0.412 0.428 1.62
384 0.275 0.276 0.14 0.251 0.232 1.90 0.373 0.385 1.23
416 0.264 0.253 1.28 0.232 0.216 1.59 0.373 0.381 0.85
448 0.218 0.226 1.40 0.219 0.208 1.14 0.247 0.269 2.17
480 0.212 0.201 0.56 0.193 0.174 1.90 0.271 0.272 0.15
512 0.195 0.193 0.72 0.184 0.168 1.63 0.269 0.267 0.20

(PEE) values, and the prediction error (δ = |EE − PEE| × 100). Values of both EE

and PEE are in a scale of 0.0−1.0 and δ is in 0.0 to 100%. It can be observed from the

Table 7.5 and 7.6 that the introduced efficiency prediction model achieves very low

prediction error. The minimum prediction error is 0.13% for the cases in which 128

thread blocks are spwanned for the Prime Number Generator benchmark program

(when β × ϑ < occupancy, the prediction value is τ , thus incures no prediction

error and not considered). The maximum prediction error is 5.69% in which 256

thread blocks are spawned for CUDA FFT benchmark program. Regardless of real-

world benchmark programs, the prediction error incured by the model is always

below 6.0% in the dynamic changing environment. The empirical results presented

in both Table 7.5 and 7.6 shows the accuracy and reliability of the introduced

prediction model. These empirical results justify the validity of the introduced

prediction model. The proposed model and analysis can be utilized as a guideline

for programmers to arrange their blocks and threads to achieve optimal execution

time.
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7.5 Summary

An approach to efficiently allocate a massive number of thread blocks for parallel

execution in GPU devices (independent of architecture) is presented. Given a set of

compute-intensive threads, and a host node with a GPU device, our goal is to find

an assignment of threads on the GPU such that the total time taken to execute all

the threads is minimized. The key challenge was to determine the arrangement of

blocks and threads in a block prior to placement of threads into the run queue.

This chapter has introduced a prediction model to forecast the execution effi-

ciency of GPUs for computationally intensive kernels. The model has been validated

with six professionally developed benchmark programs provided in Nvidia CUDA

GPU SDK. The provided surface diagrams depict clear visualization of measured

efficiency based on variable number of blocks and size of blocks. The empirical stud-

ies performed on the prediction model show that the model surface follows the same

shape and pattern of the real-world benchmark programs.

The empirical case study results show that the forecast provided by the prediction

model is very reliable with only 0.13− 5.69% prediction error. The model uses only

a few parameters like the number of blocks, size of blocks, number of streaming

multi-processors, and number of resident threads. This model is significant from the

perspective that it can also be utilized as a reference by programmers to arrange

their blocks and threads to achieve optimal results. The conducted study is highly

useful for understanding and optimizing performance on a GPU. In addition, the

study could be used in the context of heterogeneous environments where multiple

GPU devices with different hardware configurations are used. Specifically, the model

can help dynamically to choose the device with a better performance potential.

All the obtained results justify the strength of the introduced model for predict-

ing the execution efficiency of compute-intensive GPU kernels independent of GPU

architectures. Hence, the ability of introduced model to predict the efficiency of

thread execution while the arrangement is variable has been demonstrated. Thus,
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the usefulness of using the introduced model in real-world applications for task as-

signment has been motivated.
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Chapter 8

Conclusion

8.1 Summary

In this dissertation, a set of prediction models for estimating CPU, memory, and

GPU resource availability are introduced and a comprehensive set of evaluations

are performed to verify the accuracy of the prediction models. For estimating the

availability of CPU for a batch of tasks, a CPU availability prediction model is

introduced and empirically verified for accuracy in both Windows systems running

JVM and Linux systems with the C language. CPU availability scatter plots provide

a clear visualization of measured performance based on the density of the dots in

the plot. These empirically measured availability values are showed to generally fall

within theoretically derived upper and lower bound formulas in both single- and

multi-core architectures and consistent with the dynamic nature of system and its

workload.

Because of the potential for a tighter lower-bound, observed from the empirical

results of multi-core Unix systems, a new CPU availability lower-bound model is

proposed which significantly reduced the bound difference. A 90% confidence in-

terval for measured availability is shown to provide significantly tighter upper- and

lower-limits than the theoretically derived models for upper- and lower-bounds as

well. Based on the empirical results for validating the CPU availability model, an
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average CPU availability model is proposed and the empirical results show that the

prediction error ranges only between 0.19% to 3.57%. It was demonstrated that

shifting the relative phasing of the threads to reduce possible work phase overlap

can improve the performance (i.e., CPU efficiency). It is also shown that if there

are I/O bound processes in the run queue, the traditional RR model fails to accu-

rately predict the CPU assignment as it does not have a clear idea about the unused

processing time left behind by the I/O bound processes.

In addition to CPU availability, the total amount of memory required by con-

current threads is a factor in predicting the thread execution efficiency. When the

total memory requirement is higher than the total available memory, the relative

performance can have a significant impact on execution time. Analytical models

are developed for predicting (and measuring) the execution efficiency of concurrent

threads as a function of memory availability. The model is then verified with memory

intensive real-world benchmark programs like merge sort, dense matrix multiplica-

tion, and linear search for measuring the accuracy. Next, the CPU availability and

memory model is deployed non-trivially to derive a composite prediction model. The

composite prediction model is validated empirically by an extensive set of case stud-

ies involving CPU and memory intensive real-world benchmark programs as well.

The proposed composite models can be highly useful for determining the order in

which tasks should be assigned to the system so that the completion time of all the

tasks is minimized.

By utilizing the proposed composite prediction model, two task assignment mod-

els for dispatching tasks in heterogeneous compute nodes are proposed. The goal

is to find an assignment of tasks to compute nodes such that the total time taken

to execute one or a batch of tasks is minimized. The TASD model requires query

to all compute nodes each time a task is to be assigned to gather nodes’ status

information. While such current information gives precise input to the model, it is

expensive (in terms of overload) when we consider a large number of compute nodes.
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To overcome this limitation, the TADT model maintains a dynamic prediction

table for holding the measured CPU and memory availability estimates for each

node of the distributed system. The same prediction models of TASD are used but

the resource state parameter values are taken from the prediction table instead of

fetching it from nodes each time before task assignment. A relative comparison

among TORQUE manager (which uses Round Robin scheduling with FCFS queue),

TASD, and TADT were carried out in this dissertation to demonstrate the prediction

accuracy of the proposed models. An extensive set of empirical studies have been

conducted in a distributed environment with heterogeneous compute nodes with

real-world benchmark programs. The bar graphs and surface plots provide a clear

visualization of measured execution efficiency and task completion time. It can be

observed from the surface plots and bar graphs that the introduced TASD and TADT

models clearly outperforms the TORQUE scheduler. The new CPU usage prediction

model used in the TADT model provides accurate predicted CPU availability for

incoming tasks to make intelligent task dispatch decision to distributed nodes.

An approach to efficiently allocate a massive number of thread blocks for parallel

execution in GPU devices (independent of architecture) is introduced. Given a set of

compute-intensive threads, and a compute node hosting a GPU device, our goal is to

find an assignment of threads on the GPU such that the total time taken to execute

all the threads is minimized. The key challenge was to determine the arrangement

of blocks and threads in a block prior to placement of threads into the run queue.

Besides empirical work in distributed environment, extensive work has been per-

formed in parallel environment to introduced prediction models to forecast the ex-

ecution efficiency of GPUs for computationally intensive kernels. The model has

been validated with six professionally developed benchmark programs provided in

Nvidia CUDA GPU SDK. The provided surface diagrams depicts clear visualization

of measured efficiency based on variable number of blocks and size of blocks. The

empirical studies performed on the prediction model show that the model surface
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follows the same shape and pattern of the real-world benchmark programs. The

empirical case study results show that the forecast provided by the prediction model

is very accurate with only 0.13 − 5.69% prediction error. This model is significant

from the perspective that it can also be utilized as a reference by programmers to

arrange their blocks and threads to achieve optimal results. The conducted study

is highly useful for understanding and optimizing performance on a GPU. In addi-

tion, the study could be used in the context of heterogeneous environments where

multiple GPU devices with different hardware configurations are used. The models

could help dynamically to choose the device with a better performance potential.

All the obtained results of empirical work justify the strength of the introduced

model for predicting the efficiency of multi-core and many-core systems while execut-

ing compute- and memory-intensive programs. Hence, the ability of the introduced

models to predict the efficiency of thread execution while resources and arrangement

are variable has been demonstrated. The usefulness of using the introduced models

in real-world applications for predicting resource availability and task assignment

has been demonstrated.

8.2 Future Work

The work presented in this dissertation can be further extended as follows.

• All the CPU and memory efficiency prediction related work in this dissertation

is validated with real single- and multi-core systems. Recently, the use of

hypervisor, which enables the running of multiple operating systems in a single

machine, has increased. So, there is future to analyze the CPU and memory

management in virtual machines and possible validation (with some additional

parameter/fine tuning) of our introduced CPU and memory model in virtual

machine environments.
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• Solid State Drive (SSD) technology is getting popular, which provides faster

read and write operation compared with the traditional hard-disks. In our

memory performance model, we haven’t used the swap time possible with

SSD. Moreover, the SSD provides almost no backing store seek time or latency

which should improve the thread execution efficiency.

• The introduced CPU usage prediction model can be deployed in cloud envi-

ronment. The model can dynamically measure available resources when a new

task arrives or an old task finishes execution. Task preemption and distribu-

tion in cloud environment using the introduced CPU usage prediction model

can be considered as well.

• The introduced TASE model provides accurate results but we did not check

the accuracy for longer period of time or a run queue consisting of more than 30

tasks. The TASE model may require periodic adjustment (depending on time

or number of dispatched tasks) which needs to be analyzed and determined.

• The introduced GPU performance model can be utilized to implement an API

that can provide automatic suggestions to programmers to rearrange blocks

and threads in a grid to utilize the full potential of the GPU. That API can be

integrated with the CUDA or Open MP compiler for automatic arrangement

optimization to improve the GPU utilization.

• The introduce GPU performance model is only suitable for compute-intensive

kernels. In reality, we can have kernels which require significant memory access

as well. The model needs to be extended to incorporate the effect of the global

memory and other associated overhead.

• The introduced CPU and memory model can be integrated with the GPU

performance model for use in large heterogeneous systems. Because of the

trend towards GPU accelerated applications to boost performance of GPGPU

applications, this topic is very interesting and challenging.
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Appendix A

Definitions

• CPU availability: the percentage of CPU time that will be allocated for a

new task.

• CPU-bound process: the process that is always ready to run in the processor.

Therefore, it consumes its quantums, or slices of CPU time, completely and it

can always take advantage of all the available CPU time.

• CPU requirement: the fraction of time a task requires the CPU resource.

• CPU usage: the fraction of time a thread spends utilizing CPU resources on

an unloaded system.

• Execution efficiency: the amount of CPU time that a task requires to com-

plete its execution when adequate free memory frames are available in main

memory divided by the total time it takes when only part of memory frames is

available in the main memory.

• I/O-bound process: the process that cannot take advantage of all the CPU

time that corresponds it with the Round Robin scheduling, either because it is

not always ready to run or because it does not finish all its quantums.
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• Memory requirement: the maximum amount of main memory a task will

consume at any point during its execution.

• Memory availability percentage (MAP): the percentage of available free

primary memory with respect to the total memory requirements by all threads

in a batch to be spawned concurrently.

• Response time: the total time between start and end time of a task(thus, it

includes processor and system times).

• Single Instruction Multiple Thread (SIMT): the class of parallel comput-

ing that describes computers with multiple processing elements that perform

the same operation on multiple threads simultaneously. Thus, such machines

exploit data level parallelism, but not concurrency: there are simultaneous

(parallel) computations, but only a single process (instruction) at a given mo-

ment.

• Single program multiple data (SPMD): the technique employed to achieve

parallelism. Tasks are split up and run simultaneously on multiple processors

with different input in order to obtain results faster. SPMD is the most common

style of parallel programming.

• Thread Divergence: if a kernel contains divergence (multiple execution paths),

different set of threads within the same warp will follow different control paths.

In that situation, executing a warp requires several passes; one for each control

path leading to variable execution time.

• Unloaded-CPU usage: the CPU time consumed by a process say Pi during

its execution divided by its response time, both with the processor completely

unloaded.

186



• Warp occupancy: is defined as the number of active warps divided by the

maximum active warps in a streaming multi-core processor of a GPU.
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Appendix B

Acronyms

DYPAP Dynamic Process Assignment Prediction Model

HT Hyper-threading of a CPU core

PS Phase shifting

CC CPU Cores

CUF CPU usage factor

DHCP Dynamic Host Configuration Protocol

DNS Domain Name System

FTP File Transfer Protocol

FCFS First Come First Served

GPU Graphical Processing Unit

HIP Host Identification Protocol

ICMP Internet Control Message Protocol

IP Internet Protocol

JVM Java Virtual Machine

LLM Local Location Manager

MAM Memory Availability Model

MAP Memory Availability Percentage

NRT Non-Real Time

RR Round Robin Scheduling Model

188



RT Real Time

RTP Response Time Prediction

RTT Round Trip Time

SIMD Single Instruction Multiple Data

SMP Symmetric multi-processing

SPAP Static Process Assignment Prediction Model

SPMD Single program multiple data

SSPAP Simplified Static Process Assignment Prediction Model

SM Streaming Multi-core Processor

TADT Task Assignment using Dynamic Table

TASD Task Assignment using Status Data of Compute Node

TCP Transmission Control Protocol

TLB Translation Look-aside Buffer

TORQUE The Terascale Open-source Resource and QUEue Manager

UDP User Datagram Protocol
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