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Abstract

In this dissertation, a fair amount of work is dedicated to computing the com-

plexity of modules over a classical Lie superalgebra g = g0̄⊕ g1̄ over the complex

numbers C. We will consider the category F of finite dimensional g-supermodules

which are completely reducible as g0̄-modules. Every module M ∈ F admits

a minimal projective resolution whose terms have dimensions which increase

at a polynomial rate of growth. This rate of growth is called the complexity

of M . In [2] the authors compute the complexity of the simple and the Kac

modules over the general linear Lie superalgebra gl(m|n) of type A. A natural

continuation to their work is computing the complexity of the same family of

modules over the ortho-symplectic Lie superalgebra osp(2|2n) of type C. The

two Lie superalgebras are both of Type I, thus the Kac modules in the two cases

are constructed by the same induction functor. This similarity will result in

similar computations. In fact, our geometric interpretation of the complexity

agrees with theirs. The complexity is not a categorical invariant. However,

we compute a categorical invariant called the z-complexity, introduced in [2],

and we interpret this invariant geometrically in terms of a specific detecting

subsuperalgebra. In addition, we compute the complexity and the z-complexity

of the simple modules over the Type II Lie superalgebras osp(3|2), D(2, 1;α),

G(3), and F (4).

ix



Chapter 1

Introduction

Let A be a finite group scheme and consider the category of rational modules for

A. It is well known that an A-module is projective if and only if it is injective.

Moreover, every rational A-module admits a minimal projective resolution which

has polynomial rate of growth. This rate of growth, called the complexity, was

first introduced by Alperin in 1977 (cf. [18]). Carlson [7] later introduced the

idea of the support variety of a module over group algebras whose dimension

coincides with the complexity of the module.

In this dissertation, we will be considering a classical Lie superalgebra g = g0̄⊕

g1̄ over the complex numbers C. By definition there exists a connected reductive

algebraic group G0̄ such that Lie(G0̄) = g0̄. The simple classical Lie superalgebras

were classified by Kac [15]. The authors in [4] used relative cohomology for

the pair (g, g0̄) to investigate the combinatorics and representation theory of

the category finite-dimensional representations of g. In fact, the cohomology

ring R = H•(g, g0̄;C) is finitely generated because G0̄ is reductive. In [4, 5] the

authors initiated a study of support varieties for F using relative cohomology

for the pair (g, g0̄). The construction of these support varieties provides a

homological framework which encapsulates the important combinatorial notions

of atypicality and defect as defined by Kac and Wakimoto.

We will be working with the category F := F(g,g0̄) of finite-dimensional g-

supermodules which are completely reducible over g0̄. The authors in [3] showed

that F has enough projectives and it satisfies: (i) it is a self-injective category
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and (ii) every module in this category admits a projective resolution which has

a polynomial rate of growth. For a module M ∈ F , the complexity cF(M) is

the rate of growth of the minimal projective resolution of M . It should be noted

that the support varieties (mentioned above) of a supermodule do not have their

dimension equal to the complexity of the supermodule. For example, for the

simple Lie superalgebra gl(1|1), the complexity of the trivial supermodule is

equal to 2, but the dimension of the (g, g0̄)-support variety is 1 (which is also

the atypicality).

This suggests that it is not sufficient to consider only these cohomological

varieties when studying the category F and leads us to introduce new tools in

the study of F . Recently Duflo and Serganova introduced associated varieties

for objects in F . These varieties detect projectivity (that is, are trivial for a

given supermodule if and only if the supermodule is projective). However, they

do not have a direct connection to the cohomology of the category F . For type

I Lie superalgebras, the authors in [3] introduced new cohomologically defined

varieties which are naturally subvarieties of the Duflo-Serganova associated

varieties. Using these newly defined subvarieties together with support varieties

we give a geometric interpretation of the complexity. This was first done in [2]

for the type A Lie superalgebra gl(m|n). This geometric interpretation of the

complexity will be shown to hold over the type C Lie superalgebra osp(2|2n),

the type B Lie superalgebra osp(3|2), and the three exceptional ones D(2, 1, α),

G(3), and F (4).

In chapter 2 we compute the complexity of the simple and the Kac modules

for the orthosymplectic Lie superalgebra osp(2|2n). Let K(λ) (resp. L(λ)) be

the Kac (resp. simple) module of highest weight λ. Let atyp(λ) denote the

atypicality of λ (see section 2.5). We will see that atyp(λ) is either zero or one.

For typical λ (i.e. atyp(λ) = 0), the simple and the Kac modules are projective
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and hence they have a zero complexity. For atypical λ (i.e. atyp(λ) = 1), the

complexity is computed in Theorems 3.5 and 3.13

cF(L(λ)) = 2n+ 1, cF(K(λ)) = 2n.

These computations can be interpreted geometrically as follows. For a module

M , let XM denotes the associated variety defined by Duflo and Serganova [9],

and V(g,g0̄)(M) the support variety as defined in [5]. Then, if X(λ) is a Kac or a

simple osp(2|2n)-module, we have the geometric interpretation of the complexity

in Theorem 3.23 :

cF(X(λ)) = dimXX(λ) + dimV(g,g0̄)(X(λ)). (1.1)

The authors in [2] introduced a categorical invariant called the z-complexity

of modules and denoted by zF(−) (see [2, Section 9]). They computed the

z-complexity of the simple and the Kac modules over gl(m|n) and then used

a detecting subsuperalgebra f to interpret their computations geometrically.

In chapter 2, we carry these computations over osp(2|2n) and conclude in

Theorem 3.34 that if X(λ) is a Kac or a simple module, we have

zF(X(λ)) = dimV(f,f0̄)(X(λ)). (1.2)

It is worth noting that our geometric interpretations of the complexity and the

z-complexity over osp(2|2n) agree with the results obtained in [2]. This was

expected since both types A and C are Type I Lie superalgebras (Section 2.5).

In particular, the Kac modules are defined similarly in the two cases and they

are finite-dimensional. It was interesting to know if these interpretations would

hold over Type II Lie superalgebras, hence we computed the complexity and the

3



z-complexity of the simple (finite-dimensional) modules over osp(3|2), and the

three exceptional Lie superalgebras D(2, 1;α), G(3), and F (4). In chapters three

through six, we show that equations (1.1) and (1.2) hold for the simple modules

over these Lie superalgebras. The results in this paper lead us to believe that a

more general result holds :

Conjecture 1.1. Let g = g0̄ ⊕ g1̄ be a basic classical Lie superalgebra over

the complex numbers and let F := F(g,g0̄) be the category of finite-dimensional

g-supermodules which are completely reducible over g0̄. If M ∈ F , then

(a) cF(M) = dimXM + dimV(g,g0̄)(M).

(b) zF(M) = dimVf(M).

Remark 1.2. Through out this dissertation, we will be working over the complex

numbers C.
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Chapter 2

Preliminaries

In this chapter I give a quick introduction to Lie superalgebras and their repres-

entations. I also introduce the notions of complexity, support varieties, associated

varieties, z-complexity, and detecting subsuperalgebras. Some examples will be

provided from the work in [2] over the Lie superalgebra gl(m|n). For more about

Lie superalgebras, I refer the reader to [15], [23], and [24].

2.1 Lie superalgebras

Definition 2.1. A superspace V is a Z2-graded vector space, i.e., a direct sum

of two vector spaces V = V0̄⊕V1̄. Elements of V0̄ (resp. V1̄) are called even (resp.

odd). Nonzero elements of V0̄ ∪ V1̄ are homogeneous and for a homogeneous

vector v, we write v̄ ∈ Z2 for the parity (or degree) of v.

We will be using the following important convention throughout this dis-

sertation: if v̄ appears in some formula or expression, then v is assumed to be

homogeneous.

Definition 2.2. A superalgebra is a Z2-graded algebra A = A0̄ ⊕ A1̄ which

satisfies ArAs ⊆ Ar+s for all r, s ∈ Z2. A Lie superalgebra is a Z2-graded vector

space g = g0̄ ⊕ g1̄ together with a bilinear map [ , ] : g× g→ g which preserves

the Z2-grading and satisfies graded versions of the usual Lie bracket axioms.

Explicitly, for all a, b, c ∈ g we have

(a) [gr, gs] ⊆ gr+s for r, s ∈ Z2 (preserves the Z2-grading),
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(b) [a, b] = −(−1)āb̄[b, a] (graded skew-symmetry),

(c) (−1)āc̄[a, [b, c]] + (−1)āb̄[b, [c, a]] + (−1)b̄c̄[c, [a, b]] = 0 (graded Jacobi iden-

tity).

Definition 2.3. A Lie superalgebra g is abelian if [g, g] = 0.

Definition 2.4. A Z2-graded subspace a of g is an ideal if [a, g] ⊆ a.

2.2 Simple Lie superalgebras

Definition 2.5. A Lie superalgebra g is simple if it is not abelian and the only

Z2-graded ideals of g are 0 and g.

The subspace g0̄ is a Lie algebra under the bracket and g1̄ is a g0̄-module. A

finite dimensional Lie superalgebra g is called classical if there is a connected

reductive algebraic group G0̄ such that Lie(G0̄) = g0̄, and an action of G0̄ on

g0̄ which differentiates to the adjoint action of g0̄ on g1̄.
1 In particular, if g

is classical, then g0̄ is a reductive Lie algebra and g1̄ is semisimple as a g0̄-

module. A basic classical Lie superalgebra is a classical Lie superalgebra with a

nondegenerate invariant supersymmetric even bilinear form. The simple (basic)

classical Lie superalgebras were classified by Kac [15]:

Theorem 2.6. Let g be a finite dimensional classical simple (basic) Lie super-

algebra. Then either g is a simple Lie algebra or g is isomorphic to one of the

following algebras:

A(m,n) = sl(m+ 1, n+ 1) with m > n ≥ 0,

1Unlike in Kac’s original definition [15], we do not require a classical Lie superalgebra to
be simple.
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A(n, n) = psl(n+ 1, n+ 1) with n ≥ 1,

B(m,n) = osp(2m+ 1, 2n) with m ≥ 0, n > 0,

C(n) = osp(2, 2(n− 1)) with n ≥ 2,

D(m,n) = osp(2m, 2n) with m ≥ 2, n ≥ 1,

D(2, 1;α) = Γ(1,−1− α, α) α 6= 0,−1,

p(n), n ≥ 2; q(n), n ≥ 2,

G(3), a simple algebra of dimension 31,

F (4), a simple algebra of dimension 40.

Among the Lie superalgebras listed above, we have the following isomorph-

isms:

A(1, 0) ∼= C(2) D(2, 1) ∼= D(2, 1, 1).

In addition, there are some isomorphisms between the various D(2, 1;α). There

are no further isomorphisms between the algebras listed in the theorem.

2.3 Roots

Let g be any finite dimensional Lie superalgebra such that g0̄ is reductive and g1̄

is a semisimple g0̄-module. Let h0̄ be a Cartan subalgebra of g0̄. For α ∈ h∗0̄, set

gα = {x ∈ g | [h, x] = α(h)x for all h ∈ h0̄},

and let

Φ = {α ∈ h∗0̄ |α 6= 0, gα 6= 0}
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be the set of roots of g. Since the action of h0̄ on any simple g0̄-modules is

diagonalizable, it follows that the adjoint action of h0̄ on g is diagonalizable.

Thus there is a root space decomposition

g = h⊕
⊕
α∈Φ

gα,

where h = g0 is the centralizer of h0̄ in g.

Suppose b is a subalgebra of g containing h. We say that b is a Borel

subalgebra of g if

1. b0̄ = b ∩ g is a Borel subalgebra of g0̄,

2. b = h⊕ n with n a nilpotent ideal of b,

and b is maximal with these properties. The root vectors that lie in b will be

called positive root vectors and their corresponding roots λ ∈ Φ will be called

the positive roots. The set of positive roots will be denoted by Φ+. The negative

roots are Φ− := Φ \ Φ+.

2.4 Supermodules

Definition 2.7. A g-supermodule M is a superspace together with an action

g×M →M such that gr.Ms ⊆Mr+s for r, s ∈ Z2.

If M and M ′ are two superspaces, then the space HomC(M,M ′) is naturally

Z2-graded by declaring f ∈ HomC(M,M ′)r (r ∈ Z2) if f(Ms) ⊆ M ′
r+s for all

s ∈ Z2.

Let U(g) be the universal enveloping superalgebra of g. Let us describe the

category of g-supermodules. The objects are all left U(g)-modules which are

Z2-graded; that is, superspaces M = M0̄ ⊕M1̄ satisfying U(g)rMs ⊆ Mr+s for
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all r, s ∈ Z2. If M is a g-supermodule, then N ⊆M is a subsupermodule if it is

a supermodule which inherits its grading from M in the sense that Mr ∩N = Nr

for r ∈ Z2. Given g-supermodules M and N one can define a g-supermodule

struture on the contragradient dual M∗ and the tensor product M ⊗N using

the antipode and coproduct of U(g). A morphism of U(g)-supermodules is an

element of HomC(M,M ′) satisfying f(xm) = (−1)f̄ x̄xf(m) for all m ∈M and

x ∈ U(g). In this definition, f and x are assumed to be homogeneous. The

general case can be obtained by linearity.

Let F := F(g,g0̄) be the category of finite-dimensional g-supermodules which

are completely reducible over g0̄. In the case g is one of the Lie superalgebras

osp(3|2), D(2, 1;α), G(3), and F (4), the even part g0̄ is semisimple, thus the

category F is the category of finite-dimensional g-supermodules. Note that we

allow all (not only graded) module homomorphisms, thus for a simple module

S, it can happen that dimC HomF(S, S) is either one or two. This category

decomposes into a direct sum of full subcategories called blocks Fχ, where Fχ

consists of all finite dimensional modules with generalized central character χ. A

block having more than one element is called an atypical block. The interested

reader can find more about central characters and blocks in [23, Section 8.2.4].

The category F has some properties that are of great importance to the

computations in this work. To state these properties, we will need to use a fair

amount of homological algebra. The interested reader can find the definitions

of projective and injective modules, minimal projective resolutions, extensions,

cohomology rings, etc. in any text on homological algebra.

Definition 2.8. A module P is projective if for any modules B, C with module

homomorphisms f : B � C and g : P → C, there is a module homomorphism

h : P → B such that f ◦ h = g.

9



Theorem 2.9. Projective modules satisfy the following properties:

� A module P is projective iff the functor Hom(P, ) is exact.

� A module P is projective iff it is a summand of a free module.

� The direct sum of projective modules is projective.

� Every summand of a projective module is projective.

We can also define injective modules that satisfy similar (dual) properties.

In our category F , injective modules will not be used since:

Proposition 2.10. [3, Prop. 2.2.2] F is self-injective; that is, a module M ∈ F

is projective if and only if it is injective.

Definition 2.11. A minimal projective resolution (in F) of a module M ∈ F

is an exact sequence:

· · · → Pd → · · · → P1 → P0 →M → 0,

such that each Pd is projective with minimal dimension. The module P0 is

called the projective cover of M since it is the minimal projective module that

surjects onto M .

Remark 2.12. In our consideration of projective resolutions, we always assume

the maps to be even.

Proposition 2.13. [3, Theorem 2.5.1] Every module in F admits a minimal

projective resolution whose terms have dimensions which increase at a polynomial

rate of growth.

10



2.5 Type I/II Lie superalgebras

A Lie superalgebra is said to be of Type I if it admits a Z-grading

g = g−1 ⊕ g0 ⊕ g1,

concentrated in degrees −1, 0, 1 with g0̄ = g0 and g1̄ = g−1 ⊕ g1 and if the

bracket respects this grading. Otherwise, g is of Type II. Examples of Type I

Lie superalgebras include: gl(m|n) and the simple Lie superalgebras of types

A(m,n), C(n) and p(n).

The simple modules for a Type I classical Lie superalgebra g can be con-

structed as follows. Let t0̄ be a Cartan subalgebra of g0̄ and X+
0 ⊆ t∗0̄ be the set

of dominant integral weights for g0̄ with respect to a fixed Borel subalgebra of

g0̄. For λ ∈ X+
0 , let L0̄(λ) be the simple finite dimensional module over the Lie

algebra g0̄ of highest weight λ. Set

p+ = g0̄ ⊕ g1 p− = g0̄ ⊕ g−1.

Since g is a Type I Lie superalgebra, g±1 is an abelian ideal of p±. We can then

view L0̄(λ) as a simple finite dimensional p±-module via inflation through the

canonical quotient p± � g0̄. For λ ∈ X+
0 , the Kac module K(λ) is defined by:

K(λ) := U(g)⊗U(p+) L0̄(λ).

The Kac module K(λ) has a unique maximal submodule. The head of K(λ)

is the simple finite dimensional g-module L(λ). The set {L(λ) | λ ∈ X+
0 } is a

complete set of non-isomorphic simple modules in F = F(g,g0̄). The projective

cover of L(λ) will be denoted by P (λ). These are all finite dimensional.
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Definition 2.14. Let ρ be half the sum of the positive even roots minus half the

sum of the positive odd roots. Define the atypicality of λ to be the maximal number

of pairwise orthogonal positive isotropic (odd) roots which are also orthogonal

to λ+ ρ with respect to the bilinear form on h∗. We will write atyp(λ) for the

atypicality of λ. Note that atyp(λ) ≤ def(g) for all λ. We say that λ is typical

if atyp(λ) = 0, otherwise λ is atypical. If L(λ) is a simple g-modules of highest

weight λ, then we define atyp(L(λ)) := atyp(λ).

If L(λ) is a simple g-modules of highest weight λ, then we define atyp(L(λ)) :=

atyp(λ). It is known that the atypicality of a simple module is independent of

the choice of Cartan and Borel subalgebras and, furthermore, is the same for all

simple modules in a given block. Hence it makes sense to refer to the atypicality

of a block. The principal block is the block containing the trivial module. It is

known that ([16, Theorem 1]) if atyp(λ) = 0, then P (λ) = L(λ) and hence L(λ)

is projective. If g is of Type I and atyp(λ) = 0, then P (λ) = L(λ) = K(λ).

Definition 2.15. Let g be a basic classical Lie superalgebra with a root system

Φ. Kac and Wakimoto [17, Section 2] define the defect of g, denoted by def(g),

to be the maximal atypicality.

The defects for the various simple basic Lie superalgebras are given as follows

[9, Section 4]:

def(sl(m|n)) = min(m,n), def(psl(n|n)) = min(n, n),

def(osp(2m|2n)) = def(osp(2m+ 1|2n)) = min(m,n),

and the exceptional Lie superalgebras D(2, 1;α), G(3), and F (4) all have defect

1.
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Example 2.16. The standard example of a Type I classical Lie superalgebra is

g = gl(m|n). The even component g0̄ is the span of the matrix units Ei,j where

1 ≤ i, j ≤ m or m + 1 ≤ i, j ≤ m + n. A basis for g1̄ is given by Ei,j where

1 ≤ i ≤ m and m+ 1 ≤ j ≤ m+ n or m+ 1 ≤ i ≤ m+ n and 1 ≤ j ≤ n. We

can choose the Cartan subalgebra h to be set of the diagonal matrices and the

Borel subalgebra b to be the set of all upper triangular matrices. The dual of

the Cartan h∗ has basis {εi : h → C | 1 ≤ i ≤ m + n} where εi is the linear

functional which picks out the ith diagonal entry. With respect to this basis we

define a bilinear form on h by

(εi, εj) =



δi,j, 1 ≤ i, j ≤ m;

−δi,j, m+ 1 ≤ i, j ≤ m+ n;

0, otherwise.

The set of roots for g is

Φ = {εi − εj | 1 ≤ i, j ≤ m+ n, i 6= j}

and the positive roots are

Φ+ = {εi − εj | 1 ≤ i < j ≤ m+ n}.

The even roots of g are:

Φ0̄ = {εi − εj | 1 ≤ i 6= j ≤ m or m+ 1 ≤ i 6= j ≤ m+ n},
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while the odd roots are Φ1̄ = Φ \ Φ0̄. Using this data, we can compute

ρ =
m− n− 2

2
ε1+

m− n− 4

2
ε2+. . .+

−m− n
2

εm+
m+ n

2
εm+1+. . .+

m− n+ 2

2
εm+n.

The set of dominant integral weights for gl(m|n) is given in [2, Subsection 2.4]

by

X+
0 =

λ =
m+n∑
i=1

λiεi |λi − λi+1 ∈ Z≥0 for i 6= m, m+ n

.
For a weight λ ∈ X+

0 , atyp(λ) = k is equivalent to having a set of k positive odd

pairwise orthogonal roots

{εit − εjt | t = 1, . . . , k},

such that (λ+ ρ, εit − εjt) = 0 for all t = 1, . . . , k where 1 ≤ i1, . . . , ik ≤ m and

m + 1 ≤ j1, . . . , jk ≤ m + n. Then the defect of g is min(m,n). We can then

define the core of λ as the pair of multisets

�
{(λ+ ρ, εr)}, {(λ+ ρ, εs)}

�
,

where r ∈ {1, . . . ,m} \ {i1, . . . , ik} and s ∈ {m + 1, . . . ,m + n} \ {j1, . . . , jk}.

From [12, Section 5] showed that two simple modules L(λ) and L(µ) lie in the

same block if and only if atyp(λ) = atyp(µ) and the core of λ equals the core of

µ.

The trivial module has weight λ = 0 whose atypicality is the same as def(g). If

we take m = n = 1, the simple modules in the principal block are one dimensional

and indexed by L(λε1 − λε2) where λ ∈ Z.
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2.6 Complexity

The authors in [3] showed that F has enough projectives, (i) it is a self-injective

category and (ii) every module in this category admits a projective resolution

which has a polynomial rate of growth. For a module M ∈ F , define the

complexity cF(M) to be the rate of growth of the minimal projective resolution

of M . More explicitly,

Definition 2.17. Let M be a g-module in the category F and P. � M be a

minimal projective resolution. The rate of growth of P., r(P.), is the smallest

nonnegative integer c such that there exists a constant C > 0 with dimPd ≤ Cdc−1

for all d. If no such integer exists, then P. is said to have infinite rate of growth.

Define the complexity of M to be cF(M) := r(P.).

Fortunately, the complexity of all modules in F is finite:

Theorem 2.18. [3, Theorem 2.5.1] Let M be an object of F . Then cF(M) ≤

dim g1̄.

This concept of complexity was first introduced by Alperin for finite modules

over groups [18] in 1977. One of the important features of the complexity is the

fact that it measures how far the module is from being projective:

Lemma 2.19. [3, Corollary 2.7.1] cF(M) = 0 if and only if M is projective.

Corollary 2.20. If λ is typical (i.e. atyp(λ) = 0), then cF(L(λ)) = 0. If g is

of Type I, then cF(K(λ)) = 0.

Example 2.21. Let g = gl(1|1). The simple modules in the principal block

have highest weights λε1 − λε2, λ ∈ Z. Boe, Nakano, and Kujawa showed in

[3] that cF(L(λε1 − λε2)) = 2 (λ ∈ Z). The projective cover P (λ| − λ) of
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L(λ| − λ) is four-dimensional with three radical layers. The head and socle of

P (λ| − λ) are both isomorphic to L(λ| − λ), and the second layer is isomorphic

to L(λ + 1| − λ − 1) ⊕ L(λ − 1| − λ + 1). For simplicity, let us choose λ = 0.

They constructed an explicit minimal projective resolution of the trivial module

L(0|0):

. . .→ P (2|−2)⊕P (0|0)⊕P (−2|2)→ P (1|−1)⊕P (−1|1)→ P (0|0)→ L(0|0)→ 0.

Therefore, dimPd = 4(d+ 1) and cF(L(0|0)) = 2.

More generally,

Theorem 2.22. [2, Theorem 8.2.1] Let L(λ) be a simple gl(m|n)-module of

atypicality k. Then

cF(L(λ)) = (m+ n)k − k2 + k.

Example 2.23. Let g = gl(1|1). Given the structure of the projective indecom-

posable modules given in the previous section, we can verify that the Kac module

K(0|0) admits a minimal projective resolution of the form

. . .→ P (2| − 2)→ P (1| − 1)→ P (0|0)→ K(0|0)→ 0.

Therefore, dimPd = 4 and cF(K(0|0)) = 1.

More generally,

Theorem 2.24. [2, Theorem 6.3.1] Let K(λ) be a Kac gl(m|n)-module of

atypicality k. Then

cF(K(λ)) = (m+ n)k − k2.

We write Ext•(g,g0̄)(M,N) for the relative cohomology for the pair (g, g0̄). For
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M,N ∈ F , we will use the isomorphism:

Ext•F(M,N) ∼= Ext•(g,g0̄)(M,N).

The following proposition provides a characterization of the complexity via rates

of growth of these extension groups:

Proposition 2.25. [3, Proposition 2.8.1] Let g be a classical Lie superalgebra,

and let M be an object in F . Then

cF(M) = r
�

Ext•(g,g0̄)(M,
⊕

SdimP (S))
�

where the sum is over all the simple modules in F , and P (S) is the projective

cover of S.

Proof. Let P.�M be a minimal projective resolution of M , then we have

ExtnF

�
M,

⊕
SdimP (S)

�
∼= HomF

�
Pn,

⊕
SdimP (S)

�
.

Let [Pn : P (S)] be the number of times the projective cover P (S) appears as a

summand of the projective module Pn. Then we have,

dimC ExtnF

�
M,

⊕
SdimP (S)

�
=
∑
S

dimC P (S) dimC HomF(Pn, S)

=
∑
S

dimC P (S) dimC HomF(S, S)[Pn : P (S)]

Then, by Schur’s Lemma in the super setting, we have

dimC Pn ≤ dimC ExtnF

�
M,

⊕
SdimP (S)

�
≤ 2 dimC Pn.
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This proves the result.

In the group case, the cohomology ring of G is finitely generated and we can

construct the support variety, VG(M), of a module M , with dimVG(M) = cG(M).

However, the relative cohomology H•(g, g0̄;C) for gl(1|1) has Krull dimension

one, and so is not large enough to use to construct a support variety theory

which measures the complexity. This geometric interpretation will be completed

by using both the cohomological variety and the associated variety of Duflo and

Serganova [9].

2.7 Support varieties

LetR = H•(g, g0̄;C) be the cohomology ring of g and letM1, M2 ∈ F . According

to [4, Theorem 2.7], Ext•F(M1,M2) is a finitely generated R-module. Set

J(g,g0̄)(M1,M2) := AnnR(Ext•F(M1,M2)).

The relative support variety of the pair (M1,M2) is defined by

V(g,g0̄)(M1,M2) := MaxSpec(R/J(g,g0̄)(M1,M2)).

In the case M = M1 = M2, set J(g,g0̄)(M) = J(g,g0̄)(M,M), and

V(g,g0̄)(M) := V(g,g0̄)(M,M).

The variety V(g,g0̄)(M) is called the support variety of M . Note that in this situ-

ation J(g,g0̄)(M) = AnnR(Id) where Id is the identity morphism in HomF(M,M).

Boe, Kujawa, and Nakano had computed the support varieties of modules over

certain families of Lie superalgebras. For example,
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Lemma 2.26. [5, Corollary 3.2] Let K(λ) be a Kac gl(m|n)-module. Then

V(g,g0̄)(K(λ)) = 0.

Lemma 2.27. [5, Theorem 4.7] Let L(λ) be a simple gl(m|n)-module of atypic-

ality k. Then V(g,g0̄)(L(λ) ∼= Ak. Hence dimV(g,g0̄)(L(λ)) = atyp(λ).

2.8 Rank varieties for Type I Lie superalgebras

Let g = g−1 ⊕ g0 ⊕ g1 be a Type I Lie superalgebra. Observe that g±1 is an

abelian Lie superalgebra and, consequently,

R± := H•(g±1, {0};C) ∼= S(g∗±1)

as graded algebras. Let F(g±1) be the category of finite dimensional g±1-modules.

Define the g±1 support variety of M ∈ F(g±1) by:

Vg±1(M) := V(g±1,0)(M).

From [5, Section 5], we have Vg±1(M) is canonically isomorphic to the

following rank variety:

Vrankg±1
(M) := {x ∈ g±1 | M is not projective as a U(〈x〉)-module} ∪ {0},

where U(〈x〉) denotes the enveloping algebra of the Lie superalgebra generated

by x ∈ g±1. As a consequence of this isomorphism, we can use the various

properties of a rank variety. For example, [5, Sections 5,6], it satisfies the tensor

product rule

Vrankg±1
(M ⊗N) = Vrankg±1

(M) ∩ Vrankg±1
(N).
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and detects projectivity:

Lemma 2.28. [3, Theorem 3.5.1(a)] Let M be a g-module in the category F .

Then M is projective if and only if Vrankg1
(M) = Vrankg−1

(M) = 0.

As a consequence, if λ ∈ X+
0 is typical, L(λ) and K(λ) are projective and

hence

Vrankg1
(L(λ)) = Vrankg1

(K(λ)) = 0.

2.9 Associated variety

Let

X = {x ∈ g1̄ | [x, x] = 0}.

Let G0̄ be an algebraic group with Lie algebra g0̄. Then X is invariant under

the adjoint action of G0̄. It was shown in [9] that for any x ∈ X , there exists

g ∈ G0̄ and isotropic mutually orthogonal linearly independent roots α1, . . . , αk

such that Adg(x) = x1 + . . .+ xk with xi ∈ gαi . The number k does not depend

on the choice of g and is called the rank of x (notation rk(x) = k). Let

Xk = {x ∈ X | rk(x) = k}.

If s is the defect of g, then X = X0 ∪ . . . ∪Xs is a stratification of X such that

Xk = X0 ∪ . . . ∪Xk.

If M ∈ F , then Duflo and Serganova [9] define an associated variety of M

which is equivalent to:

XM = {x ∈ X | M is not projective as a U(〈x〉)-module} ∪ {0}.

As an example, we consider the work done in [2]:
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Theorem 2.29. [2, Corollary 6.4.1] Let K(λ) be a Kac gl(m|n)-module of

atypicality k. Then XK(λ) = (g1)k where (g1)k is the closure of the G0̄-orbit,

(g1)k described in [2, Section 2.6]. Hence, dimXK(λ) = (m+ n)k − k2.

On the other hand,

Theorem 2.30. [9, Theorems 4.5 and 5.4] Let L(λ) be a simple gl(m|n)-module

of atypicality k. Then XL(λ) = (g1)k. Hence dimXL(λ) = (m+ n)k − k2.

Combining the results stated in the previous three sections, the following

geometric interpretation of the complexity holds:

Theorem 2.31. If X(λ) is a Kac or a simple gl(m|n)-module, then

cF(X(λ)) = dimXX(λ) + dimV(g,g0̄)(X(λ)).

2.10 z-complexity

Complexity is not a categorical invariant; however, the authors in [2] defined a

closely related invariant, called the z-complexity:

Definition 2.32. Let M be a module in F . Consider

zF(M) = r
�

Ext•(g,g0̄)(M,
⊕

S)
�
,

where the direct sum runs over all simple modules of F . Unlike complexity,

zF(−) has the advantage of being invariant under category equivalences.

Proposition 2.33. Let M ∈ F and P.→M be a minimal projective resolution

of M . Define s(P.) to be the rate of growth of the number of summands in Pd.
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Explicitly, s(P.) is the smallest nonnegative integer c such that there exists a

constant C > 0 with

number of summands in Pd ≤ Cdc−1, for all d.

We have zF(M) = s(P.).

Proof. The proof follows the same argument in the proof of Proposition 2.25

where dimP (S) is removed from the computations.

Example 2.34. Let g = gl(1|1). Recall the explicit minimal projective resolution

of the trivial module L(0|0):

. . .→ P (2|−2)⊕P (0|0)⊕P (−2|2)→ P (1|−1)⊕P (−1|1)→ P (0|0)→ L(0|0)→ 0.

The number of summands in each Pd is d + 1, thus the rate of growth of this

number is 2 and hence zF(L(0|0)) = 2.

More generally,

Theorem 2.35. [2, Theorem 9.1.1] Let L(λ) be a simple gl(m|n)-module of

atypicality k. Then

zF(L(λ)) = 2k.

Example 2.36. Let g = gl(1|1). The Kac module K(0|0) admits a minimal

projective resolution of the form

. . .→ P (2| − 2)→ P (1| − 1)→ P (0|0)→ K(0|0)→ 0.

The number of summands in each Pd is 1, thus the rate of growth of this number

is 1 and hence zF(K(0|0)) = 1.
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More generally,

Theorem 2.37. [2, Theorem 9.1.1] Let K(λ) be a Kac gl(m|n)-module of

atypicality k. Then

zF(K(λ)) = k.

This invariant can be also interpreted geometrically, this time in terms of

detecting subalgebras which were introduced in [5]:

2.11 Detecting subsuperalgebras

Boe, Kujawa, and Nakano [4, Section 4] constructed two subsuperalgebras

of g, namely f and e, which will detect the relative cohomology ring of g [4,

Theorem 4.1.1]. We will only use the detecting subsuperalgebra f throughout

this work. An explicit definition of f1̄ is given in [4, Table 2] using root vectors.

The even part is defined by f0̄ = [f1̄, f1̄]. Then

f := f0̄ ⊕ f1̄.

Since g is classical, the Lie superalgebra f is also classical [4, Theorem 4.1.1]. We

can then define the support variety of M relative to f, V(f,f0̄)(M), in the same

way we defined V(g,g0̄)(M). If [f0̄, f1̄] = 0, these varieties admit a rank variety

description and, in particular, can be identified as subvarieties of f1̄, i.e.,

V(f,f0̄)(M) = Vrankf1̄
(M) = {y ∈ f1̄ | M is not projective as U(〈y〉)-module} ∪ {0}.

Note that V(f,f0̄)(C) = f1̄. Boe et al. computed the dimensions of V(f,f0̄)(M) when

M is either a simple or a Kac gl(m|n)-module. They came to the conclusion:
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Theorem 2.38. [2, Theorem 9.2.1] If X(λ) is a Kac or a simple gl(m|n)-module,

then

zF(X(λ)) = dimV(f,f0̄)(X(λ)).
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Chapter 3

Computing the complexity over osp(2|2n)

3.1 The Lie superalgebra osp(m|n)

We first discuss the orthosymplectic Lie superalgebra osp(m|n). Let V =

V0̄ ⊕ V1̄ be a Z2-graded space, with dimV0̄ = m and dimV1̄ = n. Let F be a

nondegenerate consistent supersymmetric bilinear form on V , so that V0̄ and

V1̄ are orthogonal and the restriction of F to V0̄ is symmetric and to V1̄ a

skew-symmetric form. Define the Lie superalgebra gl(m|n) := End(V ) with the

Z2-grading:

End(V )i = {f ∈ EndV | f(Vs) ⊆ Vi+s, s ∈ Z2}, i ∈ Z2,

and the bracket is given by [f, f ′] = ff ′ − (−1)f̄ f̄
′
f ′f . We define in gl(m|n) the

subalgebra osp(m|n) = osp(m|n)0̄ ⊕ osp(m|n)1̄ by setting

osp(m|n)i = {f ∈ l(m|n)i | F (f(x), y) = −(−1)ix̄F (x, f(y))}, (i ∈ Z2).

3.2 The Lie superalgebra osp(2|2n)

In this chapter we will be working with the Lie superalgebra g = osp(2|2n) of

type C(n+ 1). The bilinear form F can be represented by the matrix:

F =

 G 0

0 H

 ,
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where

G =

 0 1

1 0

 and H =

 0 In

−In 0

 ,

where In is the identity n×n matrix. Then a matrix X =

A B

C D

 is in osp(2|2n)

if and only if

AtG+GA = BtG−HC = DtH +HD = 0.

Using this equation, we can see that g has a Z-grading

g = g−1 ⊕ g0 ⊕ g1,

given by the following matrix realization:

g−1 =



0 0

0 0

0 0

y y1

yt1 0

−yt 0

0 0

0 0


,

g0 =



α 0

0 −α

0 0

0 0

0 0

0 0

a b

c −at


,
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and

g1 =



0 0

0 0

x x1

0 0

0 xt1

0 −xt
0 0

0 0


.

In the above, x, x1, y, y1 are 1× n matrices; a, b, c are n× n matrices where b

and c are symmetric; α is a scalar in C. The Z2-grading is given by: g1̄ = g−1⊕g1

and g0̄ = g0. The Lie super-bracket is defined by

[A,B] = AB − (−1)ĀB̄BA,

for homogeneous elements A, B ∈ g0̄ or g1̄. We then extend the definition of

the bracket to all of g by bilinearity. In the above AB denotes the matrix

multiplication of A and B. The degree Ā is

Ā =


0 if A ∈ g0̄,

1 if A ∈ g1̄.

Using this bracket, we can easily check that g−1 and g1 are both abelian.

Note that g0̄
∼= C⊕ sp(2n), hence the choice of the Cartan subalgebra:

h =



α 0

0 −α

0 0

0 0

0 0

0 0

a 0

0 −a


,

where a is n× n diagonal matrix. Let ε1 : h→ C be the linear map that takes

an element of h to its first diagonal entry (α) and let δi : h→ C be the linear
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map that takes an element of h to the ith diagonal entry of the matrix a. The

set {ε1, δ1, δ2, . . . , δn} forms a basis of h∗ and we define a bilinear form, ( , ), on

h∗ by setting

(ε1, ε1) = 1, (δi, δj) = −δij, (ε1, δi) = 0,

for all 1 ≤ i ≤ n. The Borel subalgebra for g0̄ is chosen as follows:

b0̄ =



α 0

0 −α

0 0

0 0

0 0

0 0

a b

0 −at


,

where a is upper-triangular and b is symmetric. With our choice of the above

Cartan subalgebra the root system of g0̄, that is the even roots of g, is

Φ0̄ = {±δi ± δj | 1 ≤ i 6= j ≤ n} ∪ {±2δi | 1 ≤ i ≤ n}.

The set of odd roots is

Φ1̄ = {±ε1 ± δi | 1 ≤ i ≤ n}.

The Borel superalgebra for g will be given by b = b0̄ ⊕ g1. With this choice, the

set of positive roots of g is given by

Φ+ = {δi+δj | 1 ≤ i ≤ j ≤ n}∪{δi−δj | 1 ≤ i < j ≤ n}∪{ε1±δi | 1 ≤ i ≤ n},

and the set of simple roots is

∆ = {δi − δi+1 | 1 ≤ i ≤ n} ∪ {2δn, ε1 − δ1}.
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Let X+
0 ⊆ h∗ be the parameterizing set of highest weights for the simple finite

dimensional g0̄-modules with respect to the pair (h, b0̄). By [20, Section 21.1],

we can show that the simple finite-dimensional sp(2n)-modules have integral

weights. An explicit description of X+
0 is

X+
0 = {λ = λ−1ε1+

n∑
i=1

λiδi | λ−1 ∈ C, λi ∈ Z, ∀i ≥ 1; λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0}.

For λ ∈ X+
0 , let L0̄(λ) be the simple finite dimensional g0̄-module of highest

weight λ. Since osp(2|2n)0̄
∼= C⊕ sp(2n), the simple g0̄-modules are of the form

L0̄(λ) = Cλ−1 � L0(λ),

where L0(λ) is the simple sp(2n)-module of weight
n∑
i=1

λiδi. Note that there is

a slight abuse of notation where we used λ for the simple sp(2n)-module even

though we removed the λ−1-part. The action of g0̄ on L0̄(λ) = Cλ−1 � L0(λ) is

given by

(α⊕ T ).(cλ−1 ⊗ v) = α.cλ−1 ⊗ v + cλ−1 ⊗ T.v,

for α, cλ−1 ∈ C, T ∈ sp(2n) and v ∈ L0(λ). It is worth mentioning that if v1

is the highest weight vector for L0(λ), then w1 = 1 ⊗ v1 is the highest weight

vector in L0̄(λ).

Let ρ be half the sum of the positive even roots minus half the sum of the

positive odd roots. Then

ρ = −nε1 +
n∑
i=1

(n− i+ 1)δi.

We can easily check that the atypicality of λ is either zero or one. In fact,

atyp(λ) = 1 if and only if there is an odd positive root ε1 ± δi such that
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(λ + ρ, ε1 ± δi) = 0 for some 1 ≤ i ≤ n. A weight is called atypical if its

atypicality is equal to 1, and is called typical otherwise. It is important to note

that if λ = λ−1ε1 +
∑n
i=1 λiδi is atypical, then λ−1 ∈ Z.

If L(λ) is a simple g-module of highest weight λ, then we define atyp(L(λ)) :=

atyp(λ). It is known that the atypicality of a simple module is independent

of the choice of Cartan and Borel subalgebras and, furthermore, is the same

for all simple modules in a given block. Hence it makes sense to refer to the

atypicality of a block. It is known that ([16, Theorem 1]) if atyp(λ) = 0, then

P (λ) = L(λ) = K(λ) hence L(λ) and K(λ) are projective.

3.3 Computing the complexity

For λ ∈ X+
0 , we want to find the complexity of L(λ) and K(λ). If λ is typical,

the simple module L(λ) is projective and hence it has zero complexity. We

only need to consider the case when λ is atypical since the complexity of the

typical simple and Kac modules is zero. In this section, we will refer to [8,

Sections 1.2, 3.1] to get a description of the projective covers.

Let W be the Weyl group of g which is, by definition, the Weyl group of

the sp(2n)-subalgebra, generated by the reflections corresponding to the even

simple roots of g. If λ ∈ X+
0 is atypical with respect to an odd positive root γ,

the authors in [8] defined an “L-operator” given by:

λL := ω(λ+ ρ− kγ)− ρ,

where k is the smallest positive integer such that (λ+ ρ− kγ, αi) 6= 0 for all the

even simple roots αi and ω is the unique element in the Weyl group of sp(2n)
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rendering λL dominant. Given an atypical λ ∈ X+
0 , we shall write

λ(0) = λ, λ(l+1) = (λ(l))L, l ≥ 0. (3.1)

Let ω0 be the longest element in the Weyl group of sp(2n) and let β = 2nε1 be

the sum of all positive roots. Let λ be atypical, we can use [8, equation (4)] to

get:

λ = ω−1
0

�
β − (β − ω0λ

L)L
�
,

which proves that the L-operator is one-to-one. We will prove that L is onto on

the set of atypical weights in X+
0 using a representation theoretical approach

(Proposition 3.21). Using this we can define λ−L to be the unique weight µ such

that µL = λ, hence we can extend the definition in (3.1) to any l ∈ Z.

Consider the set Y
1|n

+ of (n+ 1)-tuples of integers:

Y
1|n

+ = {f = (f−1|f1, f2, . . . , fn) | fi ∈ Z, f1 < f2 < · · · < fn < 0}.

There is a bijection X+
0 → Y

1|n
+ given by λ 7→ fλ, where

(fλ)−1 = (λ+ ρ, ε1), (fλ)i = (λ+ ρ, δi), i ≥ 1.

Since λ is atypical, we have (fλ)−1 ∈ Z and |f−1| = −fi for some i ≥ 1. We set

fL := fλL . Note that we can compute λL for each atypical λ by passing over to

the set Y
1|n

+ . The description of fL is divided into three cases as follows (cf. [8,

Section 1.2]:

(I) f−1 = fi < 0 for some 1 ≤ i ≤ n. let c be the largest integer such that
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c < fi and d /∈ {f1, f2, . . . , fn}. Then

fL = (c|f1, . . . Òfi, . . . , fn, c)+,

where Òfi denotes the removal of fi, and the + denotes the rearrangement

of

f1, . . . Òfi, . . . , fn, c
in an increasing order.

(II) f−1 = −fi > 0 for some 1 ≤ i ≤ n and {f1, f2, . . . , fn} does not contain

{−1,−2, . . . , fi} as a subset. Let c be the largest integer such that fi <

c ≤ −1 and −c /∈ {f1, f2, . . . , fn}. Then

fL = (c|f1, . . . Òfi, . . . , fn,−c)+.

(III) f−1 = −fi > 0 for some 1 ≤ i ≤ n and {f1, f2, . . . , fn} contains {−1,−2, . . . , fi}

as a subset. Then

fL = (−f−1|f1, . . . , fn).

Using these cases, we can show the following:

Lemma 3.1. We have:

1. For d ≥ 0, (−d|d, 0, . . . , 0)L = (−d− 1|d+ 1, 0, . . . , 0).

2. For d ≥ 1, (2n+ d|d, 0, . . . , 0)L = (2n+ (d− 1)|d− 1, 0, . . . , 0).

3. (2n|0, . . . , 0)L = (0|0, . . . , 0).
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4. For λ = (0|0, . . . , 0) = 0 and d ≥ 0, we have

λ(d) = (−d|d, 0, . . . , 0) and λ(−d−1) = (2n+ d|d, 0, . . . , 0).

Proof. For (1), fλ = (−n− d| − (n+ d),−(n− 1),−(n− 2), . . . ,−2,−1), hence

f−1 = f1 < 0, and case (I) applies. The required integer c is −n− d− 1, then

fLλ = fλL = (−n− d− 1| − n− d− 1,−(n− 1),−(n− 2), . . . ,−2,−1),

which gives λL = (−d− 1|d+ 1, 0, . . . , 0).

For (2), fλ = (n + d| − (n + d),−(n − 1),−(n − 2), . . . ,−2,−1), hence

f−1 = −f1 > 0, and case (II) applies. The required integer c is n+ d− 1, then

fLλ = fλL = (n+ d− 1| − n− d+ 1,−(n− 1),−(n− 2), . . . ,−2,−1),

which gives λL = (2n+ d− 1|d− 1, 0, . . . , 0).

For (3), fλ = (n| − n,−(n− 1),−(n− 2), . . . ,−2,−1), hence f−1 = −f1 > 0,

and case (III) applies. Then

fLλ = fλL = (−n| − n,−(n− 1),−(n− 2), . . . ,−2,−1),

which gives λL = (0|0, 0, . . . , 0).

The last part of the Lemma follows easily from the earlier parts.

Let P (λ) be the projective cover of L(λ). From [8, Theorem 7], we have the

following 2-step Kac flag:

0→ K(λ)→ P (λL)→ K(λL)→ 0,
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which implies that dimP (λL) = dimK(λ) + dimK(λL). Moreover, using [8,

Corollary 8], there is a short exact sequence:

0→ L(λL)→ K(λ)→ L(λ)→ 0.

This shows that the Kac module has two layers: The head of K(λ) is L(λ) and

the socle is L(λL). On the other hand, the projective module P (λL) decomposes

as follows: the head and socle of P (λL) are both isomorphic to L(λL) and the

second layer is isomorphic to L(λ)⊕ L(λLL). It has the form:

L(λL)

L(λ) L(λLL)

L(λL)

Note that by the Kac filtration of P (λL) and the composition factors of

K(λ) we know that the socle of P (λL) has only one submodule, namely L(λL).

Similarly the head of P (λL) is the head of K(λL) which is L(λL). We can also

see this from the fact that the P (λL) is the projective cover and injective hull of

L(λL), L(λL) is the unique head and socle at the same time. We will prove later

in (3.13) that

dim Ext1(L(λ), L(µ)) = 1⇔ λ = µL or λL = µ.

Thus there is no indecomposable module M such that the following sequence is

exact:

0→ L(λ)→M → L(λLL)→ 0.
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This shows that the middle layer can not be of the form

L(λLL)

L(λ)

3.3.1 Complexity of simple modules

To compute the complexity of the simple modules L(λ), we need the following

bounds on the dimension of the simple sp(2n)-module L0(r, 0, . . . , 0):

Lemma 3.2. There are positive constants C and C ′ that depend only on n such

that

Cr2n−1 ≤ dimL0(r, 0, . . . , 0) ≤ C ′r2n−1.

Proof. The dimension of a simple module of highest weight λ is given by the

Weyl-dimension formula ([20, Section 24.3]):

dimL0(λ) =

∏
α∈Φ+

0̄
(λ+ δ, α)∏

α∈Φ+
0̄

(δ, α)
,

where δ is half the sum of the positive roots in sp(2n), i.e., half the sum of the

positive even roots in osp(2|2n).

Recall

Φ+
0̄ = {δi + δj | 1 ≤ i ≤ j ≤ n} ∪ {δi − δj | 1 ≤ i < j ≤ n},

then δ =
n∑
i=1

(n− i+ 1)δi. Thus,

dimL0(r, 0, . . . , 0) =
(2n+ r)

∏n
j=2(r + j − 1)(2n+ r − j + 1)

(2n)
∏n
j=2(j − 1)(2n− j + 2)

.
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Let

C =
1

(2n)
∏n
j=2(j − 1)(2n− j + 2)

.

Note that C is a positive constant depending only on n and dimL0(r, 0, . . . , 0) is

a polynomial in r of degree 2n− 1 with a positive leading coefficient. Moreover,

dimL0(r, 0, . . . , 0) = C1(2n+ 2r)
n∏
j=2

(r + j − 1)(2n+ r − j + 1)

≥ C1(2n+ 2r)(r + 1)n−1(2n+ r − n+ 1)n−1

= C1(2n+ 2r)(r + 1)n−1(n+ r + 1)n−1

≥ C1r
2n−1.

On the other hand,

dimL0(r, 0, . . . , 0) = C1(2n+ 2r)
n∏
j=2

(r + j − 1)(2n+ r − j + 1)

≤ C1(2n+ 2r)(r + n− 1)n−1(2n+ r − 2 + 1)n−1

= C1(2n+ 2r)(r + n− 1)n−1(2n+ r − 1)n−1,

Let us pick positive constants C2, C3, C4 depending only on n such that

2n+ 2r ≤ C2r, r + n− 1 ≤ C3r, 2n+ r − 1 ≤ C4r,

then

dimL0(r, 0, . . . , 0) ≤ C.C2.C3
n−1.C4

n−1r2n−1 = C ′r2n−1,

where C ′ is a positive constant that depends only on n. Therefore, there are
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positive constants C and C ′ that depend only on n such that

Cr2n−1 ≤ dimL0(r, 0, . . . , 0) ≤ C ′r2n−1.

Recall that

0(d) = (−d|d, 0, . . . , 0) and 0(−d−1) = (2n+ d|d, 0, . . . , 0).

For i ∈ Z, set

[i] = L(0(i)) P (i) = P (0(i)), and K(i) = K(0(i)).

Using these notations, the projective covers P (i) have the following radical layer

structure:
[i]

[i− 1] [i+ 1]

[i]

Lemma 3.3. Let

P0 = P (0) =

[−1]

[−2] [0]

[−1]

P1 = P (−1) ⊕ P (1)

[−1]

[−2] [0]

[−1]

⊕

[1]

[0] [2]

[1]
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P2 = P (−2)⊕P (0)⊕P (2) =

[−2]

[−3] [−1]

[−2]

⊕

[0]

[−1] [1]

[0]

⊕

[2]

[1] [3]

[2]

The first three terms of a minimal projective resolution of L(0) are:

P2
f2→ P1

f1→ P0
f0→ [0]→ 0

Proof. To prove this result we use the diagrammatic method for modular rep-

resentations given in [1]. In particular, we use the description given in [1,

Section 10.3] for the kernel of the surjective map P (M) � M where P (M) is

the projective cover of M ∈ F . We also use the fact that P (M) is the direct

sum of the projective covers of the simple modules in the head of M .

Let f0 : P (0) � L(0) = [0] be the projection map from P (0) onto its head.

Let Ker(f0) be the kernel of f0. Sine the map f0 projects the head of P (0) onto

L(0), we have P (0)/Ker(f0) ∼= [0]. Thus the kernel of f0 is the submodule of

P (0) with the layer structure:

Ker(f0) = [−1] [1]

[0]

By taking a quotient map we have

[−1]

[−2] [0]

[−1]

⊕

[1]

[0] [2]

[1]

�

[−1]

[0]

⊕

[1]

[0]

φ1

�

[−1] [1]

[0]

↪→

[0]

[−1] [1]

[0]
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The map φ1 can be chosen to satisfy φ1(x, y) = x − y for x ∈ [0] in the first

summand and y ∈ [0] in the second. Define f1 to be the composition of these

maps. Note that to find the projective cover of a module M , we take the direct

sum of the projective covers of the simple modules which appear in the top level

of M . Thus P1 is the projective cover of

[−1]

[0]

⊕

[1]

[0]

This means that P1 is the minimal projective module that we can choose to

make the sequence exact. The Kernel of f1 is

Ker(f1) = [−2]

[−1]

[0]

[1]

[2]

We again take a quotient map to get

P2 � [−2]

[−1]

⊕ [0]

[−1] [1]

⊕ [2]

[1]

φ2

� [−2]

[−1]

[0]

[1]

[2] ↪→ P1

The map φ2 can be defined in a similar fashion as φ1. Define f2 to be the

composition of these maps. As before, P2 is the minimal projective module we

could choose to make the sequence exact. This is the case because it is the

projective cover of

[−2]

[−1]

⊕ [0]

[−1] [1]

⊕ [2]

[1]
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The kernel of f2 is

Ker(f2) = [−3]

[−2]

[−1]

[0]

[1]

[2]

[3]

The exactness of the sequence follows from the construction of the maps

fi.

Lemma 3.4. The minimal projective resolution of L(0) is

. . . Pd
fd→ . . .

f1→ P (0)
f0→ L(0)→ 0, (3.2)

where the dth term in this resolution is given by: If d is even,

Pd = P (−d) ⊕ P (−d+2) ⊕ · · · ⊕ P (−2) ⊕ P (0) ⊕ P (d) ⊕ P (d−2) ⊕ · · · ⊕ P (2),

and if d is odd,

Pd = P (−d) ⊕ P (−d+2) ⊕ · · · ⊕ P (−1) ⊕ P (d) ⊕ P (d−2) ⊕ · · · ⊕ P (1).

The kernel of fd is

Ker(fd) = [−d− 1]

[−d]

[−d+ 1]

· · ·

[−1]

[0]

[1]

· · ·

[d− 1]

[d]

[d+ 1]

Proof. An inductive argument proves the result. The base case is proved in

lemma 3.3. We again use the diagrammatic method for modular representations

given in [1]. In particular, we use the description given in [1, Section 10.3] for
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the kernel of the surjective map P (M) �M where P (M) is the projective cover

of M ∈ F . We also use the fact that P (M) is the direct sum of the projective

covers of the simple modules in the head of M .

Theorem 3.5. For atypical λ ∈ X+
0 , cF(L(λ)) = 2n+ 1.

Proof. Since dimP (λL) = dimK(λ) + dimK(λL), we have for i ∈ Z,

dimP (i) = dimK(i) + dimK(i−1).

By the PBW basis of U(g), we have dimK(λ) = 2dim g−1 . dimL0(λ) where L0(λ)

is the simple sp(2n)-module of highest weight λ (where we omit the λ−1 from

λ). Hence for i ∈ Z,

dimK(i) = 22n. dimL0(i, 0, . . . , 0).

Consider the case when d is even. Using the minimal projective resolution in

(3.2) we have:

dimPd = dimP (−d) + dimP (d) + · · ·+ dimP (−2) + dimP (2) + dimP (0)

=
d∑

i=−d
dimK(i)

= 22n
d∑
i=1

�
2 dimL0(i, 0, . . . , 0)

�
+ dimL0(0, 0, . . . , 0)

≤ 22n+1
d∑
i=1

C ′1i
2n−1 + 1 (Lemma 3.2)

≤ 22n+1 · C ′1d · d2n−1 + 1

≤ 22n+1 · C ′1d2n + d2n

= k′d2n,
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where k′ is a positive constant that depends only on n. On the other hand,

dimPd = 22n
d∑
i=1

�
2 dimL0(i, 0, . . . , 0)

�
+ dimL0(0, 0, . . . , 0)

≥ 22n+1
d∑
i=1

C1i
2n−1 + 1 (Lemma 3.2)

≥ 22n+1 · C1

d∑
i=d/2

i2n−1

≥ 22n+1 · C1

d∑
i=d/2

(
d

2
)2n−1

= kd2n,

where k is a positive constant that depends only on n. Thus when d is even,

there exist constants k, k′ depending only on n such that:

kd2n ≤ dimPd ≤ k′d2n. (3.3)

The same argument can be used to show that inequality (3.3) holds when d is

odd. Therefore, cF(L(0|0, . . . , 0) = 2n + 1. By [6, Theorem 4.1.1], all simple

modules of the same atypicality have the same complexity. Thus the complexity

of all atypical simple osp(2|2n)-modules is 2n+ 1.

3.3.2 Complexity of Kac modules

Using the computations of the complexity of the trivial module, we can compute

the complexity of the Kac module K(0):

Proposition 3.6.

cF(K(0)) = 2n.

Proof. Using the notation developed in this section, the minimal projective
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resolution of K(0) is given by:

. . .→ P (−2) → P (−1) → P (0)→ K(0)→ 0. (3.4)

For d ≥ 1, we have

dimPd = dimP (−d)

= dimK(−d) + dimK(−d−1)

= 22n
�

dimL0(d, 0, . . . , 0) + dimL0(d− 1, 0, . . . , 0)
�
,

hence dimPd is a polynomial in d of degree 2n− 1. Therefore,

cF(K(0)) = 2n.

We will use the complexity of K(0) to compute the complexity of any atypical

Kac module. First we show that that the L-operator on the weights does not

change the complexity of the Kac modules. Then we give an explicit description

of the block Fχ0 , where χ0 is the central character corresponding to the weight

λ = (0|0, . . . , 0). This description will be obtained using the notion of weight

diagrams given in [12, Section 6], and the characterization of blocks given in

[12, Section 5]. We then use the fact that translation functors preserve the

complexity to show that cF(K(λ)) = 2n.

Lemma 3.7. For λ ∈ X+
0 , cF(K(λ)) = cF(K(λ(l))), l ∈ Z.

Proof. It is sufficient to prove that

cF(K(λ)) = cF(K(λL)).
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The complexity of any module M ∈ F is given by:

cF(M) = r(Ext•(g,g0̄)(M,
⊕

L(µ)dimP (µ))), (3.5)

where the sum is over all simple modules in F . Let S =
⊕
L(µ)dimP (µ). By

applying the functor Hom( , S) to the following 2-step Kac flag:

0→ K(λ)→ P (λL)→ K(λL)→ 0,

we get:

. . .→ Extd+1(P (λL), S)→ Extd+1(K(λ), S)→ Extd(K(λL), S)→

. . .→ Ext1(K(λL), S)→ Ext1(P (λL), S)→ Ext1(K(λ), S)→

Hom(K(λL), S)→ Hom(P (λL), S)→ Hom(K(λ), S)→ 0.

Since P (λL) is projective, then Extd(P (λL), S) = 0 for all d ≥ 1, which gives:

Extd(K(λL), S) = Extd+1(K(λ), S).

This implies that Ext•(g,g0̄)(K(λ), S) and Ext•(g,g0̄)(K(λL), S) will have the same

rate of growth, hence the theorem follows.

3.3.3 Weight diagrams and translation functors

Assume λ is atypical

λ+ ρ = a1ε1 + b1δ1 + . . .+ bnδn,
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The weight diagram of λ is the function f̃λ : Z≥0 → {>, <, ×, 0} represented

by a diagram according to the following algorithm:

1. Put the symbol > in position t if t = |a1|.

2. Put the symbol < in position t for all i such that t = bi.

3. If there are both > and < in the same position replace them by the symbol

×, repeat if possible.

4. Put 0 otherwise.

For example, the weight diagram of 0 = (0|0, . . . , 0) is given by:

0, <,<, . . . , <,×, . . . ,

where the first 0 is at position 0, the first < is at position 1, the last < is at

position n− 1, × is at position n, the dots after that stand for empty positions

(or zeros). Note that the × at position n comes from having |a1| = b1 = n in

0 + ρ. In fact, the number of × in the weight diagram f̃λ equals the degree of

atypicality of λ. In the case atyp(λ) = 1, we will not have any > by itself in f̃λ.

Define the core of λ to have the same diagram as f̃λ but with replacing all ×’s

by zeros. Thus the weight diagrams of λ and its core have <,> at the same

positions. For example, f̃core(0) is given by:

0, <,<, . . . , <, 0, . . . .

Remark 3.8. It is important to note the relation with the notation developed in

[8, Section 1.2] to compute λL. In fact, fi = (λ+ ρ, δi) = −bi.

We have the following characterization of the blocks in F in [12, Section 5]:
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Proposition 3.9. Two dominant weights λ and µ belong to the same block if

and only if they have the same atypicality and the same core.

Corollary 3.10. Let χλ be the central character corresponding to the weight λ

and Fχλ be the corresponding block. Then λ and λ(l), l ∈ Z, belong to the same

block Fχλ.

Proof. It is sufficient to prove that λ and λL are in the same block. By the defin-

ition of the L-operator, λL and λ have the same atypicality. By proposition 3.9,

we have to show that λ and λL have the same core. Consider the three cases

that defined fL in Section 3.3.1 and suppose f−1 = ±fi for some 1 ≤ i ≤ n.

In the weight diagram of core(λ), we will have < at the positions −fj, j 6= i.

However, by the definition of fL, we will have < at the same −fj, j 6= i in the

weight diagram of core(λL). The corollary follows.

In the following we have an explicit description of the block Fχ0 :

Lemma 3.11. Fχ0 = {λ ∈ X+
0 | λ = 0(l) for some l ∈ Z}.

Proof. From Corollary 3.10, 0(l) ∈ Fχ0 , for all l ∈ Z. Now assume λ ∈ Fχ0 .

Then atyp(λ) = 1 and λ has the same core as 0. Thus the weight diagram of λ

has one × and n− 1 <’s at positions 1, 2, . . . , n− 1 as in the weight diagram of

0. The × cannot be at the zero position because λ will not be dominant in that

case, so it will be at some position k ≥ n. The weight diagram of λ

0, <,<, . . . , <, 0, . . . , 0,×, . . . ,

where the × is at position k, from which get:

λ+ ρ = (−k|k, n− 1, . . . , 2, 1) or λ+ ρ = (k|k, n− 1, . . . , 2, 1).
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Thus we have two weights:

λ = (−k + n|k − n, 0, . . . , 0) or λ = (k + n|k − n, 0, . . . , 0).

Let d = k − n ≥ 0. If d = 0, then λ = 0 or λ = (2n|0, 0, . . . , 0). By Lemma 3.1,

(2n|0, . . . , 0)L = 0. Thus λ = 0(0) or λ = 0(−1).

If d ≥ 1, then λ = (−d|d, 0, . . . , 0) or λ = (2n + d|d, 0, . . . , 0). By Lemma 3.1,

(−d|d, 0, . . . , 0) = 0(d) and (2n + d|d, 0, . . . , 0)(d+1) = 0. Thus λ = 0(d) or

λ = 0(−d−1). This completes the proof.

Moreover,

Lemma 3.12. If λ ∈ Fχλ with atyp(λ) = 1, then

cF(K(λ) = cF(K(µ)),

for some µ ∈ Fχ0.

Proof. The translation functors defined in [12, Section 5] moves a simple module

L(λ) ∈ Fχ to L(µ) ∈ F τ such that fµ is obtained from fλ by moving a symbol

< or > at position t to the next right position or to the next left position. We

can also exchange these two symbols with 0 and ×. We do not allow a symbol

to move from or to the zero position.

Let χλ be the central character corresponding to the weight λ and Fχλ be

the corresponding block. Let Fχ0 be the block containing the trivial module.

The translation functors define an equivalence of blocks between Fχλ and Fχ0 .

To see this, we note that core(λ) has < at n− 1 positions, the same as core(0).

Assume the × in fλ is at position i for some i ∈ N, then the translation functors

allow us to move the <’s to the positions 1, 2, . . . , n− 1 and move × to some
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position k ≥ n. The diagram we get is fµ where µ ∈ Fχ0 . The same discussion

as in [2, Section 6.3] shows that the translation functors preserve the complexity

of any g-module. This completes the proof.

Therefore,

Theorem 3.13. For atypical λ ∈ X+
0 , cF(K(λ)) = 2n.

Proof. For an atypical λ ∈ X+
0 , we use Lemmas 3.12, 3.7, and 3.11 to get

cF(K(λ)) = cF(K(µ)) for some µ ∈ Fχ0

= cF(K(0(l))) for some l ∈ Z

= cF(K(0)) = 2n.

3.4 Support, rank and associated varieties

3.4.1 Support variety

Support varieties were defined in chapter 1. The dimensions of the support

varieties of the simple modules and the Kac modules in F are known:

Lemma 3.14. [6, Cor 4.4.2]

For λ ∈ X+
0 , dimV(g,g0̄)(L(λ)) = atyp(λ).

Lemma 3.15. [5, Cor 3.2]

For λ ∈ X+
0 , dimV(g,g0̄)(K(λ)) = 0.

3.4.2 Rank variety

The rank variety will be introduced to give a geometric interpretation of the

complexity of Kac modules. Furthermore, it will be used to compute the
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associated variety of the Kac module. For the original definition of the rank

variety, and for more details, we refer the reader to [4, Subsection 6.3].

Let F(g±1) be the category of finite dimensional g±-modules. LetM ∈ F(g±1)

and consider the following rank variety of M :

Vrankg±1
(M) := {x ∈ g±1 | M is not projective as a U(〈x〉)-module} ∪ {0},

where U(〈x〉) denotes the enveloping algebra of the Lie superalgebra generated by

x ∈ g±1. The rank variety has various properties such as detecting projectivity:

Proposition 3.16. [3, Theorem 3.5.1(a)] Let M be a g-module in the category

F . Then M is projective if and only if Vrankg1
(M) = Vrankg−1

(M) = 0.

As a consequence,

Corollary 3.17. If λ ∈ X+
0 is typical, then

Vrankg1
(L(λ)) = Vrankg1

(K(λ)) = 0.

Proof. L(λ) and K(λ) are projective and the result follows from Proposition 3.16.

3.4.3 Rank variety of Kac modules

Consider the g+1 case. We start by computing the rank variety, Vrankg1
(K(λ)), of

an atypical Kac module in g = osp(2|2).

Proposition 3.18. For g = osp(2|2) and for an atypical λ ∈ X+
0 , Vrankg1

(K(λ)) =

g1.

Proof. Since g1 is abelian, [x, x] = 0 for all x ∈ g1. By [4, Proposition 5.4],

the only simple U(〈x〉)-module is the trivial module C and the indecomposable
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modules are C and U(〈x〉) where U(〈x〉) is two dimensional and it is the projective

cover of C. Hence, K(λ) will be projective as a U(〈x〉)-module if and only if

it does not contain a copy of the trivial module. Thus, x ∈ g1 is an element

of Vrankg1
(K(λ)) if and only if K(λ) contains a copy of the trivial module when

viewed as a U(〈x〉)-module.

By [3, 3.8.4], the action of G0̄ = C∗ × Sp(2n) on g1 has two orbits {0}

and g1 \ {0}. Note that Vrankg1
(K(λ)) is a closed G0̄-invariant subvariety of

Vrankg1
(C) = g1. Since the closed subvarieties of Vrankg1

(C) = g1 are the closure of

those orbits, we have Vrankg1
(K(λ)) = {0} or Vrankg1

(K(λ)) = g1.

Hence, to prove the Proposition it is enough to find 0 6= x ∈ g1 such that K(λ)

contains a copy of the trivial module when viewed as a U(〈x〉)-module. Note

that g1 is spanned by the root vectors x1 and x2 with weights wt(x1) = ε1 − δ1

and wt(x2) = ε1 + δ1. On the other hand, g−1 is spanned by y1 and y2 with

weights wt(y1) = −wt(x1) = −ε1 + δ1 and wt(y2) = −wt(x2) = −ε1 − δ1. We

will need the following elements of g0̄ as we proceed:

z11 = 1⊕ h, z22 = −1⊕ h, z12 = 0⊕−2f, and z21 = 0⊕ 2e,

where {e, f, h} is the standard basis of sl(2). Since osp(2|2)0̄
∼= C ⊕ sl2, the

simple g0̄-modules are of the form L0̄(λ) = Cλ−1 �L(d) where L(d) is the simple

sl2-module of dimension d+1. Note that the action of g0̄ on L0̄(λ) = Cλ−1 �L(d)

is given by

(α⊕ T ).(cλ−1 ⊗ v) = α.cλ−1 ⊗ v + cλ−1 ⊗ T.v,

for α, cλ−1 ∈ C, T ∈ sl(2) and v ∈ L(d).

Let {vk | 0 ≤ k ≤ d} be the basis for L(d) with v0 being the highest weight
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vector given in [20, Subsection 7.2]. Then for 0 ≤ k ≤ d, we have

h.vk = (d− 2k)vk, e.vk = (d− k + 1)vk−1, f.vk = (k + 1)vk+1,

with v−1 = vd+1 = 0.

Let wk = 1⊗ vk then {wk | 0 ≤ k ≤ d} is a basis of L0̄(λ) with w0 being the

highest weight vector. We can easily show that for 0 ≤ k ≤ d, we have

z11.wk = −2kwk, z12.wk = −2(k + 1)wk+1, z21.wk = 2(d− k + 1)wk−1,

with w−1 = wd+1 = 0. By the PBW-basis theorem for U(g), dimK(λ) = 4(d+ 1)

with basis {ya1yb2 ⊗ wk | a, b ∈ {0, 1}, 1 ≤ k ≤ d}.

In the case of osp(2|2), ρ = (−1|1) then λ = (λ−1|λ1) = (λ−1|d) is atypical if

and only if (ρ+ λ, ε1 ± δ1) = 0. Thus we have two cases:

Case 1: Using the odd root wt(x1) = ε1 − δ1, we have λ−1 = −λ1. We will

write λ = (−d|d).

we can check that x1(1⊗ w0) = 1⊗ x1w0 = 0 since w0 is annihilated by g1.

By degrees (or Z-grading), yi⊗wk could be in the U(〈x1〉)-submodule generated

by 1⊗ w0, but using weights, we can check that only y1 ⊗ w0 could land in that

submodule. However,

x1(y1 ⊗ w0) = −y1 ⊗ x1w0 + 1⊗ z11w0 = 0 + (−d+ d)(1⊗ w0) = 0,

therefore, the U(〈x1〉)-submodule generated by 1⊗w0 forms a trivial direct sum-

mand of K(λ) when viewed as a U(〈x1〉)-module. Thus 0 6= x1 ∈ Vrankg1
(K(λ)),

the result follows in this case.

Case 2: Using the odd root wt(x2) = ε1 + δ1, we have λ−1 = λ1 + 2. We
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will write λ = (d+ 2|d). Then we have:

x2(y1y2 ⊗ w0) =(−y1x1 + z21)y2 ⊗ w0

=− y1(−y2x2 + z22)⊗ w0 + (2y1 + y1z21)⊗ w0

=y1y2 ⊗ x2w0 − y1 ⊗ z22w0 + 2y1 ⊗ w0 + y1 ⊗ z21w0

=0− y1 ⊗ (−2w0) + 2y1 ⊗ w0 + 0 = 0.

In the above we used the fact the x2 and z21 both annihilate the highest weight

vector w0. Since y1y2⊗w0 has the largest possible degree (i.e. −2), we know that

the U(〈x2〉)-submodule generated by y1y2 ⊗ w0 forms a trivial direct summand

of K(λ) when viewed as a U(〈x2〉)-module. Thus 0 6= x2 ∈ Vrankg1
(K(λ)), the

result follows in this case.

To generalize the above theorem, we need to use the equivalence of blocks

stated in [12, Theorem 2]. Indeed, we have:

Theorem 3.19. When λ is atypical, Vrankg1
(K(λ)) = g1.

Proof. Assume atyp(λ) = k = 1. Let χλ be the central character corresponding

to the weight λ and let Fχλ be the corresponding block. [12, Theorem 2] implies

that Fχλ is equivalent to the maximal block of gk containing the trivial module,

where gk = osp(2|2) or gk = osp(4|2). However, gk is chosen to correspond to a

connected sub-Dynkin diagram containing the last node(s) of the diagram of g

and this is not the case if we use osp(4|2) because it has the type D(2, 1) while

osp(2|2n) has type C(n+ 1). Set g′ = gk = osp(2|2). Using the discussion in [6,

Section 4], g′ is the subalgebra of g whose roots lie in the intersection of Φ with

the R-span of {±ε1 ± δn,±2δn}.

As discussed in [9], the equivalence of blocks is a composition of translation

functors between the blocks of F , followed by a restriction functor from g to g′.
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Upon restricting to g′, we have:

K(λ) = K(λ′)⊕M,

where K(λ′) is a Kac g′-module (the above equivalence of blocks takes Kac

modules to Kac modules) and M is a g′-module. By Serganova’s equivalence,

atyp(λ′) = atyp(λ) = 1, thus there exists 0 6= x′ ∈ Vrankg′1
(K(λ′)) = g′1, (3.18).

By [4, Theorem 6.6] the rank variety distributes over the direct sum as a union ,

thus

Vrankg′1
(K(λ)) = Vrankg′1

(K(λ′)) ∪ Vrankg′1
(M).

This shows that there exists 0 6= x′ ∈ g′ ⊆ Vrankg′1
(K(λ)). Using the embedding

g′ ↪→ g, we can find 0 6= x ∈ Vrankg1
(K(λ)) but the G0̄-orbits of g1 are {0} and

g1 \ {0} which imply that Vrankg1
(K(λ)) = g1.

Thus we can interpret the complexity of Kac modules geometrically in the

following sense:

Corollary 3.20. For λ ∈ X+
0 , cF(K(λ)) = dimVrankg1

(K(λ)).

Proof. If λ is typical, the Kac module K(λ) is projective in which case we have

cF(K(λ)) = dimVrankg1
(K(λ)) = 0.

If λ is atypical, Theorem 3.13 and Theorem 3.19 imply that

cF(K(λ)) = dimVrankg1
(K(λ)) = dim g1 = 2n.

After establishing the equivalence of blocks between g and g′, we can show
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that the operator L is onto without using its combinatorial definition:

Proposition 3.21. The operator L is surjective on the set of atypical weights

in X+
0 .

Proof. First, we will show that L is onto in the case of g′ = osp(2|2). Let µ

be an atypical weight, then µ = (d + 2|d) or µ = (−d|d) for some d ≥ 0. By

Theorem 3.1, (0|0) = (2|0)L, (d + 2|d) = (d + 3|d + 1)L for any d ≥ 0 and

(−d|d) = (−d+ 1|d− 1)L for any d ≥ 1. Thus µ is the image under L of some

atypical weight.

Now Let µ be an atypical weight in the case of g = osp(2|2n). Let L(µ′)

be the image of the simple module L(µ) under the above equivalence of blocks

between g and g′. Then µ′ is an atypical weight for g′. Thus there exists an

atypical weight λ′ with λ′L = µ′. The head of K(λ′) is L(λ′) and the socle is

L(λ′L) = L(µ′). This Kac module corresponds to a Kac module K(λ) (where λ

corresponds to λ′ under the same equivalence) which has L(λ) as its head and

L(µ) as its socle. But the socle of K(λ) is L(λL), thus L(λL) ∼= L(µ) which

shows µ = λL for some atypical λ.

3.4.4 Associated variety

Recall

X = {x ∈ g1̄ | [x, x] = 0}.

If M ∈ F , then Duflo and Serganova [9] define an associated variety of M which

is equivalent to:

XM = {x ∈ X | M is not projective as a U(〈x〉)-module} ∪ {0}.

We will indicate how the support variety and the associated variety can be
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combined to measure the complexity of the simple and the Kac modules. First,

we find the dimension of the associated variety of the simple and Kac modules:

Lemma 3.22. For λ ∈ X+
0 , let X(λ) be L(λ) or K(λ), then

dimXX(λ) =


2n, if atyp(λ) = 1;

0, if atyp(λ) = 0.

Proof. When λ is typical, L(λ) and K(λ) are projective, hence dimXX(λ) = 0

by [9, Theorem 3.4]. For the rest of the proof, assume λ is atypical. [14, Cor 2.5]

implies that XL(λ) = X when λ is atypical. In osp(2|2n), X has two irreducible

components each with dimension equals to
dim g1

2
= 2n. Thus dimX = 2n, ([9,

Cor 4.8, Cor 4.9]).

Now assume X(λ) = K(λ). From the definitions of the rank variety and the

associated variety, we have

Vrankg1
(K(λ)) = XK(λ) ∩ g1 ⊆ XK(λ).

Following the same proof of [2, Theorem 6.4.1], we show that the inclusion is

in fact an equality. Thus dimXK(λ) = dimVrankg1
(K(λ)) = dim g1̄ = 2n, (using

Theorem 3.19).

3.4.5 Geometric interpretation of the complexity

Combining the computations about the complexity, support variety, and the

associated variety of the simple and Kac modules, we can conclude that:
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Theorem 3.23. For λ ∈ X+
0 , let X(λ) be L(λ) or K(λ), then

cF(X(λ)) = dimXX(λ) + dimV(g,g0̄)(X(λ)).

3.5 z-complexity

The z-complexity of M ∈ F is defined in section 2.10. We will compute this

categorical invariant for the simple and the Kac modules in F . Recall that if

P.→M is a minimal projective resolution of M and s(P.) is the rate of growth

of the number of projective summands in each Pd, then zF(M) = s(P.).

Lemma 3.24. If L(λ) is the trivial module, then zF(L(λ)) = 2.

Proof. The proof follows directly by counting the number of summands in

each Pd in the resolution (3.2) of the trivial module. By doing so, we can see

that the number of summands in each Pd is a polynomial in d of degree 1.

Hence, the rate of growth of this number is s(P.) = 2. The result follows using

Proposition 2.33.

To find the z-complexity of all atypical simple modules, we will show that

simple modules of the same atypicality have the same z-complexity.

Lemma 3.25. For any module X ∈ F and a Kac module K(λ), there exists a

constant DX depending only on X such that

K(λ)⊗X ∼=
⊕
γ∈I

K(γ),

where |I| ≤ DX .
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Proof. By the definition of Kac modules, we have

K(λ) = U(g)⊗U(p+) L0̄(λ).

As a g0̄-module, L0̄(λ)⊗X decomposes into a direct sum
⊕

µ∈IX L0̄(λ)⊗ L0̄(µ),

where IX is a finite indexing set depending only on X. By the generalized

Littlewood-Richardson formula [21, Subsection A.4], each summand L0̄(λ)⊗L0̄(µ)

decomposes into a finite direct sum
⊕

γ∈Iλ,µ L0̄(γ) indexed by the sp(2n)-standard

Young tableaux of shape p(µ) which are λ-dominant (see [21, Subsection A.4]

for definitions). Let l(µ) be the number of boxes in p(µ), then

|Iλ,µ| ≤ (2n)l(µ).

By using the functor U(g) ⊗U(p+) −, we have the following isomorphisms as

U(g)-modules:

K(λ)⊗X ∼=
⊕
µ∈IX

⊕
γ∈Iλ,µ

U(g)⊗U(p+) L0̄(γ) ∼=
⊕
µ∈IX

⊕
γ∈Iλ,µ

K(γ).

The number of summands is at most DX :=
∑
µ∈IX (2n)l(µ). This completes the

proof.

Corollary 3.26. For any module X ∈ F and a projective cover P (λ), there

exists a constant EX depending only on X such that

P (λ)⊗X ∼=
⊕
γ∈J

P (γ),

where |J | ≤ EX .
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Proof. Recall the following 2-step Kac flag:

0→ K(λ)→ P (λL)→ K(λL)→ 0,

which can be rewritten as

0→ K(λ′)→ P (λ)→ K(λ)→ 0,

with λ′L = λ. This Kac filtration of P (λ) together with the exactness of the

tensor functor (over C) imply the exact sequence:

0→ K(λ′)⊗X → P (λ)⊗X → K(λ)⊗X → 0.

The factors K(λ)⊗X and K(λ′)⊗X decompose into Kac modules by the previous

lemma. Thus P (λ)⊗X has a Kac filtration. Moreover, there are two numbers

DX and D′X such that the number of Kac modules in this filtration is at most

EX := DX+D′X . On the other hand, the projective module P (λ)⊗X decomposes

into a finite direct sum of projective indecomposables
⊕

α∈R P (α) where each

summand has a Kac filtration. However Kac filtrations of the same module

will have the same number of Kac modules. In fact, by [5, proposition 3.3], the

number of times K(λ) appears in a kac filtration of a module M is equal to the

dim Hom(M,K ′(λ)), where K ′ is the dual Kac module (cf. [5, Subsection 3.4]).

This dimension is not dependent on the choice of the filtration. Thus the number

of the projective indecomposables, P (α), is bounded by EX .

Lemma 3.27. Let M, N, X, T ∈ F such that M⊗X ∼= N⊕T . Then zF(M) ≥

zF(N).
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Proof. Let P.→M ⊗X and Q.→M be the minimal projective resolutions of

M ⊗X and M respectively. Then Q.⊗X →M ⊗X is a projective resolution

of M ⊗X. Using the above corollary, the dth term in this resolution decomposes

as follows:

Qd ⊗X =

� ⊕
λ∈Rd

P (λ)

�
⊗X ∼=

⊕
λ∈Rd

⊕
γ∈I

P (γ),

where |I| ≤ DX . Thus, for each d, the number of summands in Qd ⊗X is at

most |Rd|.DX which is a constant multiple of the number of summands in each

Qd. By minimality of the resolution P., we have s(P.) ≤ s(Q.⊗X) where s(P.)

is the rate of growth of the number of summands in the dth-term of the resolution

P.. Then

zF(M ⊗X) = s(P.) ≤ s(Q.⊗X) ≤ s(Q.) = zF(M).

By using the definition of the z-complexity we can easily show that

zF(N ⊕ T ) = max
�
zF(N), zF(T )

�
.

Then

zF(M ⊗X) ≥ zF(N),

thus

zF(M) ≥ zF(M ⊗X) ≥ zF(N).

Theorem 3.28. Let λ ∈ X+
0 .

(1) If λ is typical, then zF(L(λ)) = 0.

(2) If λ is atypical, zF(L(λ)) = 2.
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Proof. If λ is typical, then L(λ) is projective, and hence zF(L(λ)) = 0. Let

λ be atypical, then [6, Corollary 3.2.2] implies that if λ and µ have the same

atypicality, there are modules X1 and X2 such that L(µ) is a direct summand of

L(λ)⊗X1 and L(λ) is a direct summand of L(µ)⊗X2. Lemma 3.27 shows that

zF(L(λ)) = zF(L(µ)). Thus, for an atypical λ, zF(L(λ)) = zF(C) = 2.

Lemma 3.29. For λ ∈ X+
0 , zF(K(λ)) = zF(K(λ(l))), l ∈ Z.

Proof. By induction it is sufficient to prove that

zF(K(λ)) = zF(K(λL)).

The z-complexity of any module M ∈ F is given by:

zF(M) = r(Ext•(g,g0̄)(M,
⊕

L(µ)), (3.6)

where the sum is over all simple modules in F . Let S =
⊕
L(µ). By applying

the functor Hom( , S) to the following 2-step Kac flag:

0→ K(λ)→ P (λL)→ K(λL)→ 0,

we get:

. . .→ Extd+1(P (λL), S)→ Extd+1(K(λ), S)→ Extd(K(λL), S)→

. . .→ Ext1(K(λL), S)→ Ext1(P (λL), S)→ Ext1(K(λ), S)→

Hom(K(λL), S)→ Hom(P (λL), S)→ Hom(K(λ), S)→ 0.
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Since P (λL) is projective, then Extd(P (λL), S) = 0 for all d ≥ 1, which gives:

Extd(K(λL), S) = Extd+1(K(λ), S).

This implies that Ext•(g,g0̄)(K(λ), S) and Ext•(g,g0̄)(K(λL), S) will have the same

rate of growth, hence the theorem follows.

Assume atyp(λ) = 1. Let χλ be the central character corresponding to the

weight λ and Fχλ be the corresponding block. Let Fχ0 be the block containing

the trivial module. The translation functors define an equivalence of blocks

between Fχλ and Fχ0 . The z-complexity is a categorical equivalence, hence the

translation functors preserve the z-complexity of any g-module, thus

Lemma 3.30. Let λ ∈ Fχλ with atyp(λ) = 1. Then

zF(K(λ)) = zF(K(µ)),

for some µ ∈ Fχ0.

These results combined show that for atypical λ ∈ X+
0 ,

zF(K(λ)) = zF(K(µ)) for some µ ∈ Fχ0

= zF(K(0(l))) for some l ∈ Z

= zF(K(0)).

Lemma 3.31. zF(K(0)) = 1.

Proof. The result follows directly from the minimal projective resolution of K(0)

in (3.4).

Therefore,
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Theorem 3.32. Let λ ∈ X+
0 .

(1) If λ is typical, then zF(K(λ)) = 0.

(2) If λ is atypical, then zF(K(λ)) = 1.

3.5.1 Detecting subsuperalgebra

As we interpreted the complexity of the simple and the Kac modules geometrically

through the dimensions of the associated variety and the support variety, we

can also find a geometric interpretation of the z-complexity. To do so, a

detecting subalgebra is introduced. Let f1̄ ⊆ g1̄ be the span of the root vectors

xα, x−α where α = ε1 − δ1. In the matrix realization, xα = E1,3 − En+3,2 and

x−α = E2,n+3 +E3,1. Set f0̄ = [f1̄, f1̄]. Then f0̄ is spanned by the diagonal matrix

E1,1 − E2,2 + E3,3 − En+2,n+2. We define a three-dimensional subalgebra of g by

f := f0̄ ⊕ f1̄.

The Lie superalgebra f is classical and of Type I and so has a support variety

theory. Furthermore, as [f0̄, f1̄] = 0, it follows that these varieties admit a rank

variety description and, in particular, can be identified as subvarieties of f1̄, i.e.,

V(f,f0̄)(M) = Vrankf1̄
(M)

= {y ∈ f1̄ | M is not projective as U(〈y〉)-module} ∪ {0}.

For example, V(f,f0̄)(C) = f1̄. If M is projective, then V(f,f0̄)(M) = 0.

Proposition 3.33. Let λ ∈ X+
0 . If λ ∈ X+

0 is typical, then

V(f,f0̄)(K(λ)) = V(f,f0̄)(L(λ)) = 0.
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If λ is atypical, then

(1) dimV(f,f0̄)(K(λ)) = 1.

(2) dimV(f,f0̄)(L(λ)) = 2.

Proof. If λ is typical, then L(λ) and K(λ) are projective. Let λ be an atypical

weight. We can use the proofs of [2, Theorem 6.4.1,Theorem 9.2.1] to show

V(f,f0̄)(K(λ)) ⊆
�
f1̄ ∩ Vg−1(K(λ))

�
×
�
f1̄ ∩ Vg1(K(λ))

�
. (3.7)

From the rank variety description we have

�
f1̄ ∩ Vg−1(K(λ))

�
∪
�
f1̄ ∩ Vg1(K(λ))

�
⊆ V(f,f0̄)(K(λ)). (3.8)

We have Vg1(K(λ)) = g1 and Vg−1(K(λ)) = 0 (cf. [3, Theorem 3.3.1]). Since

f1̄ ∩ g1 is one-dimensional, then equation (3.7) and equation (3.8) imply that

dimV(f,f0̄)(K(λ)) = 1,

and, in fact, V(f,f0̄)(X(λ)) = f1̄ ∩ g1.

On the other hand, [6, Theorem 4.1.1] implies that if λ and µ have the same

atypicality, then

V(f,f0̄)(L(λ)) = V(f,f0̄)(L(µ)).

In particular,

V(f,f0̄)(L(λ)) = V(f,f0̄)(L(0|0, . . . , 0)) = f1̄,

Thus

dimV(f,f0̄)(L(λ)) = 2.
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Note that Theorem 3.28, Theorem 3.32, and Proposition 3.33 imply the

following geometric interpretation of the z-complexity:

Theorem 3.34. If X(λ) is a simple of a Kac module over osp(2|2n) then

zF(X(λ)) = dimV(f,f0̄)(X(λ)).

3.5.2 Kazhdan-Lusztig polynomials

The Kazhdan-Lusztig polynomial associated to a pair of weights, λ, µ ∈ X+
0 , is

defined by:

lλ,µ(−q−1) =
∑
i≥0

dim ExtiF(K(λ), L(µ))qi.

Kazhdan-Lusztig Polynomials can be used to compute the z-complexity of the

Kac modules. Moreover, by using these polynomials, we will show that

dim Ext1(L(λ), L(µ)) = 1⇔ λ = µL or λL = µ,

which was used in determining the radical layer structure of the projective covers.

These polynomials have been computed in [8, Theorem 5, Remark 1]. If µ is

typical, then lλ,µ = δλ,µ. If µ is atypical, then

lλ,µ(q) =


(−q)i, if λ = µ(i) for some i ≥ 0;

0, otherwise,

where µ(i) was defined in equation (3.1). If µ is typical then

dim ExtiF(K(λ), L(µ)) =


1, if λ = µ and i = 0;

0, otherwise.

(3.9)
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However, if µ is atypical, we get

dim ExtiF(K(λ), L(µ)) =


1, if λ = µ(i);

0, otherwise.

(3.10)

We will also get an alternative condition to get a non zero extension group.

Assume λ (or µ) is atypical. Using the proof of [2, Theorem 4.2.1], we have:

dim ExtdF(K(λ), L(µ)) ≤ dim Homg0̄
(L0̄(λ), Sd(g∗1)⊗ Λ•(g−1)⊗ L0̄(µ)). (3.11)

Now consider the element c := E1,1 − E2,2 ∈ g0̄. Then c is central in the

enveloping algebra of g0̄. Let λ = (λ−1|λ1, . . . , λn) and µ = (µ−1|µ1, . . . , µn).

Note that c acts on the simple module L(λ) by λ−1. However, it acts on g1̄ by 1

and on g−1 by −1. Thus c acts on Sd(g∗1) ⊗ Λ•(g−1) ⊗ L0̄(µ) by −d − b + µ−1

where b ∈ {0, 1, . . . , dim g−1 = 2n}. Therefore,

dim Homg0̄
(L0̄(λ), Sd(g∗1)⊗ Λ•(g−1)⊗ L0̄(µ)) 6= 0⇒ λ−1 = −d− b+ µ−1,

for some b ∈ {0, 1, . . . , 2n}. Hence

dim ExtdF(K(λ), L(µ)) 6= 0⇒ µ−1 = λ−1 + d+ b, (3.12)

for some b ∈ {0, 1, . . . , 2n}.

From the last equation in [8, Subsection 3.1] we have

∑
i≥0

dim ExtiF(L(λ), L(µ))qi =
∑
σ∈X+

0

lσ,λ(−q−1)lσ,µ(−q−1),
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which implies that

dim ExtdF(L(λ), L(µ)) =


1, if λ(i) = µ(j) for some i, j with i+ j = d;

0, otherwise.

(3.13)

In other words,

dim ExtdF(L(λ), L(µ)) =
∑
i+j=d

∑
σ∈B

dim ExtiF(K(σ), L(λ)) dim ExtjF(K(σ), L(µ)),

(3.14)

where B is the block containing L(λ) and L(µ). We can use this equation to show

that if dim ExtdF(L(λ), L(µ)) 6= 0, then there exists positive integers i, j with

i+j = d and σ in the block B containing λ, µ such that dim ExtiF(K(σ), L(λ)) 6= 0

and dim ExtjF(K(σ), L(µ)) 6= 0. Then by equation (3.12), we have

σ−1 = λ−1 − i− b1 and σ−1 = µ−1 − j − b2,

hence

dim ExtdF(L(λ), L(µ)) 6= 0⇒ λ−1 − µ−1 = i− j + b1 − b2, (3.15)

for some b1, b2 ∈ {0, 1, . . . , 2n} and some i, j such that i+ j = d.

We have the following alternative proof of Theorem 3.32 using Kazhdan-

Lusztig polynomials:

Proof. If λ is typical, then K(λ) is projective, and hence zF(K(λ)) = 0. Assume

λ is atypical. Equation (3.12) gives

dim ExtdF(K(λ), L(µ)) 6= 0⇒ µ−1 = λ−1 + d+ b, (3.16)
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for some b ∈ {0, 1, . . . , 2n}, which implies that

dim ExtdF(K(λ),
⊕

L(µ)) =
∑
µ

2n∑
b=0

dim ExtdF(K(λ), L(µ)), (3.17)

where the first sum runs over all µ that are in the same block of λ. Hence, µ and

λ have the same atypicality (i.e, 1) and the same core. Let λ = (λ−1|λ1, . . . , λn)

then µ = (λ−1 + d + b|µ1, . . . , µn). Let µk be the component that gives

atyp(µ) = 1. Then µk is uniquely determined by µ−1. However, the com-

ponents µ1, µ2, . . . , µk−1, µk+1, . . . , µn are determined by λ since µ and λ have

the same core. We have

ExtdF(K(λ), L(µ)) = 1,

when it is not zero. Thus

dim ExtdF(K(λ),
⊕

L(µ)) ≤ 2n+ 1 = (2n+ 1)d1−1,

which proves zF(K(λ)) ≤ 1. Assume zF(K(λ)) = 0, then there exists N ∈ N

such that

dim ExtdF(K(λ),
⊕

L(µ)) = 0,

for all d > N . Thus if P.→ K(λ) is a minimal projective resolution, then Pd = 0

for all d > N . Assuming the resolution has at least two projective modules, it

can be rewritten as:

0→ PN ↪→ PN−1 → PN−2 → · · · → K(λ)→ 0.
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Since projective modules are injective in F , the short exact sequence

0→ PN ↪→ PN−1 → PN−1/PN → 0

splits, hence PN−1
∼= PN ⊕ PN−1/PN which makes PN−1/PN projective. Thus

the projective resolution can be written as:

0→ PN ↪→ PN ⊕ PN−1/PN → PN−2 → · · · → K(λ)→ 0,

but the exactness of the original resolution implies the exactness of the following:

0→ PN−1/PN → PN−2 → · · · → K(λ)→ 0,

which contradicts the minimality of the original resolution. Now if the resolution

had only one projective module, then K(λ) is projective which is not the case

since λ is atypical. This shows that zF(K(λ)) = 1.
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Chapter 4

Computing the complexity over osp(3|2)

After computing the complexity of the simple and Kac modules over the type

C Lie superalgebra, we look at the type B Lie superalgebra osp(3|2). This Lie

superalgebra is of Type II and hence the Kac modules (as defined before) are

not finite dimensional. The simple modules are characterized by highest weights.

Using the description of the projective covers given in [10], we will compute

the complexity and the z-complexity of the simple modules over osp(3|2). We

show these complexities have the same geometric interpretation as was shown

for types A and C.

4.1 The Lie superalgebra osp(3|2)

Throughout this chapter, let g = osp(3|2). The definition of the general or-

thosymplectic Lie superalgebra osp(m|n) was given in Chapter 2. The bilinear

form F given there can be represented by the matrix:

F =

 G 0

0 H

 ,

where

G =


1 0 0

0 0 1

0 1 0

 and H =

 0 1

−1 0

 .
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Then g consists of all the matrices



0 −u −v

v a b

u c −a

x x1

y y1

z z1

−x1 −z1 −y1

x z y

d e

f −d


.

The even part of g is g0̄
∼= so3 ⊕ sp2

∼= sl2 ⊕ sl2, hence dim h∗ = 2. We can

choose a basis {ε, δ} of h∗ such that

Φ0̄ = {±ε;±2δ}, Φ1̄ = {±ε± δ;±δ},

and (ε, ε) = −(δ, δ) = 1, (ε, δ) = 0.

We choose the following distinguished set of positive roots : Φ+ = {ε; 2δ} ∪

{±ε+ δ; δ} which corresponds to the simple roots −ε+ δ and ε. Here we have

2ρ = ε − δ. Using the basis {ε, δ}, dominant weights for g will be identified

with N/2× N. By proposition 2.3 in [16], the set of dominant weights for g is :

X+ = {(a, b) ∈ N/2 × N | b = 0 ⇒ a = 0}. The atypical dominant weights

are λ0 = (0, 0) and λl = (l − 1, l) (for l ∈ N∗). For example, S(λ0) is the trivial

module, S(λ1) is the standard module.

Theorem 4.1. [10, Theorem 2.1.1] Let g = osp(3|2).

(a) Up to a shift of parity, the principal block Γ0 = {λl | l ∈ N} is the unique

atypical block.

(b) The projective indecomposable modules have the following radical layer

structure :
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S(λ0)

S(λ2)

S(λ0)

S(λ1)

S(λ2)

S(λ1)

S(λ2)

S(λ0)S(λ1)S(λ3)

S(λ2)

S(λ1)

S(λl−1) S(λl+1)

S(λl)

(l ≥ 3)

Remark 4.2. It is worth mentioning that the author in [10] considers the

category g-mod of finite-dimensional g-modules with even morphisms of rep-

resentations. On the other hand, we take the category F of finite-dimensional

g-modules with all morphisms of representations. However, his choice of morph-

isms does not affect the structure of the projective modules. We will be using his

classification of the simple modules in g-mod which contains the simple modules

in F . This remark applies in the next chapters where we consider the three

exceptional Lie superalgebras.

We first relate the dimension of P (µ) to the dimension of S(µ). Note that

S0̄(λ0) is the trivial g0̄-module and for λl = (l − 1, l) ∈ X+, we let S0̄(λl) =

Vl−1 ⊗ Vl where Vm denotes the simple sl2-module of dimension m + 1. As

g0̄-modules, S(µ) contains S0̄(µ) as a composition factor. Thus

dimP (µ) ≥ dimS(µ) ≥ dimS0̄(µ).

On the other hand, by the PBW theorem for Lie superalgebras we see that

U(g) is a free right U(g0̄)-module and thus, U(g)⊗U(g0̄)S0̄(µ) is a projective U(g)-

module. Hence it decomposes into a direct sum of projective indecomposable

modules. Set P := U(g)⊗U(g0̄) S0̄(µ). Then by applying Frobenius reciprocity

we have

Homg(P, S(γ)) = Homg0̄
(S0̄(µ)), S(γ)

∣∣∣∣
g0̄

) 6= 0 if µ = γ.
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Thus P surjects onto L(µ) which implies that P (µ) is a direct summand of P .

However, by the PBW theorem,

P = U(g)⊗U(g0̄) S0̄(µ) ∼= Λ•(g1̄)⊗ S0̄(µ)

as vector spaces. Therefore, we have

dimS0̄(µ) ≤ dimP (µ) ≤ 2dim g1̄ dimS0̄(µ). (4.1)

Thus

l(l + 1) ≤ dimP (λl) ≤ 26l(l + 1). (4.2)

4.2 Complexity of simple osp(3|2)-modules

We will use the above structure of the projective covers to give a minimal

projective resolution of the trivial module S(λ0), then we use the generalized

Kac-Wakimoto conjecture to show that any atypical simple module will have

the same complexity as the trivial module. Recall that if the simple module is

typical, then it is projective and hence has zero complexity.

Theorem 4.3. For an atypical λl ∈ X+, cF(S(λl)) = 4.

Proof. The minimal projective resolution of S(λ0) is given by:

. . .→ Pd → . . .→ P (λ0)→ S(λ0)→ 0, (4.3)

where the dth term in this resolution is given by:

Pd =P (λd+1)⊕ P (λd−1)⊕ · · · ⊕ P (λr),

72



where

r =



2 if d is odd,

0 if d ≡ 0 mod 4,

1 if d ≡ 2 mod 4.

The construction of this minimal projective resolution follows our construction

in Theorem 3.5. We use the same diagrammatic approach that was established

in [1, Section 10.3]. Using equation (4.2) we get for all d:

dimPd ≤ 26
d+1∑
l=1

�
l(l + 1)

�
≤ C.d3,

for some positive constant C. On the other hand,

dimPd ≥
1

2

d+1∑
l=1

l2 ≥ C ′.d3,

for some positive constant C ′. This shows that cF(S(λ0)) = 4. By [6, The-

orem 4.1.1], all simple modules of the same atypicality have the same complexity.

Thus the complexity of all atypical simple osp(3|2)-modules is 4.

4.2.1 A goemetric interpretation of the complexity

We can then interpret the complexity of simple modules geometrically:

Theorem 4.4. If S is a simple g-module, then

cF(S) = dimXS + dimV(g,g0̄)(S).

Proof. If S is typical then S is projective and both sides are zero. Let S be an
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atypical simple module (i.e. atyp(S) = def(g) = 1). Let

X = {x ∈ g1̄ | [x, x] = 0}.

Let G0̄ be an algebraic group with Lie algebra g0̄. Then X is invariant under

the adjoint action of G0̄. It was shown that for any x ∈ X , there exists g ∈ G0̄

and isotropic mutually orthogonal linearly independent roots α1, . . . , αk such

that Adg(x) = x1 + . . .+ xk with xi ∈ gαi . The number k does not depend on

the choice of g and is called the rank of x (notation rk(x) = k). Let

Xk = {x ∈ X | rk(x) = k}.

Corollary 2.5 in [14] implies that for an atypical simple module S, we have

XS = X1 = X by the above stratification. Using [9, Theorem 4.5, Cor 4.8],

dimX = 3 in case g = osp(3|2). On the other hand, by [6, Cor 4.4.2] we have

dimV(g,g0̄)(S) = atyp(S) = 1. Thus

cF(S) = dimXS + dimV(g,g0̄)(S).

4.3 z-complexity

Using the projective resolution given in the proof of Theorem 4.3, we have

Proposition 4.5. zF(S(λ0)) = 2.

Proof. The z-complexity of a module is the rate of growth of the number of

direct summands in a minimal projective resolution of the module. In the proof
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of Theorem 4.3, the number of summands in Pd is a either
d

2
+ 1 if d is even or

d+ 1

2
if d is odd. Thus the rate of growth of this number is 2.

We will also show that:

Proposition 4.6. For l ≥ 1, we have zF(S(λl)) = 2.

Proof. Since the projective cover of S(λ1) has the same structure as the projective

cover of S(λ0), it follows that zF(S(λ1)) = 2. The minimal projective resolution

of S(λ2) is given by:

. . .→ Pd → . . .→ P (λ2)→ S(λ2)→ 0, (4.4)

where the dth term in this resolution is given by:

Pd =


P (λd+2)⊕ 2.P (λd)⊕ · · · ⊕ 2.P (λ2) if d ≥ 2 is even,

P (λd+2)⊕ 2.P (λd)⊕ · · · ⊕ 2.P (λ3)⊕ P (λ1)⊕ P (λ0) if d ≥ 1 is odd.

In the above, 2.P (λ) means P (λ)⊕ P (λ). Thus the number of summands in Pd

is either d + 1 if d ≥ 2 is even or it is d + 2 if d ≥ 1 is odd. This shows that

zF(S(λl)) = 2.

The dth term in the minimal projective resolution of S(λ3) is given by:

Pd =



P (λd+3)⊕ P (λd+1) if d = 1,

P (λd+3)⊕ P (λd+1)⊕ P (λ1)⊕ P (λ0) if d = 2,

P (λd+3)⊕ P (λd+1)⊕ 2.P (λd−1)⊕ · · · ⊕ 2.P (λ2) if d ≥ 3 is odd,

P (λd+3)⊕ P (λd+1)⊕ 2.P (λd−1)⊕ · · · ⊕ 2.P (λ3)⊕ P (λ1)⊕ P (λ0) if d ≥ 4 is even.

Thus the number of summands in Pd is either d+ 2 if d ≥ 2 is even or it is d+ 1
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if d ≥ 1 is odd. This shows that zF(S(λl)) = 2.

For l ≥ 3, the projective cover of S(λl) has the same structure as the projective

cover of S(λ3). This gives zF(S(λl)) = 2

4.3.1 Detecting subsuperalgebra

Let f1̄ ⊆ g1̄ be the span of the root vectors xα, x−α where α = ε1 + δ. In the

matrix realization, xα = E1,4 − E5,2 and x−α = E2,5 + E3,1. Set f0̄ = [f1̄, f1̄].

Then f0̄ is spanned by the diagonal matrix E1,1 − E2,2 + E4,4 − E5,5. We define

a three-dimensional subalgebra of g by

f := f0̄ ⊕ f1̄.

The Lie superalgebra f is classical and so has a support variety theory. Fur-

thermore, as [f0̄, f1̄] = 0, it follows that these varieties admit a rank variety

description and, in particular, can be identified as subvarieties of f1̄, i.e.,

V(f,f0̄)(M) = Vrankf1̄
(M)

= {y ∈ f1̄ | M is not projective as U(〈y〉)-module} ∪ {0}.

Note that V(f,f0̄)(S(λ0)) = f1̄. We can use this detecting subsuperalgebra to give

a geometric interpretation of the z-complexity. For instance,

Corollary 4.7. zF(S(λ0)) = dimV(f,f0̄)(S(λ0)) = 2.

In general:

Theorem 4.8.

(1) If S is a typical simple module, then

zF(S) = dimV(f,f0̄)(S) = 0.
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(2) If S is an atypical simple module, then

zF(S) = dimV(f,f0̄)(S) = 2.

Proof. If S is a typical simple module, then S is projective and the first part

follows. If S is atypical, then by [6, Theorem 4.1.1],

V(f,f0̄)(S) = V(f,f0̄)(S(λ0)),

thus dimV(f,f0̄)(S) = 2. The second part follows.
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Chapter 5

Computing the complexity over D(2, 1;α)

In this chapter we give the structure of the exceptional Lie superalgebra D(2, 1;α)

as discussed in [23]. In [10] the author establishes an equivalence between the

principal blocks of D(2, 1;α) and osp(3|2). We use this equivalence to compute

the complexity and the z-complexity of simple modules over D(2, 1;α). We also

give these complexities a geometric interpretation as in the earlier chapters.

5.1 The Lie superalgebra D(2, 1;α)

Let g be the basic classical Lie superalgebra D(2, 1;α) (see [16]). Scheunert [24]

denotes these algebras by Γ(σ1, σ2, σ3) where σi ∈ C for i = 1, 2, 3. We begin

with Scheunert’s construction.

Let V be a two-dimensional vector space over C with basis {u1, u−1} and let ψ be

a non-degenerate skew symmetric bilinear form on V defined by ψ(u1, u−1) = 1.

Then sl(V ) = sp(ψ) ∼= sl2 is the algebra of linear transformations on V preserving

ψ. Now for i = 1, 2, 3 take copies (Vi, ψi) of (V, ψ) and set

g0̄
∼= sp(ψ1)⊕ sp(ψ2)⊕ sp(ψ3) ∼= sl2 ⊕ sl2 ⊕ sl2,

g1̄ = V1 � V2 � V3.

Then g1̄ is a g0̄-module. Define the bilinear map pi : Vi × Vi → sp(ψi) by

pi(x, y)z = ψi(y, z)x− ψi(z, x)y
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for x, y, z ∈ Vi. We then define a symmetric g0̄-invariant bilinear form p :

g1̄ × g1̄ → g0̄ by

p(x1 ⊗ x2 ⊗ x3, y1 ⊗ y2 ⊗ y3) =
∑

σkψi(xi, yi)ψj(xj, yj)pk(xk, yk), (5.1)

where the sum is over all even permutations of {1, 2, 3}.

Lemma 5.1. [23, Lemma 4.2.1] p defines a Lie super bracket if and only if

σ1 + σ2 + σ3 = 0.

Thus if (σ1, σ2, σ3) satisfies σ1 + σ2 + σ3 = 0, then g = g0̄ ⊕ g1̄ is a Lie

superalgebra which we denote by Γ(σ1, σ2, σ3). Let α ∈ C \ {0,−1}, and set

D(2, 1;α) = Γ(−(1 + α)/2, 1/2, α/2). It can be shown that if α = 1, then

D(2, 1;α) is isomorphic to osp(4|2), and that the algebras corresponding to α,

−1− α−1 and α−1 are isomorphic (hence if α ∈ Q we can assume α > 0, 114 or

even α > 1).

Let

H =

1 0

0 −1

 , E =

0 1

0 0

 , F =

0 0

1 0


be the usual basis of sl2 and identify V with the vector space of column vectors

with basis

u1 =

1

0

 , u−1 =

0

1

 .
Denote by Hi, Ei, Fi the copies of H,E, F in the ith copy of sl2. Then

pi(u1, u−1) = −Hi, pi(u1, u1) = 2Ei, pi(u−1, u−1) = −2Fi.

The root system of g can be realized in the space h∗ = C3 endowed with a basis

{ε1, ε2, ε3} and with the bilinear whose matrix is diag(−(1 +α)/2, 1/2, α/2), the
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roots are given by :

Φ0̄ = {±2εi | 1 ≤ i ≤ 3} and Φ1̄ = {±ε1 ± ε2 ± ε3}.

We choose as simple roots β4 = ε1 − ε2 − ε3, 2ε2, and 2ε3. The non-simple

positive odd roots are : β1 = ε1 + ε2− ε3, β2 = ε1− ε2 + ε3 and β3 = ε1 + ε2 + ε3.

We have ρ = −β4.

The corresponding root vectors are

e1 = E2, e2 = u1 ⊗ u−1 ⊗ u−1, e3 = E3

and

f1 = F2, f2 = u−1 ⊗ u1 ⊗ u1, f3 = F3.

Set

h1 = H2, h2 = −σ1H1 + σ2H2 + σ3H3, h3 = H3.

These elements satisfy the relations

[ei, fj] = δijhi, [hi, hj] = 0, [hi, ej] = aijej, [hi, fj] = −aijfj,

where

A = (aij) =


2 −1 0

2σ2 0 2σ3

0 −1 2

 .

We identify the set of dominant weights for g0̄ with N×N×N. By proposition 2.2

in [16], the set of dominant weights for g is : X+ = {(a, b, c) ∈ N×N×N | a =

0⇒ b = c = 0 and a = 1⇒ (b+ 1) = ±α(c+ 1)}. Besides, the eigenvalue of the
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Casimir element is :

Cas(a, b, c) = −1 + α

2
(a− 1)2 +

1

2
(b+ 1)2 +

α

2
(c+ 1)2.

A dominant weight λ = (a, b, c) is atypical if and only if one of the following

scalar products is zero :

2(λ+ ρ, β1) = −(1 + α)(a− 1) + (b+ 1)− α(c+ 1)

2(λ+ ρ, β2) = −(1 + α)(a− 1)− (b+ 1) + α(c+ 1)

2(λ+ ρ, β3) = −(1 + α)(a− 1) + (b+ 1) + α(c+ 1)

2(λ+ ρ, β4) = −(1 + α)(a− 1)− (b+ 1)− α(c+ 1)

Notice that if α 6∈ Q, the only atypical dominant weights are λ0 = (0, 0, 0)

(corresponding to the trivial module) and λl = (l + 1, l − 1, l − 1) for l ≥ 1. For

example, λ1 is the highest root of g, i.e. S(λ1) is the adjoint representation.

If α ∈ Q, we assume α = p/q, with p and q relatively prime positive integers.

For k ∈ N, let Γk be the set of atypical simple modules λ ∈ X+ such that

Cas(λ) = p(p+ q)k2/2. For l ∈ Z we set moreover :

λk,l =



(−l + 2,−l − kp,−l + kq) if l ≤ −kp,

(−l + 1, l + kp− 1,−l + kq − 1) if −kp+ 1 ≤ l ≤ 0,

(l + 1, l + kp− 1,−l + kq − 1) if 0 ≤ l ≤ kq − 1,

(l + 2, l + kp, l − kq) if kq ≤ l.

Theorem 5.2. [10, Theorem 3.1.1] Let α ∈ C \ {−1, 0} and let g = D(2, 1;α).

(i) The principal block of g is : Γ0 = {λl | l ∈ N}. This block is equivalent

to the principal block of osp(3|2) : statement (b) in Theorem 4.1 holds for the

principal block of D(2, 1;α).
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(ii) If α 6∈ Q, Γ0 is the unique atypical block.

(iii) Let α ∈ Q, α > 0, written as α = p/q with p and q relatively prime. Then

any atypical block is one of the Γk. Besides, let k ≥ 1.

(a) The map Z→ Γk, l 7→ λk,l is a bijection ;

(b) The projective cover of S(λk,l) (l ∈ Z) has the following radical layer

structure :
S(λk,l)

S(λk,l−1) S(λk,l+1)

S(λk,l)

Recall that we have the following bounds on the dimensions of the projective

covers:

dimS0̄(µ) ≤ dimP (µ) ≤ 2dim g1̄ dimS0̄(µ), (µ ∈ X+), (5.2)

where S0̄(µ) is the simple g0̄-module of weight µ. Note that S0̄(λ0) is the trivial

g0̄-module and for λl = (l+ 1, l− l, l) ∈ X+, S0̄(λl) = Vl+1⊗ Vl−1⊗ Vl where Vm

denotes the simple sl2-module of dimension m+ 1. Thus

(l + 2)(l)(l + 1) ≤ dimP (λl) ≤ 28(l + 2)(l)(l + 1). (5.3)

Remark 5.3. In [17, Example 3.4], the authors compute the super-dimensions

of the finite-dimensional simple atypical modules over the exceptional Lie super-

algebras. Their computations show that the super-dimension of these modules is

not zero which shows that the Kac-Wakimoto conjecture

sdimV = 0⇔ atyp(V ) < def(g)

holds over these Lie superalgebras. Since the conjecture is valid, then [6, The-

orem 4.1.1] holds.
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5.2 Complexity of simple D(2, 1;α)-modules

Since the principal block Γ0 = {λl | l ∈ N} is equivalent to the principal block

of osp(3|2) and statement (b) in Theorem 4.1 holds for Γ0, S(λ0) will have the

same minimal projective resolution (4.4) as in Chapter 4. Then,

Theorem 5.4. If S is an atypical simple D(2, 1;α)-module, we have cF(S) = 5.

Proof. Using the projective resolution (4.4) and the bounds in equation (5.3),

we have

C ′.d4 ≤ dimPd ≤ C.d4,

for some positive constants C, C ′. This shows that cF(S(λ0)) = 5. Since [6,

Theorem 4.1.1] holds over D(2, 1;α), all simple modules of the same atypicality

have the same complexity and the same support variety. Thus the complexity of

all atypical simple D(2, 1;α)-modules is 5.

5.2.1 A geometric interpretation of the complexity

The atypical simple module, S, over D(2, 1;α) has atyp(S) = def(D(2, 1;α)) = 1.

Using the proof of Proposition 4.4, we have XS = X . Using [9, Theorem 4.5,

Cor 4.8], dimX = 4. By [6, Theorem 4.1.1] we have

dimV(g,g0̄)(S) = dimV(g,g0̄)(S(λ0)) = 1.

Theorem 5.5. Let S be a simple D(2, 1;α)-module. Then

cF(S) = dimXS + dimV(g,g0̄)(S).
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5.3 z-complexity

The z-complexity is a categorical invariant, thus using the equivalence between

the principal blocks of osp(3|2) and D(2, 1;α) we have:

Proposition 5.6. For all the simple modules S(λ) in the principal block of

D(2, 1;α), we have zF(S(λ)) = 2.

For the simple modules in the other atypical blocks Γk, we can compute the

z-complexity by writing an explicit minimal projective resolution. We then have:

Theorem 5.7. For λk,l ∈ Γk, we have zF(S(λk,l)) = 2.

Proof. The dth term in the minimal projective resolution of S(λk,l) is given by:

Pd =


P (λk,l±d)⊕ P (λk,l±(d−2))⊕ · · · ⊕ P (λk,l±1) if d ≥ 1 is odd,

P (λk,l±d)⊕ P (λk,l±(d−2))⊕ · · · ⊕ P (λk,l) if d ≥ 2 is even.

In the above, P (λk,l±i) means P (λk,l+i)⊕ P (λk,l−i). Thus the number of sum-

mands in Pd is d+ 1. This shows that zF(S(λk,l)) = 2.

5.3.1 Detecting subsuperalgebra

Let f1̄ ⊆ g1̄ be the span of the root vectors xα, x−α where α = ε1 + ε2 + ε3. Set

f0̄ = [f1̄, f1̄]. We define a subalgebra of g by

f := f0̄ ⊕ f1̄.

The Lie superalgebra f is classical and so has a support variety theory. Further-

more,

Lemma 5.8. f is three-dimensional. Moreover, [f0̄, f1̄] = 0.
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Proof. The root vectors xα and x−α are in fact given by

xα = u1 ⊗ u1 ⊗ u1 x−α = u−1 ⊗ u1̄ ⊗ u−1,

Then by equation (5.1) we have

[xα, x−α] =
∑

σkψi(ui, u−i)ψj(uj, u−j)pk(uk, u−k)

where the sum is over the even permutations of {1, 2, 3}. We have

ψi(ui, u−i) = ψj(uj, u−j) = 1

thus

[xα, x−α] = σ1p1(u1, u−1) + σ2p2(u1, u−1) + σ3p3(u1, u−1)

= σ1(−H1) + σ2(−H2) + σ3(−H3)

= −(σ1H1 + σ2H2 + σ3H3) ∈ g0̄.

Having [xα, xα] = [x−α, x−α] = 0 shows that f is three-dimensional. Moreover,

[[xα, x−α], xα] = −[σ1H1 + σ2H2 + σ3H3, u1 ⊗ u1 ⊗ u1]

= −(σ1u1 ⊗ u1 ⊗ u1 + σ2u1 ⊗ u1 ⊗ u1 + σ3u1 ⊗ u1 ⊗ u1)

= −(σ1 + σ2 + σ3)u1 ⊗ u1 ⊗ u1

= 0.

The last equality follows from the definition of D(2, 1;α) (Lemma 5.1). Similarly

we can show

[[xα, x−α], x−α] = 0.
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This shows that [f0̄, f1̄] = 0.

It follows that these varieties admit a rank variety description and, in partic-

ular, can be identified as subvarieties of f1̄, i.e.,

V(f,f0̄)(M) = Vrankf1̄
(M)

= {y ∈ f1̄ | M is not projective as U(〈y〉)-module} ∪ {0}.

Note that V(f,f0̄)(S(λ0)) = f1̄. We can use this detecting subsuperalgebra to give

a geometric interpretation of the z-complexity. For instance,

Corollary 5.9. zF(S(λ0)) = dimV(f,f0̄)(S(λ0)) = 2.

In general:

Theorem 5.10.

(1) If S is a typical simple module, then

zF(S) = dimV(f,f0̄)(S) = 0.

(2) If S is an atypical simple module, then

zF(S) = dimV(f,f0̄)(S) = 2.

Proof. If S is a typical simple module, then S is projective and the first part

follows. If S is atypical, then by [6, Theorem 4.1.1],

V(f,f0̄)(S) = V(f,f0̄)(S(λ0)),

thus dimV(f,f0̄)(S) = 2. The second part follows.

86



Chapter 6

Computing the complexity over G(3)

In this chapter we calculate the complexity of simple modules over the exceptional

Lie superalgebra G(3). We introduce the structure of G(3) as given in [23]. We

use the characterization of the simple modules and their projective covers given

in [10] to find the complexity and the z-complexity. We then verify the geometric

interpretation of these complexities in this case.

6.1 The Lie superalgebra G(3)

Let g be the basic classical Lie superalgebra G(3) (see [16]). We will consider the

construction introduced in [23, Section 4.4]. Let H = R⊕ Ri⊕ Rj ⊕ Rk be the

quaternion algebra over R, with i2 = j2 = k2 = −1 and ij = k, jk = i, ki = j.

If x = ai + bj + ck + dk, we set x̄ = a− bj − cj − dk. Let O = H⊕H be the

octonion algebra with multiplication

(a, b)(c, d) = (ac− d̄b, da+ bc̄),

for a, b, c, d ∈ H. For x = (a, b) ∈ O, define x̄ = (ā,−b) and the trace of x by

t(x) = x + x̄ = (a + ā, 0) ∈ R. Set O(0) = {x ∈ O | t(x) = 0}, the space of

traceless octonions. A derivation D on O is a linear map satisfying

D(xy) = D(x)y + xD(y).
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It is easy to check that D(O) ⊆ O(0). Let DerO be the set of all derivations on

O. We define the associator (x, y, z) on O by

(x, y, x) = (xy)z − x(yz),

and the commutator

[x, y] = xy − yx.

For x, y, z ∈ O, set Dx,z(y) = [y, [x, z]]− 3(x, y, z). Now we can give an explicit

construction of G(3) :

Theorem 6.1. [23, Theorem 4.4.5] Let V1 be a two-dimensional vector space

over C. Let ψ1 : V1 × V1 → C be a nondegenerate skew symmetric bilinear

form defined by ψ1(u1, u−1) = 1 if we let {u1, u−1} as a basis of V1. Define

p1 : V1 × V1 → sl2 by

p1(x, y)(z) = 4{ψ1(y, z)x− ψ1(z, x)y}

for x, y, z ∈ V1.

Let G2 = DerO ⊗R C, V2 = O(0) ⊗R C and let ψ2 be the bilinear map

ψ2 : V2 × V2 → C given by ψ2(x, y) = t(xȳ)/2. Define p2 : V2 × V2 → G2 by

p2(x, y) = Dx,y.

Let g0̄ = sl2 ⊕ G2 and g1̄ = V1 � V2. Then g = g0̄ ⊕ g1̄ becomes a Lie

superalgebra when we define

[x1 ⊗ x2, y1 ⊗ y2] = ψ1(x1, y1)p2(x2, y2) + ψ2(x2, y2)p1(x1, y1).
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Consider the following basis of O(0):

v3 = (0,−i), v2 = (0,−j), v1 = (0,−k), v0 = (0, 1)

v−1 = (k, 0), v−2 = (j, 0), v−3 = (i, 0).

Together with the identity 1 = (1, 0) these elements form a basis for O(0). We

will write Dj,k for Dvj ,vk . Define a basis for V2 = O(0) ⊗R C by

e3 = v3 + iv−3, e2 = v1 − iv−1, e1 = v2 − iv−2, e0 = v0,

e−1 = v2 + iv−2, e−2 = v1 + iv−1, e−3 = v3 − iv−3.

Using this basis we identify G2 with its image in gl7(C). The following compu-

tations are taken from [23, Section 4.7] :

Theorem 6.2.

1. Using the basis {e3, . . . , e−3}, the derivations D1,−1 and D2,−2 are repres-

ented by diagonal matrices with entries

(−2i,−4i, 2i, 0,−2i, 4i, 2i) and (−2i, 2i,−4i, 0, 4i,−2i, 2i)

respectively.

2. D1,−1 +D2,−2 +D3,−3 = 0.

3. Set h1 = iD2,−2/2 and h2 = i(D1,−1 −D2,−2)/2. Then {h1, h2} is a basis

for a Cartan subalgebra of G2.

4. Define α1, α2 in the dual of this Cartan subalgebra by αj(hk) = ajk where

A = (ajk) =

 2 −3

−3 6

. Then e±3, e±2, e±1, e0 are weight vectors of
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weights ±(2α1 + α2), ±(α1 + α2), ±α1, and 0 respectively. As a set of

positive roots of G2 we can take {α1, α2, α1 + α2, 2α1 + α2, 3α1 + α2, 3α1 +

2α2}.

5. The derivation ∆1 = D1,3 − iD1,−3 − iD−1,3 −D−1,−3 is represented by the

matrix x1 := −4E1,2 + 4E3,4 − 8E4,5 + 4E6,7.

6. The derivation ∆2 = D1,2 − iD1,−2 − iD−1,2 −D−1,−2 is represented by the

matrix x1 := 12E2,3 − 12E5,6.

7. For every weight µ of V2 we have xj.V
µ ⊆ V µ+αj and hence xj ∈ G

αj
2 for

j = 1, 2.

8. The remaining generators of G2 as a Lie algebra are:

y1 = −k(x1)/2 and y2 = −k(x2)/48,

where K(xi) is the complex conjugate of xi. Then yj ∈ G
−αj
2 for j = 1, 2.

9. For j = 1, 2 and h in the Cartan subalgebra of G2 we have

[hi, hj] = 0, [xi, yj] = δijhi, [h, xi] = αi(h)xi, [h, yi] = −αi(h)yi.

10. Let H =

1 0

0 −1

 and consider the basis {u1, u−1} for V1. In addition to

the generators xi, yi, hi for i = 1, 2, G(3) has generators

x0 = (u1 ⊗ e−3)/2, y0 = (u−1 ⊗ e3)/2, and h0 = −2H − 2h1 − h2.
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11. Let ψ1, ψ2, p1, p2 be as defined in Theorem 6.1. Then

p1(u1, u−1) = −4H, p2(e−3, e3) = −8h1 − 4h2, ψ2(e−3, e3) = 2.

12. Let h be the Cartan subalgebra of G(3) with basis {h0, h1, h2} and define

αj ∈ h∗ by αj(hk) = ajk where

A = (ajk) =


0 −1 0

−1 2 −3

0 −3 6

 .

Then for j = 0, 1, 2 and h ∈ h we have

[hi, hj] = 0, [xi, yj] = δijhi, [h, xi] = αi(h)xi, [h, yi] = −αi(h)yi.

13. Let 2δ be the positive root of sl2 and set α0 = δ−2α1−α2. Then {α0, α1, α2}

is a system of simple roots for G(3).

If we set

α0 = δ + ε3, α1 = ε1, α2 = ε2 − ε1,

the root system in Theorem 6.2 can be realized in the space H∗ = C3 endowed

with a basis {δ, ε1, ε2} and with the bilinear defined by :

(ε1, ε1) = (ε2, ε2) = −2(ε1, ε2) = −(δ, δ) = 2.

We can then take as simple roots ε1, ε2 − ε1 and −ε1 − ε2 + δ. Then

positive even roots are : Φ+
0̄ = {ε1, 2ε1 + ε2, ε1 + ε2, ε1 + 2ε2, ε2, ε2 − ε1, 2δ} and

positive odd roots are : Φ+
1̄ = {(±(uε1 + vε2) + δ | (u, v) ∈ {0, 1}2}. We have
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ρ = 2ε1+3ε2−5δ/2. We identify the set of dominant weights for g0̄ with N×N×N

by means of the fundamental weights (ω1 = ε1 + ε2;ω2 = ε1 + 2ε2;ω3 = δ).

For λ = m1ω1 +m2ω2, the dimension of the simple G(2)-module, L(λ), can be

computed by the Weyl-dimension formula [20, Section 24.3]:

dimL(λ) =
1

5!
(m1 + 1)(m2 + 1)(m1 +m2 + 2)(m1 + 2m2 + 3)

(m1 + 3m2 + 4)(m1 + 3m2 + 4)(2m1 + 3m2 + 5). (6.1)

By proposition 2.2 in [16], the set of dominant weights for g is : X+ = {(a, b, c) ∈

N × N × N | a = 0 ⇒ b = c = 0, a 6= 1 and a = 2 ⇒ b = 0}. Besides, the

eigenvalue of the Casimir element is :

Cas(a, b, c) = 2b2 + 6bc+ 10b+ 6c2 + 18c− 2a2 + 10a.

For k ∈ N, we denote by Γk the set of dominant weights λ ∈ X+ such that

Cas(λ) = 6k(k + 1). For l ∈ N, we set :

λ0,0 = (0, 0, 0),

λ0,1 = (5, 0, 0),

λk,0 = (2, 0, k − 1) if k ≥ 1,

λk,1 = (3, 0, k − 1) if k ≥ 1,

λk,l =


(l + 2, 2l − 2, k − l) if 2 ≤ l ≤ k,

(l + 3, 3k − l, l − k − 1) if k + 1 ≤ l ≤ 3k,

(l + 4, l − 3k − 1, 2k) if 3k + 1 ≤ l.

Theorem 6.3. ([10, Theorem 4.1.1]) Let g = G(3). Every atypical block of g

is one of the Γk. For every k ∈ N, Γk is equivalent to the principal block of

osp(3, 2).
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The map N→ Γk, l 7→ λk,l is bijective ; statements (b) and (c) of Theorem 4.1

apply to Γk.

6.2 Complexity of simple G(3)-modules

Since the principal block Γ0 = {λ0,l | l ∈ N} is equivalent to the principal block

of osp(3|2) and statement (b) in Theorem 4.1 holds for Γ0 ([10, Lemma 4.3.1]),

we will have the same minimal projective resolution (4.4) for S(λ0,0). Then

Theorem 6.4. If S is an atypical simple G(3)-module, we have cF(S) = 8.

Proof. Using the projective resolution (4.4), the bounds in equation (5.2), and

the dimension formula given in (6.1), we have

C ′.d7 ≤ dimPd ≤ C.d7,

for some positive constants C, C ′. These bounds are obtained by multiplying

the dimension formula given in (6.1) by an extra factor from the sl2-part. This

shows that cF(S(λ0)) = 8. Since [6, Theorem 4.1.1] holds over G(3), then all

simple modules of the same atypicality have the same complexity and the same

support variety. Thus the complexity of all atypical simple G(3)-modules is

8.

6.2.1 A geometric interpretation of the complexity

The same discussion as in 5.2.1 shows that we have the following geometric

interpretation in this case: If S is a simple G(3)-module, then

cF(S) = dimXS + dimV(g,g0̄)(S).
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6.3 z-complexity

The z-complexity is a categorical invariant, thus using the equivalence between

the principal block of osp(3|2) and the atypical blocks G(3) we have:

Proposition 6.5. If S is an atypical simple G(3)-module, then zF(S) = 2.

6.3.1 Detecting subsuperalgebra

Let f1̄ ⊆ g1̄ be the span of the root vectors x0 = xα0 , y0 = x−α0 where α0 = ε3 +δ.

Set f0̄ = [f1̄, f1̄]. We define a three-dimensional subalgebra of g by

f := f0̄ ⊕ f1̄.

The Lie superalgebra f is classical and so has a support variety theory. Further-

more,

Lemma 6.6. [f0̄, f1̄] = 0.

Proof. The even part f0̄ is spanned by the vector [x0, y0] = h0. From Theorem 6.2

we have [h0, x0] = α0(h0)x0 = 0 and [h0, y0] = α0(h0)y0 = 0. The result

follows.

It follows that these varieties admit a rank variety description and, in partic-

ular, can be identified as subvarieties of f1̄, i.e.,

V(f,f0̄)(M) = Vrankf1̄
(M)

= {y ∈ f1̄ | M is not projective as U(〈y〉)-module} ∪ {0}.

Note that V(f,f0̄)(S(λ0,0)) = f1̄. We can use this detecting subsuperalgebra to give

a geometric interpretation of the z-complexity. For instance,
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Corollary 6.7. zF(S(λ0,0)) = dimV(f,f0̄)(S(λ0,0)) = 2.

In general:

Theorem 6.8.

(1) If S is a typical simple module, then

zF(S) = dimV(f,f0̄)(S) = 0.

(2) If S is an atypical simple module, then

zF(S) = dimV(f,f0̄)(S) = 2.

Proof. If S is a typical simple module, then S is projective and the first part

follows. If S is atypical, then by [6, Theorem 4.1.1],

V(f,f0̄)(S) = V(f,f0̄)(S(λ0,0)),

thus dimV(f,f0̄)(S) = 2. The second part follows.
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Chapter 7

Computing the complexity over F (4)

In this chapter we calculate the complexity of simple modules over the exceptional

Lie superalgebra F (4). We introduce the structure of F (4) as given in [23]. We

use the characterization of the simple modules and their projective covers given

in [22] to find the complexity and the z-complexity. The geometric interpretation

of these complexities in this case agrees with our earlier results.

7.1 The Lie superalgebra F (4)

The construction of the classical Lie superalgebra F (4) involves the use of Clifford

algebras and spinor representations.

Definition 7.1. Let C2n be the vector space of column vectors with 2n entries

and let β be the bilinear form on C2n defined by β(x, y) = xty. Let T (C2n) be

the tensor algebra on C2n and J the ideal of this tensor algebra generated by the

elements

xy + yx− β(x, y)

for x, y ∈ C2n. The Clifford algebra associated to β is C(β) : = T (C2n/J .

Proposition 7.2. [23, Proposition A.3.5] If {x1, . . . , x2n} is a basis for C2n

then C(β) has a basis consisting of the monomials xr11 x
r2
2 · · · xr2n2n where ri = 0

or 1 for i = 1, 2, . . . , 2n.

Theorem 7.3. [23, Theorems A.3.7 and A.3.8] C(β) has a unique simple module

S with dimC S = 2n. S is called the space of spinors.
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Let R : C(β)→ End(S) be the corresponding representation. Set Γi = R(xi)

for 1 ≤ i ≤ 2n. Then

ΓkΓ+ΓjΓk = 2δjk (7.1)

for 1 ≤ j, k ≤ 2n. If we set Γ2n+1 = inΓ1 · · ·Γ2n then equation (7.1) holds for

1 ≤ j, k ≤ 2n+ 1.

Define Γtj ∈ EndS∗ by (Γtjf)(v) = f(Γjv), for f ∈ S∗, v ∈ S. The relation

(7.1) also holds if we replace the elements Γj ∈ EndS by (−1)nΓtj ∈ EndS∗. By

the uniqueness of S there is an isomorphism f : S → S∗ such that

(−1)nΓtj ◦ f − f ◦ Γj

for 1 ≤ j ≤ 2n. Define a nondegenerate bilinear form ψ on S by ψ(u, v) =

(f(u))(v). Then

ψ(Γju, v) = (−1)nψ(u,Γjv) (7.2)

for all u, v ∈ S and 1 ≤ j ≤ 2n + 1. Let so(2n + 1) be the Lie algebra of all

skew-symmetric 2n+ 1× 2n+ 1 matrices. The spin representation of so(2n+ 1)

is the Lie algebra homomorphism so(2n + 1) → EndS sending Ejk − Ekj to

1
2
ΓjΓk when j 6= k. We identify so(2n+ 1) with its image in EndS. Then S is

a simple so(2n+ 1)-module and ψ is an so(2n+ 1)-invariant bilinear form on

S. It is known that ψ is symmetric if n ≡ 0, 3 mod 4 and it is skew-symmetric

otherwise.

The following theorem gives an explicit construction of F (4) :

Theorem 7.4. [23, Theorem 4.5.5] Let V1 be a two-dimensional vector space

over C. Let ψ1 : V1 × V1 → C be a nondegenerate skew symmetric bilinear

form defined by ψ1(u1, u−1) = 1 if we let {u1, u−1} as a basis of V1. Define
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p1 : V1 × V1 → sl2 by

p1(x, y)(z) = 3{ψ1(y, z)x− ψ1(z, x)y}

for x, y, z ∈ V1.

Let V2 = S be the spin representation of so7 and let ψ2 : V2 × V2 → C be a

nondegenerate bilinear form such that ψ2(Γju, v) = −ψ2(u,Γjv) for u, v ∈ V2.

Identify so7 with its image in EndS and define p2 : V2 × V2 → so7 by

p2(u, v) =
∑

1≤j<k≤7

ψ2(u,ΓjΓkv)ΓjΓk.

Let g0̄ = sl2 ⊕ so7 and g1̄ = V1 � V2. Then g = g0̄ ⊕ g1̄ becomes a Lie

superalgebra when we define

[x1 ⊗ x2, y1 ⊗ y2] = ψ1(x1, y1)p2(x2, y2) + ψ2(x2, y2)p1(x1, y1).

The root system can be realized in the space H∗ = C4 endowed with a

basis {δ, ε1, ε2, ε3} and with the bilinear defined by : (εi, εj) = δij, (δ, δ) =

−3, (εi, δ) = 0 for all i, j. We take as simple roots α1 = 1
2
(−ε1 − ε2 − ε3 + δ),

α2 = ε3, α3 = −ε2 − ε3, and α4 = ε1 − ε2. Then positive even roots are :

Φ+
0̄ = {δ, εi, εi±εj | i < j} and positive odd roots are : Φ+

1̄ = {1
2
(±ε1±ε2±ε3+δ)}.

We have ρ = 1
2
(5ε1 + 3ε2 + ε3 − 3δ).

The even part of g is g0̄
∼= sl2 ⊕ so7 of type A1 ⊕ B3. The set of dominant

weights and the atypical blocks are described in [22]. The maximal atypicality

is 1 as the defect of F (4) is 1. The fundamental weights are ω1 = ε1, ω2 =

ε1 + ε2, ω3 = 1
2
(ε1 + ε2 + ε3), and ω4 = 1

2
δ. For λ = m1ω1 +m2ω2 +m3ω3, the

dimension of the simple so(7)-module, L(λ), can be computed by the Weyl-
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dimension formula [20, section 24.3]:

dimL(λ) =
1

720
(m1 + 1)(m2 + 1)(m3 + 1)(m1 +m2 + 2)(m2 +m3 + 2)

(2m2 +m3 + 3)(m1 +m2 +m3 + 3)(m1 + 2m2 +m3 + 4)(2m1 + 2m2 +m3 + 5).

(7.3)

Note that the spin representation of so7 has the following explicit construction.

Let W be a three-dimensional vector space over C, then
∧•W is an eight-

dimensional vector space over C :

Proposition 7.5. [11, prop 20.20] The vector space
∧•W is the irreducible

representation of so7 with highest weight 1
2
(ε1 + ε2 + ε3). Moreover, eI =

ei1 ∧ ei2 ∧ . . . ∧ eik ∈
∧•W has the weight 1

2
(
∑
i∈I εi −

∑
j /∈I εj).

7.2 Complexity of simple F (4)-modules

The description of the projective indecomposable modules over F (4) given in

[22, Lemma 11.1] is the same as the one given in [10] over G(3), except for a

small difference in the notation. For example, in [22], λ1 corresponds to the

trivial module, while in [10] λ0 corresponds to the trivial module. This similarity

means that the projective resolution (4.4) over osp(3|2) will carry over to F (4).

Theorem 7.6. If S is an atypical simple F (4)-module, we have cF(S) = 9.

Proof. Using the projective resolution (4.4) and the bounds in equation (5.2),

and the dimension formula in equation (7.3), we have

C ′.d8 ≤ dimPd ≤ C.d8,
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for some positive constants C, C ′. These bounds are obtained by multiplying

the dimension formula in equation (7.3) by an extra factor from the sl2-part.

This shows that cF(S(λ1)) = 9. Since [6, Theorem 4.1.1] holds over F (4), then

all simple modules of the same atypicality have the same complexity and the

same support variety. Thus the complexity of all atypical simple F (4)-modules

is 9.

7.2.1 A geometric interpretation of the complexity

The same discussion as in 5.2.1 shows that we have the following geometric

interpretation in this case: If S is an atypical simple F (4)-module, then

cF(S) = dimXS + dimV(g,g0̄)(S).

7.3 z-complexity

The radical layer structure of the projective indecomposable modules over F (4)

is the same as that over G(3). This will give the same projective resolutions

over F (4). Thus

Proposition 7.7. If S is an atypical simple F (4)-module, then zF(S) = 2.

7.3.1 Detecting subsuperalgebra

Let f1̄ ⊆ g1̄ be the span of the root vectors xα, x−α where α = 1/2(ε1 +ε2 +ε3 +δ).

Set f0̄ = [f1̄, f1̄]. We define a subalgebra of g by

f := f0̄ ⊕ f1̄.
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The Lie superalgebra f is classical and so has a support variety theory. Further-

more,

Lemma 7.8. f is three-dimensional and satisfies [f0̄, f1̄] = 0.

Proof. The root vectors xα and x−α are given by

xα = u1 ⊗ (e1 ∧ e2 ∧ e3), x−α = u−1 ⊗ 1,

where {u1, u−1} is a basis of V1 and {e1, e2, e3} is a basis of W , with
∧•W = V2.

Recall that we have ψ1(u1, u−1) = 1 in Theorem 7.4. We can easily show that

p1(u1, u−1) =

−3 0

0 3

 ∈ sl2.

Since e1 ∧ e2 ∧ e3 and 1 have opposite weights, then ψ2(e1 ∧ e2 ∧ e3, 1) 6= 0.

Choose ψ2 to be normalized in the sense that ψ2(e1∧ e2∧ e3, 1) = 1. To compute

the bracket [xα, x−α] we need to find all the elements, ΓjΓk in so7 such that

ψ2(e1 ∧ e2 ∧ e3,ΓjΓj.1) 6= 0

which is equivalent to having ΓjΓk as a Cartan element. These elements are

Γ2Γ5 = 2(E25 − E52) Γ3Γ6 = 2(E36 − E63) Γ4Γ7 = 2(E47 − E74),
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and they act on the eigenvector 1 by −i. Thus

p2(e1 ∧ e2 ∧ e3, 1) = ψ2(e1 ∧ e2 ∧ e3,−i.1)Γ2Γ5 + ψ2(e1 ∧ e2 ∧ e3,−i.1)Γ3Γ6

+ ψ2(e1 ∧ e2 ∧ e3,−i.1)Γ4Γ7

= −i(Γ2Γ5 + Γ3Γ6 + Γ4Γ7)

= −2i(E25 − E52 + E36 − E63 + E47 − E74) ∈ so7.

If we use the definition of so7 given in [20], then

p2(e1 ∧ e2 ∧ e3, 1) = 2(h1 + h2 + h3),

where hi = Ei+1,i+1 − Ei+4,i+4 for i = 1, 2, 3. Let h =

1 0

0 1

 ∈ sl2, then

[xα, x−α] =
�
− 3h, 2(h1 + h2 + h3)

�
∈ sl2 ⊕ so7.

Having [xα, xα] = [x−α, x−α] = 0 shows that f is three-dimensional. Moreover,

[[xα, x−α], xα] = [
�
− 3h, 2(h1 + h2 + h3)

�
, u1 ⊗ (e1 ∧ e2 ∧ e3)]

= −3h.u1 ⊗ (e1 ∧ e2 ∧ e3) + u1 ⊗ (2h1 + 2h2 + 2h3)(e1 ∧ e2 ∧ e3)

= −3xα + u1 ⊗ (ε1 + ε2 + ε3)(h1 + h2 + h3)(e1 ∧ e2 ∧ e3)

= −3xα + 3xα = 0

Similarly we can show [[xα, x−α], x−α] = 0. This shows that [f0̄, f1̄] = 0.

It follows that these varieties admit a rank variety description and, in partic-
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ular, can be identified as subvarieties of f1̄, i.e.,

V(f,f0̄)(M) = Vrankf1̄
(M)

= {y ∈ f1̄ | M is not projective as U(〈y〉)-module} ∪ {0}.

Note that V(f,f0̄)(S(λ1)) = f1̄. We can use this detecting subsuperalgebra to give

a geometric interpretation of the z-complexity. For instance,

Corollary 7.9. zF(S(λ1)) = dimV(f,f0̄)(S(λ1)) = 2.

In general:

Theorem 7.10.

(1) If S is a typical simple module, then

zF(S) = dimV(f,f0̄)(S) = 0.

(2) If S is an atypical simple module, then

zF(S) = dimV(f,f0̄)(S) = 2.

Proof. If S is a typical simple module, then S is projective and the first part

follows. If S is atypical, then by [6, Theorem 4.1.1],

V(f,f0̄)(S) = V(f,f0̄)(S(λ1)),

thus dimV(f,f0̄)(S) = 2. The second part follows.
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