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Abstract 

Grassland ecosystems occupy approximately 40% of the earth’s terrestrial 

area and represent one of most important ecosystems on Earth in terms of its impacts 

on global food supply, carbon sequestration and maintaining biodiversity. Grassland 

ecosystems are very sensitive to disturbances caused by either climatic or 

anthropogenic changes such as changes in precipitation regimes or management 

practices. The objective of this dissertation is to investigate the impacts imposed by 

grassland restoration activities and changes in precipitation anomalies on the steppe 

in China’s Loess Plateau and the mixed-grass prairie in southwest Oklahoma. In 

chapter two, I analyzed how large-scale vegetation conservation programs affected 

the grassland dynamics in China’s Loess Plateau by combining remotely sensed data 

with socio-economic statistics.  The results of this study showed that the impact of 

vegetation conservation programs on vegetation change in the Loess Plateau is 

twofold. On the one hand, vegetation conservation programs target marginal lands. 

Thus, significant vegetation increases due to cropland conversion and afforestation 

can be found in these regions. On the other hand, intensified agricultural production 

can be found in croplands with suitable topography and well-established irrigation 

systems which were not enrolled in conservation programs to offset the agricultural 

production loss caused by vegetation conservation programs elsewhere. In chapter 

three, I demonstrated a new methodology on mapping the historical distribution of 

grassland species in southwest Oklahoma based on the Random Forest classification 
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algorithm. In this study, elevation, soil pH and soil clay content were found to be 

significant variables for predicting the distribution of C3 and C4 grassland species. 

With the mapped distribution of grassland species between 1981 and 2010, in 

chapter four, I examined the relationship between changes in precipitation anomalies 

and the dynamics of relative abundance of C3 and C4 grassland species in southwest 

Oklahoma. In this study, significant decreases of C3/C4 ratio were identified in 

pasture/hay fields due to the increases in C4 abundance resulting from the decreases 

of sparsely vegetated area between 2005 and 2010. I suspect that the increase in C4 

abundance was a drought adaptation strategy adopted by ranchers. Because C4 

species are more tolerant of drought conditions and thus can help to maintain stable 

forage/hay production when negative precipitation anomalies prevailed during the 

growing season of C3 species. 
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Chapter 1  INTRODUCTION 

Grassland ecosystems occupy approximately 40% of the earth’s terrestrial 

area (McSherry & Ritchie, 2013) and about 70% of the world’s agricultural area is 

made up of permanent meadow and pasture (O'Mara, 2012). With such a widespread 

distribution, grasslands represent one of most important ecosystems on Earth in 

terms of its impacts on global food supply, carbon sequestration and maintaining 

biodiversity (Samson & Knopf, 1994; O'Mara, 2012). Grassland ecosystems are very 

sensitive to disturbances caused by both climatic and anthropogenic changes 

(Goodin & Henebry, 1997) and there were diverse responses by grassland 

ecosystems to climatic or anthropogenic changes documented by previous studies. 

Overgrazing is the primary form of anthropogenic disturbance that occurred 

in the Inner Mongolia steppe located in the northern Loess Plateau of China (Gong 

Li et al., 2000; Hilker et al., 2014). Desertification caused by overgrazing in the 

Inner Mongolia steppe was found to be able to alter a series of land surface 

properties and environmental processes such as: albedo and wind regimes (Gong Li 

et al., 2000). In some cases, anthropogenic disturbances to grassland ecosystems will 

be followed by changes devoted to restore grassland ecosystems. For instance, to 

mitigate degraded vegetation condition caused by overgrazing and other poor land 

management practices such as conversion of grassland to croplands (Qi et al., 

2012b), the Chinese government launched one of the largest conservation programs 

in the world: the Grain to Green Program (GTGP)(Liu et al., 2008). The primary 

goal is to mitigate soil erosion by increasing vegetation cover through converting 
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steep slope agriculture (croplands on slopes ≥ 15º in northwestern China and ≥ 25º in 

areas other than northwestern China) to forest or grassland and to carry out 

afforestation in barren areas(Liu et al., 2008).  

The primary effect that climate change and elevated CO2 were expected to 

exert on global grassland ecosystems was to change the relative abundance of C3 and 

C4 species (i.e., the C3/C4 ratio) (Winslow et al., 2003; Lattanzi, 2010). Plant species 

can be classified into three functional forms: C3, C4 and Cassulacean Acid 

Metabolism (CAM), based on how carbon dioxide is treated before or in the process 

of photosynthesis. Carbon dioxide is converted into a three-carbon compound by the 

C3 photosynthetic pathway, which is the most typical way of carbon fixation and 

adopted by approximately 95% of the plant species on the Earth (Bianchi & Canuel, 

2011). C4 plants fix carbon by incorporating carbon dioxide into a four-carbon 

compound. CAM plants fix carbon dioxide during the night and store it in an acid 

before carbon dioxide can be used in photosynthesis during daylight hours (Bianchi 

& Canuel, 2011).  C3 plants tend to occur in environments with moderate 

temperature and adequate water availability while  C4 and CAM plants are more 

adapted to high temperature and water stress conditions due to their better water use 

efficiency (Bianchi & Canuel, 2011; Wang et al., 2013).  

The relative abundance of C3 and C4 (C3/C4) species in grassland ecosystems 

is found to be an important indicator of climatic disturbances and an indispensable 

parameter in terms of modeling carbon cycling in grassland ecosystems at global 

scale (Goodin & Henebry, 1997; Winslow et al., 2003). For instance, elevated 
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atmospheric CO2 is found to possibly result in a higher C3/C4 ratio due to the 

saturated productivity of C4 species at the current CO2 level (Wang et al., 2013). 

Increased temperature and fire frequency has the potential to lead to a lower C3/C4 

ratio by favoring the growth of C4 species (Goodin & Henebry, 1997).  

The dynamics of C3/C4 ratio over time can facilitate the understanding of 

those processes that may affect the dynamics such as changes in disturbance regime 

(Hanberry et al., 2012). An effective way to examine the long term C3/C4 ratio 

dynamics is through remote sensing.  A commonly adopted method to discriminate 

C3 and C4 grassland cover types on remotely sensed images is to capture the seasonal 

greenness asynchrony exhibited by C3 and C4 grassland cover types during the 

growing season(Goodin & Henebry, 1997; Tieszen et al., 1997; Foody & Dash, 

2007; Wang et al., 2013). C3 species begin growth in early spring and reach peak 

growth in late spring. These species may become senescent or semi-dormant in the 

summer to avoid hot temperatures and water stress conditions. Some C3 species may 

resume growth in the fall (Wang et al., 2013). Growth of C4 species starts in late 

spring, reaches the peak during summer. Previous studies on detecting the seasonal 

greenness asynchrony primarily relied on examining the differences in the shapes of 

temporal trajectories of photosynthetic greenness using discriminant or clustering 

analyses (Goodin & Henebry, 1997; Tieszen et al., 1997; Foody & Dash, 2007).  In 

order to effectively detect differences in the greenness trajectory shape, temporally-

rich canopy greenness time series were indispensable in these studies. As a result, 

field canopy greenness measurements (Goodin & Henebry, 1997), observations 
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acquired by Advanced Very High Resolution Radiometer(AVHRR) (Tieszen et al., 

1997), and Medium Resolution Imaging Spectrometer (MERIS) (Foody & Dash, 

2007) were used in previous studies. C3 and C4 grassland cover types in the Great 

Plains tend to occur in a mixed composition manner (Wang et al., 2013). The 

utilization of C3/C4 ratio retrieved at the scale of AVHRR (1km) or MERIS (1200m) 

is ill-suitable to analyze the long term dynamics of C3/C4 ratio at fine scale due to the 

presence of mixed pixels. Observations acquired by the Landsat series of satellites, 

with a spatial resolution ranging from 30m to 60m in the visible to near infrared 

spectrum, are an ideal data source to examine long term C3/C4 ratio dynamics at fine 

scale. However, the revisit interval of the Landsat series of satellites is 16 days and 

can be longer if severe cloud contamination is present, which tends to result in a 

temporally sparse canopy greenness time series that often fails to meet the input 

requirements by discriminant or clustering analyses. Thus, there is a need for a 

methodology that will enable the analysis of long term C3/C4 ratio dynamics using 

fine scale observations obtained from satellites such as Landsat. 

The primary control on the spatial stratification of C3/C4 ratio at global scale 

was previously believed to be temperature (Ehleringer & Björkman, 1977; 

Cavagnaro, 1988; Cabido et al., 1997; Ehleringer et al., 1997).  For example, in the 

studies on the changes of distribution of C3 and C4 grassland species at different 

altitudes in central Argentina, balanced abundance of C3 and C4 grassland species 

was found at about 1500m and increases in C3 and C4 dominance were observed at 

above and below 1500m, respectively (Cavagnaro, 1988; Cabido et al., 1997). In 
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these studies, temperature was found to exert significantly higher control on the 

changes of distribution of C3 and C4 species along altitudinal gradients than 

precipitation (Cavagnaro, 1988; Cabido et al., 1997). In the prairie region of North 

America, C3 species were found to dominate the northern Great Plains with C4 

species occupying its southern counterpart (Ehleringer et al., 1997; Epstein et al., 

1997). The crossover latitude of C3 and C4 species in the Great Plains was found to 

be between 43-45ºN (Epstein et al., 1997; Winslow et al., 2003). However, in a more 

recent study on the control of global distribution of relative C3 and C4 biomass, the 

differences in growing season moisture availability and plant water use efficiency 

were found to be the dominating factors instead of temperature (Winslow et al., 

2003). Intensive studies have been conducted to examine the climate control on 

changes of C3/C4 ratio across space, but few studies were devoted to understand how 

climate could affect the changes of C3/C4 ratio over time (Ricotta et al., 2003; Wang 

et al., 2013). 
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1.1 Research objectives  

The overall research objective of this dissertation was to investigate the 

impacts of anthropogenic and climatic changes on the dynamics of grassland 

ecosystems in China’s Loess Plateau and the mixed-grass prairie of southwest 

Oklahoma, USA. There were three specific research objectives associated with the 

second, the third and the fourth chapter of this dissertation, respectively: 

1. Chapter two: To use a multiple lines of evidence approach to 

investigate the impacts of large scale conservation programs on 

grassland vegetation dynamics in China’s Loess Plateau between 

2000 and 2009. 

2. Chapter three: To demonstrate a new methodology for distinguishing 

C3 and C4 grassland cover types both in the present and in the recent 

past based on the Random Forest classification algorithm. 

3. Chapter four:  To examine the effects of precipitation anomalies on 

the changes of relative abundance of C3 and C4 grassland species in 

southwest Oklahoma between 1981 and 2010. 

In this dissertation, China’s Loess Plateau and the mixed-grass prairie in 

southwest Oklahoma were selected as case studies areas because both the grassland 

ecosystems in the two study areas are of high conservation significance. Severe soil 

erosion affects about 70% of China’s Loess Plateau(Liu & Diamond, 2005). Severe 

soil erosion results in significant loss of fertile land resources and imposes food 

security threats to this region (Schnitzer et al., 2013). Grassland conservation 
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activities were of high importance to mitigate the degraded vegetation condition in 

this region. Significant declines in mixed grass prairies (30%-99%) and short grass 

prairie (20%-85%) were also observed within the Great Plains. Transformation of the 

endangered prairie grasslands can have profound consequences affecting biodiversity 

conservation and human society (Samson & Knopf, 1994). Conversion of prairie 

grasslands to row crop agriculture left highly fragmented prairie areas which are 

more vulnerable to climate driven vegetation changes in any other parts of the United 

States(Guo, 2000). Prairie grasslands host unique habitats for a variety of endangered 

species and declines of prairie grasslands may threaten the conservation of keystone 

species (Samson & Knopf, 1994). 

1.2 Organization of dissertation 

The first chapter provides an overview of the potential impacts of 

anthropogenic and climatic changes on grassland ecosystems in China’s Loess 

Plateau and the mixed-grass prairie region of southwest Oklahoma, USA. The 

research objectives of the dissertation were also stated in the first chapter. In chapter 

two, I investigated the impacts of large scale conservation programs on grassland 

vegetation dynamics in China’s Loess Plateau between 2000 and 2009 using a 

multiple lines of evidence approach. Chapter two has been published in the special 

issue of Landscape Perspectives on Environmental Conservation associated with 

journal Land in September, 2013. In chapter three, I demonstrated a new 

methodology for distinguishing C3 and C4 grassland cover types both in the present 

and in the recent past based on the Random Forest classification algorithm. 
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Significant variables for predicting the distribution of C3 and C4 grassland cover 

types were also identified. Chapter three will be submitted to the journal Remote 

Sensing of Environment.  In chapter four, I examined the effects of precipitation 

anomalies on the changes of relative abundance of C3 and C4 grassland species in 

southwest Oklahoma between 1981 and 2010. Chapter four will be submitted to 

Journal of Biogeography. Chapter five summarizes the conclusions obtained in the 

previous chapters and provides suggestions for future researches. 
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Chapter 2  THE IMPACTS OF WEATHER AND 

CONSERVATION PROGRAMS ON VEGETATION DYNAMICS 

IN CHINA’S LOESS PLATEAU 

This chapter has been published in the special issue of Landscape Perspectives on 

Environmental Conservation associated with journal Land in September, 2013. 

Abstract 

In this chapter, I present an analysis of the impacts of weather change and 

large scale vegetation conservation programs on the vegetation dynamics in China’s 

Loess Plateau from 2000 through 2009. I employed a multiple lines of evidence 

approach in which multi-scale data were used. I employed Normalized Difference 

Vegetation Index (NDVI) data acquired by the Moderate Resolution Imaging 

Spectroradiometer (MODIS) at 500m to identify significant vegetation increases in 

the Loess Plateau since 2000. I found increases in NDVI for 48% of the Loess 

Plateau between 2000 and 2009. I were able to attribute up to 37.5% of the observed 

vegetation increases to weather change, vegetation conservation activities and crop 

yield increases. I demonstrate that the impact of vegetation conservation programs 

on vegetation change in the Loess Plateau is twofold. On the one hand, vegetation 

conservation programs target marginal lands. Thus, significant vegetation increases 

due to cropland conversion and afforestation can be found in these regions. On the 

other hand, intensified agricultural production can be found in croplands with 

suitable topography and well-established irrigation systems which were not enrolled 
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in conservation programs to offset the agricultural production loss caused by 

vegetation conservation programs elsewhere. 
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2.1 Introduction 

Forest transitions refer to the change from a net loss in forest cover to a net 

gain of forested areas within a specific region (Mather & Needle, 1998; Kauppi et 

al., 2006). The occurrence of forest transitions can improve ecosystem services by 

increases in forest cover or woody biomass (Rudel et al., 2005). For instance, 

expanded forest cover can improve water quality by reducing sediment discharges 

resulting from soil erosion(Rudel et al., 2005). Woody biomass increases can lead to 

increased carbon sequestration(Rudel et al., 2005). There are two pathways 

identified to facilitate the development of forest transitions: the ‘economic 

development path’ and the ‘forest scarcity path’ (Rudel et al., 2005). The ‘economic 

development path’ describes forest regrowth on abandoned agricultural lands as a 

result of a decreasing agricultural population, which migrates to urban areas during 

the process of industrialization and urbanization (Rudel et al., 2005; Mather, 2007). 

The ‘forest scarcity path’ is a result of elevated prices of forest products due to the 

forest scarcity caused by previous agricultural expansion (Rudel et al., 2005; Mather, 

2007). 

Previous studies on forest transitions in China reveal distinct characteristics 

in terms of the driving forces and the impacts of forest transitions. Rather than the 

loss of agricultural population and rising prices of forest products, large scale 

conservation programs, launched in response to the deteriorated natural environment, 

were found to be the most significant driving force of Chinese forest transitions 

(Mather, 2007). Historically, China has suffered from deforestation and widespread 



12 

soil erosion(Liu & Diamond, 2005). Severe soil erosion associated with degraded 

vegetation conditions was recognized as the major factor in causing the massive 

floods in China during the summer of 1998 (Qu, 1999; Uchida et al., 2005). In order 

to mitigate the degraded environment by protecting natural forests and reducing soil 

erosion, the Chinese government launched two of the largest conservation programs 

in the world: the Natural Forest Conservation Program (NFCP) and Grain to Green 

Program (GTGP)(Liu et al., 2008). NFCP was initiated in 1998 and designed to be 

implemented in multiple stages between 1998 and 2050(Liu et al., 2008). There are 

three key goals associated with NFCP: 1) restoring natural forest by issuing logging 

bans and mountain closure, 2) shifting the major source of timber production from 

natural forests to plantation forests, and 3) reducing soil and water loss by 

afforestation(Zhang et al., 2000; Liu et al., 2008). The NFCP has been established in 

18 provinces and autonomous regions in China since 2000 with a total investment of 

about 61 billion Yuan (~9.7 billion dollars) from 1998 to 2005(Zhang et al., 2000; 

Liu et al., 2008). GTGP was launched in 1999 in three pilot study provinces – 

Gansu, Shanxi and Sichuan(Liu et al., 2008) – and expanded to 25 provinces and 

autonomous regions by 2002(Liu et al., 2008). The goal of GTGP is twofold. The 

primary goal is to mitigate soil erosion by increasing vegetation cover through 

converting steep slope agriculture (croplands on slopes ≥ 15º in northwestern China 

and ≥ 25º in areas other than northwestern China) to forest or grassland and to carry 

out afforestation in barren areas(Liu et al., 2008). GTGP also aims to fight poverty 

and improve the socioeconomic well-being of participating farmers(Liu et al., 2008). 
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GTGP received an investment of more than 90 billion Yuan (~14.3 billion dollars) 

by 2005 and aimed to achieved an increase in vegetation cover of 320,000 km
2
 by 

2010(Liu et al., 2008).  

In this study, I focused on the Loess Plateau which is an area covered by 

thick and highly erodible loess in central north China(Zheng et al., 2013) (Figure 1). 

Severe soil erosion affects about 70% of China’s Loess Plateau(Liu & Diamond, 

2005). Intensive cultivation on marginal land (e.g. land with steep slopes) without 

effective soil loss protection was identified as one of the major factors contributing 

to the high erosion rates within this region(Zheng et al., 2013). Severe soil erosion 

results in significant loss of fertile land resources and imposes food security threats 

to this region (Schnitzer et al., 2013). The Loess Plateau was a first priority area for 

NFCP and two of the three pilot study provinces of GTGP (Gansu and 

Shanxi)(Zhang et al., 2000; Liu et al., 2008) were located here. The Loess Plateau is 

frequently included in studies which investigate the effects of NFCP and GTGP on 

vegetation cover change (Cao et al., 2009; Zhou et al., 2009), desertification 

control(Qi et al., 2012a) and cost-effectiveness of the programs. Typically these 

studies are only conducted in a small portion of the plateau (e.g. a few counties) and 

there has been no evaluation of the impacts of NFCP and GTGP on vegetation 

development in the entire area. In addition, there are debates over the effectiveness 

of NFCP and GTGP in improving vegetation conditions in the Loess Plateau. For 

example, Zhou et al. (2009) and Cao et al. (2009) attributed the increase in 

vegetation cover in Shaanxi Province to GTGP. Afforestation failure by GTGP, 



14 

however, was also found in some counties of Shaanxi Province due to 

inappropriately selected tree species(Cao et al., 2009).  

In this paper, I employed a multiple lines of evidence approach to investigate 

the effects of large scale vegetation conservation programs on the vegetation 

development in China’s entire Loess Plateau. I carried out five different analyses to 

determine the effect of these large scale vegetation conservation programs on the 

vegetated land surface: 

1) I employed satellite derived vegetation indices with a spatial resolution of 

500m to identify significant vegetation changes since 2000.  

2) I examined monthly temperature and precipitation data to determine if 

significant weather changes were contributing to the observed vegetation 

increases.  

3) I employed satellite derived land cover data and vegetation conservation 

data reported by statistical yearbooks to investigate if the observed 

vegetation increases can be attributed to land cover change caused by 

vegetation conservation activities.  

4) I used anthropogenic biomes to evaluate how large scale vegetation 

conservation programs choose target regions.  

5) I investigated crop yield data to investigate the effects of vegetation 

conservation programs on croplands in areas with relatively shallow slopes.  

 



 

 

1
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Figure 2.1 Upper Left inset: Location of the Loess Plateau and the 138 weather stations in China. Main map frame: Location of 

key case study counties within the Loess Plateau. Case studies counties selected for conservation program analyses are outlined 

in green (County #1 to #20). Case studies counties selected for crop yield analyses are outlined in black (County #21 to #29). 

The spatial distribution of anthropogenic biomes is based on the anthropogenic biomes in 2000 as described in Ellis et al. 

(2010). 
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2.2 Study region 

2.2.1 Loess Plateau 

The Loess Plateau, with an area of about 626,000km
2
,
 
is located in the middle 

reaches of the Yellow River. Elevation of the Loess Plateau ranges from 1000m to 

1600m above sea level(Chen et al., 2007). The Loess Plateau extends from 101ºE to 

114ºE and 34ºN to 41ºN, covering the entire area of Ningxia Hui Autonomous 

Region and Shanxi Province and parts of Shaanxi, Gansu, Henan and Qinghai 

Provinces and Inner Mongolia Autonomous Region (Figure 2.1). The Loess Plateau 

hosts a population of about 86 million mostly rural residents(Wei et al., 2006). The 

provincial capitals located in the Loess Plateau include Hohhot, Lanzhou, Taiyuan, 

Xi’an, Xining and Yinchuan. The Loess Plateau features a northwest-southeast 

climate gradient. The mean annual precipitation increases from 300mm in the 

northwest to 700mm in the southeast(He et al., 2006). The mean annual temperature 

ranges from about 4°C in the northwest to 14°C in the southeast(He et al., 2006).  

2.2.2 Study regions for conservation program analysis and crop yield analysis 

Besides studying the entire Loess Plateau, I also selected 20 counties in the 

northern Loess Plateau to analyze the effects of vegetation conservation programs on 

vegetation dynamics in more detail. Of these 20 counties, four were in the region of 

Ordos, Inner Mongolia, nine counties were in the region of Yulin, Shaanxi Province 

and the remaining seven counties were located in the region of Yan’an, Shaanxi 

Province (Figure 2.1). In addition, I selected nine counties as case study areas to 
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investigate the effects of GTGP on the crop yield of croplands that were not directly 

participating in GTGP (Figure 2.1).  

Detailed explanations of the selection criteria for the case study counties for 

the vegetation conservation and crop yield analyses are available in section 2.3.4 and 

2.3.6, respectively. 

2.3 Data and Methods 

Determining the effect of large conservation programs over large areas is not 

straightforward. There are several different factors that play a role in the location and 

the success of these programs. In this study I took a multiple lines of evidence 

approach to determine the effect of the large scale conservation programs on the 

vegetated land cover in the Loess Plateau. First, I determined where vegetation is 

changing according to remotely sensed vegetation index data (section 2.3.1). Then I 

went through multiple steps to attribute the vegetation increases to one of the 

following potential causes: weather (2.3.2), land cover change (2.3.3), vegetation 

conservation activities reported in statistical yearbooks (2.3.4), the effect of GTGP 

and NFCP on elevated areas and areas with steep slopes (2.3.5), and finally I 

investigate how crop yield has changed as an indirect result of conservation 

programs (2.3.6). An overview of the data used in the following seven sections can 

be found in table 2.1.  
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 Table 2.1 Overview of data sources 

Dataset Region Spatial 

Resolution  

Temporal 

Resolution  

and Time 

Reference 

MODIS Nadir 

BRDF-

Adjusted 

Reflectance 

(MCD43A4) 

Loess Plateau 500m 16-day 

2000 - 2009 

Schaaf et al. 

(2002) 

MODIS global 

500m land 

cover product 

(MCD12Q1) 

Loess Plateau 500m Annual 

2003 - 2008 

Friedl et al. 

(2010) 

Temperature 

and 

Precipitation 

Loess Plateau Stations Monthly 

1999 - 2009 

Chinese 

National 

Meteorological 

Information 

Center (2008) 

Agricultural 

Productivity 

Five counties in 

Xianyang 

(Shaanxi)  and 

three counties in 

Qingyang 

(Gansu) and one 

county in 

Sanmenxia 

(Henan) 

County Annual 

2000 – 

2008* 

Regional 

statistical 

yearbooks 

ASTER 

Digital 

Elevation Map 

Loess Plateau 1 arc-

second 

(~30m) 

2011 Tachikawa et 

al. (2011) 

Anthropogenic 

biomes 

Loess Plateau 0.083º 2000 Ellis and 

Ramankutty 

(2008) 

Vegetation 

Conservation 

Statistics 

Seven counties 

in Yan’an 

(Shaanxi) and 

nine counties in 

Yulin (Shaanxi) 

and four 

counties in 

Ordos (Inner  

Mongolia) 

County 2000 to 

2008** 

Regional 

statistical 

yearbooks  

* Except in 2002 and 2005 for Sanmenxia and Xianyang, respectively. 
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** 2000 to 2008 for Yan’an; 2000 to 2007 for Yulin and Ordos 

I employed a stepwise approach rather than a conventional multiple 

regression procedure to attribute observed vegetation increases to different factors 

because data availability was variable in space and time and thus a unified multiple 

regression approach could not be used. For example, for any location we were 

interested in, a multiple regression procedure would require us to have a complete set 

of response and predictor variables. However, the crop yield and vegetation 

conservation data only covered a limited portion of the area with observed vegetation 

increases. 

2.3.1 Vegetation changes measured by MODIS Nadir BRDF-Adjusted Reflectance 

data and NDVI maximum value composites 

The Moderate Resolution Imaging Spectroradiometer (MODIS) Nadir 

BRDF-Adjusted Reflectance (NBAR) data(Schaaf et al., 2002) at 500m spatial 

resolution, with temporal resolution of 16 days (MCD43A4) and temporal coverage 

from Feb 24, 2000 through Dec 26, 2009, were employed to derive the Normalized 

Difference Vegetation Index (NDVI) as:            

NDVI = (NIR - RED) / (NIR + RED) (2.1)  

Where, NIR is MODIS band 2 (841-876 nm), RED is MODIS band 1 (620-

670 nm). 
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The MODIS reflectance dataset is available as 10°×10°latitude/longitude tiles 

and the Loess Plateau is covered by four tiles (h26v4, h25v5, h26v5, h27v5). The 

MODIS reflectance dataset is originally produced every 8 days based on 16 days of 

acquisition. After calculating NDVI for each original reflectance composite, I 

generated 16-day NDVI composites by averaging the original consecutive 8-day 

rolling NDVI composites. With a temporal resolution of 16 days there are a total of 

227 NDVI composites for the time period from 2000 to 2009 (20 NDVI composites 

for year 2000 and 23 composites for each year from 2001 to 2009).  

I applied the seasonal Mann-Kendall (SMK) trend test to estimate vegetation 

change from the 272 NDVI composites between 2000 and 2009. The SMK test 

statistic was calculated based on the rank of a season (in this case, a 16-day period) 

within the time series of the same season across all years(de Beurs & Henebry, 

2004). Two steps were carried out to calculate the SMK test statistic: 1) the Mann-

Kendall(MK) test statistic is the sum of the number of times each season has a higher 

rank than the same season in any previous year; 2) The SMK test statistic for the 

entire time series is calculated by summing the MK test statistic for each season(de 

Beurs & Henebry, 2004). SMK is then corrected for autocorrelation among seasons. 

The advantage of the seasonal Mann-Kendall trend test over simple linear regression 

in terms of estimating changes in NDVI time series was previously discussed by de 

Beurs and Henebry(de Beurs & Henebry, 2004). The SMK trend test was applied to 

each 500m pixel in the MODIS NDVI dataset. I interpreted the area having a 

positive SMK test statistic with a p-value lower than or equal to 0.01 and annual 
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missing data rates lower than or equal to 40% as highly significant positive 

vegetation change. The area having a negative SMK test statistic with a p-value 

lower than or equal to 0.01 and missing data rates lower than or equal to 40% was 

interpreted as highly significant negative vegetation change.  

Besides applying SMK change analysis, I generated monthly NDVI 

maximum value composites to represent the overall vegetation condition for each 

month. I also calculated annual accumulated NDVI on a pixel basis by summing 

NDVI for the entire year using the 16-day NDVI composites. 

2.3.2 Weather Data 

Weather data used in this study included monthly temperature and 

precipitation records from 138 weather stations, spread over the Loess Plateau 

(Figure 1). The weather data were collected and compiled by the Chinese National 

Meteorological Information Center (http://cdc.cma.gov.cn). The data were of high 

accuracy after eliminating errors by extreme value testing, temporal consistency 

testing and manual error checks(Chinese National Meteorological Information 

Center., 2008). I applied kriging interpolation to generate monthly raster layers at a 

spatial resolution of 500m for temperature and precipitation from 1999 to 2009. I 

then applied the SMK trend test to the time series of monthly temperature and 

precipitation data from 1999 to 2009 on a pixel by pixel base in order to examine 

whether there was significant weather change that could be related to the vegetation 

dynamics. I took the area with a p-value lower than or equal to 0.1 as a region 

showing significant weather change since 1999. 

http://cdc.cma.gov.cn/
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In order to determine whether there were significant impacts on vegetation 

change imposed by weather changes, I employed the Spearman’s rank correlation 

coefficient to calculate the lagged correlation between the monthly NDVI maximum 

value composites and the precipitation in the previous month. I also computed the 

correlation coefficient between temperature and NDVI with the same monthly lag.  

In addition, I employed the p-values associated with NDVI and weather trend 

analyses to assess the probability of error in terms of attributing NDVI increases to 

significant changes in temperature or precipitation. I calculated the error by 

estimating the probability that both changes in NDVI and weather were correctly 

estimated.  

2.3.3 Land Cover Data 

The MODIS global 500m land cover product (MCD12Q1) was employed to 

derive the land cover information over the study period. As the quality of the data 

was higher for the years starting in 2003 (M. Friedl, personal communication, 

October 18, 2010), MODIS land cover data from 2003 through 2008 were selected 

for this study. The MODIS land cover data provides multiple land cover 

classification schemes including: IGBP global vegetation, University of Maryland 

land cover classification, MODIS-derived LAI/fPAR and the Plant Functional Type. 

I picked the IGBP classification scheme which was accompanied by a separate data 

layer that provides the assessment of relative classification quality for each 500m 

pixel. The classification quality ranges from 0 to 100 with a higher number 

representing a higher probability that the classification was correct. The IGBP 
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classification scheme allowed an analysis of fourteen land cover categories including 

twelve vegetation classes and four classes of non-vegetated land.  

Year-to-year land cover change inferred from direct comparison of the 

MODIS land cover data across years could contain substantial spurious changes due 

to inaccurate classifications resulting from potential mixed pixels at 500m spatial 

resolution, the limited separability of certain land cover classes in the MODIS 

spectral-temporal space, phenological changes and disturbances (e.g. fires) (Friedl et 

al., 2010). In order to avoid characterizing the land cover change during the study 

period by direct comparison of the MODIS land cover data, I divided the six-year 

MODIS land cover datasets into two groups: one from 2003 to 2005 and the other 

from 2006 to 2008. For each group, I derived a three-year-summarized land cover 

map. Pixels that were classified as the same land cover type for at least two 

consecutive years were considered as stable. The land cover type of these pixels was 

assigned as the land cover type with the highest frequency during the three years. 

Other pixels were assigned to a new class labeled as random classification. In order 

to evaluate the efficiency of this grouping strategy, I compared the land cover 

assessment scores of the pixels that were considered as stable with those considered 

as random classifications. I employed a two-sample t test to determine if the mean 

land cover assessment scores of stable pixels were significantly higher than the 

scores of the random classification pixels.  

I explored the land cover change for three broad land cover categories: 

natural vegetation, cropland, and barren or sparsely vegetated to identify vegetation 
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dynamics that could be caused by large scale vegetation conservation programs. To 

create the natural vegetation class we combined the ten natural vegetation classes 

under the IGBP classification scheme.  

I employed the relative classification quality scores to assess the potential 

errors in the land cover change analysis. I first calculated the average classification 

quality scores for each of the three land cover categories in the two time periods: 

from 2003 to 2005 and from 2006 to 2008. The error rate for any type of land cover 

change was calculated to estimate the probability that the land cover types in both 

time periods were correctly classified.  

Besides investigating land cover changes according to MODIS data, I also 

explored anthropogenic biomes (Anthromes). Anthromes provide a way of 

understanding the terrestrial biosphere in terms of form and intensity of human 

influence on biomes (Ellis & Ramankutty, 2008; Ellis et al., 2010). Anthromes are 

organized according to population density with village anthromes supporting more 

than 100 people / km
2
 and residential anthromes supporting between 10 and 100 

people / km
2
. Populated (1-10) and remote anthromes (< 1) support fewer people. 

Anthromes from the year 2000 were employed in this study to identify the preference 

of large scale vegetation conservation programs in choosing target regions in the 

Loess Plateau based on population density and agricultural productivity.  Anthromes 

are mapped at a spatial resolution of 0.083º and are available at 

http://ecotope.org/anthromes/v2/data/. We examined the distributions of land cover 

changes that may be caused by vegetation conservation programs (e.g. croplands and 

http://ecotope.org/anthromes/v2/data/
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barren lands converted to natural vegetation) within different anthromes. We 

compared the distribution of different types of land cover change (e.g. croplands 

converted to natural vegetation vs. croplands left unchanged) to understand how 

large scale vegetation conservation programs choose target regions. 

2.3.4 Vegetation conservation data from statistical yearbooks 

In order to identify land cover change that occurred at scales finer than 500m 

and thus may not have been identified in the land cover change analysis using 

MODIS derived land cover maps, I employed vegetation conservation data 

documented in regional statistical yearbooks.  

Forestry and agricultural statistics documented in a regional statistical 

yearbook are published by the regional bureau of statistics using a methodology that 

integrates household survey and a bottom-up reporting system(Gale, 2002; Statistic 

Bureau of Xianyang., 2008). The bottom-up reporting system works in such a way 

that the collection of the target statistics begins with the statistics reported by 

officials at the bottom level (e.g. the head official of a village)(Gale, 2002). The 

reported statistics are aggregated at each upper level before being integrated with 

data acquired using probability based survey methods and published by the regional 

bureau of statistics(Gale, 2002; Statistic Bureau of Xianyang., 2008).  

Inaccurate national agricultural statistics such as inflated crop yield resulting 

from underreported sown or cultivated area had been reported by previous studies 

using these data(Hansen et al., 2003). The quality of the official statistics has been 
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improved after probability based survey methods were integrated with the bottom-up 

reporting system. Numerous peer-reviewed articles on the economic development of 

China that employ the official statistics have been published in professional 

journals(Chow, 2006). 

I examined the effects of the vegetation conservation programs on vegetation 

increases in 20 counties located in northern Shaanxi Province and western Inner 

Mongolia. The 20 counties were chosen based on: 1) the availability of vegetation 

conservation data; 2) observed NDVI increases not explained by land cover change 

in natural vegetation accounted for at least 80% of the total natural vegetation within 

the county. 

I identified 20 counties in Shaanxi Province and western Inner Mongolia 

(Figure 2.1). SMK derived significant increases in precipitation coincided with more 

than 40% of the unexplained vegetation change in eight of the 20 counties. No more 

than 15% coincidence between SMK derived increases in precipitation and NDVI 

were found in the remaining 12 counties. Significant increases in temperature were 

not identified in any of the selected 20 counties. 

Vegetation conservation data are available for the regions of Yan’an and 

Yulin in Shaanxi Province (2000 to 2008 for Yan’an; 2000 to 2007 for Yulin) and 

for the region of Ordos in Inner Mongolia from 2000 to 2007(Statistic Bureau of 

Yulin., 1999-2007; Statistic Bureau of Yan’an., 1999-2008; Statistic Bureau of 

Ordos., 2000-2008). These data document the annual area of vegetation conservation 
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activity including artificial planting of forest and grassland, aerial seeding, cropland 

converted to forest or grassland, and mountain closures (Table 2.2).  

        Table 2.2 Vegetation conservation activities in Ordos, Yulin and Yan’an 

Region Artificial 

planting 

Aerial 

seeding 

Cropland 

converted 

to forest 

and 

grassland 

Mountain 

closure 

Dominant 

anthromes 

Ordos, 

Inner 

Mongolia 

Available Available N/A N/A Residential 

and 

populated  

rangelands 

Yulin,  

Shaanxi 

Available Available Available N/A Residential  

rangelands 

Yan’an, 

Shaanxi 

Available Available Available Available Residential  

 rainfed 

croplands 

I employed spearman rank partial correlation analysis to understand if 

vegetation conservation activities documented in statistical yearbooks in 

combination with weather variables (precipitation and temperature) can be used to 

explain the observed positive vegetation change. The dependent variable was defined 

as the spatially averaged annual maximum NDVI of natural vegetation pixels with 

80% observed vegetation increases not explained by land cover change. Three 

independent variables were used in the analysis:1) accumulated vegetation 

conservation activities from 2000 to the previous year (e.g. accumulated 

conservation activities for year 2004 were the sum of conservation activities 

conducted from 2000 through 2003); 2) spatially averaged annual precipitation for 

each year; 3) spatially averaged mean annual temperature for each year. The partial 
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correlation analysis was carried out separately for each of the three independent 

variables while the other two independent variables were controlled. A two-tailed 

Student’s t test was carried out to test if the partial correlations were significant. I 

examined the partial correlation between these variables from 2003 through 2009. I 

did not include the years between 2000 and 2002 in the analysis because newly 

afforested/mountain closure/cropland conversion areas may not exhibit increases in 

NDVI immediately. I compared the results for the three independent variables to see 

which combination could explain most of the observed vegetation change. 

2.3.5 Elevation and slope  

The goals of GTGP and NFCP have led us to hypothesize that the observed 

land cover change including conversion from cropland or sparsely vegetated area to 

natural vegetation occurring on steep slopes (≥ 15° in the Loess Plateau(Liu et al., 

2008)) and in relatively high elevation regions (above 1200 m) could be the result of 

the implementation of one of the two vegetation conservation programs. In order to 

determine whether the observed vegetation changes were indeed related to GTGP 

and NFCP, we compared the spatially averaged slope and elevation (derived in 

ArcGIS) on which the land cover change occurred to that of the cropland and 

sparsely vegetated area experiencing no dynamics. We retrieved the elevation data 

from the ASTER Global Digital Elevation Map (GDEM) which has a spatial 

resolution of 1 arc-second (~30m) and is comprised of 22,600 1°×1°lat/lon tiles with 

a geographic projection(Tachikawa et al.). We generated a mosaic of 89 tiles to 

cover the Loess Plateau. We re-projected and resampled the ASTER DEM mosaic to 
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Albers Equal Area Projection with 500m spatial resolution to match the projection 

and spatial resolution of other datasets used in this study. 

2.3.6 Crop yield data  

I investigated the relationship between observed crop yield and observed 

NDVI changes for croplands that experienced no land cover change during the study 

period. I only investigated counties with available crop yield data and in which the 

area of croplands showing significant increases in NDVI accounted for more than 

60% of the total cropland area of the county. I found nine qualified counties in the 

Loess Plateau. Five of these counties were in Shaanxi Province, three in Gansu 

Province and one in Henan Province. Significant increases in temperature and 

precipitation detected by the SMK analysis were not found in any of the nine 

counties. Dominant anthromes within the selected nine counties are rainfed villages 

and residential rainfed croplands according to the anthromes in 2000 (Figure 2.1).  

Agricultural productivity data were obtained from officially published 

regional statistical yearbooks(Statistic Bureau of Yan’an., 1999-2008; Statistic 

Bureau of Sanmenxia., 2000-2001, 2003-2008; Statistic Bureau of Xianyang., 2008). 

Agricultural productivity data are available for the region of Xianyang in Shaanxi 

Province, the region of Qingyang in Gansu province and for the region of Sanmenxia 

in Henan Province from 2000 to 2008 (except in 2002and 2005 for Sanmenxia and 

Xianyang, respectively). Data for annual sown area, crop production and crop yield 
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are available in the agricultural productivity dataset for major crops including: 

wheat, corn, bean, potato, rapeseed, tobacco, vegetables and apple. 

I calculated the sown area weighted crop yield for each county as the sum of 

crop yields of major crops, which were weighted by the sown area ratio. The sown 

area ratio of a specific crop was computed by dividing the sown area of the crop by 

the total sown area of all crops in a county. 

I employed spearman rank partial correlation analysis to understand if crop 

yield change or weather change or the combination of the two factors were 

responsible for the observed positive vegetation changes that were not attributable to 

land cover change. I used spatially averaged annual accumulated NDVI of cropland 

pixels in a specific county as the dependent variable. Three independent variables 

were used in the analysis:1) sown area weighted crop yield (kg/ha); 2)  spatially 

averaged annual precipitation (mm); 3) spatially averaged mean annual temperature 

(ºC). The partial correlation analysis was carried out separately for each of the three 

independent variables while the other two independent variables were controlled. A 

two-tailed Student’s t test was carried to test if the partial correlations were 

significant. I compared the analysis results for the three independent variables to see 

which combination can explain the most of the observed vegetation change. 
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2.4 Results and Discussion 

2.4.1 Vegetation change since 2000 

I found significant vegetation increases as measured by NDVI in 48.2% 

(3.02×10
5
km

2
) of the Loess Plateau (Figure 2.2). The area with positive vegetation 

change spreads across the Loess Plateau from northeast to southwest with the major 

part in the north of Shaanxi province and south of Gansu and Qinghai provinces. I 

found significant negative vegetation change in 0.8% (4.9×10
3 

km
2
) of the Loess 

Plateau (Figure 2.2) and no significant vegetation change in 51% of the study area 

(3.20×10
5
km

2
). I excluded the region showing no significant vegetation change from 

the remaining analyses.  
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Figure 2.2 Significant vegetation change between 2000 and 2009 in the Loess 

Plateau. The significant vegetation change was identified by applying seasonal 

Mann-Kendall trend test to 500m MODIS NDVI time series acquired between 2000 

and 2009. Green pixels represent significant positive vegetation change, which 

accounted for 48.2% of the Loess Plateau. Brown pixels indicate significant negative 

vegetation change, which accounted for 0.8% of the Loess Plateau. Pixels in white 

represent either areas with no significant vegetation change or areas with high 

missing data rates due to frequent cloud cover. 

 

I investigated the distribution of positive vegetation change in terms of 

annual maximum NDVI in 2000. I found that the majority of the positive vegetation 

change occurred in the area that had a maximum NDVI ranging from 0.2–0.4 in 

2000, and the pixels with NDVI values lower than 0.6 in 2000 accounted for 75.1% 

of the area with positive change. The distribution of positive vegetation change 
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indicated that the majority of the positive vegetation change occurred in the region 

with relatively low vegetation cover at the beginning of the study period. 

2.4.2 Impact of weather change on vegetation change in the Loess Plateau  

I found significant positive correlation between precipitation and lagged 

NDVI in 82.6% of the Loess Plateau and between NDVI and temperature in 95.2% 

of the Loess Plateau. Precipitation is the main factor constraining vegetation growth 

in the far north (mean annual precipitation: 300mm(He et al., 2006)) but not in the 

far south, which receives more precipitation (mean annual precipitation: 700mm(He 

et al., 2006)). The central area, with moderate precipitation, revealed significant 

correlation between NDVI and precipitation. Despite the positive correlation 

between weather and NDVI, the NDVI increases cannot be entirely explained by 

weather changes. Significantly increasing precipitation (p 0.1) was only found in 

the northeastern part and the far southwestern part of the Loess Plateau and 

accounted for just 22.2% of the total area of positive vegetation change (Figure 3). I 

found significant warming (p 0.1) in the southwest corner of the Loess Plateau but 

this warming coincides with positive vegetation change in just 3.8% of the pixels 

(Figure 2.3). Based on the error assessments using p-values, the NDVI increases that 

can be attributed to significant increases in precipitation and temperature were 19.8% 

to 22.2% and 3.4% to 3.8%, respectively.  
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Figure 2.3 Significant temperature and precipitation increases from 1999 to 2009 in 

the Loess Plateau. The significant temperature and precipitation increases were 

identified by applying seasonal Mann-Kendall trend test to monthly 500m 

temperature and precipitation time series interpolated from weather station based 

monthly observations. Blue pixels represent significant precipitation increases, 

which accounted for 16.8% of the Loess Plateau. Dark blue pixels indicate the 

coincidence of significant NDVI and precipitation increases, which accounted for 

10.7% and 22.2% of the entire Loess Plateau and positive vegetation change area, 

respectively. Brown pixels indicate significant temperature increases, which 

accounted for 4.7% of the Loess Plateau. Dark brown pixels indicate the coincidence 

of significant NDVI and precipitation increases, which accounted for 1.8% and 3.8% 

of the entire Loess Plateau and positive vegetation change area, respectively. 

 

 

2.4.3 Land cover change revealed by MODIS  

I compared the land cover classification quality between stable and random 

classification pixels derived from our three-year grouping strategy during 2003 to 
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2005 and 2006 to 2008. Results of the two-sample t test show that the mean land 

cover classification quality for stable pixels was significantly higher than that of 

random classification pixels during both periods of 2003-2005 (70.9 vs 61.7, p = 

0.01) and 2006-2008 (72.0 vs 63.1, p = 0.01). The higher land cover classification 

quality associated with the stable pixels suggests that the three-year average strategy 

was able to identify high quality classification results and thus can ensure reliable 

land cover change detection. 

A little more than 13% (3.97×10
4
km

2
) of the area with positive vegetation 

change in the MODIS time series reveals a change in terms of the three broad land 

cover categories of natural vegetation, cropland, and barren or sparsely vegetated 

area (Figure 2.4). Three types of land cover changes can be used to explain NDVI 

increases: from cropland or sparsely vegetated area to natural vegetation or from 

sparsely vegetated area to cropland. These three types of land cover changes 

accounted for 7.6% of the area with significant increases in NDVI. The land cover 

classification errors for these three types of land cover changes were 53% (from 

cropland to natural vegetation), 45% (from sparsely vegetated area to natural 

vegetation) and 50% (from sparsely vegetated area to cropland), respectively. Based 

on the probability of land cover change analysis errors, the percentage of NDVI 

increases that were attributable to land cover changes ranged from 3.6% to 7.6%. 
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Figure 2.4 Land cover change within the positive vegetation change region of the 

Loess Plateau between 2003-2005 and 2006-2008. The land cover change analysis 

was conducted among three broad land cover categories: natural vegetation, cropland 

and barren or sparsely vegetated area. Between 2003-2005 and 2006-2008, there was 

4.1% and 6.2% increase in natural vegetation and sparsely vegetated area within the 

positive vegetation change region, respectively. A 10.6% decrease in cropland area 

was also identified. 

 

The remainder of the area with positive vegetation change reveals no land 

cover change observable with 500m satellite data. We found that within the area with 

positive vegetation change based on the MODIS time series analysis, croplands are 

decreasing while natural vegetation and sparsely vegetated areas are increasing 

(Table 2.3). The area identified as random classification accounts for less than 3% of 

the total area with positive vegetation change. Therefore it is reasonable to assume 

that the random classification would not cause significant bias in the land cover 

change analysis.  
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Table 2.3 Land cover change shown by three-year-summarized MODIS land cover 

data.  

 Natural Vegetation 

(km
2
) 

Cropland 

(km
2
) 

Barren or Sparsely Vegetated 

(km
2
)  

2003-2005 2.09×10
5
 7.13×10

4
 6.40×10

3
 

2006-2008 2.17×10
5
 6.38×10

4
 6.80×10

3
 

Change (%) 4.13% -10.62% 6.22% 

The conversion between natural vegetation and cropland accounted for the 

majority of land cover changes detected by the MODIS land cover dataset. This 

conversion mainly occurred in central Shaanxi and northern Shanxi Province. 

Although there was a 6.2% increase in the area of barren land, increases in barren 

land only accounted for about 1% of the area showing land cover change. We found 

that the distribution of different types of land cover change were population 

dependent (Table 2.4). For example, the majority of pixels (58.6% = 1.7% + 49.3% + 

7.6%) identified as croplands which were converted to natural vegetation occurred in 

anthromes classified as residential anthromes while 37.2% (4.1% + 29.7% + 3.4%) 

of conversion of croplands to natural vegetation were found in anthromes with 

higher population density. In contrast, more unchanged croplands can be found in 

village anthromes (60.5%) compared to residential anthromes (37.1%). The 

conversion of barren or sparsely vegetated area to natural vegetation that occurred in 

village, residential and populated anthromes accounted for 11.7%, 47.1% and 41.2% 

of the total conversion, respectively.  
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  Table 2.4 Distribution of land cover changes in major anthromes within the area of positive vegetation change. 

Anthromes 

Land cover change according to MODIS 12 Land Cover data (%) 

2003 – 2005 compared to 2006 - 2008 

Population 

density 

(persons/km
2
) Cropland to 

natural 

vegetation 

Barren to 

natural 

vegetation 

Unchanged 

natural 

vegetation 

Unchanged 

croplands 

Unchanged 

barren 

area 

Irrigated villages 4.1 11.7 3.2 11.8 1.2 ≥100 

Rainfed villages 29.7 N/A 12.7 47.5 N/A ≥100 

Pastoral villages 3.4 N/A 4.9 1.2 N/A ≥100 

Residential irrigated 

croplands 

1.7 5.9 1.5 1.4 2.4 10-100 

Residential rainfed 

croplands 

49.3 5.9 28.5 31.3 N/A 10-100 

Residential rangelands 7.6 35.3 31.9 4.4 15.7 10-100 

Populated rangelands N/A 41.2 10.5 N/A 47.0 1-10 

Remote rangelands N/A N/A N/A N/A 27.7 0-1 

All 95.8 100 93.2 97.6 94  
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To summarize, anthromes with higher population densities revealed less 

cropland conversion than anthromes with lower population densities. The difference 

in the distribution of cropland conversion and unchanged cropland among anthromes 

can be explained by the concern for food security by policymakers of GTGP(Xu et 

al., 2006). Declining land productivity resulting from severe soil erosion in the Loess 

Plateau endangers food security in this region(Chen et al., 2007).The implementation 

of GTGP was predicted to result in a 10% to 14% loss in grain production with 

higher losses predicted for some provinces within the Loess Plateau (e.g. 14% to 

17% for Shaanxi Province)(Feng et al., 2005). In order to achieve the dual goal of 

vegetation conservation and minimizing grain production loss,  GTGP was designed 

to focus more on marginal croplands with low productivity in remote and 

mountainous regions hosting lower population density (e.g. croplands in residential 

anthromes)(Uchida et al., 2005; de Beurs et al., 2013; Kelly & Huo, 2013). By 

examining the characteristics of 3397 parcels of land in Shaanxi Province, Kelley 

and Huo (Kelly & Huo, 2013) reported that land parcels with steeper slope, lower 

yield and greater distance from farmers’ houses had a significantly higher probability 

of being enrolled in GTGP.  Xu et al.(Xu et al., 2006) reported that the yield of 

cropland plots which were transformed under GTGP was about 30% to 50% of the 

yield by non-GTGP cropland plots based on data acquired by a national survey of 

GTGP. The targeting strategies of GTGP reported by previous studies agree with 

what I found by examining the distribution of land cover changes over anthromes: 

GTGP left croplands with higher productivity in areas with higher population density 
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(e.g. croplands in village anthromes) unchanged to offset the decrease in grain 

production due to loss of croplands elsewhere. 

Conversion of sparsely vegetated areas occurred mainly in anthromes with 

higher population densities, e.g. residential and populated rangelands instead of 

remote rangelands. I suspect that since afforestation requires manual labor, a certain 

population density is necessary, and thus more re-vegetated barren lands were found 

in anthromes with higher population densities(de Beurs et al., 2013). 

2.4.4 Vegetation conversion Reported in Statistical Yearbooks 

I found that for 68.7% of the area with significant vegetation changes, we 

could not explain the changes directly by MODIS land cover changes or weather 

changes. In order to identify conservation activities that may be missing in the 

MODIS land cover change analysis, I examined the statistical yearbook data for 20 

counties located in northern Shaanxi Province and western Inner Mongolia Positive 

vegetation change within the 20 counties accounts for approximately 21% of the 

total positive vegetation changes within the Loess Plateau.   

I found that accumulated vegetation conservation activities, mean annual 

temperature and annual precipitation were significantly correlated with maximum 

annual NDVI (P < 0.05) within five, four and two of the 20 selected counties, 

respectively. The distribution of the partial correlation coefficients and p-values for 

the three independent variables are shown in Figure 2.5. 
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Figure 2.5 Partial correlation analysis results using vegetation conservation data 

acquired from regional statistical yearbook.  ‘Con:r’ and ’Con:p’ refer to the 

correlation coefficients and p values of the partial correlation between accumulated 

vegetation conservation and NDVI, with precipitation and temperature as control 

variables. ‘Precip:r’ and ’ Precip:p’ refer to the correlation coefficients and p values 

of the partial correlation between NDVI and precipitation, with conservation  and 

temperature as control variables. ‘Temp:r’ and ’ Temp:p’ represent the correlation 

coefficients and p values of the partial correlation between NDVI and temperature, 

with annual precipitation and accumulated conservation as control variables 

 

There was no significant weather change derived from the SMK trend 

analysis in 12 of the 20 selected counties. By employing the partial correlation 

analysis, however, I identified three counties (Yan’an, Yanchuan and Zhidan) where 

conservation activities, annual precipitation and mean annual temperature were all 

found to be significantly correlated with maximum annual NDVI (P < 0.05), when 

the other two variables were controlled. This demonstrated the importance of using 

multi-variable analysis in change attribution.  
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In the remaining eight counties where significant increases in precipitation 

was detected by SMK trend test, conservation activities were found to be 

significantly correlated with annual maximum NDVI (P < 0.05) in Shenmu and 

Zichang. In Zichang county, besides conservation activities, mean annual 

temperature was also identified to be significantly correlated with annual maximum 

NDVI. 

Conservation program related vegetation increases within the selected 

counties have been identified by using 30m Landsat images or field measured data 

acquired at very fine scale in previous studies. Zhou et al.(Zhou et al., 2012) 

investigated the effects of GTGP on land cover changes in Ansai county, Yan’an 

between 1995 and 2010 using multi-temporal Landsat TM/ETM+ images. They 

identified a 21.4% increase in newly forested area by 2010(Zhou et al., 2012). The 

increases in newly forested area were attributed to conversions of cropland and 

shrub-grassland to forests by GTGP(Zhou et al., 2012). Cao et al.(Cao et al., 2009) 

investigated the effects of afforestation, cropland conversion and grazing prohibition 

by GTGP on vegetation dynamics in five counties within the regions of Yan’an and 

Yulin by sampling vegetation changes in 150 0.5ha-sized plots. They reported a 

12.5% increase in the average vegetation cover of the five counties between 1998 

and 2005 due to GTGP. The unexplained positive NDVI increases in natural 

vegetation area of the 21 selected counties account for 19.9% of the total area with 

NDVI increases in the Loess Plateau. I suspect that the vegetation increases within 

the selected 21 counties were due to vegetation conservation activities that occurred 
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at scales finer than 500m, thus land cover changes resulting from these conservation 

activities were missed in the MODIS land cover change analysis.  

2.4.5 The effect of GTGP on areas with steep slopes and sparsely vegetated areas 

The goal of GTGP is to convert croplands on steep slopes to forest and 

grassland and afforest barren and sparsely vegetated areas. Steep slopes are defined 

as slopes greater or equal to 15° in northwestern China(Liu et al., 2008) where the 

major part of the Loess Plateau is located. The land cover change analyses based on 

MODIS have confirmed a decrease in the area of cropland and an increase in the area 

of natural vegetation over the study period (Table 3). I found that 41.6% (8977.50 

km
2
) of the area that changed from cropland to natural vegetation was located in 

areas with slopes steeper than 15°. The spatially averaged slope on which croplands 

were converted to natural vegetation is 14.3° (Table 2.5), which is significantly 

steeper than the average slope of unchanged croplands (10.9°)(P<0.01). This may 

indicate the possible effect of GTGP. The conversion from sparsely vegetated area to 

natural vegetation was mainly detected in the region of Ordos, which lies between 

the Hobq Desert and the Mu Us Desert. I speculate that the vegetation increases in 

this region were due to vegetation conservation activities by GTGP. 
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Table 2.5 Slope and elevation results 

Land cover change type Slope (°) STD
a
 Elevation (m) STD

b
 

Cropland to Natural Vegetation 14.3† 8.7 1348.4* 408.7 

Unchanged Cropland 10.9‡ 8.3 1101.1* 380.8 

Sparsely Vegetated to Natural 

Vegetation 

3.5* 3.9 1231.7* 189.2 

Unchanged Sparely Vegetated 3.6* 3.9 1202.2* 174.4 

a: standard deviation of spatially averaged slope. 

b: standard deviation of spatially averaged elevation. 

†,‡: The mean values were significantly different from each other (P<0.01). 

*: No significant differences were identified between the mean values. 

2.4.6 The effect of conservation programs on unchanged croplands 

The pixels identified as unchanged croplands that did not experience 

significant weather change but did reveal significant NDVI increases accounts for 

12.2% of the total area with vegetation increases. I found significant positive 

relationships between sown area weighted crop yield and annual accumulated NDVI 

for these areas. Thus, it appears that crop yields are increasing in unchanged 

croplands in the Loess Plateau. Due to limited availability of crop yield data, I have 

not obtained crop yield data covering all the unchanged croplands area.  

The results in figure 2.6 reveal a strong correlation between increased crop 

yields and increases in accumulated NDVI in seven of the selected nine counties (P 

< 0.05), when weather variables were controlled. Croplands with observed NDVI 

increases in the seven counties accounted for 2.1% of the positive vegetation change 
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area. I did not identify any county where annual precipitation or mean temperature 

were significantly correlated with accumulated NDVI.  

Figure 2.6 Partial correlation analysis using crop yield data acquired from regional 

statistical yearbook.  ‘Yield:r’ and ‘Yield:p’ refer to the correlation coefficients and p 

values of the partial correlation between sown area weighted crop yield and 

accumulated NDVI, with precipitation and temperature as control variables. 

‘Precip:r’ and ‘Precip:p’ refer to the correlation coefficients and p values of the 

partial correlation between NDVI and precipitation, with crop yield  and temperature 

as control variables. ‘Temp:r’ and ‘Temp:p’ represent the correlation coefficients and 

p values of the partial correlation between NDVI and temperature, with annual 

precipitation and sown area weighted crop yield as control variables 

 

As shown in tables 2.4 and 2.5, the spatially averaged slope in unchanged 

croplands was significantly lower than the slope of croplands converted to natural 

vegetation, and the majority of unchanged croplands (60.5%) are found in anthromes 

with high population densities (e.g. irrigated and rainfed villages). I suggest that 

these croplands were not participating in GTGP. They were more profitable and 
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located in areas with suitable topography. Positive vegetation change in these 

croplands may be caused by significant increases in crop yield due to intensified 

agricultural production to offset economic loss caused by GTGP. Increases in crop 

yield were achieved through intensified agricultural production on non-GTGP 

croplands by means such as utilizing improved seeds and increasing crop 

diversity(Xu et al., 2006). For example, Xu et al.(Xu et al., 2006) found increases in 

crop yield in Delong county of Ningxia Hui Autonomous Region located in the 

western Loess Plateau from about 2516 kg/ha to about 4312 kg/ha after GTGP was 

initiated in this county. I did not find any articles or other relevant data about the 

contribution of fertilizer and technology to the increased crop yield in this region. 

However, it seems reasonable to speculate that increased utilization of fertilizer and 

advances in agricultural production technology were also potential causes of crop 

yield increases. 

2.5 Conclusion 

Change attribution is one of the most challenging parts of any change 

analysis based on satellite data. The observed NDVI increases that I was able to 

explain accounted for about 34.7% to 37.5% of the total changes observed in the 

NDVI time series analysis. I was able to attribute about 23.2% to 26.0% of the 

changes to precipitation and temperature increases. I was able to attribute 3.6% to 

7.6% of the NDVI increases to large scale land cover changes caused by GTGP and 

NFCP programs. I also attributed 5.8% (1.7% + 1.8% + 2.3%) of the observed NDVI 

increases to the interacting effects of changes in weather variables and conservation 
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programs. Based on the available county level crop yield data, I was able to 

identified 2.1% the vegetation increase was a result of crop production 

intensifications in unchanged cropland areas (Table 2.6). 

 

  Table 2.6 Change attribution table. 

Total percentage of the Loess Plateau with positive 

vegetation change: 

48.2% 

Attribution:  

Significant increase in precipitation 19.8% - 22.2% 

Significant increase in temperature 3.4% - 3.8% 

Land cover change caused by GTGP or NFCP shown by 

MODIS 

3.6% - 7.6% 

GTGP and NFCP activities combined with changes in 

annual precipitation and mean annual temperature 

1.7% 

GTGP and NFCP activities combined with changes in mean 

annual temperature 

1.8% 

GTGP and NFCP activities combined with significant 

increase in precipitation 

2.3% 

Crop yield increases  2.1% 

Total percentage of vegetation change area explained: 34.7 - 37.5%* 

* Overlapping effects of different causes were removed  
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Chapter 3 IDENTIFICATION OF C3 and C4 GRASSLAND 

COVER TYPES IN SOUTHWEST OKLAHOMA USING 

RANDOM FOREST CLASSIFICATION 

Abstract 

The objective of this chapter is to demonstrate a new methodology to 

differentiate C3 and C4 grassland cover types both at present and in the recent past 

using the ‘Random Forest’ classification algorithm. A total of 18 predictor variables 

were employed by the ‘Random Forest’ classification algorithm to map the 

occurrence of C3 and C4 grassland cover types in southwest Oklahoma in 1988, 

2005, 2010 and 2013. The 18 predictor variables fell into three groups: spectral 

predictor variables derived from Landsat surface reflectance, topographic predictor 

variables derived from ASTER DEM, and soil edaphic variables extracted from the 

Oklahoma gSSURGO dataset. Training data for random forest classification in 2013 

were obtained by field survey and manual delineation on aerial photos or Landsat 

imageries based on field knowledge. Training data for land cover classifications in 

1988, 2005 and 2010 were acquired by identifying the ‘core areas’ obtained from the 

2013 random forest classifications using FRAGSTATS. The Random Forest 

classification algorithm generated highly accurate classification results for C3/C4 

cover discrimination in 2013 with an overall classification error of 0.8%. The idea of 

using patch ‘core areas’ obtained in present time to train classifier for historical land 

cover classification was proved to be effective with the overall classification error 

for 1988, 2005 and 2010 being 10.35%, 7.94% and 8.43%, respectively. Elevation, 
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soil pH and soil clay content were found to contribute more to C3/C4 cover 

discrimination than variables describing seasonal greenness development did in 

Southwest Oklahoma. 
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3.1 Introduction  

Plant photosynthesis is the process of converting light energy to chemical 

energy that can be stored in carbohydrate molecules. Carbohydrate generated in plant 

photosynthesis is synthesized from carbon dioxide and water. Plant species can be 

classified into three functional forms: C3, C4 and Cassulacean Acid Metabolism 

(CAM), based on how carbon dioxide is treated before or in the process of 

photosynthesis. Carbon dioxide is converted into a three-carbon compound by the C3 

photosynthetic pathway, which is the most typical way of carbon fixation and 

adopted by approximately 95% of the plant species on the Earth (Bianchi & Canuel, 

2011). C4 plants fix carbon by incorporating carbon dioxide into a four-carbon 

compound. CAM plants fix carbon dioxide during the night and store it in an acid 

before carbon dioxide can be used in photosynthesis during daylight hours (Bianchi 

& Canuel, 2011).  C3 plants tend to occur in environments with moderate 

temperature and adequate water availability while  C4 and CAM plants are more 

adapted to high temperature and water stress conditions due to their better water use 

efficiency (Bianchi & Canuel, 2011; Wang et al., 2013).  

The relative abundance of C3 and C4 (C3/C4) species in grassland ecosystems 

is found to be an important indicator of natural or anthropogenic disturbances and an 

indispensable parameter in terms of modeling carbon cycling in grassland 

ecosystems at global scale (Goodin & Henebry, 1997; Winslow et al., 2003). For 

instance, elevated atmospheric CO2 is found to possibly result in a higher C3/C4 ratio 

due to the saturated productivity of C4 species at the current CO2 level (Wang et al., 
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2013). Increased temperature and fire frequency has the potential to lead to a lower 

C3/C4 ratio by favoring the growth of C4 species (Goodin & Henebry, 1997).  

The dynamics of C3/C4 ratio over time can facilitate the understanding of 

those processes that may affect the dynamics such as changes in disturbance regime 

(Hanberry et al., 2012). An effective way to examine the long term C3/C4 ratio 

dynamics is through remote sensing.  A commonly adopted method to discriminate 

C3 and C4 grassland cover types on remotely sensed images is to capture the seasonal 

greenness asynchrony exhibited by C3 and C4 grassland cover types during the 

growing season(Goodin & Henebry, 1997; Tieszen et al., 1997; Foody & Dash, 

2007; Wang et al., 2013). C3 species begin growth in early spring and reach peak 

growth in late spring. These species may become senescent or semi-dormant in the 

summer to avoid hot temperatures and water stress conditions. Some C3 species may 

resume growth in the fall (Wang et al., 2013). Growth of C4 species starts in late 

spring, reaches the peak during summer. Previous studies on detecting the seasonal 

greenness asynchrony primarily relied on examining the differences in the shapes of 

temporal trajectories of photosynthetic greenness using discriminant or clustering 

analyses (Goodin & Henebry, 1997; Tieszen et al., 1997; Foody & Dash, 2007).  In 

order to effectively detect differences in the greenness trajectory shape, temporally-

rich canopy greenness time series were indispensable in these studies. As a result, 

field canopy greenness measurements (Goodin & Henebry, 1997), observations 

acquired by Advanced Very High Resolution Radiometer(AVHRR) (Tieszen et al., 

1997), and Medium Resolution Imaging Spectrometer (MERIS) (Foody & Dash, 
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2007) were used in previous studies. C3 and C4 grassland cover types in the Great 

Plains tend to occur in a mixed composition manner (Wang et al., 2013). The 

utilization of C3/C4 ratio retrieved at the scale of AVHRR (1km) or MERIS (1200m) 

is ill-suitable to analyze the long term dynamics of C3/C4 ratio at fine scale due to the 

presence of mixed pixels. Observations acquired by the Landsat series of satellites, 

with a spatial resolution ranging from 30m to 60m in the visible to near infrared 

spectrum, are an ideal data source to examine long term C3/C4 ratio dynamics at fine 

scale. However, the revisit interval of the Landsat series of satellites is 16 days and 

can be longer if severe cloud contamination is present, which tends to result in a 

temporally sparse canopy greenness time series that often fails to meet the input 

requirements by discriminant or clustering analyses. Thus, there is a need for a 

methodology that will enable the analysis of long term C3/C4 ratio dynamics using 

fine scale observations obtained from satellites such as Landsat. 

In order to compensate for the low temporal resolution of Landsat 

observations, in this chapter, I use a tree-based classification model and incorporate 

topographical and soil edaphic variables to aid in the discrimination of C3 and C4 

grassland cover types both in the present time and recent past. There are two 

advantages of employing a tree-based prediction model in this study: 1) tree-based 

classification models do not require a temporally rich canopy greenness time series; 

2) tree-based classification models are nonparametric and thus are valid even when 

predictor variables reveal different statistical distributions. A list of commonly 

encountered C3 and C4 species in the study area is shown in table 3.1. Descriptions of 
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the species characteristics were retrieved from the Oklahoma Vascular Plant 

Database at: http://www.oklahomaplantdatabase.org/ 

     Table 3.1 Commonly encountered C3 and C4 species in Southwest Oklahoma 

Species 

Plant 

Functional 

Form 

Duration Origin Growth habitat 

Aegilops cylindrica Host 

(Jointed goatgrass) 

C3 Annual Introduced Graminoid 

Andropogon gerardii Vitman 

(Big bluestem) 

C4 Perennial Native Graminoid 

Bouteloua curtipendula 

(Michx.) Torr. 

(Sideoats grama) 

C4 Perennial Native Graminoid 

Bouteloua dactyloides (Nutt.) 

J.T. Columbus. 

(Buffalograss) 

C4 Perennial Native Graminoid 

Bromus arvensis L. 

(Japanese brome) 

C3 Annual Introduced Graminoid 

Bromus secalinus L. 

(Rye brome) 

C3 Annual Introduced Graminoid 

Bromus tectorum L. 

(Downy brome) 

C3 Annual Introduced Graminoid 

Elymus virginicus L. 

(Virginia wildrye) 

C3 Annual Native Graminoid 

Hordeum pusillum Nutt. 

(Little barley) 

C3 Annual Native Graminoid 

Nassella leucotricha (Trin. & 

Rupr.) Pohl 

(Texas needlegrass) 

C3 Annual Native Graminoid 

Schizachyrium scoparium 

(Michx.) Nash 

(Little bluestem) 

C4 Perennial Native Graminoid 

Sporobolus compositus (Poir.) 

Merr. 

(Tall Dropseed) 

C4 Perennial Native Graminoid 

http://www.oklahomaplantdatabase.org/
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3.2 Study area 

In this chapter, I focused on the area covered by the Landsat scene of path 28 

and row 36 in southwest Oklahoma (Figure 3.1). The dominant geomorphic province 

in the study area is red-bed plains, which is characterized by flat plains and gently 

rolling hills formed by Permian red shales and sandstones (Curtis et al., 2008). Other 

geomorphic provinces such as sandstone and limestone hills, granite mountains and 

sand-dune belts are embedded within the landscape (Curtis et al., 2008). Annual 

precipitation in the study area is primarily received in spring and autumn months and 

features a decreasing gradient from east to west (Johnson, 2008). Mean annual 

precipitation varies from approximately 1000mm in the east to about 800mm in the 

west (Johnson, 2008). Major types of potential natural vegetation in the study area 

are post oak-blackjack forest, mixedgrass and tallgrass prairie (Duck & Fletcher, 

1945; Hoagland, 2008). Mean annual temperature decreases from 17°C in the south 

to about 15°C in the north (Johnson, 2008). Mixedgrass prairie mainly occurs in the 

western portion of the study area as influenced by the decreasing average annual 

precipitation from east to west. Much of the mixedgrass prairie has been converted to 

cultivated crops of wheat and cotton as shown by the 2006 National Land Cover 

Database in figure 3.1(Hoagland, 2008; Xian et al., 2009).  
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Figure 3.1 An overview of land cover types in the study area. Land cover types 

shown in the map are based on the 2006 National Land Cover Database. 

 

3.3 Data 

3.3.1 National Land Cover Database 

In this study, the classification was only conducted in areas with the land 

cover of shrublands, grasslands or pasture/hay fields according to land cover types 

identified by the National Land Cover Database (NLCD). The NLCD datasets were 

generated across the conterminous United States with a spatial resolution of 30m 

based on Landsat Thematic Mapper (TM) or Landsat Enhanced Thematic Mapper 

Plus (ETM+) images. Shrublands, grasslands and pasture/hay fields are defined as 

follows within the National Land Cover Database(Xian et al., 2009):  
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 Shrublands: “Areas dominated by shrubs; less than 5 meters tall with shrub 

canopy typically greater than 20% of total vegetation. This class includes 

true shrubs, young trees in an early successional stage or trees stunted from 

environmental conditions.” 

 Grasslands: “Areas dominated by gramanoid or herbaceous vegetation, 

generally greater than 80% of total vegetation. These areas are not subject to 

intensive management such as tilling, but can be utilized for grazing.” 

 Pasture/Hay: “Areas of grasses, legumes, or grass-legume mixtures planted 

for livestock grazing or the production of seed or hay crops, typically on a 

perennial cycle. Pasture/hay vegetation accounts for greater than 20% of 

total vegetation.” 

Land cover classes other than these classes were excluded from this analysis 

using a land cover mask derived from NLCD for each targeted year.  The 1992 

NLCD dataset was used to generate the land cover mask for 1988. The land cover 

mask derived from the 2006 NLCD dataset was applied to the targeted years of 2005, 

2010 and 2013. 

3.3.2 Landsat surface reflectance data 

Landsat surface reflectance data were acquired from two different sources. 

Surface reflectance for the new Landsat 8 Operational Land Imager (OLI) (30m) 

were retrieved by applying the atmospheric correction algorithm of Fast Line-of-

sight Atmospheric Analysis of Hypercubes (FLAASH) in ENVI to Landsat OLI 

images. Surface reflectance for Landsat Thematic Mapper (TM) (30m) and 
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Enhanced Thematic Mapper Plus (ETM+) (30m) were acquired from the Landsat 

Surface Reflectance Climate Data Records (CDRs), which are atmospherically 

corrected by the Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS)(Masek et al., 2006). The Landsat Surface Reflectance CDRs were 

downloaded from the USGS EarthExplorer at http://earthexplorer.usgs.gov/.  For 

each targeted year, Landsat images acquired during early spring, late spring and 

early summer were downloaded. This is to capture the phenological asynchronicity 

between croplands, and C3 and C4 grassland cover types. The actual images included 

in the analysis were carefully chosen to avoid images with high cloud cover. A 

complete list of acquisition dates and sensors for Landsat images included in the 

analysis is shown in table 3.2.  

                Table 3.2 A list of Landsat images used in Random Forest classifications 

Year Early spring Late spring Early summer 

1988 March 26
th

 / TM May 13
th

 / TM June 30
th

 / TM 

2005 March 17
th

 / ETM+ April 26
th

 / TM June 21
st
 / ETM+ 

2010 March 31
st
 / ETM+ May 2

nd
 / ETM+ June 19

th
 / ETM+ 

2013 March 7
th

 / ETM+ May 18
th

 / OLI June 27
th

 / ETM+ 

 

Two sets of spectral predictor variables were used in the detection algorithm 

for C3 and C4 cover types. Typically spectral reflectance data from different 

wavelengths reveal very high correlations. The principal component analysis is able 

to generate a new feature space, in which the correlations between different 

wavelengths are eliminated and the variance of the original data is partitioned along 

a number of mutually orthogonal axes (Richards & Jia, 2006).  The larger variance a 

http://earthexplorer.usgs.gov/
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principal component carries, the more it will contribute to increase the separability 

between different target classes (Richards & Jia, 2006). Thus, the principal 

component analysis can help to reduce noises in predictor variables. To reduce the 

correlation between the different bands and to reduce the number of predictors, the 

first set of spectral variables was generated by applying the principal component 

transformation to the surface reflectance acquired by the six multi-spectral bands of 

Landsat images. 

The first two principal components typically accounted for more than 90% of 

the total variance of the original six bands. Thus, I chose to only use these first two 

principal components for each date in the Random Forest classification.  

The second set of spectral predictor variables was used to capture the 

differences in the phenological development of different land cover classes from 

early spring to early summer. An effective way to track the phenological 

development of plant canopies is by examining the changes in photosynthetic 

greenness at canopy level. Spectral vegetation indices are commonly used tools to 

quantify the level of photosynthetic greenness of plant canopies (Tucker, 1979). Soil 

backgrounds were found to be a significant source of noise in measuring 

photosynthetic greenness of plant canopies using vegetation indices(Huete, 1988). 

Since the effects of soil backgrounds are more pronounced in grassland areas, I 

employed the Soil Adjusted Vegetation Index (SAVI) to quantify the photosynthetic 

greenness of grassland canopy. SAVI can be calculated as (NIR - RED)*(1 + L) / 

(NIR + RED + L), where NIR is the surface reflectance of the near infrared band 
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(760 – 900 nm), RED is the surface reflectance of the red band (630 – 690 nm) and L 

is a correction factor with a recommended value of 0.5(Huete, 1988).  In this study, 

four phenological metrics were calculated as follows: 

 dSAVI1: SAVIEarly spring - SAVILate spring 

 dSAVI2: SAVILate spring– SAVIEarly summer 

 dSAVI3: SAVIEarly spring - SAVIEarly summer 

 SAVIsum: The sum of SAVI over the three dates 

3.3.3 Digital elevation data 

A previous study, which was situated in the upland prairie of eastern 

Nebraska, investigated if grassland community patterns were significantly affected 

by topographical positions (Schacht et al., 2000). They found that aspect was a 

significant variable in terms of predicting the occurrence of C3 and C4 grassland 

cover types (Schacht et al., 2000). In this study, elevation, slope and aspect were 

used as topographical predictors in the classification.  

Elevation information were acquired from the global Digital Elevation Model 

(DEM) generated using observations by the Advanced Spaceborne Thermal 

Emission and Reflection Radiometer (ASTER) with a spatial resolution of 1 arc-

second (approximately 30m) (Tachikawa et al., 2011). The ASTER Global DEM is 

available as 1º by 1º tiles. A total of nine ASTER DEM tiles were downloaded for 

the study area. Downloaded ASTER DEM tiles were first mosaicked and re-

projected to the UTM projection to be matched with Landsat images. Slope and 

aspect were calculated based on the ASTER DEM in ENVI.   Slope was calculated 
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as percent grade in ENVI with the formula of 100 × Rise / Run.  Aspect was 

calculated as the clockwise increase of angle from the north. 

3.3.4 Soil edaphic quality data 

Previous studies on the impacts imposed by soil edaphic factors on cool 

season grass seed germinations and herbicide efficacy show that soil properties such 

as soil texture and soil organic matter content can affect the growth of C3 species 

significantly (Wicks et al., 1971; Blackshaw et al., 1994).  For example, given 

adequate moisture, seed germination rates were found to be higher in coarse-textured 

soils than that in fine-textured soils (Wicks et al., 1971). The efficacy of herbicides 

used to control the growth of C3 species was found to be negatively correlated with 

soil organic matter content (Blackshaw et al., 1994). 

To improve the detection of the occurrence of C3 and C4 grassland cover 

types, soil edaphic variables were extracted from the Gridded Soil Survey 

Geographic (gSSURGO) Database for Oklahoma (Soil Survey Staff, 2012) and the 

National Value Added Look Up (valu1) Table database (Soil Survey Staff, 2012). 

The gSSURGO dataset is derived from the standard Soil Survey Database created by 

United States Department of Agriculture, Natural Resources Conservation Service. 

The Oklahoma gSSURGO dataset is available as a mosaicked ESRI GRID file 

covering the entire state of Oklahoma with a spatial resolution of 10m. I used a total 

of five soil edaphic variables as predictor variables: total sand, total clay, total silt, 

soil organic matter content and soil pH. The soil edaphic predictor variables were 

extracted based on the relationship between the gSSURGO dataset and the National 
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Value Added Look Up Table database. Two steps were taken to extract soil edaphic 

predictor variables. First, for a soil edaphic predictor variable m in a soil map unit 

with the ID of k in the National Value Look Up Table database, the average value of 

m within k was obtained by averaging the value of m over all the sub-components 

within k. Second, I assigned the average value of variable m to the gSSURGO grid 

cells with the same map unit ID as that of k. I repeated the above two steps for the 

other soil predictor variables. 

3.4 Methods 

3.4.1 Training data collection 

Field surveys were carried out in May and June 2012 and from April to 

September in 2013 to collect geo-referenced occurrence data for C3 cover types. 

Occurrence data for C3 cover types were mainly made up of C3 species commonly 

seen in the study area such as: Downy/Japanese/Rye brome, Jointed goatgrass and 

Texas needle grass. Field sites visited during the 2012 and 2013 field surveys are 

shown in Figure 3.2. C3 cover type occurrence data were collected on both publicly 

accessible areas and private properties following different procedures. Within 

publicly accessible areas, C3 patches were delineated by walking along C3 patch 

edges with a Garmin eTrex Venture
®

 HC GPS unit, which has a positioning accuracy 

varying between 3 to 5 meters, depending on the availability of satellites. C3 cover 

occurrence data on private properties were collected in two steps: 1) Determine if C3 

cover type occupied a dominant canopy cover within the property by visual 

estimation from outside of the property. Record the coordinates of private properties 
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where C3 cover type occupied a dominant canopy cover using the Garmin eTrex 

Venture
®
 HC GPS unit. 2) Within the marked properties, delineate a pixel as covered 

by C3 cover type if the value of dSAVI2 for this pixel is greater than the median of 

the dSAVI2 values exhibited by the C3 patches collected in public accessible areas. A 

total of 1236 Landsat pixels were collected as training data for C3 cover type within 

public accessible and private properties.  
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         Figure 3.2 The field sites visited in 2012 and 2013 field surveys. 

 
Training data for C4 cover types were collected based on the computed 

phenological metrics. A Landsat pixel will be delineated as a C4 cover types if: 1) the 

pixel is classified as a land cover type of shrublands, grasslands or pasture/hay field 

by NLCD; 2) the pixel exhibited a negative dSAVI1 and dSAVI2. In other words, 

the pixel exhibited continuous increases in photosynthetic greenness from early 

spring to early summer. A total of 2050 Landsat pixels were delineated as covered by 

the C4 cover types. 

Although the NLCD land cover mask had been applied to exclude barren 

areas, forests and croplands, some areas with the land cover of winter wheat, rock 

outcrop and sparse vegetation cover were misclassified as areas with herbaceous 

cover. Training data for rock outcrop and sparsely vegetated area were collected by 



 

64 

manual delineation on aerial photographs acquired by the National Agriculture 

Imagery Program (NAIP) in May, 2010. The delineated area of rock outcrop and 

sparsely vegetated area equaled to 1368 Landsat pixels. Most of the remaining 

croplands in the study area were winter wheat fields. Based on the typical winter 

wheat production calendar in the study area, winter wheat is expected to experience a 

growth stage change from possibly the stage of jointing or first node of stem visible 

on the early spring image to the stage of maturation on the late spring image(Paulsen, 

1997). The growth stage transition corresponds to a positive dSAVI1, which 

indicates a decrease in photosynthetic greenness from early spring to late spring. In 

this study, a Landsat pixel was delineated as a cropland pixel with winter wheat 

cover if: the pixel exhibited a positive dSAVI1 and the pixel was on the edge of a 

cropland patch identified by the NLCD dataset. A total of 1733 Landsat pixels was 

collected as training pixels for croplands. 

3.4.2 Random Forest Classification 

I used the Random Forest classification algorithm implemented in the 

‘randomForest’ package in R (Liaw & Wiener, 2002) to discriminate C3 and C4 

grassland cover types at both present time and in the recent past. A total of 18 

predictor variables were generated for each targeted year (Table 3.3). The predictor 

variables fell into three groups: spectral predictor variables derived from Landsat 

surface reflectance, topographic predictor variables derived from ASTER DEM, and 

soil edaphic variables extracted from the Oklahoma gSSURGO dataset. The targeted 
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land cover classes are C3 cover type, C4 cover type, croplands and rock outcrops and 

sparsely vegetated area (RSV). 

  Table 3.3 A list of predictor variables used in Random Forest classifications 

 Variable name Unit 
 Spatial 

resolution 

Spectral 

variables 

The first two principal 

components of the early 

spring Landsat image 

N/A 

 

30m 

 

The first two principal 

components of the late 

spring Landsat image 

N/A 

 

30m 

 

The first two principal 

components of the early 

summer Landsat image 

N/A 

 

30m 

 dSAVI1 N/A  30m 

 dSAVI2 N/A  30m 

  dSAVI3 N/A  30m 

 SAVIsum N/A  30m 

     

Topographical 

variables 
Elevation Meter 

 
~30m 

 Slope Percentage  ~30m 

 Aspect Degree  ~30m 

     

Soil edaphic 

properties 
Total sand Percentage 

 
10m 

 Total silt Percentage  10m 

 Total clay Percentage  10m 

 Organic matter Percentage  10m 

 pH N/A  10m 
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Bias and variance represent the two most important error sources of a 

predictive model. Tree-based classification models are low-bias but high-variance 

procedures (Hastie et al., 2009). Bootstrap aggregation or Bagging is an ensemble 

learning approach, developed to reduce the variance in statistical classification or 

regression by averaging the outputs from an ensemble of classification or regression 

models(Breiman, 1996). The bagging of classification trees can be implemented in 

three steps (Breiman, 1996; Liaw & Wiener, 2002; Hastie et al., 2009): 

 Create B bootstrap replicates of the original training data. (Suppose there are 

N cases in the original training data, a bootstrap replicate of the original 

training data can be created by sampling with replacements for N times from 

the training data. Only one case will be drawn from the original data each 

time. In other words, a bootstrap replicate is of the same size as the original 

data but the bootstrap replicate can have duplicate cases within it) 

 Construct a committee of B classification trees with each one grown as an 

unpruned classification tree from a bootstrap replicate. Each tree generated in 

this process is identically distributed. Each node split in any of the B 

classification trees is determined by selecting the best splitting variable 

among all the predictors associated with the training data. 

 Classify each new sample as a class that has the majority of votes from the 

tree committee grown in the previous step. 

Since each tree is identically distributed, the bias of the bagged tree 

committee equals to the bias of any individual tree within the committee (Hastie et 
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al., 2009). The variance of the bagged tree committee is, however, significantly 

reduced by averaging the outputs from all the individual trees(Hastie et al., 2009).  

The idea of Random Forest (RF) classification is essentially the same as that 

of bagging. The only difference between RF classification and classifications 

generated by bagged classification trees is that: when making the tree node split, 

instead of making the split decision based on the best variable selected from all the 

available predictors, make the split based on the best variable selected from a 

random subset of the available predictors (Breiman, 2001; Liaw & Wiener, 2002).  

To effectively reduce the variance of the Random Forest classifier, 2000 

classifications were used in the Random Forest classification in each targeted year. 

The default values were used for all the other parameters of a Random Forest 

classifier.   

3.4.3 Random Forest classification accuracy assessment 

The Random Forest classification algorithm is designed in such a way that a 

multiple-fold cross validation can be conducted with the Random Forest Classifier 

being trained at the same time, and there is no need to run a separate validation 

(Breiman, 2001; Liaw & Wiener, 2002). Accuracy assessment for Random Forest 

classification can be obtained by examining the so called ‘Out-of-bag’ (OOB) 

predictions. OOB predictions are Random Forest predictions for OOB samples. 

Suppose there are a total of B classification trees grown from B bootstrap replicates 

of the training data in a ‘Random Forest’. On average, a sample S in the training 

dataset will not be present in approximately 36% of the B bootstrap replicates(Liaw 
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& Wiener, 2002). In other words, 36% of the B classification trees in the forest were 

grown independently from S.  The average prediction, made by this subset of 

classification trees, for S is called an OOB prediction. 

In this study, the training dataset is made up of four targeted land cover 

classes with Xi (i=C3, C4, Croplands, RSV) samples for each class. Take the class of 

C3 cover type as an example, the OOB error rate can be calculated as OOBC3 / XC3, 

where OOBC3 is the total number of times that a sample from the class of C3 was not 

correctly classified as C3 based on OOB predictions.  The ‘OOB estimate of error 

rate’ (i.e. the overall classification error for all the land cover classes) can be 

obtained by repeating the previous process for the remaining targeted land cover 

class and average the individual OOB error rate(Liaw & Wiener, 2002). Provided 

that enough classification trees had been grown, the ‘OOB estimate of error rate’ is 

an unbiased measurement of the overall classification accuracy(Breiman, 2001; Liaw 

& Wiener, 2002). 

3.4.4 Evaluation of predictor importance 

For any predictor variable (e.g. aspect, slope), its importance in Random 

Forest classification can be evaluated using an index named ‘Decrease in 

classification accuracy’ (Breiman, 2001; Liaw & Wiener, 2002). The importance 

index can be calculated as the decrease in the classification accuracy if the variable is 

removed from the classification. The larger the decrease, the more important the 

variable was in the classification. The importance index for each of the 18 predictor 

variables was calculated automatically by the R ‘randomForest’ package. 
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3.4.5 Discriminating C3 and C4 grassland cover types in the recent past 

Discriminating C3 and C4 grassland cover types in the recent past was based 

on the classification results obtained in 2013. The training dataset for historical 

image classification was created by identifying these land cover patches whose land 

cover types were of high probability to be stable over time. Two assumptions were 

made to identify stable land cover patches  

 The land cover types of patches with large sizes are of higher 

probability to be stable over time 

 The areas that are closer to the center of a land cover patch is of 

higher probability to be stable over time 

In this study, the stable area was referred to as the ‘core area’ of a patch 

generated in the 2013 Random Forest classification. Two steps were taken to identify 

core areas for each land cover type obtained from the 2013 classification: 

 First, statistics of patch size, patch radius of gyration and the patch centroids 

were obtained for each patch in each land cover class of the 2013 

classification using FRAGSTATS 4.2. FRAGSTATS is a software package 

for spatial pattern analysis on maps showing categorical or continuous 

phenomenon(McGarigal, 2013). A patch centroid is defined as the average 

location of all the cells in the patch. Patch radius of gyration is defined as the 

mean distance between the centroids of each cell in the patch and the patch 

centroid (McGarigal, 2013).  
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 Second, the cells whose centroids were within a distance that was less than or 

equal to the radius of gyration from the patch centroids were defined as the 

core area of a patch. The core area of a patch was delineated as a square area 

whose center is identical to the patch centroid and the length of a diagonal of 

the square area is two times as long as the radius of gyration of the patch 

(Figure 3.3). The core area was delineated as a rectangle instead of a circle 

because it is easier to implement automatic delineation of rectangular areas 

that of circular areas. 

Figure 3.3 An example of identification of patch core areas based on patch radius of 

gyrations 

 
For each land cover type classified in 2013, the core area in the patches with 

a patch size in the top one percentile of all the patches of the same land cover type 

were used to extract training data for 1988, 2005 and 2010. To examine if using the 
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core areas from smaller patches to extract training data will result in a higher 

classification error rate, using the year of 2010 as an example, I compared the 

classification error rates generated by the training data extracted from the top 1% and 

the top 20% of all the patches obtained in the 2013 classification. A schematic 

flowchart demonstrating the steps used to identify present and historical C3 and C4 

grassland cover types is shown in Figure 3.4 
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Figure 3.4 A flowchart demonstrating the steps took to discriminate C3 and C4 

grassland cover types in the recent past 
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3.5 Results 

3.5.1 Random Forest classification for the year of 2013 

Based on the training data collected for 2013, the OOB estimate of error rate 

for 2013 is 0.64%. The confusion matrix for 2013 Random Forest classification is 

shown in table 3.4. The trained Random Forest classifier was then applied to the 

entire study area and the classification result for 2013 is shown in figure 3.5. The 

classification results show that, in 2013, the occurrence of C3 cover type was mainly 

in the counties located in western portion of the study area such as: Caddo, 

Comanche, Kiowa and Tillman. In contrast, most of the C4 cover type occurrence 

was found in counties located in the eastern portion of the study area such as: Carter, 

Garvin, Jefferson and Stephens. Rock outcrop and sparsely vegetated area were 

mainly found in the Blue Canyon Wind Farm and the Wichita Mountains Wildlife 

Refuge in the northwestern corner of Comanche County. Most of the remaining 

croplands were found in the southern half of Comanche County, the east half of 

Tillman County and the west half of Cotton County. The remaining croplands were 

often found on the edge of fields that were identified as croplands by the NLCD 

dataset. The variable importance as indicated by the mean decrease in classification 

accuracy is shown in Figure 3.6. Removing dSAVI1, dSAVI2 and dSAVI3 from the 

Random Forest classification in 2013 resulted in the highest decreases in 

classification accuracy. Thus, the three phenological predictors are the three most 

important predictor variables. In contrast, the exclusion of the predictor variables 

such as the soil organic matter content, slope and aspect caused relatively low 
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decreases in classification accuracy, which means these three predictor variables 

were the three least important predictor variables in the 2013 Random Forest 

classification. 

Table 3.4 The confusion matrix for 2013 Random Forest classification 

 Random Forest Prediction 

Ground 

observations 

 C3 Croplands C4 RSV 

OOB 

estimate 

of error 

C3 1222 6 0 8 1.13% 

Croplands 1 2049 0 0 0.04% 

C4 0 0 1733 0 0.00% 

RSV 36 0 0 1332 2.63% 

Overall     0.80% 

 

Figure 3.5 Discrimination of C3 and C4 grassland cover types using Random Forest 

classification in 2013. 
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Figure 3.6 Evaluation of variable importance in 2013 Random Forest classification 

based on the mean decrease in classification accuracy. The larger the decrease in 

classification accuracy, the more important the variable will be in the classification. 

 

3.5.2 Discrimination of C3 and C4 cover types in 1988, 2005 and 2010. 

The ‘core areas’ extracted from the top 1% land cover patches obtained from 

the 2013 Random Forest classification are shown in Figure 3.7. The ‘core areas’ for 

the C3 cover type and the rock outcrop and sparsely vegetated area were mainly 

located in Comanche County, Kiowa County and Tillman county. The ‘core areas’ 

for the C4 cover type clustered in the southern Stephens County and across the 

Jefferson County. ‘Core areas’ for croplands spread across the southern Comanche 

County, the western Tillman County and the eastern Cotton County. 

0 0.05 0.1 0.15 0.2 0.25 0.3

dSAVI2

dSAVI1

dSAVI3

Elevation

Early_summer_PCA1

Early_spring_PCA2

Early_spring_PCA1

Late_spring_PCA2

Late_spring_PCA1

SAVI_sum

Early_summer_PCA2

Total.sand

pH

Total.clay

Total.silt

Organic.Matter

Slope

Aspect

The mean decrease in classification accuracy 



 

76 

Figure 3.7 The ‘core areas’ extracted from the top 1% of the patches obtained in 

2013 random forest classification for each targeted land cover type 

 
The confusion matrices for 1988, 2005 and 2010 Random Forest 

classifications, derived from the top 1% land cover patches of 2013 are shown in 

table 3.5, 3.6 and 3.7, respectively. The overall OOB error rate ranged from 7.94% in 

2005 to 10.35% in 1988. The C3 cover type had the highest OOB error rate in all the 

three years. The OOB error rate of the C3 cover type varied between 10.75% in 2005 

and 13.43% in 1988. Croplands had the lowest OOB error rate of 4.49% and 5.15% 

in 2005 and 2010, respectively. The rock outcrop/sparsely vegetated area had the 

lowest OOB error rate of 7.39% in 1988. 
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Table 3.5 The confusion matrix for 1988 Random Forest classification based on 

training data extracted from the top 1% land cover patches obtained in 2013 

 Random Forest Prediction 

Ground 

observations 

 C3 Croplands C4 RSV 

OOB 

estimate 

of error 

C3 7513 449 628 89 13.43% 

Croplands 393 5084 45 10 8.10% 

C4 801 83 7618 118 11.62% 

RSV 301 12 321 7950 7.39% 

Overall     10.35% 

 

Table 3.6 The confusion matrix for 2005 Random Forest classification based on 

training data extracted from the top 1% land cover patches obtained in 2013 

 Random Forest Prediction 

Ground 

observations 

 C3 Croplands C4 RSV 

OOB 

estimate 

of error 

C3 11820 437 847 139 10.75% 

Croplands 363 8099 22 5 4.59% 

C4 980 100 11782 160 9.52% 

RSV 355 19 346 12074 5.63% 

Overall     7.94% 

 

Table 3.7 The confusion matrix for 2010 Random Forest classification based on 

training data extracted from the top 1% land cover patches obtained in 2013 

 Random Forest Prediction 

Ground 

observations 

 C3 Croplands C4 RSV 

OOB 

estimate 

of error 

C3 9021 344 771 78 11.68% 

Croplands 280 6226 54 4 5.15% 

C4 830 74 8970 83 9.91% 

RSV 258 8 284 9099 5.70% 

Overall     8.43% 

 



 

78 

The confusion matrix for 2010 Random Forest classification, derived from 

the top 20% land cover patches of 2013 is shown in table 3.8. The overall OOB error 

rate was 25.24%. The C4 cover type had the highest OOB error rate of 35.61% with 

croplands having the lowest OOB error rate of 10.07%. 

Table 3.8 The confusion matrix for 2010 Random Forest classification based on 

training data extracted from the top 20% land cover patches obtained in 2013 

 Random Forest Prediction 

Ground 

observations 

 C3 Croplands C4 RSV 

OOB 

estimate 

of error 

C3 17148 1879 4337 1204 30.20% 

Croplands 1505 17873 432 64 10.07% 

C4 5144 935 15656 2581 35.61% 

RSV 2128 335 2797 18475 22.16% 

Overall     25.24% 

 

Random Forest classification results for 1988, 2005 and 2010 are shown in 

figure 3.8, 3.9 and 3.10, respectively. Random forest classifiers used in the land 

cover classifications of the three years were all trained based on the top 1% land 

cover patches of 2013. The spatial distribution of different land cover types in 1988, 

2005 and 2010 were generally similar to that in 2013. 

Results of the variable importance evaluations for 1988, 2005 and 2010 are 

shown in figure 3.11, 3.12 and 3.13, respectively. Aspect and slope were the least 

important predictor variables in Random Forest classifications in all the three years 

of 1988, 2005 and 2010. Elevation, soil pH and the total clay content were the three 

most important predictor variables in 1988 and 2005. Elevation, dSAVI3 and the 

total clay content were the three most important predictor variables in 2010. 
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Figure 3.8 Discrimination of C3 and C4 grassland cover types using Random Forest 

classification in 1988.  
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Figure 3.9 Discrimination of C3 and C4 grassland cover types using Random Forest 

classification in 2005.  
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Figure 3.10 Discrimination of C3 and C4 grassland cover types using Random Forest 

classification in 2010.  
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Figure 3.11 Evaluation of variable importance in 1988 Random Forest classification 

based on the mean decrease in classification accuracy. The larger the decrease in 

classification accuracy, the more important the variable will be in the classification. 
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Figure 3.12 Evaluation of variable importance in 2005 Random Forest classification 

based on the mean decrease in classification accuracy. The larger the decrease in 

classification accuracy, the more important the variable will be in the classification. 
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Figure 3.13 Evaluation of variable importance in 2010 Random Forest classification 

based on the mean decrease in classification accuracy. The larger the decrease in 

classification accuracy, the more important the variable will be in the classification. 
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3.6 Discussion 

3.6.1 The effects of training data selection on historical species occurrences 

mapping 

The availability of reliable ground truth data is crucial to map historical 

species occurrences. Historical aerial photography and land survey records were 

found to be reliable surrogates of ground truth data to map historical tree species 

occurrences (Hanberry et al., 2012; Kellner et al., 2012). The availability of fine 

scale ground truth data for grassland species, however, was sparse in my study area.  

Since there can be significant inter-annual variations in in the relative abundance of C3 

and C4 cover types due to changes in weather conditions each year (Wang et al., 2013), it 

is crucial to identify these areas which land cover types are stable over time and thus can 

be used as training data for historical grassland species mapping. 

In this study, the utilization of patch ‘core areas’ of 2013 as ground truth data 

for historical grassland species mapping was proven to be effective. The OOB error 

rate for the C3 cover type was the highest among the four land cover types in all the 

three targeted historical years.  Using the ‘core areas’ extracted from the top 1% 

patches with C3 cover type in 2013, as ground truth data, resulted in a maximum 

classification error of 13.43% (Table 3.5). Since an OOB error estimate is essentially 

the same as an error estimate that can be obtained by cross validation (Breiman, 

2001; Liaw & Wiener, 2002), a maximum error rate of 13.43% in 1988 indicated that 

at least 86.57% of the extracted ‘core areas’ in each land cover categories maintained 

the same land cover type between 1988 and 2013.  
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Comparing the OOB error estimates for 2010, obtained using ‘core areas’ 

extracted from patches with different sizes, in table 3.7 and table 3.8 can shed light 

on the effects of training data selection on historical grassland species mapping. 

There were significant increases in the OOB error estimates for all the land cover 

types in table 3.8 as compared to the OOB error estimates shown in table 3.7.  I 

believe that the increases in OOB error estimates as shown in table 3.8 were due to 

collecting training data patches whose land cover types were not stable over time. 

Since the OOB error estimates in table 3.8 were obtained by using the top 20% of the 

land cover patches in 2013, smaller patches were included as ground truth data in the 

estimating the OOB error. These smaller patches experienced land cover changes 

from 2010 to 2013 and resulted in the increases in OOB error estimates. 

3.6.2 Determine the most important predictor variable in the discrimination of C3 

and C4 grassland cover types in southwest Oklahoma 

There were dramatic changes in the ranks of predictor variable importance 

between 2013 and the three historical years. In 2013, the top three most important 

variables were all the predictors computed to capture the seasonal greenness 

asynchrony exhibited by different land cover types (Figure 3.6).  In contrast, for 

1988, 2005 and 2010, Elevation, pH and the total clay content were the predictor 

variables most frequently evaluated as the top three most important predictors. 

Elevation in the study area increases from about 63m in the southeast to about 700m 

in the northwest as shown in figure 3.14. The ‘core areas’ extracted for different land 

cover categories fell into almost three distinctive elevation zones with core areas for 
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rock outcrop/sparsely vegetated areas in the zone with the highest elevation, the 

‘core areas’ for C3 cover type and croplands being in the middle zone and the 

majority of ‘core areas’ for C4 cover type lying in the zone with the lowest elevation 

(Figure 3.7 and 3.14). The differences in elevation for the ‘core areas’ of different 

land cover categories may be more pronounced than the differences in seasonal 

greenness development, which made elevation the most important predictor variable 

in the Random Forest classifications for 1988, 2005 and 2010. Elevation being an 

important variable in predicting the occurrences of C3 and C4 cover types, as found in 

this study, is consistent with the results obtained by previous studies. C4 grassland 

cover types tend to occupy regions with low elevation and latitude across the globe 

(Bremond et al., 2012). The decreases in C4 species richness and biomass with 

increasing elevation and latitude were found to be caused by the decreases in 

temperature(Bremond et al., 2012).  
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Figure 3.14 The elevation gradient in the study area. Elevation in the study area 

increases from the southeast to the northwest. 

 

 
 

Unlike elevation, I did not find distinctive spatial gradients for soil pH and 

soil clay content in the study area. There were no previous studies documenting the 

effects of soil pH on the occurrences of C3 and C4 cover types. Soil pH being an 

important predictor in discriminating C3 and C4 cover types in the study area might 

just be a special case and thus might not be applicable to other regions.  

I found that soil clay content was an important variable in predicting C3/C4 

cover type occurrence. I suspect that this variables was important because its controls 

soil moistures. Soil texture and structure exert primary control on soil moisture 

properties such as plant available water (PAW). Increases in the amounts of clay 
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soils typically result in elevated PAW (O'Geen, 2012). In addition to temperature, 

PAW was found to be a secondary factor that controls the distribution of C3 and C4 

cover types (Lattanzi, 2010; Wang et al., 2013). In temperate grasslands, such as the 

study area, the C4 species were found to gain increases in dominance with increasing 

aridity due to their higher plant water use efficiency (Lattanzi, 2010).  

Elevation and soil clay content were not identified as significant variables in 

predicting C3/C4 cover type occurrence in 2013. I suspect that these variables were 

not identified as significant in the Random Forest classification as a result of the way 

that the training data were collected. In delineating training data for C3/C4 cover 

types for 2013, I only focused on the asynchronous canopy greenness development 

between these two cover types, which could result in collecting training data that are 

more separable by spectral properties instead of by elevation and soil clay content. In 

contrast, the training data for random forest classifications in 1988, 2005 and 2010 

were collected based on core areas extracted from very large C3/C4 patches obtained 

in 2013. These large C3/C4 patches were more evenly distributed across the study 

area, thus can reveal the inherent differences in the habitats of C3/C4 cover types. 

When using training data derived from these large patches, predictor variables that 

are able to represent these inherent differences such as elevation and soil clay content 

began to emerge. 

3.7 Conclusion 

In this study, the Random Forest classification algorithm was employed to 

discriminate the C3 grassland cover type from the C4 cover type both in the present 
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time and in the recent past. The Random Forest classification algorithm generated 

highly accurate classification results for C3/C4 cover discrimination in 2013 with an 

overall classification error of 0.8%. The idea of using patch ‘core areas’ obtained in 

present time to train classifier for historical land cover classification was proved to 

be effective with the overall classification error for 1988, 2005 and 2010 being 

10.35%, 7.94% and 8.43%, respectively. Elevation, soil pH and soil clay content 

were found to contribute more to C3/C4 cover discrimination than variables 

describing seasonal greenness development did in Southwest Oklahoma. 
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Chapter 4 LANDSCAPE DYNAMICS OF C3 AND C4 

GRASSLAND SPECIES BETWEEN 1981 AND 2010 IN 

SOUTHWEST OKLAHOMA 

Abstract 

In this chapter, I aimed to examine the effects of precipitation anomalies on 

the changes of relative abundance of C3 and C4 grassland species in southwest 

Oklahoma between 1981 and 2010. Precipitation anomalies were computed based on 

the 1981-2010 precipitation normal and monthly precipitation summaries observed at 

35 GHCN weather stations in the study area. Abundance of C3 and C4 in 1985, 1988, 

2005 and 2010 were obtained by training a Random Forest classifier with the ‘patch 

core areas’ identified by the 2013 Random Forest classification . I examined the 

changes of C3/C4 ratio over different land cover types, along an elevation gradient 

and across areas with different levels of soil clay content in southwest Oklahoma 

between three time periods: 1985-1988, 2005-2010 and 1985-2010. The 1992 and 

2006 NLCD datasets were employed to provide land cover masks to exclude areas 

with land cover other than shrublands, grasslands and pasture/hay from the analysis. 

The distributions of elevation and soil clay content in the study area were obtained 

from the ASTER DEM and the Oklahoma gSSURGO dataset, respectively. The 

difference between precipitation anomalies in the growing seasons of C3 and C4 

species fluctuated through the years. The time periods between 1983 and 1988 and 

between 2002 and 2009 were found to be relatively favorable for the growth of C3 

and C4 species, respectively. Significant decreases of C3/C4 ratio were identified in 
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pasture/hay fields due to the increases in C4 abundance, resulting from the decreases 

of sparsely vegetated area between 2005 and 2010. I suspect that the increases in C4 

abundance was a drought adaptation strategy adopted by local ranchers. Because C4 

species are more tolerant of drought conditions and these species can help to 

maintain stable forage/hay production when negative precipitation anomalies 

prevailed during the growing season of C3 species. 

  



 

93 

4.1 Introduction 

Grassland ecosystems occupy approximately 40% of the earth’s terrestrial 

area (McSherry & Ritchie, 2013) and about 70% of the world’s agricultural area is 

made up of permanent meadow and pasture (O'Mara, 2012). With such a widespread 

distribution, grasslands represent one of most important ecosystems on Earth in 

terms of its impacts on global food supply, carbon sequestration and maintaining 

biodiversity (Samson & Knopf, 1994; O'Mara, 2012). The primary effect that climate 

change and elevated CO2 were expected to exert on global grassland ecosystems was 

to change the relative abundance of C3 and C4 species (i.e., the C3/C4 ratio) (Winslow 

et al., 2003; Lattanzi, 2010). The primary control on the spatial stratification of C3/C4 

ratio at global scale was previously believed to be temperature (Ehleringer & 

Björkman, 1977; Cavagnaro, 1988; Cabido et al., 1997; Ehleringer et al., 1997).  For 

example, in the studies on the changes of distribution of C3 and C4 grassland species 

at different altitudes in central Argentina, balanced abundance of C3 and C4 grassland 

species was found at about 1500m and increases in C3 and C4 dominance were 

observed at above and below 1500m, respectively (Cavagnaro, 1988; Cabido et al., 

1997). In these studies, temperature was found to exert significantly higher control 

on the changes of distribution of C3 and C4 species along altitudinal gradients than 

precipitation (Cavagnaro, 1988; Cabido et al., 1997). In the prairie region of North 

America, C3 species were found to dominate the northern Great Plains with C4 

species occupying its southern counterpart (Ehleringer et al., 1997; Epstein et al., 

1997). The crossover latitude of C3 and C4 species in the Great Plains was found to 
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be between 43-45ºN (Epstein et al., 1997; Winslow et al., 2003). However, in a more 

recent study on the control of global distribution of relative C3 and C4 biomass, the 

differences in growing season moisture availability and plant water use efficiency 

were found to be the dominating factors instead of temperature (Winslow et al., 

2003). Intensive studies have been conducted to examine the climate control on 

changes of C3/C4 ratio across space, but few studies were devoted to understand how 

climate could affect the changes of C3/C4 ratio over time (Ricotta et al., 2003; Wang 

et al., 2013). In a study on the climate dependency of C3/C4 ratio at four sites within 

the Great Plains, C3 and C4 were derived from NDVI time series acquired by MODIS 

(Moderate Resolution Imaging Spectroradiometer) during 2000-2009. Seasonal 

changes in temperature and precipitation were found to exert significant control on 

changes of C3/C4 ratio at different times of a year (Wang et al., 2013). 

In this chapter, I aimed to detect how changes of C3/C4 ratio were affected by 

differences in seasonal precipitation anomalies in southwest Oklahoma between 

1981 and 2010. I hypothesized that the C3/C4 ratio would increase during a time 

period when moisture availability during the growing seasons of C3 species was 

higher than that of the growing seasons of C4 species during the targeted time period. 

Moisture availability in this study was measured by the difference between the 

observed growing season precipitation and the 30-year growing season precipitation 

normal. 
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4.2 Study area 

In this chapter, I focused on the area covered by the Landsat scene of path 28 

and row 36 in southwest Oklahoma (Figure 3.1). The dominant geomorphic province 

in the study area is red-bed plains, which is characterized by flat plains and gently 

rolling hills formed by Permian red shales and sandstones (Curtis et al., 2008). Other 

geomorphic provinces such as sandstone and limestone hills, granite mountains and 

sand-dune belts are embedded within the landscape (Curtis et al., 2008). Annual 

precipitation in the study area is primarily received in spring and autumn months and 

features a decreasing gradient from east to west (Johnson, 2008). Mean annual 

precipitation varies from approximately 1000mm in the east to about 800mm in the 

west (Johnson, 2008). Major types of potential natural vegetation in the study area 

are post oak-blackjack forest, mixedgrass and tallgrass prairie (Duck & Fletcher, 

1945; Hoagland, 2008). Mean annual temperature decreases from 17°C in the south 

to about 15°C in the north (Johnson, 2008). Mixedgrass prairie mainly occurs in the 

western portion of the study area as influenced by the decreasing average annual 

precipitation from east to west. Much of the mixedgrass prairie has been converted to 

cultivated crops of wheat and cotton as shown by the 2006 National Land Cover 

Database in figure 3.1 (Hoagland, 2008; Xian et al., 2009).  

A list of commonly encountered C3 and C4 species in the study area is shown 

in table 3.1. Descriptions of the species characteristics were retrieved from the 

Oklahoma Vascular Plant Database at: http://www.oklahomaplantdatabase.org/ 

http://www.oklahomaplantdatabase.org/
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4.3 Data 

4.3.1 1981-2010 Monthly precipitation normals and monthly precipitation 

summaries 

The 1981 to 2010 Monthly Precipitation Normals (MPN) for 35 Global 

Historical Climatology Network (GHCN) weather stations within the study area 

were downloaded from the NOAA National Climate Data Center at: 

http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-

datasets/climate-normals. Locations of the 35 weather stations are shown in Figure 

4.1. The GHCN collects precipitation data from approximately 7500 land surface 

stations all over the globe (Peterson et al., 1998). The 1981-2010 monthly 

precipitation normals are made up of two components: monthly rainfall normals and 

monthly snowfall normals. A number of quantities are available for each of the two 

components such as: average monthly totals, quartiles and frequencies of occurrence 

(Durre et al., 2013). 

  

http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals
http://www.ncdc.noaa.gov/data-access/land-based-station-data/land-based-datasets/climate-normals
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Figure 4.1 Locations of GHCN weather stations within the area covered by the 

Landsat scene Path 28 / Row 36 

 

Monthly rainfall and snowfall totals between 1981 and 2010 were 

downloaded for the same 35 GHCN weather stations from the NOAA National 

Climate Data Center at: http://www.ncdc.noaa.gov/ghcnm/.  

4.3.2 National Land Cover Database 

In this study, the dynamics of C3/C4 ratio were only analyzed within the area 

with the land cover of shrublands, grasslands or pasture/hay fields according to land 

cover types identified by the National Land Cover Database (NLCD). Land cover 

classes other than these classes were excluded from this analysis using a land cover 

mask derived from NLCD for each targeted year. The 1992 NLCD dataset was used 

to generate the land cover mask and used as a reference for targeted years before 

http://www.ncdc.noaa.gov/ghcnm/
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1992. The land cover mask derived from the 2006 NLCD dataset was applied to the 

targeted years after 2005. 

4.3.3 Digital elevation data 

In chapter three, elevation was identified as one of the most important 

variables in terms of predicting the occurrences of C3 and C4 grassland species.  In 

this study, elevation data were used to examine if there were significant changes of 

C3/C4 ratio along the altitudinal gradient within the study area. Elevation information 

were acquired from the global Digital Elevation Model (DEM) generated using 

observations by the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) with a spatial resolution of 1 arc-second (approximately 30m) 

(Tachikawa et al., 2011). The ASTER Global DEM is available as 1º by 1º tiles. A 

total of nine ASTER DEM tiles were downloaded for the study area. 

4.3.4 Soil clay content 

In chapter three, soil clay content was identified as one of the most important 

variables in terms of predicting the occurrences of C3 and C4 grassland species. Soil 

moisture available for plant to use is controlled by soil clay content. Increases in the 

amounts of clay soils typically result in elevated plant available water (O'Geen, 

2012). In temperate grasslands, such as the mixed-grass prairie of southwest 

Oklahoma, C4 species were found to gain increased dominance in areas with low soil 

clay content due to their higher plant water use efficiency (Lattanzi, 2010). In this 

chapter, the distribution of soil clay content within the study area was used as a 

reference to examine if there were significant changes of C3/C4 ratio in the areas with 
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different levels of soil clay content. Soil clay content was extracted using the 

Gridded Soil Survey Geographic (gSSURGO) Database for Oklahoma and the 

National Value Added Look Up (valu1) Table database (Soil Survey Staff, 2012). 

Two steps were taken to extract soil clay content. First, for a soil map unit with the 

ID of k in the National Value Look Up Table database, the average value of soil clay 

content within k was obtained by averaging the soil clay content over all the sub-

components within k. Second, I assigned the average soil clay content to the 

gSSURGO grid cells with the same map unit ID as that of k.  

4.3.5 Landsat surface reflectance data  

Landsat surface reflectance for Landsat Thematic Mapper (TM) (30m) and 

Enhanced Thematic Mapper Plus (ETM+) (30m) were acquired from the Landsat 

Surface Reflectance Climate Data Records (CDRs), which are atmospherically 

corrected by the Landsat Ecosystem Disturbance Adaptive Processing System 

(LEDAPS) (Masek et al., 2006). The Landsat Surface Reflectance CDRs were 

downloaded from the USGS EarthExplorer at http://earthexplorer.usgs.gov/.  For 

each targeted year, Landsat images acquired during early spring, late spring and 

early summer were downloaded.  In addition to the surface reflectance datasets listed 

in table 3.2, Landsat surface reflectance CDR for April 3
rd

, May 5
th

 and Aug 9
th

 of 

1985 were also used in this study. 

http://earthexplorer.usgs.gov/
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4.4 Methodology 

4.4.1 Conversion of snowfall to equivalent amount of liquid water  

A snow-to-liquid-equivalent ratio (SLR) of 10 has regularly been adopted by 

previous studies to convert the amount of snowfall to equivalent amount of liquid 

water (Roebber et al., 2003; Baxter et al., 2005). In this study, the 1981-2010 

monthly snowfall normals and monthly snowfall totals observed at the 35 GHCN 

stations were all divided by 11.6 to be converted to equivalent amount of liquid 

water. The SLR value of 11.6 is the long term average SLR reported for Norman, 

OK (Baxter et al., 2005).  

4.4.2 Identifying C3 or C4 favorable years based on normalized precipitation 

anomaly during C3 and C4 growing seasons. 

C3 and C4 species exhibit active growth during different times of a year. 

Germination of C3 annuals can start as early as the beginning of fall (Tyrl et al., 

2008). The active growth of C3 species begin growth in early spring and reach peak 

growth in late spring. C3 species may become senescent or semi-dormant in the 

summer to avoid hot temperatures and water stress conditions (Winslow et al., 

2003). Some C3 species may resume growth in the fall (Wang et al., 2013). Growth 

of C4 species starts in late spring, reaches the peak during summer. In this study, the 

growing season for C3 grassland species was defined as from September to May in 

the next year (Tyrl et al., 2008). For C4 grassland species, the growing season was 

defined as from March to August(Tyrl et al., 2008).  
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To determine which years were more favorable for the growing of C3 species 

and which were more favorable for the growth of C4 species, I investigated the 

precipitation data from 35 GHCN weather stations. For each of the 35 GHCN 

weather stations, monthly precipitation was computed as the sum of monthly rainfall 

and the equivalent amount of liquid water converted from monthly snowfall. The 

monthly precipitation normal was computed as the sum of the monthly rainfall 

normal and the monthly normal of liquid water converted from monthly snowfall 

normal. 

The normalized precipitation anomaly (NPA) during the growing season of 

C3/ C4 species at a particular GHCN weather station i (i = 1, 2, ..., 35) in a year 

between 1981 and 2010 was computed as: 

                
∑     ∑    

   
   

   
   

∑    
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where Pj is the monthly precipitation in month j and PNj is the precipitation 

normal for month j.  

For each year, the difference between the NPA for C3 and C4 species at 

station i: dNPAi (i = 1, 2, ..., 35) was computed by subtracting NPAi-C4 from NPAi-C3. 

The dNPA was then averaged over the 35 GHCN stations to derive the dNPA-k (k = 

1981, 1982, ..., 2010), which represents the average difference between the NPA for 

the growing seasons of C3 and C4 species in a particular year k. A positive dNPA-k 
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indicates that the moisture condition in year k was relatively favorable for the growth 

of C3 species and a negative dNPA-k was relatively favorable for C4 species growth. 

4.4.3 Retrieving historical grassland species abundance 

In this study, the historical abundance of C3 and C4 species was retrieved 

from the land cover classification results obtained in Chapter three. The abundance 

of C3 or C4 species was calculated by dividing the number of pixels classified as C3 

or C4 cover type by the number of pixels from all land cover types (i.e., C3 cover 

type, C4 cover type, Croplands and rock outcrop and sparsely vegetated area). The 

C3/C4 ratio was then calculated by dividing C3 abundance by the abundance of C4 

cover types. 

4.4.4 Characterizing the dynamics of C3/C4 ratio between 1981 and 2010 

To investigate if there were significant impacts exerted by the differences in 

seasonal moisture availability on C3/C4 ratio dynamics, changes in C3/C4 ratio were 

examined over two time periods: one with a continuously positive dNPA and the 

other one with a continuously negative dNPA. Changes in C3/C4 ratio were 

determined by comparing the C3/C4 ratio retrieved during the two years that were at 

the beginning and the end of a time period. To avoid a biased comparison of C3/C4 

ratio which could be caused by changes in vegetation phenology, the beginning and 

ending years were selected in a way that anniversary Landsat CRDs must be 

available at each of three dates as required by Random Forest classifications in these 

two years. The C3/C4 ratios between 1985 and 1988, and between 2005 and 2010 

were compared for the time periods with a continuously positive dNPA and a 
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continuously negative dNPA, respectively. A third comparison was made between 

C3/C4 ratios in 1985 and 2010 to examine the changes in C3/C4 ratio over the entire 

study period. 

For each of three time periods, changes in C3/C4 ratio were examined within 

different types of land cover (shrublands, grasslands and pasture/hay fields) and 

along the gradient of elevation and soil clay content.  The gradient of elevation and 

soil clay content were generated by classifying elevation/soil clay content into four 

groups with different ranges as: 

 Group 1: between the minimum and the first quartile; 

 Group2: between the first quartile and the median; 

 Group3: between the median and the third quartile; 

 Group4: between the third quartile and the maximum; 

The pixels with a value of NAN (i.e., no data), as a result of Landsat ETM+ 

scan line corrector failure, being covered by cloud or cloud shadow, or located 

within in the area of NLCD land cover masks, in any of the two years under 

comparison were excluded from the analysis. 

4.4.5 Homogeneity test using contingency table and Pearson's Chi-squared test 

To determine if the changes in C3/C4 ratio between two years were 

statistically significant, a contingency table and Pearson’s Chi-squared test were 

employed to examine if the abundance distribution among the four land cover types 

(i.e., C3 cover type, C4 cover type, Croplands and rock outcrop and sparsely 

vegetated area) was homogeneous between the two years. Changes in C3/C4 ratio 
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obtained from the two years with homogeneous abundance distribution among four 

land cover types can be viewed as random results, which are unreliable. The Chi-

squared test statistic (  ) can be derived by: 

 Filling in a contingency table with the abundance distribution of the 

four land cover types during the two years. An example contingency 

table is shown in Table 4.1.  

 Calculate the expected abundance of a land cover i in year j (Eij) as:  

                              
                                 

           
        (4.3) 

 For each cell in the contingency table, the departure of the observed 

abundance of land cover i in year j (Oij) from the expected abundance 

(Eij) can be computed as:   

                           
         

 

   
                (4.4) 

 The χ
2
 can be obtained by summing up the abundance departures in 

all the cells. 
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Table 4.1 An example of the contingency table used in this study. Px_ A and Px_ B 

are the abundance of land cover X in year A and B, respectively. 

Land cover Year A Year B Row Total 

C3 cover type Pc3_ A Pc3_B Pc3_ A +  Pc3_B 

C4 cover type Pc4_ A Pc4_ B Pc4_ A +  Pc4_B 

Croplands Pcrop_A Pcrop_B Pcrop_ A +  Pcrop_B 

RSV Prsv_A Prsv_B Prsv_ A +  Prsv_B 

Column Total 100 100 Grand total: 200 

Note: ‘RSV’ stands for Rock outcrop and Sparsely Vegetate area. 

In this study, χ
2
 obtained by a contingency table was then used to perform a 

Pearson’s Chi-squared test with three Degree-of-Freedom (df) in R. The number of 

Degree-of-Freedom was determined based on the number of rows and columns in a 

contingency table as: df = (Number-of-Rows -1) (Number-of-Columns -1). The Null 

hypothesis for the Chi-squared test was that the abundance distribution among the 

four land cover categories was homogenous between the two targeted years. The 

alternative hypothesis was that the abundance distributions of the two years were 

different from each other because there were significant changes in the abundance 

between the two years for at least one of the four land cover categories. 

4.5 Results 

4.5.1 The inter-annual variation of dNPA between 1981 and 2010 

The inter-annual variation of NPA in the growing season of C3 and C4 

species, and the annual dNPA between 1981 and 2010 is shown in Figure 4.2. The 

annual dNPA had been fluctuating through the years between 1981 and 2010, except 
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for the periods from 1983 to 1988 and from 2003 to 2009.  A dNPA of 0.66 occurred 

in 2001, which represented the highest dNPA between 1981 and 2010. The dNPA of 

-0.56 in 2007 was the lowest dNPA between 1981 and 2010. There were constantly 

positive dNPAs between 1983 and 1988 and almost continuously negative dNPAs 

were seen between 2002 and 2009.   

 



 

 

1
0
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Figure 4.2 Inter-annual variations of the difference between the normalized departure from precipitation normal (dNPA) during 

the C3 and C4 growing seasons from 1981 to 2010. A year with a positive dNPA is the year with a moisture condition that was 

relatively favorable for C3 species growth. The years with negative dNPAs were the time periods when moisture conditions were 

relatively favorable for C4 species growth.  
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4.5.2 Distribution of C3 and C4 grassland species between 1981 and 2010 

The distribution of C3 and C4 grassland species was retrieved for 1985, 1988, 

2005 and 2010 using the methodology demonstrated in Chapter three. The Random 

Forest classification results for 1988, 2005 and 2010 are shown in Figure 3.8, 3.9 and 

2.10. Distribution of C3 and C4 grassland species in 1985 is shown in Figure 4.3. The 

accuracy assessment of 1985 Random Forest classification based on OOB error 

estimate is shown in Table 4.2.  Distribution of C3 and C4 grassland species in 1985 

was similar to that of the other three years with C3 species mainly found in the west 

portion of the study area and C4 species occupying the east. 

Figure 4.3 Random Forest classification result for 1985. The classification result 

was obtained using the methodology demonstrated in chapter three 
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      Table 4.2 Accuracy assessment for Random Forest classification of 1985 

 Random Forest Prediction 

Ground 

observations 

 C3 Croplands C4 RSV 

OOB 

estimate 

of error 

C3 7625 486 543 94 12.83% 

Croplands 424 5134 40 7 8.40% 

C4 756 84 7794 81 10.57% 

RSV 298 12 311 8052 7.16% 

Overall     9.88% 

     Note: ‘RSV’ stands for Rock outcrop and Sparsely Vegetate area. 

4.5.3 Changes in C3/C4 ratio stratified by NLCD land cover 

        The changes in C3/C4 ratio in the areas with the land cover of shrublands, 

grasslands and pasture/hay are shown in table 4.3, 4.4 and 4.5, respectively. There 

was a decrease in C3/C4 ratio in all of the three targeted time periods. However, 

statistically significant decreases in C3/C4 ratio were only seen between 2005 and 

2010 and between 1985 and 2010 in the areas covered by pasture/hay fields (P < 

0.01) (Table 4.4 and Table 4.5). The significant decreases of C3/C4 ratio were all 

caused by the increases in C4 abundance (Table 4.4 and Table 4.5). 
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Table 4.3 A comparison of the abundance distribution among the four land cover 

categories between 1985 and 1988. The pixels with a NAN value in any of the two 

years were removed from the statistics.  

 

 Shrublands† 

Year C3 C4 Cropland RSV C3/ C4 

1985 44.18% 21.40% 4.24% 30.19% 2.06 

1988 43.27% 22.24% 3.97% 30.52% 1.95 

      

 Grasslands† 

Year C3 C4 Cropland RSV C3/ C4 

1985 33.29% 40.01% 5.43% 21.26% 0.83 

1988 33.09% 40.79% 5.50% 20.61% 0.81 

      

 Pasture/Hay
†
 

Year C3 C4 Cropland RSV C3/ C4 

1985 36.62% 28.19% 24.80% 10.38% 1.30 

1988 35.32% 28.17% 26.58% 9.94% 1.25 

†: The abundance distributions of the two targeted years were homogeneous with a P 

> 0.1.  

Note:  

1. ‘RSV’ stands for Rock outcrop and Sparsely Vegetate area. 

2.  The land cover types of shrublands, grasslands and pasture/hay were identified by 

the National Land Cover Database. The land cover types of C3, C4, cropland and 

Rock outcrop and Sparsely Vegetate area were obtained using the Random Forest 

classification algorithm.  
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Table 4.4 A comparison of the abundance distribution among the four land cover 

categories between 2005 and 2010. The pixels with a NAN value in any of the two 

years were removed from the statistics. 

 Shrublands† 

Year C3 C4 Cropland RSV C3/ C4 

2005 65.08% 6.01% 12.54% 16.37% 10.83 

2010 63.86% 8.32% 10.98% 16.84% 7.68 

      

 Grasslands† 

Year C3 C4 Cropland RSV C3/ C4 

2005 45.65% 34.88% 8.11% 11.36% 1.31 

2010 44.31% 39.27% 7.48% 8.94% 1.13 

      

 Pasture/Hay*** 

Year C3 C4 Cropland RSV C3/ C4 

2005 21.54% 54.44% 9.14% 14.88% 0.40 

2010 21.13% 70.14% 7.33% 1.39% 0.30 

 

†: The abundance distributions of the two targeted years were homogeneous with a P 

> 0.1.  

***: The abundance distributions of the two targeted years were heterogeneous. 

There was significant change in the abundance of at least one land cover category 

between the two targeted years with a P < 0.01.  

Note:  

1. ‘RSV’ stands for Rock outcrop and Sparsely Vegetate area. 

2.  The land cover types of shrublands, grasslands and pasture/hay were identified by 

the National Land Cover Database. The land cover types of C3, C4, cropland and 

Rock outcrop and Sparsely Vegetate area were obtained using the Random Forest 

classification algorithm.  
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Table 4.5 A comparison of the abundance distribution among the four land cover 

categories between 1985 and 2010. The pixels with a NAN value in any of the two 

years were removed from the statistics. 

 

 Shrublands† 

Year C3 C4 Cropland RSV C3/ C4 

1985 67.44% 3.86% 9.93% 18.77% 17.48 

2010 62.70% 8.46% 6.62% 22.21% 7.41 

      

 Grasslands† 

Year C3 C4 Cropland RSV C3/ C4 

1985 42.03% 35.42% 6.62% 15.93% 1.17 

2010 39.24% 44.94% 4.56% 11.27% 0.87 

      

 Pasture/Hay*** 

Year C3 C4 Cropland RSV C3/ C4 

1985 16.29% 57.51% 5.59% 20.61% 0.28 

2010 15.80% 78.98% 3.76% 1.46% 0.20 

†: The abundance distributions of the two targeted years were homogeneous, with a 

P > 0.1.  

***: The abundance distributions of the two targeted years were heterogeneous. 

There was significant change in the abundance of at least one land cover category 

between the two targeted years with a P < 0.01.  

Note:  

1. ‘RSV’ stands for Rock outcrop and Sparsely Vegetate area. 

2.  The land cover types of shrublands, grasslands and pasture/hay were identified by 

the National Land Cover Database. The land cover types of C3, C4, cropland and 

Rock outcrop and Sparsely Vegetate area were obtained using the Random Forest 

classification algorithm.  
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4.5.4 Changes in C3/C4 ratio along elevation gradient 

Distribution of the altitudinal gradient in southwest Oklahoma is shown in 

figure 4.4. Elevation in the study area increases from 63m in the southeast to 756m 

in the northwest. The changes in C3/C4 ratio along the altitudinal gradient in the 

study area are shown in table 4.6, 4.7 and 4.8, respectively. Significant changes in 

C3/C4 ratio were only found between 1985 and 2010 in the southeast portion of the 

study area, where elevation ranges from the minimum (63m) to the median (355m) 

(Table 4.8). Significant changes C3/C4 ratio in the low elevation area between 1985 

and 2010 were represented by decreases in C3/C4 ratio due to significant increases in 

C4 abundance. 

Figure 4.4 The Southeast-Northwest elevation gradient in southwest Oklahoma. 

Elevation increases from 63m in the southeast to 756m in the northwest.  
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Table 4.6 The changes in C3/C4 ratio along the elevation gradient between 1985 and 

1988 in southwest Oklahoma. The pixels with a NAN value in any of the two years 

were removed from the statistics. 

 

 Group1: 63m – 306m † 

Year C3 C4 Cropland RSV C3/ C4 

1985 2.78% 80.40% 4.33% 12.49% 0.03 

1988 2.83% 80.18% 5.05% 11.94% 0.04 

      

 Group2: 306m – 355m † 

Year C3 C4 Cropland RSV C3/ C4 

1985 32.02% 30.13% 17.29% 20.56% 1.06 

1988 30.74% 31.46% 17.37% 20.44% 0.98 

      

 Group3: 355m – 415m † 

Year C3 C4 Cropland RSV C3/ C4 

1985 55.06% 27.98% 7.09% 9.87% 1.97 

1988 54.44% 29.20% 7.29% 9.07% 1.86 

 

 Group4: 415m – 756m  † 

Year C3 C4 Cropland RSV C3/ C4 

1985 45.13% 7.12% 8.73% 39.02% 6.34 

1988 45.29% 6.65% 9.72% 38.34% 6.81 

†: The abundance distributions of the two targeted years were homogeneous, with a 

P > 0.1.  

Note: ‘RSV’ stands for Rock outcrop and Sparsely Vegetate area.  
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Table 4.7 The changes in C3/C4 ratio along the elevation gradient between 2005 and 

2010 in southwest Oklahoma. The pixels with a NAN value in any of the two years 

were removed from the statistics. 

 

 Group1: 63m – 306m † 

Year C3 C4 Cropland RSV C3/ C4 

2005 6.99% 77.55% 9.29% 6.17% 0.09 

2010 5.01% 85.87% 7.69% 1.43% 0.06 

      

 Group2: 306m – 355m † 

Year C3 C4 Cropland RSV C3/ C4 

2005 45.63% 31.30% 16.20% 6.87% 1.46 

2010 47.49% 34.42% 15.97% 2.12% 1.38 

      

 Group3: 355m – 415m † 

Year C3 C4 Cropland RSV C3/ C4 

2005 59.12% 31.99% 3.45% 5.44% 1.85 

2010 57.26% 36.57% 2.81% 3.36% 1.57 

 

 Group4: 415m – 756m † 

Year C3 C4 Cropland RSV C3/ C4 

2005 50.24% 12.25% 3.56% 33.96% 4.10 

2010 45.37% 16.13% 2.75% 35.75% 2.81 

†: The abundance distributions of the two targeted years were homogeneous, with a 

P > 0.1.  

Note: ‘RSV’ stands for Rock outcrop and Sparsely Vegetate area. 
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Table 4.8 The changes in C3/C4 ratio along the elevation gradient between 1985 and 

2010 in southwest Oklahoma. The pixels with a NAN value in any of the two years 

were removed from the statistics. 

 

 Group1: 63m – 306m ** 

Year C3 C4 Cropland RSV C3/ C4 

1985 5.39% 80.78% 5.04% 8.79% 0.07 

2010 3.13% 92.82% 3.10% 0.95% 0.04 

      

 Group2: 306m – 355m ** 

Year C3 C4 Cropland RSV C3/ C4 

1985 41.46% 30.18% 14.99% 13.37% 1.38 

2010 44.63% 41.70% 10.38% 3.29% 1.08 

      

 Group3: 355m – 415m † 

Year C3 C4 Cropland RSV C3/ C4 

1985 59.95% 29.89% 2.53% 7.64% 2.01 

2010 54.32% 39.88% 1.77% 4.03% 1.36 

 

 Group4: 415m – 756m † 

Year C3 C4 Cropland RSV C3/ C4 

1985 47.87% 9.52% 3.01% 39.59% 5.03 

2010 40.59% 13.85% 2.20% 43.36% 2.93 

†: The abundance distributions of the two targeted years were homogeneous, with a 

P > 0.1.  

**: The abundance distributions of the two targeted years were heterogeneous. There 

was significant change in the abundance of at least one land cover category between 

the two targeted years with a P < 0.05.  

Note: ‘RSV’ stands for Rock outcrop and Sparsely Vegetate area. 
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4.5.5 Changes in C3/C4 ratio stratified by soil clay content 

The distribution of soil clay content in southwest Oklahoma is shown in 

figure 4.5. Areas with low soil clay content were mainly found in Caddo, Grady and 

Stephens County while areas with high soil clay content concentrated in the 

southwest portion of the study area such as Kiowa, Tillman, Cotton and southwest 

Comanche County. Changes in C3/C4 ratio in the areas with varying soil clay content 

between 1985 and 1988, between 2005 and 2010 and between 1985 and 2010 are 

shown in table 4.9, 4.10 and 4.11, respectively. No significant changes in C3/C4 ratio 

were found in the areas with varying soil clay content during the three targeted time 

periods   

Figure 4.5 The spatial distribution of total soil clay content in southwest Oklahoma. 

Total soil clay content ranges from 0.50% to 50.00% in the study area. 
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Table 4.9 The changes in C3/C4 ratio between 1985 and 1988 stratified by the 

distribution of soil clay content in southwest Oklahoma. The pixels with a NAN 

value in any of the two years were removed from the statistics. 

 

 Group1: 0.50% - 17.17% † 

Year C3 C4 Cropland RSV C3/ C4 

1985 38.66% 41.43% 5.04% 14.87% 0.93 

1988 38.46% 41.39% 4.72% 15.43% 0.93 

      

 Group2: 17.17% - 23.75% † 

Year C3 C4 Cropland RSV C3/ C4 

1985 30.14% 34.74% 5.41% 29.70% 0.87 

1988 28.69% 38.22% 5.71% 27.37% 0.75 

      

 Group3: 23.75% - 32.00% † 

Year C3 C4 Cropland RSV C3/ C4 

1985 25.90% 49.49% 7.15% 17.46% 0.52 

1988 25.23% 49.66% 8.21% 16.90% 0.51 

 

 Group4: 32.00% - 50.00% † 

Year C3 C4 Cropland RSV C3/ C4 

1985 45.10% 15.65% 21.76% 17.49% 2.88 

1988 45.26% 14.86% 22.42% 17.46% 3.05 

†: The abundance distributions of the two targeted years were homogeneous, with a 

P > 0.1.  

Note: ‘RSV’ stands for Rock outcrop and Sparsely Vegetate area. 
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Table 4.10 The changes in C3/C4 ratio between 2005 and 2010 stratified by the 

distribution of soil clay content in southwest Oklahoma. The pixels with a NAN 

value in any of the two years were removed from the statistics. 

 

 Group1: 0.50% - 17.17% † 

Year C3 C4 Cropland RSV C3/ C4 

2005 46.86% 37.92% 2.62% 12.60% 1.24 

2010 43.25% 44.21% 2.36% 10.17% 0.98 

      

 Group2: 17.17% - 23.75% † 

Year C3 C4 Cropland RSV C3/ C4 

2005 42.41% 35.32% 5.43% 16.84% 1.20 

2010 40.51% 41.32% 4.77% 13.40% 0.98 

      

 Group3: 23.75% - 32.00% † 

Year C3 C4 Cropland RSV C3/ C4 

2005 36.61% 44.92% 9.01% 9.46% 0.81 

2010 37.46% 45.54% 8.59% 8.41% 0.82 

 

 Group4: 32.00% - 50.00% † 

Year C3 C4 Cropland RSV C3/ C4 

2005 58.71% 15.71% 17.19% 8.39% 3.74 

2010 58.16% 21.72% 15.57% 4.55% 2.68 

†: The abundance distributions of the two targeted years were homogeneous, with a 

P > 0.1.  

Note: ‘RSV’ stands for Rock outcrop and Sparsely Vegetate area. 
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Table 4.11 The changes in C3/C4 ratio between 1985 and 2010 stratified by the 

distribution of soil clay content in southwest Oklahoma. The pixels with a NAN 

value in any of the two years were removed from the statistics. 

 

 Group1: 0.50% - 17.17% † 

Year C3 C4 Cropland RSV C3/ C4 

1985 45.68% 39.62% 2.73% 11.98% 1.15 

2010 38.00% 49.89% 1.49% 10.62% 0.76 

      

 Group2: 17.17% - 23.75% † 

Year C3 C4 Cropland RSV C3/ C4 

1985 37.78% 33.14% 2.98% 26.10% 1.14 

2010 33.23% 46.81% 2.47% 17.49% 0.71 

      

 Group3: 23.75% - 32.00% † 

Year C3 C4 Cropland RSV C3/ C4 

1985 31.89% 46.91% 6.40% 14.80% 0.68 

2010 31.37% 52.52% 4.76% 11.35% 0.60 

 

 Group4: 32.00% - 50.00% † 

Year C3 C4 Cropland RSV C3/ C4 

1985 55.34% 15.17% 15.11% 14.38% 3.65 

2010 57.00% 25.69% 10.00% 7.31% 2.22 

†: The abundance distributions of the two targeted years were homogeneous, with a 

P > 0.1.  

Note: ‘RSV’ stands for Rock outcrop and Sparsely Vegetate area. 
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4.6 Discussion 

4.6.1 A comparison of the inter-annual variation of dNPA during 1983 – 1988 and 

2002-2009 

dNPA measures the difference between the moisture anomaly during the 

growing seasons of C3 and C4 species. dNPA maintained a relatively constant state 

during both 1983-1988 and 2002-2009. The constant states, however, were caused 

by quite different changes of precipitation anomaly during C3 and C4 growing 

seasons in the two targeted time periods. During 1983-1988, the NPA of C3 and C4 

growing seasons were highly synchronous. A positive or negative NPA in a C3 

growing season were always accompanied by a positive or negative NPA in a C4 

growing season, except for the year of 1986 (Figure 4.2). In other words, there were 

either above-normal or drought conditions in the growing seasons of both C3 and C4 

species. The occurrence of continuously positive dNPAs was only due to a more 

above-normal moisture condition or a less intense drought condition in C3 growing 

seasons. In contrast, there were asynchronous changes of NPA between C3 and C4 

growing seasons during four of the eight years from 2002 to 2009 (i.e., 2004, 2007, 

2008 and 2009) (Figure 4.2). The occurrences of negative dNPAs in these four years 

were caused by an above-normal moisture condition in C4 growing seasons being 

accompanied by a drought condition in C3 growing seasons.  

No significant changes of C3/C4 ratio between 1985 and 1988 were found, 

independent of the different land cover types, elevation gradients, soil clay contents. 
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I suspect this may be caused by the synchronous changes in NPA, which exerted 

similar impacts on the growth of C3 and C4 species. 

4.6.2 The relationship between the inter-annual variations of dNPA and land cover 

changes between 1981 and 2010 

By examining C3/C4 ratio changes in areas with different land cover types, 

statistically significant changes were only found in areas covered by pasture/hay 

during 2005-2010 and 1985-2010 (Table 4.4, 4.5). By examining C3/C4 ratio changes 

along the southeast-northwest elevation gradient, significant changes were only 

found in areas with an elevation below the median elevation in the study area 

between 1985 and 2010 (Table 4.8).  Significant C3/C4 ratio changes identified in 

this study were all related to the decrease of C3/C4 ratio, due to the significant 

increase of C4 abundance, during the targeted time period. By further examining the 

changes in abundance distribution among the four land cover categories, increases of 

C4 abundance can always be attributed to the substantial decreases of rock outcrop 

and sparsely vegetated area (Table 4.4, 4.5, 4.8). This is consistent with the land 

cover changes inferred from the Random Forest classification results for 1985, 1988, 

2005 and 2010 (Figure 4.3, 3.8, 3.9 and 3.10).  Substantial decreases of sparsely 

vegetated area did not occur until 2010. Sparsely vegetated areas that were 

constantly present in 1985, 1988 and 2005 in southern McClain County and western 

Garvin County were replaced by C4 cover type in 2010.  I suspect the replacement of 

sparsely vegetated areas by C4 cover type in pasture/hay areas between 2005 and 

2010 was a drought adaptation strategy adopted by local ranchers.  
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Based on the definition by the NLCD dataset, only pasture/hay fields would 

have been subject to intensive management practices among the three land cover 

types (i.e., Shrublands, Grasslands and Pasture/Hay) examined in this study. Based 

on the inter-annual variations of NPA shown in figure 4.2, beginning with 2002, 

NPA in C4 species growing seasons were constantly higher than that in the growing 

seasons of C3 species, except for 2005. The higher NPA in C4 species growing 

seasons were either related to drought conditions that were less intense than that in 

the growing seasons of C3 species (e.g., 2002, 2003 and 2006) or above-normal 

moisture availability conditions that were not present in C3 species growing seasons 

(e.g., 2004, 2007, 2008 and 2009).  

In Oklahoma, alfalfa and small grain hay crops such as wheat, rye and oat 

represent the most important C3 hays (Edwards et al., 2014). The changes of sown 

area and production of alfalfa and small grain hay in McClain County and Garvin 

County between 2007 and 2012 are shown in table 4.12. The sown area and hay 

production statistics were based on data published in the 2012 USDA Census of 

Agriculture (USDA, 2012). Except for the sown area of small grains in Garvin 

County, there were decreases in all the other available statistics for major C3 hay 

crops and some decreases were as high as 48% (e.g., the decrease in alfalfa 

production of Garvin County between 2007 and 2012). 
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Table 4.12 Changes in the sown area and production of alfalfa and small grains in 

Garvin and McClain County between 2007 and 2012. 

 

 Garvin County 

 Sown area (acres) Production (tons) 

 Alfalfa Small grains Alfalfa Small grains 

2007 17535 8618 68099 N/A 

2012 12951 9278 35311 16125 

 

 McClain County 

 Sown area (acres) Production (tons) 

 Alfalfa Small grains Alfalfa Small grains 

2007 10022 11069 34842 N/A 

2012 5745 8548 15361 12946 

Note: the statistics for the production of small grains in 2007 were not available.  

Since I was not able to find the data regarding the changes of C4 hay sown 

area and production between 2007 and 2012 in Garvin and McClain County, I 

speculated that the increases in C4 abundance in southern McClain County and 

western Garvin County might be a result of rancher’s preferences to use C4 species 

to maintain steady forage or hay production when dramatic decreases of C3 hays 

were encountered. The advantage of planting C4 species lies in that during drought 

prevalence, such as in the year of 2002, 2003 and 2006, C4 species could have a 

higher chance to survive because C4 species are more tolerant of drought conditions 

due to their higher water use efficiency (Lattanzi, 2010; Wang et al., 2013).  

Significant changes of C3/C4 ratio in low elevation areas can also be 

explained by the land cover changes in pasture/hay fields, because almost all the 

pasture/hay fields were located in the eastern portion of the study area, where 

elevation is the below the median.  
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4.7 Conclusion 

In this study, the effects of precipitation anomalies on the relative abundance 

of C3 and C4 grassland species were examined in southwest Oklahoma between 1981 

and 2010. The difference between precipitation anomalies in the growing seasons of 

C3 and C4 species fluctuated through the years between 1981 and 2010. The time 

periods between 1983 and 1988 and between 2002 and 2009 were found to be 

relatively favorable for the growth of C3 and C4 species, respectively. No significant 

changes of C3/C4 ratio were identified during 1983-1988, which was caused by the 

synchronous changes in NPA during the growing seasons of C3 and C4 species. 

Significant decreases of C3/C4 ratio were identified in pasture/hay fields due to the 

increases in C4 abundance resulting from the decreases of sparsely vegetated area 

between 2005 and 2010. I suspect that the increase in C4 abundance was a drought 

adaptation strategy adopted by ranchers. Because C4 species are more tolerant of 

drought conditions and thus can help to maintain stable forage/hay production when 

negative precipitation anomalies prevailed during the growing season of C3 species. 
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Chapter 5 CONCLUSION 

5.1 Summary of conclusions and suggestions for future researches 

Before this dissertation, there were no studies attempting to conduct an 

overall evaluation of the effects of large scale conservation programs on the 

vegetation dynamics of China’s Loess Plateau or to investigate the dynamics of the 

relative abundance of C3 and C4 grassland species at a spatial resolution of 30m. The 

multiple lines of evidence approach employed in chapter two was proven to be 

effective in terms of identifying the complex effects exerted by conservation 

programs on vegetation development of the Loess Plateau. On the one hand, 

vegetation conservation programs target marginal lands. Thus, significant vegetation 

increases due to cropland conversion and afforestation can be found in these regions. 

On the other hand, intensified agricultural production can be found in croplands with 

suitable topography and well-established irrigation systems which were not enrolled 

in conservation programs to offset the agricultural production loss caused by 

vegetation conservation programs elsewhere. In the study shown in chapter two, 

vegetation changes identified with remotely sensed data were only validated in an 

indirect manner with archived conservation statistic data. For future researches that 

have to deal with the validation of changes that might be caused by conservation 

activities across broad spatial areas, I would suggest the stratified validation by field 

surveys or based on aerial photos. 

In chapter three, the combination of ‘patch core areas’ with the Random 

Forest classification algorithm were proved to be of high accuracy to infer historical 
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grassland species in the past. The ‘patch core areas’ were also found to be able to 

help identify the important variables in terms of C3 and C4 grassland species, which 

were ignored in previous studies such as elevation and soil clay content.  

In chapter four, significant decreases of C3/C4 ratio were identified in 

pasture/hay fields due to the increases in C4 abundance, resulting from the decreases 

of sparsely vegetated area between 2005 and 2010. I suspect that the increase in C4 

abundance was a drought adaptation strategy adopted by local ranchers. Because C4 

species are more tolerant of drought conditions and these species can help to 

maintain stable forage/hay production when negative precipitation anomalies 

prevailed during the growing season of C3 species. It is very important to note, 

however, that the comparison of C3/C4 were ratios were made between C3/C4 ratios 

retrieved at two individual years. A biased comparison can occur if significant 

disturbance events happened in one or both of the two years such as fire or intense 

drought. To avoid a biased comparison of C3/C4 ratios retrieved from two time 

periods, it would be better if the C3/C4 ratio was obtained from a C3/C4 classification 

result that had been aggregated over several years within the targeted time period. 

The aggregated C3/C4 classification result can be generated in a way such as that a 

pixel will be labelled as being covered by C3 or C4 species only if the pixel was 

classified as C3 or C4 cover at multiple years within the targeted time period. The 

aggregated C3/C4 classification result will be able to effectively remove the noise due 

to random disturbance events such as fire or intense drought. 
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